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Motivation: linear viscoelasticity

The use of fractional derivatives for the mathematical modelling of viscoelastic
materials is quite natural:

σ(t) - stress, ε(t) - strain (at time t)

Constitutive equations give the relation between σ and ε.

Mathematical models for an ideal solid material and for an ideal fluid:

Solids (Hooke’s law): σ(t) = Eε(t); Newtonian fluids: σ(t) = η
dε(t)

dt
.

E - elastic modulus, η - viscosity (material parameters)

Real materials combine properties of those two limit cases and lie somewhere
between ideal solids and ideal fluids.
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Intrger-order models for viscoelastic materials

Solids (Hooke’s law): σ(t) = Eε(t); Newtonian fluids: σ(t) = η
dε(t)

dt
.

Maxwell model:
σ(t)

η
+

1

E

dσ(t)

dt
=
dε(t)

dt
(σ = const ⇒ dε(t)

dt
= const)

Voigt-Kelvin model: σ(t) = Eε(t) + η
dε(t)

dt
( ε = const ⇒ σ = const

⇒ does not reflect the experimentally observed stress relaxation)
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Fractional-order models for viscoelastic materials

Hooke element: σ(t) = Eε(t); Newton element: σ(t) = η
dε(t)

dt

Idea: viscoelastic materials are ”intermediate” ⇒

stress may be proportional to the ”intermediate” (non-integer) derivative of strain
(Scott-Blair element):

σ(t) = aDα
t ε(t), 0 < α < 1.

Fractional generalizations of the classical models:

Generalized Maxwell model: σ(t) + a1D
α
t σ(t) = b0ε(t).

Generalized Voigt model: σ(t) = b0ε(t) + b1D
α
t ε(t).

Fractional derivative models:

provide a higher level of adequacy, preserving linearity.
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Introduction to Fractional Calculus

D1
t =

d

dt
, Dn

t =
dn

dtn
, n = 1, 2, 3, ...

In a letter to L’Hôpital in 1695 Leibniz raised the question:
”Can the meaning of derivatives with integer order be generalized to

derivatives with noninteger orders?”

L’Hôpital was somewhat curious and replied with another question to Leibniz:
”What if the order will be 1/2?”

Leibniz, in a letter dated September 30, 1695 - the exact birthday of the Fractional
Calculus - replied:

”It will lead to a paradox, from which one day useful
consequences will be drawn.”
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In the last years: a vast amount of research publications in the area of Fractional
Calculus (exponential growth is observed of the number of publications).

Journal:

Fractional Calculus and Applied Analysis

Founding Publisher (1998 - 2010) and Supporting Organization (1998 - now):
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Managing Editor: Prof. Virginia Kiryakova

Thomson Reuters announced in 2013 JCR Sci. Ed. the first Impact Factor
of FCAA - it is IF (2013) = 2.974, and places the journal at 4th place in
category ”Mathematics, Interdisciplinary” (among 95) and at 5th place in category
”Mathematics, Applied” (among 250).
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Fractional integration

Jtf(t) =

∫ t

0

f(τ) dτ,

J2
t f(t) =

∫ t

0

(∫ t1

0

f(t2) dt2

)
dt1

=

∫ t

0

(∫ t

t2

dt1

)
f(t2) dt2 =

∫ t

0

(t− t2)f(t2) dt2

Jnt f(t) =

∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

f(tn) dtn, n ∈ N.

By induction:

⇒ Jnt f(t) =
1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ) dτ, n ∈ N.
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Riemann-Liouville fractional integral

Jnt f(t) =
1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ) dτ, n ∈ N.

What if n = α > 0 - noninteger?

Γ(·) - Gamma function: Γ(α) =

∫ ∞
0

e−ttα−1 dt, <α > 0.

Properties: Γ(1) = 1, Γ(α+ 1) = αΓ(α).

Proof: Γ(α+ 1) =

∫ ∞
0

e−ttα dt =
[
−e−ttα

]t=∞
t=0

+ α

∫ ∞
0

e−ttα−1 dt = αΓ(α).

⇒ Γ(n) = (n− 1)!

Jαt - fractional Riemann-Liouville integral of order α > 0:

Jαt f(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ.
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Fractional differentiation

Riemann-Liouville fractional integral of order α > 0:

Jαt f(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ.

Riemann-Liouville fractional derivative Dα
t of order α > 0:

Dα
t = Dn

t J
n−α
t , where n = dαe ; (dαe = [α] + 1).

