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Abstract

This work presents a theoretical analysis for an a posteriori error estimate for
a reduced-basis approximation of the solution for two parametrised parabolic prob-
lems. Their motivation is in mathematical oncology and they describe a) a model
for brain tumour growth [14] and b) a model for phenotype evolution of a tumour
based on [3 13], with the free parameter being the therapeutic dose. The dis-
cretisation of the problems in space is realised by the finite element method, and
the numerical integration uses a first-order IMEX scheme due to model b) being
a integro-differental problem. The obtained a posterior: error estimatefor the ap-
proximation error between the numerical solution and the reduced basis solution
gives the opportunity for constructing a reduced basis for the solution manifold by
combining a proper orthogonal decomposition of the temporal trajectories and a
greedy algorithm over the parameter range, as has been done in the case of explicit
or implicit integration of linear parabolic problems [8], [10].

Pesrome

IIpeacTaBen e TeopeTntven aHaIN3 Ha GNOCMEPUOPHA OIeHKA HA T'DENIKaTa IPHU
npubJIMAKEHO pelllaBaHe Ha JiBe lapaMeTrpuyny napabosimyHu 3a/ja4uu 110 MeTo/1a Ha
peayiupanus 6a3uc. MoTuBalusTa UM KJiBa OT MaTeMaTUYeCKaTa OHKOJIOTUS U Te
OIMCBAT &) MOJENT 33 PAacTek Ha Mo3bueH Tymop oT [14] u 6) mozern 3a denoTHnHA
eBOJIIOINS B TYMOD, ocHoBaH Ha craruute [3),13], cbe cBobogen napaversp Tepares-
THUYIHA 7103a. JucKpeTmsamusaTa Ha 33/1a9aTa B TPOCTPAHCTBOTO € OCBIIECTBEHA
¢ TOMOINTa HA MeTOJa Ha KPAMHUTE ejIeMeHTH, a 33 UHCIeHOTO WHTeTPHpaHe €
msmoasBana IMEX cxema or mbpBu pefl, Thil KATO MOAETHT 6) € HHTerpo-audepeH-
nuasen. llosyueHara anocmepuopra OIEHKA HA T'PEIIKATA HA AlPOKCHMAIMSA Ha
YUCJIEHOTO PEIEHue ¢ PEIIEHNeTO 110 MEeTOo/Ia Ha pelyliupanns 6a3uc 1aBa Bb3MOXK-
HOCT 3a IIOCTPOeHHEe Ha pejylupaH 0a3uc Ha MHOXKECTBOTO OT PEIIeHUHATa HYpPe3
cLUeTaBaHe Ha IIPABUJIHO OPTOTOHAJIHO pas3jiaraHe Ha BPeMEBUTE TPAEKTOPUH M
aJTIeH aJITOPUTHM B AUANA30HA HA MapaMeTbpa, KaKTO € HAIIPABEHO B CIydas Ha
SIBHO WJIM HEABHO WHTErpHpaHe Ha JjuHeinn napabomuann 3agaqu |8, [10].
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Chapter 1

Introduction

Reduced basis (RB) methods are a tool for model order reduction, and are used in ap-
proximating the solutions to parametrised partial differential equation by solutions to
problems of lower numerical complexity that are computationally cheaper and faster to
implement. The RB methods’ strength stems from the property that the set of solutions
of the given high-fidelity problem typically in a finite element space of very high dimen-
sion can be approximated by linear combinations of basis elements of a subspace of much
lower dimension (the reduced basis space). The possibility to achieve a approximation
with reasonable accuracy of the set of solutions by means of bases in low-dimensional
subspaces arises from its regularity (compactness, smoothness, analyticity) and the para-
metric complexity of the original problem and the regularity of the parameter-dependent
terms.

To construct a good reduced basis, one relies on principal component analysis or
greedy algorithms. The efficiency of the greedy algorithms relies crucially on a posterior:
estimates for the error between the high-fidelity solution and the reduced basis solution
for every parameter value. The success of the method depends on the capacity to evaluate
the solution for any new free parameter value at a cost independent of the dimension of
the original problem [12] [15].

Recent applications of the method [6] include applications to problems from the en-
gineering sciences or physics and cover

e various linear and non-linear elliptic problems,
e linear parabolic problems [8 [10],
e the Navier-Stokes equations.

The method has not yet been applied to problems in biomedical applications. The
difficulties involve not only the higher non-linear complexity stemming from the coupling
of the variables, but also from the choice of appropriate stable time-integration schemes.

Mathematical models for tumour growth and onco-immune interactions are based on
partial differential equations, integro-differential equations, cellular automata and multi-
scale models. Many tumour growth models involve non-local and non-linear problems
related to the biological properties of the system. Some are computationally intensive
in case the domain of definition requires a fine mesh to capture spatial inhomoigeneities,



or involve repetitive solving for different parameter values if the model strives to find an
optimal treatment strategy among different drug regimes.

In this study we develop a theoretical framework for the a posteriori estimator to
be used in the reduced basis method applied to parameter-dependent problems with
motivation from oncology. We consider a model for tumour growth in the brain from [I4]as
well as a phenotype selection model under the action of chemotherapy based on models [3]
13]. The models are solved using first-order-in-time implicit-explicit (IMEX) methods and
a variational formulation based on the finite element method.

1.1 Function spaces

We recall the following function spaces to be used in the analysis. Let {2 be a compact
set in R? or R3. The spaces of Lebesgue-integrable functions on € are defined as

o L'(Q) = {f — measurable | [, |f(x)] dx < oo}

o L[?(Q) = {f —measurable | [,|f(x)|* dx < oo} which is a Hilbert space with inner
product (-, -)

o L>°(Q) = {f — measurable | esssup,.q|f(x)| < oo}

with the standard norms.
Let the gradient Vf = (0,.f,0,f) if Q C R?* and Vf = (9., 9, f,0.f) if @ C R?. The
Sobolev space H'(Q) is defined as

HY Q) ={f e LX(Q|Vf e [L2(Q)]"}, d=2,3.
H'(Q) is a Hilbert space with inner product inherited from the L inner product:
(u, v = (u,v) + (Vu, Vo) .

The notation for the norm of the gradient shall be ||V f|lz2 = (||0xf]lz2 + 10, flz2)"/?
ot (|0cfllzz + 10y fllz2 + 102 f]|z2)"/? respectively. The H'-norm is defined by the inner
product

1Fllwe = (1122 + IV £l172)"2

In our analysis we shall consider finite element spaces V;, C H'(Q) which inherit the
inner product from the Sobolev space.
The domain € is subjected to a triangulation 7;, which covers it completely:

Based on 7y, a finite element space V;, of dimension N}, is constructed to find an approx-
imate solution of the problem. The pair (7,,V}) satisfies the classical assumptions on
regularity, affine equivalence and compact support of the finite element functions [5] p.
132].

The triangulation 7y, is also quasi-uniform [5], [16, [I7] in the sense that

J>0: hv< min diam(Ag) < max diam(Ag) <h.

Ag€Th Ak €Ty
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Figure 1.1: An example of a triangulation of the unit square which is regular and quasi-
uniform generated in FreeFem++ [I1].

Thus, the finite element approximation space Vj, is defined as the set of continuous
functions on the closure of 2 whose restriction to the triangle is a poynomial of degree
m,m = 1,2:

Vy, = {90 < C(Q) : ()O‘AK € ]P)m,VAK € 77L} .
The basis {@;}", of V), consists of shape functions ¢; (dependent on the degree m)
defined on the triangles Ax € T,. The literature on the construction and properties of
finite element spaces is extensive and we refer to the books [2] Bl [16] for further details.

It is well known that such finite element spaces satisfy tnverse inequalities in Sobolev
space norms, and in the subsequent analysis, we will use the following inequality [5]

(3.2.25)] in particular:
ca

lldllzz, Vo eV (1.1)

where the constant cn depends on the domain ).

