
Y. Manolopoulos et al. (Eds.): ICEIS 2006, LNBIP 3, pp. 322–335, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Combining SDBC and ISDL in the Modeling and
Refinement of Business Processes

Boris Shishkov1 and Dick Quartel2

1 University of Twente, Department of Computer Science, Drienerlolaan 5
7500 AE Enschede, The Netherlands

2 Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands
b.b.shishkov@ewi.utwente.nl, dick.quartel@telin.nl

Abstract. Focusing on the alignment between business requirements and application
(software) functionality, the SDBC approach considers three viewpoints com-
plementing each other, namely statics, dynamics, and information. Next to that,
the approach addresses systematically and separately business modeling and
application design, applying the mentioned viewpoints to both of them. The
approach also allows for an adequate extension of its ‘dynamic’ business model-
ing, acknowledging the real-life complexity that includes communication and
coordination issues, such as meanings, intentions, commitments, and obligations.
Hence, in order to consider appropriately these (communication and coordination –
related) issues as complementing its dynamic business modeling, SDBC applies at
least two modeling techniques. The transformation between them nevertheless
complicates the modeling process; furthermore, different techniques use different
modeling formalisms whose reflection sometimes causes limitations. For this
reason, we explore in the current paper the value which the modeling language
ISDL (allowing for useful refinement of business process models) could bring to
SDBC, particularly in the elaboration of dynamic (behavioral) business models with
real-life aspects. We also explore how SDBC can benefit from ISDL-related
methods assessing whether a realized refinement conforms to the original process
model. The results reported in this work are usefully supported by an illustrative
example.

Keywords: System design, Business process modeling, Refinement, SDBC,
ISDL.

1 Introduction

A number of software development approaches have failed because of being insufficiently
capable to grasp and utilize the original business information. As claimed in [16], the
specification of software and the analysis/modeling of its corresponding business
processes, should be considered as one integrated task.

The SDBC (‘SDBC’ stands for Software Derived from Business Components)
approach [13,14,15,16] addresses this challenge, by allowing for a sound mapping

 Combining SDBC and ISDL in the Modeling and Refinement of Business Processes 323

between a business process model and a software specification model. They both are
approached through different complementing viewpoints, the consistency among
which is certainly crucial [4].

SDBC considers three essential modeling viewpoints, namely: statics (about the
static relationships among entities), dynamics (about behavior), and information (about
data). Next to that, the approach addresses systematically and separately business
modeling and application design, applying the mentioned viewpoints to both of them.
The approach also allows for an adequate extension of its behavioral business modeling,
acknowledging the real-life complexity that includes communication and coordination
issues, such as meanings, intentions, commitments, and obligations. These could
usefully be reflected in another (complementary) viewpoint, namely communication
viewpoint (as in the SDBC terminology), which plays a role with respect to real-life
semantics and pragmatics [14].

Thus, in SDBC the behavior viewpoint and the communication viewpoint are
considered in combination, as complementing each other. In applying SDBC, for
example, one could firstly use the DEMO Process step model [3] for capturing
meanings, intentions, commitments, obligations, and so on, and secondly - reflect this
in a Petri Net business process model [1]. Hence, in order to combine properly these
two viewpoints, SDBC would have to use at least two modeling techniques. The
transformation between them nevertheless complicates the modeling process;
furthermore, different techniques use different modeling formalisms whose reflection
sometimes causes limitations.

Since the modeling language ISDL [6,8] - ‘ISDL’ stands for Interaction Systems
Design Language, is powerful as it concerns the refinement of business process
models and corresponding assessment for correctness, it is feasible to expect that
ISDL can usefully complement SDBC, by allowing refinement of business process
models, from the perspective of communication and coordination.

This has motivated our studying potentials for combining SDBC and an integrated
modeling facility based on ISDL. In particular, we explore in the current paper the
value which this modeling facility could bring to SDBC, particularly in the
elaboration of behavioral (dynamic) business models with real-life aspects. We also
explore how SDBC can benefit from ISDL-related methods assessing whether a
realized refinement conforms to the original process model; actually, the existence of
such ISDL-related conformance assessment methods further justifies the claim that
ISDL can be useful in the refinement of SDBC dynamic business models. ISDL can
also add value in the SDBC-driven mapping of such models towards software
specification, particularly in the context of the design of software services [9], since a
mapping mechanisms exist between ISDL and BPEL/WSDL specifications.

