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Introduction: Drop coalescence and applications

Applications of multiphase systems: Emulsions - Food; drugs; cosmetics; composite
materials; chemicals; petroleum; etc.
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Introduction: Conceptual framework for coalescence
modelling.
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Drop-to-drop interaction in simple shear flow at C'a = 0.25
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Schematic sketch of the problem
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Comparison with 3D simulation in simple shear flow.
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Head-on collision in axisymmetric compressional flow,
insoluble surfactant.
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Mathematical model: Hydrodynamic part.

In the drops:

V-v=0; —Vps+V?*=0; Stokes equations in the drops (1)

In the film (Lubrication equation):
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Mathematical model: Surfactant transport - interface.

At the interface:

(6)
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with boundary conditions:
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Adsorption isoterms:
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Mathematical model: Surfactant transport - bulk.

In the film:
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Mathematical model: Initial conditions.

For the film thickness:
h(?“,t = O)) — hinz’"‘TQ, (13)

For the solute distribution:

- initially uniform concentration only in the drops:
Ca(r,zq,t =0) =1=T/Ky; C(r,z,t=0)=0. (14)
- initially uniform concentration only in the film:

Ca(r,zq,t =0) = 0; C(r,z,t=0)=1=T/K. (15)
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Transformation and Parameters.
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a' is the dimensionless radius of the film, a’ = a/R.;; R. = SR+ RyY.
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Numerical method: Hydrodynamic part in the drops.

BIM for the flow in the drops:

Ty
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Numerical method: Hydrodynamic part in the film.

2
Oh _ 10(rhuy) ua(hgr@); p_2__<a_ 18h) 24

ot r  Or * r120r or? + ror + 3h3

Forth-order nonlinear equation for h(r,t) is solved by an Euler explicit scheme in
time and a second order FD scheme on non-uniform mesh in space. Requirements
for numerical stability:
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Adaptive mesh /step are used both for the time as well as space discretization: At
of order 10=* — 1077; in the film region Ar and Az of order 0.01
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Numerical method: Convection diffusion in the bulk phases.
The convection-diffusion equations for the surfactant concentration in the drop

and in the film are solved by a second order FD approximation in r and z in
combination of hybrid (implicit/explicit) time integration:

1
C(i,j, k +1) + BAT [uz(sz _ ﬁ(sg] Cli,jk+1)=  (16)
1
C(i, ], k) — ATu.6,C(i, j, k) + (8 — 1)AT [uz(sz _ P—e(sg] C(i, j, k),

where 6, and 62 are finite difference approximations for the first and second
derivatives with respect to the variable x (x stands for r or z). Here five node
discretization is used for the first and second derivatives in the r and z directions.
Thus the second derivative is approximated as:

82C(i7j7 k) 2 .

5,2 ~ 0.C(i,5,k) =
a1.C(i,j—2,k)+a2.C(i,j—1,k)+a3.C(i, j, k)+as.C(i, j+1,k)+as5.C(i, j+2, k),
with a1 = y1,a2 = Y2,a3 = —(y1 + Y2 + Y3 + Ya),a4 = y3,a5 = ya, where
the vector y = (y1,y2,¥3,y4)’ is the solution of the algebraic system Ey = b,

b =(0,2,0,0)%, Az; = z; — z;_1 and E is the matrix:
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Numerical test: Space discretization.
The evolution of the film thickness for different meshes.
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Numerical test: Time discretization. The evolution of the
minimal film thickness for different time stepping methods.
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Numerical test: Time discretization. The evolution of the
minimal film thickness for different time stepping methods -
zoom.
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The evolution of the minimal film thickness, h,,,;,, at
AN=1; Pe,=10° Pe= Pey; =10 K=K ;=0.2
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The evolution of the film thickness, h at
A=1; Pe,=10°; Pe= Pey;=10% K =K;=0.2, case C — D
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The effect of van der Waals forces, A, on the evolution of the
minimal film thickness, h,,,;,
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Future work:

e Investigation of the effect of the parameters.

e Biosurfactants.
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Biosurfactants

A Wide Range of Target Applications

SyntheZyme’s Modified Sophorolipids are designed for a large variety of
target applications:
»Surfactants:
= Hard surface cleaning
Household detergents
Qil solubilization
Industrial
Cosmetics
= Foods

» Anti-microbial compounds protecting agains human pathogens
= Natural Sophorolipids shown antimicrobial properties
= Prevention of bio film build-up
»Fungicides as agro-active
= Greenhouse trials performed
»Qil and gas
= Proven surface cleaning and emulsification of crude oil
= Crude oil emulsification
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Thank you for your patience and attention!
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