IEEE International Conference on e-Business Engineering

Model-Driven Specification of Software Services

Boris Shishkov, Marten van Sinderen, Bedir Tekinerdogan
Faculty of Electrical Engineering, Mathematics and Computer Science; University of Twente
{B.B.Shishkov, M.J.vanSinderen; B.Tekinerdogan}@ewi.utwente.nl

Abstract

Aligning adequately business requirements and
Software functionality as well as achieving ‘loose
coupling’ for service functionalities, are identified
challenges relevant to service-oriented software
design. Furthering previous related work, we propose
in this paper an application design process that, taking
the above challenges into account, addresses
Systematically and separately business requirements,
the identification of (desirable) service Junctionalities,
and their mapping onto technology platforms. With
respect o service modeling, a communication pattern
has been identified that is relevant and useful. As for
the enforcement of social restrictions in the application
Junctionality, semiotic norms are helpfully applied.
And finally, ‘loose coupling’ is achieved in an
orchestration-driven way.

1. Introduction

Software architecture design has crucial importance
in the software development life cycle. This can be
seen not only from the widely recognized claim that a
software architecture forms key reusable (platform-
independent) artifacts [2] but also from the software
architecture’s role in bridging between business logic
and application logic, such that the final sofiware
system will support the desirable features required by
the various stakeholders [10]. Hence, for delivering an
adequate architecture design, it is important to
appropriately close the semantic gap between real-life-
level problems, on one hand, and technology-rooted
solutions, on the other hand [11]. It is not surprising
that a number of software development methods
address this challenge; among them are SDBC,
Catalysis, and KobrA [8]. Nevertheless, these methods
do not support mapping to any specific platform
technology, such as web services technology. Web
services are (currently) the technology of choice for
implementing the Service-Oriented Architecture —
SOA [6]; SOA provides a structure for composing

0-7695-3003-6/07 $25.00 © 2007 IEEE
DOI'10.1109/ICEBE.2007.86

software applications based on the use of services as
building blocks that can perform distinct functions
through well-defined interfaces [1]. Being able to find,
select and compose services without prior agreement
results in a 'loose coupling', which together with the
availability of (web services) standards brings the
potential benefits of increased software reuse, easier
application integration and higher business agility.

A usual software design starting point is to consider
a (real-life) business scenario that is to be reflected in
business modeling envisioning not only statics (entities
and their relationships) but also dynamics (entities’
behaviors). We should then refactor the business
model, responding in this way to the user requirements
which might include for example the introduction of a
new entity. Then, considering again the requirements, a
business-software mapping is to be conducted,
including not only mapping between business and
application entities but also delimitation of the
automated support to be provided by the software
system. The derived (high-level) application model is
to undergo refactoring driven by the SOA technology
architecture underlying the software application
development. What we also might need to address at
this phase are crosscutting concerns — concerns (such
ag security, for example) which appear at the business
modeling level and then crosscut elements at software
architecture level. It is considered useful defining such
concerns as first-class abstractions at the business
modeling level since architects would be able to treat
them uniformly at this level and further distribute them
to application components (this would facilitate the
design process). All this output represents therefore a
software specification model that is appropriately
elaborated in terms of statics and dynamics. Desirably,
this model denotes the software architecture
components that can be further implemented using
software component technologies, such as .NET or
EJB [8].

We use SDBC as a framework through which to
conduct our studies because, compared to other design
methods, including Catalysis and KobrA, SDBC
provides more thorough support to the software

. IEEE
&hcomputer
" s0cl

ety

development lifecycle. SDBC not only explicitly
considers most of the above phases in a component-
based way but it has also useful SOA-related
complements, particularly in achieving the desired
property of ‘loose coupling’ [11].

What remains unsolved nevertheless is the full
integration of this all, in a SOA-driven software design
approach, where the business-software mapping is
systematically elaborated. This should include a
normative enforcement concerning the application
model towards consistency with the business context.
Furthermore, awareness is necessary that crosscutting
concerns (as introduced above), not considered as such
in SOA-related application design approaches, should
be identified and at the design level, in facilitating the
whole design process.

