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Abstract

This work presents a theoretical analysis for an a posteriori error estimate for
a reduced-basis approximation of the solution for two parametrised parabolic prob-
lems. Their motivation is in mathematical oncology and they describe a) a model
for brain tumour growth [14] and b) a model for phenotype evolution of a tumour
based on [3, 13], with the free parameter being the therapeutic dose. The dis-
cretisation of the problems in space is realised by the �nite element method, and
the numerical integration uses a �rst-order IMEX scheme due to model b) being
a integro-di�erental problem. The obtained a posteriori error estimatefor the ap-
proximation error between the numerical solution and the reduced basis solution
gives the opportunity for constructing a reduced basis for the solution manifold by
combining a proper orthogonal decomposition of the temporal trajectories and a
greedy algorithm over the parameter range, as has been done in the case of explicit
or implicit integration of linear parabolic problems [8, 10].

Ðåçþìå

Ïðåäñòàâåí å òåîðåòè÷åí àíàëèç íà àïîñòåðèîðíà îöåíêà íà ãðåøêàòà ïðè
ïðèáëèæåíî ðåøàâàíå íà äâå ïàðàìåòðè÷íè ïàðàáîëè÷íè çàäà÷è ïî ìåòîäà íà
ðåäóöèðàíèÿ áàçèñ. Ìîòèâàöèÿòà èì èäâà îò ìàòåìàòè÷åñêàòà îíêîëîãèÿ è òå
îïèñâàò à) ìîäåë çà ðàñòåæ íà ìîçú÷åí òóìîð îò [14] è á) ìîäåë çà ôåíîòèïíà
åâîëþöèÿ â òóìîð, îñíîâàí íà ñòàòèèòå [3, 13], ñúñ ñâîáîäåí ïàðàìåòúð òåðàïåâ-
òè÷íà äîçà. Äèñêðåòèçàöèÿòà íà çàäà÷àòà â ïðîñòðàíñòâîòî å îñúùåñòâåíà
ñ ïîìîùòà íà ìåòîäà íà êðàéíèòå åëåìåíòè, à çà ÷èñëåíîòî èíòåãðèðàíå å
èçïîëçâàíà IMEX ñõåìà îò ïúðâè ðåä, òúé êàòî ìîäåëúò á) å èíòåãðî-äèôåðåí-
öèàëåí. Ïîëó÷åíàòà àïîñòåðèîðíà îöåíêà íà ãðåøêàòà íà àïðîêñèìàöèÿ íà
÷èñëåíîòî ðåøåíèå ñ ðåøåíèåòî ïî ìåòîäà íà ðåäóöèðàíèÿ áàçèñ äàâà âúçìîæ-
íîñò çà ïîñòðîåíèå íà ðåäóöèðàí áàçèñ íà ìíîæåñòâîòî îò ðåøåíèÿòà ÷ðåç
ñú÷åòàâàíå íà ïðàâèëíî îðòîãîíàëíî ðàçëàãàíå íà âðåìåâèòå òðàåêòîðèè è
àë÷åí àëãîðèòúì â äèàïàçîíà íà ïàðàìåòúðà, êàêòî å íàïðàâåíî â ñëó÷àÿ íà
ÿâíî èëè íåÿâíî èíòåãðèðàíå íà ëèíåéíè ïàðàáîëè÷íè çàäà÷è [8, 10].
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Chapter 1

Introduction

Reduced basis (RB) methods are a tool for model order reduction, and are used in ap-
proximating the solutions to parametrised partial di�erential equation by solutions to
problems of lower numerical complexity that are computationally cheaper and faster to
implement. The RB methods' strength stems from the property that the set of solutions
of the given high-�delity problem typically in a �nite element space of very high dimen-
sion can be approximated by linear combinations of basis elements of a subspace of much
lower dimension (the reduced basis space). The possibility to achieve a approximation
with reasonable accuracy of the set of solutions by means of bases in low-dimensional
subspaces arises from its regularity (compactness, smoothness, analyticity) and the para-
metric complexity of the original problem and the regularity of the parameter-dependent
terms.

To construct a good reduced basis, one relies on principal component analysis or
greedy algorithms. The e�ciency of the greedy algorithms relies crucially on a posteriori
estimates for the error between the high-�delity solution and the reduced basis solution
for every parameter value. The success of the method depends on the capacity to evaluate
the solution for any new free parameter value at a cost independent of the dimension of
the original problem [12, 15].

Recent applications of the method [6] include applications to problems from the en-
gineering sciences or physics and cover

• various linear and non-linear elliptic problems,

• linear parabolic problems [8, 10],

• the Navier-Stokes equations.

The method has not yet been applied to problems in biomedical applications. The
di�culties involve not only the higher non-linear complexity stemming from the coupling
of the variables, but also from the choice of appropriate stable time-integration schemes.

Mathematical models for tumour growth and onco-immune interactions are based on
partial di�erential equations, integro-di�erential equations, cellular automata and multi-
scale models. Many tumour growth models involve non-local and non-linear problems
related to the biological properties of the system. Some are computationally intensive
in case the domain of de�nition requires a �ne mesh to capture spatial inhomoigeneities,
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or involve repetitive solving for di�erent parameter values if the model strives to �nd an
optimal treatment strategy among di�erent drug regimes.

In this study we develop a theoretical framework for the a posteriori estimator to
be used in the reduced basis method applied to parameter-dependent problems with
motivation from oncology. We consider a model for tumour growth in the brain from [14]as
well as a phenotype selection model under the action of chemotherapy based on models [3,
13]. The models are solved using �rst-order-in-time implicit-explicit (IMEX) methods and
a variational formulation based on the �nite element method.

1.1 Function spaces

We recall the following function spaces to be used in the analysis. Let Ω be a compact
set in R2 or R3. The spaces of Lebesgue-integrable functions on Ω are de�ned as

• L1(Ω) = {f −measurable |
∫

Ω
|f(x)| dx <∞}

• L2(Ω) = {f −measurable |
∫

Ω
|f(x)|2 dx <∞} which is a Hilbert space with inner

product 〈·, ·〉

• L∞(Ω) = {f −measurable | esssupx∈Ω|f(x)| <∞}

with the standard norms.
Let the gradient ∇f = (∂xf, ∂yf) if Ω ⊂ R2, and ∇f = (∂xf, ∂yf, ∂zf) if Ω ⊂ R3. The

Sobolev space H1(Ω) is de�ned as

H1(Ω) = {f ∈ L2(Ω)|∇f ∈ [L2(Ω)]d}, d = 2, 3 .

H1(Ω) is a Hilbert space with inner product inherited from the L2-inner product:

〈u, v〉H1
def

= 〈u, v〉+ 〈∇u,∇v〉 .

The notation for the norm of the gradient shall be ‖∇f‖L2
def

= (‖∂xf‖L2 + ‖∂yf‖L2)1/2

or (‖∂xf‖L2 + ‖∂yf‖L2 + ‖∂zf‖L2)1/2 respectively. The H1-norm is de�ned by the inner
product

‖f‖h1 = (‖f‖2
L2 + ‖∇f‖2

L2)1/2.

In our analysis we shall consider �nite element spaces Vh ⊂ H1(Ω) which inherit the
inner product from the Sobolev space.

The domain Ω is subjected to a triangulation Th which covers it completely:

Ω̄ =
⋃

∆K∈Th

∆K

Based on Th, a �nite element space Vh of dimension Nh is constructed to �nd an approx-
imate solution of the problem. The pair (Th,Vh) satis�es the classical assumptions on
regularity, a�ne equivalence and compact support of the �nite element functions [5, p.
132].

The triangulation Th is also quasi-uniform [5, 16, 17] in the sense that

∃ν > 0 : hν < min
∆K∈Th

diam(∆K) ≤ max
∆K∈Th

diam(∆K) ≤ h .
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Figure 1.1: An example of a triangulation of the unit square which is regular and quasi-
uniform generated in FreeFem++ [11].

Thus, the �nite element approximation space Vh is de�ned as the set of continuous
functions on the closure of Ω whose restriction to the triangle is a poynomial of degree
m,m = 1, 2:

Vh = {ϕ ∈ C(Ω̄) : ϕ|∆K
∈ Pm,∀∆K ∈ Th} .

The basis {ϕi}Nhi=1 of Vh consists of shape functions ϕi (dependent on the degree m)
de�ned on the triangles ∆K ∈ Th. The literature on the construction and properties of
�nite element spaces is extensive and we refer to the books [2, 5, 16] for further details.

It is well known that such �nite element spaces satisfy inverse inequalities in Sobolev
space norms, and in the subsequent analysis, we will use the following inequality [5,
(3.2.25)] in particular:

‖∇φ‖2
L2 ≤

cΩ

h2
‖φ‖2

L2 , ∀φ ∈ Vh . (1.1)

where the constant cΩ depends on the domain Ω.

1.2 Parametrised parabolic problem

We are interested in solving numerically the parametrised problem

∂tu(t, x) = L(u, t, x, µ), t ∈ (0, Tmax], x ∈ Ω (1.2)

where the operator L is elliptic and depends on a free parameter µ, which takes values
in a compact setM.

