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State variables in vector-borne disease modelling

Var. Description
Host

N Host population density
S Susceptible Host population density
I Infected Host population density
R Recovered Host population density
Vector

M Vector population density
U Susceptible Vector population density
V Infected Vector population density
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Basic reproduction number

In the epidemiological literature, the basic reproduction
number R0 represents the number of secondary cases one
infected case generates on average over the course of its
infectious period in an otherwise uninfected population.
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SISUV model
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SISUV model

Assumed constant host and vector population densities

N = S(t) + I (t), M = U(t) + V (t), ∀t ≥ 0

Two-dimensional equivalent system1

dV

dt
=

ϑ

N
(M − V )I − νV︸ ︷︷ ︸

=f (V ,I ,ε)

dI

dt
= ε

(
β

M
(N − I )V − µI

)
︸ ︷︷ ︸

=g(V ,I ,ε)

1Rocha, Aguiar, Souza and Stollenwerk, Int J Computer Math (2013).
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Equilibria SISUV model

trivial, disease-free equilibrium

I 0 = 0,V 0 = 0, S0 = N,U0 = M

interior, endemic equilibrium

I ∗ = N
βϑ− µν

(µ+ β)ϑ
,V ∗ = M

βϑ− µν

β(ν + ϑ)
, S∗ = N − I ∗,U∗ = M − V ∗

In the SISUV model R0 = βϑ
µν

R0 = 1 at the transcritical bifurcation point, where the endemic
equilibrium coincides with the disease-free equilibrium
endemic equilibrium is biologically relevant and globally asymptotically
stable if R0 > 1
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SISUV model – Singular perturbation

Singular perturbation theory deals with systems whose solutions evolve on
different time scales whose ratio is characterised by a small parameter
0 < ε ≪ 1.

It uses invariant manifolds in phase space in order to understand the global
structure of the phase space or to construct orbits with desired properties.

dI

dt
= εg(V , I , ε) slow variable

dV

dt
= f (V , I , ε) fast variable
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SISUV model – fast system

With ε = 0 we have the fast system

dI

dt
= 0

dV

dt
= f (V , I (0), 0) =

ϑ

N
(M − V )I (0)− νV

The infected host population I remains constant over t, so that the
trajectory is a vertical line in the (I ,V ) phase space plot
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Phase-space plot SISUV model
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The solid line is the trajectory starting at the point □. Two curves represent the
two nullclines f (V , I , 0) = 0 and g(V , I , 0) = 0
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SISUV model – slow system

With a change of time-scale τ = εt the resulting system with ε ≪ 1 is
called the slow or reduced system:

ε
dI

dτ
= εg(V , I , ε) = ε

(
β

M
(N − I )V − µI

)
ε
dV

dτ
= f (V , I , ε) =

ϑ

N
(M − V )I − νV

Substitution of ε = 0 gives a differential-algebraic system describing the
evolution of the slow variable I (τ) constrained to the set f = 0.

0 = f (V , I , 0) ⇔ V =
ϑIM

ϑI + Nν
dI

dτ
= g(V , I , 0) =

β

M
(N − I )V − µI
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Time-scale separation

These heuristic results suggest the following approach for dealing with the
two different time scales:

1 set ε = 0 in the slow system, which gives the set of fast equilibria
f = 0.

The critical manifold is the f -nullcline.

2 with a good Ansatz the relation f (V , I , 0) = 0 can be rewritten as
I = q(V ) and we can substitute V = q−1(I ).

3 the result is the 1-dimensional reduced system with ε = 0:

dI

dτ
= g(q−1(I ), I , 0) =

β

M
(N − I )q−1(I )− µI
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Geometric singular perturbation technique

In order to get a better approximation for 0 < ε ≪ 1, we follow the
geometric singular perturbation technique.

For ε = 0 the f -nullcline{
(V , I )|f (V , I , 0) = 0,V ≥ 0, I ≥ 0

}
consists of the critical manifold

M =

{
(V , I )|I = νVN

ϑ(M − V )
, 0 ≤ V ≤ M , 0 ≤ I ≤ N

}
M forms a set of equilibria of the fast system
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Application of Fenichel’s theorem

Fenichel’s theorem states that there exists ε0 such that for 0 < ε < ε0,
there exist locally invariant manifolds Mε, O(ε)-close and diffeomorphic to
M. Using their invariance, the perturbed manifold Mε can be
approximated by an asymptotic expansion in ε.
It can (at least locally) be described as a graph{

(V , I )|I = q(V , ε),V ≥ 0, I ≥ 0
}

due to normal hyperbolicity and inverse function theorem.
This manifold is invariant when the invariance equation holds

dI

dτ
=

dI

dV

dV

dτ
=

∂q(V , ε)

∂V

dV

dτ
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Asymptotic expansion of Mε for the SISUV model

Introduce an asymptotic expansion in 0 < ε ≪ 1

I (V ) = q(V , ε) = q0(V ) + εq1(V ) + ε2q2(V ) + . . .

