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Setting

parametric parabolic problem with input µ ∈M – compact
reaction-diffusion system on [0, tmax ]× Ω
competition of 2 populations

∂u1
∂t

= d1∆u1 + u1(a1 − µ− u1 − c1u2),

∂u2
∂t

= d2∆u2 + u2(a2 − u2 − c2u1)

b.c. u1(t, x) = u2(t, x) = 0, x ∈ ∂Ω, t ∈ [0, tmax ]

i.c. u1(0, ·), u2(0, ·) ∈ H1
0 (Ω)− given

(1)

Cantrell and Cosner 1989; Carrère 2017



Numerical scheme for (1)

f (u;µ) – nonlinearity in the right-hand side of (1)
time step τ > 0
backward Euler scheme: ∂tu(·, kτ) ≈ uk−uk−1

τ where uk = u(·, kτ),
weak formulation ∀φ ∈ H1

0 × H1
0

1
τ
〈uk , φ〉2 + α(uk , φ)− 〈f (uk ;µ), φ〉2 =

1
τ
〈uk−1, φ〉2 (2)

with

〈u, v〉2
def
=

∫
Ω

(u1v1 + u2v2) dx ,

α(u, v)
def
=

∫
Ω
d1∇u1 · ∇v1 + d2∇u2 · ∇v2 dx , u, v ∈ H1

0 × H1
0 .

Energy norm: ‖w‖α
def
=
√
α(w ,w)



Galerkin finite element method

I Th – a triangulation of Ω

I Galerkin approximation with a finite element space
Vh

def
= Wh ×Wh: Wh ⊂ H1

0 (Ω) consists of finite element
functions whose restriction on each element of Th is piecewise
polynomial of a fixed degree

I (Th,Wh) is assumed to satisfy classical assumptions on
regularity, affine equivalence and compact support of the finite
element functions (Ciarlet 2002, p. 132)

I assume Th and Wh approximate the solution to (2) with
sufficient accuracy



Truth space and snapshot

I FE space Vh: truth space (Hesthaven, Rozza, and Stamm
2016; Quarteroni, Manzoni, and Negri 2016).

I solution snapshot of (2) for a given µ ∈M – the sequence of
functions Uh(µ) = {ukh (µ) ∈ Vh : k = 0, 1, . . . kmax} that
presents the numerical solutions to (2) in the truth space

I Aim: reduce computational cost for multi-query solutions
of (1) for different µ ∈M



Reduced basis method: advantages

I the manifold containing the solutions in the truth space for
different parameter values could sometimes be approximated
by linear combinations of basis elements of a subspace of lower
dimension (reduced basis space)

I conditional upon
I the affine dependence of the considered problem on the free

parameter µ
I choice of training sample Ξ for the collection of snapshots

Uh(µ), µ ∈ Ξ



Reduced basis method

OFFLINE STAGE

Truth problem discretisation

Generation of snapshots
{uh(µ) : µ ∈ Ξ}

Construction of reduced basis

Projection of parameter-
free objects onto RB space

ONLINE STAGE

Assembly of RB system for µ̃

Solution of RB system

RB solu-
tion urb(µ̃)

Approximation
error estimate
‖uh(µ̃) − urb(µ̃)‖

Quarteroni, Manzoni, and Negri 2016, p. 9



Approach for construction of RB

I POD-greedy reduced basis:
I POD in time,
I greedy in µ – requires an a posteriori error estimate
I reason: to avoid stalling of the algorithm (Haasdonk and

Ohlberger 2008; Hesthaven, Rozza, and Stamm 2016)

I simple, straighforward POD with sequential sampling for µ ∈ Ξ



Solution in the reduced basis

Assume that the reduced basis space

VN
rb = span {ξi}Ni=1 ⊂ Vh

with N � dimVh has already been found.
Let

ukrb(µ) =
N∑
i=1

uµk,iξi , xs =
N∑
i=1

xsi ξi (3)

I Arrive from (2) to

G(x , φ, µ; uk−1rb (µ)) = 0.

I Solve using Newton’s method.