We make no particular assumptions on L (those are problem-dependent), and so
for the moment we assume that due to su�cient regularity, the exact solution of (1.2)
u(t, ·;µ) ∈ H1(Ω) for all t ∈ (0, Tmax]. The solution u(·;µ) will depend (in a nonlinear
way) on µ. The equation (1.2) is complemented by appropriate boundary conditions on
∂Ω and initial data u(0, ·) = u0 ∈ H1(Ω).

We seek a numerical approximation uh(t, x) of the exact solution u(t, x) of (1.2) in a
�nite element approximation space Vh, which comes from a variational formulation. The
equation (1.2) in semi-discrete variational form is:

〈∂tu, φ〉+ a(u, φ;µ) = 〈b(u;µ), φ〉, ∀φ ∈ Vh , (1.3)
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where the inner product 〈·, ·〉 on Vh×Vh is inherited from L2×L2 and a(·, ·;µ) is a bilinear
form on Vh × Vh inherited from H1 × H1, and b(u;µ) is some advective, nonlinear (or
integral) term in u, which cannot be resolved in a reasonable implicit manner.

Normally the numerical discretisation of a(·, ·;µ) (numerical Laplacian) translates to
a sti� matrix which must be solved for in an implicit manner in order to maitain the
numerical stability of the integration scheme without placing severe restriction on the
discretisation in time.

Hence, we resort to implicit-explicit (IMEX) schemes which take care of these issues.
We �x the value µ and denote by ukh(µ) the approximation of u(kτ, ·) at the uniformly-
spaced time layers kτ, k = 0, 1, . . . kmax for some τ > 0. Uh(µ) shall denote the numerically
computed solution trajectory for the parameter µ, that is, the sequence of solutions of the
parametrised parabolic problem for the parameter value µi (1.2) at these discrete time

layers, that is Uh(µi)
def

= {ukh(µi)}k=0,1,...kmax .

1.3 Time-integration IMEX schemes

We choose a uniform-in-time grid with time step τ , with nodes tk = kτ, k ∈ N, to write
out the fully discrete spatio-temporal scheme. For sake of shortness, we drop the µ and
set

b(k)(φ)
def

= 〈b(uk), φ〉, k ∈ N.
The trajectory Uh(µ) which approximates the exact solution to the parabolic prob-
lem (1.3) obtained by the above numerical scheme, shall be referred to as a high-�delity
solution.

An overview of IMEX schemes is done in [1], which we recall in more detail.
If (1.3) were a pure reaction-di�usion problem, �rst-order-in-time schemes could be a

reasonable choice. The �rst-order-in-time IMEX scheme from [1], which we denote here
as IMEX-θ scheme (with parameter 0 ≤ θ ≤ 1), writes as

〈uk+1, φ〉+ τθa(uk+1, φ) = 〈uk, φ〉+ τb(k)(φ)− τ(1− θ)a(uk, φ) (1.4)

Note that the choice θ = 0 is a fully explicit scheme (forward Euler), and the choice θ = 1
represents the semi-implicit backward di�erentiation formula (semi-implicit BDF). Note
further that the choice θ = 1

2
would be the Crank-Nicholson scheme whenever b(k)(u) = 0.

Thus, the IMEX-θ scheme is not the same as the θ-scheme for parabolic problems [16,
Chapter 11.3].

Among the second-order-in-time schemes proposed in [1] are

1. Crank-Nicholson Adams-Bashford (CNAB)

〈uk+1, φ〉+
τ

2
a(uk+1, φ) = 〈uk, φ〉 −

τ

2
a(uk, φ) +

3τ

2
b(k)(φ)− τ

2
b(k−1)(φ) , (1.5)

2. modi�ed CNAB (MCNAB)

〈uk+1, φ〉+
9τ

16
a(uk+1, φ) = 〈uk, φ〉 −

3τ

8
a(uk, φ)− τ

16
a(uk−1, φ)

+
3τ

2
bk(φ)− τ

2
bk−1(φ) , (1.6)
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3. Semi-backward di�erentiation formula (SBDF)

3

2
〈uk+1, φ〉+ τa(uk+1, φ) = 2〈uk, φ〉 −

1

2
〈uk−1, φ〉+ 2τbk(φ)− τbk−1(φ) . (1.7)

The schemes (1.5)-(1.7) will prove to be more useful in applications to problems with
advective terms, such as the model (3.2).

1.4 Reduced basis approximation of the solution

If the parabolic problem (1.3) needs to be solved in a multi-query context (e.g. for the
needs of a optimisation problem), for many values of the parameter µ, a direct approach
may turn out to be too expensive numerically. The structure of the solution manifold
Uh = ∪µ∈MUh(µ) can be exploited to reduce the complexity if it is a compact set. In
particular, we quote the following

�A central assumption in the development of any reduced model is that
the solution manifold is of low dimension, i.e., that the span of a low number
of appropriately chosen basis functions represents the solution manifold with
a small error.�

� [12, p.28]

We thus seek an approximation of the high-�delity solutions Uh(µ) = {ukh(µ)}k of the
parabolic problem (1.3) in Vh inside a lower-dimensional subspace of Vh. Our aim is to
approximate the solution Uh(µ) by a reduced basis (RB) solution Urb(µ), a method that
is essentially a Galerkin-type projection.

Urb(µ) is given as a linear combination of elements of a reduced basis {ξi}Ni=1 for
a subspace of Vh, called a reduced basis space VN

rb. This subspace is extracted from
the solutions of the high-�delity problem some carefully chosen subset of parameters
M∗ ⊂ M, with VN

rb ⊂ ∪µ∈M∗Uh(µ). As long as the approximation error between the
high-�delity solution Uh(µ) and the reduced basis solution Urb(µ) remains su�ciently
small for every value of µ, the reduced basis approximation to the high-�delity solution
has a guaranteed accuracy [12, 15]. The estimation of the approximation error is central
to the performance of the method.

In algebraic terms, if V ∈ RN×Nh is the matrix whose columns are formed by the
reduced basis elements {ξi}Ni=1, the RB method seeks an approximation of ukh(µ) of the
form Vuµk ,u

µ
k ∈ RN . In the case of IMEX scheme, ukh(µ) typically results from solving a

linear problem at every time layer k,

Ak(µ)ukh(µ) = f (k−1)(µ) .

From the point of view of the reduced basis, this is equivalent to solving

Ak(µ)uµk = f (k−1)(µ)

where the new sti�ness matrix Ak(µ) = VTAk(µ)V and the new load vector f (k−1)(µ) =
VTf (k−1)(µ) are obtained as projections onto the RB space or operators on it. Observe
that Ak(µ) ∈ RN×N , f (k−1)(µ) ∈ RN , so the problem dimension has been reduced.
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Such a method will be e�cient as long as the sti�ness matrices Ak(µ), the load vectors
f (k−1)(µ) and the approximation error estimators of the reduced basis approximation (1.3)
have an a�ne dependence on the parameter µ [15]. Indeed, if this is possible, then they
can be assembled via parameter-independent precomputed building blocks for each new
value of µ. In this way, if repeated queries for the solution of (1.3) for di�erent µ are
needed, they can be computed at a lower computational cost. Furthermore, we want
the computation of approximate solution in Vrb for the di�erent parameter values µ to
remain independent of dimVh.

1.4.1 O�ine and online phases

The construction of the reduced basis of least possible dimension that meets the accuracy
criterion may be computationally intensive, but is done just once during the o�ine stage.
Snapshot solutions of the high-�delity problem, uh(µ) for carefully chosen values µ ∈M∗
of the parameter will be orthonormalised to form the basis {ξi}Ni=1 via proper orthogonal
decomposition (POD) or principal component analysis (PCA) [], greedy algorithm, a
combination of both [8, 9, 15, 12]. The choice of a su�ciently rich parameter sample
set M∗ can be done in by uniform sampling [15, p. 69] or a nonlinear optimisation
problem [18]. At this stage all parameter-independent objects (sti�ness matrices and
load vectors) for (1.3) will be computed by projection onto Vrb and stored.

During the online stage the computation of the RB solution for a new parameter value
shall involve the computation of the respective RB objects (sti�ness matrices and load
vectors) from those obtained during the o�ine phase. Next the expansion coe�cients uµk
will be computed and the RB solution will be assembled from Vuµk . It is clear that the
objects computed during the o�ine phase and the assembled during the online phase RB
objects will depend on the problem at hand. Details on the algebraic formulation of the
problem for computing uµk for the the considered in this report parabolic problems are
given in Sections 2.3.1 and 3.3.1.

The o�ine and online stages are summarised in the �owchart (1.2).

1.4.2 Reduced basis construction via the POD-greedy algorithm

In the reduced basis context the greedy algorithm is readily used for construction RB
solutions for elliptic problems. The algorithm constructs successive elements of the basis
(it basically follows a process of basis re�nement). It enriches at every step the subspace
by adding an additional reduced basis element associated to the snapshot uh(µ) for pa-
rameter value µ that maximises the approximation error between the snapshot uh(µ) and
its projection onto the RB basis constructed thus far urb(µ),

µ = arg max
µ∈M
‖uh(µ)− urb(µ)‖Vh

and is computationally e�cient as long as the approximation error ‖uh(µ)−urb(µ)‖Vh can
be estimated easily by an estimator ∆(µ). This leads to a sequence of nested subspaces
of Vrb until the desired accuracy between the truth and the reduced basis solution is
reached.

