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Motivation

An increasing attention has been devoted to the prediction of behaviour of
viscoelastic non-Newtonian fluids in the recent years, due to their broad application
in industry and biology (molten plastics, oils and greases, suspensions, emulsions,
pulps, etc.).

The generalized time-fractional Oldroyd-B model is frequently used for such
viscoelastic fluids. It contains two fractional time derivatives of orders o, 3 € (0, 1).
The 2D Rayleigh-Stokes problem for a generalized Oldroyd-B fluid is considered

(14 aDMu; = p(l+bD)Au+ f(x,y,t), (z,y) € (0,1)% t>0,
w(@,y,0) = w(x,y,0)=0, (z,y)ec]l0,1?
u(x,y,t) = wv(x,y,t), t>0, z=0orz=1lory=0o0ry=1.

Here u(x,y,t) is the unknown velocity of the unidirectional flow, a,b,u > 0 are
parameters of the problem. In the numerical experiments we take them to be equal
to 1. The functions f(x,y,t), v(x,y,t) are given. Due to the initial conditions
and the properties of Caputo derivative

ri. D% =c DY, D%uy = DX u.
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Riemann-Liouville derivative fora >0, n— 1 <a <n

1 d”

R D (1) = oy [ (L= )" ().

Caputo derivative fora >0, n—1 < a <n

1

CDFI0) = e [ (=5 )

tk—a

£ (0
reDyf() =c Dif () Z Nk+1-a)

where f € C"~10,t] and f(™ is integrable in [O,t].
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First and second order ADI finite difference schemes

First and second order approximations of the fractional derivatives are implemented
in the developed alternating direction implicit finite difference schemes. Let

th="kr, k=0,1,....K, T=Kr, ;i =4ih, i=0,...,Ny, y; = jh,j =0,...,N,.

Finite Grunwald-Letnikov derivative

e s =5 S () )

m=0

If feC™0,T], n—1<a<n, then
riDi f(tr) =cr Dy f(ty) + O(7).
Let wf,, = (=1)"(%), then

a—+1
m

(84 _ (84 _ (87 —
wig =1, wy,, = (1— )wl,m_l, m=12 ..., K.
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In fact wi',,,, m =0,...,k are the first k+1 coefficients of Taylor series expansion
of the function

|
=
|
&
Q
|
(e
3
=R
s
N
E

Wi (2)

For0 <a<l1: wf, <0, m>1 wi, >wl,,_1, m=>2 lim,_,w, =0.
Forl <a <2 wf,, >0, m2>2 wi, <wl,_1, m=3, lim, ,wi,, =0.
Finite Lubich derivatives of order p, p =2,3,4,5,6

If fU0)=0,1=0,1,...,p—1
1 k
ReDYf(th) = = Y wiuf (th—m) + O(7P),

7—Oé Y
m=0

The coefficients wy,, are those of the Taylor series expansions of given generating
functions W3 (z2)

Wp(z):pr,mz , p=2,...6, Ws :<§—2z—|—522> :

7th Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, Albena, June 28-July 3, 2015 - p.7/32



R. Wu, H. Ding, C. Li, Determination of coefficients of high-order schemes for
Riemann-Liouville derivative, The Scientific World Journal, 2014 (2014) — formulas

for wy,, p=2,3,...,10

3\ 4
(84 _ (87 _ (87
Wy o = <§ y Wo 1 = _§CWQ,0>

1
Wy, = — [—2(04 —m+ 1wy, 1+ 5(204 —m+2)wg ol , m=2,3,...

For0 <a <1l wy, <0, m>4 wy, >wy, 1, m=>95, limy,wy,, =0.
Forl <a <2 wy, >0, m>4 wy, <wy, 1, m=>95, limy,_cwy,, =0.

When a =1
ou B S3uf — 4yFt 4 F 2

S (t) > +0(72).
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A first order discretization of the problem is

Rk k41 k41
ij ij | ot lprktlm Bl kt1—my gkl
- TOH_l E w1 Ul = pA(U;+ 75 g wl mU )+ [

where A = A, + Ayy, AacacUij = (Ui+1,j — 2Uz'j + Ui—l,j)/th Ayinj —
(Ui j+1 — 2Us5 + Ui j—1) /h*,

