Construction of Reduced Basis Approximations of the Solutions to a Non-linear Eco-evolutionary Model

Peter Rashkov

Institute of Mathematics and Informatics, Sofia, Bulgaria
Supported by the Fund for Scientific Research via NSP Peter Beron i NIE of the Bulgarian Ministry of Education and Science [Grant KP-06-DB-5]
$10^{\text {th }}$ Conference on Numerical Methods and Applications Borovec, 22-26.8.2022

Setting

parametric parabolic problem with input $\mu \in \mathcal{M}$ - compact reaction-diffusion system on $\left[0, t_{\max }\right] \times \Omega$ competition of 2 populations

$$
\begin{align*}
& \frac{\partial u_{1}}{\partial t}=d_{1} \Delta u_{1}+u_{1}\left(a_{1}-\mu-u_{1}-c_{1} u_{2}\right) \\
& \frac{\partial u_{2}}{\partial t}=d_{2} \Delta u_{2}+u_{2}\left(a_{2}-u_{2}-c_{2} u_{1}\right) \tag{1}\\
& \text { b.c. } u_{1}(t, x)=u_{2}(t, x)=0, \quad x \in \partial \Omega, t \in\left[0, t_{\max }\right] \\
& \text { i.c. } u_{1}(0, \cdot), u_{2}(0, \cdot) \in H_{0}^{1}(\Omega)-\text { given }
\end{align*}
$$

Cantrell and Cosner 1989; Carrère 2017

Numerical scheme for (1)

$f(u ; \mu)$ - nonlinearity in the right-hand side of (1)
time step $\tau>0$
backward Euler scheme: $\partial_{t} u(\cdot, k \tau) \approx \frac{u^{k}-u^{k-1}}{\tau}$ where $u^{k}=u(\cdot, k \tau)$, weak formulation $\forall \phi \in H_{0}^{1} \times H_{0}^{1}$

$$
\begin{equation*}
\frac{1}{\tau}\left\langle u^{k}, \phi\right\rangle_{2}+\alpha\left(u^{k}, \phi\right)-\left\langle f\left(u^{k} ; \mu\right), \phi\right\rangle_{2}=\frac{1}{\tau}\left\langle u^{k-1}, \phi\right\rangle_{2} \tag{2}
\end{equation*}
$$

with

$$
\begin{aligned}
& \langle u, v\rangle_{2} \stackrel{\text { def }}{=} \int_{\Omega}\left(u_{1} v_{1}+u_{2} v_{2}\right) d x, \\
& \alpha(u, v) \stackrel{\text { def }}{=} \int_{\Omega} d_{1} \nabla u_{1} \cdot \nabla v_{1}+d_{2} \nabla u_{2} \cdot \nabla v_{2} d x, \quad u, v \in H_{0}^{1} \times H_{0}^{1} .
\end{aligned}
$$

Energy norm: $\|w\|_{\alpha} \stackrel{\text { def }}{=} \sqrt{\alpha(w, w)}$

Galerkin finite element method

- \mathcal{T}_{h} - a triangulation of Ω
- Galerkin approximation with a finite element space $\mathbb{V}_{h} \stackrel{\text { def }}{=} \mathbb{W}_{h} \times \mathbb{W}_{h}: \mathbb{W}_{h} \subset H_{0}^{1}(\Omega)$ consists of finite element functions whose restriction on each element of \mathcal{T}_{h} is piecewise polynomial of a fixed degree
- $\left(\mathcal{T}_{h}, \mathbb{W}_{h}\right)$ is assumed to satisfy classical assumptions on regularity, affine equivalence and compact support of the finite element functions (Ciarlet 2002, p. 132)
- assume \mathcal{T}_{h} and \mathbb{W}_{h} approximate the solution to (2) with sufficient accuracy

Truth space and snapshot

- FE space \mathbb{V}_{h} : truth space (Hesthaven, Rozza, and Stamm 2016; Quarteroni, Manzoni, and Negri 2016).
- solution snapshot of (2) for a given $\mu \in \mathcal{M}$ - the sequence of functions $U_{h}(\mu)=\left\{u_{h}^{k}(\mu) \in \mathbb{V}_{h}: k=0,1, \ldots k_{\max }\right\}$ that presents the numerical solutions to (2) in the truth space
- Aim: reduce computational cost for multi-query solutions of (1) for different $\mu \in \mathcal{M}$

Reduced basis method: advantages

- the manifold containing the solutions in the truth space for different parameter values could sometimes be approximated by linear combinations of basis elements of a subspace of lower dimension (reduced basis space)
- conditional upon
- the affine dependence of the considered problem on the free parameter μ
- choice of training sample \equiv for the collection of snapshots $U_{h}(\mu), \mu \in \equiv$

