Systematic encoding and permutation decoding for $\mathbb{Z}_{2^{s}}$-linear codes

Adrián Torres-Martín and Mercè Villanueva

Universitat Autònoma de Barcelona
Algebraic and Combinatorial Coding Theory
11-18 October 2020

UAB
Universitat Autònoma de Barcelona

Overview

(1) Basic definitions
(2) \mathbb{Z}_{4}-linear codes

- \mathbb{Z}_{4}-additive codes
- Gray map
- Systematic encoding
(3) $\mathbb{Z}_{2^{\text {s-linear }}}$ codes
- $\mathbb{Z}_{2^{\text {s }}}$-additive codes
- Gray map
- Systematic encoding
(4) Permutation decoding algorithm
(5) Conclusions

Basic definitions

Basic definitions

Definition

A code C of length n over a finite field \mathbb{F}_{q} is a nonempty subset of \mathbb{F}_{q}^{n}.

Definition

A code C with q^{k} codewords is systematic if there is a set I such that $\left|C_{I}\right|=q^{k}$. Such set l is called an information set.

Definition

A systematic encoding for l is an injective map $f: \mathbb{F}_{q}^{k} \longrightarrow \mathbb{F}_{q}^{n}$, such that for any information vector $\mathbf{v} \in \mathbb{F}_{q}^{k}$, the codeword $f(\mathbf{v})$ satisfies $f(\mathbf{v})_{l}=\mathbf{v}$.

- Any linear code is systematic. In particular, it is permutation equivalent to a code with generator matrix in standard form:

$$
\begin{equation*}
G=\left(I d_{k} \mid A\right) \tag{1}
\end{equation*}
$$

- The systematic encoding is just $f(\mathbf{v})=\mathbf{v} G$.

\mathbb{Z}_{4}-linear codes

Linear codes over \mathbb{Z}_{4}

Definition

A \mathbb{Z}_{4}-additive code \mathcal{C} is a subgroup of \mathbb{Z}_{4}^{n}.

- $\mathrm{A} \mathbb{Z}_{4}$-additive code may not be free as module (not always have basis).
- A \mathbb{Z}_{4}-additive code is isomorphic as a subgroup to $\mathbb{Z}_{4}^{t_{1}} \times \mathbb{Z}_{2}^{t_{2}}$. It is said to be of type $4^{t_{1}} 2^{t_{2}}$ or $\left(t_{1}, t_{2}\right)$.
- $\mathrm{A} \mathbb{Z}_{4}$-additive code is permutation equivalent to a \mathbb{Z}_{4}-additive code with generator matrix in standard form:

$$
\mathcal{G}=\left(\begin{array}{ccc}
I d_{t_{1}} & A & B \tag{2}\\
\mathbf{0} & 2 / d_{t_{2}} & 2 C
\end{array}\right)
$$

- $\mathrm{A} \mathbb{Z}_{4}$-additive code of type $\left(t_{1}, t_{2}\right)$ can encode information vectors in the form ($\mathbf{b}_{1}, \mathbf{b}_{2}$) where $\mathbf{b}_{1} \in \mathbb{Z}_{4}^{t_{1}}$ and $\mathbf{b}_{2} \in \mathbb{Z}_{2}^{t_{2}}$. The encoding consists then in the matrix multiplication $\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right) \mathcal{G}$.

Gray map and \mathbb{Z}_{4}-linear codes

Definition

The Gray map, denoted by ϕ, maps \mathbb{Z}_{4} to \mathbb{Z}_{2}^{2} as follows:

$$
\phi(0)=(0,0), \phi(1)=(0,1), \phi(2)=(1,1), \phi(3)=(1,0) .
$$

The coordinate-wise extension is denoted by Φ.

Definition

Let \mathcal{C} be a \mathbb{Z}_{4}-additive code. Then the binary code $C=\Phi(\mathcal{C})$ is said to be a \mathbb{Z}_{4}-linear code.

- Note that a \mathbb{Z}_{4}-linear code may not be linear as a binary code.
- In 2014, a systematic encoding was presented for \mathbb{Z}_{4}-linear codes.

