Systematic encoding and permutation decoding for \mathbb{Z}_{2^s} -linear codes

Adrián Torres-Martín and Mercè Villanueva

Universitat Autònoma de Barcelona

Algebraic and Combinatorial Coding Theory

11-18 October 2020

A. Torres-Martín, M. Villanueva (UAB)

ACCT 2020

11-18 October 2020

√) Q (~)

1 / 23

Overview

- Basic definitions
- \mathbb{Z}_{4} -linear codes
 - ullet \mathbb{Z}_4 -additive codes
 - Gray map
 - Systematic encoding
- \mathbb{Z}_{2^s} -linear codes
 - \mathbb{Z}_{2^s} -additive codes
 - Gray map
 - Systematic encoding
- Permutation decoding algorithm
- Conclusions

Basic definitions

< ロ > < @ > < き > < き > りへで

A. Torres-Martín, M. Villanueva (UAB)

ACCT 2020

11-18 October 2020

3/23

Basic definitions

Definition

A **code** C of length n over a finite field \mathbb{F}_q is a nonempty subset of \mathbb{F}_q^n .

Definition

A code C with q^k codewords is **systematic** if there is a set I such that $|C_I| = q^k$. Such set I is called an **information set**.

Definition

A systematic encoding for I is an injective map $f: \mathbb{F}_q^k \longrightarrow \mathbb{F}_q^n$, such that for any information vector $\mathbf{v} \in \mathbb{F}_q^k$, the codeword $f(\mathbf{v})$ satisfies $f(\mathbf{v})_I = \mathbf{v}$.

• Any linear code is systematic. In particular, it is permutation equivalent to a code with generator matrix in **standard form**:

$$G = (|Id_k| A). (1)$$

• The systematic encoding is just $f(\mathbf{v}) = \mathbf{v}G$.

\mathbb{Z}_4 -linear codes

A. Torres-Martín, M. Villanueva (UAB)

ACCT 2020

11-18 October 2020

5 / 23

Linear codes over \mathbb{Z}_4

Definition

A \mathbb{Z}_4 -additive code $\mathcal C$ is a subgroup of \mathbb{Z}_4^n .

- A \mathbb{Z}_4 -additive code may not be free as module (not always have basis).
- A \mathbb{Z}_4 -additive code is isomorphic as a subgroup to $\mathbb{Z}_4^{t_1} \times \mathbb{Z}_2^{t_2}$. It is said to be of type $4^{t_1}2^{t_2}$ or (t_1, t_2) .
- A \mathbb{Z}_4 -additive code is permutation equivalent to a \mathbb{Z}_4 -additive code with generator matrix in **standard form**:

$$\mathcal{G} = \begin{pmatrix} Id_{t_1} & A & B \\ \mathbf{0} & 2Id_{t_2} & 2C \end{pmatrix}. \tag{2}$$

• A \mathbb{Z}_4 -additive code of type (t_1, t_2) can encode information vectors in the form $(\mathbf{b}_1, \mathbf{b}_2)$ where $\mathbf{b}_1 \in \mathbb{Z}_4^{t_1}$ and $\mathbf{b}_2 \in \mathbb{Z}_2^{t_2}$. The encoding consists then in the matrix multiplication $(\mathbf{b}_1, \mathbf{b}_2)\mathcal{G}$.

Gray map and \mathbb{Z}_4 -linear codes

Definition

The **Gray map**, denoted by ϕ , maps \mathbb{Z}_4 to \mathbb{Z}_2^2 as follows:

$$\phi(0) = (0,0), \ \phi(1) = (0,1), \ \phi(2) = (1,1), \ \phi(3) = (1,0).$$

The coordinate-wise extension is denoted by Φ .

Definition

Let C be a \mathbb{Z}_4 -additive code. Then the binary code $C = \Phi(C)$ is said to be a \mathbb{Z}_4 -linear code.

- Note that a \mathbb{Z}_4 -linear code may not be linear as a binary code.
- In 2014, a systematic encoding was presented for \mathbb{Z}_4 -linear codes.