For example if α ∈ (0, 1)⇒ Dα
t = D1

tJ
1−α
t

In particular: D
1/2
t f(t) = D1

tJ
1/2
t f(t) =

1√
π
· d
dt

∫ t

0

f(τ)

(t− τ)1/2
dτ.

Caputo fractional derivative Dα
t of order α > 0:

Dα
t = Jn−αt Dn

t , n = dαe .
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Fractional differentiation

Riemann-Liouville fractional derivative Dα
t of order α > 0:

Dα
t = Dn

t J
n−α
t , n = dαe .

Caputo fractional derivative Dα
t of order α > 0:

Dα
t = Jn−αt Dn

t , n = dαe .

Introduced in the framework of the theory of elasticity and seismic waves:
Michele Caputo, Elasticitá e Dissipazione, Zanichelli, Bologna, 1969.

Integer-order differentiation: local character.

Fractional differentiation: nonlocal character → appropriate for modelling of
materials and processes with memory.
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Basic properties of the operators of Fractional Calculus

Jαt J
β
t = Jα+βt , α, β > 0, − semigroup property,

Jαt {tγ} =
Γ(γ + 1)

Γ(α+ γ + 1)
tγ+α, γ > −1,

Dα
t {tγ} = Dα

t {tγ} =
Γ(γ + 1)

Γ(γ − α+ 1)
tγ−α, γ > 0.

Dα
t {c} ≡ 0, ∀α > 0, Dα

t {c} =
ct−α

Γ(1− α)
6= 0, α > 0, α /∈ N.

In general: Dα
tD

β
t 6= Dα+β

t

Example: if 0 < α < 1/2 then Dα
t t
α = Γ(α+ 1) and thus Dα

t (Dα
t t
α) = 0, but

D2α
t t

α =
Γ(1 + α)

Γ(1− α)
t−α ⇒ Dα

t (Dα
t t
α) 6= D2α

t t
α.
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Also: Dα
t (fg) 6= (Dα

t f)g + f(Dα
t g) (there is no useful formula of this type!)

Let α > 0, n = dαe. Fractional integration and differentiation are related by:

Dα
t J

α
t f(t) = Dα

t J
α
t f(t) = f(t)

Jαt D
α
t f(t) = f(t)−

n−1∑
k=0

f (k)(0) · t
k

k!

Jαt D
α
t f(t) = f(t)−

n−1∑
k=0

(
Jn−αt f

)(k)
(0) · tα+k−n

Γ(α+ k − n+ 1)
.

The Caputo and R-L derivatives are related by the identity:

Dα
t f(t) = Dα

t

(
f(t)−

n−1∑
k=0

f (k)(0) · t
k

k!

)

= Dα
t f(t)−

n−1∑
k=0

f (k)(0) · tk−α

Γ(k − α+ 1)
.
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Laplace transform and fractional operators

Laplace transform:

L{f(t)}(s) = f̂(s) =

∫ ∞
0

e−stf(t) dt

If α > 0, n = dαe, then:

L{Jαt f}(s) = s−αL{f}(s),

L{Dα
t f}(s) = sαL{f}(s)−

n−1∑
k=0

f (k)(0) · sα−1−k,

L{Dα
t f}(s) = sαL{f}(s)−

n−1∑
k=0

(
Jn−αt f

)(k)
(0) · sn−1−k.
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Ordinary fractional differential equations: slow relaxation

The simplest case: Fractional relaxation equation

Dα
t u(t) + λu(t) = 0, 0 < α ≤ 1, λ > 0, t > 0;

u(0) = 1.

Solution:
α = 1: u(t) = exp(−λt) - ordinary (exponential) relaxation,

0 < α ≤ 1: u(t) = Eα(−λtα), where

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
− Mittag-Leffler function

It is a generalization of the exponential function:

E1(z) =

∞∑
k=0

zk

k!
= ez
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α ∈ (0, 1): Fractional (slow) relaxation

Plots of Eα(−tα) for different values of α ∈ (0, 1].
α = 1 - exponential decay, α ∈ (0, 1) - algebraic decay (t−α).
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Fractional relaxation-oscillation equation

Dα
t u(t) + λu(t) = 0, 1 < α ≤ 2, λ > 0, t > 0;

u(0) = 1, u′(0) = 0.

Solution:

α = 1: u(t) = exp(−λt) - ordinary (exponential) relaxation,

α = 2: u(t) = cos(
√
λt) - oscillations.

