
 

  
Abstract An Integrated Data Management System is 

required for representing and managing indicative 
information from multiple sources describing the state of an 
enterprise. Current Data Management Systems model 
enterprises that are crisp. A crisp enterprise is one that is 
highly quantifiable; relationships are fixed and attributes are 
atomic valued. The premises for this paper are precise 
enterprises, data maybe uncertain; multiple sources of 
information do exist, but uncertainty may be described using 
different models.  
 

Index Terms Intuitionistic Fuzzy Logic, Null Values, 
Probabilistic data, Value Uncertainty  

I. INTRODUCTION 

The integration of information from multiple information 
providers has been a lasting problem of research. One may 
distinguish very roughly between two approaches. 
 A stream of researchers is dealing with the semantic 

integration of independent sources through a common 
conceptual schema. This is called resolution of 
intentional inconsistencies.  

 A second stream of researchers is dealing with the 
problem of defining a common answer from sources 
emitting conflicting answers. This is known as 
resolution of extensional inconsistencies.  

The goal of the first stream is to provide flexible and 
efficient access to the population of information providers, 
by means of a global conceptual schema that models the 
information, contained in the entire population of 
information providers. This global conceptual schema is 
qualified with a mapping that defines the elements of the 
global schema, in terms of elements of the schemes of the 
information providers under conceptual integration. 
Queries are translated to queries on the population of 
information providers; the individual answers are then 
combined to answer the global query. 

The goal of the second stream is to define a common 
acceptable answer for all sources, with reference to a 
particular request. However both streams of researchers 
assume that data are perfect, entail no uncertainty when it 
comes to querying. 
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In this paper, we report an attempt towards an 
Intuitionistic Fuzzy Mediator, where integrated data in a 
"relation" represent all possible views with respect to same 
real world proposition. Such a type of a Mediator should 
allow the querying of multiple sources containing data that 
entail some type of value uncertainty. Value uncertainty is 
expressed mainly with the aid of fuzzy, probabilistic and 
null values as part of a relational data source.  

In a Mediator environment the autonomy of the sources 
under integration must be guaranteed. This simply means 
that local sources are allowed to choose and express 
themselves using their own model of value uncertainty (i.e. 
fuzzy, probabilistic, null value). The Mediator level should 
however provide a uniform way to integrate the underlying 
sources. In other words users must be in position to 
interrogate mediator architecture-system in a single and 
uniform way. 

We report an Intuitionistic Fuzzy Relational Mediator for 
the merging of probabilistic and null values when it comes 
to querying of multiple sources containing uncertain data. 
In our case we focus on probabilistic or null values that are 
coming from different relational data sources.  

The rest of the paper is organized as follows  

II. NULL & PROBABILISTIC VALUES IN RELATIONAL 

DATABASES 

In any extended relational environment somebody may 
distinguish among others two models for treating 
uncertainty at the attribute-label type which are listed 
below 

 Probabilistic values 
 Null values  

Probabilistic information is a deviation of ignorant-
uncertain information. A probabilistic data value is a set of 
alternatives. Each alternative has an associated probability 
that it is the attribute-label value [1], [2], [3]. Such a data 
value is a set of alternatives, each of which has an 
associated probability. In [4] the notion of a missing 
probability is introduced, which is the way to model 
ignorance in probabilistic data. Ignorance is derived from 
incomplete data. For example, if the sum of the 
probabilities of all possible outcomes is less than 1.0, the 
remaining part is assigned to the so-called missing 
probability. 

 A null value represents an unknown attribute value, is a 
value that is known to exist, [5], [6] but the actual value is 
unknown. The unknown value is assumed to be a valid 
attribute value, that is, some value in the domain of that 
attribute. This is a very common kind [7] of ignorant 
information. An unknown value has various names in the 
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literature including unknown null [8], missing null [9], and 
existential null [10]. 

The meaning of a fact, F, with an unknown attribute 
value over an attribute domain of cardinality N is a multiset 
with N members; each member is a set containing an F 
instance with the unknown value replaced a different value 
from the attribute domain. 

The Intuitionistic fuzzy set theory is an extension of the 
classical fuzzy set theory [11].  Each element of an 
Intuitionistic fuzzy set has degrees of membership () and 
non-membership (), which don't sum up to 1.0 thus 
leaving a degree of indefiniteness ().  These are the 
attractive properties that make Intuitionistic fuzzy set 
theory a good candidate for expressing belief in the sense 
of probabilistic databases, and unknown in the sense of 
databases with null values. 