IVelZ: <

1.2 Parametrised parabolic problem

We are interested in solving numerically the parametrised problem
Owu(t, ) = L(u,t,z, 1), t€ (0, Traz), v € Q (1.2)

where the operator L is elliptic and depends on a free parameter u, which takes values
in a compact set M.

We make no particular assumptions on £ (those are problem-dependent), and so
for the moment we assume that due to sufficient regularity, the exact solution of
u(t,spu) € HY(Q) for all ¢ € (0, Tynes]- The solution u(-; ) will depend (in a nonlinear
way) on p. The equation ([1.2)) is complemented by appropriate boundary conditions on
09 and initial data u(0,-) = uy € H'(Q).

We seek a numerical approximation (¢, z) of the exact solution wu(t,z) of in a
finite element approximation space V;, which comes from a variational formulation. The
equation in semi-discrete variational form is:

(Oyu, @) + a(u, ¢; u) = (b(u; n), ), VYo €V, (1.3)
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where the inner product (-, -) on Vj, XV}, is inherited from L? x L? and a(-, -; 1) is a bilinear
form on V;, x V, inherited from H' x H', and b(u; p) is some advective, nonlinear (or
integral) term in u, which cannot be resolved in a reasonable implicit manner.

Normally the numerical discretisation of a(-,-; 1) (numerical Laplacian) translates to
a stiff matrix which must be solved for in an implicit manner in order to maitain the
numerical stability of the integration scheme without placing severe restriction on the
discretisation in time.

Hence, we resort to implicit-explicit (IMEX) schemes which take care of these issues.
We fix the value p and denote by uf(u) the approximation of u(k7,-) at the uniformly-
spaced time layers k7, k = 0,1, ... k4, for some 7 > 0. Up(u) shall denote the numerically
computed solution trajectory for the parameter u, that is, the sequence of solutions of the
parametrised parabolic problem for the parameter value p; at these discrete time

layers, that is Uy (1) = {uf (1) }r=0.1,...kymas-

1.3 Time-integration IMEX schemes

We choose a uniform-in-time grid with time step 7, with nodes t, = k7, k € N, to write
out the fully discrete spatio-temporal scheme. For sake of shortness, we drop the p and
set
b8 () = (b(ur),¢), k€N,

The trajectory Uj,(p) which approximates the exact solution to the parabolic prob-
lem obtained by the above numerical scheme, shall be referred to as a high-fidelity
solution.

An overview of IMEX schemes is done in [I], which we recall in more detail.

If were a pure reaction-diffusion problem, first-order-in-time schemes could be a
reasonable choice. The first-order-in-time IMEX scheme from [I], which we denote here
as IMEX-6 scheme (with parameter 0 < 6 < 1), writes as

(s, @) + TOa(upr1, ) = (ug, @) + 700 (9) — 7(1 — 0)a(ur, ) (1.4)

Note that the choice § = 0 is a fully explicit scheme (forward Euler), and the choice § = 1
represents the semi-implicit backward differentiation formula (semi-implicit BDF). Note
further that the choice § = % would be the Crank-Nicholson scheme whenever b® (u) = 0.
Thus, the IMEX-0 scheme is not the same as the 6-scheme for parabolic problems |10,
Chapter 11.3].

Among the second-order-in-time schemes proposed in [I] are

1. Crank-Nicholson Adams-Bashford (CNAB)

<uk+17 ¢> + %a<uk+17 ¢) = <uk7 ¢> - ga(uka ¢) + %b(k) (¢) - %b(kil) (¢) ) (15)
2. modified CNAB (MCNAB)
(Ups1, @) + ?_ga(uk+17 o) = (uy, ¢) — %—a(uk, ¢) — 17—_6a<uk71; 9)
+ T 0u(0) — gt (6) (16)



3. Semi-backward differentiation formula (SBDF)

3 1

§<Uk:+17 ¢) + Ta(ups1, 9) = 2(ug, ) — §<Uk—1, ¢) + 270 (@) — Thp—1(0) . (1.7)
The schemes (1.5)-(1.7) will prove to be more useful in applications to problems with
advective terms, such as the model (3.2)).

1.4 Reduced basis approximation of the solution

If the parabolic problem (1.3) needs to be solved in a multi-query context (e.g. for the
needs of a optimisation problem), for many values of the parameter p, a direct approach
may turn out to be too expensive numerically. The structure of the solution manifold
U, = UpemUp (i) can be exploited to reduce the complexity if it is a compact set. In
particular, we quote the following

“A central assumption in the development of any reduced model is that
the solution manifold is of low dimension, i.e., that the span of a low number
of appropriately chosen basis functions represents the solution manifold with
a small error.”

— 12, p.28|

We thus seek an approximation of the high-fidelity solutions Uy, (1) = {uf ()} of the
parabolic problem in V, inside a lower-dimensional subspace of V,. Our aim is to
approximate the solution Uy (u) by a reduced basis (RB) solution Upn, (1), a method that
is essentially a Galerkin-type projection.

U () is given as a linear combination of elements of a reduced basis {&}Y, for
a subspace of Vj,, called a reduced basis space VY. This subspace is extracted from
the solutions of the high-fidelity problem some carefully chosen subset of parameters
M, C M, with VI C U,er,Un(p). As long as the approximation error between the
high-fidelity solution U,(u) and the reduced basis solution U, (u) remains sufficiently
small for every value of i, the reduced basis approximation to the high-fidelity solution
has a guaranteed accuracy |12, [I5]. The estimation of the approximation error is central
to the performance of the method.

In algebraic terms, if V. € RY*M is the matrix whose columns are formed by the
reduced basis elements {& 1}, the RB method seeks an approximation of uf(u) of the
form Vu}, u} € RY. In the case of IMEX scheme, uf(u) typically results from solving a
linear problem at every time layer k,

Ar(p)ugy () = & ()
From the point of view of the reduced basis, this is equivalent to solving
Ar(puy = £57 ()

where the new stiffness matrix Ay (u) = VXA, (1)V and the new load vector f*=1 () =
VTf(k_l)(u) are obtained as projections onto the RB space or operators on it. Observe
that Ag(p) € RV*N £E=1) () € RV, so the problem dimension has been reduced.
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Such a method will be efficient as long as the stiffness matrices Ay (), the load vectors
£(*=1 (1) and the approximation error estimators of the reduced basis approximation (I.3)
have an affine dependence on the parameter u [I5]. Indeed, if this is possible, then they
can be assembled via parameter-independent precomputed building blocks for each new
value of u. In this way, if repeated queries for the solution of for different p are
needed, they can be computed at a lower computational cost. Furthermore, we want
the computation of approximate solution in V,;, for the different parameter values p to
remain independent of dim V.

1.4.1 Offline and online phases

The construction of the reduced basis of least possible dimension that meets the accuracy
criterion may be computationally intensive, but is done just once during the offfine stage.
Snapshot solutions of the high-fidelity problem, uy, (1) for carefully chosen values p € M,
of the parameter will be orthonormalised to form the basis {&;}Y, via proper orthogonal
decomposition (POD) or principal component analysis (PCA) [], greedy algorithm, a
combination of both [8, [ 15, 12]. The choice of a sufficiently rich parameter sample
set M, can be done in by uniform sampling [I5] p. 69| or a nonlinear optimisation
problem [18]. At this stage all parameter-independent objects (stiffness matrices and
load vectors) for (1.3)) will be computed by projection onto V,;, and stored.

During the online stage the computation of the RB solution for a new parameter value
shall involve the computation of the respective RB objects (stiffness matrices and load
vectors) from those obtained during the offline phase. Next the expansion coefficients uf;
will be computed and the RB solution will be assembled from Vuj. Tt is clear that the
objects computed during the offline phase and the assembled during the online phase RB
objects will depend on the problem at hand. Details on the algebraic formulation of the
problem for computing uj for the the considered in this report parabolic problems are
given in Sections [2.3.1] and |3.3.1]

The offline and online stages are summarised in the flowchart .