In the current paper, we derive SOA application
desired properties, based on a SOA state-of-the-art
analysis, and we focus from this perspective on
software development lifecycle in general and
particularly, on its phases related to the business-
software mapping, using SDBC as a framework
through which to conduct our studies. We elaborate on
our SDBC-SOA result on achieving ‘loose coupling’,
studying further how SOA concepts and challenges can
be usefully reflected in software architecture design.
This will include a useful consideration of the Theory
of Communicative Action [4] for the purpose of
specifying services. This will also include the
consideration of Norm Analysis - NA [5] as a
business-software-consistency enforcement tool and
indirect consideration of crosscutting concerns,
inspired by related work on aspect-oriented software
development.

The contribution of this paper is thus three-fold:

- it analyzes SOA and its actual challenges, and
derives, based on that, essential SOA application
desirable properties;

- it approaches software architecture design from
the perspective the identified SOA-related application
desirable properties, namely (i) the enforcement of a
proper ‘alignment’ between business requirements and
software functionality and (ii) the achievement of
‘loose coupling’ concerning the functionalities of
software components;

- in realizing this, an architecture design approach is
proposed, that usefully addresses the above mentioned
challenges, by appropriately combining existing
modeling tools, including SDBC, LAP, and NA.

The proposed service-oriented architecture design
approach is elaborated and demonstrated by means of
an example: the Emergency Health-Care (EHC) case.

The paper is organized as follows: Section 2 not
only elaborates our proposed views, by presenting
relevant theories and methods but also derives (driven

by an analysis) application desirable properties. Based
on this, Section 3 outlines our approach. Section 4
introduces the EHC case. Section 5 considers the
service-driven business-software alignment, by
applying the approach with regard to the (EHC) case.
Finally, Section 6 presents related work and also
outlines conclusions.

2. Background and analysis

This Section contains: (i) a brief outline of SDBC
that will be used as a general modeling framework; (ii)
related Norm Analysis background; (iii) relevant
analysis of SOA and actual related challenges, leading
to the derivation of application desirable properties.

T)

g

T
[DKy mappieg
TR ey,

N

: _‘ businesssysten © @
— e
e

= ST

e
-7
—

Figure 1: Outline of the SDBC approach [8]

2.1. SDBC

In summarizing the approach ‘Software Derived
from Business Components’ — SDBC [9], we use the
following abbreviations as applied in Figure 1: bc -
Business Component (a business sub-system that
comprises exactly one business process); bk -
Business CoMponent (a model of a Business
Component, which is elaborated in terms of szatics and
dynamics); glbk — general Business CoMponent
(which is re-usable by extension); gcbk — generic
Business CoMponent (which is re-usable by
parameterization); SSm — software specification model;
sCc — Software Component (an implemented piece of
software representing a part of an application); sk —
Software CoMponent (a conceptual specification
model of a Software Component). For more
information on the above concepts, interested readers
are referred to [8].

The figure shows that SDBC is about a component-
based business-process-modeling-driven specification
and realization of software. The starting point is the
consideration of a business system that might be
identified and elicited using a Scenario (as suggested in
the Introduction) but it could also be derived from an
abstract business modeling input [9]. Business
Components are then identified (being denoted with
textual descriptions), by applying the Semantic
Analysis Method — SAM leading to the derivation of
the so called ‘SCI modeling output’ [5,8]. They are
then reflected in corresponding Business CoMponents,
in supplying an adequate modeling foundation for the
further software specification activities. Another way
of arriving at a Business CoMponent is by applying re-
use: either extending a general Business CoMponent or
parameterizing a generic Business CoMponent. DEMO
and other Language-Action-Perspective-(LAP)-driven
modeling tools [4,9] are relevant as far as Business
CoMponents’ specification is concerned. Each
Business CoMponent should be then elaborated with
the domain-imposed requirements, for the purpose of
adding elicitation on the particular context in which its
corresponding Business Component exists within the
business system. Then, a mapping towards a software
specification model should take place, possibly driven
by the DEMO-UML transformation mechanism [8].
The domain-imposed requirements as well as the user-
defined requirements are to be considered here, since
the derived software model should reflect not only the
original business features but also the particular user
demands towards the software system. The (UML-
based) software specification model would need then a
precise elaboration, achieved partially through its
decomposition into a number of Software CoMponents
reflecting functionality pieces [9,8]. Then these
Software CoMponents are to undergo realization and
implementation, being reflected (in this way) in
Software Components. This final set of components
might consist of such components which are
implemented (using software component technologies,
such as .NET or EJB, for instance) based on
corresponding Software CoMponents and such
components which are purchased. The (resulting)
component-based application would support the target
business system, by automating anything that concerns
the initially identified Business Component(s).

