
Three Categories of Context-Aware Systems

Boris Shishkov1,4(&), John Bruntse Larsen2, Martijn Warnier3,
and Marijn Janssen3

1 Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Sofia, Bulgaria

b.b.shishkov@iicrest.org
2 Department of Applied Mathematics and Computer Science,

Technical University of Denmark, Lyngby, Denmark
jobla@dtu.dk

3 Faculty of Technology, Policy, and Management,
Delft University of Technology, Delft, The Netherlands

{M.E.Warnier,M.F.W.H.A.Janssen}@tudelft.nl
4 Institute IICREST, Sofia, Bulgaria

Abstract. With regard to context-aware systems: some optimize system-
internal processes, based on the context state at hand; others maximize the
user-perceived effectiveness of delivered services, by providing different service
variants depending on the situation of the user; still others are about offering
value-sensitivity when the society demands so. Even though those three per-
spectives cover a broad range of currently relevant applications there are no
widely accepted and commonly used corresponding concepts and terms. This is
an obstacle to broadly understand, effectively integrate, and adequately assess
such systems. We address this problem, by considering a (component-based)
methodological derivation of technical (software) specifications based on
underlying enterprise models. That is because context states are about the
enterprise environment of a (software) system while the delivery of
context-aware services is about technical (software) functionalities; hence, we
need a perspective on both. We consider the SDBC (Software Derived from
Business Components) approach that brings together enterprise modeling and
software specification. On that basis: (a) We deliver a base context-awareness
conceptualization; (b) We partially align it to agent technology because adapting
behaviors to environments assumes some kind of pro-activity that is only fully
covered by agent systems, in our view. We partially illustrate our proposed
conceptualization and particularly - the agent technology implications, by means
of a case example featuring land border security.

Keywords: Modeling � System design � Context-awareness � SDBC
AORTA

1 Introduction

Whenever a group of entities collectively realize a goal, we consider them to belong to a
system [17]. An adaptable system has the ability to adjust to new conditions [8].
We argue that an essential feature of adaptable systems is context-awareness

© Springer International Publishing AG, part of Springer Nature 2018
B. Shishkov (Ed.): BMSD 2018, LNBIP 319, pp. 185–202, 2018.
https://doi.org/10.1007/978-3-319-94214-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94214-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94214-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94214-8_12&domain=pdf

[22] – this is adjusting the system behavior depending on the situation at hand (context
state). Our observation is that context-aware systems are all about adjusting
“something” to the context state; however, what is adjusted differs: (i) Some
context-aware systems optimize system-internal processes based on the context state at
hand [3, 12], for example: regulating the electro-consumption of home appliances for the
sake of keeping the overall building consumption within some boundaries. (ii) Other
context-aware systems maximize the user-perceived effectiveness of delivered services,
by providing different service variants depending on the situation of the user [1], for
example: treating a distantly monitored patient in one way when his/her condition is
normal and in another way in case of emergency. (iii) Still other context-aware systems
are about offering value-sensitivity when the society demands so [7], for example: in the
case of supporting judiciary processes, different levels of transparency are to be provided
to different categories of stakeholders. Not claiming exhaustiveness, we argue that those
three context-awareness perspectives cover a broad range of currently relevant applica-
tions, while corresponding system categorizations are observed to be missing in litera-
ture, especially as it concerns real-life (business) processes. Hence, we propose and
elaborate (in the following section) the above categorization.

Further, there are no widely accepted and commonly used concepts and terms with
respect to (i), (ii), and (iii). This is considered to be an obstacle with regard to broadly
understanding, effectively integrating, and adequately assessing such systems. We
address this problem, by taking a (component-based-) technical/software design per-
spective, assuming a desired methodological derivation of the technical (soft-
ware) specifications on the basis of underlying enterprise models. That is
because context states are about the enterprise environment of a (software) system
while the delivery of context-aware services is about technical (software) functional-
ities; hence, we need a perspective on both. Stepping on previous work, we consider the
SDBC (Software Derived from Business Components) approach that brings
together enterprise modeling and software specification [17, 18, 20]. On that basis:

• We deliver a base context-awareness conceptualization (inspired by the current
discussion and the analysis carried out in Sect. 2) that is claimed to hold for all (i),
(ii), and (iii).

• We partially align that conceptualization to agent technology [11, 27] because
adapting behaviors to environments is considered to assume some kind of
pro-activity that is only fully covered by agent systems, in our view.

We partially illustrate our proposed conceptualization and particularly - the agent
technology implications, by means of a case example featuring land border
security.

The remaining of the current paper is organized as follows: Sect. 2 elaborates and
discusses the above-mentioned context-awareness perspectives (optimizing internal
processes, maximizing the user-perceived effectiveness, being value-sensitive). In
Sect. 3, we: (a) briefly outline the SDBC approach that gives the general method-
ological guidelines we follow; (b) elicit (in line with SDBC) the base context-
awareness system concepts, referring to the analysis in Sect. 2; (c) enrich those
concepts from the AORTA (agent-technology) perspective; (d) distill on that basis a
meta-model that is considered a key contribution of this paper and propose guidelines

186 B. Shishkov et al.

refinements. Assuming the SDBC methodological guidelines and referring to a real-life
case study that is featuring the usage of drones in support of land border security, we
partially illustrate in Sect. 4 the meta-model and the AORTA framework influence,
emphasizing the applicability with regard to all three categories of context-aware
systems, as discussed above. We justify the adequacy of the delivered contribution in
Sect. 5, by analyzing related work. Finally, in Sect. 6 we conclude the paper.

