Mathematical modelling of protein oscillations in bacteria

Peter Rashkov

Institute of Mathematics and Informatics, Sofia
Bulgarian Academy of Sciences
p.rashkov@math.bas.bg www.math.bas.bg/nummeth/rashkov/

University of Wisconsin-Milwaukee, March 2, 2018

Oscillations in Cells

- Min-System in Escherichia coli controlling cell division site (Meinhardt and de Boer, 2001; Kruse, 2002; Loose, Kruse, Schwille, 2011)
- Cell orientation, polarity, direction of cell motion
- Rhythmic movement of plasmodia (Tero, Kobayashi, Nakagaki, 2005; Miyaji and Ohnishi, 2007)
- $\mathrm{Mgl} / \mathrm{Frz}$ oscillator in Myxococcus xanthus regulating the localisation of motility proteins at the cell poles (Rashkov et al, 2012, 2013, 2014)
- Dynamics of Cdc42 oscillation in fission yeast (Xu and Jilkine, 2018)

Microscopic time-lapse movies of M. xanthus

Miertzschke et al. EMBO J. (2011)

Regulatory Network for Cell Polarity in M. xanthus

Nature Reviews | Microbiology
Lenz and Søgaard-Andersen (2011)

Experimental Observations

- polarity fixed: MglA-GTP, MglB stay bound at opposite poles
- signaling of Frz chemosensory system: polarity inverted
- MglA-GTP, MglB released from the poles, transported via cytoplasm and rebind at the opposite poles
- re-organisation of motility apparatus
- wild type cell: occasional inversion of the cell polarity
- no Frz: no inversion
- mutant cell: highly regular, periodic inversion of cell polarity

Mathematical Objectives

- minimal model
- as few assumptions as possible because the complexity of signalling/regulatory networks can increase exponentially
- questions
- polarity set-up
- pole-to-pole relocation of the regulatory proteins
- mutant: oscillations governed only by endogenous laws?
- wild type: response to external triggers?
- parameters not known
- robustness against parameter variation

Model Outline

- diffusive transport through cytoplasm $[0,1]$
- binding sites at poles at 0 and 1
- i is protein: $\mathbf{M g l A}$-GTP, $\mathbf{M g l A} \mathbf{A D P}, \mathrm{MglB}$
- effective rates
- binding/on-rate $\alpha_{i}=\alpha_{i}\left(\ell_{i} \mid r_{i}\right)$
- unbinding/off-rate $\kappa_{i}=\kappa_{i}\left(\ell_{i} \mid r_{i}\right)$

Simpler Model

- identical laws for both poles \rightarrow no directional bias
- vector notation for dependent variables

$$
c(t, x):=\left(c_{i}\right)(t, x), \quad \ell(t):=\left(\ell_{i}\right)(t), \quad r(t):=\left(r_{i}\right)(t), \quad i=1, \ldots n
$$

Reaction-diffusion System

$$
\begin{aligned}
\frac{\partial c}{\partial t} & =D \Delta c \\
D^{-1} \frac{d \ell}{d t} & =(\underbrace{A(\ell) c(0)}_{\text {binding }}-\underbrace{K(\ell) \ell}_{\text {unbinding }}) \\
D^{-1} \frac{d r}{d t} & =(\underbrace{A(r) c(1)}_{\text {binding }}-\underbrace{K(r) r}_{\text {unbinding }})
\end{aligned}
$$

- $D=\operatorname{diag}\left(d_{i}\right)>0-$ diffusion matrix
- $A(\cdot)=\operatorname{diag}\left(\alpha_{i}(\cdot)\right) \geq 0$ - matrix of on-rates
- $K(\cdot)=\operatorname{diag}\left(\kappa_{i}(\cdot)\right) \geq 0$ - matrix of off-rates

Boundary Conditions Total Mass Conservation

Lemma (R. et al., Bull. Math. Biol. 2012)
Let α_{i}, κ_{i} be continuous functions. With boundary conditions

$$
\begin{aligned}
\partial_{x} c(t, 0) & =A(\ell) c(0)-K(\ell) \ell \\
\partial_{x} c(t, 1) & =-A(r) c(1)+K(r) r,
\end{aligned}
$$

the total mass of each protein

$$
m_{i}(t):=\ell_{i}(t)+\int_{0}^{1} c_{i}(t, x) d x+r_{i}(t), \quad i=1, \ldots n
$$

is constant for all $t \geq 0$.