A. Torres-Martín, M. Villanueva (UAB)

ACCT 2020

11-18 October 2020

7 / 23

Systematic encoding for \mathbb{Z}_4 -linear codes

- ① Let $(\mathbf{a}_1,\mathbf{a}_2)\in\mathbb{Z}_2^{2t_1} imes\mathbb{Z}_2^{t_2}$ be the binary information vector.
- ② Apply Φ^{-1} (which is bijective) to the $2t_1$ first coordinates $(\Phi^{-1}(\mathbf{a}_1), \mathbf{a}_2) = (\mathbf{b}_1, \mathbf{b}_2) \in \mathbb{Z}_4^{t_1} \times \mathbb{Z}_2^{t_2}$.
- $\bullet \ \mathsf{Encode}\ (\mathbf{b}_1',\mathbf{b}_2')\mathcal{G} = (\mathbf{c}_1,\mathbf{c}_2,\ldots,\mathbf{c}_n) \in \mathcal{C} \subset \mathbb{Z}_4^n.$
- **5** Apply Φ and restrict to some coordinates J, to obtain again $(\mathbf{a}_1, \mathbf{a}_2) \in \mathbb{Z}_2^{2t_1} \times \mathbb{Z}_2^{t_2}$.

Systematic encoding for \mathbb{Z}_4 -linear codes

Example

Consider the \mathbb{Z}_4 -additive code $\mathcal C$ of type 4^12^2 with generator matrix in standard form:

$$\mathcal{G} = \left(\begin{array}{cccc} 1 & 0 & 1 & 3 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 2 & 0 \end{array}\right).$$

- ① Consider the binary information vector $(1,1,\ 0,1)\in\mathbb{Z}_2^2\times\mathbb{Z}_2^2$.
- ② Apply Φ^{-1} , and we have $(2, 0, 1) \in \mathbb{Z}_4 \times \mathbb{Z}_2^2$.
- **3** Apply σ , and we obtain $\sigma(2,0,1) = (2, (0,1) \psi(0,2)) = (2, 0,0)$.
- **4** The encoding $(2,0,1)\mathcal{G}=(2,0,0,2)\in\mathcal{C}$ is not systematic. However, after applying σ , the encoding $(2,0,0)\mathcal{G}=(2,0,2,2)\in\mathcal{C}$ is systematic.
- **5** Apply Φ and we have (1,1,0,0,1,1,1,1). Then, we restrict to $\{1,2,3,5\}$ coordinates to obtain the information (1,1,0,1).

◆ロト ◆昼 ト ◆ 壹 ト ○ 壹 ・ 夕 Q (?)

A. Torres-Martín, M. Villanueva (UAB)

ACCT 2020

11-18 October 2020

9 / 23

\mathbb{Z}_{2^s} -linear codes

Linear codes over \mathbb{Z}_{2^s}

Definition

A \mathbb{Z}_{2^s} -additive code \mathcal{C} is a subgroup of $\mathbb{Z}_{2^s}^n$.

- The \mathbb{Z}_{2^s} -additive codes may not be free as \mathbb{Z}_{2^s} -submodules.
- A \mathbb{Z}_{2^s} -additive code is isomorphic to $\mathbb{Z}_{2^s}^{t_1} \times \mathbb{Z}_{2^{s-1}}^{t_2} \times \cdots \times \mathbb{Z}_2^{t^s}$ and we say that the code is of **type** (t_1, t_2, \ldots, t_s) . Moreover, it is permutation equivalent to a \mathbb{Z}_{2^s} -additive code with generator matrix in standard form:

$$\mathcal{G} = \begin{pmatrix}
Id_{t_1} & A_{0,1} & A_{0,2} & A_{0,3} & \cdots & \cdots & A_{0,s} \\
\mathbf{0} & 2Id_{t_2} & 2A_{1,2} & 2A_{1,3} & \cdots & \cdots & 2A_{1,s} \\
\mathbf{0} & \mathbf{0} & 4Id_{t_3} & 4A_{2,3} & \cdots & \cdots & 4A_{2,s} \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & 2^{s-1}Id_{t_s} & 2^{s-1}A_{s-1,s}
\end{pmatrix}$$
(3)

A. Torres-Martín, M. Villanueva (UAB) ACCT 2020

Linear codes over \mathbb{Z}_{2^s}

• A \mathbb{Z}_{2^s} -additive code of type (t_1, t_2, \ldots, t_s) can encode information vectors in the form $(\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_s)$ where $\mathbf{b}_i\in\mathbb{Z}_{2^{s+1-i}}^{t_i}$. The encoding consists then in the matrix multiplication $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s)\mathcal{G}$.

Example

Consider the \mathbb{Z}_8 -additive code of type (2,1,1) with generator matrix in standard form:

$$\mathcal{G} = \left(egin{array}{cccccc} 1 & 0 & 3 & 1 & 4 & 6 \ 0 & 1 & 5 & 4 & 2 & 7 \ 0 & 0 & 2 & 6 & 2 & 2 \ 0 & 0 & 0 & 4 & 0 & 4 \end{array}
ight).$$

Consider an information vector $(7,5,3,1) \in \mathbb{Z}_8^2 \times \mathbb{Z}_4 \times \mathbb{Z}_2$. The corresponding codeword is $(7,5,3,1)\mathcal{G}=(7,5,6,4,4,7)$. Note that this encoding is not systematic.