Following [12, 15], we shall use a su�ciently dense subset ofM as a training sample
for the algorithm, and denote it by Ξtrain = {µ`}, 1 ≤ ` ≤ m.
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OFFLINE STAGE

Parametrised PDE on Vh

Truth problem

discretisation

Ah(µ)uh(µ) = fh(µ) with
Ah(µ) =

∑
j θ

a
j (µ)A

j
h,

f(µ) =
∑
j θ

f
j (µ)f

j
h

Generation of

snapshots {uµi

h }i

Construction of RB {ξj}
and RB matrix V def

= [ξj ]

Projection onto RB

space Vrb: Aj def

=

VTAjhV, f j
def

= VT f jh

ONLINE STAGE

Input parameter µ

Assembly of RB system

Arb(µ) =
∑
j θ

a
j (µ)Aj ,

f(µ) =
∑
j θ

f
j (µ)f

j

Solving RB system

Arb(µ)u
µ
rb = f(µ)

RBM solution

urb(µ) = Vuµrb
Error estimate

‖uh(µ)− urb(µ)‖

Figure 1.2: Flowchart of the reduced basis method (after [15, p. 9]).

In the context of the parabolic problem (1.2) the greedy algorithm can be comple-
mented by a proper orthogonal decomposition step. This is done to minimise redundancy
of storage of basis elements and to avoid possible stalling of the algorithm as discussed
in [9]. Due to the fact that the solution trajectory may be convergent to some value, it
is advantageous to compress it using proper orthogonal decomposition (POD).

We recall that the POD �nds the basis {ζj}mj=1 of that particular m-dimensional
subspace Y of Uh(µi), whose basis functions solve the minimisation problem(

1

kmax

kmax∑
k=1

inf
v∈Y

dimY=m

‖ukh(µi)− v‖2
Vh

)1/2

→ min .

In this way the information contained in Uh(µi) is compressed before searching for the
next RB element.

Here is the proposed algorithm which intertwines a POD step with a greedy step [15].

The POD-greedy algorithm:
Input: Ξtrain, N1, N2 ∈ N, N2 < N1, N = 0, ` = 1,Z = ∅, ε
Output: Vrb, N
While (∆(µ`+1) < ε) do 1-7

1. Compute the trajectory for µ`:

Uh(µ`)← {u1
h(µ`), u

2
h(µ`), . . . u

kmax
h (µ`)}

2. Compress U(µ`) and retain the N1 principal nodes using the POD:

{ζj}N1
j=1 ← POD(Uh(µ`), N1)

9



3. Enrich the basis Z ← Z ∪ {ζj}N1
j=1

4. Set N ← N +N2, and find the N principal nodes {ξj}Nj=1 ← POD(Z, N)

5. Vrb ← span{ξj}Nj=1

6. Set
µ`+1 := arg max

µ∈Ξtrain
∆(µ) . (1.8)

7. Set `← `+ 1

Observe on every iteration of the POD-greedy algorithm we add one more orthonor-
malised solution trajectory whose approximation is worst by the RB space with ` ele-
ments, unless the desired tolerance ε is reached .

From the construction setup of the algorithm for the parabolic RB problem we have
to assume that the initial data u0 at t = 0 lies in the RB space Vrb. Furthermore, for
the algorithm to be computationally e�cient, the approximation error ‖uh(µ)−un(µ)‖Vh
should be an easily estimated by means of a posteriori estimator:

‖uh(µ)− un(µ)‖Vh ≤ ∆(µ), ∀µ ∈M, (1.9)

For practical implementation,M must be replaced by a �nite training set Ξtrain, and the
solution of the optimisation problem (1.8) is reduced to a sorting problem of ∆(µ), µ ∈
Ξtrain to choose the snapshot with the largest a posteriori estimator. If the computation
of ∆(µ) is inexpensive and independent of Nh, Ξtrain can be chosen to be large. The
algorithm ends when we reach the prescribed accuracy ε: maxµ∈Ξtrain ∆N(µ) < ε.

In the subsequent analysis we shall construct such a posteriori estimators for two
parabolic problems describing the growth of a glioma tumour in the brain (Chapter 2)
and the drug-induced phenotype evolution inside a tumour (Chapter 3). The time-
integration schemes are based on a �rst-order implicit-explicit (IMEX) method (IMEX-θ
method (1.4)).
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Chapter 2

Reduced basis method for a glioma

model

2.1 Description of the model

We use the model for glioma growth from [14, p.543�]

∂u

∂t
= ∇ · J + β(x, t, µ)u, x ∈ Ω (2.1)

where u(x, t) denotes the tumour cell density at a position x and time t. The function
β(x, t, µ) represents the net rate of growth of cells including proliferation and death
(or loss) due to time-varying chemotherapy with dose µ. The di�usional �ux of cells,
denoted by J, is taken as proportional to the gradient of the cell density, J = α(x)∇u.
The di�usion coe�cient α(x) in all generality takes into account the spatial heterogeneity
inside the brain domain Ω (white vs. grey matter, see [14]):

α(x) =

{
d1, x ∈ Ω0

d2, x ∈ Ω \ Ω0

Equation (2.1) is complemented by Neumann boundary condition on ∂Ω:

n · (α(x)∇u) = 0 (2.2)

where n is the unit normal to the boundary ∂Ω of Ω.
The initial data at t = 0 is Gaussian, as in [14] and the net rate of growth σ is

exponential in the absence of treatment and independent of x:

β(x, µ) = σ − κ(t)µ .

The function κ(t) describes the temporal pro�le of the treatment [14, Eq. (11.52)].

2.2 Variational formulation for the IMEX-θ scheme in

the truth space

To solve the problem (2.1) numerically, we use a variational approach, and denote hence-
forth the �nite element approximation space Vh as the truth space [12, 15]. Fix the

11



value of µ. We assume the solution of (1.4) is approximated by a sequence of func-
tions in Vh, Uh(µ) = {ukh(µ)|k = 0, 1, . . . kmax} with su�cient accuracy. Each time layer
ukh(µ) is a solution in Vh obtained from the chosen time integration scheme for time layer
kτ, k = 0, 1, . . . kmax with kmaxτ = Tmax. This solution is denoted as a truth solution or
high �delity approximation [12, 15].

Since (2.1) is a pure reaction-di�usion problem with a linear reaction, �rst-order in
time schemes are a reasonable choice for computing the truth solutions Uh(µ). The
IMEX-θ scheme (0 ≤ θ ≤ 1) [1, 16] for the equation (2.1) takes the following form:

〈ukh(µ), φ〉+ θτ · a(ukh(µ), φ) = 〈uk−1
h (µ), φ〉

− (1− θ)τ · a(uk−1
h (µ), φ) + 〈β((k − 1)τ, µ)uk−1

h (µ), φ〉, ∀φ ∈ Vh,
(2.3)

The bilinear form a in (2.3) is de�ned as

a(u, v)
def

=

∫
Ω

α(x)∇u · ∇v dx . (2.4)

Due to the inhomogeneous nature of the brain domain (presence of subregions of white
or grey matter [14]), the triangulation must be su�ciently re�ned, which requires very
large Nh. However, the solutions of the parabolic problem (2.3) for various parameter
values µ ∈M may lie within a subspace of a lower dimension than Nh.

We seek an approximation of the solutions of the parabolic problem (2.3) for various
parameter values µ ∈M inside a lower-dimensional subspace of Vh by applying a reduced
basis framework. In other words, we aim at approximating the solutions in the truth space
by the basis elements {ξi}Ni=1 of a subspace of Vh, which we call a reduced basis space VN

rb,
such that the approximation error resulting from the approximation of the truth solution
Uh(µ) by the reduced basis solution Urb(µ) ∈ VN

rb stays within a prescribed tolerance.
Furthermore, we want the computational cost of the reduced basis solution in Vrb for the
di�erent parameter values µ to remain independent of Nh. We refer to the �owchart on
Figure 1.2.

2.3 Solving the problem in the reduced basis

Assume that the reduced basis space V N
rb

def

= span{ξi}Ni=1 ⊂ Vh of dimension N � Nh has
already been found. Let ukrb(µ) be the reduced basis approximation in Vrb to the truth
solution ukh(µ) at time layer t = kτ for a given µ.

The equality (2.3) implies that the reduced basis solutions ukrb(µ) satisfy

〈ukrb(µ), φrb〉+ θτ · a(ukrb(µ), φrb) = 〈uk−1
rb (µ), φrb〉

− (1− θ)τ · a(uk−1
rb (µ), φrb) + 〈β((k − 1)τ, µ)uk−1

rb (µ), φ〉, ∀φrb ∈ Vrb .