III. INTUITIONISTIC FUZZY RELATIONAL MEDIATOR  

In this paper we present the principles for an 
Intuitionistic Fuzzy Mediator for querying different types 
of uncertain data from multiple sources. We focus on the 
interrogation of different sources that may contain 
probabilistic, fuzzy, and null values under a single platform 
named as the “Intuitionistic Fuzzy Mediator”. 

For implementing the Intuitionistic-Fuzzy Mediator 
architecture the following components need to be 
defined 
 An extended Intuitionistic-Fuzzy Mediator tabular data 

model with respect to the Mediator level. This will let 
the users to define different types of queries that may 
entail a level of uncertainty.  The Mediator will also 
use this model for collecting all the information from 
the different data sources through the Binders and 
united it in a single form before it sends them back to 
users.       

 A query language for the utilisation of the binders. 
Binders convert Intuitionistic fuzzy types queries 
expressed at the Mediation Level with respect to the 
semantics of the underlying data sources (i.e. 
probabilistic, models of uncertainty). Binders collect 
all available data with respect to a query from multiple 
sources and convert them to an Intuitionistic fuzzy 
form before they forward these data to the Mediator -
User.   

 An enhanced query environment that it will facilitate 
query processing and optimisation 

Finally we present our experiences from trying to 
implement the “Intuitionistic Fuzzy Mediator” with the aid 
of Intuitionistic Fuzzy PostgreSQL, which is based on the 
PostgreSQL DBMS. 

IV. INTUITIONISTIC FUZZY RELATIONAL MODEL- 

MEDIATOR LEVEL 

In this section we define the Mediator data model and 
its basic operations. This model will be used for the logical 
interaction between users and sources with the aid of 
Binders. It will form the common protocol for the 
interaction between these elements.  

  Let R be an Intuitionistic fuzzy relation (IFR), 
 R = {<x, R(x), R(x)> / x  X}, where x = <att1, …, attn> 
is an ordered tuple belonging to a given universe X, 

{att1,…,attn} is the set of attributes of the elements of X, 
R(x) is the degree of membership of x in the relation R. In 
other words, R is an intuitionistic fuzzy subset of X with 
membership and non-membership functions R and R 
respectively. 

A selection P(R) = {<x, min(R(x), (P(x))), 
max(R(x), (P(x)))> / x  X }, operation defines a relation, 
which contains only those tuples from R for which a certain 
predicate P is satisfied. We can say that the selection 
modifies the degrees of membership and non-membership 
of R depending on the corresponding value of the predicate: 
P. The answer-result is a relation that has a degree of 
membership, which is logically AND-ed with the 
corresponding value of the predicate P. 

Project: P{<x, R(x), R(x)> / x  X}. The traditional 
project operator f (R) selects all attributes f from all tuples 
in R leaving out other attributes not in f. The semantics of a 
Intuitionistic fuzzy project operator P{<x, R(x), R(x)> / 
x  X}should be that it selects all attributes f from all 
possibilities in R. Projection does not affect the associated 
Intuitionistic fuzzy measures. However, if the key k of R is 
projected out, the individual objects can no longer be 
identified and the result is meaningless. Therefore, k 
always has to be part of attribute list f. 

Union: P(A  B) = {<x, max ( A(x),  B(x)), min ( A(x), 
 B(x))> / x X }  The Intuitionistic fuzzy union operator 
merges two IFRs possibly containing possibilities for the 
same real world objects. To properly calculate the 
Intuitionistic fuzzy measures in the answer, it is beneficial 
to enumerate the possible worlds, i.e., consider each 
possibility of an element existing or not in the operand sets. 
The intersection and difference can be determined 
analogously. 

A Cartesian product of two relations RS is identical to 
the Cartesian product operation defined in the intuitionistic 
fuzzy sets theory [5], which uses the logical AND between 
the degrees of membership: 
Let S be another intuitionistic fuzzy relation: S = {<y, 
S(y), S(y)> / y  Y}, then: 

RS = { <<x, y>, min(R(x), S(y)), max(R(x), S(y),)> / 
<x, y>  XY}. 