Formally differentiating by V and substituting into the invariance equation,
gathering equal order terms of ε and assuming V > 0 results in

I (V , ε) = q(V , ε) = q0(V ) + εq1(V ) +O(ε2)

with

q0(V ) =
νNV

ϑ(M − V )

q1(V ) =

(
β

νM
(M − V − ν

ϑ
V )− µ

ϑ

)
NV

M
.
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Invariant manifold SISUV model

g(V, I, 0)

f(V, I, 0) q−1(I)

✷

•

I(t)

V
(t
)

6005004003002001000

6000

5000

4000

3000

2000

1000

0

One line is the trajectory starting at the point □. The other is the curve
V (I ) = q−1(I , ε). Two nullclines f (V , I , 0) = 0 and g(V , I , 0) = 0.
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SIRUV model
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SIRUV model

Assuming constant host and vector population densities

N = S(t) + I (t) + R(t), M = U(t) + V (t), ∀t ≥ 0

yields an equivalent 3-dimensional system2

dS

dt
= εg1(S , I ,V ) = ε

(
− β

M
SV + µ(N − S)

)
,

dI

dt
= εg2(S , I ,V ) = ε

(
β

M
SV − (γ + µ)I

)
,

dV

dt
= f (S , I ,V ) =

ϑ

N
(M − V )I − νV .

2Rashkov, Venturino, Aguiar, Stollenwerk, and Kooi, Math Biosci Eng 16 (2019), 4314-4338.
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Equilibria SIRUV model

trivial, disease-free equilibrium S0 = N, I 0 = 0,V 0 = 0
endemic equilibrium whenever R0 = ϑβ

ν(µ+γ) > 1:

S∗ = N
ν(γ + µ) + µϑ

ϑ(β + µ)
, I ∗ = µN

βϑ− ν(γ + µ)

ϑ(β + µ)(γ + µ)

V ∗ = µM
βϑ− ν(γ + µ)

β(ν(γ + µ) + µϑ)
,

Theorem
When R0 > 1, the endemic equilibrium is locally asymptotically stable. It is
a spiral as long as µ is sufficiently small.
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Heuristic analysis SIRUV model

It is convenient to analyse the behaviour of the fast variable V in the
(V , I )-system with the slow variable S̄ as a parameter

dI

dt
=

β

M
S̄V − (µ+ γ)I ,

dV

dt
=

ϑ

N
(M − V )I − νV

Theorem

Let Sc = ν(µ+γ)
ϑβ N. For S̄ ≤ Sc , trivial equilibrium (0, 0) is the single global

asymptotically stable equilibrium. For S̄ ≥ Sc , the interior equilibrium

I ∗(S̄) =
βS̄

(µ+ γ)

(
1 − ν(µ+ γ)N

ϑβS̄

)
, V ∗(S̄) = M

(
1 − ν(µ+ γ)N

ϑβS̄

)
is globally asymptotically stable.
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Dependence of nullclines on S̄

dI/dt = 0
dV/dt = 0

V (S)
I
(S

)

M0

N

0

dI/dt = 0
dV/dt = 0

V (S)

I
(S

)

M0

N

0

Left panel: with S̄ > Sc , the trajectory converges to the interior equilibrium
Right panel: when S̄ < Sc , the trajectory approaches the origin
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Fast and slow flow in the SV -plane

dS/dt = 0

susceptible hosts (S)

in
fe
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0

The locus of fast equilibria V ∗ is shown as solid line.
long arrows: direction of fast V -flow
short arrows: direction of slow S-flow
The interior equilibrium (S∗,V ∗) is shown as •
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Figure: Phase-space result for the SIRUV model.
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SIRUV model – slow system

With a change of time-scale τ = εt the resulting system with ε ≪ 1 is
called the slow or reduced system:

ε
dS

dτ
= εg1(S , I ,V , ε) = ε

(
− β

M
SV + µ(N − S)

)
ε
dI

dτ
= εg2(S , I ,V , ε) = ε

(
β

M
SV − (γ + µ)I

)
ε
dV

dτ
= f (V , I , ε) =

ϑ

N
(M − V )I − νV

Substitution of ε = 0 gives an differential-algebraic system describing the
evolution of the slow variables S(τ), I (τ) constrained to the set f = 0