(2.5)

2.3.1 Algebraic formulation for the time-dependent reduced ba-

sis problem

As in [12, Chapter 6.1], we seek the coe�cients of the representation of a reduced basis
solution {ukrb(µ)} ∈ Vrb, 0 ≤ k ≤ kmax in the basis {ξi}Ni=1 of Vrb, which satis�es (2.5).
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Fix k and let {uµk,i}Ni=1 be the coe�cients of the representation of u
k
rb(µ) in the reduced

basis Vrb:

ukrb(µ) =
N∑
i=1

uµk,iξi . (2.6)

Then we test (2.5) with all elements in the reduced basis, ξj, 1 ≤ j ≤ N and we obtain a
linear system for {uµk,i}Ni=1 in terms of the coe�cients of the representation on the previous

(k − 1)-st time layer, {uµk−1,i}Ni=1:

N∑
i=1

uµk,i〈ξi, ξj〉+ θτ
N∑
i=1

uµk,ia(ξi, ξj) =
N∑
i=1

uµk−1,i〈ξi, ξj〉

− τ`k−1(ξj;µ)− (1− θ)τ
N∑
i=1

uµk−1,ia(ξi, ξj), ∀ξj ∈ Vrb .

(2.7)

Here in the right-hand side we let

`k−1(ξj;µ)
def

= p
(k−1)
1 (ξj)− µκ(t)p

(k−1)
2 (ξj) , (2.8)

with the individual summands being respectively:

p
(k−1)
1 (ξj) = σ

N∑
i=1

uµk−1,i〈ξi, ξj〉 (2.9a)

p
(k−1)
2 (ξj) = µκk−1

N∑
i=1

uµk−1,i〈ξi, ξj〉 (2.9b)

In (2.9b) we denote κk−1
def

= κ((k − 1)τ).
Using this setup we rewrite the linear problem in matrix notation:

(M + θτA)uµk = (M− (1− θ)τA)uµk−1 + τLµk−1u
µ
k−1 (2.10)

where
Lµk−1 = P1 − µP(k−1)

2 . (2.11)

and M,A,P1,P(k−1)
2 are matrices that can be computed and stored during the o�ine

stage because they are independent of µ. They are de�ned in the following manner:

M : (M)ij
def

= 〈ξi, ξj〉,

A : (A)ij
def

= a(ξi, ξj),

P1
def

= σM, P(k−1)
2

def

= κk−1M .

Finally, the solution resulting in the reduced basis approximation is recovered from uµk
via the RB matrix V = [ξi], via the relation Urb(µ) = {ukrb(µ)}, ukrb(µ)

def

= Vuµk .
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2.3.2 A posteriori error analysis for the IMEX-θ scheme

Our goal is use a carefully chosen sequence of snapshots {ukh(µ)|k = 0, 1, . . . kmax, µ ∈
Ξ′train} to �nd a reduced basis that can approximate well the solution for all µ ∈M, that
is, to keep the approximation error

‖uh(µ)− urb(µ)‖Vh
below a given error threshold.

The construction of the reduced basis from the snapshots will be performed during
the o�ine phase via the POD-greedy algorithm. The choice of points in the parameter
training set Ξtrain shall be assumed by some appropriate sampling procedure. We shall
use a greedy algorithm with a posteriori error estimates approximation error between the
truth solution (2.3) and the reduced basis solution (2.5). These estimates will be derived
in a later section. The computation of the approximated particular solution Uh(µ) for a
given µ is done in the online phase and based on the computation of its coe�cients in
the reduced basis expansion explained in the Section 2.3.1

In order to construct an e�cient error estimate for use inside the POD-greedy algo-
rithm that successively re�nes the reduced basis with new elements, we have to be able
to estimate how the approximation error changes by adding an additional element to the
basis. This is done by a posteriori error analysis rooted in carefully chosen residuals
whose computation can be made in an e�cient manner.

Here we shall derive a general estimate for the approximation error based on the
IMEX-θ scheme for a parametrised semilinear reaction-di�usion problem of the form:

∂tu− α(µ)∆u = f(u;µ), u ∈ H1(Ω), t ∈ (0, Tmax) (2.12)

with parameter µ ∈M. In addition let f(·;µ) be Lipschitz continuous:

|f(z;µ)− f(z′;µ)| ≤ `f (µ)|z − z′|, sup
µ
`f (µ) = `sup, (2.13)

with u subject to a given initial datum u0 and Neumann boundary conditions on ∂Ω. We
remark that the model (2.1) is a special case of such a semilinear parabolic problem.

The IMEX-θ scheme (0 ≤ θ ≤ 1) for the truth solution of(2.12) in a �nite element
approximation space Vh ⊂ H1(Ω) for a �xed µ writes as

〈uk+1
h (µ)− ukh(µ), φ〉+ τa(θuk+1

h (µ)

+ (1− θ)ukh(µ), φ;µ) = τ〈f(ukh(µ);µ), φ〉, ∀φ ∈ Vh. (2.14)

where the bilinear form is de�ned as

a(u, v;µ)
def

=

∫
Ω

α(µ)∇u · ∇v dx . (2.15)

Assume that a(·, ·;µ) ful�ls the following criteria which determine its coercivity and
continuity:

amin‖u‖2
H1 ≤ |a(u, u;µ)|, ∀u ∈ H1(Ω) with amin

def

= inf
µ
α(µ)

|a(u, v)| ≤ amax‖u‖H1‖v‖H1 with amax
def

= sup
µ
α(µ) .

(2.16)
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By assumption the coercivity and continuity constants satisfy 0 < amin ≤ amin <∞.
De�ne the approximation error between the truth and the reduced basis solution at

time layer kτ as ek
def

= ukh−ukrb ∈ Vh. Using (2.14) we work towards an evolution equation
for the error:

1

τ
〈ek+1 − ek, φ〉+ a(θek+1 + (1− θ)ek, φ;µ)

= 〈f(ukh), φ〉 −
1

τ
〈uk+1

rb , φ〉 − θa(uk+1
rb , φ;µ) +

1

τ
〈ukrb, φ〉 − (1− θ)a(ukrb, φ;µ)

= 〈f(ukh)− f(ukrb), φ〉 − 1

τ
〈uk+1

rb − u
k
rb, φ〉

− a(θuk+1
rb + (1− θ)ukrb, φ;µ) + 〈f(ukrb), φ〉, ∀φ ∈ Vh .

Denote the residual of the reduced basis solution urb on time-layer k + 1 by

rk+1(φ;µ) = 〈f(ukrb), φ〉− 1

τ
〈uk+1

rb −u
k
rb, φ〉−a(θuk+1

rb +(1−θ)ukrb, φ;µ), ∀φ ∈ Vh. (2.17)

Using the residual we have the following evolution equation for the error ek+1:

1

τ
〈ek+1 − ek, φ〉+ a(θek+1 + (1− θ)ek, φ;µ)

= 〈f(ukh)− f(ukrb), φ〉+ rk+1(φ;µ), ∀φ ∈ Vh . (2.18)

We seek a posteriori error estimates for the error ek based on the residual (2.17). We
de�ne the norm of the residual rk+1 in the dual space V′h as

‖rk+1(·;µ)‖∗
def

= sup
φ∈Vh

|rk+1(φ;µ)|
‖φ‖H1

. (2.19)

Note that the H1-norm and the L2-norms are equivalent on the �nite-dimensional �nite
element approximation space Vh. Since rk+1 is a linear functional on Vh ⊂ H1(Ω), by
the Riesz representation theorem, there exists a unique r̃k+1 ∈ Vh such that

〈r̃k+1(µ), φ〉H1 = rk+1(φ;µ), ∀φ ∈ Vh (2.20)

and ‖rk+1(·;µ)‖∗ = ‖r̃k+1(µ)‖H1 .
Note that whenever rk+1 has an a�ne dependence on µ, the norm of the residual can

be e�ciently computed. We shall factor the residual into easily-computable summands
using the a�ne dependence in the next section.

We proceed following [16] to obtain estimates of the approximation error ek.

Proposition 1. Suppose that f is a Lipschitz-continuous function with Lipschitz constant
`sup (2.13). Let r

k(·;µ) be the residual from (2.17), with norm ‖rk(µ)‖∗ de�ned in (2.19).
Then we have the following estimates for the approximation error ek(µ) = ukh(µ)−ukrb(µ)
between the truth and the reduced basis solution in the IMEX-θ scheme.

(i) Let θ ≥ 1/2. Then

‖ek(µ)‖2
L2 ≤

τ

amin

k∑
i=1

(1 + τ
`2
sup

amin
)k−i‖ri(µ)‖2

∗ . (2.21)
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(ii) Let θ < 1/2. Assume the time step τ and the domain triangulation Th satisfy

τ
(

1 +
cΩ

h2

)
<

2amin
(1− 2θ)a2

max

. (2.22)

Then

‖ek(µ)‖2
L2 ≤ 2τCε,η

k∑
i=1

(1 + 2τ`2
supCε,η)

k−i‖ri(µ)‖2
∗ , (2.23)

for an appropriately chosen constant Cε,η which is independent of µ, τ, h.