1 < α ≤ 2: u(t) = Eα(−λtα) - damped oscillations.
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α ∈ (1, 2): Fractional (damped) oscillations

Plots of Eα(−tα) for different values of α ∈ (1, 2].
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Mittag-Leffler functions

Eα(z) = Eα,1(z), where

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
− two-parameter Mittag-Leffler function

Entire function. Asymptotic expansion:

Eα,β(−t) =
t−1

Γ(β − α)
+O(t−2), t→ +∞, α ∈ (0, 2), β ∈ R.

Laplace transform:

L
{
tβ−1Eα,β(−λtα)

}
=

sα−β

sα + λ
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Completely monotone functions

A function f : (0,∞)→ R is called completely monotone function (CMF) if

(−1)nf (n)(t) ≥ 0, for all t > 0, n = 0, 1, ...

The simplest example: f(t) = e−t

Mittag-Leffler function (α, β ∈ R, α > 0):

Eα,β(−t) =

∞∑
k=0

(−t)k

(αk + β)
, Eα(−t) = Eα,1(−t).

E1(−t) = e−t ∈ CMF

Eα(−t) ∈ CMF , iff 0 < α < 1 (Pollard, 1948)

Eα,β(−t) ∈ CMF , iff 0 ≤ α ≤ 1, α ≤ β (Schneider, 1996; Miller, 1999)
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Inhomogeneous fractional relaxation equation

Let λ > 0, 0 < α ≤ 1.

Dα
t u(t) + λu(t) = f(t), t > 0,

u(0) = 1.

The solution is obtained by applying Laplace transform and is given by:

u(t) = Eα(−λtα) +

∫ t

0

τα−1Eα,α(−λτα)f(t− τ) dτ.

Eα(−λtα) and tα−1Eα,α(−tα) are completely monotone functions.

Eα(−λtα) = O(1/tα) as t→∞

tα−1Eα,α(−tα) = O(1/tα+1) as t→∞

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 21/55



Plots of tα−1Eα,α(−tα) for different values of α ∈ (0, 1].
Completely monotone functions. Algebraic decay ∼ 1/tα+1 as t→∞.
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Multi-term fractional relaxation equation

Dα
t u(t) +

m∑
j=1

λjD
αj
t u(t) + λu(t) = f(t), t > 0,

u(0) = 1,

where 0 < αm < ... < α1 < α ≤ 1, λ, λj > 0, j = 1, ...,m, m ∈ N.
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By applying Laplace transform we can find the solution:

u(t) = u0(t) +

∫ t

0

uδ(t− τ)f(τ) dτ,

where

L{u0}(s) =
sα−1 +

∑m
j=1 λjs

αj−1

sα +
∑m
j=1 λjs

αj + λ
, L{uδ}(s) =

1

sα +
∑m
j=1 λjs

αj + λ
.

Note that

L{Eα(−λtα)}(s) =
sα−1

sα + λ
, L{tα−1Eα,α(−λtα)}(s) =

1

sα + λ
.

u0(t) and uδ(t) - generalizations of the Mittag-Leffler type functions

Eα(−λtα) and tα−1Eα,α(−λtα)

Aim: Study the properties of u0(t) and uδ(t)
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Theorem.

u0(t) =

∫ ∞
0

e−rtK0(r) dr and uδ(t) =

∫ ∞
0

e−rtKδ(r) dr, where

K0(r) =
λ

πr
· B(r)

(A(r) + λ)2 + (B(r))2
and Kδ(r) =

1

π
· B(r)

(A(r) + λ)2 + (B(r))2

A(r) = rα cosαπ +

m∑
j=1

λjr
αj cosαjπ, B(r) = rα sinαπ +

m∑
j=1

λjr
αj sinαjπ.

Proof: Take the inverse Laplace integral of û0(s) and ûδ(s), i.e.

u0(t) =
1

2πi

∫
Br

est
sα−1 +

∑m
j=1 λjs

αj−1

sα +
∑m
j=1 λjs

αj + λ
ds,

(and similarly for uδ(t)), where Br = {s; Re s = σ, σ > 0} is the Bromwich path.