Reduced basis method

Quarteroni, Manzoni, and Negri 2016, p. 9

Approach for construction of RB

- POD-greedy reduced basis:
- POD in time,
- greedy in μ - requires an a posteriori error estimate
- reason: to avoid stalling of the algorithm (Haasdonk and Ohlberger 2008; Hesthaven, Rozza, and Stamm 2016)
- simple, straighforward POD with sequential sampling for $\mu \in$ 三

Solution in the reduced basis

Assume that the reduced basis space

$$
\mathbb{V}_{\mathrm{rb}}^{N}=\operatorname{span}\left\{\xi_{i}\right\}_{i=1}^{N} \subset \mathbb{V}_{h}
$$

with $N \ll \operatorname{dim} \mathbb{V}_{h}$ has already been found.
Let

$$
\begin{equation*}
u_{\mathrm{rb}}^{k}(\mu)=\sum_{i=1}^{N} \mathbf{u}_{k, i}^{\mu} \xi_{i}, \quad \mathbf{x}^{s}=\sum_{i=1}^{N} \mathbf{x}_{i}^{s} \xi_{i} \tag{3}
\end{equation*}
$$

- Arrive from (2) to

$$
\mathbf{G}\left(x, \phi, \mu ; u_{\mathrm{rb}}^{k-1}(\mu)\right)=0
$$

- Solve using Newton's method.

Algorithm

Algorithm 1 Newton iteration

Require: $\mathbf{x}^{0}, \mathbf{u}_{k-1}^{\mu}, \varepsilon_{\text {Newton }}$
while $\left\|\mathbf{G}\left(\sum_{i=1}^{N} \mathbf{x}_{i}^{s} \xi_{i}, \xi_{j}, \mu ; \mathbf{u}_{k-1, i}^{\mu}\right)\right\|_{\alpha}>\varepsilon_{\text {Newton }}$ do solve

$$
\begin{equation*}
\mathbf{D G}\left(\xi_{i}, \xi_{j}, \mu ; \mathbf{x}^{s}\right) \delta=-\mathbf{G}\left(\sum_{i=1}^{N} \mathbf{x}_{i}^{s} \xi_{i}, \xi_{j}, \mu ; \mathbf{u}_{k-1, i}^{\mu}\right) \tag{4}
\end{equation*}
$$

$$
\text { set } \mathbf{x}^{s+1}=\mathbf{x}^{s}+\delta, s=s+1
$$

end while
Return: $\mathbf{u}_{k}^{\mu}=\mathbf{x}^{s}$

Matrix formulation for (4), slide I

Rewrite the matrix DG and the functional G in terms of the reduced basis elements ξ_{i}.
Denote

$$
\mathcal{A}_{N}=\left(\begin{array}{cc}
a_{1} \mathbb{I}_{N} & 0 \\
0 & a_{2} \mathbb{I}_{N}
\end{array}\right), \quad \mathcal{C}_{N}=\left(\begin{array}{cc}
0 & c_{1} \mathbb{I}_{N} \\
c_{2} \mathbb{I}_{N} & 0
\end{array}\right), \quad \mathcal{I}_{N}=\left(\begin{array}{cc}
\mathbb{I}_{N} & 0 \\
0 & 0
\end{array}\right)
$$

where \mathbb{I}_{N} is $N \times N$ identity matrix.
Define matrices $\mathbb{M}, \mathbb{A}, \mathbb{B}_{1}, \mathbb{B}_{2}$:

$$
\begin{aligned}
& (\mathbb{M})_{i j} \stackrel{\text { def }}{=}\left\langle\xi_{i}, \xi_{j}\right\rangle_{2},(\mathbb{A})_{i j} \stackrel{\text { def }}{=} \alpha\left(\xi_{i}, \xi_{j}\right), \\
& \quad\left(\mathbb{B}_{1}\right)_{i j} \stackrel{\text { def }}{=}\left\langle\mathcal{A}_{N} \xi_{i}, \xi_{j}\right\rangle_{2},\left(\mathbb{B}_{2}\right)_{i j} \stackrel{\text { def }}{=}\left\langle\mathcal{I}_{N} \xi_{i}, \xi_{j}\right\rangle_{2}, \\
& \\
& \quad i, j=1, \ldots N .
\end{aligned}
$$

matrix $\mathbb{L}(\mathbf{y})$:

Matrix formulation for (4), slide II

$$
\mathbb{L}(\mathbf{y}):(\mathbb{L})_{i j}(\mathbf{y}) \stackrel{\text { def }}{=}-\sum_{l=1}^{N} \mathbf{y}_{l} \sum_{m=0}^{2} \beta_{m}\left(\xi_{l}, \xi_{i}, \xi_{j}\right), \quad \mathbf{y} \in \mathbb{R}^{N}
$$

where

$$
\begin{aligned}
\beta_{0}\left(\xi_{i}, \xi_{j}, \xi_{l}\right) \stackrel{\text { def }}{=} \int_{\Omega} \xi_{i} \xi_{j} \xi_{l}, \quad \beta_{1}\left(\xi_{i}, \xi_{j}, \xi_{l}\right) \stackrel{\text { def }}{=} \int_{\Omega}\left(\mathcal{C}_{N} \xi_{i}\right) \xi_{j} \xi_{l} \\
\beta_{2}\left(\xi_{i}, \xi_{j}, \xi_{l}\right) \stackrel{\text { def }}{=} \int_{\Omega} \xi_{i}\left(\mathcal{C}_{N} \xi_{j}\right) \xi_{l}
\end{aligned}
$$

and arrays of matrices

$$
\left(\mathbb{P}^{j}\right)_{i_{1} i_{2}} \stackrel{\text { def }}{=} \beta_{0}\left(\xi_{i_{1}}, \xi_{i_{2}}, \xi_{j}\right),\left(\mathbb{Q}^{j}\right)_{i_{1} i_{2}} \stackrel{\text { def }}{=} \beta_{2}\left(\xi_{i_{1}}, \xi_{i_{2}}, \xi_{j}\right)
$$

with $i_{1}, i_{2}=1, \ldots N$.

Matrix formulation for (4), slide III

To evaluate the nonlinear terms inside (4) in the reduced basis setting, we compute vectors in \mathbb{R}^{N} :

$$
\mathbb{P}(\mathbf{y}) \stackrel{\text { def }}{=}\left\{\mathbf{y}^{T} \mathbb{P}^{j} \mathbf{y}\right\}_{j=1}^{N}, \mathbb{Q}(\mathbf{y}) \stackrel{\text { def }}{=}\left\{\mathbf{y}^{T} \mathbb{Q}^{j} \mathbf{y}\right\}_{j=1}^{N}
$$

for appropriate $\mathbf{y} \in \mathbb{R}^{N}$.
In this notation we rewrite (4) as:

$$
\begin{align*}
\mathbb{D} \mathbb{G}\left(\mu, \mathbf{x}^{s}\right) \delta= & -\mathbb{G}\left(\mu, \mathbf{x}^{s}, \mathbf{u}_{k-1}^{\mu}\right) \quad \text { where } \\
\mathbb{D} \mathbb{G}\left(\mu, \mathbf{x}^{s}\right)= & \frac{1}{\tau} \mathbb{M}+\mathbb{A}-\mathbb{B}_{1}+\mu \mathbb{B}_{2}+\mathbb{L}\left(\mathbf{x}^{s}\right) \\
\mathbb{G}\left(\mu, \mathbf{x}^{s}, \mathbf{u}_{k-1}^{\mu}\right)= & \frac{1}{\tau} \mathbb{M}\left(\mathbf{x}^{s}-\mathbf{u}_{k-1}^{\mu}\right)+\mathbb{A} \mathbf{y}^{s}-\mathbb{B}_{1} \mathbf{x}^{s}+\mu \mathbb{B}_{2} \mathbf{x}^{s} \tag{5}\\
& +\mathbb{P}\left(\mathbf{x}^{s}\right)+\mathbb{Q}\left(\mathbf{x}^{s}\right)
\end{align*}
$$

Matrix formulation for (4), slide IV

- The objects $\mathbb{M}, \mathbb{A}, \mathbb{B}_{1}, \mathbb{B}_{2}, \mathbb{L}, \mathbb{P}^{i}, \mathbb{Q}^{i}, i=1, \ldots N$ are matrices or arrays of matrices that are independent of μ. They can be stored once and for all after the offline stage.
- To solve (4) for any given value $\mu \in \mathcal{M}, \mathbb{D} \mathbb{G}, \mathbb{G}$ can be assembled during the online stage.
- Compute \mathbf{u}_{k}^{μ} via the Newton iteration (algorithm 1).
- Recover the solution in the reduced basis approximation (3) from \mathbf{u}_{k}^{μ}.
- Estimate the approximation error between the solutions in the truth space and in the reduced basis space.