Recap from Dynamical Systems

- Periodic solutions in time/space
- Where to start?
- Construct a locally asymptotically unstable steady state $(\hat{\ell}, \hat{c}(x), \hat{r})$.
- Limit cycle arising due to a Hopf bifurcation
- Perturbation of a heteroclinic orbit \rightarrow swinging between two saddle points

Steady States

- Steady state $(\hat{\ell}, \hat{c}(x), \hat{r}), x \in(0,1)$.
- Boundary conditions \rightarrow the steady state \hat{c} is constant in x.
- Symmetry of the equations for the poles \rightarrow steady states are symmetric at the poles: $(\hat{r}, \hat{c}, \hat{\ell})$ is also a steady state.
- Start with a biologically relevant steady state and do a linear stability analysis.

Analysis of the Linear System

For small perturbations of the steady state $\tilde{\ell}=\ell-\hat{\ell}, \tilde{r}=r-\hat{r}, \tilde{c}=c-\hat{c}$:

$$
\begin{aligned}
\frac{\partial \tilde{c}}{\partial t} & \doteq D \Delta \tilde{c} \\
\frac{d \tilde{\ell}}{d t} & \doteq D A_{\hat{\ell}} \tilde{c}(0)+D V_{\hat{\ell}} \tilde{\ell} \\
\frac{d \tilde{r}}{d t} & \doteq D A_{\hat{r}} \tilde{c}(1)+D V_{\hat{r}} \tilde{r}
\end{aligned}
$$

with matrices

$$
\begin{aligned}
\left(A_{\hat{\ell}}\right) & =\operatorname{diag}\left(\alpha_{i}(\hat{\ell})\right), \quad\left(A_{\hat{r}}\right)=\operatorname{diag}\left(\alpha_{i}(\hat{r})\right) \\
\left(V_{\hat{\ell}}\right)_{i j} & =\left.\partial_{j}\left(\alpha_{i} c_{i}-\kappa_{i} \ell_{i}\right)\right|_{(\hat{\ell}, \hat{c})} \\
\left(V_{\hat{r}}\right)_{i j} & =\left.\partial_{j}\left(\alpha_{i} c_{i}-\kappa_{i} r_{i}\right)\right|_{(\hat{c}, \hat{r})} .
\end{aligned}
$$

Separation-of-Variables Ansatz

$$
(\tilde{\ell}(t), \tilde{c}(t, x), \tilde{r}(t)):=e^{\lambda t}(\boldsymbol{l}, \boldsymbol{c}(x), \boldsymbol{r})
$$

Solve for eigenvalue λ, and vectors $\boldsymbol{l}, \boldsymbol{c}(x), \boldsymbol{r}$

$$
\begin{aligned}
\lambda \boldsymbol{c} & =D \Delta \boldsymbol{c} \\
\lambda \boldsymbol{l} & =D A_{\hat{\ell}} \boldsymbol{c}(0)+D V_{\hat{\ell}} \boldsymbol{l} \\
\lambda \boldsymbol{r} & =D A_{\hat{r}} \boldsymbol{c}(1)+D V_{\hat{r}} \boldsymbol{r}
\end{aligned}
$$

under the boundary conditions:

$$
\begin{aligned}
\partial_{x} \boldsymbol{c}(0) & =\lambda D^{-1} \boldsymbol{l} \\
\partial_{x} \boldsymbol{c}(1) & =-\lambda D^{-1} \boldsymbol{r}
\end{aligned}
$$

Auxiliary Eigen-Boundary Problem

Problem (R. et al. Int. J. Biomath. Biostat., 2013)
Find $\lambda, \mathbf{c}(x)$:

$$
\lambda \boldsymbol{c}=D \Delta \boldsymbol{c}
$$

subject to Robin boundary conditions

$$
\begin{aligned}
\left(I-\lambda^{-1} V_{\hat{\ell}} D\right) \partial_{x} \boldsymbol{c}(0) & =A_{\hat{\ell}} \boldsymbol{c}(0) \\
\left(I-\lambda^{-1} V_{\hat{r}} D\right) \partial_{x} \boldsymbol{c}(1) & =-A_{\hat{r}} \boldsymbol{c}(1)
\end{aligned}
$$

For Hopf bifurcation: solutions λ with $\operatorname{Re} \lambda>0$!