For the accommodation of probabilistic databases the 
IFRDB model defines probabilistic variants of Cartesian 
product and selection operations, section 4. The definition 
of these operations is based on the notion of a probabilistic 
conjunction (logical AND). This type of conjunction is 
applied when the operands carry probabilistic semantics, 
i.e. they express a probability, not a degree of membership. 
Therefore the result of the conjunction is an Intuitionistic 
fuzzy value, in which the degree of truth is the 
multiplication of the degrees of truth of the operands 
(analogous to the formula for intersection of probabilities) 
and the degree of falsity is computed by a formula 
analogous to the formula for union of probabilities. 

In activating these operators as part of the Intuitionistic 
fuzzy extension of PostgreSQL, it must be explicitly 
specified the type of the relational sources (i.e. 
probabilistic, etc) to be merged in order the IFRDBMS to 
process correctly the result of the query. 



 

V. INTUITIONISTIC FUZZY REPRESENTATION OF 

PROBABILISTIC DATA-BINDER LEVEL 

Consider the sample probabilistic relation Lives_in on 
‘Fig. 4.1’. The relation contains the places where John and 
Peter live. The column lives_in represents the probability 
distributions of the place where each man lives. Since the 
sources of information are different, we can’t determine 
which the exact places, where the both men reside, are. We 
only know them with certain degrees of confidence. The 
asterisk represents the missing probability or – in the 
context of the example – the probability that John (Peter) 
lives “somewhere”. 

 
Name Lives_in 
John London [0.4] 

Manchester [0.2] 
Soho [0.1] 
* [0.3] 

Peter London [0.3] 
Manchester [0.5] 
* [0.2] 

 
Fig. 4.1 Probabilistic relation Lives_in 

 
 The quantity in the brackets expresses a relative 

onfidence m(S) in  the given singleton fact S and not in 
any subset of S. It is called basic probability 
assignment. 

  The total confidence in S, which is called belief, is the 
sum of the probability assignments commited to all 
subsets of S, bel(S).  

 The plausibility is defined, Pl(S)=1 – Bel (S) 
The ignorance is defined ,  = Pl (S) – Bel (S) 

In the example above, if S = “John lives in London”, the 
basic probability assignment is m(S) = 0.4, and the belief is 
bel (S) = 0.5, because Soho is located in London, therefore 
it is a subset of the fact S.  

The plausibility is computed as Pl (S) = 1 – Bel (S) = 1 
– Bel (“John lives in Manchester”) = 0.8 

Following the above mentioned rules, we create the 
table on ‘Fig. 4.2’, where each fact is represented along 
with its belief, plausibility and ignorance, which we use to 
compute the intuitionistic fuzzy degrees of truth and falsity. 

    
Fig.: 4.2 Intuitionistic fuzzy relation Users 

This probabilistic data can be stored in the intuitionistic 
fuzzy relation  as the degrees of membership and non-
membership are populated with the values in the columns  
and . To convert the probabilistic data into intuitionistic 
fuzzy data, we map the belief to the degree of truth and the 

ignorance to the degree of indefiniteness, i.e. the degree of 
falsity is : 

= 1 – Bel – Ig = 1 – Pl 

Performing selection operation using IFRDBMS 

For the accommodation of probabilistic databases the 
IFRDB model defines probabilistic variants of selection as 
follows: 

P(R) = {<x, R(x).(P(x)), R(x) + (P(x)) - 
R(x).(P(x))> / x  X }, 

Consider the following probabilistic distribution about 
Peter's birth place: 
   {Manchester [0.6], Liverpool [0.3], * [0.1]} 

So, if we define an intuitionistic fuzzy predicate 
is_the_birth_place_of_Peter (town), it will have the 
following values: 
is_the_birth_place_of_Peter (Manchester) = <0.6, 0.3> 
is_the_birth_place_of_Peter (Liverpool) = <0.3, 0.6> 

Now, assuming that the IFRDBMS has to execute the 
query “Find all users who live in Peter's birth place”, it 
should be formulated with the following IFSQL command: 
 
SELECT name, lives_in, mship, nmship 
FROM users 
WHERE is_the_birth_place_of_Peter (lives_in); 
 

And the results will be the ones, represented in ‘Fig. 4.3’ 
(we note that the values of the belief and plausibility are 
respectively: bel =  and pl = 1 -  

 
Name Lives_in   

John Manchester 0.12 0.65 

Peter Manchester 0.3 0.51 
 

Fig. 4.3 Results from selection operation 
 

Performing join using IFRDBMS 

The relational operation Cartesian product applies using 
the formula based on the values of the belief and 
plausibility (or, more exactly, on their degrees of truth and 
falsity) of the facts rather than their basic probability 
assignments. 

