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IMAAC Overview

IMAAC aims at investigation and mathematical analysis of the effect of
avant-garde control measures in vector-borne diseases (VBD) involving
day-time active mosquitos transmitting diseases like dengue, Zika,
chikungunya and yellow fever.

Figure: Nano particle particles on a
textile substrate.

Textile, furniture and paint products can be

treated with nano- and micro-particles re-

leasing repellents or pesticides in well por-

tioned dosage, which serve to reduce the

disease burden. Such technology is already

used in textile production for various pur-

poses, and can be adapted for release of

mosquito repellents and insecticides, which

can be more efficient than spraying on skin

or other classical ways of application.
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IMAAC Overview

Figure: Commercially avalable
dengue vaccine.

The key question is to study in how
far such repellency-based control mea-

sures can help reduce the disease bur-
den, eventually in synergy with existing
vaccines which turned out to have a lim-
ited efficacy on their own1

1M. Aguiar, N. Stollenwerk and S. B. Halstead, The Impact of the Newly Licensed
Dengue Vaccine in Endemic Countries, PLoS Negl Trop Dis, 10 (2016): e5179
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Aedes

In tropical areas, Aedes mosquitos

cause more than 100 million symp-

tomatic cases/year of diseases, such as

dengue, yellow fever, chikungunya and

Zika, and thousands of deaths. With

increasing trade and travel, several

Aedes species have been introduced

into Europe and are now spreading

rapidly – becoming a significant pub-

lic health risk, which needs to be effec-

tively addressed, as testified by recent

cases of autochthonous chikungunya

and dengue transmission in Croatia,

France, Italy, Portugal and Spain.
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Dengue fever

Mathematical modelling within IMAAC focuses on dengue fever, a VBD
transmitted via Aedes aegypti and Aedes albopictus mosquitoes.
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Dengue fever modelling

vector-host two-strain Dengue model (10 dim)
Feng & Velasco-Hernández (1997), J Math Biol

large multi-strain Dengue model (10–20+ dim)
Aguiar, Ballesteros, Kooi & Stollenwerk (2011), J Theor Biol

Aguiar, Stollenwerk & Halstead (2016), PLoS Negl Trop Dis

small single-strain VBD model (2-3 dim)
Rocha, Aguiar, Souza & Stollenwerk (2013), Int J Computer Math

Rashkov, Venturino, Aguiar, Stollenwerk & Kooi (to appear), Math Biosci

Eng
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State variables in VBD modelling

Var. Description
Host

N Host population density

S Susceptible Host population density

I Infected Host population density

R Recovered Host population density

Vector

M Vector population density

U Susceptible Vector population density

V Infected Vector population density

β = the product of the biting rate r and the per-bite infection probability pvh
from mosquito to human

ϑ = the product of the biting rate r and the per-bite infection probability phv

from human to mosquito
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SISUV model Host–Vector model

S

�

S

U

V

host ve�tor Four-dimensional system

dS

dt
= ε

(

−
β

M
SV + µI

)

dI

dt
= ε

(

β

M
SV − µI

)

dU

dt
= −

ϑ

N
UI + νV

dV

dt
=
ϑ

N
UI − νV
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SISUV model Host–Vector model

Constant host and vector population densities
N = S(t) + I (t) and M = U(t) + V (t)
Two dimensional equivalent system

dV

dt
= f (V , I ) =

ϑ

N
(M − V )I − νV

dI

dt
= εg(V , I , ε) = ε

(

β

M
(N − I )V − µI

)
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Analysis of the SISUV model

trivial, disease-free equilibrium I 0 = 0,V 0 = 0 and S0 = N, U0 = M

interior, endemic equilibrium given by:

I ∗ = N
βϑ− µν

(µ+ β)ϑ

V ∗ = M
βϑ− µν

β(ν + ϑ)

also S∗ = N − I ∗ and U∗ = M − V ∗.
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Basic reproduction number

In the epidemiological literature the basic reproduction number R0

represents the number of secondary cases one case generates on average
over the course of its infectious period in an otherwise uninfected
population.

R0 = 1 equals one at the transcritical bifurcation point, where the
endemic equilibrium coincides with the disease-free equilibrium.

