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ABSTRACT: The MglA and MglB proteins that regulate motility in the rod-shaped cells of Myxococcus xanthus
localize to opposite cell poles. During the irregularly occurring cellular reversals, the two proteins switch poles.
The concentration profiles of the two proteins at the poles exhibit trapezoidal shape in time, with longer periods of
stationarity, followed by fast switching of the conguration. From a dynamical systems point of view, this
spatio-temporal pattern is considered to be ‘antagonistic’. Such dynamics could be based on a perturbation of
heteroclinic orbits joining two saddle points in phase space. We analyse such a scenario using a generalisation of
the theoretical framework proposed in [12] and provide an example where the time changes in the concentrations
follow an ‘antagonistic’ pattern.
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1. INTRODUCTION

Modern live-cell imaging technologies have demonstrated that bacterial cells exhibit complex spatio-temporal
organization of macromolecules. In particular, many proteins localize dynamically to specific subcellular
locations where they perform a specific function or influence a fundamental process. Some proteins also
undergo spatial oscillations [7]. These proteins include those of the Min system and the Par system in
Escherichia coli [2, 3, 4, 5, 10], those involved in cell cycle progression and cell differentiation in Caulobacter
crescentus [6], and those of the Mgl/Frz regulatory system for cell polarity in Myxococcus xanthus [1].

M. xanthus is a soil bacterium which moves by means of two gliding motility systems, one of which is
based on type IV pili localized to the leading pole. The motility systems and the Frz chemosensory system are
regulated by a molecular oscillator built from the proteins MglA, MglB and (so far not identified) members of
the Frz family [9, 13]. When the rod-shaped M. xanthus cells reverse their direction of movement, certain
regulatory proteins (see details below) switch polarity. Hence, the pili are disassembled from the old leading
pole and reappear at the new leading pole, and the bacterium begins to move in the opposite direction.

Between reversals (that occur in a highly irregular pattern but with an average reversal period of 15 min
[7]), the proteins MglA and MglB are localized in a fixed pattern with MglA-GTP localized near the
leading pole, MglA-GDP in the cytoplasm and MglB near the lagging pole [7]. The duration of a reversal
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is signicantly shorter (~ 30 – 60 sec) [8], leading to a trapezoidal shape of the time profile of the polar
concentrations of MglA and MglB.

In [12] a general model framework for the description of protein oscillations in a bacterium was
introduced and analyzed under specific conditions. Accordingly, in [12] the discussed oscillating models
were constructed as limit cycles near a saddle point with positive protein concentrations everywhere in the
cell.

These cycles showed regular oscillations and their shapes were rather smooth. Observations of M.
xanthus, however, show protein concentrations which seem rather constant over long times and switch
comparatively fast to the opposite poles [7, 8]. In dynamical systems such behaviour is often typical for an
orbit oscillating between two saddle points which are connected by a heteroclinic orbit. Solutions near this
heteroclinic orbit never reach these saddles but stagnate near them over long times leading to some rather
trapezoidal shape of the time curve as observed for M. xanthus.

In [12] a reaction-diffusion system was considered that models the protein dynamics of a bacterial cell.
A system of reaction-diffusion equations describes the temporal change in concentrations of the proteins in
the cytoplasm, at the left and right poles, denoted respectively by c
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In general, the steady state congfiuration need not be homogeneous as initially assumed in [12].
Observations in M. xanthus suggest concentrations in a steady state at the right and left poles may not be
exactly equal, �̂ � r̂. Therefore, �

i 
(�̂ ) � �

i 
(r̂), �

i 
(�̂ ) � �

i 
(r̂). If protein concentrations at a pole become very

small, the saddle point may be an equilibrium where some protein concentration is zero. This would be a
case not covered in [12] as it would be possible that �

i 
(�̂ ) or �

i 
(r̂) = 0 and (5) may not hold anymore.

For assessing the stability properties of such equilibria a generalization of the eigenvalue analysis from
[12] is required. The aim now is to analyse the stability properties of the system (1)-(3) under less restricting
assumptions (such as unequal diffusion coefficients, non-homogeneous/non-symmetric steady state
configuration) in order to obtain different types of periodic orbits, e.g., orbits of trapezoidal shape.