We can therefore refer partially to SDBC in the
context of whose design process we could place our
SOA-driven business-software mapping procedure.

2.2. Extending SDBC with Norm Analysis - NA

In modeling business system’s dynamics, SDBC
uses workflow-like techniques, without explicitly

formulating rules and conditions necessary for
executing optional and conditional actions. NA is one
of the semiotic methods [5] that are usefully
complementable SDBC in this direction [8,9]. NA
identifies responsibilities and rules that govern
(human) behavior in an explicit and articulate manner.
It recognizes conditions and constraints of the actions
driven by their responsibilities. Norms in essence are a
set of rules and regulations, an underlying protocol
governing the behavior network. These norms are
embedded within a social context transcending the
boundaries of explicit, implicit, formal and informal
states, collaborating to attain certain goals. Norms
revolve around entities, which influences the entities to
execute concerted actions to achieve a particular goal.
In this respect, it can specify to a limited extent how an
entity should or should not behave.

Five types of norms can be identified, each of which
governs a certain aspect of (human) behavior.
Perceptual norms deal with how entities receive
signals from the environment via their senses.
Cognitive norms enable one to interpret what is
perceived, and to gain an understanding based on
existing knowledge. Evaluative norms help explain
why entities have certain objectives. Behavioral norms
govern entities’ behaviors within regular patterns.
Denotative norms direct the choices of signs for
signification.

In business modeling, most rules and regulations
fall into the category of Behavioral norms. These
norms prescribe what entities must, may, and must not
do, which are equivalent to three deontic operators,
namely ‘obliged’, ‘permitted’, and ‘prohibited’. Hence,
the following format is considered suitable for the
specification of Behavioral norms:

whenever <condition>
if <state>

then <entity>

is <deontic operator>
to <action>

Adopting this form, a credit card company may
state norms governing interest charges, for instance:

whenever an amount of whenever an agreement for cr.
outstanding credit card is signed

if more than 25 days after if within 14 days after
posting commencing

then the card holder then the card holder

is obliged is permitted

to pay the interest. to cancel the agreement.

It is essential to recognize that norms are not as
rigid as logical conditions. If a person does not drink
water for certain time duration he can not survive. But
an individual who breaks a group’s working pattern,
does not have to be punished. For ‘permitted” actions,

whether the agent will take an action or not is seldom
deterministic. This elasticity characterizes the business
processes, therefore is of particularly value to
understand the organizations.

For more information concerning norms, readers are
referred to [5]. In the following Sub-section, we
continue with outlining SOA as the context in which
we are going to apply our business-software mapping.

2.3. Software components and SOA

The emergence of the service-oriented computing is
widely considered as a move towards overcoming the
business-software gap, envisioning a service (of a
component/entity) as defining the goal, capabilities
and/or behavior (of the component/entity) as observed
by and relevant to the users (of the component/entity)
[7].

A web service (WS, for short) is hence considered
as self-contained, Internet-enabled service component
capable of not only performing business activities on
its own but also possessing the ability to engage other
WS and form higher-order business transactions [12].

Further, we distinguish between composite and
constituent WS — a composite WS consists of (is
provided by an orchestration of) multiple constituent
WS, and a constituent WS is an ‘elementary’ WS, i.e. a
WS which can be used on its own or in a composite
WS [6].