The endemic equilibrium is biologically relevant and globally
asymptotically stable if R0 = βϑ

µν
> 1.
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Phase-space plot SISUV model

g(V, I, 0)

f(V, I, 0)

✷
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The solid line is the trajectory starting at the point �. Two curves represent the

two nullclines f (V , I , 0) = 0 and g(V , I , 0) = 0
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SISUV model Singular perturbation problem

Singular perturbation theory deals with systems whose solutions evolve on
different time scales whose ratio is characterised by a small parameter
0 < ε≪ 1.
It uses invariant manifolds in phase space in order to understand the global
structure of the phase space or to construct orbits with desired properties.

dI

dt
= εg(V , I , ε) = ε

(

β

M
(N − I )V − µI

)

dV

dt
= f (V , I , ε) =

ϑ

N
(M − V )I − νV
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SISUV model – fast system

With ε = 0 we have the fast system

dI

dt
= 0

dV

dt
= f (V , I (0), 0) =

ϑ

N
(M − V )I (0)− νV

The infected population I (t) remains constant, so that the trajectory is the
vertical line in the phase-space (I ,V ) plot
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SISUV model – slow system

With a change of time-scale τ = εt the resulting system with ε≪ 1 is
called the slow or reduced system:

ε
dI

dτ
= εg(V , I , ε) = ε

(

β

M
(N − I )V − µI

)

ε
dV

dτ
= f (V , I , ε) =

ϑ

N
(M − V )I − νV

After substitution of ε = 0 we get:

0 = f (V , I , 0) ⇔ V =
ϑIM

ϑI + Nν
dI

dτ
= g(V , I , 0) =

β

M
(N − I )V − µI

This is a differential algebraic system that describes the evolution of the
slow variable I (τ) constrained to the set f (V , I , 0) = 0.
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Time-scale separation

These heuristic results suggest the following approach for dealing with the
two different time scales:

1 set ε = 0, which gives the set of fast equilibria of the fast system
yielding the algebraic equation.

This is the critical manifold, namely the set of equilibria on the
hyperbola f (V , I , 0) = 0.

2 With a good hypothesis the set f (V , I , 0) = 0 is equivalent to
I = q(V ) and we can substitute V = q−1(I ).
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Time-scale separation

Result is the 1-dimensional reduced system with ε = 0:

dI

dτ
= g(q−1(I ), I , 0) =

β

M
(N − I )q−1(I )− µI

We started with a 4-dimensional system and reduced it to a 1-dimensional
system in two steps:

Assumption of constant total number of individuals in the host and
vector populations (reduction by two)

Time-scale argument (reduction by one)
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Invariance equation

In order to get a better approximation for 0 < ε≪ 1 we need an invariance
equation
Using the chain rule for I = q(V )

dI

dτ
= g(V , q(V )) =

dq

dV

dV

dτ

we get formally the Invariance equation :

dV

dτ
=

β
M
(N − q(V ))V − µq(V )

dq/dV
,

dq

dV
=

νNM

ϑ(M − V )2
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Geometric singular perturbation technique

For the case 0 < ε≪ 1, we follow the geometric singular perturbation
techniques.
For ε = 0 the f -nullcline

{

(V , I )|f (V , I , 0) = 0,V ≥ 0, I ≥ 0
}

consists of the critical manifold

M =

{

(V , I )|I =
νVN

ϑ(M − V )
, 0 ≤ V ≤ M , 0 ≤ I ≤ N

}

M forms a set of equilibria of the fast system
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Fenichel’s theorem

Theorem

Suppose M is compact and normally hyperbolic, that is, the eigenvalues λ
of the Jacobian ∂f

∂V
(V , I )|M are uniformly bounded away from the

imaginary axis.

Then the critical manifold persists as a locally invariant slow manifold Mε

of the full problem that is O(ε) close to M for sufficiently small ε > 0.
The restriction of the flow to Mε is a small perturbation of the flow of the

limiting problem.a

aG. Hek, Geometric singular perturbation theory in biological practice, J

Math Biol, 60 (2010), 347–386.

We should verify critical manifold M is normally hyperbolic
Otherwise canards can occur.
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Application of Fenichel’s theorem

Fenichel’s theorem states that there exists ε0 such that for 0 < ε < ε0,
there are locally invariant manifolds Mε. Using its invariance, the
perturbed manifold Mε can be approximated by asymptotic expansion in ε.
It can (at least locally) be described as a graph

{

(V , I )|I = q(V , ε),V ≥ 0, I ≥ 0
}

due to normal hyperbolicity and inverse function theorem.
This manifold is invariant when the following equality holds

dI

dτ
=

dI

dV

dV

dτ
=
∂q(V , ε)

∂V

dV

dτ

which yields with I = q(V , ε) the invariance equation for the SISUV model:

∂q(V , ε)

∂V

(

ϑ

N
(M − V )q(V , ε)− νV

)

= ε

(

β

M
(N − q(V , ε))V − µq(V , ε)

)
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Asymptotic expansion for the SISUV model

The following asymptotic expansion in 0 < ε≪ 1 is introduced:

I (V ) = q(V , ε) = q0(V ) + εq1(V ) + ε2q2(V ) + . . .

hence formally

∂q

∂V
(V , ε) =

dq0

dV
+ ε

dq1

dV
+ ε2

dq2

dV
+ . . .
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Substitution into the invariance equation,
(

dq0

dV
+ ε

dq1

dV
+ ε2

dq2

dV
+ . . .