1.4.2 Reduced basis construction via the POD-greedy algorithm

In the reduced basis context the greedy algorithm is readily used for construction RB
solutions for elliptic problems. The algorithm constructs successive elements of the basis
(it basically follows a process of basis refinement). It enriches at every step the subspace
by adding an additional reduced basis element associated to the snapshot wy(u) for pa-
rameter value y that maximises the approximation error between the snapshot u,(u) and
its projection onto the RB basis constructed thus far u,(u),

p = axgmax [lup (1) — umn (4)llv,
and is computationally efficient as long as the approximation error ||us (@) —u.m(p4)]v, can
be estimated easily by an estimator A(u). This leads to a sequence of nested subspaces
of V,, until the desired accuracy between the truth and the reduced basis solution is
reached.

Following [12, [15], we shall use a sufficiently dense subset of M as a training sample
for the algorithm, and denote it by =44 = {pe}, 1 < € < m.

8



OFFLINE STAGE ) ( ONLINE STAGE
\Parametrised PDE on V;LJ L Input parameter p
¥
Truth problem l
discretisation Assembly of RB system
An(p)un(p) = fr(p) with Arp(p) = 325 05 (1)A?,
Anp) = 325 9];(/1)%, f(u) = 3, 07 (u)f7
fw) =305,
2
Generation of Solving RB system
snapshots {u}*}; A (p)uly, = f(p) l

l !
Construction of RB {&;} RBM solution
and RB matrix V &' €] wp () = Vuly

I

Projection onto RB
space Vyp: A7 = —
def

VTAIV, 1 <= VT f)

Error estimate
[[un(p) — ww (1)

Figure 1.2: Flowchart of the reduced basis method (after [I5 p. 9]).

In the context of the parabolic problem the greedy algorithm can be comple-
mented by a proper orthogonal decomposition step. This is done to minimise redundancy
of storage of basis elements and to avoid possible stalling of the algorithm as discussed
in [9]. Due to the fact that the solution trajectory may be convergent to some value, it
is advantageous to compress it using proper orthogonal decomposition (POD).

We recall that the POD finds the basis {(;}7.; of that particular m-dimensional
subspace Y of Uy (u;), whose basis functions solve the minimisation problem

kmaa) 1/2
1 inf kroy 2 .
S i fub(u)—vf3, | - min.

k} veY
MAT -1 dimY=m

In this way the information contained in Uj(p;) is compressed before searching for the
next RB element.
Here is the proposed algorithm which intertwines a POD step with a greedy step [15].

The POD-greedy algorithm:

Input: Zigin, Vi, No ENNo < N, N=0/(=1,Z=02,¢
Output: Vy,, N

While (A(pe41) <€) do 1-7

1. Compute the trajectory for uy:
Un(pe) < {u(ne), i (o), - - ™ (e)}
2. Compress U(u¢) and retain the N; principal nodes using the POD:

{¢150) < POD(Un (1), V1)

9



3. Enrich the basis Z + Z U {17
4. Set N <~ N + N,, and find the N principal nodes {{;}}., <~ POD(Z, N)
5. Vi < span{f’j}j-v:l

6. Set
fiep1 = arg max Ap) . (1.8)

7. Set f+ ¢ +1

Observe on every iteration of the POD-greedy algorithm we add one more orthonor-
malised solution trajectory whose approximation is worst by the RB space with ¢ ele-
ments, unless the desired tolerance ¢ is reached .

From the construction setup of the algorithm for the parabolic RB problem we have
to assume that the initial data ug at ¢ = 0 lies in the RB space V,,. Furthermore, for
the algorithm to be computationally efficient, the approximation error ||up (1) — w,(1)]||v,
should be an easily estimated by means of a posterior: estimator:

lun(p) = wn()llv, < Aln), e M, (L9)

For practical implementation, M must be replaced by a finite training set =4, and the
solution of the optimisation problem is reduced to a sorting problem of A(u), u €
Zirain 10 choose the snapshot with the largest a posterior: estimator. If the computation
of A(u) is inexpensive and independent of Ny, =i can be chosen to be large. The
algorithm ends when we reach the prescribed accuracy ¢: max,ez,,.,, Av(p) < e.

In the subsequent analysis we shall construct such a posteriori estimators for two
parabolic problems describing the growth of a glioma tumour in the brain (Chapter [2)
and the drug-induced phenotype evolution inside a tumour (Chapter . The time-
integration schemes are based on a first-order implicit-explicit (IMEX) method (IMEX-0

method (1.4])).

10



Chapter 2

Reduced basis method for a glioma
model

2.1 Description of the model

We use the model for glioma growth from [14] p.543ff]
%=V~J+B($,t,u)u, x € (2.1)

where u(x,t) denotes the tumour cell density at a position x and time t. The function
B(x,t, ;) represents the net rate of growth of cells including proliferation and death
(or loss) due to time-varying chemotherapy with dose p. The diffusional flux of cells,
denoted by J, is taken as proportional to the gradient of the cell density, J = a(z)Vu.
The diffusion coefficient a(x) in all generality takes into account the spatial heterogeneity
inside the brain domain Q (white vs. grey matter, see [14]):

dl, WS QO
afz) =
dy, z€Q\Q

Equation (2.1)) is complemented by Neumann boundary condition on 0€2:
n- (a(x)Vu) =0 (2.2)

where n is the unit normal to the boundary 0 of €.
The initial data at ¢ = 0 is Gaussian, as in [I4] and the net rate of growth o is
exponential in the absence of treatment and independent of x:

Bz, ) = 0 — K(t)
The function k(t) describes the temporal profile of the treatment [14, Eq. (11.52)].

2.2 Variational formulation for the IMEX-6 scheme in
the truth space

To solve the problem (2.1)) numerically, we use a variational approach, and denote hence-
forth the finite element approximation space Vj, as the truth space [12, 15]. Fix the

11



value of p. We assume the solution of is approximated by a sequence of func-
tions in Vy, Up(u) = {uf(u)|k = 0,1, ... ke } with sufficient accuracy. Each time layer
uf (1) is a solution in V; obtained from the chosen time integration scheme for time layer
kt,k =0,1,... kpnee with k0.7 = T)e. This solution is denoted as a truth solution or
high fidelity approzimation [12, [15].

Since is a pure reaction-diffusion problem with a linear reaction, first-order in
time schemes are a reasonable choice for computing the truth solutions Uj(u). The
IMEX-6 scheme (0 < 0 < 1) [I], 16] for the equation takes the following form:

(up(p), @) + 07 - aluy (1), ¢) = (uy ™" (1), @)

- - (2.3)
- (1 - 0)7— ’ a(uh (/'L)a Qb) + <B(<k - 1)7-7 :u)uh (/J“)7 ¢>7 VQZS € Vha
The bilinear form a in (2.3)) is defined as
a(u,v) = / a(x)Vu - Vo dx . (2.4)
Q

Due to the inhomogeneous nature of the brain domain (presence of subregions of white
or grey matter [14]), the triangulation must be sufficiently refined, which requires very
large Nj,. However, the solutions of the parabolic problem for various parameter
values u € M may lie within a subspace of a lower dimension than Nj.

We seek an approximation of the solutions of the parabolic problem for various
parameter values ;1 € M inside a lower-dimensional subspace of V;, by applying a reduced
basis framework. In other words, we aim at approximating the solutions in the truth space
by the basis elements {&}¥, of a subspace of V},, which we call a reduced basis space VY
such that the approximation error resulting from the approximation of the truth solution
Un(p) by the reduced basis solution Uy, (n) € VA stays within a prescribed tolerance.
Furthermore, we want the computational cost of the reduced basis solution in V,, for the
different parameter values p to remain independent of N,. We refer to the flowchart on
Figure

2.3 Solving the problem in the reduced basis

Assume that the reduced basis space V. = span{&;}Y, C V,, of dimension N < N, has

already been found. Let u¥ (1) be the reduced basis approximation in Vy, to the truth

solution uf(u) at time layer ¢ = k7 for a given u.

