Numerical Simulation of Drop Coalescence in the Presence of Soluble Surfactant

I. Bazhlekov and D. Vasileva
Department "Mathematical Modeling and Numerical Analysis"
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

Dedicated to the memory of Professor Mirjana Stojanović

Acknowledgments

This work was partially supported by the Bulgarian National Science Fund under Grant DFNI-I02/9 and the Bilateral Research Project between Serbian Academy of Sciences and Arts and Bulgarian Academy of Sciences (2014-2016): "Mathematical modelling via integral-transform methods, partial differential equations, special and generalized functions, numerical analysis."

Contents

Introduction: Drop coalescence and applications; Effect of soluble surfactants.
Mathematical model:

- Simplifications;
- Hydrodynamic model - Stokes equations, lubrication approximation;
- Convection-diffusion equations in the phases and the interface.

Numerical method:

- Boundary Integral Method for the Stokes equations in the drops;
- Finite Difference Method for the flow in the film and the convectiondiffusion equations.

Results
Conclusions; Future work

Introduction: Drop coalescence and applications

Applications of multiphase systems: Emulsions - Food; drugs; cosmetics; composite materials; chemicals; petroleum; etc.

Introduction: Conceptual framework for coalescence modelling.

External flow

Collision frequency
Contact force F Contact time $_{i}$

\rightarrow Internal flow and drainage
 Flattening film (radius a)

Film drainage
(film thickness, $\mathrm{h}(\mathrm{x}, \mathrm{t})$)
Film rupture at $\mathrm{h}=\mathrm{h}_{\mathrm{C}}$
Coalescence

$$
? t_{i}<>t_{c} ? ; \quad t_{c}=t\left(h_{\min }=h_{c}\right)
$$

Schematic sketch of the problem

Mathematical model: Hydrodynamic part.

In the drops:

$$
\begin{equation*}
\nabla \cdot v=0 ; \quad-\nabla p_{d}+\nabla^{2} v=0 ; \quad \text { Stokes equations in the drops } \tag{1}
\end{equation*}
$$

In the film (Lubrication equation):

$$
\begin{align*}
& \frac{\partial h}{\partial t}=-\frac{1}{r} \frac{\partial\left(r h u_{u}\right)}{\partial r}+\frac{1}{r} \frac{\lambda}{12} \frac{\partial}{\partial r}\left(h^{3} r \frac{\partial p}{\partial r}\right) ; \quad u_{r}=u_{u}+\frac{\lambda}{2} \frac{\partial p}{\partial r}\left(z^{2}-\left(\frac{h}{2}\right)^{2}\right)(2) \\
& p=2-\frac{1}{2}\left(\frac{\partial^{2} h}{\partial r^{2}}+\frac{1}{r} \frac{\partial h}{\partial r}\right)+\frac{2 A}{3 h^{3}} \tag{3}\\
& 2 H=\frac{1}{B^{3}} \frac{\partial^{2} S}{\partial r^{2}}+\frac{1}{r B} \frac{\partial S}{\partial r} ; B=\sqrt{1+\left(\frac{\partial S}{\partial r}\right)^{2}} \tag{4}\\
& \mathrm{BC}: \quad-\frac{h}{2} \frac{\partial p}{\partial r}-\frac{\partial \Gamma}{\partial r}=\frac{1}{\lambda} \frac{\partial v_{r}}{\partial z} ; \quad u_{u}=v_{r} ; \quad \int_{0}^{r \infty}\left(p-\frac{2 A}{3 h^{3}}\right) r d r=F(t) \tag{5}
\end{align*}
$$

Mathematical model: Surfactant transport - interface.

At the interface:

$$
\begin{equation*}
\frac{\partial \Gamma}{\partial t}+\frac{1}{r} \frac{\partial\left(r \Gamma u_{u}\right)}{\partial r}-\frac{1}{P e_{s} r} \frac{\partial}{\partial r}\left(r \frac{\partial \Gamma}{\partial r}\right)=\left.\frac{1}{P e_{d}}\left(\frac{\partial C_{d}}{\partial z_{d}}\right)\right|_{z_{d}=0}-\left.\frac{1}{P e}\left(\frac{\partial C}{\partial z}\right)\right|_{z=h / 2} \tag{6}
\end{equation*}
$$

with boundary conditions:

$$
\begin{equation*}
\left(\frac{\partial \Gamma}{\partial r}\right)_{r=0}=0, \quad\left(\frac{\partial \Gamma}{\partial r}\right)_{r=r_{l}}=0 \tag{7}
\end{equation*}
$$

Adsorption isoterms:

$$
\begin{equation*}
\left.K C\right|_{z=h / 2}=\Gamma=\left.K_{d} C_{d}\right|_{z_{d}=0} \tag{8}
\end{equation*}
$$

Mathematical model: Surfactant transport - bulk.