)(

ϑ

N
(M − V )(q0 + εq1 + ε2q2 + . . .)− νV

)

= ε

(

β

M
(N − (q0 + εq1 + ε2q2 + . . .))V − µ(q0 + εq1 + ε2q2 + . . .)

)

gathering equal order terms of ε and assuming V > 0 results in the
following formula, accurate of order O(ε):

q0(V ) =
νNV

ϑ(M − V )

q1(V ) =

(

β

νM
(M − V −

ν

ϑ
V )−

µ

ϑ

)

NV

M
.

Substitution of expression for q0(V ) and q1(V ) in

I (V , ε) = q(V , ε) = q0(V ) + εq1(V )

gives O(ε2) approximation.
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Phase-space plot SISUV model

g(V, I, 0)
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One line is the trajectory starting at the point �. The other is the curve

V (I ) = q−1(I ) Two curves represent the two nullclines f (V , I , 0) = 0 and

g(V , I , 0) = 0
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SIRUV model Host–Vector model

S

�

R

U

V

host ve�tor
dS

dt
= −

β

M
SV + µ(N − S)

dI

dt
=

β

M
SV − (γ + µ)I

dR

dt
= γI − µR

dU

dt
= −

ϑ

N
UI + ν(M − U)

dV

dt
=
ϑ

N
UI − νV
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Constant host and vector population densities

N = S(t) + I (t) + R(t), M = U(t) + V (t), ∀t ≥ 0

reduce it to a 3-dimensional system

dS

dt
= εg1(S , I ,V ) = ε

(

−
β

M
SV + µ(N − S)

)

,

dI

dt
= εg2(S , I ,V ) = ε

(

β

M
SV − (γ + µ)I

)

,

dV

dt
= f (S , I ,V ) =

ϑ

N
(M − V )I − νV .
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Equilibria

There is a trivial equilibrium S0 = N, I 0 = 0,V 0 = 0 and an endemic
equilibrium whenever R0 = ϑβ

ν(µ+γ) > 1:

S∗ = N
ν(γ + µ) + µϑ

ϑ(β + µ)
, I ∗ = µN

βϑ− ν(γ + µ)

ϑ(β + µ)(γ + µ)

V ∗ = µM
βϑ− ν(γ + µ)

β(ν(γ + µ) + µϑ)
,

and furthermore R∗ = N − (S∗ + I ∗) and U∗ = M − V ∗

Theorem

When R0 > 1, the endemic equilibrium exists, and is locally asymptotically

stable. It is a spiral as long as µ is sufficiently small.a

aP. Rashkov, E. Venturino, M. Aguiar, N. Stollenwerk, B.W. Kooi, On the
role of vector modeling in a minimalistic epidemic model, Math Biosci Eng (to
appear)
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Figure: Phase-space result for the SIRUV model.
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Singular perturbation of SIRUV model

The slow manifold is 2-dimensional. Using the time-scale argument we get
for ε = 0 the two-dimensional nullspace

{

V (S , I )
∣

∣ g1(S ,V , I ) = 0, g2(S ,V , I ) = 0
}

In the SIRUV model, using the qssa approach with ε = 0, gives the set of
fast equilibria

M =
{

0 ≤ S ≤ N, I =
νNV

ϑ(M − V )
, 0 ≤ I ≤ N

∣

∣0 ≤ V ≤ M
}

,

Hence, the system with hyperbolic expression

V (S , I ) =
ϑMI

νN + ϑI

is the reduced system
V (S , I ) is the same as V (I ) in the SISUV model
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SIRUV model
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Left panel: Phase-space result for the SIRUV model

Right panel: Phase-space result for the reduced system where V (S , I ) is
described by the zero order asymptotic expansion or qssa approach
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We assume: critical manifold M is normally hyperbolic
Fenichel’s theorem states that there exists ε0 such that for 0 < ε < ε0,
there are locally invariant manifolds Mε. Using its invariance, the
perturbed manifold Mε can be approximated by asymptotic expansion in ε.
It can be described as a graph

