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Abstract. A well known spherical code (4, ρ, 9) of dimension 4 and size 9 is consid-
ered. The square of the Euclidean minimal distance is equal to ρ = 1.67596... and
is a solution to a cubic equation. It is shown that this code is optimal and unique.

1 Introduction

Let X : (n, ρ,M) be a finite set (called spherical code) of M points on the
Euclidean sphere Sn−1 ⊂ Rn of radius 1, which satisfies the following property:
for an arbitrary two points x = (x1, ..., xn) and y = (y1, ...yn) from X the
following inequality holds:

ρ(x, y) =

n∑
i=1

(xi − yi)2 ≥ ρ.

In the current paper, by distance it is always assumed the square of Eu-
clidean distance. Moreover, a sphere Sn−1 in space Rn is always assumed to be
a sphere of radius 1 centered at the origin of Rn.

According to the Rankin [1,2] for ρ in the interval [2, 4], all optimal spherical
codes are known. But it is not the case for ρ < 2. There is only one infinite
family of optimal codes with ρ < 2. In particular, the following result (see
section 9.4 in [3]) takes place: an optimal spherical code with parameters

n = q(q2 − q + 1), ρ = 2− 2

q2
, M = (q + 1)(q3 + 1),

exists for any prime power q [4 - 6]. In addition to this infinite family, there
exist a few other optimal spherical codes in dimension n ≤ 24, or for n = 3
obtained from the strongly regular graphs or lattices (see [3]).

There also exist two codes (whose optimality is not mentined in [3], since
it was shown rather recently). One is the code (4, 1, 24), whose optimality was
proved by Musin [7] and the code (4, 5/3, 10) whose optimality and uniqueness
were established by Bachoc and Vallentin [8].

1The research was carried out at the IITP RAS at the expense of the Russian Foundation
for Sciences (project No. 14-50-00150).
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In [3], codes with parameters (n, ρ, 2n+ 1), where ρ is a root of some cubic
equation have been constructed. The optimality of the first non-trivial code
of this family with parametrs (3, ρ, 7) and ρ ≈ 1.57972..., has been proved by
Schütte and van der Waerden [9]. The goal of the present paper is to show
that the next representative of this family, i.e. the (4, ρ, 9) code is unique and
optimal.

2 The construction of code

Recall that in the space Rn, there are known two infinite families of regular
polytopes whose vertices lie on the sphere Sn−1: simplices and cross-polytopes.
The codes of our interest (n, ρ, 2n+ 1) have an extra point compared to codes
formed by the vertices of cross-polytopes, which are the well-known biorthog-
onal codes with parameters (n, ρ,M) = (n, 2, 2n). According to the Rankin
bound [2] they are optimal. The vertices of a simplex form another well known
infinite family of the optimal spherical codes with parameters (n, 2+2/n, n+1)
that lie on the Rankin bound [1]. Denote by Pn the simplex code, i.e. the
spherical code with parameters (n, 2 + 2/n, n+ 1).

For a spherical code X and any real number b ∈ R denote by bX the
following set of points of Rn, obtained from X:

bX = {bx = (b x1, b x2, ..., b xn) : x ∈ X}.

For a given point x = (x1, . . . , xn) denote by x̄ = −x = (−x1, . . . ,−xn)
the antipodal point (on the same sphere). This point is known to be at the
maximal distance 4 from x. A pair of points x and x̄ is called the antipadal
pair. Similarly, for a set X on the sphere, denote by X̄ the corresponding
antipodal set

X̄ = {x̄ : x ∈ X}.
For a given set of points Z ⊂ Rn and an arbitrary real a, such that 0 <

a ≤ 1 denote by Z | a the set of points in Rn+1, obtained from Z by adding a
coordinate position with value a:

Z | a = {(z | a) = (z1, ..., zn, a) : z ∈ Z}.

For a pair of spherical codes X and Y denote by ρ (X,Y ) the minimal
distance between their points:

ρ (X,Y ) = min{ρ (x, y) : x ∈ X, y ∈ Y }.

Let s(x, y) be the inner product of x and y, where for x = (x1, ..., xn) and
y = (y1, ..., yn) we have

s(x, y) =
n∑

i=1

xiyi.
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For a pair of spherical codes X and Y let

s (X,Y ) = max{s (x, y) : x ∈ X, y ∈ Y }.