The equality (2.3) implies that the reduced basis solutions uk (1) satisfy

(s (1), Gev) + 07 - alugy,(n )sbrb) (e, (1), Gub)

uy
— (1= 0)7 - alufy (1), ¢w) + (B((k = V)1, puy (1), @), Yoy € Vi, .
(2.5)

2.3.1 Algebraic formulation for the time-dependent reduced ba-
sis problem

As in [12, Chapter 6.1], we seek the coefficients of the representation of a reduced basis
solution {u¥ (1)} € Vi, 0 < k < Kppae in the basis {&}Y, of V,,, which satisfies (2.5)).

12



Fix k and let {uf ,}Y | be the coefficients of the representation of u¥ (1) in the reduced
basis V:

N
uly (1) = Y ug i (2.6)
i=1

Then we test (2.5)) with all elements in the reduced basis, £;,1 < j < N and we obtain a

linear system for {u} ;}, in terms of the coefficients of the representation on the previous

(k — 1)-st time layer, {u}_, ;} X :

N N N
Dowi(G6) +0m Y ualé, &) =) ul(66)
i=1 =1 =1

(2.7)
N
=G — (L= 0)7 Y wp jal6ig), Ve € Vi
i=1
Here in the right-hand side we let
&) E (&) — sty (&) (2:8)
with the individual summands being respectively:
N
k—1
pVE) = o) u(6E) (2.92)
i=1
N
k—1
Py V(&) = prr Z W, (& &) (2.9b)
i=1
In (2.95) we denote rp_y = k((k — 1)7).
Using this setup we rewrite the linear problem in matrix notation:
(M +6rA)ul = (M — (1 —0)TA)uy_, + 7L juf (2.10)
where
L =P, — Py (2.11)

and M, A, IP’l,IP’ék_l) are matrices that can be computed and stored during the offiine
stage because they are independent of p. They are defined in the following manner:

M: (M); < (&,&),
A (A); = alé,§)),
P, oM, PYYE g M.

Finally, the solution resulting in the reduced basis approximation is recovered from uj
via the RB matrix V = [§], via the relation Uy,(1) = {uk (1)}, ub, (1) = Vul.
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2.3.2 A posteriori error analysis for the IMEX-6 scheme

Our goal is use a carefully chosen sequence of snapshots {uf(u)|k = 0,1,... kmaz, it €
= ainy to find a reduced basis that can approximate well the solution for all © € M, that
is, to keep the approximation error

Jun () — w(p)[v,

below a given error threshold.

The construction of the reduced basis from the snapshots will be performed during
the offline phase via the POD-greedy algorithm. The choice of points in the parameter
training set Z..;, shall be assumed by some appropriate sampling procedure. We shall
use a greedy algorithm with a posteriori error estimates approximation error between the
truth solution and the reduced basis solution (2.5)). These estimates will be derived
in a later section. The computation of the approximated particular solution Uj,(u) for a
given g is done in the online phase and based on the computation of its coefficients in
the reduced basis expansion explained in the Section

In order to construct an efficient error estimate for use inside the POD-greedy algo-
rithm that successively refines the reduced basis with new elements, we have to be able
to estimate how the approximation error changes by adding an additional element to the
basis. This is done by a posteriori error analysis rooted in carefully chosen residuals
whose computation can be made in an efficient manner.

Here we shall derive a general estimate for the approximation error based on the
IMEX-6 scheme for a parametrised semilinear reaction-diffusion problem of the form:

o — a(pw)Au = f(ujp), ue H(Q),t € (0,Tha) (2.12)
with parameter 1 € M. In addition let f(-; 1) be Lipschitz continuous:

|f(zi0) = f(Z5 )] < ()2 — 2], Sup Cr(p) = Loup, (2.13)

with u subject to a given initial datum wug and Neumann boundary conditions on 0€2. We
remark that the model is a special case of such a semilinear parabolic problem.

The IMEX-6 scheme (0 < 6 < 1) for the truth solution of(2.12)) in a finite element
approximation space V;, C H'(Q) for a fixed p writes as

(uptt (p) — up(p), @) + Ta(Ouf ™ (w)
(1= 000, 6 0) = T(F (b0 10,6), Vo€ Vi (2.14)

where the bilinear form is defined as
a(u,v;p) = / a(u)Vu - Vo dz . (2.15)
Q

Assume that a(-,-; ) fulfils the following criteria which determine its coercivity and
continuity:

amin||ul?n < la(u, u; )], Yu € HYQ) with apim, = inf a(u)
w

2.16
(1, 0)| < Gmag |||z ||V With Gmae = sup a(p) - (2.16)
m

14



By assumption the coercivity and continuity constants satisfy 0 < a,nin < Gmin < 0.

Define the approximation error between the truth and the reduced basis solution at

time layer k7 as e, = uf —uf, € V,,. Using (2.14) we work towards an evolution equation

for the error:

ek = ex,9) +albenns + (1~ O)er, 611
1 1
= (F(up), @) = —{u ", 6) = Oalug™, 65 1) + —(up,, ) = (1 = Oa(uyy, ¢ 1)

= ()~ T0). ) §<ufb“ ~ i 6)

a(@u™ + (1= O)upy, ¢ 1) + (f(u), 0), Vo€ V.

Denote the residual of the reduced basis solution u,;, on time-layer k + 1 by

(o) = <f<ufb>,¢>—%<uf§1—u’fb,¢>—a(@ufslm—e)ufb,cb; W, Vo€V, (2.17)

Using the residual we have the following evolution equation for the error e, q:

%<€k+1 — eg, ) + a(fepyr + (1 — O)ex, 5 1)
= (f(uy) = fuly), @) + " (i), VoeV,. (218)

We seek a posteriori error estimates for the error e, based on the residual (2.17). We
define the norm of the residual 7*! in the dual space V), as

k+1( 4.
= |75 (5 )|

RGN
T sev, lollm

(2.19)

Note that the H'-norm and the L?-norms are equivalent on the finite-dimensional finite
element approximation space V. Since 7¥*1 is a linear functional on V, C H(f), by
the Riesz representation theorem, there exists a unique 7' € V,, such that

(P (), oy = T (i), Vo €V, (2.20)

and |7 (s )l = 17 ()|

Note that whenever r**! has an affine dependence on 1, the norm of the residual can
be efficiently computed. We shall factor the residual into easily-computable summands
using the affine dependence in the next section.

We proceed following [16] to obtain estimates of the approximation error ey.

Proposition 1. Suppose that f is a Lipschitz-continuous function with Lipschitz constant

Coup [213). Let v%(-; p) be the residual from (2.17), with norm ||r*(w)||. defined in (2.19).

Then we have the followmg estimates for the approzimation error ex(p) = uf (1) — uk (1)
between the truth and the reduced basis solution in the IMEX-0 scheme.

(i) Let 6 > 1/2. Then

k 2
T o —i i
ler()lI7: < — (14 72"l (w3 - (2.21)
a a
mwn Z:1 mwn
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(i1) Let 0 < 1/2. Assume the time step T and the domain triangulation Ty, satisfy

cQ zamin
1 —) __ Zmin___ 9.22
r(1+35) < (1—20)a2, (2.22)
Then i
lex(p)||72 < 27C., Z(l + 2702, Ce) T Ir (W12 (2.23)
=1

for an appropriately chosen constant C, which is independent of ji, 7, h.