In the film:

$$
\begin{gather*}
\frac{\partial C}{\partial t}+u_{r} \frac{\partial(C)}{\partial r}+u_{z} \frac{\partial C}{\partial z}=\frac{1}{P e}\left(\frac{\partial^{2} C}{\partial z^{2}}\right) \tag{9}\\
\left(\frac{\partial C}{\partial r}\right)_{r=0}=0 ; \quad\left(\frac{\partial C}{\partial r}\right)_{r=\infty}=0 \tag{10}
\end{gather*}
$$

In the drop:

$$
\begin{gather*}
\frac{\partial C_{d}}{\partial t}+\left(u_{r}\right)_{d} \frac{\partial\left(C_{d}\right)}{\partial r}+\left(u_{z}\right)_{d} \frac{\partial C_{d}}{\partial z_{d}}=\frac{1}{P e_{d}}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{d}}{\partial r}\right)+\frac{\partial^{2} C_{d}}{\partial z_{d}^{2}}\right) \tag{11}\\
\left(\frac{\partial C_{d}}{\partial r}\right)_{r=0}=\left(\frac{\partial C_{d}}{\partial z_{d}}\right)_{z_{d}=\infty}=\left(\frac{\partial C_{d}}{\partial r}\right)_{r=\infty}=0 \tag{12}
\end{gather*}
$$

Mathematical model: Initial conditions.

For the film thickness:

$$
\begin{equation*}
h(r, t=0))=h_{i n i}+r^{2}, \tag{13}
\end{equation*}
$$

For the solute distribution:

- initially uniform concentration only in the drops:

$$
\begin{equation*}
C_{d}\left(r, z_{d}, t=0\right)=1=\Gamma / K_{d} ; \quad C(r, z, t=0)=0 . \tag{14}
\end{equation*}
$$

- initially uniform concentration only in the film:

$$
\begin{equation*}
C_{d}\left(r, z_{d}, t=0\right)=0 ; \quad C(r, z, t=0)=1=\Gamma / K . \tag{15}
\end{equation*}
$$

Transformation and Parameters.

$$
\begin{gathered}
t^{*}=\frac{t \sigma_{s} a^{\prime}}{R_{e q} \mu} ; r^{*}=\frac{r}{R_{e q} a^{\prime}} ; z^{*}=\frac{z}{R_{e q} a^{\prime 2}} ; h^{*}=\frac{h}{R_{e q} a^{\prime 2}} ; \\
u_{r}^{*}=\frac{u_{r} \mu}{\sigma_{s} a^{\prime 2}} ; u_{z}^{*}=\frac{u_{z} \mu}{\sigma_{s} a^{\prime 3}} ; \\
z_{d}^{*}=\frac{z_{d}}{R_{e q} a^{\prime}} ;\left(u_{r}\right)_{d}^{*}=\frac{\left(u_{r}\right)_{d} \mu}{\sigma_{s} a^{\prime 2}} ;\left(u_{z}\right)_{d}^{*}=\frac{\left(u_{z}\right)_{d} \mu}{\sigma_{s} a^{\prime 2}}
\end{gathered}
$$

a^{\prime} is the dimensionless radius of the film, $a^{\prime}=a / R_{e q} ; \quad R_{e q}^{-1}=\frac{1}{2}\left(R_{1}^{-1}+R_{2}^{-1}\right)$.
Dimensionless groups:

$$
\begin{gathered}
\lambda^{*}=\lambda a^{\prime} ; \quad K^{*}=\frac{K}{R_{e q} a^{\prime 2}} ; \quad K_{d}^{*}=\frac{K_{d}}{R_{e q}} ; \quad P e_{s}^{*}=\frac{\sigma_{s} R_{e q} a^{\prime 3}}{D_{s} \mu} ; \quad P e^{*}=\frac{\sigma_{s} R_{e q} a^{\prime 5}}{D \mu} \\
P e_{d}^{*}=\frac{\sigma_{s} R_{e q} a^{\prime 3}}{D_{d} \mu} ; \quad A^{*}=\frac{A}{4 \pi \sigma_{s} R_{e q}^{2} a^{\prime 2}} ;
\end{gathered}
$$

Numerical method: Hydrodynamic part in the drops.

BIM for the flow in the drops:

$$
\left(u_{r}\right)_{d}\left(r, z_{d}\right)=\int_{0}^{r_{l}} \phi_{1}\left(r, r^{\prime}\right) \tau_{d}\left(r^{\prime}\right) d r^{\prime}, \quad\left(u_{z}\right)_{d}\left(r, z_{d}\right)=\int_{0}^{r_{l}} \phi_{3}\left(r, r^{\prime}\right) \tau_{d}\left(r^{\prime}\right) d r^{\prime}
$$

where

$$
\begin{aligned}
\phi_{1}\left(r, r^{\prime}\right) & =\frac{r^{\prime}}{4 \pi} \int_{0}^{2 \pi}\left(\frac{2 \cos \theta}{\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta+z^{2}\right)^{1 / 2}}\right. \\
& \left.-\frac{z^{2} \cos \theta+r r^{\prime} \sin ^{2} \theta}{\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta+z^{2}\right)^{3 / 2}}\right) d \theta \\
\phi_{3}\left(r, r^{\prime}\right) & =\frac{r^{\prime}}{4 \pi} \int_{0}^{2 \pi} \frac{\left(r \cos \theta-r^{\prime}\right) z r^{\prime} d \theta}{\left(r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \theta+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