Present a construction of the code (see Example 5.10.4 in [3]). For a given
Simplex code P3 (with parameters (3, 8/3, 4)), construct a new spherical code
X : (4, ρ, 9) as a union of three spherical codes:

X = X1 ∪X2 ∪X3,

where
X1 = b1 P3 | a1,
X2 = b2 P̄3 | − a2,
X3 = (0, . . . , 0 | 1).

i.e. the set X3 contains a single point. Choose the rational numbers ai and bi
so that the following enequality is satisfied:

a2i + b2i = 1, i = 1, 2 and a2 > a1 > 0. (1)

Lemma 1. There exist real numbers ai, i = 1, 2, so that the given code X is
the spherical code (4, ρm, M = 9), where

ρm = 2(1− a1) ≈ 1.6759696,

and a1 is the minimal positive root to the following equation:

16v3 + 16v2 − 4v − 1 = 0. (2)

Moreover, we have that

0.162015199 ≤ a1 ≤ 0.162015200;

0.609517350 ≤ a2 ≤ 0.609517351

Remark 1. Recall the best known upper bound of ρ for the optimal (4, 9, ρ)
code [11]:

ρ ≤ 1.84639.

For any code X with parameters (n, ρ,M), any two points x and y from
this code are called neighbours if ρ(x,y) = ρ. For any point x of X the number
of its neighbours is called the valency of x. A point of valency 0 is called an
isolated point. A point x which by a small displacement (not affecting other
points of the code) can be transformed to an isolated point is said to be loose.

The construction of the code implies two observations.
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Remark 2. There are 4 points x of the code X of Lemma 1, such that any of
them has 6 neighbours xi (1 ≤ i ≤ 6). Moreover, 3 points out of them belong
to X2 and another 3 belong to X1.

This remark implies the following lemma, which is a restatement of Lemma
1. The construction of the code X can be described in a different way. Enumer-
ate the code points of the code X in the following way: let x1, . . . ,x4 belong
to the subcode X1, the points x5, . . . ,x8 belong to X2, and the point x9 ∈ X3.
Assume that the points xi and xi+4 are antipodal in the initial simplices P3

and P̄3.
The following lemma provides another presentation of the code X of Lemma

1

Lemma 2. For any i, i = 4, . . . , 8, the constructed above (4, ρm, 9) code X is
equal to the union of three spherical codes:

X = Z1 ∪ Z2 ∪ Z3,

where

Z1 = {x ∈ X1 ∪X2 : x 6= xi,x4+i},
Z2 = {xi,x9},
Z3 = {x4+i}.

Moreover, any point x4+i, 4 ≤ i ≤ 8 has exactly 3 neighbours from Z1 (i.e. all
points of Z1 are the neighbours of x4+i). In particular, if x4+i is of the form
x5 = (0, . . . , 0, 1) then any point x ∈ Z1 is of the form

x = (x1, x2, x3, a1),

and the points xi and x9 of Z2 are of the form

xi = (x′1, x
′
2, x
′
3,− (b1b2 + a1a2)), x9 = (x′′1, x

′′
2, x
′′
3,− a2),

where the real numbers ai è bi satisfy the condition (1) and Lemma 1. Moreover

ρ(xi,x9) = ρm and ρ(xi,xi+4) = 2− 2(b1b2 + a1a2).

Observe that in the code X, the distance between any pair of points can be
given by one of the four possible expressions: ρm = 2− 2a1,

ρ(X1) =
8

3
· b21, ρ(X2, X3) = (2 + 2a2), ρ(xi,xi+4) = 2− 2(b1b2 + a1a2).
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3 Uniqueness and optimality of (4, ρm, 9) code

We start with some properties of an optimal spherical (4, ρ, 9) code X. We
consider this code up to any rotation on the Euclidean shpere, which is a mul-
tiplication all code points by an orthogonal matrix from the group SO(4, R).
In particular, it implies that without loss of generality one can assume that the
code X contains any point on the sphere S3.

Since the code X constructed in Lemma 1 is a rigid set, i.e. there are no
points in the code whose coordinats can be changed without decreasing the
minimal distance, we have the following properties of this code:

Lemma 3. Let X be an optimal spherical code with parameters (4, ρ, 9). Then
any point x ∈ X has valency at least 4.