Transcendental Problem

Lemma (R. et al., 2013)
$\lambda \neq 0$ is a solution of the auxiliary problem if the determinant

$$
\left|\begin{array}{cc}
A_{\hat{\ell}} & -Q_{\hat{\ell}} \\
Q_{\hat{r}} \lambda D^{-1} f\left(\lambda D^{-1}\right)+A_{\hat{r}} g\left(\lambda D^{-1}\right) & Q_{\hat{r}} g\left(\lambda D^{-1}\right)+A_{\hat{r}} f\left(\lambda D^{-1}\right)
\end{array}\right|
$$

vanishes. Here

$$
\begin{aligned}
Q_{\hat{\ell}} & =I-\lambda^{-1} V_{\hat{\ell}} D, \quad Q_{\hat{r}}=I-\lambda^{-1} V_{\hat{r}} D \\
f(z) & =\frac{\sinh \sqrt{z}}{\sqrt{z}}, \quad g(z)=\cosh \sqrt{z} \quad \text { component-wise. }
\end{aligned}
$$

Infinitely many solutions: pick dominant λ.

Possible Scenarios

- Dynamics dependent on rates α_{i}, κ_{i}
- Biologically relevant on-/off-rates devised according to mathematical analysis
- Two proteins
- "stalker" scenario (R. et al, 2012):
- 1 always binds to the poles
- 2 (the "stalker") follows 1 and repels it from the poles
- "antagonist" scenario (R. et al, 2013):
- 1, 2 are off-phase and occupy exactly one pole over an extended time period
- configuration switches fast

Steady State: 'Stalker’ Scenario

- Assume $\alpha_{i}>0, \hat{\ell}_{i}, \hat{c}_{i}(x), \hat{r}_{i} \neq 0, \hat{\ell}=\hat{r}$
- Identical on-/off-matrices at the poles

$$
A_{\hat{\ell}}=A_{\hat{r}}:=\hat{A}, \quad V_{\hat{\ell}}=V_{\hat{r}}:=\hat{V}
$$

- For $D \equiv I$ and $\hat{A}=\alpha I$, the eigen-boundary problem for λ reduces to an eigenvalue problem for a 2×2-matrix

Eigenvalue analysis

Let ϱ be an eigenvalue $\alpha^{-1} \hat{V}$. Solve $F(\lambda)=\varrho$ where

$$
F(\lambda)=\frac{\lambda}{\alpha}+\sqrt{\lambda} \tanh \frac{\sqrt{\lambda}}{2}
$$

Figure: Location of eigenvalue ϱ of $\alpha^{-1} \hat{V}$ in \mathbb{C} determines the sign of $\operatorname{Re} \lambda$ and the local stability of the steady state (R. et al. 2012).

'Stalker' Scenario (R. et al, 2012)

Analysis of eigenvalue conditions for the matrix \hat{V} implies possible rates of the form

Binding rates $\quad \alpha_{1}\left(q_{1}, q_{2}\right)=\left(1-a_{1}\right)+a_{1} q_{1}^{2}$,

$$
\alpha_{2}\left(q_{1}, q_{2}\right)=\left(1-a_{2}\right)+a_{2} q_{1}
$$

Unbinding rates $\kappa_{1}\left(q_{1}, q_{2}\right)=q_{2}$,

$$
\kappa_{2}\left(q_{1}, q_{2}\right)=\frac{a_{3}}{1+\left(a_{3}-1\right) q_{2}},
$$

Diffusion constants $\quad d_{1}=d_{2}=1$

'Stalker' Scenario: Numerical simulation

Figure: Oscillations have sinusoidal shape.

Robustness

Figure: Surface in parameter space where the Hopf bifurcation occurs for the on-/off-rates used in R. et al. 2012.

Varying the Diffusion Constants

Period of oscillation depends on the diffusion constants.

Steady States: 'Antagonist' Scenario

- Asymmetric distribution in steady state ('antagonists'):
- $\hat{\ell}_{1}=m_{1}, \hat{c}_{1}=\hat{r}_{1}=0$.
- $\hat{\ell}_{2}=0,0<\hat{c}_{2}<\hat{r}_{2}$.
- Perturbed heteroclinic orbit
- Restrictions on on-/off-rates in steady state are met when
- $\kappa_{1}\left(q_{1}, q_{2}\right)=k_{1}\left(q_{2}\right) q_{2}$.
- $\alpha_{2}\left(q_{1}, q_{2}\right)=a_{2}\left(q_{1}\right) q_{2}$.
- Auxiliary problem for λ : different matrices at the poles - must solve the full transcendental problem