In order to be usable on a broad scale, WS (which
are based on specific set of standards) should be
somehow reflectable in certain abstractions, as an
instrument for their application in any platform through
which the Internet user accesses them. Moreover, WS
usually should not require design ‘from scratch’
because this would make them expensive. They should
instead be re-usable, using one WS as a basis for
developing another, by making use of its core
functionality [3].

We consider it innovative that multiple users are
able to access WS, personalize them and finally use

such (globally) re-usable scrvw&&
which is our first conclusion. Finally, employing such
generic WS for work in domain-specific business
environments means that the service use has to be
driven by appropriate underlying business models.

Prior to their use, WS would have to be discovered
(by matching requirements to advertised names) and
subjected to negotiation (since the user must of course
accept using a particular WS).

All these views have actually contributed to the
emergence of the Service-Oriented Architecture — SOA

which goes beyond the sole consideration of WS [1]
being a useful paradigm that can support engineers in
their designing, building and using distributed software
systems. SOA facilitates establishment of ICT support
for business processes, which is readily available,
flexible and easily maintainable across multiple
organizations and platforms. The concept of
service/WS adopted by SOA, has evolved from
modular object/component middleware approaches,
such as CORBA, DCOM and J2EE [6]. However, WS
have become the technology of choice for
implementing service-oriented software systems,
primarily because they are based on ubiquitous Internet
standards, such as HTTP and XML, and because they
support ‘loose coupling’. Whereas the uptake of WS
based SOA is impressive, there are still important
fundamental challenges not addressed by this
technology.

Firstly, the ‘plug and play’ interoperability of WS to
enable ad hoc cooperation of new partners is limited.
For on-demand composition of services in an open
service-oriented world, interoperability has to be
ensured at different levels (syntactic and semantic) and
in different dimensions (information and behavior).
Current research in this direction is using, for example,
Semantic Web and ontology technologies [12].

Secondly, the property of ‘loose coupling’ is not
appropriate for many applications that involve stateful
components. Hence, the benefits of WS and SOA
would be limited for the developers of such
applications if they themselves have to solve the issues
of stateful interaction, notification of state changes,
support for sharing and coordination [11]. It should
thus be aimed that these concerns are placed at the
service infrastructure level or that another solution is

Finally, WS alone are not sufficient to guarantee a
proper ‘alignment’ between business requirements and
software functionality. What is needed is a structured
approach for the development of service-oriented |
software solutions, in which consistency with business ‘
requnrements (de-)composition of application services,
and mapping onto (alternative) technology platforms |
can be systematically and separately addrcssed [11,1].
And our third conclusion is that a (
alignment is needed paruaularly in the SOAe&é‘ﬁ

This last challenge is essentially addressed in the
current paper which proposes a SOA-driven
application specification approach (introduced in
Section 3) that systematically and separately addresses
business requirements, identification of desired service
functionalities and their mapping onto technology

platforms, taking into account the 3 identified desirable
properties:

3. Architecture design approach

Inspired by /ayered distributed system architectures
[6], elaborating on our research vision, stated in the
Introduction, and enforcing the above formulated
desired properties, we propose a layered design
architecture illustrated in Figure 2.

Elaborated

Refinement

Figure 2: Proposed layered architecture

As seen from the figure, we distinguish 4 service
provisioning layers, namely Nerwork Layer (concerned
with networking protocols), Platform Layer (concerned
with (IT) infrastructures), Application Layer
(concerned with the application logic), and Business
Layer (concerned with the business logic that is not
delegated to the application layer).

Further, we consider 3 ‘degrees’ of refinement,
namely General (‘black-box’) view, Structured (high-
level ‘white-box’) view, and Elaborated (detailed
‘white-box’) view.

Next to that, we enforce two relevant desired
properties (requirements) as identified in the previous
section:

- The service(s) provided by the Application Layer
must fit within the business context;

- The architecture of the Application Layer must be
SOA compliant.

A top-down ‘Waterfall’-driven [8] architecture
design approach has been adopted, helpfully refining
some SDBC phases and staying consistent with the
layered structure (Figure 2), being driven accordingly
by the two above-mentioned requirements.

