A family of binary completely transitive codes and distance-transitive graphs

Josep C. Rifà1, Victor A. Zinoviev2

1Universitat Autònoma de Barcelona, Spain

2Institute for Problems of Information Transmission, Moscow, Russia

ACCT-13,
Outline

1. Summary
2. Introduction
3. Preliminary results
4. Main results
5. Bibliography
In this paper we construct new family of binary linear completely transitive (and, therefore, completely regular) codes.
In this paper we construct new family of binary linear completely transitive (and, therefore, completely regular) codes. The covering radius of these codes is growing with the length of the code.
In this paper we construct new family of binary linear completely transitive (and, therefore, completely regular) codes. The covering radius of these codes is growing with the length of the code.

In particular, for any integer $\rho \geq 2$, there exist two codes in the constructed class of codes with $d = 3$, covering radius ρ and length $\left(\frac{4\rho}{2}\right)$ and $\left(\frac{4\rho+2}{2}\right)$, respectively.
In this paper we construct new family of binary linear completely transitive (and, therefore, completely regular) codes. The covering radius of these codes is growing with the length of the code.

In particular, for any integer $\rho \geq 2$, there exist two codes in the constructed class of codes with $d = 3$, covering radius ρ and length $\binom{4\rho}{2}$ and $\binom{4\rho+2}{2}$, respectively.

These new completely transitive codes induce as coset graphs a family of distance-transitive graphs of growing diameter.
Introduction

We use the standard notation \([n, k, d]\) for a binary linear code \(C\) of length \(n\), dimension \(k\) and minimum distance \(d\).
Introduction

We use the standard notation $[n, k, d]$ for a binary linear code C of length n, dimension k and minimum distance d. The automorphism group $\text{Aut}(C)$ coincides with the subgroup of the symmetric group S_n consisting of all $n!$ permutations of the n coordinate positions which send C into itself.
We use the standard notation \([n, k, d]\) for a binary linear code \(C\) of length \(n\), dimension \(k\) and minimum distance \(d\). The automorphism group \(\text{Aut}(C)\) coincides with the subgroup of the symmetric group \(S_n\) consisting of all \(n!\) permutations of the \(n\) coordinate positions which send \(C\) into itself.

Given any vector \(v \in \mathbb{F}_2^n\) its distance to the code \(C\) is

\[
d(v, C) = \min_{x \in C} \{d(v, x)\}
\]

and the covering radius of the code \(C\) is

\[
\rho = \max_{v \in \mathbb{F}_2^n} \{d(v, C)\}.
\]
Introduction

We use the standard notation $[n, k, d]$ for a binary linear code C of length n, dimension k and minimum distance d. The automorphism group $\text{Aut}(C)$ coincides with the subgroup of the symmetric group S_n consisting of all $n!$ permutations of the n coordinate positions which send C into itself. Given any vector $v \in \mathbb{F}_2^n$ its distance to the code C is

$$d(v, C) = \min_{x \in C} \{d(v, x)\}$$

and the covering radius of the code C is

$$\rho = \max_{v \in \mathbb{F}_2^n} \{d(v, C)\}.$$

For a given code C with covering radius $\rho = \rho(C)$ define

$$C(i) = \{x \in \mathbb{F}_2^n : d(x, C) = i\}, \quad i = 1, 2, \ldots, \rho.$$
Definition 1.

(Neumaier, [1992]) A code C with covering radius $\rho = \rho(C)$ is completely regular, if for all $l \geq 0$ and for every vector $x \in C(l)$ there are precisely:

- the same number c_l of neighbors in $C(l - 1)$
- and
- the same number b_l of neighbors in $C(l + 1)$.

Define $a_l = n - b_l - c_l$ and note that $c_0 = b_\rho = 0$.

Define the intersection array of C as $(b_0, ..., b_{\rho - 1}; c_1, ..., c_\rho)$.
Definition 1.

(Neumaier, [1992]) A code C with covering radius $\rho = \rho(C)$ is completely regular, if for all $l \geq 0$ and for every vector $x \in C(l)$ there are precisely:
the same number c_l of neighbors in $C(l - 1)$
and
the same number b_l of neighbors in $C(l + 1)$.

Define $a_l = n - b_l - c_l$ and note that $c_0 = b_\rho = 0$.
Definition 1.