The outline of this paper is as follows: Section 2 considers SDBC, paying particular
attention to concepts that concern the dynamic (behavior) and communication
viewpoints. Then we present in Section 3 an illustrative example to be used in our
further studies. On this basis, we discuss in Section 4 how SDBC and ISDL can be
usefully combined in the modeling and refinement of business processes. Section 5 then
analyzes the value of applying SDBC and ISDL in combination. And finally, Section 6
presents the conclusions.

324 B. Shishkov and D. Quartel

2 SDBC

As suggested in the Introduction, SDBC is envisioned to be a useful modeling
framework that approaches business processes from the perspective of related
software-specification. This claim has been motivated in [13], where relevant
strengths of SDBC are justified: (i) business process modeling based on the theories
of LAP and OS [14]; (ii) component-based business-software alignment; (iii) re-use
of modeling constructs; (iv) software specification consistent with the Unified
Modeling Language – UML [12]. However, the problem addressed in this paper is the
business process modeling consistency, particularly with regard to the dynamic and
communication viewpoints. Thus, in this section, we firstly outline SDBC, and we
secondly consider SDBC-related concepts that concern the mentioned problem.

2.1 Outline and Relevant Features

In summarizing SDBC, we use the following abbreviations as applied in Figure 1: bc
– business component (a business sub-system that comprises exactly one business
process); bk – business coMponent (a model of a business component, which is
elaborated in terms of statics, dynamics, data); glbk – general business coMponent
(which is re-usable by extension); gcbk – generic business coMponent (re-usable by
parameterization); ssm – software specification model; sc – software component (an
implemented piece of software representing a part of an application); sk – software
coMponent (a conceptual specification model of a software component). For more
information on the above concepts interested readers are referred to [13].

Fig. 1. Outline of the SDBC approach [13]

The figure shows that SDBC is about a component-based business-process-
modeling-driven specification and realization of software. The starting point is the
consideration of a business system that might be identified and elicited either by using

 Combining SDBC and ISDL in the Modeling and Refinement of Business Processes 325

a scenario or by an abstract business modeling input [14]. Business components are
then identified (denoted with textual descriptions), by applying the Semantic Analysis
Method – SAM leading to the derivation of the so called ‘SCI modeling output’
[7,13]. They are then reflected in corresponding business coMponents, in supplying
an adequate modeling foundation for the further software specification activities.
Another way of arriving at a business coMponent is by applying re-use: either
extending a general business coMponent or parameterizing a generic business
coMponent. DEMO and other Language-Action-Perspective-(LAP)-driven modeling
tools [18] are relevant as far as business coMponents’ specification is concerned.
Each business coMponent should then be elaborated with the domain-imposed
requirements, for the purpose of adding elicitation on the particular context in which
its corresponding business component exists within the business system. Then, a
mapping towards a software specification model should take place, possibly driven by
the DEMO-UML transformation mechanism introduced in [17]. The domain-imposed
requirements as well as the user-defined requirements are to be considered here, since
the derived software model should reflect not only the original business features but also
the particular user demands towards the software system. The (UML-based) software
specification model would then need a precise elaboration, achieved partially through its
decomposition into a number of software coMponents reflecting functionality pieces
[15]. Then these software coMponents are to undergo realization and implementation,
being reflected (in this way) in software components. This final set of components
might consist of such components which are implemented (using software component
technologies, such as .NET and EJB) based on corresponding software coMponents and
such components which are purchased. The resulting component-based application
would support the target business system, by automating anything that concerns the
initially identified business component(s).

SDBC is thus not only capable to adequately capture semantic and pragmatic real-
life aspects but it can also support their further mapping towards software
specification, consistently with the de facto standard, UML. The SDBC business-
software alignment itself is component-based, founded in the CBD paradigm – ‘CBD’
stands for Component-Based Development [13]. Such an alignment allows for good
traceability between business and software modeling constructs. Finally, the com-
ponent-based business-software alignment allows for re-use of modeling constructs.
This essentially improves the modeling process since building new models includes
the re-use of previously built modeling constructs.