In general, we firstly consider the overall business
system and delimit the sub-system relevant to the
software development task; then we refine the sub-
system’s model, to elaborate on structural aspects,
including static and behavioral aspects, with possible
further (normative) elaboration. This is followed by a
consideration of the application model in terms of
application service(s)-delivering entities. The latter
represents a requirements- driven model of the
(automated) functionality that can be expected from the
software system. The application model is to be
(analogously) elaborated, and related accordingly to
relevant restrictions that concern the platform, the
application is to comply with. Figure 3 outlines (using
the notations of UML Activity Diagram) the approach
process (where we assume the existence of the (SDBC-
driven) initially identified and refactored business
model), grey arrows indicating the second cycle
through the process.

As the figure is suggesting, we consider the input
(identified and refactored general business model) by
firstly delimiting a sub-model that is relevant to the
automated support to be provided by the software
system. What we consider are entities and related
interactions. We have to model both entities’ statics
(2), disclosing the entity’s static relationships, and
(related to this) the interactions’ statics (3), disclosing
the interactions’ static relationships, assuming that an
interaction can only concern the collaboration between
two entities. However, considering statics only is not
enough for adequately grasping a (business) system
that has also dynamics — overall behavior, entities’
behaviors, and so on. Therefore, we consider in parallel
three interrelated types of system-related behavior,
namely the overall system behavior (4), the behaviors
associated with each interaction (5), and the internal
behaviors of each entity (6). Furthermore, an
interaction-associated behavior (5) should be not only
consistent with the overall system behavior but it
should also comply with socially-driven norms (for
example, that a medical specialist cannot abandon a
person who needs to be treated) which are enforced
through a normative elaboration to interactions (7).
Thus, through steps 1, 2, 3, 4, 5, 6, and 7, we arrive at
an adequate and sufficiently elaborated input for the
business-software mapping, that is to be however
complemented with the restriction that the application
architecture should be SOA-compliant (Figure 2). The
SOA requirements are considered in our mapping
between static entity business and application models
(8). Then, we follow the same cycle, making sure
however that each derived application model is
consistent with its corresponding business model.

Figure 3: Proposed design process

The entities of the (derived) application model are
therefore helpful for service specification because this
specification should be driven by the identification of
units of (composite) entitics” behaviors that can be
considered as self-standing application services.
However, these services refer to corresponding
business services associated with the business entities
and if they appear to be ‘tightly coupled’ at the
business modeling level, this should be resolved in the
business-software mapping, for example through
Orchestration [11].

As for norms, they are not only elaborating
interactions, making them more comprehensive [5] but
they are also helpful in enforcing social restrictions to
which the business entities (hence the application
entities as well) should comply while identifying these
restrictions is goes often beyond just considering the
scenario based on which the source business models
have been specified [5,9]. For this reason, we claim
that normatively enriching the business-software
mapping adds value.

Finally, we use the Language-Action Perspective —
LAP, that is driven by Habermas’ Theory of
Communicative Action [4] as a helpful method for
service specification [11].

As suggested by the well-known LAP Pattern
(Figure 4), a (real-life-level) communication invariance
includes two roles, namely /nitiator (1) and Executor
(E). I requests (r) something and it is up to E to
commit or not, by either promising (p) to execute what
I requested, or declining (d). Having promised, E has
to realize the production act and state (s) afterwards
that it is done, to which I could react by either
accepting (a) it — which marks the interaction
completed, or declining (d). The coordination acts: r, p,
s, a, and d are therefore useful for describing service
delivery and we will specify services, by replacing an
interaction with a LAP pattern, as suggested by Figure
3 and motivated by previous work [11].

We will elaborate on our approach in Sect. 5,
facilitated by the EHC case, to be introduced in Sect. 4.

Initiator

Executor

Figure 4: The LAP pattern

4. Emergency Health-Care (EHC) case

The EHC Scenario relates to a health-care case
considered in [8]:

Alex does not feel well at night and his wife
Heather takes him to the hospital. They explain at the
Reception the problem and are directed to the
Emergency Dept.