For the accommodation of probabilistic databases the 
IFRDB model defines probabilistic Cartesian product as 
follows: 
RS = {<<x, y>, R(x).S(y), R(x) + S(y) - R(x).S(y)> / 

<x, y>  XY} 
 

 
 
 
 
 
 
 

Name Lives_in Bel =  pl 1 – pl = 
 

ig = 
 

John London 0.5 0.8 0.2 0.3 

John Manchester 0.2 0.5 0.5 0.3 

John Soho 0.1 0.8 0.2 0.7 

Peter London 0.3 0.5 0.5 0.2 

Peter Manchester 0.5 0.7 0.3 0.2 

Towns_p: 

Town Dist. 

London 200 [0.4] 

 250 [0.6] 

Manchester 150 [1.0] 

Towns: 

Town Dist.   

London 200 0.4 0.6 

London 250 0.6 0.4 

Manchester 150 1.0 0.0 



 

Fig. 4.4 Probabilistic relation Towns_p and the equivalent 
intuitionistic fuzzy relation Towns 

 
For example, consider the probabilistic relation 

Towns_p, which contains the distances to the towns and the 
corresponding intuitionistic fuzzy relation Towns (see ‘Fig.. 
4.4’). 
 

The answer of the question “How far from here does 
Peter live?” (presented on ‘Fig.4.5’) can be achieved by 
applying join operation over the two relations which is 
formulated with the following IFSQL command: 
 
SELECT u.lives_in, t.town, t.distance, mship, nmship 
FROM users u JOIN towns t ON u.lives_in = t.town  
WHERE u.name = 'Peter' 

 

 
Fig. 4.5 Results from the join 

VI. INTUITIONISTIC REPRESENTATION OF NULL 

VALUES BINDER LEVEL 

In relational databases with null values it is recognised 
[12] that there are many different types of null values, each 
of which reflects different intuitions about why a particular 
piece of information is unknown.  

In [12], five, different types of nulls are suggested ‘Fig. 
5.1’. The labels and semantics of them are defined as 
follows. Let V be a function, which takes a label and 
returns a set of possible values that the label may have. 

 
 
 
 
  
 
 
 
 
 
     

Fig. 5.1 Types of Null Values 
 
Intuitively, V (Ex-mar) = D says that the actual value of 

an existential marker can be any member of the domain D. 
Likewise, V (Ma-mar) = D ∪ {⊥} says that the actual 
value of a maybe marker can be either any member of D, or 
the symbol ⊥, denoting a non-existent value. Similarly, V 
(Par-mar (Vs)) = Vs says that the actual value of a partial 
null marker of the form pa mar (Vs) lies in the set Vs, a 
subset of the domain D.  

A controversial issue is the use of the ⊥, which denotes 
that an attribute is inapplicable. Certainly this is the 
interpretation of an algebraic manipulation of the unknown 
information, instead of a conceptual manipulation and 
interpretation. Conceptually the issue can be resolved with 
the use of the subtypes. A subtype is introduced only when 

there is at least one role recorded for that subtype. In the 
general case the algebraic issue under the use of subtypes is 
whether the population of the subtypes in relationship to 
the super-type is:  
 Total and Disjoint: Populations are mutually exclusive 

and collectively exhaustive.  
 Non-Total and Disjoint: Populations are mutually 

exclusive but not exhaustive.  
 Total and Overlapping: Common members between 

subtypes and collectively exhaustive, in relationship to 
super-type.  

 Non-Total and Overlapping: Common members 
between subtypes and not collectively exhaustive, in 
relationship to super-type.  

The conceptual treatment of null will permit us to reduce 
the table in ‘Fig. 5.1’ using only two types of null markers.  
 