2.2 Concepts

SDBC addresses the communication viewpoint, by applying the LAP theory,
providing an innovative interpretation of the LAP-driven transaction concept.

The generic process of a transaction is depicted in Figure 2. If everything goes
smoothly, a request is followed by a promise, which is followed by a statement
(preceded by a non-communicative production act) which is followed by the
acceptance of the production fact. However, an entity could also enter discussions
(negotiations). For example, if Mary asks for a pizza, it might happen that the sales-
person (Paul) says that the shop is closing soon and only hamburgers could be offered
– so, this is the discussion, Mary could accept this or not. If she accepts, Paul states a

326 B. Shishkov and D. Quartel

c o m m u n i c a t i o n a n d c o o r d i n a t i o n

communication patterns:

 request (r)
 promise (p)
 state (s)
 accept (a)
 decline (d)

r (Initiator) p (Executor)

d (Executor)

Yes No
compromise

found?

s (Executor) a (Initiator)

d (Initiator)

Yes

 No

compromise
found?

2 4

1 production-act

3

f a i l u r e - the transaction has not been realized

s u c c e s s - the transaction has been realized

 theTransaction
concept in SDBC

Fig. 2. The transaction concept in SDBC

promise regarding this updated request. Next, if she does not like the hamburger,
when Paul states it is ready, they again enter a discussion (whether another hamburger
should be delivered or the money – returned back, for example). Depending on the
outcome of such discussions, a transaction could reach failure and no production fact
would then have appeared. That is why Figure 2 presents success and failure ‘layers’.

Hence, we have four possible communication outcomes concerning the initiator of
the transaction (Mary, in the example) and its executor (Paul), as shown on the figure:
1(2) – agreement is (not) reached and the executor will (not) realize a production act;
3(4) – the initiator has (not) accepted the delivered result and a Transaction has (not)
appeared.

BUSINESS SYSTEM

composition structure

environment

concept

role

behavior

 *
transaction …

communication pattern

request promise state accept decline

Fig. 3. SDBC concepts

Thus, the elementary business process modeling building blocks in SDBC are
transactions; we consider the communication patterns (discussed above), namely:
request, promise, state, accept, and decline, needed for the elaboration of a

 Combining SDBC and ISDL in the Modeling and Refinement of Business Processes 327

transaction. Furthermore, by adopting a subjectivist philosophical stance, SDBC
acknowledges that nothing exists without a perceiving/acting agent [7], and especially
addresses the entities related to corresponding transactions. However, instead of
considering the particular agent (entity) involved (human/artificial), SDBC adopts the
actor-role (role) concept [3]. This allows for a sound and flexible modeling, where
for example, a manager sending a fax would fulfill the ‘secretary role’.

We have depicted the mentioned SDBC concepts in Figure 3. In positioning the
concepts, we follow the classical views of Bunge [2], according to which: a (business)
system is characterized by composition (it consists of some entities), structure (the
entities relate to each other), and environment (entities and relationships outside the
system). As seen from the dashed lines, we consider role as a composition-related
concept, and transaction as a structure-related concept. The five communication
patterns are about the transaction elaboration.

SDBC elaborates a transaction via DEMO, expresses multi-transaction structures
via Petri Nets, and maps these to UML Activity diagram, in deriving a dynamic
software specification model. By applying ISDL, especially in elaboration and
refinement, we expect to reach a simpler and smoother representation, benefiting from
ISDL’s capability to model and refine a broad range of dynamic patterns [8].

In Sect. 3, we introduce an example and partially approach it through SDBC. Then
ISDL is introduced and applied to the example, as a complement to SDBC (Sect. 4).

3 The FM Example

The illustrative example addressed in this section, namely the FM example, concerns
the Icomp Case. Information about the case can be found in [13].

‘FM’ stands for Financial Mediator. The FM facilitates insurance companies. In
order to use the mediator, a company should subscribe (registering for its service).