Proof. Testing (2.18)) with ¢ = feg11+(1—0)ex and doing some algebraic transformations
we have for the left-hand size of ([2.18):

1
;<€k+1 — ey, Oepr1 + (1 — O)eg) + a(Oepr1 + (1 — O)ey, Oeprr + (1 — )ey; 1)

1 1 1 1
= llewsalls = g-lealis + 2 (0 3) lewss — el
+a(fepr1 + (1 —O)er, Oepsr + (1 — Q)eg; )
1 1 1 1
> el = gelleals + 3 (6= 5 ) lewss = el

+ amianek—‘rl + (1 - 9)6/?”12‘]17

with the last inequality due to the coercivity of the bilinear form a.
Using the Lipschitz continuity of f given by (2.13), Holder’s inequality, and the em-
bedding H'(Q2) C L*(Q) in this order we obtain:

(F(ib) — F(uhy), 0) < / Fub) — F(uhy)]|6] de

< Laupll 1y, = ugy 122l|Sllz2 < Lopllerllzzl @l (2.24)
———

€k

Hence, the right-hand side of (2.18) when ¢ = ey 1 + (1 — 6)ex can be bounded by
() = S ), Oewys + (1= O)ex) + 7+ (Gens + (1 = O)es )
< (Coupllenllzz + 7" (@)-) - l0err1 + (1 = O)exlm, -
Using next Young’s inequality, for all 0 < e < 1, we have

(Csupllenllze + [P ()l - 10ersr + (1 — O)ellm,

1
<
4€amin

((Csupllexllze + 1 (@) [1))? + eaminllOersa + (1 = O)ellZ,

1
< (CupllexllZ> + 17 ()12) + eaminllOensa + (1= Oexll, -

— 2€Amin
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Combining these estimates we see that

1 1 1 1

EH@IQHH%Q B Z”ekH%Q + T (6 - 5) lex+1 — €k‘|iz + amin||Oers1 + (1 — 9)@@”?{1
1

= 2€m; (giupuekH%? )1 + €amnleria + (1 = O)exlF,,

(2.25)

forall 0 < e <1.
Now we consider two cases to continue the estimation of the approximation error.
Consider at first the case 6 > % Then

1
(6= 5) Bewss = ulls + (1= amnlbenen + (1= Oy, > 0

and we may set e = 1 in (2.25). After multiplying by 2 both sides of (2.25) and rearrang-

ing, we obtain:

1 1 2 1
~llewsllr, - (; + ) lewllzs < [ ()2, so

min Amin
T2
fewsals = (14222 eul <

min

-
— [ ()l

Qmin

Consider next the case 6 < % From the assumption (2.22) we conclude that 1+ 75
is bounded by some constant independent of 7, h. Testing (2.18) with ¢ = e, — e we
have

1
;”ek—i—l —epll7e = —a(fepyy + (1 — O)e, exr1 — e 1)

+ (f(uf) — fuly), en1 — ex) + 15 (exp1 — exs 1)
< Gmaz||0eri1 + (1 — 0)er|lm - [lert1 — exl

+ (Gsupllewllze + 1P ()11) - lewss — exllm, - (2.26)

The inverse inequality (|1.1)) applied to ;.1 — e gives us the estimate

C
lex1 — el < 41+ 5 llewts — exllre. (2.27)
h2

Therefore, plugging (2.27) into (2.26) gives

1

C
Hewes = eullis <[4 15 (amaslOetsn + (1= Ol + oo + 170 )

Choose 71, e > 0 small enough so that the constant

i = 2(1 = tmin = (1= 20) e (mae + )7 (1+ %) (2.28)
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is positive. Then rearranging (22.25) we see that

1 1
g llexnllze — -llexllze + amin(1 = €)llfersa + (1 = O)exllzn

1 1/1
< g Bl + 1) + 7 (5 0) lewss = el

1 1 c
< g Byl + 101 + (5-0) 7 (14 1)

= 2€min

2
X (amax||96k+1 + (L= 0)erllar + Lapllexl 2 + ||Tk+1(ﬂ)||*) - (2.29)

Applying the inequality
y?
_) = amax(amax + 77):52 + (1 +

amaﬂf
(amaxw + 3/)2 < a%laxx2 + y2 + amaw(nxz + 1 )y2

Ui

with
z=0eris+ (L= Derll, v = Lallexlz + IIr" ()]s,

to the last term in (2.29) and rearranging we see that
1 1 K.
lexsallze — -llexllze + FHlfera + (1 = O)exllin

1
<

2T
< (@ llenllEs + I (o))

1 Ca Amazx
#(5-0) 7 (14 53) 0+ ) Culale + 14 L)

1 cQ maz ) ) . ,
< _ Co 2 |

<Ceny
where C,, is independent of h, 7. We use the positivity of x,, to obtain thus:

1 1
o lenllie = -llenllZe < Con(@upllenlze + I (0)I2), so

2T
lenallze — (14 278,,Cen)llerlliz < 27Ce, ™ (w12 -

Now we combine the results from both cases to obtain the error estimator. Using

Lemma [I] and the fact that the high-fidelity solution and the RB solution share the same
initial data u) = uY, eg = 0 by construction of the reduced basis, so we arrive to

k
lexllz2 < 2rCeyy Y (142762, Co) I (W2

i=1
Doing these recursive computations we arrive to the statement of the Proposition. O
Lemma 1. Let b > 0 and {x;},{r;} be non-negative squences which satisfy

Tip1 —bw; <ripy, VieEN.

Then
Vk e N.

Tk < kaEO + bk_lrl + bk_27“2 + ...+ b’l”k_l + 7k,
Proof. By telescopic sum and induction.
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2.3.3 Computing the a posteriori error estimator

Proposition (1| provides an a posteriori error estimator for the approximation error ey (u)
between the truth solution (2.3)) and the reduced basis solution (2.5) at time layer k7 of

the form i

lex(m)lI72 < Ap(p) = 7C1 Y~ C57 |l ()2 (2.30)
i=1
with C; > 0,Cy > 1. By virtue of (2.30), for a given solution trajectory Up(u), the
quantity A(p) attains its maximum at k = k. [9]. Hence it suffices to set as the a
posteriori error estimator for the scheme (2.5):

Ak(/"b) g Akmaz(”) °

It remains to describe an efficient manner to compute A(u). Recall the norm of the
residual 7* given by (2.17), which is [[r*(p)|l. = [[F*(p)||m. We now use the affine
dependence of the reaction term for the concrete problem (glioma model) given in ([2.1)
to decompose the norm of the residual into summands that are computed efficiently
during the online stage. Using the RB expansion of uf, given in (2.6)), we rewrite the
residual as

ﬁ“wmﬁﬂﬂ%»@—%wﬁhwm@—wﬁﬂwwrwm3@

N 1 N
o3 U6 ) — o 36 — £ S, — w6
=1 i=1 i—1
N
Z bul,,, + (1 — O Ja(&,0), VéeV,. (231)

Following [12] we introduce the coefficient vector r*(u) € R
) * o — ), (Bl + (1= Ol )T
ru Ouk S0 MK/kuk,l’ T uk+1,z uk,z ’ uk+1,z uk,z
and the vector of forms R € (V/, )*V

def ({<€za> i= 17{<£zv'> i= 1a{<£i7'> i= 1,{@(&,-) i= 1)7

leading to the following representation of the residual 75+1(¢; u):

4N
L (g ) Z (p), VopeVy. (2.32)

Let 7; denote the Riesz representation of R, so that (7, ¢) ;1 = R,(¢), V) (which is inde-
pendent of the time layer k). We obtain the following relation for the Riesz representation
of 75*1 and its norm

AN
P () = er( p)r; = 174 (1) Wi = er ’ )Py, i)y -
7j=1

J=1j'=1
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The computation of the inner products (7;,7;)m, can be done once during the offline
stage, because they are independent of p. To find #;, we use its expansion in the basis
functions ¢, of the truth space Vj,, and note that for all j, ¢ we have

with {®,}, being the dual (or biorthogonal basis) associated to {p/}¥, [4]. R;(¢.) is
directly computable during the offline stage, and we define the matrix R € RY*4V as
follows : Ry; « R;(¢e). Therefore, we may compute the inner products (7;,7;)p, by
using the Gram matrix representation of the dual basis, which is G, where the Gram

matrix G € RV*V is defined as (G);; = (yp;, ¢i):
(7,7 = (RTGTR)jy = [P ()3 = v ()" RTG™'Rr" () .