Systematic encoding for \mathbb{Z}_{4}-linear codes

(1) Let $\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right) \in \mathbb{Z}_{2}^{2 t_{1}} \times \mathbb{Z}_{2}^{t_{2}}$ be the binary information vector.
(2) Apply Φ^{-1} (which is bijective) to the $2 t_{1}$ first coordinates $\left(\Phi^{-1}\left(\mathbf{a}_{1}\right), \mathbf{a}_{2}\right)=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right) \in \mathbb{Z}_{4}^{t_{1}} \times \mathbb{Z}_{2}^{t_{2}}$.
(3) Apply $\sigma\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)=\left(\mathbf{b}_{1}, \mathbf{b}_{2}-\psi\left(\mathbf{b}_{1} A\right)\right)=\left(\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}\right)$, where $\psi: \mathbb{Z}_{4}$ to \mathbb{Z}_{2}.
(4) Encode $\left(\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}\right) \mathcal{G}=\left(\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right) \in \mathcal{C} \subset \mathbb{Z}_{4}^{n}$.
(5) Apply Φ and restrict to some coordinates J, to obtain again $\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right) \in \mathbb{Z}_{2}^{2 t_{1}} \times \mathbb{Z}_{2}^{t_{2}}$.

Systematic encoding for \mathbb{Z}_{4}-linear codes

Example

Consider the \mathbb{Z}_{4}-additive code \mathcal{C} of type $4^{1} 2^{2}$ with generator matrix in standard form:

$$
\mathcal{G}=\left(\begin{array}{llll}
1 & 0 & 1 & 3 \\
0 & 2 & 0 & 2 \\
0 & 0 & 2 & 0
\end{array}\right)
$$

(1) Consider the binary information vector $(1,1,0,1) \in \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{2}^{2}$.
(2) Apply Φ^{-1}, and we have $(2,0,1) \in \mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}$.
(3) Apply σ, and we obtain $\sigma(2,0,1)=(2,(0,1)-\psi(0,2))=(2,0,0)$.
(4) The encoding $(2,0,1) \mathcal{G}=(2,0,0,2) \in \mathcal{C}$ is not systematic. However, after applying σ, the encoding $(2,0,0) \mathcal{G}=(2,0,2,2) \in \mathcal{C}$ is systematic.
(5) Apply Φ and we have $(1,1,0,0,1,1,1,1)$. Then, we restrict to $\{1,2,3,5\}$ coordinates to obtain the information $(1,1,0,1)$.

$\mathbb{Z}_{2^{s}}$-linear codes

Linear codes over $\mathbb{Z}_{2^{s}}$

Definition

A $\mathbb{Z}_{2^{s}}$-additive code \mathcal{C} is a subgroup of $\mathbb{Z}_{2^{s}}^{n}$.

- $\mathrm{A} \mathbb{Z}_{2^{s}}$-additive code is isomorphic to $\mathbb{Z}_{2^{s}}^{t_{1}} \times \mathbb{Z}_{2^{s-1}}^{t_{2}} \times \cdots \times \mathbb{Z}_{2}^{t^{s}}$ and we say that the code is of type $\left(t_{1}, t_{2}, \ldots, t_{s}\right)$. Moreover, it is permutation equivalent to a $\mathbb{Z}_{2^{s}}$-additive code with generator matrix in standard form:

$$
\mathcal{G}=\left(\begin{array}{ccccccc}
I d_{t_{1}} & A_{0,1} & A_{0,2} & A_{0,3} & \cdots & \cdots & A_{0, s} \tag{3}\\
\mathbf{0} & 2 I d_{t_{2}} & 2 A_{1,2} & 2 A_{1,3} & \cdots & \cdots & 2 A_{1, s} \\
\mathbf{0} & \mathbf{0} & 4 / d_{t_{3}} & 4 A_{2,3} & \cdots & \cdots & 4 A_{2, s} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \ddots & \ddots & & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & 2^{s-1} / d_{t_{s}} & 2^{s-1} A_{s-1, s}
\end{array}\right)
$$

Linear codes over $\mathbb{Z}_{2^{s}}$

- $\mathrm{A} \mathbb{Z}_{2^{s}}$-additive code of type $\left(t_{1}, t_{2}, \ldots, t_{s}\right)$ can encode information vectors in the form $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{s}\right)$ where $\mathbf{b}_{i} \in \mathbb{Z}_{2^{s+1-i}}^{t_{i}}$. The encoding consists then in the matrix multiplication $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{s}\right) \mathcal{G}$.