Proof. Testing (2.18) with φ = θek+1+(1−θ)ek and doing some algebraic transformations
we have for the left-hand size of (2.18):

1

τ
〈ek+1 − ek, θek+1 + (1− θ)ek〉+ a(θek+1 + (1− θ)ek, θek+1 + (1− θ)ek;µ)

=
1

2τ
‖ek+1‖2

L2 −
1

2τ
‖ek‖2

L2 +
1

τ

(
θ − 1

2

)
‖ek+1 − ek‖2

L2

+ a(θek+1 + (1− θ)ek, θek+1 + (1− θ)ek;µ)

≥ 1

2τ
‖ek+1‖2

L2 −
1

2τ
‖ek‖2

L2 +
1

τ

(
θ − 1

2

)
‖ek+1 − ek‖2

L2

+ amin‖θek+1 + (1− θ)ek‖2
H1 ,

with the last inequality due to the coercivity of the bilinear form a.
Using the Lipschitz continuity of f given by (2.13), H�older's inequality, and the em-

bedding H1(Ω) ⊂ L2(Ω) in this order we obtain:

〈f(ukh)− f(ukrb), φ〉 ≤
∫

Ω

|f(ukh)− f(ukrb)||φ| dx

≤ `sup‖ukh − ukrb︸ ︷︷ ︸
ek

‖L2‖φ‖L2 ≤ `sup‖ek‖L2‖φ‖H1 , (2.24)

Hence, the right-hand side of (2.18) when φ = θek+1 + (1− θ)ek can be bounded by

〈f(ukh)− f(ukrb), θek+1 + (1− θ)ek〉+ rk+1(θek+1 + (1− θ)ek;µ)

≤ (`sup‖ek‖L2 + ‖rk+1(µ)‖∗) · ‖θek+1 + (1− θ)ek‖H1 .

Using next Young's inequality, for all 0 < ε ≤ 1, we have

(`sup‖ek‖L2 + ‖rk+1(µ)‖∗) · ‖θek+1 + (1− θ)ek‖H1

≤ 1

4εamin
((`sup‖ek‖L2 + ‖rk+1(µ)‖∗))2 + εamin‖θek+1 + (1− θ)ek‖2

H1

≤ 1

2εamin
(`2
sup‖ek‖2

L2 + ‖rk+1(µ)‖2
∗) + εamin‖θek+1 + (1− θ)ek‖2

H1
.
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Combining these estimates we see that

1

2τ
‖ek+1‖2

L2 −
1

2τ
‖ek‖2

L2 +
1

τ

(
θ − 1

2

)
‖ek+1 − ek‖2

L2 + amin‖θek+1 + (1− θ)ek‖2
H1

≤ 1

2εamin
(`2
sup‖ek‖2

L2 + ‖rk+1(µ)‖2
∗) + εamin‖θek+1 + (1− θ)ek‖2

H1
,

(2.25)

for all 0 < ε ≤ 1.
Now we consider two cases to continue the estimation of the approximation error.

Consider at �rst the case θ ≥ 1
2
. Then(

θ − 1

2

)
‖ek+1 − ek‖2

L2 + (1− ε)amin‖θek+1 + (1− θ)ek‖2
H1
≥ 0

and we may set ε = 1 in (2.25). After multiplying by 2 both sides of (2.25) and rearrang-
ing, we obtain:

1

τ
‖ek+1‖2

`2sup
−
(

1

τ
+
`2
sup

amin

)
‖ek‖2

L2 ≤
1

amin
‖rk+1(µ)‖2

∗, so

‖ek+1‖2
L2 −

(
1 +

τ`2
sup

amin

)
‖ek‖2

L2 ≤
τ

amin
‖rk+1(µ)‖2

∗ .

Consider next the case θ < 1
2
. From the assumption (2.22) we conclude that 1 + τ

h2

is bounded by some constant independent of τ, h. Testing (2.18) with φ = ek+1 − ek we
have

1

τ
‖ek+1 − ek‖2

L2 = −a(θek+1 + (1− θ)ek, ek+1 − ek;µ)

+ 〈f(ukh)− f(ukrb), ek+1 − ek〉+ rk+1(ek+1 − ek;µ)

≤ amax‖θek+1 + (1− θ)ek‖H1 · ‖ek+1 − ek‖H1

+ (`sup‖ek‖L2 + ‖rk+1(µ)‖∗) · ‖ek+1 − ek‖H1 . (2.26)

The inverse inequality (1.1) applied to ek+1 − ek gives us the estimate

‖ek+1 − ek‖H1 ≤
√

1 +
c

h2
‖ek+1 − ek‖L2 . (2.27)

Therefore, plugging (2.27) into (2.26) gives

1

τ
‖ek+1 − ek‖L2 ≤

√
1 +

c

h2

(
amax‖θek+1 + (1− θ)ek‖H1 + `sup‖ek‖L2 + ‖rk+1(µ)‖∗

)
Choose η, ε > 0 small enough so that the constant

κη = 2(1− ε)amin − (1− 2θ)amax(amax + η)τ
(

1 +
c

h2

)
(2.28)
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is positive. Then rearranging (2.25) we see that

1

2τ
‖ek+1‖2

L2 −
1

2τ
‖ek‖2

L2 + amin(1− ε)‖θek+1 + (1− θ)ek‖2
H1

≤ 1

2εamin
(`2
sup‖ek‖2

L2 + ‖rk+1(µ)‖2
∗) +

1

τ

(
1

2
− θ
)
‖ek+1 − ek‖2

L2

≤ 1

2εamin
(`2
sup‖ek‖2

L2 + ‖rk+1(µ)‖2
∗) +

(
1

2
− θ
)
τ
(

1 +
c

h2

)
×
(
amax‖θek+1 + (1− θ)ek‖H1 + `sup‖ek‖L2 + ‖rk+1(µ)‖∗

)2

. (2.29)

Applying the inequality

(amaxx+ y)2 ≤ a2
maxx

2 + y2 + amax(ηx
2 +

y2

η
) = amax(amax + η)x2 + (1 +

amax
η

)y2

with
x = ‖θek+1 + (1− θ)ek‖H1 , y = `sup‖ek‖L2 + ‖rk+1(µ)‖∗,

to the last term in (2.29) and rearranging we see that

1

2τ
‖ek+1‖2

L2 −
1

2τ
‖ek‖2

L2 +
κη
2
‖θek+1 + (1− θ)ek‖2

H1

≤ 1

2εamin
(`2
sup‖ek‖2

L2 + ‖rk+1(µ)‖2
∗)

+

(
1

2
− θ
)
τ
(

1 +
cΩ

h2

)
(1 +

amax
η

)(`sup‖ek‖L2 + ‖rk+1(µ)‖∗)2

≤
(

1

2εamin
+ (1− 2θ)τ

(
1 +

cΩ

h2

)
(1 +

amax
η

)

)
︸ ︷︷ ︸

≤Cε,η

(`2
sup‖ek‖2

L2 + ‖rk+1(µ)‖2
∗) .

where Cε,η is independent of h, τ . We use the positivity of κη to obtain thus:

1

2τ
‖ek+1‖2

L2 −
1

2τ
‖ek‖2

L2 ≤ Cε,η(`
2
sup‖ek‖2

L2 + ‖rk+1(µ)‖2
∗), so

‖ek+1‖2
L2 − (1 + 2τ`2

supCε,η)‖ek‖2
L2 ≤ 2τCε,η‖rk+1(µ)‖2

∗ .

Now we combine the results from both cases to obtain the error estimator. Using
Lemma 1 and the fact that the high-�delity solution and the RB solution share the same
initial data u0

h = u0
rb, e0 ≡ 0 by construction of the reduced basis, so we arrive to

‖ek‖2
L2 ≤ 2τCε,η

k∑
i=1

(1 + 2τ`2
supCε,η)

k−i‖ri(µ)‖2
∗ .

Doing these recursive computations we arrive to the statement of the Proposition.

Lemma 1. Let b > 0 and {xi}, {ri} be non-negative squences which satisfy

xi+1 − bxi ≤ ri+1, ∀i ∈ N .

Then
xk ≤ bkx0 + bk−1r1 + bk−2r2 + . . .+ brk−1 + rk, ∀k ∈ N .

Proof. By telescopic sum and induction.
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2.3.3 Computing the a posteriori error estimator

Proposition 1 provides an a posteriori error estimator for the approximation error ek(µ)
between the truth solution (2.3) and the reduced basis solution (2.5) at time layer kτ of
the form

‖ek(µ)‖2
L2 ≤ ∆k(µ) = τC1

k∑
i=1

Ck−i
2 ‖ri(µ)‖2

∗ (2.30)

with C1 > 0, C2 > 1. By virtue of (2.30), for a given solution trajectory Uh(µ), the
quantity ∆(µ) attains its maximum at k = kmax [9]. Hence it su�ces to set as the a
posteriori error estimator for the scheme (2.5):

∆k(µ)
def

= ∆kmax(µ) .

