Numerical Simulation of Drop Coalescence in the Presence of Soluble Surfactant

I. Bazhlekov and D. Vasileva

Department "Mathematical Modeling and Numerical Analysis"
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

Contents

Introduction: Drop coalescence and applications; Effect of soluble surfactants.
Mathematical model:

- Simplifications;
- Hydrodynamic model - Stokes equations, lubrication approximation;
- Convection-diffusion equations in the phases and the interface.

Numerical method:

- Boundary Integral Method for the Stokes equations in the drops;
- Finite Difference Method for the flow in the film and the convectiondiffusion equations.

Results
Conclusions; Future work

Introduction: Drop coalescence and applications

Applications of multiphase systems: Emulsions - Food; drugs; cosmetics; composite materials; chemicals; petroleum; etc.

Introduction: Conceptual framework for coalescence modelling.

External flow

Collision frequency
Contact force F Contact time $_{i}$

PInternal flow and drainage
 Flattening film (radius a)

Film drainage
(film thickness, $\mathrm{h}(\mathrm{x}, \mathrm{t})$)
Film rupture at $\mathrm{h}=\mathrm{h}_{\mathrm{C}}$
Coalescence

$$
? t_{i}<>t_{c} ? ; \quad t_{c}=t\left(h_{\min }=h_{c}\right)
$$

Drop-to-drop interaction in simple shear flow at $C a=0.25$

Schematic sketch of the problem

Comparison with 3D simulation in simple shear flow.

Head-on collision in axisymmetric compressional flow, insoluble surfactant.

Mathematical model: Hydrodynamic part.

In the drops:

$$
\begin{equation*}
\nabla \cdot v=0 ; \quad-\nabla p_{d}+\nabla^{2} v=0 ; \quad \text { Stokes equations in the drops } \tag{1}
\end{equation*}
$$

In the film (Lubrication equation):

$$
\begin{align*}
& \frac{\partial h}{\partial t}=-\frac{1}{r} \frac{\partial\left(r h u_{u}\right)}{\partial r}+\frac{1}{r} \frac{\lambda}{12} \frac{\partial}{\partial r}\left(h^{3} r \frac{\partial p}{\partial r}\right) ; \quad u_{r}=u_{u}+\frac{\lambda}{2} \frac{\partial p}{\partial r}\left(z^{2}-\left(\frac{h}{2}\right)^{2}\right)(2) \\
& p=2-\frac{1}{2}\left(\frac{\partial^{2} h}{\partial r^{2}}+\frac{1}{r} \frac{\partial h}{\partial r}\right)+\frac{2 A}{3 h^{3}} \tag{3}\\
& 2 H=\frac{1}{B^{3}} \frac{\partial^{2} S}{\partial r^{2}}+\frac{1}{r B} \frac{\partial S}{\partial r} ; B=\sqrt{1+\left(\frac{\partial S}{\partial r}\right)^{2}} \tag{4}\\
& \mathrm{BC}: \quad-\frac{h}{2} \frac{\partial p}{\partial r}-\frac{\partial \Gamma}{\partial r}=\frac{1}{\lambda} \frac{\partial v_{r}}{\partial z} ; \quad u_{u}=v_{r} ; \quad \int_{0}^{r_{\infty}}\left(p-\frac{2 A}{3 h^{3}}\right) r d r=F(t) \tag{5}
\end{align*}
$$

Mathematical model: Surfactant transport - interface.

At the interface:

$$
\begin{equation*}
\frac{\partial \Gamma}{\partial t}+\frac{1}{r} \frac{\partial\left(r \Gamma u_{u}\right)}{\partial r}-\frac{1}{P e_{s} r} \frac{\partial}{\partial r}\left(r \frac{\partial \Gamma}{\partial r}\right)=\left.\frac{1}{P e_{d}}\left(\frac{\partial C_{d}}{\partial z_{d}}\right)\right|_{z_{d}=0}-\left.\frac{1}{P e}\left(\frac{\partial C}{\partial z}\right)\right|_{z=h / 2} \tag{6}
\end{equation*}
$$

with boundary conditions:

$$
\begin{equation*}
\left(\frac{\partial \Gamma}{\partial r}\right)_{r=0}=0, \quad\left(\frac{\partial \Gamma}{\partial r}\right)_{r=r_{l}}=0 \tag{7}
\end{equation*}
$$

Adsorption isoterms:

$$
\begin{equation*}
\left.K C\right|_{z=h / 2}=\Gamma=\left.K_{d} C_{d}\right|_{z_{d}=0} \tag{8}
\end{equation*}
$$

Mathematical model: Surfactant transport - bulk.