Label (X) V(X) 

P-mar (Vs) {Vs} 

Π-mar (D) {D} 

 
 

Fig.. 5.2 Types of Null Values: Eliminated Null Markers 
 
In this case the P-mar, marker is used to denote that one 

of the members of the restricted set Vs  D, is the actual 
value, of an attribute value, like in the case of partial 
values. Partial values may be thought of as a generalisation 
of null values where, rather than not knowing anything 
about a particular attribute value, as is the case for null 
values, we may identify the attribute value as belonging to 
a set of possible values assuming some type of background 
knowledge. A partial value is therefore a set such that 
exactly one of the values in the set is the true value.  

Background knowledge may be presented as a concept 
hierarchy of attributes, as integrity constraints, from the 
integration of conflicting databases, or from knowledge 
possessed by domain experts. Using such information we 
propose to re-engineer the database by replacing missing, 
data by sets of the attribute domain. Concept hierarchies 
have previously been used for attribute-induced knowledge 
discovery. However our use of background knowledge in 
this context is novel. 
We assume that attribute values may be given as 
Intuitionistic Fuzzy concepts, which correspond to proper 
subsets of the domain. In addition there are rules describing 
the domain, and these may be formed in a number of ways: 
they may take the form of integrity constraints, where we 
have certain restrictions on domain values; they may arise 
from the integration of conflicting attribute values in multi 
databases, they may be also rules specified by a domain 
expert, with the aid of data analysis or data mining. 

To this extent we can treat a null value as a probabilistic 
type information and treat it in terms of query processing 
with the aid of Intuitionistic Fuzzy logic as this defined in 
“Section four”. 

A fact may also represent information that is compatible 
with its domain, based on some specified or unspecified 
criterion. However, the information source cannot testify 
these values, but does not have any reason to reject them. 
In this latter case the Π-mar, marker to denote that a label 

Town Distance   

London 200 0.12 0.8 

London 250 0.18 0.7 

Manchester 150 0.5 0.3 

Label (X)  V(X)  

Ex-mar  D  

Ma-mar  D ∪ {⊥}  

Pl-mar  {⊥}  

Par-mar (Vs)  Vs  

Pm-mar (Vs)  

 
Vs ∪ {⊥}  



 

value can be “any” value derived from the label domain D. 

To this extent we can treat a null value in the sense of fuzzy 
type information. For this reason we are currently working 
on defining a parallelism between fuzzy data and 
Intuitionistic fuzzy data. 

VII. KNOWLEDGE AND QUERY PROCESSING 

So far we shown how querying is performed with the aid 
of aid of Intuitionistic Fuzzy PostgreSQL (IFPG), which 
supplements the well known open-source RDBMS 
PostgreSQL. The IFPG extends the fundamental relational 
operators, as these defined as part of the IFRDB Model in 
section three.  

As part of the IFPG environment we can treat 
probabilistic data and null values-markers. We have shown 
the correspondence between probabilistic and Intuitionistic 
fuzzy data and how to replace them with the equivalent 
Intuitionistic fuzzy distribution that corresponds to 
probabilistic treatment of information. As for null values –
markers we treat them as a kind of partial value in terms of  
data replacement and in terms of query processing we 
could treat them as as a probabilistic type information with 
the aid of Intuitionistic Fuzzy logic as this defined in 
“Section four”. 

At this point we realise that it will be useful to propagate 
a user request-query not to all data sources participating in 
the Mediation architecture, but only to those sources that 
are relevant. This is quite critical when it comes to query 
processing and execution, since it will allow faster query 
execution. For this reason we equip the Mediation 
Architecture with a repository that contains the description 
of constraints related to all underlying data sources. Using 
the Constraints Repository a particular query can determine 
if a data source contains relevant content and consequently 
if it needs to be queried or not.  

 
Fig.7.1. Intuitionistic Fuzzy Relational Mediator 

 
In a Mediator environment it will be useful not to query 

all sources, but only those that contain information relevant 
[13], [14], [15] to our request. This is quite critical for 
achieving better query performance. For this reason we 
equip our Mediation architecture with a repository that 
contains various constraints (i.e. Intuitionistic Fuzzy Range 
Constraints, Intuitionistic Fuzzy Functional Dependencies, 
association rules) that are related to the information sources 
that participate in the Mediation Architecture. To this 
extent we can interrogate the constraints repository to find 

out if a particular source contains relevant information with 
respect to particular request. Let us consider a sample 
mediator system with two information sources S1, S2 that 
contain demographic data about citizens across EU. They 
have the following obviously simplified schemas 

Source S1: S1 (Name, Lives, Income): French Citizens 
Source S2: S2 (Name, Lives, Income): Italian Citizens 