(Neumaier, [1992]) A code C with covering radius $\rho = \rho(C)$ is completely regular, if for all $l \geq 0$ and for every vector $x \in C(l)$ there are precisely:

the same number c_l of neighbors in $C(l-1)$

and

the same number b_l of neighbors in $C(l+1)$.

Define $a_l = n - b_l - c_l$ and note that $c_0 = b_\rho = 0$.

Define the intersection array of C as $(b_0, \ldots, b_{\rho-1}; c_1, \ldots, c_\rho)$.
For a given code C with automorphism group $\text{Aut}(C)$ and any $\mathbf{x} \in \mathbb{F}_2^n$ and $\varphi \in \text{Aut}(C)$ the group acts on a coset $\mathbf{x} + C$ as

$$\varphi(\mathbf{x} + C) = \varphi(\mathbf{x}) + C.$$
For a given code C with automorphism group $\text{Aut}(C)$ and any $x \in \mathbb{F}_2^n$ and $\varphi \in \text{Aut}(C)$ the group acts on a coset $x + C$ as

$$\varphi(x + C) = \varphi(x) + C.$$

Definition 2.

(Solé, [1990]) A linear code C with covering radius $\rho = \rho(C)$ and automorphism group $\text{Aut}(C)$ is completely transitive, if the set of all cosets of C is partitioned into $\rho + 1$ orbits under action of $\text{Aut}(C)$.

Let \(\Gamma \) be a finite connected simple (i.e. undirected, without loops and multiple edges) graph. Let \(d(\gamma, \delta) \) be the distance between two vertices \(\gamma \) and \(\delta \), i.e. a numbers of edges in the minimal path between \(\gamma \) and \(\delta \).
Let Γ be a finite connected simple (i.e. undirected, without loops and multiple edges) graph. Let $d(\gamma, \delta)$ be the distance between two vertices γ and δ, i.e. a numbers of edges in the minimal path between γ and δ.

Denote $\Gamma_i(\gamma) = \{ \delta \in \Gamma : d(\gamma, \delta) = i \}$.
Let Γ be a finite connected simple (i.e. undirected, without loops and multiple edges) graph. Let $d(\gamma, \delta)$ be the distance between two vertices γ and δ, i.e. a number of edges in the minimal path between γ and δ.

Denote $\Gamma_i(\gamma) = \{\delta \in \Gamma : d(\gamma, \delta) = i\}$.

Two vertices γ and δ from Γ are neighbors if $d(\gamma, \delta) = 1$.
Let Γ be a finite connected simple (i.e. undirected, without loops and multiple edges) graph. Let $d(\gamma, \delta)$ be the distance between two vertices γ and δ, i.e. a numbers of edges in the minimal path between γ and δ.

Denote $\Gamma_i(\gamma) = \{\delta \in \Gamma : d(\gamma, \delta) = i\}$.

Two vertices γ and δ from Γ are neighbors if $d(\gamma, \delta) = 1$.

An automorphism of a graph Γ is a permutation π of the vertex set of Γ such that, for all $\gamma, \delta \in \Gamma$ we have $d(\gamma, \delta) = 1$, if and only if $d(\pi \gamma, \pi \delta) = 1$.
Let Γ be a finite connected simple (i.e. undirected, without loops and multiple edges) graph. Let $d(\gamma, \delta)$ be the distance between two vertices γ and δ, i.e. a number of edges in the minimal path between γ and δ.

Denote $\Gamma_i(\gamma) = \{ \delta \in \Gamma : d(\gamma, \delta) = i \}$.

Two vertices γ and δ from Γ are neighbors if $d(\gamma, \delta) = 1$.

An automorphism of a graph Γ is a permutation π of the vertex set of Γ such that, for all $\gamma, \delta \in \Gamma$ we have $d(\gamma, \delta) = 1$, if and only if $d(\pi \gamma, \pi \delta) = 1$. Let Γ_i be a subgraph of Γ with the same vertices, where an edge (γ, δ) is defined when $d(\gamma, \delta) = i$, i.e. the vertices γ, δ are at distance i in Γ.
Let Γ be a finite connected simple (i.e. undirected, without loops and multiple edges) graph. Let $d(\gamma, \delta)$ be the distance between two vertices γ and δ, i.e. a numbers of edges in the minimal path between γ and δ.

Denote $\Gamma_i(\gamma) = \{\delta \in \Gamma : d(\gamma, \delta) = i\}$.