Remark: The obtained representations of u0(t) and uδ(t) are appropriate for
numerical computation.
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Other properties

Theorem. The functions u0(t) and uδ(t) have the following properties

0 < u0(t) < 1, uδ(t) > 0, strictly decreasing for t > 0, (1)

u0(0) = 1, uδ(0) = +∞, (2)

u0(t) and uδ(t) are completely monotone functions for t > 0, (3)

u′0(t) = −λuδ(t), t > 0, (4)∫ T

0

uδ(t) dt <
1

λ
, T > 0, (5)

u0(t) ∼ 1− λ tα

Γ(α+ 1)
, uδ(t) ∼

tα−1

Γ(α)
, t→ 0, (6)

u0(t) ∼
λmt

−αm

λΓ(1− αm)
, uδ(t) ∼ −

λmt
−αm−1

λ2Γ(−αm)
, t→ +∞. (7)
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Solution u0(t) (black) of the two-term equation with α = 0.75, α1 = 0.25

Dα
t u0(t) + Dα1

t u0(t) + u0(t) = 0, t > 0, u0(0) = 1,

compared to the functions Eα(−tα) for α = 0.75 (green) and α = 0.25 (red).
For t→ 0 the asymptotic behavior of u0 is determined by the largest order (0.75),
and for t→∞ by the smallest order (0.25).
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Fractional relaxation of distributed order

∫ 1

0

µ(β)Dβ
t u(t) dβ = −λu(t), t > 0, λ > 0, u(0) = 1.

µ ∈ C[0, 1], µ(β) ≥ 0, β ∈ [0, 1], and µ(β) 6= 0 on a set of a positive measure.

Applying Laplace transform:

û(s) =
h(s)

s(h(s) + λ)
, where h(s) =

∫ 1

0

µ(β)sβ dβ.

u(t) is again completely monotone function; the main difference: in the asymptotic
behaviour at t→∞

Example: uniform distribution µ(β) = 1. Then

h(s) =
s− 1

log s
⇒ u(t) ∼ 1

λ log t
, t→∞

Ultraslow relaxation: logarithmic decay.
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Two-term fractional relaxation-oscillation equation

Let 1 < α ≤ 2, 0 < β < α, c ≥ 0.

Dα
t G(t) + cDβ

tG(t) = −ωG(t),

G(0) = 1, G′(0) = 0.

By applying Laplace transform it follows

Ĝ(s) =
sα−1 + csβ−1

sα + csβ + ω

G(t) = 1−
∞∑
n=0

n∑
p=0

(−1)n
(
n
p

)
cpωn−p+1 tαn−βp+α

Γ(αn− βp+ α+ 1)

G(t) ∼ t−α

ωΓ(1− α)
+

ct−β

ωΓ(1− β)
, t→∞.
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Plots of G(t) for ω = 1, c = 0 and different values of α.

Plots of G(t) for ω = c = 1, α = 2 and different values of β.

Seminar ”Mathematical Modelling”, FMI, Sofia University, May 13, 2015. p. 30/55



Plots of G(t) for ω = c = 1, α = 1.75 and different values of β.
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Transition from ODE to PDE

An example: a time-fractional diffusion-wave equation

Let 1 < α ≤ 2. Consider the IBVP on (0, 1)× (0,∞):

Dα
t u(x, t) = uxx(x, t),

ux(0, t) = 0, u(0, t) = u(1, t),

u(x, 0) = f(x), ut(x, 0) = 0.

f(x) is a given sufficiently smooth function, satisfying the compatibility conditions

f(0) = f(1), f ′(0) = 0.
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Solution for α = 2, f(x) = x sin(2πx)
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Solutions for α = 1.75 and α = 1.5, f(x) = x sin(2πx)
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Observation: the time evolution of solution of a PDE is determined by the
behaviour of solution of corresponding ODE, obtained by replacing of the operator
acting in space by a constant (eigenvalue)
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Time-fractional diffusion equation (TFDE)

Describes diffusion in complex media: porous, highly heterogeneous (e.g.
underground diffusion of contaminants), amorphous; in colloids, dielectrics,
biological systems, polymers, etc.

Diffusion of contaminants under the ground → impact for the environment: better
simulations and predictions of the density of the contaminant over time is needed
(the real size is in kilometers; laboratory experiments with meter sizes)

Classical diffusion-convection equation:

ρ(x)
∂u

∂t
(x, t) = div(p(x)∇u(x, t)) + b(x).∇u(x, t),

where u(x, t) denotes the density at time t and the location x.

Field data show anomalous diffusion in heterogeneous aquifer which can not be
interpreted by the classical convection-diffusion equation:

E.E. Adams and L.W. Gelhar, Field study of dispersion in a heterogeneous aquifer
2. spatial moments analysis, Water Resources Research 28 (1992) 3293 3307.
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Pollutants take longer times to travel than expected from classical diffusion, due
to trapping caused by stagnant regions of zero velocity of the mean flow of the
groundwater.