In mediators, information sources i.e.(S1, S2) often have 
various constraints such as:   

 Range constraints: such as “The average income 
per person is estimated to be in the range of  €50K”. 
Considering a finite universe of discourse, say X 
whose cardinality is N. Let us suppose that X={X1, X2, 
.… , Xn} and the Intuitionistic fuzzy number ~a given 
by  

~a ={(xi, i, i): xiX, I = 1,2….N} 
We can express the above constraint as follows 

~Income50K {(49, .8, .1), (50, .9, .02) (51, .7, .15)}    
 “All persons stored at a source have a unique 

identifier”. A classical data integrity constraint  
 Functional Dependencies: for instance, a source 

relation S1(Name, lives, income) has a functional 
dependency  Name(Lives, ~Income). 

These constraints are very useful to compute answers to 
queries. There are several reasons we want to consider 
constraints separately from the query language.  
Describing constraints separately from the query language 
can allow us to do reasoning about the usefulness of a data 
source with respect to a valid user request.  
 Assume sources (S1, S2) and the following constraints: 

 (C1): All Citizens at source S1, received an 
average income of ~Income60K 
 (C2):  All Citizens at source S2, received an 
average income of ~Income50K  
 (C3): Each citizen in EU (in S1, S2) has a unique, 
identifier. Name(Lives,~Income)  

These constraints carry a rich set of semantics, which 
can be utilized in query processing. For instance, consider 
the following queries that ask information about EU 
Citizens. 

 Query Q1 asks for EU citizens receiving an 
amount of income under €51K_. We do not need to 
access S1 due to constraint C1. 
 Query Q2 asks for asks for EU citizens receiving 
an amount of income above €59K_. We do not need to 
access S2 due to constraint C2. 
 Query Q3 asks for citizens living in both places S1, 
S2 (Italy, France). We can take the natural join or 
intersection of these two sources on the name attributes 
to compute answers. Notice that we cannot compute 
the answers in this way if constraint C3 does not hold. 

Some of constraints can be represented as source 
constraints. Each source constraint is defined on one data 
source only. A constraint for a data source is a set of 
conditions, such that for any projected database instance of 
source, these conditions must be satisfied by the tuples in 
the database. For example the first two constraints (C1 C2) 
in the EU example can be represented as source constraints. 
In particular, for C1, the condition “~Income60K”should be 
satisfied by any instance of source S1, not just for a 
particular instance. 

Constraints-Repository

Intuitionistic-Fuzzy Relational  Data Model

User Request

Binder

Probabilistic Data Data Source with

Null values

Constraints-Repository

Intuitionistic-Fuzzy Relational  Data Model

User Request

Binder

Probabilistic Data Data Source with

Null values



 

 The same implies for C2 with respect to source S2.  
What about C3? Can we represent the constraint C3 as 

two source constraints (C3’, C3’’):  
 C3’ for S1: Name(Lives, ~Income) 
 C3’’ for S2: Name(Lives, ~Income) 

However, they do not correctly describe C3. These two 
source functional dependencies do not disallow the case 
where the two sources have two same persons that use 
different identifiers (i.e. Names). Clearly this case is not 
allowed by C3. As a consequence, some queries may not be 
answered properly. Thus, if we replace C3 with these two 
source constraints, we cannot take the natural join of S1 and 
S2 to answer the query Q3. The limitations of source 
constraints show the need to use global constraints. 

 A global constraint is a condition that should be 
satisfied by any instance, for all data sources participating 
in the mediator system. Global constraints can be 
introduced during the design phase of a mediator system. 
They are used to capture the semantics of the application 
domain, no matter how many sources are in the system. 

At this point we thought that it would be useful to have a 
tool to check and simulate the interaction between the 
constraints repository and the relational data sources that 
participate in the Mediator. We construct a Generalised 
network that simulates the interaction between the local 
sources and the constraints repository in real time. This will 
allow the activation of the constraints related to Mediation 
architecture as well as the update of data and their 
constraints. 