2 System Behavior Perspectives

Referring to the notions considered in the Introduction, we will firstly elaborate on the
context-driven optimization of system-internal processes (Subsect. 2.1), secondly – on
the context-driven maximization of the user-perceived effectiveness (Subsect. 2.2), and
finally, on the context-driven value-sensitivity (Subsect. 2.3). It is often that the
context-awareness is enabled by sensor technology [21] allowing to “know” what is
happening around; alternatively, there should be other ways of “sensing” the envi-
ronment [1]. As it concerns (i), (ii), and (iii) - see the previous section - this counts for
all of them. Further, considering the essence of their underlying system behaviors, we
use the following labels: SELF-MANAGING CONTEXT-AWARE SYSTEM for (i);
USER-DRIVEN CONTEXT-AWARE SYSTEM for (ii), and VALUE-SENSITIVE
CONTEXT-AWARE SYSTEM for (iii). Finally, even though most often context-
aware systems are “sensitive” to changes in the system environment, it is also possible
that the “sensitivity” is towards internal issues (things happening inside the system (not
in the environment) may trigger either internal optimizations, or changes in the services
delivered to the user, or a reconsideration of the “covered” values). In this paper, we are
not restrictive with regard to the “sensitivity” (whether it concerns the system or the
environment).

2.1 Self-Managing Context-Aware Systems (SMCAS)

SMCAS’ context-awareness is directed towards internal (system) optimiza-
tion purposes [16]. Such autonomic solutions [12] are proposed as a way to
reduce the cost of maintaining complex systems, and to increase the human ability to
manage these systems properly, by automating (part of) their working. In essence,
self-managing system can be characterized by a feedback loop mechanism
that allows them to optimize their working based on input from the environment. For
the basic feedback loop, the system receives input from the environment (monitor) and
can change its behavior which in turn has an effect on the environment (effector). In
Autonomic Computing [10] this basic loop is extended into four components,
resulting in the MAPE Cycle, see Fig. 1 (left). Next to the “monitor” and “effector”
phases, the system internally has an analyze phase that processes environmental input
and a plan phase that changes the internal and external working of the system.

Taking this one step further, an autonomic system can manage another system
(the managed system) by placing it in the MAPE Cycle as shown in Fig. 1 (right).
Placed in such a configuration, the autonomic and managed systems together form a
SELF-MANAGING SYSTEM or self-adaptive system [14].

Three Categories of Context-Aware Systems 187

Internally self-managing systems optimize their behavior based on inputs to and
outputs from the managed system. Such state updates can range from simple if-then
rules (for example: if the temperature is below zero degrees, then pre-heat the car) to
more sophisticated approaches such as those based on machine learning techniques
(e.g., neural networks or inference engines that determine the best action based on a
large internal knowledge base). Thus, the main objective of self-managing
systems is to optimize their internal working based on inputs from the environments.

2.2 User-Driven Context-Aware Systems (UDCAS)

The UDCAS’ context-awareness is directed towards the maximization of the
external (user) satisfaction [1]. Hence, such systems should be able to:
(i) identify the situation of the user (possibly through sensors); (ii) deliver a service to
the user, that is suited for the particular situation, as illustrated in Fig. 2 (left).

As it is seen from the figure, a service is delivered to the user and the user is
considered within his or her context, such that the service is adapted on the basis of the
context state (or situation) the user finds himself/ herself in. That state is to be somehow
sensed and often technical devices, such as sensors, are used for this purpose. UDCAS
actually deliver services to the user by means of ICT (Information and Communication
Technology) applications [17] (applications, for short). Hence, unlike “tradi-
tional” applications assuming that users would have common requirements independent
of their context, user-driven context-aware applications are capable of adapting
their behavior to the situation of the user (this is especially relevant to
services delivered via mobile devices). Hence, such applications are, to a greater or
lesser extent, aware of the user context situation (for example, user is at
home, user is traveling) and provide the desirable services corre-
sponding to the situation at hand. This quality points also to another related
characteristic, namely that user-driven context-aware applications must be able to
capture or be informed about information on the context of users, preferably
without effort and conscious acts from the user part [18]. Hence, a
basic assumption underlying the development of user-driven context-aware applications
is that user needs are not static, however partially dependent on the particular
situation the user finds himself/herself in, as already mentioned. For example, depending
on his/her current location, time, activity, social environment, environmental properties,

system

analyze plan

environment

monitor effector

autonomic system

analyze plan

managed system

monitor effector

SELF-MANAGING SYSTEM

Fig. 1. Monitor-Analyze-Plan-Effect (MAPE) cycle (left); A managed system and an autonomic
system that together form a self-managing system (right)

188 B. Shishkov et al.

or physiological properties, the user may have different interests, preferences, or needs
with respect to the services that can be provided by applications.

User-driven context-aware applications are thus primarily motivated by their
potential to increase the user-perceived effectiveness, i.e. to
provide services that better suit the needs of the user, by taking account of the user
situation. We refer to the collection of parameters that determine the situation of a user,
and which are relevant for the application in pursue of user-perceived effectiveness, as
user context, or context for short, in accordance to definitions found in literature [5].