Example

Consider the \mathbb{Z}_{8}-additive code of type $(2,1,1)$ with generator matrix in standard form:

$$
\mathcal{G}=\left(\begin{array}{llllll}
1 & 0 & 3 & 1 & 4 & 6 \\
0 & 1 & 5 & 4 & 2 & 7 \\
0 & 0 & 2 & 6 & 2 & 2 \\
0 & 0 & 0 & 4 & 0 & 4
\end{array}\right)
$$

Consider an information vector $(7,5,3,1) \in \mathbb{Z}_{8}^{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2}$. The corresponding codeword is $(7,5,3,1) \mathcal{G}=(7,5,6,4,4,7)$. Note that this encoding is not systematic.

Carlet's Gray map and $\mathbb{Z}_{2^{\text {s }}}$-linear codes

Definition

The Gray map generalization of Carlet is the map $\phi_{s}: \mathbb{Z}_{2^{s}} \longrightarrow \mathbb{Z}_{2}^{2^{s-1}}$, defined as

$$
\begin{equation*}
\phi_{s}(u)=\left(u_{s-1}, \ldots, u_{s-1}\right)+\left(u_{0}, \ldots, u_{s-2}\right) Y_{s-1} \tag{4}
\end{equation*}
$$

where $u \in \mathbb{Z}_{2^{s}}$ with $\left[u_{0}, \ldots, u_{s-1}\right]_{2}$ as its binary expansion and Y_{s-1} is a matrix whose columns are the elements of \mathbb{Z}_{2}^{s-1}. Let Φ_{s} be the coordinate-wise extension.

Definition

Let \mathcal{C} be a $\mathbb{Z}_{2^{s}}$-additive code. Then the binary code $C=\Phi_{s}(\mathcal{C})$ is said to be a $\mathbb{Z}_{2^{s}}$-linear code.

- Note that a $\mathbb{Z}_{2^{s}}$-linear code may not be linear as a binary code.
- We generalize the systematic encoding presented for \mathbb{Z}_{4}-linear codes.

Systematic encoding for $\mathbb{Z}_{2^{s}-\text { linear codes }}$

Figure: Schematic diagram of the systematic encoding

Systematic encoding for $\mathbb{Z}_{2^{s}}$-linear codes

Example

Consider the \mathbb{Z}_{8}-linear code $\mathcal{C}=\Phi_{3}(\mathcal{C})$, where \mathcal{C} is a \mathbb{Z}_{8}-additive code of type $(1,1,1)$ with generator matrix in standard form:

$$
\mathcal{G}=\left(\begin{array}{lllll}
1 & 5 & 4 & 2 & 7 \\
0 & 2 & 6 & 2 & 2 \\
0 & 0 & 4 & 0 & 4
\end{array}\right)
$$

Let $\mathbf{a}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)=(0,1,1,1,0,1)$ be an information vector.

$$
\begin{gathered}
\sigma\left(\Phi^{-1}(\mathbf{a})\right) \mathcal{G}=\sigma(3,3,1) \mathcal{G}=(3,0,0) \mathcal{G}=(3,7,5,6,5) \\
\left.\phi_{3}(3)\right|_{\{1,2,3,4\}}=(0,1,1,0) \xrightarrow{\left.\right|_{\{1,2,3\}}}(0,1,1) \\
\left.\phi_{3}(7)\right|_{\{1,3\}}=\left.(1,0,0,1)\right|_{\{1,3\}}=(1,0) \xrightarrow{\left.\right|_{\{1,2\}}}(1,0) \\
\left.\phi_{3}(5)\right|_{\{1\}}=\left.(1,0,1,0)\right|_{\{1\}}=(1) \xrightarrow{\left.\right|_{\{1\}}}(1) .
\end{gathered}
$$

Permutation decoding algorithm

Permutation decoding algorithm

- In 2014, an alternative Permutation Decoding method was introduced.
- It was designed to decode any binary code (linear or not), as long as it has a systematic encoding.

Definition

Let C be a t-error correcting code with information set I. Then a subset $S \subseteq \operatorname{PAut}(C)$ is a PD-set if for any vector \mathbf{e} with $\mathrm{wt}(\mathbf{e}) \leq t$ there exists an element $\pi \in S$ such that $\operatorname{wt}\left(\pi(\mathbf{e})_{\iota}\right)=0$.

Theorem

Let C be a binary systematic t-error-correcting code of length n. Let I be a set of systematic coordinates and let f be a systematic encoding for 1 . Suppose that $\mathbf{y}=\mathbf{x}+\mathbf{e}$ is a received vector, where $\mathbf{x} \in C$ and $\mathrm{wt}(\mathbf{e}) \leq t$. Then the systematic coordinates of \mathbf{y} are correct iff $\mathrm{wt}\left(\mathbf{y}+f\left(\mathbf{y}_{\boldsymbol{\prime}}\right)\right) \leq t$.