Multiplying by 7 and dividing by 1+ a/7% we get

1+b/7P
Uil;H_T“lia;:aAUkH FUR U U 2,0y, 151,

1+b/77 BLb 1aa k
Let ¢ — THT aéTo‘ — 'LLT jrr rita=68_ Adding the term C2AmAyy(U +1 UZ@-)

we obtain

(I — cAyr)(I — cAy, ) U = GUF, U U, 2y, 5, t71).
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Thus, we have to solve for j=1,..., N, —1 the following 1D systems

(I_CAxx)U:; — G, Z: 17°'°7N$—1
Ug,j = (1 = cAyyu(0,y;, tkﬂ)
Ultfx,j = (1 —cAyyu(zn,, Yj» tkH)

(I—cAy U = US, j=1,...,Ny_
UfaL1 = wu(x;,0,t" )
Urf?\_f; — U(CIZ‘z‘, yNy7 tk+1)

The order of the additional term in the discretization of the equation is
O(Pr(1+a/7%) /1) = O(T* T2 20(1% 1 a) /7%) = O(1*T*%F), a,b # 0.

We will call this discretization "method 1". In order to have first order
approximation of the equation: o > 28 — 1, i.e., when 8 > 0.5 we have a
restriction for «.
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M.R. Cui, J. Comput. Physics 231 (2012) - for the time-fractional
diffusion equation instead of /\mAyy(U'I‘”rl U;}H) the following quantity

k41 k k—1
AmAyy(U —2U5+ U ) is used.
In our case the additional term

a—+ 7
rotl

P Aoy (UST =205 + UL

is of order O(7372728) a,b # 0. Thus first order approximation is ensured for all
a, 5 € (0,1). We will call this discretization "method 2".

We also tried to use

a-+ 7%
Tatl

P Aoy (U = 3UF + 30U = US™?),

which is of order O(74t*=29) a,b # 0, but then in some cases the numerical
solution is not stable. We will call this discretization "method 3".
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A second order discretization of the problem is

k+1 k k—1 k+1
3Uij — 4UZ] + Uij 4 Z wa+1Uk+1 m o__

2T ’7'0‘"‘1

k41
k41 ft1— k+1
= pAUST + 75 g meU+ )+

Here we multiply by 7 and divide by 1.5+ 1.5%"1a/7® and obtain similar schemes,
but for

p p
_ a—B — O(s1te—p b # 0.
M 5re 1 a(l5)e+t (), a0 7
Thus, the additional terms in the discretization (for method 1, 2 and 3) are of the
same order, as in the previous case.

In order to have second order approximation of the equation

e method=1: a > 20;
e method=2: a > 205 — 1;

e method=3: no restriction.
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Compact fourth order approximation in space

h? h?
0°u 4
@qu;j = (UfH_l,j -+ 1OUZ] + U@'_l,j)/lz, O, @ = A,u+ O(h )

Multiplying the equation by ©,0, and using Lubich formulas in time we get

UM —aUE + US4 8
1] 1] 1] at+lyrk+1—m | __
0,0, ( o + g g Wa o Uy =

k41
_ k+1 k+1—m AR
= po(U; 75 g w2 mU )+ 0,0, .

Using the same additional terms as in the previous case we obtain
(I — EApe)(I — EN )URTE = GUR, UL, 0 U, 2y, 5, tF Y,

where ¢ = ¢ — h*/12. The coefficient matrices of the resulting linear systems of
equations are strictly diagonally dominant.
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Numerical experiments

Extensive numerical experiments are performed in order to investigate the behaviour
of the solutions for different values of the parameters o and 5.

The initial data and the right-hand  The order of convergence [ is computed
side correspond to an exact solution as
B 0(Us_1)
| =logy ———=

ex—|—yt'y-|-1’ (Us) )
where s is the number of the
corresponding grid and

u(w,y,t) =
v = 3.5 in the numerical experiments.

exact solution fort=1, v=3.5 : 5(U) - — maX{|U($z,ngtk)_U(xuyj7tk)|7
Y U | 0<i<N, 0<j<N, 0<k< N

Is the maximum of the difference between
the exact and the numerical solution. In
all numerical experiments N, = N,,.
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The error §(U) and the order [ for a =0.1, 3 =0.1, 2+ a—28=1.9