Henceforth, an eigenvalue analysis will be performed for the general system. The notation that will be
used is: D = diag

 
(d

i
) is the diffusion matrix, A = diag

 
(�

i
), K = diag

 
(�

i
), i = 1, ..., 2 are matrices of the protein

binding and unbinding rates. The system (1)-(3) written in matrix form is then.
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Furthermore, we recall the following result about total mass conservation:
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The structure of this paper is the following: Section 2 presents a generalized eigenvalue analysis of the
system given by Eqs. (6)-(8). Section 3 considers a special asymmetric steady state where the analysis can
be simplified, and Section 4 provides a numerical example where periodic orbits of trapezoidal shape
occur. Section 5 demonstrates the robustness of this oscillation for a neighbourhood of the parameter
space.
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This seems to be an eigenvalue problem for the diagonal matrix M, not the eigenvalue � itself. However,
by a change of basis in Eq. (29) using f, g, we obtain the desired result.

Note: The condition (19) is a transcendental eigenvalue problem for the eigenvalue � itself. Although it
may not be easily analysed in this general form, the determinant of the matrix is evaluated easily and may
be used for the numerical computation of eigenvalues.

3. STABILITY ANALYSIS OF AN ASYMMETRIC STEADY STATE

Here we are interested in the stability analysis of a steady state with an asymmteric conguration of protein
concentrations. Let us assume for simplicity that the diffusion constants are equal d

i
 = d > 0 for i = 1, 2.

Without loss of generality we can rescale them to d = 1 since this just amounts to rescaling the eigenvalue
� according to the relation 2
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Note that this problem has an infinite number of solutions, but we are interested only in the solution for
� with the largest real part.
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We want to obtain a steady state solution where the total mass m̂
1
 > 0 of the one protein is concentrated

at one pole, while the other protein is not present there. Such a behaviour has been seen experimentally for
the proteins MglA and MglB in M. xanthus. This amounts to having a steady state distribution (which we
index by I) with �̂
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I
 = (0, ĉ
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where we have labeled the entries of A
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Next we analyse the matrix (30) for the mirror conguration II, where �̂
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which can be solved numerically for �.

4. NUMERICAL E XAMPLE

Here we provide a particular example of a system where oscillations are based on perturbed heteroclinic
orbits. As in [12], we place some restrictions on the interaction terms �
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 in order to simplify the analysis

of the matrix problem. We assume that �
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 � 0 (in other words, the first protein does not actively
repel any protein from the poles).

We study the dynamical system (1)-(3) where the interaction functions and diffusion coefficients are
given by
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Furthermore, the total mass of each protein equals 3 mass units.

With this choice of interaction functions, the following points are steady states of the system (1) -(3):

• I (homogeneous), (�̂
i
, ĉ

i 
(x), r̂

i
) := (1, 1, 1), i = 1, 2.

• II, �̂ = (3, 0), r̂  = (0, 2), ĉ = (0, 1) because

1 1 1

0

2 2 2

0

1 1 1

2 2 2

1.6 1.6

(3, 0) 0 (3, 0) 3 0,

(3, 0) 1 (3, 0) 0 0,

(0, 2) 0 (0, 2) 0 0,

(0, 2) 1 (0, 2) 2 0.

r

r

�

�

� �

� � � � � � � �

� � � � � � � �

� � � � � � �
� � � � � � �

� �����

�
�����

����� �����
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The ‘mirror’ steady state II’, (�̂, ĉ, r̂ ) for �̂ = (0, 2), r̂  = (3, 0), ĉ = (0, 1) possesses the same stability
properties as shown in the previous Section.

Note that the homogeneous steady state I, (�̂
i
, ĉ

i 
(x), r̂

i
) := (1, 1, 1), i = 1, 2 is unstable. For p = 0.95, there

are two eigenvalues with positive real part �
1
 = 0.33619, �

2
 = 0.43814. In fact, for p > 0.9412, there are

2 positive eigenvalues for the homogeneous steady state.