On the other hand, the valency of any point is bounded from above.

Lemma 4. Let X be an optimal spherical code with parameters (4, ρ, 9). Then
for any x ∈ X the valency of x is not greater than 6.

Since the code X has an odd number of points, we have that

Lemma 5. Let X be an optimal spherical code with parameters (4, ρ, 9). Then
there exist a point whose valency is not equal to 5.

Moreover, we can show that the valency of the points of an optimal code X
cannot be equal to 5 or 6 only. So, consequently we have that

Lemma 6. Let X be an optimal spherical code with parameters (4, ρ, 9). Then,
there exists a point of X whose valency is equal to 4.

Recall that the deep holes for the simplex code Pn (i.e. the point on the
sphere whose distance is maximum from all code points) are well known. In
particular, we recall the following facts.

Lemma 7. Suppose Pn = {x1, . . . ,xn+1} is a simplex code on the sphere Sn−1

in Rn.
1) For an arbitrary point y /∈ Pn on the sphere Sn−1 the following inequalities
are true

ρ(y, Pn) ≤ 2− 2

n
.

2) There exist n + 1 points y1, . . . ,yn+1 on the sphere, so that the above in-
equalities become equalities.
3) The n+ 1 points y1, . . . ,yn+1, from above form a simplex P̄n = −Pn, which
is anipodal to the given simplex Pn, i.e. yi = x̄i, xi ∈ Pn for i = 1, . . . , n+ 1.
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Suppose X is an optimal code of type (4, ρ, 9). According to Lemma 6, there
exists a point z0 of that code with valency 4. Applying some rotation of R4 we
can assume that x0 is of the form (0, 0, 0, 1). Suppose that the neighbours of x0
are x1, x2, x3, x4 denoted by set X1. The remaining 4 points x5, x6, x7, x8 are
denoted by X2.

Lemma 8. Let X be an optimal spherical code with parameters (4, ρ, 9). Sup-
pose x0 = (0, 0, 0, 1) ∈ X has valency 4 and its neighbours is a set X1 =
{x1,x2,x3,x4}. Then, the numeration of the remaining points x5,x6,x7,x8

can be chosen in such a way that the neighbours of xi (for any 1 ≤ i ≤ 4) are
x4+j, where 1 ≤ i ≤ 4 and j 6= i.

The points xi, 1 ≤ i ≤ 4, of Lemma 8 are of the form (xi, yi, zi, s), where
ρm = 2 − 2s. So, once orthogonally projected onto a 3 dimensinal space (by
erazing the last coordinate) these points x′i lie on a sphere of radius r, r =√

1− s2 centered at zero. Let

ρ∗ = ρ({x′1,x′2,x′3,x′4}) = ρ({x1,x2,x3,x4}) = 4r2 sin(φ),

where φ is the half angle between the points at the minimal distance. Since
ρ ≤ ρ∗ ≤ 8r2/3, then the following estimate holds

2(1− s) ≤ 4(1− s2) sin2(φ) ≤ 8

3
(1− s2),

once simplified we obtain that

sin(φ0) =
1√

2(1 + s)
≤ sin(φ) ≤ sin(φ1) =

√
2√
3
,

so that φ0 ≤ φ ≤ φ1.
Using Lemma 7, the configuration of points {x5,x6,x7,x8} with the maxi-

mal distance from the points {x1,x2,x3,x4} is determined uniquely. Then, it
turns out that ρ({x5,x6,x7,x8}) can be expressed as f(φ), where function f
can be written explicitly.

Studying the behaviour of the function f(φ) we show that the maximum val-
ues of this function over the interval [φ0, φ1] are at the endspoints and moreover
f(φ0) = f(φ1), where the two endpoint correspond to two different presentation
of our construction (Lemmas 1 and 2).

Thus, we arrive at the main Theorem.

Theorem 1. Let X be an optimal spherical code with parameters (4, ρ, 9). Then
its minimal distance graph coincides to that of the code constructed in Lemma
1.
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The authors are grateful to Oleg Musin for the useful discussions of some
issues related to Lemmas 3 - 5.
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