Ny

Ny

method 1

method 2

method 3

First order Grunwald-Letnikov approximation

100
200
400
300

100
100
100
100

1.5066e-2
7.5930e-3
3.8127e-3
1.9113e-3

0.9884
0.9940
0.9963

1.5180e-2
7.6216e-3
3.8196e-3
1.9131e-3

0.9940
0.9967
0.9975

1.5241e-2
2.7827e+0

unstable

100
200
400
300

100
200
400
800

1.5066e-2
7.59209e-3
3.8107e-3
1.9088e-3

0.9886
0.9946
0.9974

1.5180e-2
7.6206e-3
3.8176e-3
1.9106e-3

0.9942
0.9972
0.9986

1.5241e-2
2.9450e+0

unstable

Second ord

er Lubich approximation

100
200
400
300

100
200
400
800

1.9894e-4
4.9245e-5
1.2141e-5
2.9853e-6

2.0143
2.0201
2.0239

2.6217e-4
6.6214e-5
1.6640e-5
4.1709e-6

1.9853
1.9925
1.9962

2.8730e-4
0.3733e+0

unstable

Com

pact a

pproximatio

n in space, second order Lubic

h approximat

Ion 1n time

100
200
400
300

25
25
25

25

1.9567e-4
4.8423e-5
1.1933e-5
2.9307e-6

2.0147
2.0207
2.0256

2.5861e-4
6.5314e-5
1.6411e-5

4.1110e-6

1.9853
1.9927
1.9971

2.7605e-4
1.8655e-2

unstable
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First order approximation of the fractional derivatives
a=p=0.1, N=N =200, t=1, method=1

-3
10

a=p=0.1, N=N =200, t=1, method=2
t X

Second order approximation of the fractional derivatives
«=p=0.1, N.=N =200, t=1, method=1

a=p=0.1, N=N =200, t=1, method=2 8

-5
)5710

-5 -5

x10
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First order approximation of the fractional derivatives

«=p=0.1, N=N =100, t=1, method=3 -3 a=p=0.1, N =200, N =100, t=1, method=3
t ax 10 t *
5

0014 10

Second order approximation of the fractional derivatives
a=p=0.1, N=N =100, t=1, method=3 oy «=p=0.1.N.=N =200, t=1, method=3

wm't*zm«w

04 b ‘;‘ |

25

=
(V)
.'
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a=3=0.1, Lubich approximation, Nt=Nx=4GU, method=0
45 ] I 1 ] ] ] ]

Intel Core i7, 3.6 GHz, OO0 level of optimization
4+ Intel Core i7, 3.6 GHz, O1 level of optimization -
Intel Core i7, 3.6 GHz, O3 level of optimization
Intel Core i3, 1.8 GHz, OO0 level of optimization
Intel Core i3, 1.8 GHz, O1 level of optimization z
Intel Core i3, 1.8 GHz, O3 level of optimization o

w
n
|

N
N &) w

CPU time in seconds

—
o

0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

time step k
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The error §(U) and the order [ for a =0.1, 3 =0.1, 2+ a—28=1.9

Ny N, explicit method
First order Grunwald-Letnikov approximation
3200 25 4.0845e-4
12800 50 1.0242e-4 1.9957
51200 100 stable

6400 25 1.8117e-4
25600 50 4 5442e-5 1.9952
12800 25 6.7573e-5
51200 50 1.6956e-5 1.9947

Note, here we refine 7 =1/N; 4 times and h = 1/N, 2 times from case to
case, thus the second order convergence is natural.
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The error §(U) and the order [ for « = 0.5, 3 =0.5, 24+ a — 28 =1.5