Two vertices γ and δ from Γ are neighbors if $d(\gamma, \delta) = 1$.

An automorphism of a graph Γ is a permutation π of the vertex set of Γ such that, for all $\gamma, \delta \in \Gamma$ we have $d(\gamma, \delta) = 1$, if and only if $d(\pi \gamma, \pi \delta) = 1$. Let Γ_i be a subgraph of Γ with the same vertices, where an edge (γ, δ) is defined when $d(\gamma, \delta) = i$, i.e. the vertices γ, δ are at distance i in Γ. The graph Γ is called primitive if it is connected and and all Γ_i ($i = 1, \ldots, D$) are connected, and imprimitive otherwise.
Definition 3.

(Brouwer-Cohen-Neumaier [1989]) A simple connected graph Γ is called *distance-regular*, if it is regular of valency k, and if for any two vertices $\gamma, \delta \in \Gamma$ at distance i apart, there are precisely:

- c_i neighbors of δ in $\Gamma_{i-1}(\gamma)$
- b_i neighbors of δ in $\Gamma_{i+1}(\gamma)$.

Furthermore, this graph is called *distance transitive*, if for any pair of vertices $\gamma, \delta \in \Gamma$ at distance $d(\gamma, \delta)$ there is an automorphism $\pi \in \text{Aut}(\Gamma)$ which moves this pair to any other given pair $\gamma', \delta' \in \Gamma$ at the same distance $d(\gamma', \delta') = d(\gamma, \delta)$.

Definition 3.

(Brouwer-Cohen-Neumaier [1989]) A simple connected graph Γ is called \textit{distance-regular}, if it is regular of valency k, and if for any two vertices $\gamma, \delta \in \Gamma$ at distance i apart, there are precisely: c_i neighbors of δ in $\Gamma_{i-1}(\gamma)$ and b_i neighbors of δ in $\Gamma_{i+1}(\gamma)$. Furthermore, this graph is called \textit{distance transitive}, if for any pair of vertices γ, δ at distance $d(\gamma, \delta)$ there is an automorphism $\pi \in \text{Aut}(\Gamma)$ which moves this pair to any other given pair γ', δ' of vertices at the same distance $d(\gamma, \delta) = d(\gamma', \delta')$.
This paper is a natural continuation of our previous paper (Rifa-Zinoviev, [2009]), where we describe one class of new binary linear completely regular and completely transitive codes.
This paper is a natural continuation of our previous paper (Rifa-Zinoviev, [2009]), where we describe one class of new binary linear completely regular and completely transitive codes. The parameters of the main family of the codes depend only on one integer parameter $m \geq 4$. The resulting code C has:

- length $n = \binom{m}{2}$,
- number of information symbols $k = n - m + 1$,
- minimum distance $d = 3$
- and covering radius $\rho = \lfloor m/2 \rfloor$.

A half of these codes are non-antipodal and this implies (Borges-Rifa-Zinoviev, [2008]), that the covering set $C(\rho)$ of C is a coset of C. In this case the union $C \cup C(\rho)$ gives also a completely regular and completely transitive code.
This paper is a natural continuation of our previous paper (Rifa-Zinoviev, [2009]), where we describe one class of new binary linear completely regular and completely transitive codes. The parameters of the main family of the codes depend only on one integer parameter $m \geq 4$. The resulting code C has:

- length $n = \binom{m}{2}$,
- number of information symbols $k = n - m + 1$,
- minimum distance $d = 3$
- and covering radius $\rho = \lfloor m/2 \rfloor$. A half of these codes are non-antipodal and this implies (Borges-Rifà-Zinoviev, [2008]), that the covering set $C(\rho)$ of C is a coset of C. In this case the union $C \cup C(\rho)$ gives also a completely regular and completely transitive code.
This paper is a natural continuation of our previous paper (Rifa-Zinoviev, [2009]), where we describe one class of new binary linear completely regular and completely transitive codes. The parameters of the main family of the codes depend only on one integer parameter $m \geq 4$. The resulting code C has:

- length $n = \binom{m}{2}$,
- number of information symbols $k = n - m + 1$,
- minimum distance $d = 3$

and covering radius $\rho = \lfloor m/2 \rfloor$. A half of these codes are non-antipodal and this implies (Borges-Rifà-Zinoviev, [2008]), that the covering set $C(\rho)$ of C is a coset of C. In this case the union $C \cup C(\rho)$ gives also a completely regular and completely transitive code.