0 = f (S , I ,V , 0) ⇔ V =
ϑIM

ϑI + Nν
dS

dτ
= g1(S , I ,V , 0),

dI

dτ
= g2(S , I ,V , 0)
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Singular perturbation of SIRUV model

Using the time-scale argument with ε = 0, we obtain the two-dimensional
f -nullspace, consisting of the critical manifold

M =
{
0 ≤ S ≤ N, I =

νNV

ϑ(M − V )
, 0 ≤ I ≤ N

∣∣0 ≤ V ≤ M
}
,

The system with hyperbolic expression

V (S , I ) =
ϑMI

νN + ϑI

is the reduced system.
Note V (S , I ) is the same as V (I ) in the SISUV model
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Fenichel’s theorem states that there exists ε0 such that for 0 < ε < ε0,
there are locally invariant manifolds Mε. Using its invariance, the
perturbed manifold Mε can be approximated by an asymptotic expansion
in ε.
It can be described as a graph{

(S , I ,V )|V = p(S , I , ε),V ≥ 0, I ≥ 0
}

This manifold is invariant when

dV

dτ
=

∂V

∂S

dS

dτ
+

∂V

∂I

dI

dτ

which yields with V = p(S , I , ε) the invariance equation

dp(S , I )

dτ
=

∂p(S , I )

∂S

dS

dτ
+

∂p(S , I )

∂I

dI

dτ

P. Rashkov (IMI-BAN) Time-scale separation CMPD5 26 / 34



Asymptotic expansion of Mε for the SIRUV model

Introduce an asymptotic expansion in 0 < ε ≪ 1

V (S , I ) = p(S , I , ε) = p0(S , I ) + εp1(S , I ) + ε2p2(S , I ) + . . .

Differentiating formally by S , I , substituting into the invariance equation,
gathering the zero order terms of ε and assuming V > 0 gives

V (S , I ) = p(S , I , ε) = p0(S , I ) + εp1(S , I ) +O(ε2),

with

p0(S , I ) =
ϑMI

ϑI + νN
,

p1(S , I ) = − MνϑN2

(ϑI + νN)3

(
βϑSI

ϑI + νN
− (γ + µ)I

)
.
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Figure: Plots of the coefficients of first two terms in the asymptotic expansion for
V = p(S , I , ε) with ε = 1/365
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The size of the first-order term in the right panel shows that the
contribution of the p1 term is marginal
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Observations

The usage of such a power series approximation is, however,
counterproductive if we don’t know its radius of convergence

Numerical experiments show that
either spurious equilibria can occur when the trajectory starts not
sufficiently close to the equilibrium
or the trajectory escapes to infinity

Results are not shown here
Refer also to the examples in Hek (2010)3

3G. Hek, Geometric singular perturbation theory in biological practice, J Math Biol,
60 (2010), 347–386.
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Trajectory in (I ,V ) space

SIRUV model
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The point • is endemic stable spiral equilibrium
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Role of seasonality

Introduce seasonality in the SIRUV system by assuming that the density of
the vector population M changes in a perfect sinusoidal way, motivated by
dengue fever epidemiology data

M(t) = M0 (1 + ρ cos(2πt))

with a reference value M0 and amplitude ρ
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Numerical bifurcation analysis for reference parameter set gives the role of
vector on the epidemics by calculation of the threshold value of β where
the disease becomes endemic
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curve: non-seasonal equilibria
curve: seasonal maximum and minimum, TC transcritical bifurcation
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Limit cycles

V

5

2.5

0
I

0.75
0.5

0.25
0S 252

250
248

•

Figure: The amplitude of cycles is proportional to the value of ρ. The period of
oscillation equals that of the forcing term.
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Parameters

Parameter Description SIRUV SISUV

Host

N Host population density 1000 1000
β Infection rate 730/7 0.2
µ Susceptible birth rate 1/65 0.1
γ Recovery rate 365/7 n/a

Vector

M Vector population density 10000 10000
ϑ Infection rate 73 73
ν Susceptible birth rate 36.5 36.5
ρ Magnitude sinusoidal fluctuation vector 0.9 n/a
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Fenichel’s theorem

Theorem
Suppose M is compact and normally hyperbolic, that is, the eigenvalues λ
of the Jacobian ∂f

∂V (V , I )|M are uniformly bounded away from the
imaginary axis.
Then there exists ε0 > 0 such that the critical manifold persists as a locally
invariant slow manifold Mε of the full problem that is O(ε) close to M for
0 < ε < ε0. The restriction of the flow to Mε is a small perturbation of
the flow of the limiting problem.a

aG. Hek, Geometric singular perturbation theory in biological practice, J
Math Biol, 60 (2010), 347–386.
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