The support provided by FM to registered companies includes advice and product
delivery to their customers: (i) a customer can ask FM’s advice on which of the
companies’ products best satisfies a need; (ii) a customer can also ask FM to deliver a
product, on behalf of the particular company. We focus on advice delivery only.

To receive advice from FM, the customer should firstly position his(her) request,
making it clear whether it is about a health insurance, car insurance, and so on.
Secondly, the customer has to specify the particular demand, for instance: to insure a
car against theft with the highest possible coverage. Based on this, a request
processing unit within the FM generates a standardized specification regarding the
customer’s request, which is delivered to a match-making unit (again within FM). The
match-making unit realizes then a match, supporting in this way the FM in its advice
delivery. This match is driven by a particular criterion that is chosen by the customer.
For instance: a preference for the cheapest or the most reliable product available. In
order to deliver such a criterion-driven match, the match-making unit uses a data bank
that contains relevant rules and procedures. Besides the request processing unit’s
specification, the match-making unit needs as well an input from a data search and
processing unit within FM, in order to realize the match. The data search and
processing unit searches through the information that concerns registered companies,

328 B. Shishkov and D. Quartel

and applies procedures to this information. This allows for a precise identification of
candidate-matches, relevant to the particular customer’s request. Thus, the match-
making unit puts the candidate-matches list (delivered by the data search and
processing unit) against the standardized request specification (delivered by the
request processing unit), and realizes a match, by applying rules and procedures, as
mentioned above. All presented information, concerning the current example, is
partial and we only use it for illustrative purpose.

In applying SDBC, we start with the initial information structuring, identification
of role types, and so on [13]. However, we omit for brevity all initial SDBC analysis
and modeling steps and ‘arrive’ directly at a constructed structural (static) business
model – Figure 4. For more information on the SDBC initial analysis and modeling,
readers are referred to [13,14]. As for the mentioned model, we have constructed it,
using the notations of DEMO, considering the essential concepts role and transaction.

S02

Customer

T4

T3

T1

deliver advice

generate candidate-matches

generate c. specifications

perform match-making

A02

Match-
maker

T2

A01

Advisor

S01 FM

A03

Request
Processing

Unit

A04

Data Search
& Processing

Unit

Fig. 4. Static (structural) business model in SDBC

As seen from Figure 4, an external role type is identified (Customer) as well as
four internal role types (Advisor, Match-maker, Request Processing Unit, and Data
Search and Processing Unit) and four transaction types (Deliver advice; Perform
match-making; Generate customer’s information specification; Generate candidate-
matches). The rounded rectangle indicates our system’s boundary. The black boxes
indicate which role holds the responsibility for a transaction.

The further task is hence to proceed towards modeling that concerns the communi-
cation and dynamic viewpoints. This is to include elaboration of the modeled transact-
tions in terms of communicative acts and coordination (staying consistent with the
transaction notion – Figure 2), and also modeling of the flows of production facts.

This all is addressed in the following section which will explore the relevant value
that ISDL can bring to SDBC.

 Combining SDBC and ISDL in the Modeling and Refinement of Business Processes 329

4 Complementing SDBC with ISDL

The strengths of ISDL, particularly in the perspective of a SDBC-ISDL combination,
are considered in this section, after a brief introduction of ISDL that is actually a
language focusing on (business) process modeling at high abstraction level.

4.1 ISDL: Concepts and Notations

ISDL [6, 8] provides a small, but expressive set of basic and generic concepts for
behavior modeling, aimed at modeling the behavior of systems from varying domains
and at successive abstraction levels [11]. The semantics of ISDL has been defined
formally; a method for conformance assessment has also been defined. Furthermore,
an integrated editor and simulator is available, and tools supporting conformance
assessment and model-to-model (code) transformations are being developed. Figure 5
depicts part of the behavior conceptual model of ISDL, including the entity concept;
Figure 6 shows how these concepts are represented.