The diffusion is observed to be slower than the prediction on the basis of the
classical convection-diffusion equation, and such anomalous diffusion is called
slow diffusion.

The continuous-time random walk is a microscopic model for the anomalous
diffusion, and by an argument similar to the derivation of the classical diffusion
equation from the random walk, one can derive fractional diffusion models.

References:

Y. Hatano, N. Hatano, Dispersive transport of ions in column experiments: an
explanation of long-tailed profiles, Water Resources Research 34 (1998) 1027 1033.

R. Metzler, J. Klafter, The random walks guide to anomalous diffusion:a fractional
dynamics approach, Phyics Reports 339 (2000) 177.
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Time-fractional diffusion equation
on a bounded domain

Dα
t u(x, t) = Lxu(x, t) + F (x, t), (x, t) ∈ G× (0, T ),

u(x, t) = 0, x ∈ ∂G, t ∈ (0, T ),

u(x, 0) = a(x), x ∈ G.

0 < α ≤ 1;

G ⊂ Rd - bounded domain with sufficiently smooth boundary ∂G;

Lx - symmetric uniformly elliptic operator;

Lx(u) = div(p(x)∇u)− q(x)u,

where p ∈ C1(G), q ∈ C(G), p(x) > 0, q(x) ≥ 0, x ∈ G,

F (x, t), a(x) - given functions.
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Eigenfunction expansion of the solution

{µn(x)}n∈N - eigenvalues of −Lx, 0 < µ1 ≤ µ2 ≤ ... ,
{ϕn(x)}n∈N - eigenfunctions form orthonormal basis in L2(G).
Eigenfunction decomposition implies:

u(x, t) =

∞∑
n=1

(
anEα(−µntα) +

∫ t

0

Fn(t− τ)τα−1Eα,α(−µnτα) dτ

)
ϕn(x),

an = (a, ϕn), Fn(t) = (F (., t), ϕn), (., .) - inner product in L2(G).
(Prove convergence of the series!)

Eigenfunction expansion is useful for:
- study of the qualitative properties of the solution (e.g asymptotic behavior)
related to different parameters,
- obtaining regularity estimates for the solution, necessary for error estimates in
numerical methods (e.g. FEM),
- study of inverse problems: identification of source term F (x) from given
initial and final data, parameter identification (e.g. α ∼ anomaly of diffusion,
p(x)∼heterogeneity of the medium), or problems backward in time.
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Main characteristics of TFDE:

Although the time-fractional diffusion equation inherits certain properties from the
classical diffusion equation, it differs considerably from it, especially in the sense of

• slow decay in time,

• limited smoothing effect in space.

Regularity in space is determined by estimates of the form

‖∆u‖L2(G) + ‖Dα
t u‖L2(G) ≤ Ct−α‖a‖L2(G)
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Fractional Thornley’s problem

Model of spiral phyllotaxis in botany: u(x, t) - morphogen concentration

Dα
t u(x, t) = uxx(x, t)− γ2u(x, t), 0 < α ≤ 1, x ∈ (0, 1), t > 0,

ux(0, t) = g(t), u(0, t) = u(1, t), u(x, 0) = f(x),

(g(t) = −1
2S0(t), S0 - strength of morphogen source at x = 0)

g(t) = −1 g(t) = − exp(−t)

α = 1/2 (solid line) compared to α = 1 (dashed line).
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Other fractional differential equations

-Fractional diffusion equation of distributed order:

in TFDE replace Dα
t , α ∈ (0, 1), with

∫ 1

0

µ(β)Dβ
t dβ.

-Multi-term fractional diffusion equation:

take µ(β) = δ(β − α) +
∑m
j=1 λjδ(β − αj), 0 < αj < α ≤ 1, λj > 0 :

Dα
t u(x, t) +

m∑
j=1

λjD
αj
t u(x, t) = Lxu(x, t) + F (x, t).

-Fractional telegraph equation (diffusion-wave equation with damping):

Dα
t u(x, t) + cDβ

t u(x, t) = auxx, 1 < α ≤ 2, 0 < β < α, a, c > 0.

-Fractional cable equation (describes electrodiffusion in nerve cells):

ut = Dα
t (uxx)− γDβ

t u, 0 < α, β < 1, γ > 0.
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Modelling of flows of viscoelastic fluids

Many industrial and natural processes can be modelled as viscoelastic flows: from
polymer extrusion to processes in geophysics.