VIII. SIMULATION OF THE INTUITIONISITIC FUZZY 

MEDIATOR 

Generalized Nets (GNs, see [16]) are extensions of Petri 
nets and Petri net modifications and extensions. GN-
transitions can have two temporal components (moment of 
transition firing and its duration), an index matrices (see 
[17]) - its (i,j)-th element is a predicate that determines 
whether a token from the i-th input place can be transferred 
to the j-th output place and other components. GNs can 
have three global time-components: moment of GN-
activation, elementary time-step and duration of the GN-
functioning. The GN-tokens enter the GN with initial 
characteristics and at the time of their transfer in the net 
they obtain next (current and final) characteristics. When a 
given GN has only a part of its components, it is called a 
reduced GN. A large number of operations, relations and 
operators (global, local, dynamical, and others) are defined 
over the GNs. Below we use a reduced GN with a part of 
the above described components: without the temporal 
ones. In [18] a bibliography on the publications and a short 
review of the results in GN theory are given. 

The generalized net depicted on “Fig.8.1” represents 
the functionality of an intuitionistic fuzzy mediator dealing 
with multiple loacal relational sources. The mediator may 
use data, retrieved from the DBs, to apply a particular Data 
Mining Technique (DMT) in order to extract useful implicit 
information, background knowledge. The data sources may 
utilise various kinds of data uncertainty models, which 
makes it necessary to use a mediator that provides a 
uniform way to integrate the sources. 
 

 

 
 

Fig.8.1. Generalized Net for the  Intuitionistic Fuzzy 
Mediator 

Description of the places 
L1: A new current request enters the GN  

L2: A new criterion enters the GN  

L3: The current request is presented with a canonical form  
L4: Contains a token which represents the criteria queue  
L5: A list of necessary DBs for the current request  
L6: Contains set of available DB tokens  
L7: Current DB request processing  
L8: Collection of all necessary DBs for the current request  
L9: Necessary information retrieved from DBs  

L10: DBs to return in L6 
L11: Processing of necessary DBs for the current request  
L12: Contains all DBs that aren’t used for a long time  
L13: A special token that will generate DBs  
L14: Answer to the request 
L15: A list of necessary DMTs for the current request  
L16: Contains set of available DMT tokens  
L17: Current DMT request processing  
L18: Collection of all necessary DMTs for the current 
request  
L19: Necessary information obtained by the means of DMT  
L20: DMTs to return in L16 
L21: Execution of necessary DMTs for the current request  
L22: Contains all DMTs that aren’t used for a long time  
L23: A special token that will generate DMTs  
L24: Current status of the mediator  

As a token (we will refer to it as “request token”) enters 
the GN through place L1, its characteristic carry a new 
request to the mediator. Meanwhile some criterion tokens 



 

may enter the GN through place L2 and the criteria they 
carry in their characteristics are inserted into the criteria 
queue stored in the characteristic of the token in place L4. 
After L1 the request token moves to L3 where it obtains a 
characteristic, which represents the canonical form of the 
request, considering some or all of the criteria from the 
characteristic of the token in L4. The predicate matrix for 
transition Z1 is the following: 
 

  L3 L4 

 L1 True False 

r1 = L2 False True 

 L4 False True 

 
Transition Z2 describes the interaction of the mediator 

with the DB sources. After L3, the request token moves 
unconditionally to L5, where the characteristic function 
considers the requested kinds of uncertainty and the status 
of the mediator (stored in the characteristic of the token in 
L24) to produce a list of necessary DBs for processing the 
request. When the data is retrieved from the necessary DBs 
(this process is described in transitions Z3 and Z4 below), 
the token appears in place L9 carrying the retrieved data in 
its characteristic. Afterwards the token moves either to L15, 
if it is necessary to apply a DMT over the retrieved data, or 
to L14 otherwise. The predicate matrix of transition Z2 is the 
following: 
 

  L5 L14 L15 L24 

 L3 True False False False 

r2 = L9 False W1 W1 True 

 L19 False True False False 

 L24 False False False True 

 
where:W1 = “DMTs need to be applied over the query 
results” 

In place L6 reside all available database tokens. These are 
tokens, the characteristics of which contain all the data in a 
database. The databases may have different kinds of value 
uncertainty. If a database hasn’t been used for a long time, 
the corresponding token moves from L6 to L12. When the 
creation of a new database is needed, the token in L13 splits 
and the newly created token moves to L6. 