It remains to describe an e�cient manner to compute ∆(µ). Recall the norm of the
residual rk given by (2.17), which is ‖rk(µ)‖∗ = ‖r̃k(µ)‖H1 . We now use the a�ne
dependence of the reaction term for the concrete problem (glioma model) given in (2.1)
to decompose the norm of the residual into summands that are computed e�ciently
during the online stage. Using the RB expansion of ukrb, given in (2.6), we rewrite the
residual as

rk+1(φ;µ) = 〈f(ukrb), φ〉 − 1

τ
〈uk+1

rb − u
k
rb, φ〉 − a(θuk+1

rb + (1− θ)ukrb, φ)

= σ
N∑
i=1

uµk,i〈ξi, φ〉 − µκk
N∑
i=1

uµk,i〈ξi, φ〉 −
1

τ

N∑
i=1

(uµk+1,i − uµk,i)〈ξi, φ〉

−
N∑
i=1

(θuµk+1,i + (1− θ)uµk,i)a(ξi, φ), ∀φ ∈ Vh . (2.31)

Following [12] we introduce the coe�cient vector rk(µ) ∈ R4N

rk(µ)
def

= (σuµk,i,−µκku
µ
k,i,− 1

τ
(uµk+1,i − uµk,i), (θu

µ
k+1,i + (1− θ)uµk,i))

T

and the vector of forms R ∈ (V′rb)4N

R
def

= ({〈ξi, ·〉}Ni=1, {〈ξi, ·〉}Ni=1, {〈ξi, ·〉}Ni=1, {a(ξi, ·)}Ni=1) ,

leading to the following representation of the residual rk+1(φ;µ):

rk+1(φ;µ) =
4N∑
j=1

rkj (µ)Rj(φ), ∀φ ∈ Vrb . (2.32)

Let r̂j denote the Riesz representation of Rj so that 〈r̂j, φ〉H1 = Rj(φ),∀j (which is inde-
pendent of the time layer k). We obtain the following relation for the Riesz representation
of rk+1 and its norm

r̃k+1(µ) =
4N∑
j=1

rkj (µ)r̂j ⇒ ‖r̃k+1(µ)‖2
H1 =

4N∑
j=1

4N∑
j′=1

rkj (µ)rkj′(µ)〈r̂j, r̂j′〉H1 .
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The computation of the inner products 〈r̂j, r̂j′〉H1 can be done once during the o�ine
stage, because they are independent of µ. To �nd r̂j, we use its expansion in the basis
functions ϕ` of the truth space Vh, and note that for all j, ` we have

r̂j =
N∑
`=1

〈r̂j, ϕ`〉ϕ̃` =
N∑
`=1

Rj(ϕ`)ϕ̃`,

with {ϕ̃`}N`=1 being the dual (or biorthogonal basis) associated to {ϕ`}N`=1 [4]. Rj(ϕ`) is
directly computable during the o�ine stage, and we de�ne the matrix R ∈ RN×4N as

follows : R`j
def

= Rj(ϕ`). Therefore, we may compute the inner products 〈r̂j, r̂j′〉H1 by
using the Gram matrix representation of the dual basis, which is G−1, where the Gram
matrix G ∈ RN×N is de�ned as (G)ij = 〈ϕj, ϕi〉:

〈r̂j, r̂j′〉H1 = (RTG−1R)j′j ⇒ ‖r̃k+1(µ)‖2
H1 = rk(µ)TRTG−1Rrk(µ) .

We refer to [15, p. 54�] for the technical details involving the algebraic computation
of Rj` using a change of basis matrix to the basis {ϕi}Nhi=1 of the truth space Vh.
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Chapter 3

Reduced basis method for a

selection-mutation model

3.1 Description of the model

We consider the model of phenotype evolution for a cancer cell population proposed
in [3]. The cell population is structured in the phenotype space Ω = [0, 1]2, where the
cell density u(x, y, t) ≥ 0 models the density of cells with normalised level x of survival
potential and normalised level y of proliferative potential at time t ∈ [0, Tmax].

The global density of the cancer cell population at time t is given as

ρ(t) =

∫
Ω

u(x, y, t) dxdy. (3.1)

The time evolution of the structured cell population under stress-induced adaptation
during chemotherapy is given by an integro-di�erential parabolic problem:

∂u

∂t
+

∂

∂y
(v(x, µ, t)u) = F (x, y, u, µ)u+ α∆u (3.2)

where the di�usion term α∆u represents the non-genetic instability, driven by random
�uctuations in phenotype at average rate α > 0, the advection term with velocity v(x, µ, t)
models the e�ect of stress-induced adaptation of the cell proliferative potential, dependent
on the drug concentration µ, and the e�ect of selection F [3, Suppl. Material].

The functional forms of v, F in [3] are given by

v(x, µ, t) = −vµ(t)h(x− x∗), v ≥ 0, 0 < x∗ < 1

F (x, y, u, µ) = β(x, y)(1− ρ(t))− γ(x, µ)

where x∗ is a �xed number in (0, 1), β is the proliferation rate and γ is the death rate.
h(z) denotes the Heaviside function:

h(z) =

{
1, z ≥ 0,

0, z < 0

The growth law F takes into account the crowding e�ects in the tumour: when the cell
density ρ increases, the growth rate F decreases.
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In this section we consider a special case of the model (3.2) inspired by the work of [13].
We consider only mutation and selection in a population with phenotype structure (so
v ≡ 0 for all t > 0) and include the action of a cytotoxic drug that increases the removal
rate γ. Neumann boundary conditions for (3.3) are imposed as in [13]. The model
equations read:

∂u

∂t
= F (x, y, u, µ) + α∆u on Ω = [0, 1]2

F (x, y, u, µ) = (β(x, y)− ρ(t)− γ(x, y)µ)u

ρ(t) =

∫
Ω

u(x, y, t)dxdy

∂u

∂ν
= 0 on ∂Ω

(3.3)

Such models admit a unique globally stable solution [13].
We use the functional form of β, γ proposed by the authors of [3] in the model (3.3):

β(x, y) = (a1 + a2y + a3(1− x))− b3 , (3.4a)

γ(x, y) = µ(b1 + b2(1− x)) . (3.4b)

Here µ ∈ M = [0, µmax] is the range of the applicable drug dose in the chemotherapy,
and we see the death term's a�ne dependence on the drug dose parameter µ.

In order to descrtibe the o�ine and online stages of the reduced basis method for
solving (3.3), we have to recall the following preliminaries.

3.2 Variational formulation for the IMEX-θ scheme in

the truth space

We set as the truth space a �nite element approximation space Vh of dimension Nh. Fix
the value of µ. We assume the solution u(tk, ·) of (3.3) at time layers tk = kτ, k =
0, 1, . . . kmax with kmaxτ = Tmax is approximated by a sequence {ukh(µ)|k = 0, 1, . . . N}
with su�cient accuracy. Each ukh(µ) is obtained by the chosen time-integration scheme.

Unlike the glioma model presented in Chapter 2, the variational formulation of model (3.3)
consists of a sti�-term (the numerical Laplacian) and an integral term (the integral
ρ(t) =

∫
Ω
u(x, y, t) dxdy), that cannot be solved for numerically at each time layer.

Hence, we must resort to an IMEX scheme for the time integration. Due to (3.3) being
a reaction-di�usion system with a low order non-linearity (it is quasi-linear in a sense),
it is su�cient to use a �rst-order scheme as long as we use �nite element spaces of higher
order to increase the accuracy in the approximation of the integral term ρ(t).

The scheme (1.4) is rewritten as

〈ukh(µ), φ〉+ θτ · a(ukh(µ), φ;µ) = 〈uk−1
h (µ), φ〉

− (1− θ)τ · a(uk−1
h (µ), φ;µ) + (F (uk−1

h (µ)), φ;µ), ∀φ ∈ Vh,
(3.5)
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with the last term on the right-hand side de�ned as

(F (uk−1
h (µ)), φ;µ)

def

= τp
(k−1)
1 (φ;µ)− µτp(k−1)

2 (φ;µ)− τp(k−1)
3 (φ;µ)

p
(k−1)
1 (φ;µ) = 〈uk−1

h (µ)β(·), φ〉
p

(k−1)
2 (φ;µ) = 〈uk−1

h (µ)γ(·), φ〉

p
(k−1)
3 (φ;µ) = ρk〈uk−1

h (µ), φ〉 with ρk−1 =

∫
Ω

uk−1
h (µ) dxdy,

(3.6)

for a given parameter value µ.
We seek an approximation of the solutions of the evolution problem (3.5) for various

parameter values µ ∈ M inside a subspace of Vh of much lower dimension. As for
the glioma model, we aim at approximating the solutions in the truth space by the basis
elements {ξi}Ni=1 of a subspace of Vh, which we call a reduced basis space VN

rb, such that the
approximation error resulting from the approximation of the truth solution Uh(µ) by the
reduced basis solution Urb(µ) ∈ VN

rb stays within a prescribed tolerance. Furthermore, we
want the computational cost of the reduced basis solution in VN

rb to remain independent
of Nh for the di�erent parameter values µ.

3.3 Solving the problem in the reduced basis space

Our analysis of the RB solution begins with the variational formulation. We denote a

reduced basis space VN
rb

def

= span{ξi}Ni=1 ⊂ Vh of dimension N � Nh. Let ukrb(µ) be the
reduced basis approximation in VN

rb to the truth solution ukh(µ) at the time layer kτ for
a given µ. The equality (3.5) implies that the reduced basis solution ukrb(µ) satis�es

〈ukrb(µ), φ〉+ θτ · a(ukrb(µ), φ;µ) = 〈uk−1
rb (µ), φ〉

− (1− θ)τ · a(uk−1
rb (µ), φ;µ) + (F (uk−1

rb (µ)), φ;µ), ∀φ ∈ Vrb .
(3.7)

3.3.1 Algebraic formulation for the time-dependent reduced ba-

sis problem

As in [12, Chapter 6.1], we seek the coe�cients of the basis expansion of the reduced
basis solution {ukrb(µ)} ∈ VN

rb, 0 ≤ k ≤ kmax, which satis�es (3.7).
Fix k and let {uµk,i}Ni=1 be the coe�cients of the representation of u

k
rb(µ) in the reduced

basis Vrb (see (2.6) in the discussion of the glioma model). Then we test (3.7) with all
φ = ξj, 1 ≤ j ≤ N and we obtain a system of N equations for {uµk,i}Ni=1 in terms of the

coe�cients of the representation on the previous k − 1-st time layer, {uµk−1,i}Ni=1

N∑
i=1

uµk,i〈ξi, ξj〉+ θτ

N∑
i=1

uµk,ia(ξi, ξj) =
N∑
i=1

uµk−1,i〈ξi, ξj〉

+ τLk−1(ξj)− (1− θ)τ
N∑
i=1

uµk−1,ia(ξi, ξj), ∀j = 1, . . . N .