Entity

Behaviour

* +performs

1

Constraint-
oriented

composition

Action

Activity

Interaction

Interaction
contribution

Attribute

Causality
condition

*

*

*

2..*

*

*

1

+
refers

1 *

*

1

+has

Causality-
oriented

composition

Point

Entry
point

Exit
point

Parameter

Entry point
dependency

1

1

1+has

+refers

*

*

+refers

+has

11

*

* *

Fig. 5. ISDL concepts

The entity concept represents a system part that can perform some behavior. A
behavior is essentially a set of causally related activities. An activity represents some
unit of behavior that is atomic, i.e., cannot be split at the abstraction level at which it
is defined. Further, an activity either happens, in which case reference can be made to
its result, or does not happen at all, in which case no reference can be made to any
result, not even to partial results. We distinguish three types of activities. An action is
performed by a single behavior (entity). Actions are graphically expressed by ovals
(or circles). An interaction is performed by two or more behaviors in cooperation. An
interaction is expressed as two or more connected interaction contributions which
represent the participation of the involved behaviors. Interaction contributions are
expressed by oval (or circle) segments.

330 B. Shishkov and D. Quartel

a ab ab

(v) start condition of a (vi) enabling condition b of a (vii) disabling condition b of a

b

c

a

b

c

a

a

b

c

a

b

c

(viii) a depends on
the occurrences of
b and c

(ix) a depends on the
occurrence of b or c

(x) choice between a and b: a
depends on the occurrence of c
and the non-occurrence of b

(xi) shorthand for
choice relation
between a and b

B

a

(i) action a

a a

(iii) interaction
contribution a

a

(ii) interactions a and b

b b

b

Information i; Time t;
Location l
“[“ constraints “]”

(iv) attributes

(xii) disabling relation between
a and b: either b occurs and
disables a, or b occurs after a

a

b

c

a

b

c

(xiii) shorthand for
disabling relation
between a and b

(xiv) behaviour

B1
B2 b2

(xvi) behaviour
instantiation

Fig. 6. ISDL language elements

An activity can have attributes to represent the relevant characteristics of the
occurrence of the modeled real-world activity. Predefined attributes are the
information, time and location attribute (see Figure 6 (iv)), representing the activity
result (e.g., some information or product), the time of occurrence at which the result is
available, and the location where the result is available, respectively. Constraints can
be defined on the possible attribute values. The constraints also specify the relation
between attribute values established in causally dependent activities. ISDL does not
prescribe a language for defining attribute types and constraints, but provides
bindings to existing languages that can be used for that purpose. Currently, bindings
to Z, Java and Q exist.

Relations between activities are modeled by causality conditions. Each activity has
a causality condition, which defines how this activity causally depends on other
activities. An activity is enabled, i.e., allowed to occur, if its causality condition is
satisfied. Three types of basic causality conditions are identified as illustrated in
Figure 6: (v) the start condition represents that activity a is enabled from the
beginning of some behavior and independent of any other activity, (vi) enabling
condition b represents that activity b must have occurred before a can occur, and (vii)
disabling condition ¬b represents that activity b must not have occurred before nor
simultaneously with a to enable the occurrence of b. These elementary conditions can
be combined using the and- and or-operator to represent more complex conditions.
Figure 6 depicts also some simple examples.

Containment of one behavior by another (the composite), is represented by
behavior instantiation. A behavior instantiation represents that some behavior instance
is created in the context of the behavior that contains the instantiation.

4.2 Activity Refinement

An activity cannot be split at the abstraction level at which it is considered. A more
detailed model of an activity can be obtained by decomposing this activity into
multiple sub-activities and their relationships. The relevant characteristics of these

 Combining SDBC and ISDL in the Modeling and Refinement of Business Processes 331

sub-activities can be modeled again by the activity concept (i.e., actions, interactions
or interaction contributions). Therefore, the activity concept is independent of the
abstraction level or granularity at which specific activities are modeled.