In the film:

$$
\begin{gather*}
\frac{\partial C}{\partial t}+u_{r} \frac{\partial(C)}{\partial r}+u_{z} \frac{\partial C}{\partial z}=\frac{1}{P e}\left(\frac{\partial^{2} C}{\partial z^{2}}\right) \tag{9}\\
\left(\frac{\partial C}{\partial r}\right)_{r=0}=0 ; \quad\left(\frac{\partial C}{\partial r}\right)_{r=\infty}=0 \tag{10}
\end{gather*}
$$

In the drop:

$$
\begin{gather*}
\frac{\partial C_{d}}{\partial t}+\left(u_{r}\right)_{d} \frac{\partial\left(C_{d}\right)}{\partial r}+\left(u_{z}\right)_{d} \frac{\partial C_{d}}{\partial z_{d}}=\frac{1}{P e_{d}}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{d}}{\partial r}\right)+\frac{\partial^{2} C_{d}}{\partial z_{d}^{2}}\right) \tag{11}\\
\left(\frac{\partial C_{d}}{\partial r}\right)_{r=0}=\left(\frac{\partial C_{d}}{\partial z_{d}}\right)_{z_{d}=\infty}=\left(\frac{\partial C_{d}}{\partial r}\right)_{r=\infty}=0 \tag{12}
\end{gather*}
$$

Mathematical model: Initial conditions.

For the film thickness:

$$
\begin{equation*}
h(r, t=0))=h_{i n i}+r^{2}, \tag{13}
\end{equation*}
$$

For the solute distribution:

- initially uniform concentration only in the drops:

$$
\begin{equation*}
C_{d}\left(r, z_{d}, t=0\right)=1=\Gamma / K_{d} ; \quad C(r, z, t=0)=0 . \tag{14}
\end{equation*}
$$

- initially uniform concentration only in the film:

$$
\begin{equation*}
C_{d}\left(r, z_{d}, t=0\right)=0 ; \quad C(r, z, t=0)=1=\Gamma / K . \tag{15}
\end{equation*}
$$

Transformation and Parameters.

$$
\begin{gathered}
t^{*}=\frac{t \sigma_{s} a^{\prime}}{R_{e q} \mu} ; r^{*}=\frac{r}{R_{e q} a^{\prime}} ; z^{*}=\frac{z}{R_{e q} a^{\prime 2}} ; h^{*}=\frac{h}{R_{e q} a^{2}} ; \\
u_{r}^{*}=\frac{u_{r} \mu}{\sigma_{s} a^{\prime 2}} ; u_{z}^{*}=\frac{u_{z} \mu}{\sigma_{s} a^{\prime 3}} ; \\
z_{d}^{*}=\frac{z_{d}}{R_{e q} a^{\prime}} ;\left(u_{r}\right)_{d}^{*}=\frac{\left(u_{r}\right)_{d} \mu}{\sigma_{s} a^{\prime 2}} ;\left(u_{z}\right)_{d}^{*}=\frac{\left(u_{z}\right)_{d} \mu}{\sigma_{s} a^{\prime 2}}
\end{gathered}
$$

a^{\prime} is the dimensionless radius of the film, $a^{\prime}=a / R_{e q} ; \quad R_{e q}^{-1}=\frac{1}{2}\left(R_{1}^{-1}+R_{2}^{-1}\right)$.
Dimensionless groups:

$$
\begin{gathered}
\lambda^{*}=\lambda a^{\prime} ; \quad K^{*}=\frac{K}{R_{e q} a^{\prime 2}} ; \quad K_{d}^{*}=\frac{K_{d}}{R_{e q}} ; \quad P e_{s}^{*}=\frac{\sigma_{s} R_{e q} a^{\prime 3}}{D_{s} \mu} ; \quad P e^{*}=\frac{\sigma_{s} R_{e q} a^{\prime 5}}{D \mu} ; \\
P e_{d}^{*}=\frac{\sigma_{s} R_{e q} a^{\prime 3}}{D_{d} \mu} ; \quad A^{*}=\frac{A}{4 \pi \sigma_{s} R_{e q}^{2} a^{\prime 2}} ;
\end{gathered}
$$

Numerical method: Hydrodynamic part in the drops.