(3.8)

Here in the right-hand side we let

Lk−1(ξj;µ) = p
(k−1)
1 (ξj)− µp(k−1)

2 (ξj)− p(k−1)
3 (ξj),
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where the individual summands are de�ned as

p
(k−1)
1 (ξj) =

N∑
i=1

uµk−1,i〈β(·)ξi, ξj〉

p
(k−1)
2 (ξj) =

N∑
i=1

uµk−1,i〈γ(·)ξi, ξj〉

p
(k−1)
3 (ξj) = ρk−1

N∑
i=1

uµk−1,i〈ξi, ξj〉 with

ρk−1 =

∫
Ω

uk−1
rb (µ) dxdy =

N∑
i=1

uµk−1,i

∫
Ω

ξi dxdy .

Thus, we can rewrite the linear problem in matrix notation:

(M + θτA)uµk = (M− (1− θ)τA)uµk−1 + τLµk−1u
µ
k−1 (3.10)

where
Lµk−1 = P1 − µP2 − ρk−1M .

and M,A,P1,P2 are matrices that can be computed and stored during the o�ine stage
because they are independent of µ. They are de�ned as

M : (M)ij
def

= 〈ξi, ξj〉,

A : (A)ij
def

= a(ξi, ξj).

P1 : (P1)ij
def

= 〈β(·)ξi, ξj〉.

P2 : (P2)ij
def

= 〈γ(·)ξi, ξj〉 .

(3.11)

Note that due to the linearity of the integral, we may compute the non-local term ρk−1

using the expansion in the reduced basis VN
rb. An appropriate quadrature rule should be

chosen to approximate the integrals of ξi over Ω. Hence in addition to the parameter-
independent objects that must be stored during the o�ine stage of solving (3.3) (the
matrices M,A,P1,P2), for this integro-di�erential equation we must also store the inte-

grals of the RB basis elements Ii
def

=
∫

Ω
ξi dxdy in order to compute the value of ρk as a

linear combination of Ii. Finally, the solution resulting in the reduced basis approximation
is recovered as Urb(µ) = {ukrb(µ)}, ukrb(µ)

def

= Vuµk .

3.3.2 A posteriori error analysis for the IMEX-θ scheme

The construction of the reduced basis from the snapshots will be performed during the
o�ine phase via the POD-greedy algorithm described in the Introduction. The choice of
points in the parameter training set Ξtrain shall be assumed by some appropriate sampling
procedure. We shall use a greedy algorithm with a posteriori error estimates for the
approximation error between the truth solution (3.5) and the reduced basis solution (3.7)
which will be derived in Section 3.3.3.

The computation of a particular RB approximation Urb(µ) for a given µ is done in the
online phase. There its coe�cients in the reduced basis expansion are computed, and the
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solution is assembled via the RB matrix V = [ξi]. The algebraic problem of the reduced
basis method for the θ-scheme has been described in Section 3.3.1.

As in Section 2.3.2 in order to construct an e�cient POD-greedy algorithm we need
an a posteriori estimator for the error between the truth approximation uh(µ) and the
reduced basis solution urb(µ). In the context of the model (3.3), we have no dependence
on µ for the bilinear form a(·, ·;µ)

a(u, v;µ) = α

∫
Ω

∇u∇v dxdy .

For clarity we shall drop µ from the notation of the solution and let {ukrb} be the reduced
basis solution at layer k.

Here we develop a posteriori error analysis to assess the error ek(µ). for the particular
model (3.3). However, unlike the model considered in Chapter 2, the non-linear term
F describing the growth with crowding e�ects is not Lipschitz-continuous. Hence, we
cannot proceed on the basis of Proposition 1 to obtain an estimate on the approximation
error, based solely on the Lipschitz constant. Instead, we can use the properties of
the solutions to (3.3) subject to certain initial values which nevertheless encompass all
biologically-relevant scenarios.

We recall the following results on a priori bounds of the solution to (3.3).

Lemma 2. Denote β̃
def

= sup(x,y)∈Ω β(x, y). Let u(0, ·) = u0 be the initial data to (3.3)

such that ‖u0‖L1 < β̃. Then the solution of (3.3) satis�es the following

‖u(t, ·)‖L1 ≤ β̃, ∀t > 0 .

Proof. Integrate both sides of (3.3) over Ω :

∂

∂t

∫
Ω

udxdy =

∫
Ω

(β(x, y)− ρ(t))udxdy −
∫

Ω

γ(x)µudxdy + α

∫
Ω

∆udxdy

The Neumann boundary conditions imply∫
Ω

∆u dxdy =

∮
∂Ω

∇u dn = 0, (3.12)

which leads to

∂

∂t
ρ =

∫
Ω

(β(x, y)− ρ(t))u dxdy −
∫

Ω

γ(x)µu dxdy

≤

(
sup

(x,y)∈Ω

β(x, y)− ρ

)
ρ−

 inf
x∈Ω
µ∈M

γ(x)µ

 ρ = (β̃ − ρ)ρ.

because infx∈Ω,µ∈M γ(x)µ = 0, see (3.4b). The above equation on the right-hand side is
a logistic growth law, which means that if ρ(0) ≤ β̃, then ρ(t) ≤ β̃, ∀t > 0.

Even if the nonlinearity f is not Lipschitz, we can still use the results of Lemma 2
to establish a Lipschitz-type growth. However, we may do the following computation for
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functions v, v′ ∈ L1(Ω) for a �xed µ (we shall omit it from the equations for the sake of
clarity):

|f(v(x, y))− f(v′(x, y))|

=

∣∣∣∣(β(x, y)− γ(µ)−
∫

Ω

v

)
v(x, y)−

(
β(x, y)− γ(µ)−

∫
Ω

v′
)
v′(x, y)

∣∣∣∣
≤ β̃|v(x, y)− v′(x, y)|+

∣∣∣∣(∫
Ω

v)v(x, y)− (

∫
Ω

v′)v′(x, y)

∣∣∣∣ .
Note that∣∣∣∣v(x, y)

∫
Ω

v − v′(x, y)

∫
Ω

v′
∣∣∣∣

=

∣∣∣∣(v(x, y)− v′(x, y))

∫
Ω

v + v′(x, y)

∫
Ω

(v − v′)
∣∣∣∣

≤ |v(x, y)− v′(x, y)|‖v‖L1 + |v′(x, y)|‖v − v′‖L1 .

Thus, we obtain

|f(v(x, y))− f(v′(x, y))| ≤ β̃|v(x, y)− v′(x, y)|
+ |v(x, y)− v′(x, y)|‖v‖L1 + |v′(x, y)|‖v − v′‖L1 (3.13)

Now consider the truth and the RB solutions ukrb, u
k
h whose initial data meet the condi-

tions of Lemma 2. Because dimVh = Nh, u
k
rb, u

k
h ∈ L1(Ω) and, moreover, the Lemma

establishes their L1-norms are globally bounded. Since the nonlinearity in our problem
satis�es (3.13), in combination with the triangle inequality ‖v − v′‖L1 ≤ ‖v‖L1 + ‖v′‖L1

it yields
|f(ukh;µ)− f(krb;µ)| ≤ 2β̃|ukh − ukrb|+ 2β̃|ukrb|, ∀(x, y) ∈ Ω . (3.14)

We remark that the restriction on the initial data given in the statement of Lemma 2
is biologically relevant. If the initial data did not satisfy the condition, the dynamics of
the tumour volume would be decreasing as the tumour would be beyond the carrying
capacity of the microenvironment, even if no therapy is applied (µ = 0).

Next we state the following a posteriori error estimate:

Proposition 2. Let `sup = 2β̃. Suppose that f ful�ls the Lipschitz-type growth condi-

tion (3.14) Then letting R̃k+1(µ)
def

= `sup‖ukrb(µ)‖L2 +‖rk+1(µ)‖∗ with the residual r de�ned
in (2.17), we have the following estimates on the approximation error between the truth
and the reduced basis solution ek(µ) = ukh(µ)− ukrb(µ) for the IMEX-θ scheme:

(i) Let θ ≥ 1/2. Then

‖ek‖2
L2 ≤

τ

amin

k∑
i=1

(
1 + τ

`2
sup

amin

)k−i
R̃i(µ)2 .

