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Oscillations in Cells

Min-System in Escherichia coli controlling cell division site
(Meinhardt and de Boer, 2001; Kruse, 2002; Loose, Kruse,
Schwille, 2011)

Cell orientation, polarity, direction of cell motion
I Rhythmic movement of plasmodia (Tero, Kobayashi, Nakagaki,

2005; Miyaji and Ohnishi, 2007)
I Mgl/Frz oscillator in Myxococcus xanthus regulating the localisation

of motility proteins at the cell poles (Rashkov et al, 2012, 2013,
2014)

I Dynamics of Cdc42 oscillation in fission yeast (Xu and Jilkine, 2018)
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Microscopic time-lapse movies of M. xanthus
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Miertzschke et al. EMBO J. (2011)



Regulatory Network for Cell Polarity in M. xanthus
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Lenz and Søgaard-Andersen (2011)



Experimental Observations

polarity fixed : MglA-GTP, MglB stay bound at opposite poles

signaling of Frz chemosensory system: polarity inverted
I MglA-GTP, MglB released from the poles, transported via

cytoplasm and rebind at the opposite poles
I re-organisation of motility apparatus

wild type cell: occasional inversion of the cell polarity

no Frz: no inversion

mutant cell: highly regular, periodic inversion of cell polarity
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Mathematical Objectives

minimal model
I as few assumptions as possible because the complexity of

signalling/regulatory networks can increase exponentially

questions
I polarity set-up
I pole-to-pole relocation of the regulatory proteins
I mutant: oscillations governed only by endogenous laws?
I wild type: response to external triggers?

parameters not known

robustness against parameter variation
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Model Outline

protein concentrations
left cytoplasm right
`i(t) ci(t, x) ri(t)

αi

αi

αi

κi κi

0 1

diffusion
←− di −→
cytoplasm

left
pole

right
pole

diffusive transport through cytoplasm [0, 1]

binding sites at poles at 0 and 1

i is protein: MglA-GTP, MglA-GDP, MglB

effective rates
I binding/on-rate αi = αi(`i|ri)
I unbinding/off-rate κi = κi(`i|ri)
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Simpler Model

protein concentrations
left cytoplasm right
`i(t) ci(t, x) ri(t)

αi

αi

αi

κi κi

0 1

diffusion
←− di −→
cytoplasm

left
pole

right
pole

identical laws for both poles → no directional bias

vector notation for dependent variables
c(t, x) := (ci)(t, x), `(t) := (`i)(t), r(t) := (ri)(t), i = 1, . . . n
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Reaction-diffusion System

∂c

∂t
= D∆c

D−1d`

dt
= (A(`)c(0)︸ ︷︷ ︸

binding

− K(`)`︸ ︷︷ ︸
unbinding

)

D−1dr

dt
= (A(r)c(1)︸ ︷︷ ︸

binding

− K(r)r︸ ︷︷ ︸
unbinding

)

D = diag (di) > 0 - diffusion matrix

A(·) = diag (αi(·)) ≥ 0 - matrix of on-rates

K(·) = diag (κi(·)) ≥ 0 - matrix of off-rates
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Boundary Conditions Total Mass Conservation

Lemma (R. et al., Bull. Math. Biol. 2012)

Let αi, κi be continuous functions. With boundary conditions

∂xc(t, 0) = A(`)c(0)−K(`)`,

∂xc(t, 1) = −A(r)c(1) +K(r)r,

the total mass of each protein

mi(t) := `i(t) +

∫ 1

0
ci(t, x) dx+ ri(t), i = 1, . . . n

is constant for all t ≥ 0.
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Recap from Dynamical Systems

Periodic solutions in time/space

Where to start?

Construct a locally asymptotically unstable steady state
(ˆ̀, ĉ(x), r̂).

Limit cycle arising due to a Hopf bifurcation

Perturbation of a heteroclinic orbit → swinging between two
saddle points
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Steady States

Steady state (ˆ̀, ĉ(x), r̂), x ∈ (0, 1).