N | N, method 1 method 2 method 3
First order Grunwald-Letnikov approximation
100 | 100 | 1.6514e-2 1.6871e-2 1.6884e-2
200 | 100 | 8.3589e-3 | 0.9823 | 8.4709e-3 | 0.9940 | 8.4728e-3 | 0.9947
400 | 100 | 4.2082e-3 | 0.9901 | 4.2450e-3 | 0.9968 | 7.3226e-3 | unstable
800 | 100 | 2.1134e-3 | 0.9936 | 2.1259e-3 | 0.9977
100 | 100 | 1.6514e-2 1.6871e-2 1.6884e-2
200 | 200 | 8.3577e-3 | 0.9825 | 8.4698e-3 | 0.9941 | 8.4740e-3 | 0.9945
400 | 400 | 4.2061e-3 | 0.9906 | 4.2430e-3 | 0.9972 | 8.4691e-3 | unstable
800 | 800 | 2.1110e-3 | 0.9946 | 2.1234e-3 | 0.9987
Second order Lubich approximation
100 | 100 | 1.1377e-4 2.6673e-4 2.7/561e-4
200 | 200 | 2.4027e-5 | 2.2434 | 6.7712e-5 | 1.9780 | 6.9273e-5 | 1.9923
400 | 400 | 1.0677e-5 | 1.1702 | 1.7091e-5 | 1.9852 | 4.0513e-5 | unstable
800 | 800 | 5.4765e-6 | 0.9632 | 4.2989e-6 | 1.9912
Compact approximation in space, second order Lubich approximation in time
100 | 25| 1.1301e-4 2.6322e-4 2.72006e-4
200 | 25 | 2.3901e-5 | 2.2413 | 6.6823e-5 | 1.9779 | 6.8398e-5 | 1.9919
400 | 25| 1.0859e-5 | 1.1382 | 1.6865e-5 | 1.9863 | 1.7143e-5 | 1.9963
800 | 25 | 5.5245e-6 | 0.9750 | 4.2398e-6 | 1.9920 | 4.2887e-6 | 1.9990
1600 | 25 | 2.3754e-6 | 1.2177 | 1.0615e-6 | 1.9979 | 1.0701e-6 | 2.0028
3200 | 25| 9.4697e-7 | 1.3268 | 2.6336e-7 | 2.0110 | 2.6487e-7 | 2.0144
6400 | 25 | 3.6323e-7 | 1.3824 | 6.3305e-8 | 2.0566 | 6.3572e-8 | 2.0588
12800 | 25| 1.3647e-7 | 1.4122 | 1.3968e-8 | 2.1802 | 1.4015e-8 | 2.1814
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The error §(U) and the order [ for « = 0.5, 3 =0.5, 24+ a — 28 =1.5

Ny N, explicit method
First order Grunwald-Letnikov approximation
3200 25 3.5547e-4
12800 50 8.9109e-5 1.9961
51200 100 stable

6400 25 1.5467e-4
25600 50 3.8789e-5 1.9955
12800 25 5.4313e-5
51200 50 1.3630e-5 1.9945

Note, here we refine 7 =1/N; 4 times and h = 1/N, 2 times from case to
case, thus the second order convergence is natural.
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The error §(U) and the order [ for « = 0.9, 3 =09, 24+ a—28=1.1

Ny | N, method 1 method 2 method 3
First order Grunwald-Letnikov approximation

100 | 100 | 1.7633e-2 1.9048e-2 1.9101e-2

200 | 100 | 8.9931e-3 | 0.9714 | 9.5726e-3 | 0.9927 | 9.5843e-3 | 0.9949
400 | 100 | 4.5484e-3 | 0.9835 | 4.7989e-3 | 0.9962 | 4.8016e-3 | 0.9972

800 | 100 | 2.2915e-3 | 0.9891 | 2.4036e-3 | 0.9975 | 2.4042¢-3 | 0.9980

100 | 100 | 1.7633e-2 1.9048e-2 1.9101e-2

200 | 200 | 8.9916e-3 | 0.9716 | 9.5712e-3 | 0.9929 | 9.5829e-3 | 0.9951
400 | 400 | 4.5462e-3 | 0.9839 | 4.7969e-3 | 0.9966 | 4.7996e-3 | 0.9975

800 | 800 | 2.2889e-3 | 0.9900 | 2.4011e-3 | 0.9984 | 2.4017e-3 | 0.9989

Second order Lubich approximation

100 | 100 | 6.9947e-4 2.4425e-4 2.8676e-4

200 | 200 | 3.9464e-4 | 0.8257 | 6.1964e-5 | 1.9789 | 7.2168e-5 | 1.9904
400 | 400 | 2.0133e-4 | 0.9710 | 1.5686e-5 | 1.9819 | 1.8100e-5 | 1.9954

800 | 800 | 9.8224e-5 | 1.0354 | 3.9630e-6 | 1.9848 | 4.5301e-6 | 1.9984
Compact approximation in space, second order Lubich approximation in time

100 | 25 | 7.0215e-4 2.4094e-4 2.8326e-4

200 | 25 | 3.9517e-4 | 0.8293 | 6.1123e-5 | 1.9789 | 7.1285e-5 | 1.9905

400 | 25 | 2.0140e-4 | 0.9724 | 1.5472e-5 | 1.9821 | 1.7876e-5 | 1.9957

800 | 25| 9.8211e-5 | 1.0361 | 3.9086e-6 | 1.9849 | 4.4733e-6 | 1.9986
1600 | 25| 4.6874e-5 | 1.0671 | 9.8432e-7 | 1.9895 | 1.1165e-6 | 2.0024
3200 | 25| 2.2130e-5 | 1.0828 | 2.4617e-7 | 1.9995 | 2.7705e-7 | 2.0108
6400 | 25 | 1.0386e-5 | 1.0914 | 6.5094e-8 | 1.9191 | 7.2309e-8 | 1.9379
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The error §(U) and the order [ for « = 0.9, 3 =09, 24+ a—28=1.1