Our purpose here is to describe the resulting linear completely transitive codes with growing covering radius and distance-transitive coset graphs with growing diameter.
Let C be a linear completely regular code with covering radius ρ and intersection array $(b_0, \ldots, b_{\rho-1}; c_1, \ldots c_{\rho})$. Let $\{D\}$ be the set of cosets of C.
Let C be a linear completely regular code with covering radius ρ and intersection array $(b_0, \ldots, b_{\rho-1}; c_1, \ldots c_\rho)$. Let $\{D\}$ be the set of cosets of C.

Define the graph Γ_C (which is called the coset graph of C), taking all cosets $D = C + x$ as vertices, with two vertices $\gamma = \gamma(D)$ and $\gamma' = \gamma(D')$ adjacent, if and only if the cosets D and D' contains neighbor vertices, i.e. $v \in D$ and $v' \in D'$ with distance $d(v, v') = 1$.

Lemma 4.

(Brouwer-Cohen-Neumaier [1989], Rifà-Pujol, [1991]) Let C be a linear completely regular code with covering radius ρ and intersection array $(b_0, \ldots, b_{\rho-1}; c_1, \ldots, c_\rho)$ and let Γ_C be the coset graph of C.

Lemma 4.

(Brouwer-Cohen-Neumaier [1989], Rifà-Pujol, [1991]) Let C be a linear completely regular code with covering radius ρ and intersection array $(b_0, \ldots, b_{\rho-1}; c_1, \ldots c_{\rho})$ and let Γ_C be the coset graph of C.

Then Γ_C is distance-regular of diameter ρ with the same intersection array.
Lemma 4.

(Brouwer-Cohen-Neumaier [1989], Rifà-Pujol, [1991]) Let C be a linear completely regular code with covering radius ρ and intersection array $(b_0, \ldots, b_{\rho-1}; c_1, \ldots c_{\rho})$ and let Γ_C be the coset graph of C.

Then Γ_C is distance-regular of diameter ρ with the same intersection array.

If C is completely transitive, then Γ_C is distance-transitive.
Lemma 5.

(Neumaier [1992]) Let C be a completely regular code with covering radius ρ and intersection array $(b_0, \ldots, b_{\rho-1}; c_1, \ldots c_\rho)$. Then $C(\rho)$ is a completely regular code too, with intersection array $(c_\rho, \ldots, c_1; b_{\rho-1}, \ldots b_0)$.
We start by defining a specific class of binary linear codes.
Main results

We start by defining a specific class of binary linear codes.

Definition 6.

Let H_m be the binary matrix of size $m \times m(m - 1)/2$, whose columns are exactly all different vectors of length m and weight 2. Now define the binary linear code $C^{(m)}$ whose parity check matrix is the matrix H_m.
Theorem 7. (Rifa-Zinoviev, [2009]) Let m be a natural number, $m \geq 3$.

$C(m)$ is a binary linear code with parameters:

- $n = (m^2 - 2)$,
- $k = n - m + 1$,
- $d = 3$,
- $\rho = \lfloor m^2 \rfloor$.

The intersection numbers of $C(m)$ are:

- $b_i = (m - 2i^2)$,
- $c_i = (2i^2)$.

Code $C(m)$ is antipodal if m is odd and non-antipodal if m is even.
Theorem 7.

(Rifa-Zinoviev, [2009]) Let m be a natural number, $m \geq 3$. The binary linear $[n, k, d]$ code $C^{(m)}$ has parameters:

$$n = \binom{m}{2}, \quad k = n - m + 1, \quad d = 3, \quad \rho = \left\lfloor \frac{m}{2} \right\rfloor.$$
Theorem 7.