We refer to |15, p. 54ff] for the technical details involving the algebraic computation
of R, using a change of basis matrix to the basis {gpi}ﬁl of the truth space V.
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Chapter 3

Reduced basis method for a
selection-mutation model

3.1 Description of the model

We consider the model of phenotype evolution for a cancer cell population proposed
in [3]. The cell population is structured in the phenotype space Q = [0,1]?, where the
cell density u(z,y,t) > 0 models the density of cells with normalised level z of survival
potential and normalised level y of proliferative potential at time t € [0, T},44)-

The global density of the cancer cell population at time ¢ is given as

p(t) = /Qu(x,y,t) dxdy. (3.1)

The time evolution of the structured cell population under stress-induced adaptation
during chemotherapy is given by an integro-differential parabolic problem:

% + (% (v(z,p, t)u) = F(x,y,u, p)u + aAu (3.2)
where the diffusion term aAwu represents the non-genetic instability, driven by random
fluctuations in phenotype at average rate o > 0, the advection term with velocity v(z, u, t)
models the effect of stress-induced adaptation of the cell proliferative potential, dependent
on the drug concentration p, and the effect of selection F' 3, Suppl. Materiall.

The functional forms of v, F in [3] are given by

vz, p,t) = —vp(t)h(z —2*), v>0,0<z*<1
F(z,y,u, p) = B, y)(1 = p(t)) = v(z, 1)

where z* is a fixed number in (0,1), 5 is the proliferation rate and + is the death rate.
hH(z) denotes the Heaviside function:

1, z2>0,
Z) =
h(z) {O, z <0

The growth law F' takes into account the crowding effects in the tumour: when the cell
density p increases, the growth rate F' decreases.
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In this section we consider a special case of the model inspired by the work of [13].
We consider only mutation and selection in a population with phenotype structure (so
v =0 for all ¢ > 0) and include the action of a cytotoxic drug that increases the removal
rate 7. Neumann boundary conditions for are imposed as in [I3]. The model
equations read:

ng = F(x,y,u, 1) + aAu  on Q= [0,1]?

F(x,y,u, 1) = (B(x,y) — p(t) —v(x, y)p)u

3.3
p(t) Z/u(w,y,t)dxdy (3:3)
Q
ou
2 =0 on N

Such models admit a unique globally stable solution [13].
We use the functional form of 3, proposed by the authors of [3] in the model (3.3)):

B(x,y) = (a1 + agy + as(l — x)) — b3 , (3.4a)
Y(,y) = pbr +bao(1 —2)) . (3.4b)

Here € M = [0, fynaz] is the range of the applicable drug dose in the chemotherapy,
and we see the death term’s affine dependence on the drug dose parameter .

In order to descrtibe the offline and online stages of the reduced basis method for
solving (3.3)), we have to recall the following preliminaries.

3.2 Variational formulation for the IMEX-0 scheme in
the truth space

We set as the truth space a finite element approximation space Vj, of dimension N,. Fix
the value of u. We assume the solution u(ty,-) of at time layers t;, = k7, k =
0,1,...knar With kpeeT = Tpae is approximated by a sequence {uf(u)|k = 0,1,... N}
with sufficient accuracy. Each uf(p) is obtained by the chosen time-integration scheme.

Unlike the glioma model presented in Chapter , the variational formulation of model (3.3])

consists of a stiff- term (the numerical Laplacian) and an integral term (the integral

= fQ u(x,y,t) dedy), that cannot be solved for numerically at each time layer.
Hence we must resort to an IMEX scheme for the time integration. Due to being
a reaction—diffusion system with a low order non-linearity (it is quasi-linear in a sense),
it is sufficient to use a first-order scheme as long as we use finite element spaces of higher

order to increase the accuracy in the approximation of the integral term p(t).
The scheme ([1.4]) is rewritten as

(i (1), @) + 07 - alujy (1), ¢ 1) = (w,™ (1), 0)

(=) a0 ) + (FT (), ), VeV O
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with the last term on the right-hand side defined as

(F(uf (1)), &5 1) & 7p (o5 ) — ™ (03 1) — 75 (05 1)
= 1(¢ 1) = (uk (1) B(-), )
D) = (b () (), 6) (36)
) —

o) = pulu N0 0) with gy = [ ) dady,

Q
for a given parameter value p.

We seek an approximation of the solutions of the evolution problem for various
parameter values y € M inside a subspace of V; of much lower dimension. As for
the glioma model, we aim at approximating the solutions in the truth space by the basis
elements {&}, of a subspace of V},, which we call a reduced basis space VY| such that the
approximation error resulting from the approximation of the truth solution U, (i) by the
reduced basis solution Uy,(p) € VA stays within a prescribed tolerance. Furthermore, we
want the computational cost of the reduced basis solution in VY to remain independent
of N}, for the different parameter values pu.

3.3 Solving the problem in the reduced basis space

Our analysis of the RB solution begins with the variational formulation. We denote a

reduced basis space VY = span{&}Y¥, C V,, of dimension N < Nj. Let u¥ (1) be the

reduced basis approx1mat10n in VX to the truth solution u}(p) at the time layer k7 for

a given u. The equality (3.5)) implies that the reduced basis solution u” (1) satisfies

(ulf, (1), @) + 07 - a(uby, (1), cb;u) = (ugy (1), )

(= Oy a0, 6 p) + (P ()b p). VO E V. D

3.3.1 Algebraic formulation for the time-dependent reduced ba-
sis problem
As in [I2, Chapter 6.1], we seek the coefficients of the basis expansion of the reduced
basis solution {u® (1)} € VX 0 < k < kypaz, which satisfies (3.7).
Fix k and let {u’k”z N | be the coefficients of the representation of u (1) in the reduced

basis Vy;, (see (2.6) in the discussion of the glioma model). Then we test - ) with all

p=¢,1<75< N and we obtain a system of N equations for {uf ,}¥, in terms of the

coefficients of the representation on the previous k£ — 1-st time 1ayer, {ukfli N

N N N
Z uz,i<€i’ &) + 0t Z ug,i“(&» &) = Z uZ—l,i<£z’a &)
i=1 i=1 i=1

| (3.8)
FTLNG) (L= )T Y ul a6 E). Vi=1 N

Here in the right-hand side we let
LN m) =V (G) — el V(&) — P V),
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where the individual summands are defined as

) = Zuk“ ()&, &)
Py V(g) = Zum V&, &)

pz(akil)(fj) = Pk-1 Z UZ,M(&, &) with

=1

N
Pk—-1 = / ub () dedy = Zuz_m / & dudy .
Q@ i=1 Q

Thus, we can rewrite the linear problem in matrix notation:
M+ 0rA)u, = (M — (1 —-0)7A)ul_, + 7L ju)_, (3.10)

where

LZ_l =P — pulPy — pp—1 M.

and M, A P, P, are matrices that can be computed and stored during the offline stage
because they are independent of p. They are defined as

M);; £ (&, €)),

M : (

A (A)y Zalg, ). (3.11)
(.
:

P = (B()&, &)
Po)i; = (v()&, &) -

Note that due to the linearity of the integral, we may compute the non-local term py_;
using the expansion in the reduced basis VA . An appropriate quadrature rule should be
chosen to approximate the integrals of & over 2. Hence in addition to the parameter-
independent objects that must be stored during the offline stage of solving (the
matrices M, A, P, Py), for this integro-differential equation we must also store the inte-
grals of the RB basis elements I; = fQ & dxdy in order to compute the value of py as a
linear combination of I;. Finally, the solution resulting in the reduced basis approximation

is recovered as Uy (u) = {“fb(ﬂ) 7Ufb( E def Vut.

3.3.2 A posteriori error analysis for the IMEX-6 scheme

The construction of the reduced basis from the snapshots will be performed during the
offline phase via the POD-greedy algorithm described in the Introduction. The choice of
points in the parameter training set =,.;, shall be assumed by some appropriate sampling
procedure. We shall use a greedy algorithm with a posteriori error estimates for the
approximation error between the truth solution and the reduced basis solution (3.7)
which will be derived in Section B.3.3l

The computation of a particular RB approximation Uy, (p) for a given p is done in the
online phase. There its coefficients in the reduced basis expansion are computed, and the
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solution is assembled via the RB matrix V = [¢;]. The algebraic problem of the reduced
basis method for the #-scheme has been described in Section

As in Section in order to construct an efficient POD-greedy algorithm we need
an a posteriori estimator for the error between the truth approximation wuy(u) and the
reduced basis solution uy,(p). In the context of the model (3.3), we have no dependence
on p for the bilinear form af(-,-; u)

a(u,v;p) = a/ VuVuv dxdy .
0

For clarity we shall drop u from the notation of the solution and let {u¥ } be the reduced
basis solution at layer k.