Finally, UDCAS are hence about delivering behavior variants to corre-
sponding user situations (context states), as illustrated by Fig. 2 (right). The idea
is that for each context state, the system has a behavior variant. Nevertheless, this
would not be always realistic because if the possible context states are too many (for
example: tens or hundreds), the effort for “preparing” (at design time) behavior vari-
ants would be huge. For this reason, statistical data analysis and probability studies are
needed, as studied in [17], for establishing the context states of high
occurrence probability (for example, during a normal working day, an
employee would most probably be either at work or at home, or traveling, and it is not
very likely that the employee is somewhere else, especially during day hours). Hence
all other (possibly hundreds) low probability context states would not need to be
addressed at design time; instead, a “collecting” context state (for example, labelled:
OTHER) may be considered at design time, assuming a more generic behavior
algorithm, such that the behavior is “tuned” at real time (possibly in a rule-based way).
This would of course lead to lower quality-of-service which is nevertheless justified
since it would be very rare that the OTHER behavior variant is triggered. Thus, this is a
matter of “trade-off” between quality-of-service and resources.

2.3 Value-Sensitive Context-Aware Systems (VSCAS)

VSCAS’ context-awareness is directed towards a sensitivity to public
values [7]. Public values (values for short) like privacy and data protection,
security, accountability, integrity and provenance, and sustainable data storage, often
need to be incorporated in the functionalities of information systems. Hence, the first
question to be answered is: How do values relate to requirements (we mean particularly

UDCAS

USER-DRIVEN SYSTEM

…
user situations (context states)

…
system behavior variants

Fig. 2. The UDCAS vision (inspired by [18, 22]): a schematic representation (left); Context-
states-driven system behavior variants (right)

Three Categories of Context-Aware Systems 189

non-functional requirements because values are essentially non-functional)? In
answering this question, we refer to [19] who argue that values are desires of the
general public (or public institutions/organizations that claim to represent the general
public), that are about properties considered societally valuable, such as respecting the
privacy of citizens or prohibiting polluting activities. Even though values are to be
broadly accepted (that is why they are public), they may concern individuals (for
example: considering privacy). Hence, put broadly, values concern the societal
expectations with regard to the way services should be delivered and with regard to the
above question: values are desires or goals, not requirements. Values are abstract and
not directly related to an enterprise or software system, as opposed to requirements.
Moreover, values are construct by and for society and not by and for the enterprise
domain in which a specific system will be used. Those domains may overlap but are not
the same. Values that are adopted as goals by an enterprise would therefore impact the
requirements on a system that the enterprise wants to introduce in order to realize its
goals. For this reason, the impact of values cannot be limited to non-functional
requirements. It is therefore considered important to clearly distinguish values from
requirements and acknowledge the limitations of requirements engineering with regard
to the development of value-sensitive (software) systems.

Hence, the development of systems should take into account the objective, the user
needs, but also the operating and societal context. In this way values can be used as a
guidance for making choices when developing systems; looking at possible tensions
among values is an issue aswell. Thus, we have identified challenges in several directions:

Firstly, values are normative by nature and different stakeholders might prefer
different values; also, values might differ among countries and cultures.

Secondly, even though different societies may agree on a value at high-level, their
cultural and other differences may “push” for different value “realizations”. This may
result in different operationalizations and implementations of the same value.

Thirdly, values may be conflicting to each other (for example: fulfilling two values
at the same time may be impossible). Searching for criminals might lead to violating the
privacy of innocent people, for example.

Thus, in considering VSCAS, it is important to be aware that differentcontext
states may assume the consideration of different values, which in
turn would mean different system functionality variants. Nevertheless,
this goes beyond a mapping just between values and non-functional requirements and
would assume a broader consideration of the software functionalities specification.

Overall: computing power becomes larger, wireless telecommunications are
advancing, and sensor technology is developing fast [17]; this allows for ubiquitous
network connectivity and numerous capabilities of smart devices, as a basis for devel-
opments in several directions: (a) Systems that are traditionally designed
for one specific situation and task can be augmented to become
“smarter”, being able to operate in complex environments. (b) Sys-
tems are empowered to “sense” what is going on inside them and also
what is going on with the end user while (s)he is utilizing cor-
responding services. This concerns the system-internal processes, the way ser-
vices are delivered to users, and the way values are considered, as discussed in the current
section. In the following section, we will present our proposed way of modeling context-
aware systems, taking into account those three system behavior perspectives.

190 B. Shishkov et al.

3 Proposed Modeling and Design

Furthering previous work, we consider SDBC (see Sect. 1) as the approach of choice
(generally) because of several reasons: its strengths in aligning enterprise modeling
and software specifications, its component-orientation and support for re-use, and its
previous use for specifying context-aware and privacy-sensitive systems [17, 18, 20].
We will thus briefly introduce SDBC in this section. We will then present the main
concepts we consider, making sure that they are consistent with SDBC and relevant to
the three categories of context-aware systems, as considered in the previous section; we
will also provide a conceptual enrichment from an agent-technology perspective (see
Sect. 1). We will then reflect this in a meta-model derived accordingly. And in the end,
we will narrow the design scope (in the above context) to only touch upon issues that
concern the key features of the considered three categories of context-aware systems.

3.1 SDBC

SDBC is an approach (consistent with MDA [15]) that is focused on the derivation of
software specification models on the basis of corresponding (re-usable) enterprise
models. SDBC is based on three key ideas: (i) The software system-to-be is considered
in its enterprise context, which means that the software specification models are to stem
from corresponding enterprise models; this means in turn that a deep understanding is
needed on real-life (enterprise-level) processes, corresponding roles, behavior patterns,
and so on. (ii) By bringing together two disciplines (enterprise engineering and soft-
ware engineering), SDBC pushes for applying social theories in addressing
enterprise-engineering-related tasks and for applying computing paradigms in
addressing software-engineering-related tasks, and also for integrating the two, by
means of sound methodological guidelines. (iii) Acknowledging the value of re-use in
current software development, SDBC pushes for the identification of re-usable (gen-
eric) enterprise engineering building blocks whose models could be reflected accord-
ingly in corresponding software specification models. We refer to [17] for information
on SDBC and we are reflecting the SDBC outline in Fig. 3.