(Rifa-Zinoviev, [2009]) Let m be a natural number, $m \geq 3$. The binary linear $[n, k, d]$ code $C^{(m)}$ has parameters:

$n = \binom{m}{2}, \quad k = n - m + 1, \quad d = 3, \quad \rho = \left\lfloor \frac{m}{2} \right\rfloor.$

Code $C^{(m)}$ is completely transitive and, therefore, completely regular. The intersection numbers of $C^{(m)}$ for $i = 0, \ldots, \rho$ are:

$b_i = \binom{m-2i}{2}, \quad c_i = \binom{2i}{2}.$
Theorem 7. (Rifa-Zinoviev, [2009]) Let m be a natural number, $m \geq 3$. The binary linear $[n, k, d]$ code $C^{(m)}$ has parameters:

\[
 n = \binom{m}{2}, \quad k = n - m + 1, \quad d = 3, \quad \rho = \left\lfloor \frac{m}{2} \right\rfloor.
\]

Code $C^{(m)}$ is completely transitive and, therefore, completely regular. The intersection numbers of $C^{(m)}$ for $i = 0, \ldots, \rho$ are:

\[
 b_i = \binom{m-2i}{2}, \quad c_i = \binom{2i}{2}.
\]

Code $C^{(m)}$ is antipodal if m is odd and non-antipodal if m is even.
Since for even m the code $C^{(m)}$ is non-antipodal, its covering set $C^{(m)}(\rho)$ is a translate of $C^{(m)}$ (Borges-Rifà-Zinoviev, [2008]).
Since for even m the code $C^{(m)}$ is non-antipodal, its covering set $C^{(m)}(\rho)$ is a translate of $C^{(m)}$ (Borges-Rifà-Zinoviev, [2008]). Consider a new (linear) code

$$C^{[m]} = C^{(m)} \cup C^{(m)}(\rho).$$
Since for even \(m \) the code \(C^{(m)} \) is non-antipodal, its covering set \(C^{(m)}(\rho) \) is a translate of \(C^{(m)} \) (Borges-Rifà-Zinoviev, [2008]). Consider a new (linear) code

\[
C^{[m]} = C^{(m)} \cup C^{(m)}(\rho).
\]

The generating matrix \(G^{[m]} \) of this code has a very symmetric structure:

\[
G^{[m]} = \begin{bmatrix}
I_{k-1} & H_{m-1}^t \\
0 \ldots 0 & 1 \ldots 1
\end{bmatrix}.
\]
Since for even m the code $C^{(m)}$ is non-antipodal, its covering set $C^{(m)}(\rho)$ is a translate of $C^{(m)}$ (Borges-Rifà-Zinoviev, [2008]). Consider a new (linear) code

$$C^{[m]} = C^{(m)} \cup C^{(m)}(\rho).$$

The generating matrix $G^{[m]}$ of this code has a very symmetric structure:

$$G^{[m]} = \begin{bmatrix} I_{k-1} & H^t_{m-1} \\ 0 \ldots \ 0 & 1 \ldots 1 \end{bmatrix}.$$

Using Lemma 5 and the fact that

$$C^{(m)}(\rho) = C^{(m)} + (1,1,\ldots,1),$$

we obtain the following result.
Theorem 8.

Let \(m \geq 6 \) be even. The code \(C[m] \) is completely transitive \([n, k, d]\) code with parameters
\[
 n = \frac{m(m-1)}{2}, \quad k = n - m + 2, \quad d = 3, \quad \rho = \lfloor m/4 \rfloor.
\]
Main results

Theorem 8.

Let \(m \geq 6 \) be even. The code \(C^m \) is completely transitive \([n, k, d]\) code with parameters
\[
n = m(m - 1)/2, \quad k = n - m + 2, \quad d = 3, \quad \rho = \lfloor m/4 \rfloor.
\]
The intersection numbers of \(C^m \) for \(m \equiv 0 \pmod{4} \) and \(\rho = m/4 \) are
\[
b_i = \binom{m-2i}{2}, \quad c_i = \binom{2i}{2}, \quad i = 0, 1, \ldots, \rho - 1,
\]
\[
c_\rho = 2 \binom{2\rho}{2}
\]
and, for \(m \equiv 2 \pmod{4} \) and \(\rho = (m - 2)/4 \), are
\[
b_i = \binom{m-2i}{2}, \quad c_i = \binom{2i}{2}, \quad i = 0, 1, \ldots, \rho.
\]
We note that the extension of the code $C^{[m]}$ (i.e. adding one more overall parity checking position) is not uniformly packed in the wide sense, and therefore, it is not completely regular (Brouwer et alt. [1989]).
Denote by $\Gamma^{(m)}$ (respectively, $\Gamma^{[m]}$) the coset graph, obtained from the codes $C^{(m)}$ (respectively, $C^{[m]}$) by Lemma 4. From Theorems 7 and 8 we obtain the following results, which leads to new coset graphs.
Main results

Theorem 9. For any even \(m \geq 6 \) there exist two embedded double covers \(\Gamma^{(m)} \) and \(\Gamma^{[m]} \) of complete graph \(K_n, n = \binom{m}{2} \), on \(2^{m-1} \) and \(2^{m-2} \) vertices, respectively, and with covering radius \(m/2 \) and \(\lfloor m/4 \rfloor \), respectively.
Theorem 9.