'Antagonist' Scenario (R. et al. 2013)

Possible rates:
Binding rates $\alpha_{1}\left(q_{1}, q_{2}\right)=1-a_{1}+a_{1} q_{1}^{2}$,

$$
\alpha_{2}\left(q_{1}, q_{2}\right)=\left(\frac{a_{2}+1}{a_{2}+2}+\frac{q_{1}}{a_{2}+2}\right) q_{2}
$$

Unbinding rates $\quad \kappa_{1}\left(q_{1}, q_{2}\right)=\frac{\left(1+a_{3}\right) q_{2}}{a_{3}+q_{2}}$

$$
\kappa_{2}\left(q_{1}, q_{2}\right)=\frac{1+a_{2}}{a_{2}+q_{2}}
$$

Diffusion constants $\quad d_{1}=d_{2}=1$

'Antagonist' Scenario

Figure: Concentrations at the pole are nearly perfectly off-phase.

Robustness

Back to M. xanthus

Figure: Biochemical Interactions. MglB (GAP) converts MglA-GTP to MglA-GDP but only MglA-GTP can bind to the poles.

Biochemical Interactions

- conversion of MglA-GTP to MglA-GDP stimulated by MglB
- not known how Frz signalling causes the release of MglA-GTP, MglB from the poles
- Frz signalling modelled as a pulse $\beta(t)$ that stimulates the conversion of MglA-GDP to MglA-GTP
- net rate of transition between MglA-GTP and MglA-GDP:

$$
\phi\left(c_{\mathrm{AT}}, c_{\mathrm{B}}, c_{\mathrm{AD}}\right)=\underbrace{\beta(t) c_{\mathrm{AD}}}_{\text {activation }}-\underbrace{\gamma\left(c_{\mathrm{B}}\right) c_{\mathrm{AT}}}_{\text {deactivation }}
$$

Model Equations

cytoplasm: transport \& net transition

$$
\begin{array}{rlr}
\partial_{t} c_{\mathrm{AT}} & =\Delta c_{\mathrm{AT}}+\phi\left(c_{\mathrm{AT}}, c_{\mathrm{B}}, c_{\mathrm{AD}}\right) & \mathrm{MglA}-\mathrm{GTP} \\
\partial_{t} c_{\mathrm{B}} & =\Delta c_{\mathrm{B}} & \mathrm{MglB} \\
\partial_{t} c_{\mathrm{AD}} & =\Delta c_{\mathrm{AD}}-\phi\left(c_{\mathrm{AT}}, c_{\mathrm{B}}, c_{\mathrm{AD}}\right) & \mathrm{MglA}-\mathrm{GDP}
\end{array}
$$

poles: binding/unbinding

$$
\begin{aligned}
\ell_{\mathrm{AT}}^{\prime} & =\alpha_{\mathrm{AT}}\left(\ell_{\mathrm{AT}}, \ell_{\mathrm{B}}\right) c_{\mathrm{AT}}(0)-\kappa_{\mathrm{AT}}\left(\ell_{\mathrm{AT}}, \ell_{\mathrm{B}}\right) \ell_{\mathrm{AT}} \quad \mathrm{MglA}-\mathrm{GTP} \\
r_{\mathrm{AT}}^{\prime} & =\alpha_{\mathrm{AT}}\left(r_{\mathrm{AT}}, r_{\mathrm{B}}\right) c_{\mathrm{AT}}(1)-\kappa_{\mathrm{AT}}\left(r_{\mathrm{AT}}, r_{\mathrm{B}}\right) r_{\mathrm{AT}} \\
\ell_{\mathrm{B}}^{\prime} & =\alpha_{\mathrm{B}}\left(\ell_{\mathrm{AT}}, \ell_{\mathrm{B}}\right) c_{\mathrm{B}}(0)-\kappa_{\mathrm{B}}\left(\ell_{\mathrm{AT}}, \ell_{\mathrm{B}}\right) \ell_{\mathrm{B}} \quad \mathrm{MglB} \\
r_{\mathrm{B}}^{\prime} & =\alpha_{\mathrm{B}}\left(r_{\mathrm{AT}}, r_{\mathrm{B}}\right) c_{\mathrm{B}}(1)-\kappa_{\mathrm{B}}\left(r_{\mathrm{AT}}, r_{\mathrm{B}}\right) r_{\mathrm{B}}
\end{aligned}
$$