Ny N, explicit method
First order Grunwald-Letnikov approximation
3200 25 2.8623e-4
12800 50 7.1717e-5 1.9968
51200 100 stable

6400 25 1.2005e-4
25600 50 3.0093e-5 1.9961
12800 25 3.6987e-5
51200 50 0.2816e-6 1.9946

Note, here we refine 7 =1/N; 4 times and h = 1/N, 2 times from case to
case, thus the second order convergence is natural.
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The error §(U) and the order [ for « = 0.9, 3 =0.1, 2+ a — 28 =2.7

N; | N, method 1 method 2 method 3

First order Grunwald-Letnikov approximation
100 | 100 | 3.9699e-2 3.9704e-2 3.9704e-2
200 | 100 | 1.9948e-2 | 0.9929 | 1.9949e-2 | 0.9930 | 1.9949e-2 0.9930
400 | 100 | 9.9992e-3 | 0.9964 | 9.9993e-3 | 0.9964 | 9.9993e-3 0.9964
800 | 100 | 5.0067e-3 | 0.9980 | 5.0067e-3 | 0.9980 | 5.0067e-3 0.9980
100 | 100 | 3.9699e-2 3.9704e-2 3.9704e-2
200 | 200 | 1.9948e-2 | 0.9929 | 1.9949e-2 | 0.9930 | 0.4513e+0 | unstable
400 | 400 | 9.9981e-3 | 0.9965 | 9.9981e-3 | 0.9966
800 | 800 | 5.0050e-3 | 0.9983 | 5.0050e-3 | 0.9983

Second order Lubich approximation

100 | 100 | 4.8860e-4 4.9018e-4 4.9025e-4
200 | 200 | 1.2267e-4 | 1.9938 | 1.2291e-4 | 1.9957 | 1.9030e-3 | unstable
400 | 400 | 3.0738e-5 | 1.9968 | 3.0773e-5 | 1.9979
800 | 800 | 7.6938e-6 | 1.9983 | 7.6991e-6 | 1.9989
Compact approximation in space, second order Lubich approximation in time
100 | 25 | 4.8529e-4 4.8687e-4 4.8693e-4
200 | 25| 1.2183e-4 | 1.9940 | 1.2207e-4 | 1.9958 | 1.2207e-4 1.9960
400 | 25 | 3.0523e-5 | 1.9969 | 3.0559e-5 | 1.9980 | 3.0559e-5 1.9980
800 | 25| 7.6379e-6 | 1.9986 | 7.6432e-6 | 1.9993 | 7.6433e-6 1.9993
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The error §(U) and the order [ for « = 0.9, 3 =0.1, 2+ a — 28 =2.7

Ny N, explicit method
First order Grunwald-Letnikov approximation
400 100 2.2392e-3
800 100 1.1167e-3 1.0037

1600 100 5.5678e-4 1.0040

3200 100 2.7715e-4 1.0064
800 200 1.1186e-3

1600 200 5.5858e-4 1.0019

3200 200 2.7890e-4 1.0020
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The error §(U) and the order [ for « =0.1, =09, 24+ a—28=0.3

Ny

N

method 1

method 2

method 3

First order Grunwald-Letnikov approximation

100
200
400
300
1600
3200
6400

200
200
200
200
200
200
200

1.6180e-2
1.4920e-2
1.3455e-2
1.1942e-2
1.0468e-2
0.0875e-3
7.8248e-3

0.1170
0.1491
0.1721
0.1901
0.2040
0.2158

1.4388e-3
8.3133e-4
4.6130e-4
2.4956e-4
1.3281e-4
6.9969e-5
3.6700e-5

0.7914
0.8497
0.8863
0.9100
0.9246
0.9309

2.6537e-3
1.3414e-3
6.7413e-4
3.3812e-4
1.6961e-4
8.5240e-5
4.3130e-5

0.9843
0.9926
0.9955
0.9953
0.9926
0.9828

100
200
400
300

100
200
400
800

1.6178e-2
1.4920e-2
1.3456e-2
1.1942e-2

0.1168
0.1490
0.1722

1.4411e-3
8.3133e-4
4.6070e-4
2.4882e-4

0.7937
0.8516
0.8887

2.6559e-3
1.3414e-3
6.7354e-4
3.3733e-4

0.9855
0.9939
0.9976

The explicit method is unstable even for N; = 2000000, N, = 25.
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The error §(U) and the order [ for « =0.1, =09, 24+ a—28=0.3