As the figure suggests, there are two SDBC modeling milestones, namely
enterprise modeling (first milestone) and software specification (second
milestone). The first milestone has as input a case briefing (the initial (textual) infor-
mation based on which the software development is to start) and the so called
domain-imposed requirements (those are the domain regulations to which the software
system-to-be should conform). Based on such an input, an analysis should follow,
aiming at structuring the information, identifying missing information, and so on. This
is to be followed by the identification (supported by corresponding social theories) of
enterprise modeling entities and their inter-relations. Then, the causalities concerning
those inter-relations need to be modeled, such that we know what is required in order
for something else to happen [23]. On that basis, the dynamics (the entities’ behavior) is
to be considered, featured by transactions [17]. This all leads to the creation of en-
terprise models that are elaborated in terms of composition, structure, and dynamics (all
this pointing also to corresponding data aspects) – they could either “feed” further
software specifications and/or be “stored” for further use by enterprise engineers. Such
enterprise models could possibly be reflected in corresponding business

Three Categories of Context-Aware Systems 191

coMponents (models of business components [17]). Next to that, re-visiting such
models could possibly inspire enterprise re-design activities, as shown in Fig. 3.

Furthermore, the second milestone uses as input the enterprise model (see above)
and the so called user-defined requirements (those requirements reflect the demands of
the (future) users of the software system-to-be towards its functioning).

That input “feeds” the derivation of a use case model featuring the software
system-to-be. Such a software specification starting point is not only consistent with the
Rational Unified Process - RUP [13] and the Unified Modeling Language
– UML [25] but is also considered to be broadly accepted beyond RUP-UML [17]. The
use cases are then elaborated, inspired by studies of Cockburn [4] and Shishkov [17],
such that software behavior models and classification can be derived accordingly. The
output is a software specification model adequately elaborated in terms of statics and
dynamics. Applying de-composition, such a model can be reflected in corresponding
software components, as shown in the figure. Such an output could be inspiration for
proposing in the future software re-designs, possibly addressing new requirements.

Further, in bringing together the first milestone of SDBC and the second one, we
need to be aware of possible granularity mismatches. The enterprise modeling is fea-
turing business processes and corresponding business coMponents but this is not nec-
essarily the level of granularity concerning the software components of the system-to-be.
With this in mind, an ICT application is considered as matching the granularity
level of a business component – an ICT application is an implemented software product
realizing a particular functionality for the benefit of entities that are part of the compo-
sition of an enterprise system and/or a (corresponding) enterprise information system.
Thus the label software specification model, as presented in Fig. 3, corre-
sponds to a particular ICT application being specified. Software components in
turn are viewed as implemented pieces of software, which represent parts of an ICT
application, and which collaborate among each other driven by the goal of realizing the
functionality of the application (functionally, a software component is a part of an ICT

Fig. 3. SDBC - outline (Source: [20], p. 48)

192 B. Shishkov et al.

application, which is self-contained, customizable, and composable, possessing a clearly
defined function and interfaces to the other parts of the application, and which can also be
deployed independently). Hence: a software coMponent is a conceptual specifi-
cation model of a software component; the second SDBC milestone is about the iden-
tification of software coMponents and corresponding software components.

3.2 Conceptualization

In this sub-section, we will firstly consider the basic concepts aligned with SDBC and
the system behavior perspectives, as considered in the previous section.

BASIC CONCEPTS (GENERAL)

SYSTEM: A collection of elements possibly interacting with each other, driven by the pur-
pose of delivering a service to another entity or group of entities.
SUB-SYSTEM: A system part identified based on a functional decomposition with regard to
the system (hence, a system can optimize itself, by optimizing corresponding sub-systems).
ENVIRONMENT: Anything not belonging to a system belongs to the system environment

Part of the environment concerns those environmental entities that are assumed to
have some interaction with the system.

ENTITIES: Composition elements with regard to a system / environment
- Human vs Artificial entities;
- Passive (a passive entity is an entity that only performs actions when another

entity interacts with it) vs Autonomous (an autonomous entity is an entity that
performs actions on its own initiative) entities;

- Sensing (capturing context data in support of the system’s service delivery) vs
Actuator (causing changes in the environment on behalf of the system) entities.

ROLE: The state of carrying out certain objectives
- The entity-role combination is labelled “actor-role”.

ACTOR: An autonomous entity that can enact a role.
USER: An actor that the system services.
ACTION: Something done by an entity

- A sequence of actions, occurring between two entities that are collaborating in
support of the service delivery, is labelled “inter-action”.

OBJECTIVE: The motive behind the service delivery.
REGULATIONS: Reflection of the existing norms that have impact on the service delivery,
prescribing what is allowed in some situations, forbidden in others, and so on.
VALUES: Reflection of the public perception towards what is important regarding the ser-
vice delivered by the systems*

* We address values that are shared among environmental human entities.

BASIC CONCEPTS (FEATURING SYSTEM ADAPTATION DIMENSIONS)

SELF-MANAGING BEHAVIOR: Context-driven enforcement of syst.-internal optimizations.
USER-DRIVEN BEHAVIOR: Context-driven service adaptation based on the user situa-
tion.
VALUE-SENSITIVITY: Service adaptation inspired by values, delivered through the opera-
tionalization of values.