Numerical method: Hydrodynamic part in the film.

$$
\frac{\partial h}{\partial t}=-\frac{1}{r} \frac{\partial\left(r h u_{u}\right)}{\partial r}+\frac{1}{r} \frac{\lambda}{12} \frac{\partial}{\partial r}\left(h^{3} r \frac{\partial p}{\partial r}\right) ; \quad p=2-\frac{1}{2}\left(\frac{\partial^{2} h}{\partial r^{2}}+\frac{1}{r} \frac{\partial h}{\partial r}\right)+\frac{2 A}{3 h^{3}}
$$

Forth-order nonlinear equation for $h(r, t)$ is solved by an Euler explicit scheme in time and a second order FD scheme on non-uniform mesh in space. Requirements for numerical stability:

$$
(\Delta t)_{I} \leq \text { const } \cdot \min _{j}\left(\frac{\Delta r_{j}^{3}}{h_{j}^{2}}\right) ; \quad(\Delta t)_{I I} \leq \frac{24}{\lambda} \cdot \min _{j}\left(\frac{\Delta r_{j}^{4}}{h_{j}^{5}}\right)
$$

Adaptive mesh/step are used both for the time as well as space discretization: Δt of order $10^{-4}-10^{-9}$; in the film region Δr and Δz of order 0.01

$$
M=\frac{(\Delta t)_{I}}{(\Delta t)_{I I}} ; \quad \Delta T=M \Delta t
$$

Numerical method: Convection diffusion in the bulk phases.

 The convection-diffusion equations for the surfactant concentration in the drop and in the film are solved by a second order FD approximation in r and z in combination of hybrid (implicit/explicit) time integration:$$
\begin{array}{r}
C(i, j, k+1)+\beta \Delta T\left[u_{z} \delta_{z}-\frac{1}{P e} \delta_{z}^{2}\right] C(i, j, k+1)= \tag{16}\\
C(i, j, k)-\Delta T u_{r} \delta_{r} C(i, j, k)+(\beta-1) \Delta T\left[u_{z} \delta_{z}-\frac{1}{P e} \delta_{z}^{2}\right] C(i, j, k),
\end{array}
$$

where δ_{x} and δ_{x}^{2} are finite difference approximations for the first and second derivatives with respect to the variable x (x stands for r or z). Here five node discretization is used for the first and second derivatives in the r and z directions. Thus the second derivative is approximated as:

$$
\frac{\partial^{2} C(i, j, k)}{\partial z^{2}} \approx \delta_{z}^{2} C(i, j, k)=
$$

$a_{1} \cdot C(i, j-2, k)+a_{2} \cdot C(i, j-1, k)+a_{3} \cdot C(i, j, k)+a_{4} \cdot C(i, j+1, k)+a_{5} \cdot C(i, j+2, k)$, with $a_{1}=y_{1}, a_{2}=y_{2}, a_{3}=-\left(y_{1}+y_{2}+y_{3}+y_{4}\right), a_{4}=y_{3}, a_{5}=y_{4}$, where the vector $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)^{T}$ is the solution of the algebraic system $\mathbf{E y}=\mathbf{b}$, $\mathbf{b}=(0,2,0,0)^{T}$

Numerical test: Space discretization.

 The evolution of the film thickness for different meshes.

Numerical test: Time discretization. The evolution of the minimal film thickness for different time stepping methods.

Numerical test: Time discretization. The evolution of the minimal film thickness for different time stepping methods zoom.

The evolution of the minimal film thickness, $h_{\text {min }}$ at
$\lambda=1 ; P e_{s}=10^{5} ; P e=P e_{d}=10^{3} ; K=K_{d}=0.2$

Pannonian Mathematical Modelling, Novi Sad, April 25-26, 2015. p. 19/??

Pannonian Mathematical Modelling, Novi Sad, April 25-26, 2015. p. 20/??

The evolution of the film thickness, h at

$$
\lambda=1 ; P e_{s}=10^{5} ; P e=P e_{d}=10^{3} ; K=K_{d}=0.2 \text {, case } C \rightarrow D
$$

Pannonian Mathematical Modelling, Novi Sad, April 25-26, 2015. p. 21/??

The effect of van der Waals forces, A, on the evolution of the minimal film thickness, $h_{\text {min }}$

Future work:

- Investigation of the effect of the parameters.
- Biosurfactants.

Thank you for your patience and attention!

