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Introduction: Drop coalescence and applications

Applications of multiphase systems: Emulsions - Food; drugs; cosmetics; composite
materials; chemicals; petroleum; etc.
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Introduction: Conceptual framework for coalescence
modelling.

? ti <> tc ?; tc = t(hmin = hc)
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Drop-to-drop interaction in simple shear flow at Ca = 0.25

Seminar on ”Mathematical Modeling”, Faculty of Mathematics and Informatics, Sofia University, April 01, 2015 p. 5/28






Schematic sketch of the problem
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Comparison with 3D simulation in simple shear flow.
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Head-on collision in axisymmetric compressional flow,
insoluble surfactant.
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Mathematical model: Hydrodynamic part.

In the drops:

∇ · v = 0; −∇pd +∇2v = 0; Stokes equations in the drops (1)

In the film (Lubrication equation):
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Mathematical model: Surfactant transport - interface.

At the interface:

∂Γ

∂t
+

1

r

∂(rΓuu)

∂r
− 1

Pesr

∂

∂r

(
r
∂Γ

∂r

)
=

1

Ped

(
∂Cd
∂zd

)∣∣∣∣
zd=0

− 1

Pe

(
∂C

∂z

)∣∣∣∣
z=h/2

(6)

with boundary conditions:(
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Adsorption isoterms:
KC|z=h/2 = Γ = KdCd|zd=0 (8)
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Mathematical model: Surfactant transport - bulk.

In the film:
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Mathematical model: Initial conditions.

For the film thickness:

h(r, t = 0)) = hini + r2, (13)

For the solute distribution:

- initially uniform concentration only in the drops:

Cd(r, zd, t = 0) = 1 = Γ/Kd; C(r, z, t = 0) = 0. (14)

- initially uniform concentration only in the film:

Cd(r, zd, t = 0) = 0; C(r, z, t = 0) = 1 = Γ/K. (15)
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Transformation and Parameters.
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Numerical method: Hydrodynamic part in the drops.

BIM for the flow in the drops:
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Numerical method: Hydrodynamic part in the film.
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Forth-order nonlinear equation for h(r, t) is solved by an Euler explicit scheme in
time and a second order FD scheme on non-uniform mesh in space. Requirements
for numerical stability:
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Adaptive mesh/step are used both for the time as well as space discretization: ∆t
of order 10−4 − 10−9; in the film region ∆r and ∆z of order 0.01
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(∆t)II
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Numerical method: Convection diffusion in the bulk phases.
The convection-diffusion equations for the surfactant concentration in the drop
and in the film are solved by a second order FD approximation in r and z in
combination of hybrid (implicit/explicit) time integration:
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where δx and δ2x are finite difference approximations for the first and second
derivatives with respect to the variable x (x stands for r or z). Here five node
discretization is used for the first and second derivatives in the r and z directions.
Thus the second derivative is approximated as:

∂2C(i, j, k)

∂z2
≈ δ2zC(i, j, k) =

a1.C(i, j−2, k)+a2.C(i, j−1, k)+a3.C(i, j, k)+a4.C(i, j+1, k)+a5.C(i, j+2, k),

with a1 = y1, a2 = y2, a3 = −(y1 + y2 + y3 + y4), a4 = y3, a5 = y4, where
the vector y = (y1, y2, y3, y4)

T is the solution of the algebraic system Ey = b,
b = (0, 2, 0, 0)T , ∆zi = zi − zi−1 and E is the matrix:
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Numerical test: Space discretization.
The evolution of the film thickness for different meshes.
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Numerical test: Time discretization. The evolution of the
minimal film thickness for different time stepping methods.
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Numerical test: Time discretization. The evolution of the
minimal film thickness for different time stepping methods -

zoom.
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The evolution of the minimal film thickness, hmin at
λ = 1; Pes = 105; Pe = Ped = 103; K = Kd = 0.2
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D → C
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C → D
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The evolution of the film thickness, h at
λ = 1; Pes = 105; Pe = Ped = 103; K = Kd = 0.2, case C → D
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The effect of van der Waals forces, A, on the evolution of the
minimal film thickness, hmin
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Future work:

• Investigation of the effect of the parameters.

• Biosurfactants.
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Biosurfactants
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Thank you for your patience and attention!
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