T

TrI TpE

TdE

TsEPa TaI

TdI

Request r Request r
 [r = Trl.r]

Pfact f Statement s
 [s = St(Pa.f)]

Statement s
 [s = TsE.s]

Pfact f T = Transaction
P = Production act
r = request
p = promise
d = decline
s = statement
a = accept
I = Initiator
E = Executor

Data types

Request represents the request
Pfact represents the production fact
Statement represents the statement
St(..) function rendering

statement of some
production fact

Fig. 7. The ISDL transaction models

In the context of SDBC, the activity concept is used to model transactions as well
as their corresponding communication patterns. Figure 7 reflects the generic process
of a transaction, modeled at two different abstraction levels. At the highest level, the
transaction is represented by a single action, which models the production fact that is
established. Characteristics of the production fact are modeled using action attributes.
At a lower abstraction level, the transaction’s communication aspects are modeled,
conforming to the transaction concept (Fig. 2). Separate actions are used to model the
transaction’s request, promise, state, accept, and decline, and the production act.
Observe that actions TdE and TdI correspond to the decline of a transaction followed
by an unsuccessful negotiation (see Fig. 2), and actions TpE and TaI represent the
promise and acceptance, respectively, which are possibly preceded by an ‘initial
decline’ followed by a successful negotiation.

The result of the transaction behavior at the lower abstraction level should conform
to the result of the transaction as modeled at the higher abstraction level. In this case,
the result of the transaction behavior is either the occurrence of action TaI, which
corresponds to the occurrence of T, or the occurrence of TdE or TdI, which
corresponds to the non-occurrence of T. Consequently, to assess conformance one
should assess whether the results as modeled by actions TaI and T are equivalent.

A method has been defined for ISDL to assess the conformance of any abstract
behavior to a concrete behavior that refines the abstract behavior. The example in
Figure 8 represents a special case of this method. For a detailed explanation of the
method, interested readers are referred to [10].

4.3 Modeling the FM Example

Using the ISDL transaction models presented in Sub-section 4.2, Figure 8 depicts the
modeling of the FM example (Section 3) at three successive abstraction levels. At

332 B. Shishkov and D. Quartel

T1

Advice a

T1r T1p T1sP1a T1aT3

T4

T2

T1r T1p T1sP1a T1a

T2r T3

T4

P2aT2p T2s T2a

(i)

(ii)

(iii)

Fig. 8. ISDL models of the FM behavior

level (ii), some detail is added on how the advice is delivered, eliciting part of the
internal behavior of the FM: in this case the communication aspects of T1 and the use
of transactions T2, T3 and T4. More detail is added in (iii), by elaborating the
communication aspects of T2. A similar elaboration can be made for T3 and T4, but
has been omitted for brevity. For the same reason, action attributes are not modeled
and it is assumed that transactions will not be declined. To clearly distinguish
between the abstraction levels at which a transaction is modeled, the communication
patterns of a transaction are indicated in grey.

The ISDL models presented so far do not consider the roles involved in each
transaction. This aspect can be modeled explicitly using the interaction concept. For
example, Figure 9 (i) models transaction T1 as an interaction between the role type
Customer and FM, where roles are represented by ISDL behaviors. The interaction
concept allows one to model the constraints each role may have on the possible
results (production facts) of the interaction. For example, a customer may restrict the
advices (s)he is interested in to car insurances, whereas FM may only consider
insurances from particular companies.

FM

Customer FM
T1 T1

Advice a
 [Achmea(a) or AXA(a)]

Advice a
 [CarInsurance(a)]

Advisor Matchmaker

Request Processing
Unit

Data Search and
Processing Unit

T2

T3

T4

T1p

T4

P1a

T1r

T1s

T1a

T2

T3

(i)

(ii)

T1r

T1p

T1s

T1a

Fig. 9. ISDL models of the FM behavior

 Combining SDBC and ISDL in the Modeling and Refinement of Business Processes 333

Figure 9 (ii) presents the ISDL model corresponding to the SDBC model depicted in
Figure 4 (it is elicited which roles are involved in which transactions). In this case the
behavior of FM is represented as a composite behavior (indicated in grey). Behaviors in
a composite behavior can be related using: (i) constraint-oriented composition:
interactions that relate the interaction contributions of the component behaviors; and/or
(ii) causality-oriented composition: entry and exit points that represent a causality
condition entering a behavior or a causality condition exiting a behavior, respectively.
The condition that an entry point represents is associated to it via an entry point
dependency. Entry and exit points are represented by triangles that point into or out of a
behavior, respectively. Interaction contributions of a component behavior can contribute
to interactions of their composite behavior. This is represented by drawing a line
between the interaction contributions of the component and interaction contributions of
the composite (having the same name in the example).