The main reason for the theoretical development is the wide use of polymers in
various fields of engineering.
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Polymer crystallization

Crystallization of polymers is a process associated with partial alignment of their
molecular chains.
Crystallization structure depends on flow strength and affects optical, mechanical,
thermal and chemical properties of the polymer.
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The application of fractional calculus in linear viscoelasticity leads to generalizations
of the classical mechanical models: the basic Newton element (σ = ηε̇) is
substituted by the more general Scott-Blair element (σ = aDα

t ε).

The fractional Burgers model is a linear fractional model of viscoelastic fluids,
which can be represented as the combination in series of a fractional KelvinVoigt
element and a fractional Maxwell element. The constitutive equation for generalized
Burgers fluid is given by:

(
1 + λα1D

α
t + λα2D

2α
t

)
σ(t) = µ

(
1 + λβ3D

β
t + λβ4D

2β
t

)
ε̇(t),

where σ, ε̇ are shear stress, rate of shear strain, µ > 0, λi ≥ 0, i = 1, 2, 3, 4, are
material constants, the fractional parameters α and β satisfy 0 < α ≤ β ≤ 1.

Substituting this constitutive equation in the momentum equation leads in the case
of unidirectional flow to the following equation for the velocity field u(x, t):

(
1 + λα1D

α
t + λα2D

2α
t

)
ut = µ

(
1 + λβ3D

β
t + λβ4D

2β
t

)
∆u,
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Fractional Burgers’ fluid:(
1 + λα1D

α
t + λα2D

2α
t

)
ut = µ

(
1 + λβ3D

β
t + λβ4D

2β
t

)
∆u,

where u(x, t) - velocity distribution; µ, λi - material parameters;
∆ - Laplace operator acting on space variables.

Particular cases:
- Newtonian fluid: all λi = 0.
- Generalized second grade fluid: λ1, λ2, λ4 = 0, λ3 6= 0;
- Fractional Maxwell model: λ2, λ3, λ4 = 0, λ1 6= 0;
- Fractional Oldroyd-B model: λ2, λ4 = 0, λ1, λ3 6= 0.

Introducing fractional derivatives in the constitutive equation → better description
of viscoelastic and memory effects in some materials (e.g polymers and biological
liquids). For example: fractional Oldroyd-B model: at least appropriate to describe
the behaviour of Xantan gum and Sesbonia gel.
Reference:
Song DY, Jiang TQ, Study on the constitutive equation with fractional derivative
for the viscoelastic fluid-modified Jeffreys model and its applications, Rheol. Acta
37 (1998) 512-517.
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Example: Consider the following Rayleigh-Stokes problem for the fractional second
grade fluid

ut = (1 +Dβ
t )uxx,

u(0, t) = φ(t), u(1, t) = 0, u(x, 0) = 0.

It models velocity distribution of a flow between two parallel plates, one of which
is moving. The flow is initially at rest.

Two cases: the flow is induced by oscillations (φ(t) = sin(4πt), left) or by a
linear acceleration (φ(t) = t2, right) of the moving plate, together with a no-slip
condition; β = 0.5.
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Numerical methods

Nonlocal character of fractional derivatives → ability to model more adequately
phenomena with memory. On the other hand, the same nonlocality property makes
it difficult to design fast and accurate numerical techniques for fractional order
differential equations.

x ∈ [0, 1], t ∈ [0, T ]; M , N - number of time and space nodes, τ = T/M - time
step, h = 1/N space step; xj = jh, j = 0, 1, ..., N, tk = kτ, k = 0, 1, ...,M.

One possibility for numerical approximation of the Riemann-Liouville fractional
derivative is the Grünwald-Letnikov approximation:

(Dα
t u)kj = τ−α

k∑
m=0

(−1)m
(
α
m

)
uk−mj +O(τ).
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There is already a vast amount of studies (including numerical studies) of the single-
term time-fractional diffusion equation and some recent works on its multi-term
and distributed-order generalizations.

Concerning the problems related to viscoelastic models, only the Rayleigh-Stokes
problem for the generalized second grade fluid

ut = µ(1 +Dβ
t )∆u+ f(x, t)

is well studied numerically as well as theoretically.

The more general problems (for the generalized fractional Oldroyd-B and Burgers’
fluids) remain open for future research.

Acknowledgement : This work is partially supported by the Bulgarian National
Science Fund under Grant DFNI-I02/9.
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