N; | N, method 1 method 2 method 3
Second order Lubich approximation
100 | 100 | 2.0857e-2 1.5429e-3 3.6779e-6
200 | 200 | 1.8862e-2 | 0.1450 | 6.6520e-4 | 1.2138 | 2.2757e-6 | 0.6926
400 | 400 | 1.6888e-2 | 0.1595 | 2.8149e-4 | 1.2407 | 1.0317e-6 | 1.1413
800 | 800 | 1.4984e-2 | 0.1726 | 1.1800e-4 | 1.2543 | 3.5302e-7 | 1.5472
200 | 25| 1.8817e-2 6.1245e-4 5.3154e-5
400 | 50 | 1.6876e-2 | 0.1571 | 2.6870e-4 | 1.1886 | 1.3806e-5 | 1.9449
800 | 100 | 1.4980e-2 | 0.1719 | 1.1481e-4 | 1.2267 | 3.5509e-6 | 1.9590
1600 | 200 | 1.3181e-2 | 0.1846 | 4.8419e-5 | 1.2456 | 9.0821e-7 | 1.9671
Compact approximation in space, second order Lubich approximation in time
100 | 25 | 2.0859e-2 1.5421e-3 3.3490e-6
200 | 25| 1.8863e-2 | 0.1451 | 6.6429e-4 | 1.2150 | 1.7695e-6 | 0.9204
400 | 25 | 1.6888e-2 | 0.1596 | 2.8099e-4 | 1.2413 | 8.2782e-7 | 1.0960
800 | 25| 1.4983e-2 | 0.1727 | 1.1777e-4 | 1.2545 | 3.0164e-7 | 1.4565
1600 | 25| 1.3181e-2 | 0.1849 | 4.9114e-5 | 1.2618 | 9.2731e-8 | 1.7017
3200 | 25| 1.1502e-2 | 0.1966 | 2.0423e-5 | 1.2659 | 2.4340e-8 | 1.9297
6400 | 25| 9.9635e-3 | 0.2072 | 8.4768e-6 | 1.2686 | 4.3421e-9 | 2.4869
12800 | 25 | 8.5713e-3 | 0.2171 | 3.5146e-6 | 1.2702 | 3.8719e-8 | unstable
25600 | 25| 7.3276e-3 | 0.2262 | 1.4568e-6 | 1.2706
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The error §(U) and the order [ for « = 0.1, 3 =0.5, 24+ a—28=1.1

N | N, method 1 method 2 method 3

First order Grunwald-Letnikov approximation
100 | 100 | 7.9286e-3 0.3329e-3 9.3855e-3
200 | 100 | 4.0811e-3 | 0.9581 | 4.6970e-3 | 0.9906 | 4.7099e-3 0.9947
400 | 100 | 2.0789e-3 | 0.9731 | 2.3568e-3 | 0.9949 | 1.3588e-2 | unstable
800 | 100 | 1.0537e-3 | 0.9804 | 1.1815e-3 | 0.9962
100 | 100 | 7.9286e-3 0.3329e-3 9.3855e-3
200 | 200 | 4.0791e-3 | 0.9588 | 4.6951e-3 | 0.9912 | 4.7100e-3 0.9947
400 | 400 | 2.0763e-3 | 0.9742 | 2.3543e-3 | 0.9959 | 1.6863e-2 | unstable
800 | 800 | 1.0509e-3 | 0.9824 | 1.1787e-3 | 0.9981