For any even \(m \geq 6 \) there exist two embedded double covers \(\Gamma^{(m)} \) and \(\Gamma^{[m]} \) of complete graph \(K_n \), \(n = \binom{m}{2} \), on \(2^{m-1} \) and \(2^{m-2} \) vertices, respectively, and with covering radius \(m/2 \) and \(\lfloor m/4 \rfloor \), respectively.

The intersection arrays of graphs \(\Gamma^{(m)} \) and \(\Gamma^{[m]} \) are the same as the intersection arrays of codes, given by Theorems 7 and 8.
Theorem 9.

For any even $m \geq 6$ there exist two embedded double covers $\Gamma^{(m)}$ and $\Gamma^{[m]}$ of complete graph K_n, $n = \binom{m}{2}$, on 2^{m-1} and 2^{m-2} vertices, respectively, and with covering radius $m/2$ and $\lfloor m/4 \rfloor$, respectively. The intersection arrays of graphs $\Gamma^{(m)}$ and $\Gamma^{[m]}$ are the same as the intersection arrays of codes, given by Theorems 7 and 8. Both graphs $\Gamma^{(m)}$ and $\Gamma^{[m]}$ are distance transitive.
Main results

Theorem 9.

For any even $m \geq 6$ there exist two embedded double covers $\Gamma^{(m)}$ and $\Gamma^{[m]}$ of complete graph K_n, $n = \binom{m}{2}$, on 2^{m-1} and 2^{m-2} vertices, respectively, and with covering radius $m/2$ and $\lfloor m/4 \rfloor$, respectively.

The intersection arrays of graphs $\Gamma^{(m)}$ and $\Gamma^{[m]}$ are the same as the intersection arrays of codes, given by Theorems 7 and 8.

Both graphs $\Gamma^{(m)}$ and $\Gamma^{[m]}$ are distance transitive.

The graphs $\Gamma^{(m)}$ are imprimitive and the graphs $\Gamma^{[m]}$ are primitive.
Theorem 9.

For any even \(m \geq 6 \) there exist two embedded double covers \(\Gamma^{(m)} \) and \(\Gamma^{[m]} \) of complete graph \(K_n \), \(n = \binom{m}{2} \), on \(2^{m-1} \) and \(2^{m-2} \) vertices, respectively, and with covering radius \(m/2 \) and \(\lfloor m/4 \rfloor \), respectively.

The intersection arrays of graphs \(\Gamma^{(m)} \) and \(\Gamma^{[m]} \) are the same as the intersection arrays of codes, given by Theorems 7 and 8.

Both graphs \(\Gamma^{(m)} \) and \(\Gamma^{[m]} \) are distance transitive.

The graphs \(\Gamma^{(m)} \) are imprimitive and the graphs \(\Gamma^{[m]} \) are primitive.

The graph \(\Gamma^{[m]} \) has eigenvalues \(\left\{ \frac{(m-4i)^2 - m}{2} : i = 0, 1, \ldots, \rho \right\} \).
The graph $\Gamma^{(m)}$ is well known. It can be obtained from the even weight binary vectors of length m, adjacent when their distance is 2. It is the halved m-cube and is a distance-transitive graph, uniquely defined from its intersection array (Brouwer et al. [1989]).
The graph $\Gamma^{(m)}$ is well known. It can be obtained from the even weight binary vectors of length m, adjacent when their distance is 2. It is the halved m-cube and is a distance-transitive graph, uniquely defined from its intersection array (Brouwer et al. [1989]). Since the graph $\Gamma^{(m)}$ is antipodal, the graph $\Gamma^{[m]}$ (which has twice less vertices) can be seen as its folded graph, obtained by merging antipodal pairs of vertices. It is a halved folded m-cube and it is not determined from its intersection array (Brouwer et al. [1989], p. 264).
Bibliography

