Some parallelisms of PG(3,5)

involving a definite

type of spread

Svetlana Topalova, Stela Zhelezova

Institute of Mathematics and Informatics, BAS, Bulgaria

The research of the first author is partially supported by the Bulgarian National Science Fund
under Contract No DH 02/2, 13.12.2016, and of the second author by the Bulgarian National Science Fund under Contract No KP-06-N32/2-2019

Outline

o Parallelisms - relations and applications
o Definitions and notations
o History
o Construction method

- P ГL(4,5) and its Sylow 2-subgroup
- Types of line and spread orbits under $\mathrm{G}_{8_{2}}$
- Computer search

○ Results

Parallelisms - relations and applications

Johnson, Combinatorics of Spreads and Parallelisms, CRC Press (2010)

- translation planes
- network coding
- error-correcting codes
o cryptography

Definitions and notations

o Spread in PG(n,q) - a partition of the point set by lines
o Parallelism in PG(n,q) - a partition of the set of lines by spreads

- necessary condition for the existence of spreads: n is odd

Definitions and notations

o Isomorphic spreads - if there is an automorphism of $\mathrm{PG}(n, q)$ which takes one to the other

- Isomorphic parallelisms - if there is an automorphism of PG(n,q) which maps each spread of one parallelism to a spread of the other
- Automorphism of a parallelism - an automorphism of $P G(n, q)$ which preserves the parallelism

Definitions and notations

- Automorphism group of the parallelism - subgroup of the automorphism group of PG(n,q)
- Deficiency one parallelism - a partial parallelism with one spread less than the parallelism
- Cyclic parallelism - it has an automorphism moving its spreads in one cycle

Definitions and notations

- PG(3,q): q^{2+1} lines in a spread; $\mathbf{q}^{2}+q+1$ spreads in a parallelism
- Regulus of $\operatorname{PG}(3, q)$ - a set $R=\left\{l_{1}, \ldots, l_{q+1}\right\}$ of mutually skew lines

$$
\left.\begin{array}{l}
I \cap I_{i}=p_{i,} \\
I \cap I_{j}=p_{j}, \\
I \cap I_{k}=p_{k},
\end{array}\right\} \Rightarrow I \cap I_{s} \neq \emptyset, \forall I_{s} \in R
$$

Definitions and notations

- Regular spread

$$
S=\left\{I_{1}, \ldots, I_{q^{2}+1}\right\} \text { of } P G(3, q): R\left(I_{j} ; I_{j}, I_{k}\right) \subset S
$$

- Regular parallelism - all its spreads are regular.
- Uniform parallelism - all its spreads are isomorphic.

History

General constructions of parallelisms:

- in PG(n,2), Zaicev, Zinoviev, Semakov, 1973; Baker, 1976.
- in PG(2 ${ }^{n-1, q), ~ B e u t e l s p a c h e r, ~} 1974$.
- a pair of orthogonal parallelisms in PG(3,q) - FujiHara, 1986.
- two infinite families of regular cyclic parallelisms, PG(3,q), $q \equiv 2(\bmod 3)$, Penttila and Williams, 1998.

History

Parallelisms in PG(3,q):

- PG(3,2) - all (2) are classified, regular;
- PG(3,3)
- aut(5) - Prince, 1997;
- all (73 343) - Betten, 2016;
- PG(3,4)
- odd prime order - Topalova, Zhelezova, 2013, 2015, 2017;
- Baer involution - Betten, Topalova, Zhelezova, 2018;
- cyclic groups of order 4 - Betten, Topalova, Zhelezova, 2019

The number of known parallelisms of PG(3,4) with nontrivial automorphisms

Aut	2	3	4	5	6	7		8	10	12	15	16	17	20	24	30		32	48	60	64	96	96	60
\#	$\begin{aligned} & \text { ơ } \\ & \text { N } \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$	$$	$\begin{aligned} & 0 \\ & \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$		$\stackrel{\infty}{\infty} \underset{+}{\infty}$	482		596	76	52	40	≥ 170	0	52	14	38			12	8	≥ 4	2		4

$$
\mathrm{G} \cong \mathrm{P} \Gamma L(4,4) \quad|\mathrm{G}|=2^{13} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 17
$$

History

Parallelisms in $P G(3,5)$:

- cyclic - Prince, 1998;
- regular noncyclic - Topalova, Zhelezova, 2016;
- automorphism of order 13 - Topalova, Zhelezova, 2019.