Boundary conditions → the steady state ĉ is constant in x.

Symmetry of the equations for the poles → steady states are
symmetric at the poles: (r̂, ĉ, ˆ̀) is also a steady state.

Start with a biologically relevant steady state and do a linear
stability analysis.
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Analysis of the Linear System

For small perturbations of the steady state ˜̀= `− ˆ̀, r̃ = r− r̂, c̃ = c− ĉ:

∂c̃

∂t

.
= D∆c̃

d˜̀

dt

.
= DAˆ̀c̃(0) +DVˆ̀

˜̀

dr̃

dt

.
= DAr̂ c̃(1) +DVr̂r̃,

with matrices

(Aˆ̀) = diag (αi(ˆ̀)), (Ar̂) = diag (αi(r̂))

(Vˆ̀)ij = ∂j(αici − κi`i)|(ˆ̀,ĉ)

(Vr̂)ij = ∂j(αici − κiri)|(ĉ,r̂).
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Separation-of-Variables Ansatz

(
˜̀(t), c̃(t, x), r̃(t)

)
:= eλt

(
l, c(x), r

)
.

Solve for eigenvalue λ, and vectors l, c(x), r

λc = D∆c

λl = DAˆ̀c(0) +DVˆ̀l

λr = DAr̂c(1) +DVr̂r

under the boundary conditions:

∂xc(0) = λD−1l

∂xc(1) = −λD−1r.
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Auxiliary Eigen-Boundary Problem

Problem (R. et al. Int. J. Biomath. Biostat., 2013)

Find λ, c(x):
λc = D∆c

subject to Robin boundary conditions

(I − λ−1Vˆ̀D)∂xc(0) = Aˆ̀c(0)

(I − λ−1Vr̂D)∂xc(1) = −Ar̂c(1)

For Hopf bifurcation: solutions λ with Reλ > 0!
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Transcendental Problem

Lemma (R. et al., 2013)

λ 6= 0 is a solution of the auxiliary problem if the determinant∣∣∣∣ Aˆ̀ −Qˆ̀

Qr̂λD
−1f(λD−1) +Ar̂g(λD−1) Qr̂g(λD−1) +Ar̂f(λD−1)

∣∣∣∣
vanishes. Here

Qˆ̀ = I − λ−1Vˆ̀D, Qr̂ = I − λ−1Vr̂D,

f(z) =
sinh
√
z√

z
, g(z) = cosh

√
z component-wise.

Infinitely many solutions: pick dominant λ.
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Possible Scenarios

Dynamics dependent on rates αi, κi

Biologically relevant on-/off-rates devised according to
mathematical analysis

Two proteins

“stalker” scenario (R. et al, 2012):
I 1 always binds to the poles
I 2 (the “stalker”) follows 1 and repels it from the poles

“antagonist” scenario (R. et al, 2013):
I 1, 2 are off-phase and occupy exactly one pole over an extended

time period
I configuration switches fast
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Steady State: ‘Stalker’ Scenario

Assume αi > 0, ˆ̀
i, ĉi(x), r̂i 6= 0, ˆ̀= r̂

Identical on-/off-matrices at the poles

Aˆ̀ = Ar̂ := Â, Vˆ̀ = Vr̂ := V̂

For D ≡ I and Â = αI, the eigen-boundary problem for λ reduces
to an eigenvalue problem for a 2× 2-matrix
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Eigenvalue analysis

Let % be an eigenvalue α−1V̂ .
Solve F (λ) = % where

F (λ) =
λ

α
+
√
λ tanh

√
λ

2
.