5 Analysis

As already stated, this section analyzes the suitability and adequacy of combining the
SDBC approach and the ISDL language.

Our basic conclusion is that the essential value of combining SDBC and ISDL
concerns the possibility to adequately grasp (driven by SDBC) real-life business
aspects and realize mapping towards software specification, facilitated by a powerful
language instrumentarium (ISDL) that allows one to combine (applying the powerful
graphical notations of ISDL) issues concerning the communication and dynamic
viewpoints; ISDL can be used at different abstraction levels and its method for
conformance assessment allows one to relate successive abstraction levels. In all this,
only a single formalism is needed. Further, the ISDL concepts (such as the activity
concept) prove to naturally correspond to the SDBC behavior concepts (such as the
transaction concept), i.e., ISDL can represent the properties modeled by SDBC
concepts. Thus one can smoothly apply ISDL in the context of the SDBC approach.

Complementing SDBC by ISDL, allows not only for an adequate consideration of
the notions of role and transaction – these are essential for a business process
modeling driven by SDBC [15], but also for modeling transactions (through the
interaction concept of ISDL) between different roles. Transactions modeled in such a
way, can be defined at a high level of abstraction in contrast to e.g. modeling
languages using message passing as the basic interaction concept. When using
message passing, one is often forced to define transactions closer to implementation
level, since one may need multiple messages to exchange the information that is
required to establish the desired transaction result. Instead, the interaction concept in
ISDL allows each role involved to define its constraints on the possible interaction
result, while abstracting from how these constraints are implemented (e.g. through
message exchange).

Therefore, this strong point of ISDL can add value in the context of SDBC – it
would be possible that a transaction is decomposed into transaction contributions,
defining the responsibility of each role in the transaction (still at an abstract level).
When defining a transaction as an action, one abstracts from the contribution/
responsibility of each role in the transaction.

334 B. Shishkov and D. Quartel

Finally, ISDL could usefully complement SDBC in a mapping towards BPEL/
WSDL, for the purpose of business processes implementation using the Service-
Oriented Paradigm [9,5], which is nevertheless beyond the scope of this paper.

6 Conclusions

In this paper, we have reported studies that concern the actual challenge of aligning
business requirements and software functionality, driven by an adequate identification
of a business model and its mapping to a software specification model. These models
need to be however appropriately elicited from different perspectives. The SDBC has
relevant strengths not only with respect to the business-software alignment challenge
in general but also with respect to such a desired multi-viewpoint modeling.
Nevertheless, SDBC appears to need further support in achieving consistency with
regard to different (complementing) viewpoints, in particular: the dynamic viewpoint
and its necessary elaboration (at the phase of business modeling) from the perspective
of real-life communication and coordination (where issues, such as meanings,
intentions, commitments, and obligations play a role). Thus, it is essential that the
SDBC business modeling allows for an appropriate combination between behavior
modeling and communication/coordination aspects. However, in realizing this, SDBC
uses at least two modeling techniques, the transformation among which unnecessary
complicates the modeling process and causes limitations. Hence, if SDBC is applied
through an integrated language facility (based on one formalism and possessing
powerful modeling expressiveness), the alignment between behavior models and
related communication/coordination aspects would be improved.

We have identified ISDL as a good candidate in the mentioned context, given its
refinement and conformance assessment capabilities as well as powerful graphical
notations. In the course of the current study, we have justified this choice, by finding
evidence of particular relevant strengths of ISDL. Next to that, we have demonstrated
those strengths and the value of the SDBC-ISDL combination, by means of an
illustrative example.