Carlet's Gray map and \mathbb{Z}_{2^s} -linear codes

Definition

The **Gray map** generalization of Carlet is the map $\phi_s: \mathbb{Z}_{2^s} \longrightarrow \mathbb{Z}_2^{2^{s-1}}$, defined as

$$\phi_s(u) = (u_{s-1}, \dots, u_{s-1}) + (u_0, \dots, u_{s-2})Y_{s-1}$$
(4)

where $u \in \mathbb{Z}_{2^s}$ with $[u_0, \ldots, u_{s-1}]_2$ as its binary expansion and Y_{s-1} is a matrix whose columns are the elements of \mathbb{Z}_2^{s-1} . Let Φ_s be the coordinate-wise extension.

Definition

Let C be a \mathbb{Z}_{2^s} -additive code. Then the binary code $C = \Phi_s(C)$ is said to be a \mathbb{Z}_{2^s} -linear code.

- Note that a \mathbb{Z}_{2^s} -linear code may not be linear as a binary code.
- We generalize the systematic encoding presented for \mathbb{Z}_4 -linear codes.

A. Torres-Martín, M. Villanueva (UAB)

ACCT 2020

11-18 October 2020

13 / 23

Systematic encoding for \mathbb{Z}_{2^s} -linear codes

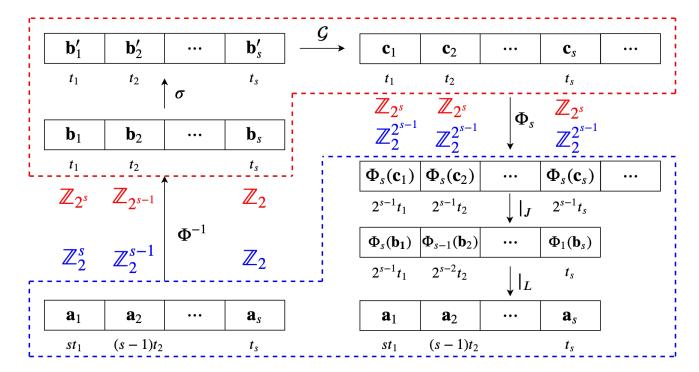


Figure: Schematic diagram of the systematic encoding

Systematic encoding for \mathbb{Z}_{2^s} -linear codes

Example

Consider the \mathbb{Z}_8 -linear code $C = \Phi_3(\mathcal{C})$, where \mathcal{C} is a \mathbb{Z}_8 -additive code of type (1,1,1) with generator matrix in standard form:

$$\mathcal{G} = \left(\begin{array}{ccccc} 1 & 5 & 4 & 2 & 7 \\ 0 & 2 & 6 & 2 & 2 \\ 0 & 0 & 4 & 0 & 4 \end{array}\right).$$

Let $\mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) = (0, 1, 1, 1, 0, 1)$ be an information vector.

$$\begin{split} \sigma(\Phi^{-1}(\mathbf{a}))\mathcal{G} &= \sigma(3,3,1)\mathcal{G} = (3,0,0)\mathcal{G} = (3,7,5,6,5) \\ \phi_3(3)|_{\{1,2,3,4\}} &= (0,1,1,0) \xrightarrow{|_{\{1,2,3\}}} (0,1,1) \\ \phi_3(7)|_{\{1,3\}} &= (1,0,0,1)|_{\{1,3\}} = (1,0) \xrightarrow{|_{\{1,2\}}} (1,0) \\ \phi_3(5)|_{\{1\}} &= (1,0,1,0)|_{\{1\}} = (1) \xrightarrow{|_{\{1\}}} (1). \end{split}$$

◆□▶◆□▶◆■▶◆■▶ ■ 900

A. Torres-Martín, M. Villanueva (UAB)

ACCT 202<u>0</u>

11-18 October 2020

15 / 23

Permutation decoding algorithm

Permutation decoding algorithm

- In 2014, an alternative Permutation Decoding method was introduced.
- It was designed to decode any binary code (linear or not), as long as it has a systematic encoding.