Figure: Location of eigenvalue % of α−1V̂ in C determines the sign of Reλ and
the local stability of the steady state (R. et al. 2012).
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‘Stalker’ Scenario (R. et al, 2012)

Analysis of eigenvalue conditions for the matrix V̂ implies possible
rates of the form

Binding rates α1(q1, q2) = (1− a1) + a1q
2
1,

α2(q1, q2) = (1− a2) + a2q1,

Unbinding rates κ1(q1, q2) = q2,

κ2(q1, q2) =
a3

1 + (a3 − 1)q2
,

Diffusion constants d1 = d2 = 1
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‘Stalker’ Scenario: Numerical simulation
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Figure: Oscillations have sinusoidal shape.
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Robustness

Figure: Surface in parameter space where the Hopf bifurcation occurs for the
on-/off-rates used in R. et al. 2012.
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Varying the Diffusion Constants

Period of oscillation depends on the diffusion constants.
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Steady States: ‘Antagonist’ Scenario

Asymmetric distribution in steady state (‘antagonists’):

I ˆ̀
1 = m1, ĉ1 = r̂1 = 0.

I ˆ̀
2 = 0, 0 < ĉ2 < r̂2.

Perturbed heteroclinic orbit

Restrictions on on-/off-rates in steady state are met when
I κ1(q1, q2) = k1(q2)q2.
I α2(q1, q2) = a2(q1)q2.

Auxiliary problem for λ: different matrices at the poles - must
solve the full transcendental problem
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‘Antagonist’ Scenario (R. et al. 2013)

Possible rates:

Binding rates α1(q1, q2) = 1− a1 + a1q
2
1,

α2(q1, q2) =

(
a2 + 1

a2 + 2
+

q1

a2 + 2

)
q2

Unbinding rates κ1(q1, q2) =
(1 + a3)q2

a3 + q2

κ2(q1, q2) =
1 + a2

a2 + q2

Diffusion constants d1 = d2 = 1
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‘Antagonist’ Scenario
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Figure: Concentrations at the pole are nearly perfectly off-phase.
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Robustness
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Back to M. xanthus

Figure: Biochemical Interactions. MglB (GAP) converts MglA-GTP to
MglA-GDP but only MglA-GTP can bind to the poles.
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Biochemical Interactions

conversion of MglA-GTP to MglA-GDP stimulated by MglB

not known how Frz signalling causes the release of MglA-GTP,
MglB from the poles

Frz signalling modelled as a pulse β(t) that stimulates the
conversion of MglA-GDP to MglA-GTP

net rate of transition between MglA-GTP and MglA-GDP:

φ(cAT, cB, cAD) = β(t)cAD︸ ︷︷ ︸
activation

− γ(cB)cAT︸ ︷︷ ︸
deactivation
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Model Equations

cytoplasm: transport & net transition

∂tcAT = ∆cAT + φ(cAT, cB, cAD) MglA-GTP

∂tcB = ∆cB MglB

∂tcAD = ∆cAD − φ(cAT, cB, cAD) MglA-GDP

poles: binding/unbinding

`′AT = αAT(`AT, `B)cAT(0)− κAT(`AT, `B)`AT MglA-GTP

r′AT = αAT(rAT, rB)cAT(1)− κAT(rAT, rB)rAT

`′B = αB(`AT, `B)cB(0)− κB(`AT, `B)`B MglB

r′B = αB(rAT, rB)cB(1)− κB(rAT, rB)rB

boundary conditions: total mass conservation of MglA, MglB
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Signalling Regimes

Frz signalling

absent: β(t) ≡ 0

continuous: β(t) = ε > 0

stochastic:

β(t) =

{
ε > 0 for short intervals δt ≈ 0
0 else

The sequence of inter-arrival times for the pulse follows a Poisson
process with parameter ν over a fixed time interval
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Model Validation

time-lapse movie experiment vs. simulation
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Figure: Reversal counts from an experimental sample (red) vs. reversal counts
from a simulation using a Poisson process for the pulse with parameter ν
(green).
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Summary

model captures biologically relevant regimes in the network

spatio-temporal oscillations not of “delay-ODE type”

oscillations – consequence of Hopf bifurcation (equal diffusion
constants!)

importance of boundary conditions
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Continuous Frz Signalling
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Stochastic Frz Signalling, pulse β by Poisson law
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