Permutation decoding algorithm

Example

Consider the \mathbb{Z}_{8}-additive code \mathcal{C} with generator matrix

$$
\mathcal{G}=\left(\begin{array}{llllllll}
1 & 0 & 7 & 6 & 5 & 4 & 3 & 2 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right)
$$

Let $C=\Phi(\mathcal{C})$ be the corresponding \mathbb{Z}_{8}-linear code of type $(2,0,0)$ and error-correcting capability $t=7$. The set $I=\{1,2,3,5,6,7\}$ is an information set. Consider the information vector $\mathbf{a}=(1,1,0,0,1,1)$.
Received vector:

$$
\mathbf{y}=(1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1)
$$

Restricting to $I: \mathbf{y}_{\mathbf{I}}=(1,0,1,0,0,1)$.

$$
f\left(\mathbf{y}_{\prime}\right)=(0,1,0,1,0,0,1,1,0,1,1,0,1,1,1,1,1,0,1,0,1,1,0,0,1,0,0,1,0,0,0,0)
$$

We have $\operatorname{wt}\left(\mathbf{y}+f\left(\mathbf{y}_{l}\right)\right)=17>7=t$.

Permutation decoding algorithm

Example

Consider the permutation of $\operatorname{PAut}(C)$:

$$
\pi=(2,18)(3,19)(6,22)(7,23)(10,26)(11,27)(14,30)(15,31)
$$

We have
$\pi(\mathbf{y})=(1,0,1,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,1,1,1,0,1,1,1,0,0,1,0,0,1,1)$.
$f\left(\pi(\mathbf{y})_{\iota}\right)=(1,0,1,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,1,1,1,1,1,0,0,1,0,0,1,1)$.
We can see that $\operatorname{wt}\left(\pi(\mathbf{y})+f\left(\pi(\mathbf{y})_{\iota}\right)\right)=3<7=t$. Therefore we decode

$$
\begin{aligned}
& \pi^{-1}\left(f\left(\pi(\mathbf{y})_{I}\right)\right) \\
& \quad=(1,1,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,0,1,1,1,1,1,0,1,0,1)
\end{aligned}
$$

and the information vector is $\mathbf{x}_{I}=(1,1,0,0,1,1)=\mathbf{a}$.

Conclusions

Conclusions and further research

Conclusions

－We have found a systematic encoding for $\mathbb{Z}_{2^{\text {s }}}$－linear codes．
－We have shown how to use the alternative permutation decoding method for $\mathbb{Z}_{2^{s}}$－linear codes using this systematic encoding．

Further research

－To use the alternative permutation decoding method efficiently we need to find small enough PD－sets for families of $\mathbb{Z}_{2^{s}}$－linear codes．
－A Magma package for $\mathbb{Z}_{2^{s}}$－linear codes is already being developed．It will help to study $\mathbb{Z}_{2^{s}}$－linear codes and their PD－sets in more detail．
－A generalization of the systematic encoding may be applied to codes over $\mathbb{Z}_{p^{s}}$ ，where p is a prime，or over mixed alphabets $\mathbb{Z}_{p} \mathbb{Z}_{p^{2}} \ldots \mathbb{Z}_{p^{s}}$ ．

Bibliography

圊 J．J．Bernal，J．Borges，C．Fernández－Córboda，and M．Villanueva， ＂Permutation decoding of $\mathbb{Z}_{2} \mathbb{Z}_{4}$－linear codes，＂Des．Codes and Cryptogr．，vol．76（2），pp．269－277， 2015.
嗇 C．Carlet，＂ $\mathbb{Z}_{2^{k}}$－linear codes，＂IEEE Trans．Inform．Theory，vol．44（4）， pp．1543－1547， 1998.

回 A．R．Hammons，P．V．Kumar，A．R．Calderbank，N．S．A．Sloane，and P．Solé，＂The \mathbb{Z}_{4}－linearity of Kerdock，Preparata，Goethals and related codes，＂IEEE Trans．Inform．Theory，vol．40（2），pp．301－319， 1994.
F．J．MacWilliams，＂Permutation decoding of systematics codes，＂Bell System Tech．J．，vol．43，pp．485－505， 1964.
围 A．A．Nechaev，＂The Kerdock code in a cyclic form，＂Discrete Math． Appl．，vol．1，pp．365－384， 1991.

Thank you for your attention!