The ISDL notations, driven by one formalism, proved to work usefully in the
context of the SDBC approach; they can support the approach in the alignment of
behavior business models and (related) communication/coordination aspects,
presenting them in a coherent whole. Further, ISDL can be used for refinement at
different abstraction levels, as demonstrated in Section 4, supported by mechanisms
allowing one to assess whether a refinement conforms to the original process model.
Finally, with regard to service-oriented platforms, it is expected that ISDL could
support SDBC in mappings to BPEL/WSDL, which although not addressed in the
current work, is in the scope of further studies. Besides this, we are also planning to
conduct a bigger scale real-life case study, in order to bring more practical evidence in
support of our findings. Next to that, we intend to further explore the SDBC-ISDL
combination, particularly from the perspective of aligning issues that concern the
static and dynamic business modeling viewpoints, and to study possibilities for
simulation-driven validation of business process models.

 Combining SDBC and ISDL in the Modeling and Refinement of Business Processes 335

Acknowledgements

This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl).
Freeband is sponsored by the Dutch government under contract BSIK 03025.

References

1. Aalst, W.V.D., Best, E.: Applications and Theory of Petri Nets. In: van der Aalst, W.M.P.,
Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, Springer, Heidelberg (2003)

2. Bunge, M.A.: A World of Systems, Treatise on Basic Philosophy, vol. 4. Reidel Publ.
Company, Dordrecht (1979)

3. Dietz, J.L.G.: Understanding and Modeling Business Processes with DEMO. In: Akoka, J.,
Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS, vol. 1728,
Springer, Heidelberg (1999)

4. Dijkman, R.: Consistency in Multi-Viewpoint Architectural Design. University Press,
Enschede (2006)

5. Dirgahayu, T.: Model-Driven Engineering of Web Service Compositions: a
Transformation from ISDL to BPEL. University Press, Enschede (2005)

6. ISDL home: n.d, http://isdl.ctit.utwente.nl
7. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press,

Cambridge (2000)
8. Quartel, D., Dijkman, R., Van Sinderen, M.: An Approach to Relate Business and

Application Services Using ISDL. In: EDOC 2005, 9th IEEE International EDOC
Enterprise Computing Conference (2005)

9. Quartel, D., Dijkman, R., Van Sinderen, M.: Methodological Support for Service-Oriented
Design with ISDL. In: 2nd International Conference on Service Oriented Computing
(2004)

10. Quartel, D., Ferreira Pires, L., Van Sinderen, M.: On Architectural Support for Behaviorur
Refinement in Distributed Systems Design. Journal of Integrated Design and Process
Science 6(1) (2002)

11. Quartel, D., Ferreira Pires, L., Van Sinderen, M., Franken, H.M.: On the Role of Basic
Design Concepts in Behaviour Structuring. Computer Networks and ISDN Systems (1997)

12. Rational, UML Resource Center: http://www.rational.com
13. Shishkov, B.: Software Specification Based on Re-usable Business Components. Sieca

Repro, Delft (2005)
14. Shishkov, B., Dietz, J.L.G., Liu, K.: Bridging the Language-Action Perspective and

Organizational Semiotics in SDBC. In: ICEIS 2006, 8th International Conference on
Enterprise Information Systems (2006)

15. Shishkov, B., Dietz, J.L.G.: Applying Component-Based UML-Driven Conceptual
Modeling in SDBC. In: ICEIS 2005, 7th International Conference on Enterprise
Information Systems (2005)

16. Shishkov, B., Dietz, J.L.G.: Aligning Business Process Modeling and Software
Specification in a Component-Based Way, The Advantages of SDBC. In: ICEIS 2004, 6th
International Conference on Enterprise Information Systems (2004)

17. Shishkov, B., Dietz, J.L.G.: Deriving Use Cases from Business Processes, The Advantages
of DEMO. In: Camp, O., Filipe, J.B.L., Hammoudi, S., Piattini, M. (eds.) Enterprise
Information Systems V, Kluwer Academic Publisher, Dordrecht, Boston (2004)

18. Winograd, T., Flores, F.: Understanding Computers and Cognition: A Foundation for
Design. Ablex, Norwood (1986)

	Combining SDBC and ISDL in the Modeling and Refinement of Business Processes
	Introduction
	SDBC
	Outline and Relevant Features
	Concepts

	The FM Example
	Complementing SDBC with ISDL
	ISDL: Concepts and Notations
	Activity Refinement
	Modeling the FM Example

	Analysis
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