There they meet Dr. med. Chapman who is on duty
during the night. Dr. Chapman asks his assistant Pascal
to conduct the medical anamnesis. Dr. Chapman also
asks for symptoms and requests medical history data
that is to be derived from Alex’s patient record
accessed through the hospital information system. All
city residents have health records where data is kept
that relate to previous health monitoring and each
resident’s record is accessible from the hospital. The
information derived from Alex’s record is nevertheless
insufficient and (for this reason) Dr. Chapman asks
Heather to elaborate Alex'’s condition.

After this first familiarization with the patient’s
situation, Dr. Chapman sends Alex for additional
standardized examinations, including ECG. The
examination information is then sent to Dr. Chapman
who analyzes it and makes preliminary diagnosis. This
triggers the patient’s treatment plan that is to be
guided by treatment protocols.

According to the plan, Alex is referred to other
medical specialists. If at the moment all specialists are
occupied with other patients, the hospital secretary
should determine the patient’s urgency status that can
be either ‘green’ (the patient can wait) or ‘yellow’ (the
patient must receive help at the first possible occasion)
or ‘red’ (the patient cannot wait). If there are more
patients with urgency status ‘red’ than available
specialists, then, applying ‘FIFO’ approach, first are
treated (when specialists are available) those patients
who were firstly registered. The other ones are to be
approached by nurses.

This is the case with Alex who receives help from
one of the nurses, Kelly. She can treat the patient only
under the guidance of a medical assistant. The

assistant Mathew provides Kelly with instructions.
Mathew applies specialized instructions after having
‘personalized’ them for Alex’s situation. Treating a
patient by following such instructions aims at just
keeping the condition of the patient stable until a
specialist is available.

Finally, becoming available, Dr. med. Jonkers, a
medical specialist, starts treating Alex.

REQUIREMENTS: the treatment provision,
diagnosis establishment and standardized examinations
to be automated, by allowing limited intervention
concerning (only) some patient conditions [8).

5. Applying the design approach

As suggested by Figure 3 — 1, delimitation should
firstly take place.

Figure 5: Delimitation model

On Figure 5, we have the refactored business model
that is the current study’s input. On the model, we have
entities (named boxes), connections that indicate the
need for interactions between entities (i5 is indicated as
optional), and inspired by LAP (Figure 4); we indicate
the entity that has the role of Exccutor in an
interaction, by putting a grey box on the particular
connection, on the side of the entity. The dashed line
indicates the system boundary. Finally, the (solid)
horizontal line separates the entities that are relevant to
the automation (as according to the requirements
(Section 4) from the rest of the entities (we will further
fully abstract from S, since it is optional, as indicated
in Figure 5).

We can now consider steps 2 and 3 (Figure 3) and
focus particularly on the business-level statics of
entities and interactions, depicted in Figure 6, left and

right, respectively.
e e S A 0 4 e s 1

OO
Fig. 6: Str. view on entities and interactions

The right-side model indicates that both Interaction
1 (i1) and i3 have to be completed before i4 can be

completed, and also that i2 has to be completed before
i1 can be completed. To model corresponding services,
as already explained, we replace cach interaction with
a LAP Pattern, having done conformance checking
[11], as partially shown in Figure 7:

I:«/Q;)—_-@-—o . WY l

Figure 7: Identification of services

As seen from the figure, if we map one to one
business entities to application entitics, we arrive at
‘tightly coupled’ services, which contradicts with one
of the identified (in Section 2) desirable propertics. We
therefore, need to enforce ‘loose coupling’.

As concerns the dynamics views, steps 4, S, and 6
(Figure 3), we start by building (using the notations of
UML Activity Diagram) the system’s overall behavior
— Figure 8:

FOPIII) PO PN A20P yrnd

Figure 8: Dynamics view: overall behavior

This overall behavior model must ‘govern’ the two
further identified (according to steps 5 and 6) ones,
namely the interaction process specification — for each
interaction (that can be expressed using UML
Sequence Diagram) and the entity internal behavior
specification — for each entity (this can be expressed
through UML Activity Diagram). For brevity, we omit
those steps.

