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Dengue fever is a vector-borne disease

Figure: Dengue distribution in 2011 (WHO data). DENV has 4 serotypes
and infection with one serotype does not lead to immunity against the
other serotypes, and in a secondary infection with a different serotype
may manifest as DHF/DSS.
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Synthesis of virions in DENV-infected cells

Figure: DENV infectivity in the absence and presence of antibodies
(Rodenhuis-Zybert et al. 2011)
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Degree of maturity = degree of infectivity

• blood samples from dengue patients contain a proportion of
immature DENV containing uncleaved prM

• inhibition of furin leads to production of immature DENV (in
vivo)

• fully or nearly immature DENV is essentially not infectious to
cells but they regain full infectivity when they interact with
anti-prM antibodies

• such opsonised immature DENV enter Fc receptor-bearing
cells and infect them (antibody-dependent enhacement)
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Immune response

• plasmacytoid dendritic cells (pDCs) sense invading pathogens
and can release type I interferon up to thousand fold more
than other cell types

• DENV-infected cells producing immature vs. mature virions
elicit antiviral response of different intensity (interferon and
inflammatory cytokine secretion) from pDCs (in vitro,
Décembre et al. 2014)

• DENV-infected cells that release immature DENV cause pDCs
to produce much higher amounts of interferon than cells that
release mature DENV (ibid, in vivo)
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Role of immature DENV in the disease progression

• is there any evolutionary advantage of immature, noninfectious
DENV?

• why/how would DENV benefit from presence of noninfectious
virions that induce a stronger immune response presumably
targeted against DENV itself?

• fraction of noninfectious DENV and its effect on
• disease progression: number of infected cells, peak viremia,

time to peak viremia
• immune response: recruitment of additional target cells,

antibody-dependent enhancement in a secondary infection?

• indication for new experimental work

6 / 29



Mathematical and computational aspects

• compartmental model – ODEs
• modelling assumptions based on biomedical observations as

well as in vitro experiments gathered from the literatue
• quantities of biomedical interest

• disease indicators: peak viral load, time to peak viral load since
limit of detection (LOD), maximum count of infected cells

• immune indicators: strength of pDC response maximum
counts of activated NK cells, T cells, peak interferon level,
peak antibody level
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Mathematical and computational aspects

• large number of model parameters with unidentified or
uncertain values

• Latin hypercube sampling of the parameter space (a statistical
method for generating a near-random sample of parameter
values from a multidimensional distribution)

• uniform distribution for the parameter values, 200 sample
intervals

• run the models and generate the disease and immune
indicators

• perform statistical hypothesis testing
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In-host mathematical model of dengue
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Equations of the model: primary infection

S ′ = −βSV1 + γSF

I ′1 = (1− α)βSV1 − kN I1N

I ′2 = αβSV1 − kN I2N

V ′1 = pI1 − βV1S − dVV1

V ′2 = pI2 − dVV2

F ′ = q1DI2 + q2(I2 + I1)− dFF

D ′ = D0 +
KDF

κF + F
− dDD

N ′ = γNF − dNN
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Equations of the model: secondary infection

S ′ = −βSV1 − βSC + γSF

I ′1 = (1− α)βS(V1 + C )− kN I1N − kT I1T

I ′2 = αβS(V1 + C )− kN I2N − kT I2T

V ′1 = pI1 − βV1S − dVV1 − ka1AV1

V ′2 = pI2 − dVV2 − ka2AV2

C ′ = σka2AV2 − βCS − dVC

F ′ = q1DI2 + q2(I2 + I1)− dFF

D ′ = D0 +
KDF

κF + F
− dDD

N ′ = γNF − dNN

T ′ = γT1T (I1 + I2) + γT2TD − dTT

A′ = rA

(
1− A

Ka +m(V1 + V2)

)
− ka1AV1 − ka2AV2
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Asymptotic estimate

Our assumption is that α is the fraction of infected cells producing
noninfectious DENV.
We show that

lim
t→+∞

I1(t)

I2(t)
=

1− α

α
and lim

t→+∞

V1(t)

V2(t)
=

1− α

α

in a primary infection and

lim
t→+∞

I1(t)

I2(t)
=

1− α

α
and lim

t→+∞

V1(t)

V2(t) + C (t)
=

1− α

α

in a secondary infection,
and numerical tests show this convergence is fast within the
window of infection.
Hence, α is a good proxy for the experimentally observed fraction
of noninfectious DENV in blood samples.
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Numerical experiment 1: fraction of noninfectios virus

• choose a random sample of the model parameters
• vary the proportion α of infected cells producing noninfectious

DENV, solve the ODE model and generate the disease and
immune indicators

• consider also a scenario where only a fraction of the opsonised
noninfectious DENV enters Fc receptor-bearing cells
(σ = 0.75) in a heterotypic reinfection

• test the effect of additional recruiment of target cells
(γS = 0, γS > 0) due to the action of interferon on the disease
indicators
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Numerical experiment 2: “interferon bait” hypothesis

• explore the “interferon bait” hypothesis, which states
interferon-mediated additional recruitment of target cells leads
to higher viremia in a DENV infection

• do a Latin hypercube sample
• solve the ODE models and generate the disease indicators in

the scenarios γS = 0, γS > 0
• perform a Kolmogorov-Smirnov statistical test for H0 “peak

viral loads and times to peak viral loads in both scenarios have
the same distribution ”
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peak viral load
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maximal count DENV infected cells
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fraction noninfectious DENV causes a trade-off
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fraction noninfectious DENV causes a trade-off
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Discussion 1

• no statistical evidence that interferon-mediated additional
recruitment of target cells leads to higher viremia in primary or
secondary DENV infection (statistics not shown)

• noninfectious DENV production enables DENV to increase its
odds of transmission by several instruments: timing and level
of peak viremia

• suggestions for further experimental reasearch
• heterogeneity of furin expression in target cell pool
• better clinical data to validate the model - especially in the

period before peak viral load
• better data on link between increased cytokine secretion and

physiological state (e.g. fever)
• window of transmission from host to vector?
• case of asymptomatic dengue patients
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Numerical experiment 3: DENV and pDCs

• pDCs as very potent producers of interferon
• in silico test of their role in disease progression
• randomly sample model parameters and vary the production

rate of pDCs
• generate and compare the disease and immune indicators
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effect of pDC production on disease indicators
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effect of pDC production on the immune response
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effect of pDC production on the immune response
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Discussion 2

• pDCs serve as mediators between innate and adaptive immune
response in DENV infection

• model predictions are consistent with clinical evidence:
insufficient pDC levels associated with higher viremia and
higher risk of dengue hemorrhagic fever (clinical data,
Pichyangkul et al. 2003)

• model suggests a possible mechanism: stimulation of T cells
which produce pro-inflammatory cytokines?
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Global sensitvity analysis

Figure: Parameter sensitvity spectrum, primary infection.
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Global sensitvity analysis

Figure: Parameter sensitvity spectrum, secondary infection.
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Discussion 3

• our model is based on the assumption of a stable dichotomy
between two types of populations of infected cells

• whether such subpopulations persist stably over time could be
examined through additional in vitro/in vivo experiments

• potential for single-cell experiments: understand better the
heterogeneity of virus produced by infected cells
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