{

(V ,S , I )|V = p(S , I , ε),V ≥ 0, I ≥ 0
}

This manifold is invariant when the following equality holds

dV

dτ
=
∂V

∂S

dS

dτ
+
∂V

∂I

dI

dτ

which yields with V = p(S , I , ε) the invariance equation for the SISUV
model:

dp(S , I )

dτ
=
∂p(S , I )

∂S

dS

dτ
+
∂p(S , I )

∂I

dI

dτ
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Asymptotic expansion for the SIRUV model

The following asymptotic expansion in 0 < ε≪ 1 is now introduced:

V (S , I ) = p(S , I , ε) = p0(S , I ) + εp1(S , I ) + ε2p2(S , I ) + . . .

hence

dp(S , I , ε)

dτ
=
∂p0

∂S

dS

dτ
+
∂p0

∂I

dI

dτ
+ ε

(

∂p1

∂S

dS

dτ
+
∂p1

∂I

dI

dτ

)

+ . . .
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Substituting into the invariance equation, gathering the zero order terms of
ε and assuming V > 0 gives the following result with O(ε2) accuracy:

p0(S , I ) =
ϑMI

ϑI + νN
,

p1(S , I ) = −
MνϑN2

(ϑI + νN)3

(

βϑSI

ϑI + νN
− (γ + µ)I

)

.

The reduced model is described by a two-dimensional SI -system with
V (S , I ) given with O(ε2) accuracy:

V (S , I ) = p(S , I , ε) = p0(S , I ) + εp1(S , I ) ,
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Figure: Plots of the coefficients of first two terms in the asymptotic expansion for
V = p(S , I , ε) with ε = 1/365
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The size of the first-order term in the right panel shows that the
contribution of the p1 term is marginal
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The usage of such a power series approximation is, however,
counterproductive if we don’t know its radius of convergence

Numerical experiments show that

either spurious equilibria can occur when the trajectory starts not
sufficiently close to the equilibrium

or the trajectory escapes to infinity

Results are not shown here
Refer also to the examples in Hek (2010)2

2G. Hek, Geometric singular perturbation theory in biological practice, J Math Biol,
60 (2010), 347–386.
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Trajectory in (I ,V ) space

SIRUV model
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The point • is endemic stable spiral equilibrium
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Use of repellents

The use of repellents reduces the biting rate of the mosquitoes, and
should alter the overall dynamics of virus transmission between hosts
and vectors.

We must alter the infection parameters β, ϑ to account for the changes
in behaviour of mosquitoes due to use of repellent-treated textiles, etc.

If the host population uses products with repellents (u) with maximum
efficacy kr , there is a decrease in the biting rate due to the repellence
action, and the probability of not receiving a mosquito bite will be kru

New biting rate is rnew = (1 − kru)r , and the infection parameters
under repellent use u become

β = (1 − kru)β for mosquito vector to human host
ϑ = (1 − kru)ϑ from human host to mosquito vector
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Optimal control problem

Objective:

minimise the number of individuals infected with VBD (with treatment
costs per person a)

keep the cost of control as low as possible: ordering, production and
shipping costs for the treated products p2, distribution cost p1

Define objective function

J(u) =

∫

T

0

(

aI (t) + p1Nu(t) +
p2

2
u2(t)

)

dt

Note that textiles treated with repellent have a finite lifetime (maximum
number of wash cycles)
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Optimal control problem

Find u : [0,T ] → R
+, with 0 ≤ u(t) ≤ umax < 1 such that

J(u) → min (1)

subject to

dS

dt
= −

β(1 − kru)

M
SV + µ(N − S),

dI

dt
=
β(1 − kru)

M
SV − (γ + µ)I ,

dV

dt
=
ϑ(1 − kru)

N
(M − V )I − νV .

with given initial conditions S(0), I (0),V (0) > 0, and final time T .
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Control measure and R0

modified R0 with repellent-
treated textiles as control

R0 =
βϑ(1 − kru)

2

ν(γ + µ)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

u

kr

Figure: Combinations (kr , u) such that R0 > 1
(yellow) and R0 < 1 (red).