As stated in Section 3, applying norms for further
claborating interactions can be helpful, especially for
the enforcement of relevant social restrictions, not
‘rooted’ in the case scenario. We consider the theory
behind Norm Analysis concerning the identification of
norms for that purpose. According to this theory, from
the norms identified in the business processes, some

refers to the major authorities and responsibilities.
These norms (called ‘Framing norms’) govern some
trivial, relatively less important norms or those of
lower priorities, from the perspective of organizational
functionalities. This strongly suggests hierarchies of
norms, with Framing norms on top.

We will exemplify the usage of norms, by
normatively elaborating the interactions i4 and i1, as
shown in Figure 9.

N31(N3) whenever N3 (N1) whenever

DE is establishing diagnosis TP is committed to treat person P
If mistake occurs If preliminary diagnosis is requi
Then DE Then DE

is prohibited is obliged

to submit the diagnosis to TP to make prelim. Diagnosis conc. p. P]

—El () whenever =
person P appears at the reception
if person P's condition is bad
then TP
is obliged
to treat the person P
N11 (N1) whenever
TP is treating a person
if person’s private data is used
then TP
is prohibited
to disclose the data to third parties

N32 (N3) whenever
DE is establishing diagnosis

If external expertise is necesary
Then DE

Is permitted

to ask TP for sending external expert

Figure 9: Elaborating interactions with norms

As seen from the figure: norms N1 and N3 are
Framing norms — they refer to major responsibilities,
being essential for the interactions they refer to,
namely i4 and i1. What is seen as well is that these
norms naturally ‘inherit’ their corresponding
interactions’ dependencies: in the same way in which
i4 requires the completion of i1, N3’s actuality is
dependent on N1 (N1 is context for N3, indicated by
putting ‘N1” in brackets next to N3, in the label of N3).
This is (obviously) because responsibilities associated
with different interactions are part of the dependencies
of the interactions. Finally, norms N11 from one side
and N31 and N32, from another side are ‘governed’ by
N1 and N3, respectively because they appear to
elaborate the essential responsibilities as defined in N1
and N3. N11 is not derivable from the case scenario
and it should be additionally identified by system
architects, in their securing the software’s adequacy.
We therefore claim that this innovative normative
elaboration of interactions usefully supports the
enforcement of a business-software consistency,
making the business-level norms govern the further
application-level norms.

We now closed the first cycle of the design ‘loop’
(Figure 3) and proceed towards the business-software
mapping (step 8), hence essentially aiming at
enforcing: (i) requirements-functionality alignment (to
be achieved by keeping each of our application models

20

consistent with its corresponding application one); (ii)
‘loose coupling’.

Inspired by related work, we resolve the latter
through orchestration [11] that includes a new entity
(Orchestrator) mediating all ‘tightly coupled’
interactions, invoking corresponding core
functionalities as generic services, and handling the
remaining application specific ‘part’ that concerns the
interaction. The orchestration-driven entity model,
representing actually the application entity model is
shown in Figure 10.

Figure 10: Application entity model

The Orchestrator (colored grey in Figure 10) should
thus ‘split’ each interaction in two — one of them is
executed by the application-specific orchestrator and
the other one is executed using a generic service
delivery. Hence, in this way — by distinguishing
between application-specific and generic behaviors, the
behavior specification would fulfill the ‘loose
coupling’ requirement.

Nevertheless, to adequately fulfill (at the same time)
the alignment requirement would mean specifying the
application behaviors in such a way that keeps them
consistent with the business context.

We should therefore put the condition from a
business-level norm as the condition of the
(corresponding) application-level norm that specifies
the corresponding application-specific interaction, and
we should put no condition in the (corresponding)
application-level norm that specifies corresponding
generic interaction, as shown in Figure 11 for norm
N3.

This illustrates the usefulness of supporting the
(application) specification with norms, demonstrating
how they can be useful in designing the Orchestrator.

