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Dengue fever is a vector-borne disease

Figure: Dengue distribution in 2011 (WHO data). DENV has 4 serotypes
and infection with one serotype does not lead to immunity against the
other serotypes, but may manifest as DHF/DSS.
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Synthesis of virions in DENV-infected cells

Figure: DENV infectivity in the absence and presence of antibodies
(Rodenhuis-Zybert et al. 2011)
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Degree of maturity = degree of infectivity

• blood samples from dengue patients contain a proportion of
immature DENV containing uncleaved prM

• inhibition of furin leads to production of immature DENV (in
vivo)

• fully or nearly immature DENV is essentially not infectious to
cells but they regain full infectivity when they interact with
anti-prM antibodies

• such opsonised immature DENV enter Fc receptor-bearing
cells and infect them (antibody-dependent enhacement)
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Immune response

• plasmacytoid dendritic cells (pDCs) sense invading pathogens
and can release type I interferon up to thousand fold more
than other cell types

• DENV-infected cells producing immature vs. mature virions
elicit antiviral response of different intensity (interferon and
inflammatory cytokine secretion) from pDCs (in vitro,
Décembre et al. 2014)

• DENV-infected cells that release immature DENV cause pDCs
to produce much higher amounts of interferon than cells that
release mature DENV (ibid, in vivo)
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Role of immature DENV in the disease progression

• is there any evolutionary advantage of immature, noninfectious
DENV?

• why/how would DENV benefit from presence of noninfectious
virions that induce a stronger immune response presumably
targeted against DENV itself?

• fraction of noninfectious DENV and its effect on
• disease progression: number of infected cells, peak viremia,

time to peak viremia
• immune response: recruitment of additional target cells,

antibody-dependent enhancement in a secondary infection?

• indication for new experimental work
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In-host mathematical model of dengue
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Numerical simulations

• randomly sample model parameters and run simulations to
account for the uncertainty of the parameter values

• consider several scenarios
• vary the proportion α of infected cells producing noninfectious

DENV and record the peak viral load, time to peak viral load,
maximum of infected cells, immune indicators

• consider the scenario when only a fraction of the opsonised
noninfectious DENV enters Fc receptor-bearing cells
(σ = 0.75) in a heterotypic reinfection

• perform hypothesis testing for effect of additional recruiment of
target cells due to the action of interferon on disease indicators
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peak viral load
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maximal count DENV infected cells
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fraction noninfectious DENV causes a trade-off
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fraction noninfectious DENV causes a trade-off

primary infection

2

3

4

5

6

7

8

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p
e
a
k
 i
n
te

rf
e
ro

n
 l
e
v
e
l 
(l
o
g

1
0
 p

g
/m

l)

fraction α

no additional recruitment

2

3

4

5

6

7

8

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fraction α

with additional recruitment

12 / 20



Discussion 1

• no statistical evidence that interferon-mediated additional
recruitment of target cells leads to higher viremia in primary or
secondary DENV infection

• noninfectious DENV production enables DENV to increase its
odds of transmission by several instruments: timing and level
of peak viremia

• suggestions for further experimental reasearch
• heterogeneity of furin expression in target cell pool
• better clinical data to validate the model - especially in the

period before peak viremia
• better data on link between increased cytokine secretion and

physiological state (e.g. fever)
• window of transmission from host to vector?
• case of asymptomatic dengue patients
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DENV and plasmacytoid dendritic cells

• test in silico the role of pDCs in disease progression
• randomly sample model parameters and vary the production

rate of pDCs
• record disease indicators: peak viremia, maximum count of

infected cells
• record immune indicators: the maximum counts of NK cells, T

cells, peak interferon level

14 / 20



effect of pDC production on disease indicators
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effect of pDC production on the immune response
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effect of pDC production on the immune response
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Discussion 2

• pDCs serve as mediators between innate and adaptive immune
response in DENV infection

• model predictions are consistent with clinical evidence:
insufficient pDC levels associated with higher viremia and
higher risk of dengue hemorrhagic fever (clinical data,
Pichyangkul et al. 2003)

• model suggests a possible mechanism: stimulation of T cells
which produce pro-inflammatory cytokines?
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Discussion 3

• our model is based on the assumption of a stable dichotomy
between two types of populations of infected cells

• whether such subpopulations persist stably over time could be
examined through additional in vitro/in vivo experiments

• single-cell experiments: understand better the heterogeneity of
virus produced by infected cells
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