Usage of such measures alone cannot eradicate a VBD
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Co-state system

The associated co-state system for (1) is defined by differentiating the
Hamiltonian:

dψ1

dt
= (

β

M
(1 − kru)V + µ)ψ1 −

β

M
(1 − kru)Vψ2

dψ2

dt
= −a + (γ + µ)ψ2 −

ϑ(1 − kru)

N
(M − V )ψ3

dψ3

dt
=

β

M
(1 − kru)Sψ1 −

β

M
(1 − kru)Vψ2 + (

ϑ(1 − kru)

N
I + ν)ψ3

with transversality condition ψi(T ) = 0, i = 1, 2, 3.
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Using Pontryagin’s maximum principle, we solve for the control

u = min{umax,max{0, u∗}}

with

u∗ = −
Np1

p2
−

kr

p2

(

β

M
SVψ1 −

β

M
SVψ2 −

ϑ

N
(M − V )Iψ3

)

.

Parameters must be estimated from field experiments (entomologists from
IMAAC).
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Numerical solution
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Figure: Sample solution for the optimal control problem.
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2-strain dengue SIRUV model
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This model is more realistic because
reinfections with a different virus
serotype/strain do occur and usu-
ally cause a severe form of dengue
leading to hospitalisation.
After a period of temporary cross-
immunity (1/α), seropositive sus-
ceptibles with a previous dengue in-
fection (S1,S2), can be re-infected
with a different strain and become
classes I12 and I21.
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2-strain dengue SIRUV model
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Individuals experiencing a severe
form of dengue (classes I12, I21)
have a higher rate of hospitalisa-
tion, and a lower contact rate with
mosquitoes, decreasing ϑ by a frac-
tion φ < 1.
Recovered from both infections
and life-long immune against both
serotypes individuals belong to class
R .
We assume host and vector popula-
tions are constant.
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Equations

S
′ = −

β

N
S(V1 + V2) + µ(N − S)

I
′

1 =
β

N
SV1 − (γ + µ)I1

I
′

2 =
β

N
SV2 − (γ + µ)I2

I
′

12 =
β

N
S1V2 − (γ + µ)I12

I
′

21 =
β

N
S2V1 − (γ + µ)I21

S
′

1 = αR1 − µS1 −
β

N
S1V2

S
′

2 = αR2 − µS2 −
β

N
S2V1

R
′

1 = γI1 − (α + µ)R1

R
′

2 = γI2 − (α + µ)R2

V
′

1 =
ϑ

N
(M − V1 − V2)(I1 + φI21)− νV1

V
′

2 =
ϑ

N
(M − V1 − V2)(I2 + φI12)− νV2
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Control measures: repellents

Similarly to the small model, we introduce as control measure u1

textile product with mosquito repellents

If the host population uses products with repellents (u1) with
maximum efficacy kr , there is a decrease in the biting rate due to the
repellence action, and the probability of not receiving a mosquito bite
will be kru1

New biting rate is rnew = (1 − kru1)r , and the infection parameters
β, ϑ under repellent use become

β = (1 − kru1)β for mosquito to human
ϑ = (1 − kru1)ϑ from human to mosquito
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Numerical results
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Figure: Simulation without control measures (u1 = 0). Presence of chaotic
attractor.
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Preliminary results

Due to the presence of temporary cross-immunity (α 6= 0), coexistence
of both virus strains in the host and vector populations is possible3

This is one major difference from the dengue model by Feng and
Velasco-Hernandez (1997), where the coexistence equilibrium is a
saddle point and one strain always goes extinct

However, the model exhibits very complex dynamics dependent on φ:
limit cycles, torus bifurcations, and chaotic behaviour

3B.W. Kooi, M. Aguiar and N. Stollenwerk, Bifurcation analysis of a family of
multi-strain epidemiology models, J Comput Appl Math, 252 (2013), 148–158.
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Perspectives

Reduction of complexity in the large 2-strain dengue model by singular
perturbation analysis

Sensitivity analysis giving role of vector dynamics

Sensitivity analysis giving role of vector dynamics combined with
seasonal forcing of the vector population

Analysis of introduction of control measures in the model (repellents,
vaccine): question of stabilisability of a high-dimensional ode system
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Parameters

Parameter Description SIRUV SISUV

Host

N Host population density 1000 1000
β Infection rate 730/7 0.2
µ Susceptible birth rate 1/65 0.1
γ Recovery rate 365/7 n/a

Vector

M Vector population density 10000 10000
ϑ Infection rate 73 73
ν Susceptible birth rate 36.5 36.5
Control

umax Maximum coverage 0.6
kr Maximum efficacy 0.45
a Individual treatment cost 10/3
p1 Distribution cost 1/300
p2 Background costs 10/3
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