BIM for the flow in the drops:

$$
\left(u_{r}\right)_{d}\left(r, z_{d}\right)=\int_{0}^{r_{l}} \phi_{1}\left(r, r^{\prime}\right) \tau_{d}\left(r^{\prime}\right) d r^{\prime}, \quad\left(u_{z}\right)_{d}\left(r, z_{d}\right)=\int_{0}^{r_{l}} \phi_{3}\left(r, r^{\prime}\right) \tau_{d}\left(r^{\prime}\right) d r^{\prime},
$$

where

$$
\begin{aligned}
\phi_{1}\left(r, r^{\prime}\right) & =\frac{r^{\prime}}{4 \pi} \int_{0}^{2 \pi}\left(\frac{2 \cos \theta}{\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta+z^{2}\right)^{1 / 2}}\right. \\
& \left.-\frac{z^{2} \cos \theta+r r^{\prime} \sin ^{2} \theta}{\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta+z^{2}\right)^{3 / 2}}\right) d \theta \\
\phi_{3}\left(r, r^{\prime}\right) & =\frac{r^{\prime}}{4 \pi} \int_{0}^{2 \pi} \frac{\left(r \cos \theta-r^{\prime}\right) z r^{\prime} d \theta}{\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta+z^{2}\right)^{3 / 2}} .
\end{aligned}
$$

Numerical method: Hydrodynamic part in the film.

$$
\frac{\partial h}{\partial t}=-\frac{1}{r} \frac{\partial\left(r h u_{u}\right)}{\partial r}+\frac{1}{r} \frac{\lambda}{12} \frac{\partial}{\partial r}\left(h^{3} r \frac{\partial p}{\partial r}\right) ; \quad p=2-\frac{1}{2}\left(\frac{\partial^{2} h}{\partial r^{2}}+\frac{1}{r} \frac{\partial h}{\partial r}\right)+\frac{2 A}{3 h^{3}}
$$

Forth-order nonlinear equation for $h(r, t)$ is solved by an Euler explicit scheme in time and a second order FD scheme on non-uniform mesh in space. Requirements for numerical stability:

$$
(\Delta t)_{I} \leq \text { const } \cdot \min _{j}\left(\frac{\Delta r_{j}^{3}}{h_{j}^{2}}\right) ; \quad(\Delta t)_{I I} \leq \frac{24}{\lambda} \cdot \min _{j}\left(\frac{\Delta r_{j}^{4}}{h_{j}^{5}}\right)
$$

Adaptive mesh/step are used both for the time as well as space discretization: Δt of order $10^{-4}-10^{-9}$; in the film region Δr and Δz of order 0.01

$$
M=\frac{(\Delta t)_{I}}{(\Delta t)_{I I}} ; \quad \Delta T=M \Delta t
$$

Numerical method: Convection diffusion in the bulk phases.

 The convection-diffusion equations for the surfactant concentration in the drop and in the film are solved by a second order FD approximation in r and z in combination of hybrid (implicit/explicit) time integration:$$
\begin{array}{r}
C(i, j, k+1)+\beta \Delta T\left[u_{z} \delta_{z}-\frac{1}{P e} \delta_{z}^{2}\right] C(i, j, k+1)= \tag{16}\\
C(i, j, k)-\Delta T u_{r} \delta_{r} C(i, j, k)+(\beta-1) \Delta T\left[u_{z} \delta_{z}-\frac{1}{P e} \delta_{z}^{2}\right] C(i, j, k)
\end{array}
$$

where δ_{x} and δ_{x}^{2} are finite difference approximations for the first and second derivatives with respect to the variable x (x stands for r or z). Here five node discretization is used for the first and second derivatives in the r and z directions. Thus the second derivative is approximated as:

$$
\frac{\partial^{2} C(i, j, k)}{\partial z^{2}} \approx \delta_{z}^{2} C(i, j, k)=
$$