A posteriori error estimator

- In order to find the reduced basis via a POD-greedy algorithm, we need an error estimator.
- Introduce a residual:

$$
\begin{array}{r}
r^{k}(\phi ; \mu) \stackrel{\text { def }}{=}\left\langle f\left(u_{\mathrm{rb}}^{k} ; \mu\right), \phi\right\rangle_{2}-\frac{1}{\tau}\left\langle u_{\mathrm{rb}}^{k}-u_{\mathrm{rb}}^{k-1}, \phi\right\rangle_{2}-\alpha\left(u_{\mathrm{rb}}^{k}, \phi\right), \\
\forall \phi \in \mathbb{V}_{h} \quad(6 \tag{6}
\end{array}
$$

and a norm in the dual space

$$
\begin{equation*}
\left\|r^{k}(\cdot ; \mu)\right\|_{\alpha^{\prime}} \stackrel{\text { def }}{=} \sup _{\phi \in \mathbb{V}_{h}, \phi \neq 0} \frac{\left|r^{k}(\phi ; \mu)\right|}{\|\phi\|_{\alpha}} \tag{7}
\end{equation*}
$$

- f is (locally) Lipschitz continuous with constant $\ell_{\text {sup }}$

Approximation error estimate

Proposition (Rashkov 2022)
The approximation error at k-th layer,

$$
e_{k}(\mu)=u_{h}^{k}(\mu)-u_{r b}^{k}(\mu)
$$

under scheme (2) satisfies

$$
\begin{equation*}
\left\|e_{k}\right\|_{2}^{2} \leq \frac{\left\|e_{0}\right\|_{2}^{2}}{\left(1-2 \tau \ell_{\text {sup }}\right)^{k}}+\tau \sum_{j=1}^{k} \frac{\left\|r^{j}(\mu)\right\|_{\alpha^{\prime}}^{2}}{\left(1-2 \tau \ell_{\text {sup }}\right)^{k+1-j}} \tag{8}
\end{equation*}
$$

for time step $\tau<\frac{1}{2 \ell_{\text {sup }}}$.

Computing the a posteriori error estimator

It suffices to set as the a posteriori error estimator

$$
\Delta_{\mathrm{rb}}^{N}(\mu) \stackrel{\text { def }}{=} \Delta_{k_{\max }}(\mu)
$$

because for a given solution trajectory $U_{h}(\mu)$, the quantity $\Delta_{k}(\mu)$ attains its maximum at $k=k_{\max }$ (Haasdonk and Ohlberger 2008)

Algorithm

Algorithm 2 POD-greedy algorithm

Require: $\varepsilon_{\text {tol }}, \equiv, n_{1}, n_{2} \in \mathbb{N}, n_{2}<n_{1}, \mu_{1}$
Ensure: $N=0, \ell=1, \Delta_{\mathrm{rb}}\left(\mu_{1}\right)=2 \varepsilon_{\text {tol }}, \mathcal{Z}=\varnothing$
while $\Delta_{\mathrm{rb}}\left(\mu_{\ell}\right)>\varepsilon_{\text {tol }}$ do
compute snapshot $U_{h}\left(\mu_{\ell}\right)$
compress $U_{h}\left(\mu_{\ell}\right)$ using POD, retain n_{1} principal nodes $\left\{\zeta_{j}\right\}_{j=1}^{n_{1}}$
set $\mathcal{Z}=\mathcal{Z} \cup\left\{\zeta_{j}\right\}_{j=1}^{n_{1}}$
if $\ell=1$ then
$N=n_{1}$
else
$N=N+n_{2}$
compress \mathcal{Z} using POD, retain N principal nodes $\left\{\xi_{j}\right\}_{j=1}^{N}$
$\mathcal{Z}=\left\{\xi_{j}\right\}_{j=1}^{N}$
end if
compute the error estimator $\Delta_{\mathrm{rb}}(\mu), \forall \mu \in \equiv$ using \mathcal{Z} as basis
set $\mu_{\ell+1}=\arg \max _{\mu \in \equiv} \Delta_{\mathrm{rb}}(\mu), \equiv=\equiv \backslash \mu_{\ell+1}, \ell=\ell+1$
end while
Return: $\mathbb{V}_{\mathrm{rb}}^{N}=\mathcal{Z}, N$

Numerical experiment

finite element library FreeFem++

- $\Omega=[0,10]^{2}$
- $\mathbb{W}_{h}=$ Lagrange finite elements of degree 2 on Ω with 6561 dof
- $T_{\text {end }}=3.99$
- tolerances: $\varepsilon_{\text {Newton }}=10^{-6}, \varepsilon_{\text {tol }}=1$
- initial conditions: $u_{1}(0, x, y)=u_{2}(0, x, y)=\sin \pi x \sin \pi y$

Table: Parameter values for the numerical experiment.