Three Categories of Context-Aware Systems 193

Wishing to enrich those concepts from an agent-technology perspective (see the
Introduction) AORTA is partially considered as a meta-model for enabling agents
to perform organizational reasoning based on the OperA model [6] for
agent organizations [11]. Organizational reasoning enables an agent to identify the
objectives it is expected to solve, the other agents that it depends on for solving those
objective, and whether an action is permitted, obliged, allowed or forbidden. In doing
so the social expectations are made explicit through the AORTA concepts, which is
considered an advantage when creating and reiterating the design of agents. Those
concepts are shown below in the form of logical predicates:

CONCEPT MEANING

role(Role, Objs) Role is the name of a role and Objs is a set of main objec-
tives of that role.

obj(Obj, SubObjs) Obj is an objective that has SubObjs as a set of sub-
objectives.

dep(Role_1, Role_2, Obj) Role_1 depends on Role_2 in order to complete Obj.

rea(Ag, Role) Agent Ag enacts Role.

cond(Role,Obj,Deadline,Cond) When the condition Cond holds, Role is obliged to com-
plete Obj before the objective Deadline.

obl(Ag, Role, Obj, Deadline) Agent Ag is obliged to enact Role to complete Obj before
Deadline.

viol(Ag, Role, Obj) Agent Ag enacting Role has violated the obligation to
complete Obj.

A role defines a role in the organization, and the primary objectives associated with
that role. By enacting a role, an agent announces to other agents in the organization
that it takes upon itself that role and thus that other agents can expect it to work
towards solving the objectives associated with that role. It is also possible to make an
explicit notion for how an objective can be decomposed into sub-objectives, and how a
role may depend on other roles to solve an objective. Finally, normative statements are
supported that define conditions on how agents should solve an objective in a certain
context.

AORTA divides organizational reasoning into three phases: obligation check
(OC), option generation (OPG) and action execution (AE). In the OC-phase the agent
uses its beliefs to check if obligations are activated, satisfied or violated, and updates
its beliefs accordingly. Following that it generates possible organizational options in

194 B. Shishkov et al.

the OPG-phase, which it then considers in the AE-phase when deliberating an action.
Figure 4 visualizes such a reasoning “component”.

Further, in specializing some of the basic concepts (see above) from an agent-
technology perspective (consistent with AORTA), we consider the following:

• Autonomy: agents operate without the direct intervention of humans or others, and
have some kind of control of their actions and internal state;

• Social “ability”: agents interact with other agents (and possible humans) via some
kind of agent communication language;

• Reactivity: agents perceive their environment (which may be the physical world, a
user via a graphical user interface, a collection of other agents, the Internet, or
perhaps all of those combined), and respond in a timely fashion to changes that
occur in it;

• Pro-activeness: agents do not simply act in response to their environment, they are
also capable of exhibiting goal-driven behavior, by taking the initiative.

Hence, we define an agent as an entity that is capable of operating
autonomously, interacting with other agents, perceiving and
reacting to changes in the environment, and taking actions
toward solving an objective.

Next to that, it is considered common to have agent systems where an agent
represents a larger group of agents; such an agent is often tasked with coordinating the
other agents in the group (such tasks can be captured with the notions of role and
objective, with agents enacting roles). Thus, by applying the agent concept, we could
conveniently capture the notions of autonomy, social ability, reactivity and pro-ac-
tiveness that we find useful with regard to the challenge of modeling complex
(context-aware) systems where it is not straightforward understanding how every
system part works in detail.

Finally, we present below the enrichment (from an agent-technology
perspective) with regard to the basic concepts that were presented above:

organizational beliefs

OC OPG AE

Fig. 4. Reasoning component

Three Categories of Context-Aware Systems 195

SYSTEM: A system is represented through the notion of an agent that enacts a designated
system role. The role specifies the objectives () of the system, reflecting its purpose.
These objectives can be decomposed into sub-objectives by obj-statements. We decompose
the objective of the system into sub-objectives, matching the objectives of the sub-systems.
We show the dependencies () between the system and its sub-systems by dep-statements.
SUB-SYSTEM: We represent individual sub-systems by agents enacting roles, specifying
the sub-objectives of the system that they address. We also make explicit the dependency
between the system and its sub-systems by dep-statements.
ENVIRONMENT: We represent the parts of the environment that we assume interact with
the system by agents. An may enact a role, meaning that the sys-
tem can expect it to carry out a certain objective, but this is not required.
ENTITIES: Inspired by the agent notion as considered in [Wolldr95], we represent entities
in general by and

- vs entities – no distinction; an agent can represent a
human and implement a human behavior model but from a model perspective,
human and artificial agents are indistinguishable;
- vs entities; agents that implement proactive behavior
models are inherently capable of autonomous behavior, whereas agents that
implement reactive behavior models are suited for representing passive entities;
- vs entities; we have roles dedicated to sensing and actua-
tor such that we represent these entities by agents enacting those roles.

ROLE and ACTOR-ROLE: We represent roles and their designated objectives by role-
statements, and the entity-role combination by rea-statements, stating that an agent enacts a
role.
ACTOR: We represent an actor by its designated agent.
USER: The user is a specific agent that plays the role of user. For context-aware systems,
the system agent depends on the user to deliver its service and for gaining feedback. The
user role may have certain objectives but this is not required.
ACTION and INTERACTION: An agent is capable of performing actions, and in the
phase, it generates options based on its beliefs. It then deliberates the action to take in the

phase. We represent the concept interaction by dep-statements, meaning that multiple
agents are collaborating in solving an objective.
OBJECTIVE: We represent objectives primarily by role- and obj- statements.
REGULATIONS: We represent regulations by condition statements, stating situations
where obligations to carry out objectives get activated. In the -phase, the agent updates
itself for current active obligations and violated obligations with obl- and viol- statements.
VALUES: Values are reflected in the regulations expressed by cond-predicates.