(ii) Let θ < 1/2. Assume the time step τ and triangulation Th satisfy

τ
(

1 +
cΩ

h2

)
<

2amin
(1− 2θ)a2

max

.
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Then

‖ek‖2
L2 ≤ 2τCε,η

k∑
i=1

(1 + 2τ`2
supCε,η)

k−iR̃i(µ)2 , (3.15)

for appropriately chosen Cε,η which is independent of τ, h, µ.

Proof. The idea of the proof follows that of Proposition 1. We use the form of the residual
r (2.17) but we modify the resulting estimator which is labeled R̃. The second major
di�erence between the derivation in Proposition 1 and here lies in the treatment of the
term |f(ukh;µ) − f(krb;µ)| which arises in the evolution equation for the approximation
error.

Using the Lipschitz-type estimate of f given by (3.14), H�older's inequality, and the
embedding H1(Ω) ⊂ L2(Ω):

〈f(ukh;µ)− f(ukrb;µ), φ〉 ≤
∫

Ω

|f(ukh;µ)− f(ukrb;µ)||φ| dxdy

≤ `sup(‖ukh − ukrb︸ ︷︷ ︸
=ek

‖L2 + ‖ukrb‖L2)‖φ‖L2 ≤ `sup(‖ek‖L2 + ‖ukrb‖L2)‖φ‖H1 . (3.16)

with the appropriate choice `sup = 2β̃.
Hence, when f has Lipschitz-type growth (3.14), we proceed as follows. With a test

function φ = θek+1 + (1− θ)ek, using (3.16) the right-hand side of (2.18) can be bounded
by

〈f(ukh;µ)− f(ukrb;µ), θek+1 + (1− θ)ek〉+ rk+1(θek+1 + (1− θ)ek;µ)

≤ (`sup(‖ek‖L2 + ‖ukrb‖L2) + ‖rk+1(µ)‖∗) · ‖θek+1 + (1− θ)ek‖H1 .

If we let R̃k+1(µ)
def

= `sup‖ukrb‖L2 +‖rk+1(µ)‖∗, we may use the analysis from Proposition 1
to establish the bounds. In fact, using Young's inequality, for all 0 < ε ≤ 1 we have

(`sup(‖ek‖L2 + ‖ukrb‖L2) + ‖rk+1(µ)‖∗) · ‖θek+1 + (1− θ)ek‖H1

≤ 1

4εamin
(`sup‖ek‖L2 + R̃k+1(µ))2 + εamin‖θek+1 + (1− θ)ek‖2

H1

≤ 1

2εamin
(`2
sup‖ek‖2

L2 + R̃k+1(µ)2) + εamin‖θek+1 + (1− θ)ek‖2
H1
.

Combining these estimates we see that

1

2τ
‖ek+1‖2

L2 −
1

2τ
‖ek‖2

L2 +
1

τ

(
θ − 1

2

)
‖ek+1 − ek‖2

L2 + amin‖θek+1 + (1− θ)ek‖2
H1

≤ 1

2εamin
(`2
sup‖ek‖2

L2 + R̃k+1(µ)2) + εamin‖θek+1 + (1− θ)ek‖2
H1
,

(3.17)

for all 0 < ε ≤ 1.
With this estimate we continue as in the proof of Proposition 1 to establish the results

in the statement for the cases θ ≤ 1/2 and 1/2 < θ < 1.
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3.3.3 Computing the a posteriori error estimator

Proposition 2 provides an a posteriori error estimator for the approximation error ek(µ)
between the truth solution (2.3) and the reduced basis solution (2.5) at time layer kτ of
the form

‖ek(µ)‖2
L2 ≤ ∆k(µ) = τC1

k∑
i=1

Ck−i
2 (R̃i(µ))2 (3.18)

with C1 > 0, C2 > 1. By virtue of (3.18), for a given solution trajectory Uh(µ), the
quantity ∆(µ) attains its maximum at k = kmax [9]. Hence it su�ces to set as the a
posteriori error estimator for the scheme (2.5):

∆(µ)
def

= ∆kmax(µ) .

It remains to describe an e�cient manner to compute ∆(µ). Recall the de�nition of the

residual R̃k+1(µ)
def

= `sup‖ukrb(µ)‖L2+‖rk+1(µ)‖∗ from Proposition 2, with r̃ given by (2.17).
We now use the a�ne dependence of the reaction term in (3.3) to decompose the norm of
the residual ‖rk(µ)‖∗ into elements which are readily computed during the online phase.

We substitute the formula for the bilinear form a and nonlinearity f into the expansion
of rk. Using the RB expansion of ukrb, given in (2.6), we have

ρk =
N∑
i=1

uµk,i

∫
Ω

ξi dxdy ,

and can rewrite rk+1 as

rk+1(φ;µ) = 〈f(ukrb), φ〉 − 1

τ
〈uk+1

rb − u
k
rb, φ〉 − a(θuk+1

rb + (1− θ)ukrb, φ)

=
N∑
i=1

uµk,i〈β(·)ξi, φ〉 − ρk
N∑
i=1

uµk,i〈ξi, φ〉 − µ
N∑
i=1

uµk,i〈γ(·)ξi, φ〉

−
N∑
i=1

uµk+1,i − uµk,i
τ

〈ξi, φ〉 −
N∑
i=1

(θuµk+1,i + (1− θ)uµk,i)a(ξi, φ), ∀φ ∈ Vh .

Following [12] we introduce the coe�cient vector rk(µ) ∈ R5N

rk(µ)
def

= (uµk,i,−ρku
µ
k,i,−µu

µ
k,i,−

uµk+1,i − uµk,i
τ

, (θuµk+1,i + (1− θ)uµk,i))
T

and the vector of forms R ∈ (V′rb)5N

R
def

= ({〈β(·)ξi, ·〉}Ni=1, {〈ξi, ·〉}Ni=1, {〈γ(·)ξi, φ〉}Ni=1, {〈ξi, ·〉}Ni=1, {a(ξi, ·)}Ni=1) , (3.19)

leading to the following representation of the residual rk+1(φ;µ):

rk+1(φ;µ) =
5N∑
j=1

rkj (µ)Rj(φ), ∀φ ∈ Vh . (3.20)
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Let r̂j ∈ Vh denote the Riesz representation of the functional Rj so that 〈r̂j, φ〉H1 =
Rj(φ),∀φ ∈ Vh, j = 1, . . . 5N (observe that each r̂j is independent of the time layer k).
We obtain the following relation for the Riesz representation of rk+1 and its norm

r̃k+1(µ) =
5N∑
j=1

rkj (µ)r̂j ⇒ ‖r̃k+1(µ)‖2
H1 =

5N∑
j=1

5N∑
j′=1

rkj (µ)rkj′(µ)〈r̂j, r̂j′〉H1 .

Observe that some elements of the vector R are the same. To �nd r̂j, we follow the same
steps from Section 2.3.3.

29



Chapter 4

Conclusion and Outlook

We have derived a posteriori estimators for the approximation error that should be used
in a POD-greedy algorithm for constructing reduced basis for two models describing
tumour growth (2.1) and phenotype evolution inside a tumour (3.3). These models are
based on reaction-di�usion equations which permits the use of the �rst-order in time
IMEX-θ scheme as a suitable numerical scheme for time integration. The a posteriori
error estimators are closely linked to the speci�c problem, as has been noted in the
reduced basis literature.

The described algorithms for the reduced basis construction shall be implemented in
the �nite element library FreeFem++ [11] to test the performance of the RB method in
approximating the high-�delity solutions to the considered problems.

However, second-order schemes are necessary to accurately approximate models such
as (3.2) in their full generality. This is due to the presence of nonzero advection terms
which require caution in the numerical treatment. In addition, the construction of a
reduced basis approximation may require modi�cation of the algorithm, as turns out to
be the case for transport-dominated problems [7].

We test the performance of several second-order IMEX methods on equation (3.3).
The chosen parameters are: mutation rate α = 10−5, proliferation rate is β(x, y) =
0.03 + 0.25y(1− y2) + 0.05(1− x)x, death rate γ = 0.02, µ = 0. The initial condition is

u0
def

= u(x, y, 0) = 0.5| sin(5πx) sin(5πy)|.

The methods (1.5)-(1.7) are 2-step methods and not self-starting, so we initialise the
data for the second step u1 by using an IMEX-θ scheme with θ = 2/3. Therefore, this
peculiarity must be taken into account when developing a posteriori error estimators for
second-order IMEX methods.

The FE space is with Lagrangian-P2 elements on a Square mesh : with 2601 vertices,
5000 triangles and 200 boundary edges, time step τ = 5, stop criterion for convergence
to stationary solution : ‖uk+1 − uk‖∞ < 10−4. Computation is performed in FreeFem++.
Results of the test are summarised in Table 4.1.

As expected, the IMEX-θ scheme (1.4) is the fastest because it is a one-step scheme.
It shall be used for the numerical implementation of the considered parabolic problems
based on the IMEX-θ scheme. It would be interesting to compare the performance of
the RB method for the same problems based on some second-order IMEX scheme, once
a posteriori estimators for those are available.

30



Table 4.1: Numerical test.

IMEX method (1.4) θ = 2/3 (1.5) (1.6) (1.7)

compile (s) 0.005897 0.010604 0.006063 0.006091
execution (s) 21.5779 38.5859 42.404 70.0746
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