Definition

Let C be a t-error correcting code with information set I. Then a subset $S \subseteq \mathsf{PAut}(\mathsf{C})$ is a **PD-set** if for any vector \mathbf{e} with $\mathsf{wt}(\mathbf{e}) \le t$ there exists an element $\pi \in S$ such that $\mathsf{wt}(\pi(\mathbf{e})_I) = 0$.

Theorem

Let C be a binary systematic t-error-correcting code of length n. Let I be a set of systematic coordinates and let f be a systematic encoding for I. Suppose that $\mathbf{y} = \mathbf{x} + \mathbf{e}$ is a received vector, where $\mathbf{x} \in C$ and $\mathrm{wt}(\mathbf{e}) \leq t$. Then the systematic coordinates of \mathbf{y} are correct iff $\mathrm{wt}(\mathbf{y} + f(\mathbf{y}_I)) \leq t$.

A. Torres-Martín, M. Villanueva (UAB)

ACCT 2020

11-18 October 2020

17 / 23

Permutation decoding algorithm

Example

Consider the \mathbb{Z}_8 -additive code $\mathcal C$ with generator matrix

Let $C = \Phi(C)$ be the corresponding \mathbb{Z}_8 -linear code of type (2,0,0) and error-correcting capability t=7. The set $I=\{1,2,3,5,6,7\}$ is an information set. Consider the information vector $\mathbf{a}=(1,1,0,0,1,1)$. Received vector:

$$\mathbf{y} = (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1)$$

Restricting to *I*: $\mathbf{y}_I = (1, 0, 1, 0, 0, 1)$.

$$f(\mathbf{y}_l) = (0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)$$

We have $wt(y + f(y_I)) = 17 > 7 = t$.

Permutation decoding algorithm

Example

Consider the permutation of PAut(C):

$$\pi = (2,18)(3,19)(6,22)(7,23)(10,26)(11,27)(14,30)(15,31).$$

We have

$$\pi(\mathbf{y}) = (1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1).$$

$$f(\pi(\mathbf{y})_I) = (1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1).$$

We can see that $\operatorname{wt}(\pi(\mathbf{y}) + f(\pi(\mathbf{y})_I)) = 3 < 7 = t$. Therefore we decode

$$\pi^{-1}(f(\pi(\mathbf{y})_I))$$
= $(1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1)$

and the information vector is $\mathbf{x}_I = (1, 1, 0, 0, 1, 1) = \mathbf{a}$.

◆ロト ◆部ト ◆注ト ◆注ト 注 ・ のへ()

A. Torres-Martín, M. Villanueva (UAB)

ACCT 2020

11-18 October 2020

19 / 23

Conclusions

Conclusions and further research

Conclusions

- We have found a systematic encoding for \mathbb{Z}_{2^s} -linear codes.
- We have shown how to use the alternative permutation decoding method for \mathbb{Z}_{2^s} -linear codes using this systematic encoding.

Further research

- To use the alternative permutation decoding method efficiently we need to find small enough PD-sets for families of \mathbb{Z}_{2^s} -linear codes.
- A MAGMA package for \mathbb{Z}_{2^s} -linear codes is already being developed. It will help to study \mathbb{Z}_{2^s} -linear codes and their PD-sets in more detail.
- A generalization of the systematic encoding may be applied to codes over \mathbb{Z}_{p^s} , where p is a prime, or over mixed alphabets $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$.

◆ロト ◆昼 ▶ ◆ 夏 ▶ ◆ 夏 ▶ ○ 夏 ○ 夕 ○ ○

A. Torres-Martín, M. Villanueva (UAB)

ACCT 2020

11-18 October 2020

21 / 23

Bibliography

- J. J. Bernal, J. Borges, C. Fernández-Córboda, and M. Villanueva, "Permutation decoding of $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes," Des. Codes and Cryptogr., vol. 76(2), pp. 269–277, 2015.
- C. Carlet, " \mathbb{Z}_{2^k} -linear codes," IEEE Trans. Inform. Theory, vol. 44(4), pp. 1543–1547, 1998.
- A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. S. A. Sloane, and P. Solé, "The \mathbb{Z}_4 -linearity of Kerdock, Preparata, Goethals and related codes," IEEE Trans. Inform. Theory, vol. 40(2), pp. 301–319, 1994.
- F. J. MacWilliams, "Permutation decoding of systematics codes," Bell System Tech. J., vol. 43, pp. 485–505, 1964.
- A. A. Nechaev, "The Kerdock code in a cyclic form," Discrete Math. Appl., vol. 1, pp. 365–384, 1991.

Thank you for your attention!

A. Torres-Martín, M. Villanueva (UAB)

ACCT 2020

11-18 October 2020

23 / 23