Here we develop a posteriori error analysis to assess the error e (). for the particular
model (3.3). However, unlike the model considered in Chapter [2, the non-linear term
F' describing the growth with crowding effects is not Lipschitz-continuous. Hence, we
cannot proceed on the basis of Proposition [1| to obtain an estimate on the approximation
error, based solely on the Lipschitz constant. Instead, we can use the properties of
the solutions to subject to certain initial values which nevertheless encompass all
biologically-relevant scenarios.

We recall the following results on a priori bounds of the solution to (3.3)).

Lemma 2. Denote f = SUP(;yeq B(2,y). Let u(0,-) = ug be the initial data to (3.3)
such that ||ugl||zr < B. Then the solution of (3.3) satisfies the following

lu(t, )| < B, Vt>0.

Proof. Integrate both sides of (3.3)) over Q :

0
a/ﬂudxdy:/ﬂ(ﬂ(x,y) —p(t))udxdy—/Qy(x)uudxdy%—a/Audxdy

Q

The Neumann boundary conditions imply
/ Au dxdy = Vu dn =0, (3.12)
Q o9

which leads to

% = /Q(B(x,y) — p(t))u dedy — / v(z)pu dedy

Q

< (( sup B(x,y) — p> p— | f (@) ) p= (B—p)p.

because inf,cq uem y(x) = 0, see (3.4b). The above equation on the right-hand side is
a logistic growth law, which means that if p(0) < 3, then p(t) < 8,Vt > 0. ]

Even if the nonlinearity f is not Lipschitz, we can still use the results of Lemma
to establish a Lipschitz-type growth. However, we may do the following computation for
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functions v,v’ € L*(Q) for a fixed p (we shall omit it from the equations for the sake of
clarity):

f (v(z,y)) = f(V'(z,9))]

= ‘(5(;]5,?,) —y(p) — /Qv) v(z,y) — (6(56,34) — () — /Qv’) v’(x,y)‘
< Blote) = vl + | oot = ([ o)

Note that

v(x,y)/ﬁv—v’(x,y)/gv'

(vaag) =) [ v+l [(0-v)

< oz, y) =o' (@ y)ll[oller + 10, y)llv = o'l -

Thus, we obtain

[ (w(z,)) = F' (2, 9))] < Blo(z,y) = (2, y)]
+ vz, y) = o'z y)lllvllze + o'z, y)llv =l (3.13)

Now consider the truth and the RB solutions ¥, u} whose initial data meet the condi-

tions of Lemma . Because dimV;, = N, uf ,u¥ € L'(Q) and, moreover, the Lemma
establishes their L'-norms are globally bounded. Since the nonlinearity in our problem
satisfies (3.13)), in combination with the triangle inequality [[v — v/|[;1 < |Jv]|pr + |[v/|| 20
it yields . )
[f (s 1) = fGos )] < 2Bl — wii| + 2Bl ], V(z,y) € Q. (3.14)

We remark that the restriction on the initial data given in the statement of Lemma
is biologically relevant. If the initial data did not satisfy the condition, the dynamics of
the tumour volume would be decreasing as the tumour would be beyond the carrying
capacity of the microenvironment, even if no therapy is applied (u = 0).

Next we state the following a posteriori error estimate:

Proposition 2. Let {,, = 26. Suppose that f fulfils the Lipschitz-type growth condi-

tion [B3.14) Then letting R* (1) = Loypl|uby (1) || 22 + |7 (1) ||« with the residual r defined
in (2.17)), we have the following estimates on the approzimation error between the truth
and the reduced basis solution ey(1) = uk (1) — uk (u) for the IMEX-0 scheme:

(i) Let 6 > 1/2. Then

2 T & Egup = D \2
el < =3 (1472 ) Ry

min . Amin
=1
(i1) Let 0 < 1/2. Assume the time step T and triangulation Ty satisfy

(1 + CQ) < 2amin
TUTR) S 0202

max
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Then .
lexll2 < 27Ce, > (14272, Cep) "R (1) (3.15)

i=1

for appropriately chosen C., which is independent of T, h, 1.

Proof. The idea of the proof follows that of Proposition [l We use the form of the residual
r but we modify the resulting estimator which is labeled R. The second major
difference between the derivation in Proposition [I| and here lies in the treatment of the
term | f(uf; ) — f(% ;)] which arises in the evolution equation for the approximation
error.

Using the Lipschitz-type estimate of f given by (3.14), Holder’s inequality, and the
embedding H'(Q) C L*(Q):

(f(ups ) = fuly; ), @) < /Q | (up; 1) = f(uly; w)l|¢| daedy

< Laup(l| = ugy llz2 + 12216122 < Cannllenllze + llumyllz2) |6l - (3.16)
——

=€k

with the appropriate choice ¢, = 20.

Hence, when f has Lipschitz-type growth (3.14]), we proceed as follows. With a test
function ¢ = feg 1+ (1 — 6)eg, using (3.16) the right-hand side of (2.18) can be bounded
by

(f (s 1) = f (s ), Oern + (1= O)ex) +r* (ersn + (1 — O)ex; 1)
< (Loup(llenllze + 1w llz) + [P ()1 - [0era + (1 = O)exlln, -

If we let RF1 (1) = Loupl|uby || 22 + |75 (11)]]«, We may use the analysis from Proposition
to establish the bounds. In fact, using Young’s inequality, for all 0 < ¢ <1 we have

(Csup(llerllzz + llusllz) + 175 () 1) - 10exsa + (1 = O)exlm,

1 ~
< o (Cpllenllzz + BY(1))* + €amin|feria + (1= O)er,
1 ~
< o (Gupllerllzz + BYH(1)?) + camm|ferin + (1 = O)ex]y, -

Combining these estimates we see that

1 1 1 1
§\|€k+1\|i2 - EHGkH%? +- (9 - 5) lext1 — exll72 4 amnl|fersr + (1 — O)ex| 7
1

<
2€0min

(2 pllexl72 + R (10)?) + eaminllferin + (1 — e[,
(3.17)

forall 0 < e <1.
With this estimate we continue as in the proof of Proposition [I]to establish the results
in the statement for the cases § < 1/2 and 1/2 <60 < 1. O
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3.3.3 Computing the a posteriori error estimator

Proposition 2 provides an a posteriori error estimator for the approximation error ey (u)
between the truth solution (2.3)) and the reduced basis solution (2.5) at time layer k7 of

the form i

lex(i)l172 < Ai(p) =7C1 Y Oy (R (w))? (3.18)

i=1
with C; > 0,Cy > 1. By virtue of (3.18), for a given solution trajectory Uj(u), the

quantity A(u) attains its maximum at k = k. [9]. Hence it suffices to set as the a
posteriori error estimator for the scheme (2.5)):

Alp) E Ay, (1) -

[t remains to describe an efficient manner to compute A(u). Recall the definition of the
residual R¥ (1) = Loty (1) || 2 + |75 ()]« from Proposition , with 7 given by (2.17).
We now use the affine dependence of the reaction term in to decompose the norm of
the residual ||7*(u)||. into elements which are readily computed during the online phase.