3.3 Proposed Meta-Model

After having introduced our concepts (in synch with SDBC), we have derived a
meta-model accordingly, considered a key contribution of the current paper. The
meta-model is presented in Fig. 5, using the notations of UML – Class Diagram [25].

As it is seen in the figure, we consider a system and its environment. Both are
composed of numerous entities which in turn can be components (non pro-
active) or agents (pro-active and intelligent). One entity (an agent, for example) can
enact many different roles (and in this research, we limit ourselves to four role
categories, namely: user, sensor, actuator, and processor) that are restricted

196 B. Shishkov et al.

by corresponding rules and are subject of regulations. A regulation in turn is
composed of many rules and is affecting not only the roles but the system as a whole.

Since we are taking particularly an agent perspective, we consider it important
matching roles to their corresponding executing agents because it
is not for sure that anybody would have the right capabilities of fulfilling a role.

With regard to what an agent is capable of doing, AORTA takes a discrete approach
to capabilities: the capabilities of an agent are defined as the set of
states that an agent can achieve. More concretely, an agent is defined as the
tuple (a, MS, AR, F, C, µ) where a is the name of the agent, MS is its “mental” state, AR
are its rules of reasoning, F is a set of transitioning functions (Action � MS ! MS),
C are its capabilities and µ is a “mailbox” for incoming messages from and outgoing
messages to other agents.

When considering a role enactment, an agent checks whether its capabilities
overlap the objectives of that role (if not, an enactment would be impossible). One can
split a role into two roles where one defines what objectives are expected of an agent
enacting the “partial” role and what is expected of an agent enacting the “full” role.

As mentioned in the Introduction, we propose at the end of this section refined
guidelines (inspired by SDBC and the meta-model).

3.4 Refined Design Guidelines

In following SDBC (see Fig. 3) and implementing the meta-model (see Fig. 5), we
propose refined design guidelines, and we limit ourselves only to considering the
strengths of agent technology with regard to the three categories of context-aware
systems addressed in the current paper.

The three system behavior perspectives (SMCAS, UDCAS, and VSCAS – see
Sect. 2) considered in combination, referring to the meta-model, inspire a proposed
design vision; according to it, a system uses an AORTA Engine considered for
doing all three things simultaneously, as it is illustrated in Fig. 6.

Fig. 5. Proposed meta-model

Three Categories of Context-Aware Systems 197

As the figure suggests, the user is situated in the environment and the
system uses sensors to receive info from the environment, including the user, and
actuators to manage sub-systems, realizing internal optimizations. The AORTA
Engine allows the system to conform to rules and regulations (regulations are
encoded, reflecting the values the system should consider). The AORTA Engine checks
the input from the Analysis Engine to identify obligated, forbidden or allowed
actions, and what organizational influence those actions have (enacting a role involves
notifying other entities). The output is provided as input to the Planner that in turn
decides the action to be taken.

4 The Border Security Case

Unmanned aircraft (for example, drones) are a way to facilitate the surveillance along
land borders, as according to a case example considered in [21].

Drones are capable of carrying and running infrared (and regular) surveillance
cameras and based on their input, scarce capacity can be allocated. The goal is to find
illegal activities. Despite drones’ advantages, there can be some unintended effects:
Drones can make noise and scare ordinary people who are passing the borders in a

Fig. 6. A system combining features of SMCAS, UDCAS, and VSCAS

SELF-MANAGING PERSPECTIVE
• power consumption optimization
• cam adjustments (to weather conditions)

Goal DT

System D User PO

Behavior
USER-DRIVEN PERSPECTIVE
• monitoring adjustments
• data processing

VALUE-SENSITIVITY PERSPECTIVE
• facial distance observation
• noise minimization

Fig. 7. Exemplifying the SMCAS, UDCAS, and VSCAS perspectives

198 B. Shishkov et al.

legitimate way, often at check-points; custom officials and/or police officers might be
scared and/or disgraced by drones. Next to that, (video) recording activities might be
violating the privacy of people. Hence, it should be avoided that: (i) drones come too
close to legitimate activities; (ii) data that is not needed is recorded and shared. This
asks for balancing between the internal objectives of finding illegal activities and the
societal demands that are two-fold: it is needed to avoid drones getting too close to
people and it is also needed to ensure their privacy.

We hence make the following explicit: (A) We do address SYSTEM D – a drone
system, featuring a drone flying over a border and supporting border police officers;
(B) System D is delivering services to USER PO – the border police officers who are
patrolling the border; (C) The goal in context is: GOAL DT, featuring the detection of
illegal activities in general (trespassers, in particular). This is reflected in Fig. 7.