After L5 the request token moves to place L7 where it 
stays until the data retrieval finishes. The database tokens 
needed for the current request move from L6 to L8. The 
predicate matrix for transition Z3 is the following: 
 

  L6 L7 L8 L12 L13 

 L6 W2  W3 False W2 W3 False 

r3 = L5 False True False False False 

 L10 True False False False False 

 L12 False False False True False 

 L13 False False False False True 

 
where: 
W2 = “the database is necessary for the current request” 
W3 = “the database hasn’t been used for a long time” 

Transition Z4 represents the process of working with the 
databases in order to process the current request. The 
request token stays in L7 until the processing of the request 
finishes. Meanwhile each of the database tokens moves 
from L8 to L11 where it loops while there is still work to do 
with it. Afterwards the database tokens shall return to place 
L6 through place L10. As soon as there are no more database 
tokens in L11, the processing is considered finished and the 
request token moves to place L9 where it obtains the 
retrieved data as new characteristic. The predicate matrix 
for transition Z4 is the following: 

 
  L9 L10 L11 

 L7 W4 False False 

r4 = L8 False False True 

 L11 False W5 W5 

where: 
 W4 = “no tokens in L11” 
 W5 = “no more work to do with the database” 

When the request token appears in place L9, its 
characteristic contain the result of retrieving data from the 
DB sources. If the request necessitates the application of 
some DMT, the token shall proceed to place L15, otherwise 
it exits the GN through L14. 

Transitions Z5 and Z6 are analogous to transitions Z3 and 
Z4 and describe the process of executing one or more 
DMTs according to the current request. Place L16 holds all 
available DMTs in the so called DTM tokens. If a DMT 
hasn’t been used for a long time, the corresponding token 
moves from L16 to L22. When a new DMT has to be 
introduced, the token in L23 splits and the newly created 
token moves to L16. 

After L15 the request token moves to place L17 where it 
stays until the DMT algorithm finishes its execution. The 
DMT tokens necessary for the current request are collected 
in place L18. The predicate matrix for transition Z5 is the 
following: 

 
  L16 L17 L18 L22 L23 

 L16 W6  W7 False W6 W7 False 

r5 = L15 False True False False False 

 L20 True False False False False 

 L22 False False False True False 

 L23 False False False False True 

 
where: 
W6 = “the DMT has to be used in the current request” 
W7 = “the DMT hasn’t been used for a long time” 

 
Transition Z6 represents the process of executing the 

DMTs needed for the current request. The request token 
stays in L17 until the processing of the DMTs finishes. 
Meanwhile each of the DMT tokens is being processed in 
place L21. Afterwards the database tokens shall return to 
place L16 through place L20. As soon as there are no more 
database tokens in L21, the processing is considered finished 
and the request token moves to place L19 where it obtains 
the result of the execution of the requested DMTs over the 



 

retrieved data as new characteristic. The predicate matrix 
for transition Z6 is the following: 

 
  L19 L20 L21 

 L17 W8 False False 

r6 = L18 False False True 

 L21 False W9 W9 

where: 
 W8 = “no tokens in L21” 
 W9 = “no more work to do with the DMT” 
 

After L19, the request token exits the GN through place 
L14. 

IX. CONCLUSIONS 

The “Intuitionistic Fuzzy Mediator” can be implemented 
with the aid of Intuitionistic Fuzzy PostgreSQL (IFPG), 
which supplements the popular open-source RDBMS 
PostgreSQL with the functionality of an Intuitionistic fuzzy 
relational database management system (IFRDBMS). IFPG 
defines an extension of the SQL (IFSQL) in order to 
manage with Intuitionistic fuzzy queries and relations. An 
IFPG user has the ability to define its own predicates, i.e. 
functions that return Intuitionistic fuzzy Boolean (IFB) 
value. This is a composite value with two components - 
degree of truth and degree of falsity. The predicates may be 
used directly in the WHERE clause even in combination 
with ordinary Boolean expressions. The IFRDBMS then 
applies the selection operation using the Intuitionistic fuzzy 
condition specified in the WHERE clause. Also, IFPG 
applies the Cartesian product operation over the relations 
participating in the FROM clause. 

IFPG provides the ability to choose the type of value 
uncertainty in the database by supporting probabilistic and 
fuzzy database types. According to the database type 
chosen by the user, IFPG applies the corresponding 
variants of the selection and the Cartesian product 
operations, as well as the logical OR and logical AND 
operations. One can find more for IFPG or download it at 
http://pgfoundry.org/projects/ifpg. 
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