Second order Lubich approximation

100 | 100 | 1.0077e-3 1.2271e-4 1.6838e-4
200 | 200 | 5.0801e-4 | 0.9881 | 3.1768e-5 | 1.9496 | 4.2509e-5 1.9859
400 | 400 | 2.4698e-4 | 1.0405 | 8.1576e-6 | 1.9614 | 1.2408e-4 | unstable
800 | 800 | 1.1820e-4 | 1.0632 | 2.0836e-6 | 1.9691
Compact approximation in space, second order Lubich approximation in time
100 | 25 | 1.0090e-3 1.1936e-4 1.6487e-4
200 | 25 | 5.0794e-4 | 0.9902 | 3.0920e-5 | 1.9487 | 4.1755e-5 1.9813
400 | 25 | 2.4678e-4 | 1.0414 | 7.9417e-6 | 1.9610 | 4.9238e-5 | unstable
800 | 25| 1.1807e-4 | 1.0636 | 2.0266e-6 | 1.9704

The explicit method is unstable even for N; = 2000000, N, = 25.
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The error §(U) and the order [ for « = 0.5, 3 =09, 24+ a —28=0.7

Ny

N

method 1

method 2

method 3

First order Grunwald-Letnikov approximation

100
200
400
300
1600
3200
6400

100
100
100
100
100
100
100

2.1472e-3
8.0142e-4
3.8416e-4
5.0113e-4
4.4304e-4
3.3983e-4
2.4209e-4

1.4218
1.0609
stable
0.1777
0.3826
0.4893

8.3602e-3
4.2534e-3
2.1490e-3
1.0822e-3
5.4450e-4
2.7436e-4
1.3891e-4

0.9749
0.9850
0.9897
0.9910
0.9889
0.9819

8.6590e-3
4.3451e-3
2.1773e-3
1.0910e-3
5.4721e-4
2.7520e-4
1.3916e-4

0.9948
0.9968
0.9969
0.9955
0.9916
0.9837

100
200
400
300

100
200
400
800

2.1472e-3
8.0097e-4
3.8691e-4
5.0414e-4

1.4226
1.0498
stable

8.3602e-3
4.2514e-3
2.1464e-3
1.0793e-3

0.9756
0.9860
0.9918

8.6590e-3
4.3431e-3
2.1747e-3
1.0880e-3

0.9955
0.9979
0.9991

The explicit method is unstable even for N; = 2000000, N, = 25.
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The error §(U) and the order [ for « = 0.5, 3 =09, 24+ a —28=0.7

N | N, method 1 method 2 method 3
Second order Lubich approximation

100 | 100 | 6.2613e-3 1.6712e-4 1.3899e-4

200 | 200 | 4.2141e-3 | 0.5712 | 6.3000e-5 | 1.4075 | 3.5898e-5 | 1.9531
400 | 400 | 2.7456e-3 | 0.6181 | 2.2155e-5 | 1.5077 | 9.1539%e-6 | 1.9714

800 | 800 | 1.7531e-3 | 0.6472 | 7.4867e-6 | 1.5652 | 2.3225e-6 | 1.9787
Compact approximation in space, second order Lubich approximation in time

100 | 25 | 6.2559e-3 1.7000e-4 1.3554e-4

200 | 25| 4.2056e-3 | 0.5729 | 6.3684e-5 | 1.4165 | 3.5025e-5 | 1.9523

400 | 25| 2.7384e-3 | 0.6190 | 2.2317e-5 | 1.5128 | 8.9306e-6 | 1.9716

800 | 25| 1.7492e-3 | 0.6466 | 7.5270e-6 | 1.5680 | 2.2570e-6 | 1.9844
1600 | 25| 1.1029e-3 | 0.6654 | 2.4788e-6 | 1.6024 | 5.6545e-7 | 1.9969
3200 | 25| 6.8965e-4 | 0.6774 | 8.0463e-7 | 1.6232 | 1.3905e-7 | 2.0238
6400 | 25 | 4.2890e-4 | 0.6852 | 2.5988e-7 | 1.6305 | 3.1960e-8 | 2.1213
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Conclusions

e The most time-consuming part of the numerical method is the computation of
the finite fractional derivatives;

e The order of convergence of the proposed numerical schemes seems to be in
accordance with their order of approximation;

e The first and the second method for the choice of the additional term in the
ADI schemes seem to be unconditionally stable;

e The third method is not unconditionally stable, but it seems to work well in
some cases, where the first and second method for the choice of the additional
term destroy the second order (Lubich) approximation of the equation in time.

e [he future work includes

— Stability and convergence analysis;

— Development of iterative solvers (AMG) for the 2D implicit schemes instead
of using ADI| methods;

— Development of techniques for truncation of the "tail” in the finite fractional
derivatives formulas;

— Numerical experiments for practical problems with application in industry.
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