As also seen from the figure, we have identified six case-specific behavior lines,
two per each of the system behavior perspectives:

[POWER CONSUMPTION OPTIMIZATION] [SMCAS PERSPECTIVE]: When a drone is
flying, it is exchanging information with the ground station – the drone is sending sensor
data to the station that is in turn generating instructions. Hence, it is at the ground station
where the flight is controlled such that it is guaranteed that the drone mission is completed.
This requires that the power consumption is optimized, such that the drone has enough pow-
er to complete the mission and get back.
[CAM ADJUSTMENTS] [SMCAS PERSPECTIVE]: When a drone is flying, it counts on
its cameras, such that it is capable of adjusting its flight accordingly. Hence, those cameras
need to be adjusted when weather conditions change.
[MONITORING ADJUSTMENTS] [UDCAS PERSPECTIVE]: When a drone is flying, it
is realizing its mission to support border police officers (the “user”) and for this, it should
adjust its monitoring to mainly cover those areas that are not close to where police officers
are.
[DATA PROCESSING] [USCAS PERSPECTIVE]: When a drone is flying, raw sensor data
is processed by the drone itself and/or by the ground station, such that higher-level context
information is derived and delivered to border police officers.
[FACIAL DISTANCE OBSERVATION] [VSCAS PERSPECTIVE]: When a drone is
flying, it is to act in a privacy-sensitive way, which means that without explicit instructions,
the drone should not (video) capture people’s facial information or if this happens, the pho-
to/video material should be blurred accordingly.
[NOISE MINIMIZATION] [VSCAS PERSPECTIVE]: When a drone is flying, it should
avoid noise-polluting residential environments, which means that if this wouldn’t be mis-
sion-critical, the drone should avoid approaching residential areas.

Acting adequately with regard to all those perspectives is considered important
because it wouldn’t be acceptable neither “sacrificing” the drone, nor compromising the
mission, nor disregarding values. Nevertheless, it is sometimes impossible to satisfy all
this. For example: If from a SMCAS perspective, the drone should immediately turn
back (with indications of insufficient power to go on) but from a UDCAS perspective,
the drone should go on to approach an area of interest, then what is the solution?
Resolving such TENSIONS is considered non-trivial because we argue that “universal
rules” cannot work in cases like this. Thus, it is a matter of sophisticated prioritization
to come to the “right” solution. If, for example, a border control mission is on and a
noise pollution is observed, then if the mission is just a routine surveillance, probably

Three Categories of Context-Aware Systems 199

the noise-pollution should be avoided but if the mission is targeting trespassers, then
the neighborhood silence may be sacrificed and for sure the residents would understand
and appreciate such actions. For this reason, the AORTA drone mission modeling is to
be complemented by a “prioritization scheme” which is not shown in the current
section, for the sake of brevity.

What we are demonstrating is the OVERALL model (simplified to what Fig. 7
suggests) where all three perspectives are “super-imposed” (such that tensions could be
straightforwardly identified) – this is presented in Table 1.

5 Related Work

AORTA is based upon the OperA meta-model for agent organizations. MOISE+ [26] is
another meta-model for agent organizations that is well known in AI (Artificial
Intelligence)-communities, and which is implemented in the agent-programming
platform JaCaMo [2]. With regard to agent-based AI systems: “Pepper” is a robot
working together with humans in a socially acceptable way. Pepper perceives its
environment through visual sensors and can also receive input through a touch screen.
Pepper is able to make simple gestures, speak, and move around on wheels. Pepper’s
behavior is programmed using the agent-based language GOAL [9] in which an agent is
specified in terms of a mental state with personal info. In contrast, we propose using
AORTA in which an agent maintains personal information and organizational infor-
mation separately. This relates to user-driven context-aware systems where for
example Body-Area Networks are implemented to capture vital signs from the body of
a patient from distance, such that this information is processed and communicated in an
intelligent way [1] while self-managing systems were widely used in home appliances
that adjust their operation with regard to some goal that concerns a unit, such as
neighborhood [24]. This all concerns values that are abstract and non-functional and
that is how they are considered to date [7], not aligning them adequately with the
processes that concern the design of software. We believe that the current work is a step
forward in approaching methodologically context-aware systems, in general and par-
ticularly – the three categories of context-aware systems addressed in this paper.

Table 1. Exemplifying the overall behavior, by applying AORTA.

role(drone, {reportTrespassing(Trespasser, Location, Time), optimizeVision(Camera),
optimizePower})
role(officer,{apprehend(Trespasser)})
obj(reportTrespassing(Trespasser, Location, Time), {patrol(Location,Time), record
(Trespasser, Location, Time)})
dep(drone, officer, reportToOfficer)})
dep(drone, camera, optimizeVision)})
cond(camera, lightSensing, optimizeVision, clearWeather /\ daytime)
cond(camera, darknessSensing, optimizeVision, cloudyWeather)
cond(drone, keepDistance, record, recordingFace)
cond(drone, reduceNoise, patrol, ¬alarm)

200 B. Shishkov et al.

6 Conclusions

Furthering previous research that touches upon the enterprise-modeling-driven soft-
ware specification, we have particularly addressed context-aware (software) systems in
the current paper. We have identified and studied three categories of context-aware
systems, featuring context-based system behavior adaptations that concern the opti-
mization of system-internal processes, the maximization of the user-perceived effec-
tiveness, and the consideration of relevant public values. Super-imposing those three
system behavior perspectives and in synch with previous work (the SDBC approach),
we have identified concepts and we have enriched them from an agent-technology
perspective (in line with the AORTA framework), reflecting this in a meta-model that is
considered a major contribution of the paper. Inspired by the meta-model, we have
provided a partial refinement of the SDBC design guidelines, taking an agent tech-
nology perspective and focusing on the three above-mentioned system behavior per-
spectives, and we have partially illustrated this by means of a case example featuring
land border security. As future work we plan to CONSOLIDATE our
SDBC-AORTA-driven proposal into one dedicated design approach that is specific to
context-aware systems.