We compute the eigenvalues with positive real part at the steady state II using the formula (35)-(37),
which have the form

0 =
1

15
� � , (39)

0 =
8 8

( )
5 25

� �� � � � �� �
� �

, (40)

0 = 2 257 153 152
( ) ( )

150 20 15
� � � � �� � � � � . (41)

A numerical computation shows that only the first equation has a solution with Re
 
� > 0, and that is

1
15� � . The other two equations do not allow such solutions. In a neighbourhood of 0, both

f
1
(z) =

8 8
( )

5 25
z z� �� � �� �
� �

, (42)

f
2
(z) = 2 257 153 152

( ) ( )
150 20 15

z z z z z� � � � � , (43)

are holomorphic functions. Both f
1
, f

2
 map the right half-plane Re

 
z > 0 to the right side of the curves shown

in Fig. 1.

Figure 1: Image of the Right Half-Plane Under f
1
(Left), f

2
(Right)

Figure 2 shows the temporal evolution of �
1
, �

2
 for p = 0.95. The solution of Eqs. (1)-(3) oscillates

between the two saddle points II and II’ and remains in the vicinity of both over a longer time.

Note that if p = 1, there is a pair of additional steady states appearing between I, II and II’,

* III, given by �̂
III

 = (0, 0), r̂
III

 = (2,4131886, 2.4251653), ĉ
III

 = (0.5868114, 0.5748347) and its ‘mirror’
image III’; III is stronlgy attracting, which prevents periodic solutions of the dynamical system.

* IV, given by �̂
IV

 = (0, 0), r̂
IV

 = (0.5590642, 2.1478209), ĉ
IV

 = (2.4409358, 0.8521791) together with
its ‘mirror’ image IV’. IV has a single eigenvalue with positive real part, 0.9444449.
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The steady state configurations III and IV are obtained by solving numerically the equilibrium equations.
These configurations, however, do not correspond to the dynamics that we are interested in.

5. PARAMETER SCAN

It is always essential to study the robustness of the proposed model against parameter variation. We
parameterize Eq. (38) taking into account the equilibrium conditions. The interaction functions have the
form

1 2

2
1 1 2 1 1 1

2 1
2 1 2 2

2 2

3 2
1 1 2

3 2

2
2 1 2

2 2

1,

( , ) 1 ,

1
( , ) ,

2 2

(1 )
( , ) ,

1
( , ) .

d d

y y a a y

a y
y y y

a a

a y
y y

a y

a
y y

a y

� �

� � � �

� ��
� � �� �� �� �

�
� �

�
�

� �
�

(44)

For a
2
 = 3, a

3
 = 1 we obtain the particular example (38) from Section 4.

As in [12] we perform a parameter scan to find the range where the system (1)-(3) with (44) has
oscillatory solutions. We search for the range (a

i
)3

i = 1
 where both the homogeneous steady state I and the

asymmetric steady state II are unstable.

The numerical simulations are performed on a discrete grid with n = 100 points. The initial value
problem is solved in a time interval [0, 1000). In doing so, we, for simplicity, again focus on the special
case d

1
 = d

2
 = 1. We systematically vary the set of parameters (a

i
)3

i = 1
 describing the reaction rates in (44) in

order to determine the range where stable oscillatory solutions occur. The corresponding range of parameters
(a

i
)3

i = 1
 within the cube [0, 4]3 is shown in Fig. 3. In fact, oscillations occur also for a

3
 > 4, so that the set is

not bounded in the a
3
-direction.

Figure 2: Proteins Display “Antagonistic” Pattern at the Left Pole
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6. CONCLUSION

We have proposed a generalization of the mathematical model derived in [12]. As an application of this
framework, we have found a set of interaction functions that produces oscillations consisting of longer
periods of stationary protein concentrations near the poles that are followed by fast diffusion to the opposite
poles. This self-sustaining oscillator relies on the existence of a pair of saddle points joined by a heteroclinic
orbit to produce nearly perfect ‘antagonistic behavior’. Numerical investigations demonstrate the robustness
of the model by establishing a large parameter range where oscillations occur. The dynamical system
produces behaviour which is similar to the experimentally observed oscillatory protein dynamics in
M. xanthus. However, one main difference remains: the dynamics of MglA and MglB is highly irregular. In
future work, we will investigate if such a behavior can be simply explained by molecular noise or requires
more elaborate mechanisms such as, e.g., an external trigger.
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