Some parallelisms of PG(3,5) involving a definite type of spread

Svetlana Topalova, Stela Zhelezova

Institute of Mathematics and Informatics, BAS, Bulgaria

The research of the first author is partially supported by the Bulgarian National Science Fund under Contract No DH 02/2, 13.12.2016, and of the second author by the Bulgarian National Science Fund under Contract No KP-06-N32/2-2019

Outline

- Parallelisms relations and applications
- Definitions and notations
- History
- Construction method
 - \circ P Γ L(4,5) and its Sylow 2-subgroup
 - \circ Types of line and spread orbits under G₈₂
 - Computer search
- Results

Parallelisms – relations and applications

Johnson, Combinatorics of Spreads and Parallelisms, CRC Press (2010)

- translation planes
- network coding
- error-correcting codes
- o cryptography

- **Spread** in *PG*(*n*,*q*) a partition of the point set by lines
- **Parallelism** in PG(n,q) a partition of the set of lines by spreads
- necessary condition for the existence of spreads: n is odd

- Isomorphic spreads if there is an automorphism of PG(n,q) which takes one to the other
- Isomorphic parallelisms if there is an automorphism of PG(n,q) which maps each spread of one parallelism to a spread of the other
- Automorphism of a parallelism an automorphism of PG(n,q) which preserves the parallelism

- Automorphism group of the parallelism subgroup of the automorphism group of PG(n,q)
- Deficiency one parallelism a partial parallelism with one spread less than the parallelism
- Cyclic parallelism it has an automorphism moving its spreads in one cycle

- PG(3,q): q²+1 lines in a spread; q²+q+1 spreads in a parallelism
- Regulus of PG(3,q) a set R={I₁, ..., I_{q+1}} of mutually skew lines

$$I \cap I_{i} = p_{i},$$

$$I \cap I_{j} = p_{j},$$

$$I \cap I_{s} \neq \emptyset, \forall I_{s} \in R$$

$$I \cap I_{k} = p_{k},$$

• Regular spread

 $S = \{I_1, ..., I_{q^2+1}\}$ of PG(3,q): $R(I_i, I_j, I_k) \subset S$

• **Regular parallelism** – all its spreads are regular.

• Uniform parallelism – all its spreads are isomorphic.

History

General constructions of parallelisms:

- in PG(n,2), Zaicev, Zinoviev, Semakov, 1973; Baker, 1976.
- in *PG(2ⁿ-1,q)*, Beutelspacher, 1974.
- a pair of orthogonal parallelisms in *PG(3,q)* Fuji-Hara,1986.

• two infinite families of regular cyclic parallelisms, PG(3,q), $q \equiv 2 \pmod{3}$, Penttila and Williams, 1998.

History

Parallelisms in PG(3,q):

- PG(3,2) all (2) are classified, regular;
- PG(3,3)
 - aut(5) Prince, 1997;
 - all (73 343) Betten, 2016;

• PG(3,4)

- odd prime order Topalova, Zhelezova, 2013, 2015, 2017;
- Baer involution Betten, Topalova, Zhelezova, 2018;
- cyclic groups of order 4 Betten, Topalova, Zhelezova, 2019

The number of known parallelisms of PG(3,4) with nontrivial automorphisms

 $G \cong P\Gamma L(4,4)$ $|G| = 2^{13} \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 17$

XVII Int.Workshop ACCT, 2020

Some parallelisms of PG(3,5)

History

Parallelisms in *PG(3,5)*:

- cyclic Prince, 1998;
- regular noncyclic Topalova, Zhelezova, 2016;
- automorphism of order 13 Topalova, Zhelezova, 2019.

Regularity of the spreads of PG(3,5)

#	N ₆	N ₄
1	130	0
2	31	105
3	16	246
4	10	192
5	7	120
6	7	150
7	5	200
8	4	78
9	4	102
10	3	237

#	N ₆	N ₄
11	1	82
12	1	138
13	1	210
14	0	72
*15	0	104
16	0	114
17	0	180
18	0	190
19	0	225
20	0	310

 N_i – the number of reguli in PG(3,5) which have i common lines with a spread, i \in {4,6}

PG(3,5)

lexicographic order on the points \rightarrow lines \rightarrow parallelisms

 $v = (q^{n+1} - 1)/(q-1) = 156 \text{ points}$ $(q^2+1)(q^2+q+1) = 806 \text{ lines}$ $q^2+1 = 26 \text{ lines}$ in a spread

 $q^2+q+1 = 31$ spreads in a parallelism

 $(1,0,0,0) \to 1$... $(4,4,4,1) \to 156$

P[(4, 5) and its Sylow 2-subgroup

 $G \cong P\Gamma L(4,5), |G| = 2^9.3^2.5^6.13.31$

 G_{29} – 12 conjugacy classes, elements of orders 2, 4 and 8

class	group G ₈	fixed points	fixed lines	N(G ₈)
1	G ₈₂	2	2	384
2	G ₈₆	6	2	5760

 $N(G_8) = \{ g \in G \mid gG_8g^{-1} = G_8 \}$ - the normalizer of G_8 in G

https://www.gap-system.org/

Types of line orbits under G_{82}

	fixed	leng	lenç	gth 4	length 8		
group	lines	SL	NSL	SL	NSL	SL	NSL
G ₂	38	240	144	_	_	—	_
G ₄	38	_	_	120	72	_	—
G ₈₂	2	12	6	_	—	36	60

SL (spread-like) line orbit – each point appears at most once;

NSL (non-spread-like) line orbit – only in a nonfixed spread;

 O_l - a line orbit of length *l* under G_{82}

Types of spread orbits under G_{82}

Parallelism construction

Normalizer automorphisms	8	16	24	32	48	96
Partial parallelisms	10279	683	11	9	7	1
			1		1	
			autom	orphis	ms of	order 3

Computer search

- Backtrack search, construction of necessary spread orbits:
 - o in advance;
 - on the fly a line is added if it meets the requirements of the spread type, and has not been used yet.
- Isomorph rejection
 - a normalizer-based minimality test;
 - o invariant calculation.

Results

Parallelisms with G_{82}

Automorphisms	8	16	24	32	48	All
Parallelisms	630	154	85	16	14	899
Selfdual	24	0	3	0	0	27

- each spread is in one of the 20 classes;
- 227 invariants:
 - the order of the full automorphism group;
 - selfduality;
 - the number of class of each spread

Results

Parallelisms with the previously missing spread

F ₁	3xS ₂	L ₈	L ₈	L ₈	automorphisms	parallelisms
4	2	5	13	20	8	4
4	2	14	17	20	8	2
4	10	4	14	20	8	8
4	10	5	10	20	8	4
4	10	11	11	20	16	2
4	10	11	14	20	8	8
4	20	5	15	16	8	2
4	20	5	15	17	8	2
4	20	8	8	10	8	2
4	20	11	11	11	8	2
4	20	11	13	15	8	2
4	20	11	15	19	8	2

Parallelisms with regular spreads

F ₁	3xS ₂	L ₈	L ₈	L ₈	automorphisms	parallelisms
4	10	1	1	1	24	2
4	10	1	15	15	8	2

Results

Invariants of spreads which yield uniform deficiency one parallelisms

F ₁	3xS ₂	L ₈	L ₈	L ₈	automorphisms	parallelisms
4	10	10	10	10	16	40
4	10	10	10	10	24	2
4	10	10	10	10	48	8

Thank you for the attention