Regularity of the spreads of PG(3,5)

$\#$	\mathbf{N}_{6}	\mathbf{N}_{4}
1	130	0
2	31	105
3	16	246
4	10	192
5	7	120
6	7	150
7	5	200
8	4	78
9	4	102
10	3	237

$\#$	N_{6}	N_{4}
11	1	82
12	1	138
13	1	210
14	0	72
${ }^{*} 15$	0	104
16	0	114
17	0	180
18	0	190
19	0	225
20	0	310

N_{i} - the number of reguli in $\mathrm{PG}(3,5)$ which have i common lines with a spread, $\mathrm{i} \in\{4,6\}$

Construction method

$P G(3,5)$

lexicographic order on the points \rightarrow lines \rightarrow parallelisms
$v=\left(q^{n+1}-1\right) /(q-1)=156$ points

$$
\begin{gathered}
(1,0,0,0) \rightarrow 1 \\
\ldots \\
(4,4,4,1) \rightarrow 156
\end{gathered}
$$

$\left(q^{2}+1\right)\left(q^{2}+q+1\right)=806$ lines
$\mathrm{q}^{2}+1=26$ lines in a spread
$\mathrm{q}^{2}+\mathrm{q}+1=31$ spreads in a parallelism

Construction method

P「L(4,5) and its Sylow 2-subgroup
$G \cong P \Gamma L(4,5),|G|=2^{9} .3^{2} \cdot 5^{6} \cdot 13.31$
$\mathrm{G}_{29}-12$ conjugacy classes, elements of orders 2,4 and 8

class	group G_{8}	fixed points	fixed lines	$\mathrm{N}\left(\mathrm{G}_{8}\right)$
1	G_{82}	2	2	384
2	G_{86}	6	2	5760

$N\left(\mathrm{G}_{8}\right)=\left\{\mathrm{g} \in \mathrm{G} \mid \mathrm{gG}_{8} \mathrm{~g}^{-1}=\mathrm{G}_{8}\right\}$ - the normalizer of G_{8} in G
https://www.gap-system.orgl

Construction method

Types of line orbits under $\mathbf{G}_{8_{2}}$

group	fixed	length 2		length 4		length 8	
	lines	SL	NSL	SL	NSL	SL	NSL
G_{2}	38	240	144	-	-	-	-
G_{4}	38	-	-	120	72	-	-
G_{82}	2	12	6	-	-	36	60

SL (spread-like) line orbit - each point appears at most once;
NSL (non-spread-like) line orbit - only in a nonfixed spread;
$\mathrm{O}_{l}-$ a line orbit of length l under G_{82}

Construction method

Types of spread orbits under $\mathbf{G}_{8_{2}}$

- 16 fixed spreads a line orbit of lenght 8 under G_{82}

$\mathrm{F}_{1}: \quad$| $\mathrm{O}_{1}{ }^{1}$ | $\mathrm{O}_{1}{ }^{2}$ | $\mathrm{O}_{8}{ }^{1}$ | $\mathrm{O}_{8}{ }^{2}$ | $\mathrm{O}_{8}{ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: |

- 2832 spread orbits of length 2
a line orbit of length 4 under G_{4}

a line orbit of length 2 under G_{82}
a line orbit of length 8 under G_{82}
- L_{8} : 14227090 spread orbits of lenght 8 - 26 lines from 26 different line orbits under G_{82}

Construction method

Parallelism construction

Construction method

Computer search

- Backtrack search, construction of necessary spread orbits:
- in advance;
- on the fly - a line is added if it meets the requirements of the spread type, and has not been used yet.
o Isomorph rejection
- a normalizer-based minimality test;
- invariant calculation.

Results

Parallelisms with $\boldsymbol{G}_{8_{2}}$

Automorphisms	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{2 4}$	$\mathbf{3 2}$	$\mathbf{4 8}$
All					
Parallelisms	630	154	85	16	14
899					
Selfdual	24	0	3	0	0
27					

- each spread is in one of the 20 classes;
- 227 invariants:
- the order of the full automorphism group;
- selfduality;
- the number of class of each spread

Results

Parallelisms with the previously missing spread

F_{1}	$3 \times \mathrm{S}_{2}$	$\mathrm{~L}_{8}$	$\mathrm{~L}_{8}$	$\mathrm{~L}_{8}$	automorphisms	parallelisms
4	2	5	13	20	8	4
4	2	14	17	20	8	2
4	10	4	14	20	8	8
4	10	5	10	20	8	4
4	10	11	11	20	16	2
4	10	11	14	20	8	8
4	20	5	15	16	8	2
4	20	5	15	17	8	2
4	20	8	8	10	8	2
4	20	11	11	11	8	2
4	20	11	13	15	8	2
4	20	11	15	19	8	2

Results

Parallelisms with regular spreads

F_{1}	$3 \times \mathrm{S}_{2}$	$\mathrm{~L}_{8}$	$\mathrm{~L}_{8}$	$\mathrm{~L}_{8}$	automorphisms	parallelisms
4	10	1	1	1	24	2
4	10	1	15	15	8	2

Results

Invariants of spreads which yield uniform deficiency one parallelisms

F_{1}	$3 x \mathrm{~S}_{2}$	$\mathrm{~L}_{8}$	$\mathrm{~L}_{8}$	$\mathrm{~L}_{8}$	automorphisms	parallelisms
4	10	10	10	10	16	40
4	10	10	10	10	24	2
4	10	10	10	10	48	8

Thank you for the attention