N3 whenever

TP is committed to treat person P

If preliminary diagnosis is req
Then DE

is obliged

to make prelim. Diagnosis conc. p. P

N3b whenever

1f request for diagnosis and related
person’s data are submitted

Then DE

is obliged

to make prelim. diagnosis

Nia whenever

TP is commitied to treat person P
If preliminary diagnosis is requires
Then Orchestrator

is obliged

to deliver prelim. diagn. conc. p. P

Figure 11: Norm split

The remaining 5 steps (Figure 3) will be omitted for
brevity. However, they are analogous to the considered
3-to-7 steps, taking the Application Entity Model as a
starting point. However, as mentioned before, it is
essential that each application-level derived model is
ke(l))(tl consistent with its corresponding business-level
model.

6. Related work and conclusions

In this paper we have presented an architecture
design process that, in the context of SOA, addresses
systematically and separately business requirements,
the identification of (desirable) service functionalities,
and their mapping onto technology platforms.

Among the work that is focusing on core SOA
concerns are [1,3,7], driven mainly by consideration of
particular key problems, such as service composition
and WS technologies, overlooking however the issue
on requirements-functionality alignment. On the other
hand, there is reported research concerning the
requirements-functionality alignment, mainly related to
relevant methods, such as Catalysis, KobrA and SDBC
[8] which nevertheless lack the proper (SOA) focus
concerning the ‘loose coupling” desirable property, for
instance

In the proposed architecture design approach that is
embracing the SDBC business-software alignment
vision (characterized by a clear separation between
business modeling and application modeling, and also
by restrictions imposed by the business model to the
application model): services are modeled with the help
of a generic (LAP-driven) communication pattern;
social restrictions are enforced to service
functionalities through semiotic norms; the desirable
‘loose coupling’ property is achieved in an
orchestration-driven way.

Distinctive features of the proposed way of
modeling thus are the systematic approach towards the
design of SOA applications (coming through the key
problem of business-software alignment) as well as the
combination of (i) LAP-driven services specification,
(ii) normative functionalities restriction, (iii)
orchestration.

21

To further this research, we plan to address
crosscutting concerns (mentioned in the Introduction),
considering them as first-class abstractions at the
business modeling level where they are treated
uniformly, and distributing them to application
components. Addressing crosscutting concerns would
increase the practical value of the software design,
while considering them in the way mentioned above
would facilitate their adequate inclusion in the design
process.

7. References

[1] Alonso, G., F. Casati, H. Kuno, and V. Machiraju, Web
Services, Concepts, Architectures and Applications,
Springer-Verlag, Berlin-Heidelberg, 2004.

[2] Aksit, M. (Ed.), Software Architectures and Component
Technology: The State of the Art in Research and Practice,
Kluwer Academic Publishers, 2001.

[3] A. Bosworth, “Devclopmg Web Services”, In
Proceedings of the 17" Int. Conf. on Data Engineering,
2001.

[4] Habermas, J., The Theory of Communicative Action,
Cambridge,1984.

[5] Liu, K., Semiotics in Information Systems Engineering,
Cambridge University Press, Cambridge, 2000.

[6] Newcomer, E., Understanding Web Services, XML,
WSDL, SOAP and UDDI, Addison-Wesley, Boston, 2002.
[7] J. Pasley, “How BPEL and SOA are Changing Web
Services Development”, Internet Computing, IEEE, 2005.

[8] Shishkov, B., Software Specification Based on Re-usable
Business Components, TU Delft — Sieca Repro, Delft, 2005.
[9] B. Shishkov, J.L.G. Dietz and K. Liu, “Bridging the
Languagc -Action Perspective and Orgammtlonal Semiotics
in SDBC”, In Proceedings of the 8" Int. Conf. on Enterprise
Inf. Systems, INSTICC Press, 2006.

[10] B. Shishkov, D. Quartel, “Refinement of SDBC
Business Process Models Using ISDL”, In Proceedings of 8"
Int. Conf. on Enterprise Inf. Systems, INSTICC Press, 2006.
[11] B. Shishkov, D. Quartel and M. van Sinderen, “SOA-
Driven Business-Software Alignment”, In Proceedings of
Int. Conf. on E-Business Engineering, IEEE Press, 2006.

[12] World Wide Web Consortium, Web Services
Description Language 1.1, W3C Note,
http://www.w3.org/TR/wsdl,2005.