Algorithm

Algorithm 1 Newton iteration

Require: x0, uµk−1, εNewton

while ‖G(
∑N

i=1 xsi ξi , ξj , µ; uµk−1,i )‖α > εNewton do
solve

DG(ξi , ξj , µ; xs)δ = −G(
N∑
i=1

xsi ξi , ξj , µ; uµk−1,i ) (4)

set xs+1 = xs + δ, s = s + 1
end while
Return: uµk = xs



Matrix formulation for (4), slide I

Rewrite the matrix DG and the functional G in terms of the
reduced basis elements ξi .
Denote

AN =

(
a1IN 0
0 a2IN

)
, CN =

(
0 c1IN

c2IN 0

)
, IN =

(
IN 0
0 0

)
where IN is N × N identity matrix.

Define matrices M,A,B1,B2 :

(M)ij
def
= 〈ξi , ξj〉2, (A)ij

def
= α(ξi , ξj),

(B1)ij
def
= 〈ANξi , ξj〉2, (B2)ij

def
= 〈INξi , ξj〉2,

i , j = 1, . . .N.

matrix L(y):



Matrix formulation for (4), slide II

L(y) : (L)ij(y)
def
= −

N∑
l=1

yl
2∑

m=0

βm(ξl , ξi , ξj), y ∈ RN

where

β0(ξi , ξj , ξl)
def
=

∫
Ω
ξiξjξl , β1(ξi , ξj , ξl)

def
=

∫
Ω

(CNξi )ξjξl ,

β2(ξi , ξj , ξl)
def
=

∫
Ω
ξi (CNξj)ξl ,

and arrays of matrices

(Pj)i1i2
def
= β0(ξi1 , ξi2 , ξj) , (Q

j)i1i2
def
= β2(ξi1 , ξi2 , ξj)

with i1, i2 = 1, . . .N.



Matrix formulation for (4), slide III

To evaluate the nonlinear terms inside (4) in the reduced basis
setting, we compute vectors in RN :

P(y)
def
= {yTPjy}Nj=1, Q(y)

def
= {yTQjy}Nj=1

for appropriate y ∈ RN .

In this notation we rewrite (4) as:

DG(µ, xs)δ = −G(µ, xs ,uµk−1) where

DG(µ, xs) =
1
τ
M + A− B1 + µB2 + L(xs)

G(µ, xs ,uµk−1) =
1
τ
M(xs − uµk−1) + Ays − B1xs + µB2xs

+ P(xs) + Q(xs)

(5)



Matrix formulation for (4), slide IV

I The objects M,A,B1,B2,L,Pi ,Qi , i = 1, . . .N are matrices or
arrays of matrices that are independent of µ. They can be
stored once and for all after the offline stage.

I To solve (4) for any given value µ ∈M, DG,G can be
assembled during the online stage.

I Compute uµk via the Newton iteration (algorithm 1).
I Recover the solution in the reduced basis approximation (3)

from uµk .
I Estimate the approximation error between the solutions in the

truth space and in the reduced basis space.



A posteriori error estimator

I In order to find the reduced basis via a POD-greedy algorithm,
we need an error estimator.

I Introduce a residual:

rk(φ;µ)
def
= 〈f (ukrb;µ), φ〉2 −

1
τ
〈ukrb − uk−1rb , φ〉2 − α(ukrb, φ),

∀φ ∈ Vh (6)

and a norm in the dual space

‖rk(·;µ)‖α′
def
= sup

φ∈Vh,φ 6=0

|rk(φ;µ)|
‖φ‖α

(7)

I f is (locally) Lipschitz continuous with constant `sup



Approximation error estimate

Proposition (Rashkov 2022)
The approximation error at k-th layer,

ek(µ) = ukh (µ)− ukrb(µ),

under scheme (2) satisfies

‖ek‖22 ≤
‖e0‖22

(1− 2τ`sup)k
+ τ

k∑
j=1

‖r j(µ)‖2α′
(1− 2τ`sup)k+1−j (8)

for time step τ < 1
2`sup .