$a_{1} \cdot C(i, j-2, k)+a_{2} \cdot C(i, j-1, k)+a_{3} \cdot C(i, j, k)+a_{4} \cdot C(i, j+1, k)+a_{5} \cdot C(i, j+2, k)$, with $a_{1}=y_{1}, a_{2}=y_{2}, a_{3}=-\left(y_{1}+y_{2}+y_{3}+y_{4}\right), a_{4}=y_{3}, a_{5}=y_{4}$, where the vector $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{T}$ is the solution of the algebraic system $\mathbf{E y}=\mathbf{b}$, $\mathbf{b}=(0,2,0,0)^{T}, \Delta z_{i}=z_{i}-z_{i-1}$ and \mathbf{E} is the matrix:

$$
\left[\begin{array}{rrrr}
-\left(\Delta z_{i-1}+\Delta z_{i}\right) & -\Delta z_{i} & \Delta z_{i+1} & \left(\Delta z_{i+1}+\Delta z_{i+2}\right) \\
\left(\Delta z_{i-1}+\Delta z_{i}\right)^{2} & \left(\Delta z_{i}\right)^{2} & \left(\Delta z_{i+1}\right)^{2} & \left(\Delta z_{i+1}+\Delta z_{i+2}\right)^{2} \\
-\left(\Delta z_{i-1}+\Delta z_{i}\right)^{3} & -\left(\Delta z_{i}\right)^{3} & \left(\Delta z_{i+1}\right)^{3} & \left(\Delta z_{i+1}+\Delta z_{i+2}\right)^{3} \\
\left(\Delta z_{i-1}+\Delta z_{i}\right)^{4} & \left(\Delta z_{i}\right)^{4} & \left(\Delta z_{i+1}\right)^{4} & \left(\Delta z_{i+1}+\Delta z_{i+2}\right)^{4}
\end{array}\right]
$$

The first derivative with respect to z is approximated as:

$$
\frac{\partial C(i, j, k)}{\partial z} \approx \delta_{z} C(i, j, k)=
$$

$a_{1} \cdot C(i, j-2, k)+a_{2} \cdot C(i, j-1, k)+a_{3} \cdot C(i, j, k)+a_{4} \cdot C(i, j+1, k)+a_{5} \cdot C(i, j+2, k)$, with $a_{1}=y_{1}, a_{2}=-\left(y_{1}+y_{2}+y_{3}+y_{4}\right), a_{3}=y_{2}, a_{4}=y_{3}, a_{5}=y_{4}$, where the vector \mathbf{y} is the solution of the algebraic system $\mathbf{E y}=\mathbf{b}$, here $\mathbf{b}=(1,0,0,0)^{T}$.

In order to approximate $\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{d}}{\partial r}\right)$ on the left boundary $(r=0)$ we use
L'Hospital's Rule: $\lim _{r \rightarrow 0} \frac{1}{r} \frac{\partial C_{d}}{\partial r}=\frac{\partial^{2} C_{d}}{\partial r^{2}}$ and then natural symmetric boundary conditions are imposed.

Numerical test: Space discretization. The evolution of the film thickness for different meshes.

Numerical test: Time discretization. The evolution of the minimal film thickness for different time stepping methods.

Numerical test: Time discretization. The evolution of the minimal film thickness for different time stepping methods zoom.

The evolution of the minimal film thickness, $h_{\text {min }}$ at
$\lambda=1 ; P e_{s}=10^{5} ; P e=P e_{d}=10^{3} ; K=K_{d}=0.2$

Seminar on "Mathematical Modeling", Faculty of Mathematics and Informatics, Sofia University, April 01, 2015 p. 21/28

Seminar on "Mathematical Modeling", Faculty of Mathematics and Informatics, Sofia University, April 01, 2015 p. 22/28

Seminar on "Mathematical Modeling", Faculty of Mathematics and Informatics, Sofia University, April 01, 2015 p. 23/28

The evolution of the film thickness, h at

$$
\lambda=1 ; P e_{s}=10^{5} ; P e=P e_{d}=10^{3} ; K=K_{d}=0.2 \text {, case } C \rightarrow D
$$

The effect of van der Waals forces, A, on the evolution of the minimal film thickness, $h_{\text {min }}$

Future work:

- Investigation of the effect of the parameters.
- Biosurfactants.

Biosurfactants

A Wide Range of Target Applications

SyntheZyme's Modified Sophorolipids are designed for a large variety of target applications:
>Surfactants:

- Hard surface cleaning
- Household detergents
- Oil solubilization
- Industrial
- Cosmetics
- Foods
-Anti-microbial compounds protecting agains human pathogens
- Natural Sophorolipids shown antimicrobial properties
- Prevention of bio film build-up
>Fungicides as agro-active
- Greenhouse trials performed
$>$ Oil and gas
- Proven surface cleaning and emulsification of crude oil
- Crude oil emulsification

Thank you for your patience and attention!