We substitute the formula for the bilinear form a and nonlinearity f into the expansion

of r*. Using the RB expansion of u¥ , given in (2.6), we have

N
pe =) uh, / & ddy
i=1 Q
and can rewrite r*t1 as
1
r gy p) = (f(uly,), ¢) — ;<Ufb+1 —uby, @) — a(Bul + (1 — O)uly, ¢)
- Zukl §z7 > _pkzuz,i<§la Zukz gzv
ul, -
- Z S B, ) Z oull, 4+ (1— 00l Ja(&,¢), Vo€V .
=1

Following [12] we introduce the coefficient vector r*(u) € RN

o
def uk+1,' - uk,'
rk<:u) = (u';:,ia _pkuzyia _:uu‘;:’i) - 17_ Z? (euZJrl,i + (1 - 0)uz71>>T
and the vector of forms R € (V/, )5V

R = (B N {6 N {0 O& o) (G ) {alé )b . (3:19)

leading to the following representation of the residual 75+1(¢; u):

(g Zr ), VYoeV,. (3.20)
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Let 7; € V} denote the Riesz representation of the functional 9, so that (7;, @)y =
R,;(4),Vp € Vi, j =1,...5N (observe that each 7; is independent of the time layer k).

We obtain the following relation for the Riesz representation of r**1 and its norm
5N 5N 5N
P ) = D i) = 17 ) i = Y > w () () (7. 7)o
j=1 J=1j'=1

Observe that some elements of the vector R are the same. To find 7;, we follow the same
steps from Section [2.3.3]
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Chapter 4

Conclusion and Outlook

We have derived a posteriori estimators for the approximation error that should be used
in a POD-greedy algorithm for constructing reduced basis for two models describing
tumour growth and phenotype evolution inside a tumour . These models are
based on reaction-diffusion equations which permits the use of the first-order in time
IMEX-6 scheme as a suitable numerical scheme for time integration. The a posterior:
error estimators are closely linked to the specific problem, as has been noted in the
reduced basis literature.

The described algorithms for the reduced basis construction shall be implemented in
the finite element library FreeFem++ [I1] to test the performance of the RB method in
approximating the high-fidelity solutions to the considered problems.

However, second-order schemes are necessary to accurately approximate models such
as in their full generality. This is due to the presence of nonzero advection terms
which require caution in the numerical treatment. In addition, the construction of a
reduced basis approximation may require modification of the algorithm, as turns out to
be the case for transport-dominated problems [7].

We test the performance of several second-order IMEX methods on equation (3.3)).
The chosen parameters are: mutation rate a = 107°, proliferation rate is B(x,y) =
0.03 + 0.25y(1 — y?) + 0.05(1 — z)z, death rate v = 0.02, x = 0. The initial condition is

uy = u(x,y,0) = 0.5]sin(5mz) sin(57y)|.

The methods (1.5)-(L.7) are 2-step methods and not self-starting, so we initialise the
data for the second step u; by using an IMEX-0 scheme with § = 2/3. Therefore, this
peculiarity must be taken into account when developing a posteriori error estimators for
second-order IMEX methods.

The FE space is with Lagrangian-P2 elements on a Square mesh : with 2601 vertices,
5000 triangles and 200 boundary edges, time step 7 = 5, stop criterion for convergence
to stationary solution : [Jupy; — ug|lee < 1074, Computation is performed in FreeFem++.
Results of the test are summarised in Table (4.1

As expected, the IMEX-0 scheme is the fastest because it is a one-step scheme.
It shall be used for the numerical implementation of the considered parabolic problems
based on the IMEX-# scheme. It would be interesting to compare the performance of
the RB method for the same problems based on some second-order IMEX scheme, once
a posteriori estimators for those are available.

30



Table 4.1: Numerical test.

IMEX method | 0=2/3

compile (s) 0.005897 0.010604 0.006063 0.006091
execution (s) 21.5779 38.5859 42.404 70.0746
Acknowledgements

This work is supported by the Bulgarian National Science Fund within the National Sci-
entific Program ,Petar Beron i NIE“ of the Bulgarian Ministry of Education [contract
number KP-06-DB-5].

Tosa uzcaeasane e nogkpeneno or @oux ,,Hayunu uzciaeapanug’ mo Hamumonannara naydna
nporpama ,Ilerbp Bepon u HUE“ na MOH ¢ porosop Ne KII-06-/1B-5.

31



Bibliography

1]

2]

3]

4]
[5]

(6]

7]

8]

9]

[10]

U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton. Implicit-explicit methods for time-
dependent partial differential equations. SIAM J. Numer. Anal., 32(3):797-823,
1995.

I. Babugka, J. Whiteman, and T. Strouboulis. Finite Elements: An Introduction to
the Method and Error Estimation. Oxford University Press, 2010.

R. H. Chisholm, T. Lorenzi, A. Lorz, A. K. Larsen, .. Almeida, A. Escargueil, and
J. Clairambault. Emergence of drug tolerance in cancer cell propulations: an evolu-
tionary outcome of selection, non-genetic instability and stress-induced adaptation.
Cancer Res, 75:930, 2015.

O. Christensen. An introduction to frames and Riesz bases. Birkhduser, 2003.

P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Classics in Applied
Mathematics. STAM, 2002.

W. Dahmen, C. Huang, G. Kutyniok, W.-Q. Lim, C. Schwab, and G. Welper. Ef-
ficient resolution of anisotropic structures. In S. Dahlke, W. Dahmen, M. Griebel,
W. Hackbusch, K. Ritter, R. Schneider, C. Schwab, and H. Yserentant, editors, Fx-
traction of Quantifiable Information from Complex Systems, Lecture Notes in Com-
putational Science and Engineering, pages 25-51. Springer International Publishing,

2014.

W. Dahmen, C. Plesken, and G. Welper. Double greedy algorithms: Reduced basis
methods for transport dominated problems. ESAIM: Mathematical Modelling and
Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 48(3):623~
663, 2014.

M. A. Grepl and A. T. Patera. A posteriori error bounds for reduced-basis approx-
imations of parametrized parabolic partial differential equations. ESAIM: Mathe-
matical Modelling and Numerical Analysis, 39(1):157-181, 2005.

B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume approxima-
tions of parametrized linear evolution equations. ESAIM: Mathematical Modelling
and Numerical Analysis, 42:277-302, 2008.

B. Haasdonk, M. Ohlberger, and G. Rozza. A reduced basis method for evolution
schemes with parameter-dependent explicit operators. Flectronic Transactions on
Numerical Analysis, 32:145-168, 2008.

32



[11] F. Hecht. New development in FreeFem++. J. Numer. Math., 20:251-265, 2012.

[12] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for
Parametrized Partial Differential Equations. Springer International Publishing, 2016.

[13] P. Magal and G. F. Webb. Mutation, selection and recombination in a model of
phenotype evolution. Discr Cont Dyn Sys B, 6(1):221-236, 2000.

[14] J. D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications.
Springer-Verlag Berlin Heidelberg, 3rd edition, 2003.

[15] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Dif-
ferential Equations. Springer International Publishing, 2016.

[16] A. Quarteroni and A. Valli. Numerical Approzimation of Partial Differential Equa-
tions. Springer Series in Computational Mathematics. Springer-Verlag Berlin Hei-
delberg, 2008.

[17] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer-
Verlag Berlin Heidelberg, 2006.

[18] K. Urban, S. Volkwein, and O. Zeeb. Greedy sampling using nonlinear optimization.
In A. Quarteroni and G. Rozza, editors, Reduced Order Methods for Modeling and
Computational Reduction, pages 137-157. Springer International Publishing, 2014.

33



	Introduction
	Function spaces
	Parametrised parabolic problem
	Time-integration IMEX schemes
	Reduced basis approximation of the solution
	Offline and online phases
	Reduced basis construction via the POD-greedy algorithm


	Reduced basis method for a glioma model
	Description of the model
	Variational formulation for the IMEX- scheme in the truth space
	Solving the problem in the reduced basis
	Algebraic formulation for the time-dependent reduced basis problem
	A posteriori error analysis for the IMEX- scheme
	Computing the a posteriori error estimator


	Reduced basis method for a selection-mutation model
	Description of the model
	Variational formulation for the IMEX- scheme in the truth space
	Solving the problem in the reduced basis space
	Algebraic formulation for the time-dependent reduced basis problem
	A posteriori error analysis for the IMEX- scheme
	Computing the a posteriori error estimator


	Conclusion and Outlook