Experiment No.	a_{1}	a_{2}	c_{1}	c_{2}	τ
I	1.5	1.0	0.05	0.03	0.03
II	1.5	1.0	0.07	0.15	0.03

- diffusion parameters: $d_{1}=d_{2}=1$
- parameter range: $\mu \in \mathcal{M}=[0,0.16]$

Numerical experiment

Table: Parameters used for constructing the reduced basis at the offline stage

Experiment No.	n_{1}	n_{2}	resulting dim. of RB N
I	7	2	19
II	8	2	20

Offline stage: POD-greedy algorithm

Figure: Value of the a posteriori error estimator computed by the POD-greedy algorithm vs. incremental dimension of RB.

Online stage: measures of effectivity

- CPU time gain factor $=\frac{\mathrm{CPU} \text { time truth }}{\mathrm{CPU} \text { time } \mathrm{RB}}$, averaged over 10 trials
- L^{2}-approximation error

$$
\left\|e_{T_{\text {end }}}(\mu)\right\|_{2}=\left\|u_{\mathrm{rb}}\left(\mu, T_{\text {end }}\right)-u_{h}\left(\mu, T_{\text {end }}\right)\right\|_{2}
$$

Online stage, Experiment I

Table: Comparison of the effectivity when the reduced basis is computed in two ways.

μ	CPU time gain factor	L^{2}-error	a posteriori error
POD-greedy algorithm $(N=19)$			
0.04	15.99	4.02×10^{-4}	5.45×10^{-1}
0.07	17.13	3.91×10^{-4}	3.03×10^{-1}
0.11	16.96	3.78×10^{-4}	1.83×10^{-1}
POD with sequential sampling $(N=24)$			
0.04	8.80	8.84×10^{-5}	1.92×10^{-1}
0.07	8.87	8.35×10^{-5}	3.81×10^{-1}
0.11	8.73	7.73×10^{-5}	5.99×10^{-1}

Online stage, Experiment II

Table: Comparison of the effectivity when the reduced basis is computed in 2 ways.

μ	CPU time gain factor	L^{2}-error	a posteriori error
POD-greedy algorithm $(N=20)$			
0.04	12.3880	3.03×10^{-4}	5.81×10^{-2}
0.07	12.3402	2.69×10^{-4}	4.81×10^{-2}
0.11	13.5057	2.47×10^{-4}	3.76×10^{-2}
POD with sequential sampling $(N=24)$			
0.04	7.6595	2.25×10^{-4}	3.13×10^{-2}
0.07	7.0407	2.18×10^{-4}	2.89×10^{-2}
0.11	7.6818	2.09×10^{-4}	2.99×10^{-2}

Conclusions

- Due to the offline/online decomposition, and the low dimension of the constructed reduced basis space, significant computational savings are obtained.
- Development of a posteriori error estimators for the reduced basis approximation is closely linked to the problem at hand, as noted elsewhere (Hesthaven, Rozza, and Stamm 2016; Quarteroni, Manzoni, and Negri 2016).
- For nonlinear reaction-diffusion equations the estimator reveals a trade-off of sharpness of the estimate and the time integration step.

Thank you for your attention!

Supported by the Fund for Scientific Research via NSP Peter Beron i NIE of the Bulgarian Ministry of Education and Science [Grant KP-06-DB-5].

References:

Cantrell, R.S., and C. Cosner. 1989. "On the uniqueness and stability of positive solutions in the Lotka-Volterra competition model with diffusion". Houston J. Math. 15 (3): 341-361.

Carrère, C. 2017. "Optimization of an in vitro chemotherapy to avoid resistant tumours". J. Theor. Biol. 413:24-33.

Ciarlet, P. G. 2002. The Finite Element Method for Elliptic Problems. SIAM.
Haasdonk, B., and M. Ohlberger. 2008. "Reduced Basis Method for Finite Volume Approximations of Parametrized Linear Evolution Equations". ESAIM Math. Model. Num. 42:277-302.

Hesthaven, J. S., G. Rozza, and B. Stamm. 2016. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer.

Quarteroni, A., A. Manzoni, and F. Negri. 2016. Reduced Basis Methods for Partial Differential Equations. Springer.

Rashkov, P. 2022. "Reduced basis approximation for a spatial Lotka-Volterra model". Mathematics 10 (12): 1983.