Acknowledgements. This work is supported by: (i) the TU Delft - Delft Pilot project;
(ii) Technical University of Denmark and the PDC A/S project. We would like to thank Jeroen
van den Hoven for his support and guidance.

References

1. AWARENESS: Freeband AWARENESS Project (2008). http://www.freeband.nl
2. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented

programming with JaCaMo. Sci. Comput. Program. 78, 6 (2013)
3. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller, H.,

Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feedback loops. In: Cheng,
Betty H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for
Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02161-9_3

4. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Boston (2000)
5. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)
6. Dignum, V.: A model for organizational interaction: based on agents, founded in logic. Ph.

D. thesis, Utrecht University (2004)
7. Friedman, B., Hendry, D.G., Borning, A.: A survey of value sensitive design methods. In: A

Survey of Value Sensitive Design Methods, Foundations and Trends, vol. 1, p. 76 (2017)
8. Google Dictionary: The website of Google Dictionary (2018). http://www.google.com
9. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni, A., Dix,

J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming: Languages, pp. 119–157.
Springer, Tools and Applications (2009). https://doi.org/10.1007/978-0-387-89299-3_4

10. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing - degrees, models, and
applications. ACM Comput. Surv. 40(3) (2008). Article no. 7

Three Categories of Context-Aware Systems 201

http://www.freeband.nl
http://dx.doi.org/10.1007/978-3-642-02161-9_3
http://dx.doi.org/10.1007/978-3-642-02161-9_3
http://www.google.com
http://dx.doi.org/10.1007/978-0-387-89299-3_4

11. Jensen, A.S., Dignum, V., Villadsen, J.: A framework for organization-aware agents. Auton.
Agent. Multi-Agent Syst. 31(3), 387–422 (2017)

12. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

13. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley, Boston
(2003)

14. Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D.: A classification framework of uncertainty
in architecture-based self-adaptive systems with multiple quality requirements. In: Mistrik,
I., Ali, N., Kazman, R., Grundy, J., Schmerl, B. (eds.) Managing Trade-offs in Adaptable
Software Architectures, 1st edn. Elseiver Inc. (2016)

15. MDA: The OMG Model Driven Architecture (2018). http://www.omg.org/mda
16. Muehl, G., Werner, M., Jaeger, M.A., Herrmann, K., Parzyjegla, H.: On the definitions of

self-managing and self-organizing systems. In: ITG/GI Symposium on Communication in
Distributed Systems - 15, Bern, Switzerland, pp. 1–11 (2007)

17. Shishkov, B.: Enterprise Information Systems, A Modeling Approach. IICREST, Sofia
(2017)

18. Shishkov, B., Janssen, M.: Enforcing context-awareness and privacy-by-design in the
specification of information systems. In: Shishkov, B. (ed.) BMSD 2017. LNBIP, vol. 309,
pp. 87–111. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78428-1_5

19. Shishkov, B., Mendling, J.: Business process variability and public values. In: Shishkov, B.
(ed.) BMSD 2018. LNBIP, vol. 319, pp. 401–411. Springer, Cham (2018)

20. Shishkov, B., Janssen, M., Yin, Y.: Towards context-aware and privacy-sensitive systems.
In: BMSD 2017, 7th International Symposium on Business Modeling and Software Design.
SCITEPRESS (2017)

21. Shishkov, B., Mitrakos, D.: Towards context-aware border security control. In: 6th
International Symposium on Business Modeling and Software Design, BMSD 2016.
SCITEPRESS (2016)

22. Shishkov, B., van Sinderen, M.: From user context states to context-aware applications. In:
Filipe, J., Cordeiro, J., Cardoso, J. (eds.) ICEIS 2007. LNBIP, vol. 12, pp. 225–239.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88710-2_18

23. Shishkov, B., Van Sinderen, M.J., Quartel, D.: SOA-driven business-software alignment. In:
IEEE International Conference on e-Business Engineering, ICEBE 2006. IEEE (2006)

24. Shishkov, B., Warnier, M., Van Sinderen, M.: On the application of autonomic and
context-aware computing to support home energy management. In: Proceedings of ICEIS
2010 - the 12th International Conference on Enterprise Information Systems, Funchal, PT,
8–12 June 2010. SCITEPRESS, Setúbal (2010)

25. UML: The Unified Modeling Language (2018). http://www.uml.org
26. van Riemsdijk, M.B., Hindriks, K., Jonker, C.: Programming organization-aware agents. In:

Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS (LNAI), vol. 5881,
pp. 98–112. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10203-5_9

27. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev.
10(2), 115–152 (1995)

202 B. Shishkov et al.

http://www.omg.org/mda
http://dx.doi.org/10.1007/978-3-319-78428-1_5
http://dx.doi.org/10.1007/978-3-540-88710-2_18
http://www.uml.org
http://dx.doi.org/10.1007/978-3-642-10203-5_9

	Three Categories of Context-Aware Systems
	Abstract
	1 Introduction
	2 System Behavior Perspectives
	2.1 Self-Managing Context-Aware Systems (SMCAS)
	2.2 User-Driven Context-Aware Systems (UDCAS)
	2.3 Value-Sensitive Context-Aware Systems (VSCAS)

	3 Proposed Modeling and Design
	3.1 SDBC
	3.2 Conceptualization
	3.3 Proposed Meta-Model
	3.4 Refined Design Guidelines

	4 The Border Security Case
	5 Related Work
	6 Conclusions
	Acknowledgements
	References