Model Equations

cytoplasm: transport \& net transition

$$
\begin{array}{rlr}
\partial_{t} c_{\mathrm{AT}} & =\Delta c_{\mathrm{AT}}+\phi\left(c_{\mathrm{AT}}, c_{\mathrm{B}}, c_{\mathrm{AD}}\right) & \mathrm{MglA}-\mathrm{GTP} \\
\partial_{t} c_{\mathrm{B}} & =\Delta c_{\mathrm{B}} & \mathrm{MglB} \\
\partial_{t} c_{\mathrm{AD}} & =\Delta c_{\mathrm{AD}}-\phi\left(c_{\mathrm{AT}}, c_{\mathrm{B}}, c_{\mathrm{AD}}\right) & \mathrm{MglA}-\mathrm{GDP}
\end{array}
$$

poles: binding/unbinding

$$
\begin{aligned}
\ell_{\mathrm{AT}}^{\prime} & =\alpha_{\mathrm{AT}}\left(\ell_{\mathrm{AT}}, \ell_{\mathrm{B}}\right) c_{\mathrm{AT}}(0)-\kappa_{\mathrm{AT}}\left(\ell_{\mathrm{AT}}, \ell_{\mathrm{B}}\right) \ell_{\mathrm{AT}} \\
r_{\mathrm{AT}}^{\prime} & =\alpha_{\mathrm{AT}}\left(r_{\mathrm{AT}}, r_{\mathrm{B}}\right) c_{\mathrm{AT}}(1)-\kappa_{\mathrm{AT}}\left(r_{\mathrm{AT}}, r_{\mathrm{B}}\right) r_{\mathrm{AT}} \\
\ell_{\mathrm{B}}^{\prime} & =\alpha_{\mathrm{B}}\left(\ell_{\mathrm{AT}}, \ell_{\mathrm{B}}\right) c_{\mathrm{B}}(0)-\kappa_{\mathrm{B}}\left(\ell_{\mathrm{AT}}, \ell_{\mathrm{B}}\right) \ell_{\mathrm{B}} \quad \mathrm{MglB} \\
r_{\mathrm{B}}^{\prime} & =\alpha_{\mathrm{B}}\left(r_{\mathrm{AT}}, r_{\mathrm{B}}\right) c_{\mathrm{B}}(1)-\kappa_{\mathrm{B}}\left(r_{\mathrm{AT}}, r_{\mathrm{B}}\right) r_{\mathrm{B}}
\end{aligned}
$$

boundary conditions: total mass conservation of $\mathrm{MglA}, \mathrm{MglB}$

Signalling Regimes

Frz signalling

- absent: $\beta(t) \equiv 0$
- continuous: $\beta(t)=\epsilon>0$
- stochastic:

$$
\beta(t)= \begin{cases}\epsilon>0 & \text { for short intervals } \delta t \approx 0 \\ 0 & \text { else }\end{cases}
$$

The sequence of inter-arrival times for the pulse follows a Poisson process with parameter ν over a fixed time interval

Model Validation

time-lapse movie

experiment vs. simulation

Figure: Reversal counts from an experimental sample (red) vs. reversal counts from a simulation using a Poisson process for the pulse with parameter ν (green).

Summary

- model captures biologically relevant regimes in the network
- spatio-temporal oscillations not of "delay-ODE type"
- oscillations - consequence of Hopf bifurcation (equal diffusion constants!)
- importance of boundary conditions

Literature

Rashkov P, Schmitt BA, Søgaard-Andersen L, Lenz P, Dahlke S (2012) Bull. Math. Biol. 74: 2183-2203

䍰 Rashkov P, Schmitt BA, Søgaard-Andersen L, Lenz P, Dahlke S (2013) Int. J. Biomath. Biostat. 2: 75-85

R Rashkov P, Schmitt BA, Keilberg D, Beck K, Søgaard-Andersen L, Dahlke S (2014) Math. Biosci. 258: 189-200

Acknowledgements

- B Schmitt, S Dahlke (Mathematics, Marburg)
- L Søgaard-Andersen, E Hot, D Keilberg (MPI Marburg)
- P Lenz, K Beck (Physics, Marburg)
- S Beck (Mathematics, Halle)
- R Rösch, T Weibel (IWTM Kaiserslautern)
- FNI contract DKOST01/29

Thank you very much!

Frz signalling Absent

Continuous Frz Signalling

Stochastic Frz Signalling, pulse β by Poisson law