Computing the a posteriori error estimator

It suffices to set as the a posteriori error estimator

∆N
rb(µ)

def
= ∆kmax (µ)

because for a given solution trajectory Uh(µ),
the quantity ∆k(µ) attains its maximum at k = kmax (Haasdonk
and Ohlberger 2008)



Algorithm

Algorithm 2 POD-greedy algorithm

Require: εtol,Ξ, n1, n2 ∈ N, n2 < n1, µ1
Ensure: N = 0, ` = 1,∆rb(µ1) = 2εtol,Z = ∅

while ∆rb(µ`) > εtol do
compute snapshot Uh(µ`)
compress Uh(µ`) using POD, retain n1 principal nodes {ζj}n1j=1
set Z = Z ∪ {ζj}n1j=1
if ` = 1 then

N = n1
else

N = N + n2
compress Z using POD, retain N principal nodes {ξj}Nj=1
Z = {ξj}Nj=1

end if
compute the error estimator ∆rb(µ), ∀µ ∈ Ξ using Z as basis
set µ`+1 = arg maxµ∈Ξ ∆rb(µ),Ξ = Ξ \ µ`+1, ` = `+ 1

end while
Return: VN

rb = Z,N



Numerical experiment

finite element library FreeFem++

I Ω = [0, 10]2

I Wh = Lagrange finite elements of degree 2 on Ω with 6561 dof
I Tend = 3.99
I tolerances: εNewton = 10−6, εtol = 1
I initial conditions: u1(0, x , y) = u2(0, x , y) = sinπx sinπy

Table: Parameter values for the numerical experiment.

Experiment No. a1 a2 c1 c2 τ

I 1.5 1.0 0.05 0.03 0.03
II 1.5 1.0 0.07 0.15 0.03

I diffusion parameters: d1 = d2 = 1
I parameter range: µ ∈M = [0, 0.16]



Numerical experiment

Table: Parameters used for constructing the reduced basis at the offline
stage

Experiment No. n1 n2 resulting dim. of RB N

I 7 2 19
II 8 2 20



Offline stage: POD-greedy algorithm

0 5 10 15 20
10−1

100

101

102

103

104

N

m
ax

∆
N rb

(a) Experiment I

0 5 10 15 20
10−1

100

101

102

103

104

N

m
ax

∆
N rb

(b) Experiment II

Figure: Value of the a posteriori error estimator computed by the
POD-greedy algorithm vs. incremental dimension of RB.



Online stage: measures of effectivity

I CPU time gain factor =
CPU time truth
CPU time RB

, averaged over 10
trials

I L2-approximation error

‖eTend
(µ)‖2 = ‖urb(µ,Tend)− uh(µ,Tend)‖2



Online stage, Experiment I

Table: Comparison of the effectivity when the reduced basis is computed
in two ways.

µ CPU time gain factor L2-error a posteriori error
POD-greedy algorithm (N = 19)
0.04 15.99 4.02× 10−4 5.45× 10−1

0.07 17.13 3.91× 10−4 3.03× 10−1

0.11 16.96 3.78× 10−4 1.83× 10−1

POD with sequential sampling (N = 24)
0.04 8.80 8.84× 10−5 1.92× 10−1

0.07 8.87 8.35× 10−5 3.81× 10−1

0.11 8.73 7.73× 10−5 5.99× 10−1



Online stage, Experiment II

Table: Comparison of the effectivity when the reduced basis is computed
in 2 ways.

µ CPU time gain factor L2-error a posteriori error
POD-greedy algorithm (N = 20)
0.04 12.3880 3.03× 10−4 5.81× 10−2

0.07 12.3402 2.69× 10−4 4.81× 10−2

0.11 13.5057 2.47× 10−4 3.76× 10−2

POD with sequential sampling (N = 24)
0.04 7.6595 2.25× 10−4 3.13× 10−2

0.07 7.0407 2.18× 10−4 2.89× 10−2

0.11 7.6818 2.09× 10−4 2.99× 10−2



Conclusions

I Due to the offline/online decomposition, and the low
dimension of the constructed reduced basis space, significant
computational savings are obtained.

I Development of a posteriori error estimators for the reduced
basis approximation is closely linked to the problem at hand, as
noted elsewhere (Hesthaven, Rozza, and Stamm 2016;
Quarteroni, Manzoni, and Negri 2016).

I For nonlinear reaction-diffusion equations the estimator reveals
a trade-off of sharpness of the estimate and the time
integration step.
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