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Abstract. Let m(n, r) denote the minimal number of edges in an n-uniform hypergraph which
is not r-colorable. It is known that for a fixed n one has cnrn < m(n, r) < Cnrn. We prove that
for any fixed n the sequence ar := m(n, r)/rn has a limit, which was conjectured by Alon. We also
prove the list colorings analogue of this statement.
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1. Introduction. A hypergraph H = (V,E) consists of a finite set of vertices
V and a family E of the subsets of V , which are called edges. A hypergraph is called
n-uniform if every edge has size n. A vertex r-coloring of a hypergraph H = (V,E) is
a map from V to \{ 1, . . . , r\} . A coloring is proper if there is no monochromatic edge,
i.e., any edge e \in E contains two vertices of different color. The chromatic number
of a hypergraph H is the smallest number \chi (H) such that there exists a proper
\chi (H)-coloring of H. Let m(n, r) be the minimal number of edges in an n-uniform
hypergraph with chromatic number more than r.

We are interested in the case when n is much smaller than r (see [9, 8] for the
general case and related problems).

1.1. Upper bounds. For n = 2 (i.e., for graphs) the problem of finding m(n, r)
is trivial. Indeed, m(2, r) \geq 

\bigl( 
r+1
2

\bigr) 
since any coloring of a given G in \chi (G) colors

should contain an edge between every pair of colors, otherwise one can join these two
colors, so G can be properly colored by \chi (G) - 1 colors, which is absurd. On the other
hand, the complete graph on r + 1 vertices gives an example.

Erd\H os conjectured [4] that

m(n, r) =

\biggl( 
(n - 1)r + 1

n

\biggr) 
for r > r0(n), that is achieved by the complete hypergraph on (n - 1)r + 1 vertices.

However Alon [2] disproved the conjecture for n large enough by using the estimate

m(n, r) \leqslant min
a\geq 0

T (r(n+ a - 1) + 1, n+ a, n),

where the Tur\'an number T (v, k, n) is the smallest number of edges in an n-uniform
hypergraph on v vertices such that every induced subgraph on k vertices contains an
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MAXIMAL HYPERGRAPH CHROMATIC NUMBER IS REGULAR 1327

edge. Different bounds on Tur\'an numbers beat the complete n-uniform hypergraph
construction when n > 3 (see [10] for a survey). So the case n = 3 is in some sense
the most interesting.

Using the same inequality with better bounds on Tur\'an numbers, Akolzin and
Shabanov [1] showed that

m(n, r) < Cn3 lnn \cdot rn.

Alon [2] conjectured that for a fixed n the quantity m(n, r) has regular behavior,
i.e., the sequence m(n, r)/rn has a limit.

1.2. Lower bounds. There are several ways to show an inequality of type
m(n, r) > c(n)rn. Alon [2] uses an alteration-type trick to get the first bound of
such type:

m(n, r) \geq (n - 1)
\Bigl\lceil r
n

\Bigr\rceil \biggl\lfloor n - 1

n
r

\biggr\rfloor n - 1

.

Pluh\'ar's random greedy approach [7] gives the bound

m(n, r) > c
\surd 
nrn

as noted in [9]. Finally, combining two previous arguments Akolzin and Shabanov [1]
proved that

m(n, r) > c
n

lnn
rn.

1.3. List colorings. Let H = (V,E) be a hypergraph and let \{ L(v)\} , v \in V (H),
be sets; we refer to these sets as lists. A list coloring of H is an assignment of a color
from L(v) to each v \in V (H); a list coloring is proper if there is no monochromatic
edge. The list chromatic number of a hypergraph H is the minimal k such that for
any assignment of lists L(v), each of size k, there exists a proper list coloring. Define
the quantity mc(n, r) as the minimal number of edges of an n-uniform hypergraph
with list chromatic number greater than r.

By definition, mc(n, r) \leq m(n, r), and this is the only known upper bound on
mc(n, r) (also, it is not known whether mc(n, r) = m(n, r) for all n, r).

It was recently proved by B. Sudakov (unpublished) that there is c > 0 such that

mc(n, r) \geq crn

for all n, r > r0(n).
Structure of the paper. Section 2 contains the proof of the Alon conjecture that

the sequence ar := m(n, r)/rn has a limit. Section 3 proves the same result for
mc(n, r). The final section consists of open questions.

2. Colorings. Fix n > 1 and denote by f(N) the maximal possible chromatic
number of an n-uniform hypergraph with N edges, in particular, f(0) = 1. The
function f : \BbbZ \geqslant 0 \rightarrow \BbbR \geqslant 1 nonstrictly increases and satisfies

m(n, r) = min\{ N : f(N) > r\} .

Therefore m(n, r) \sim Crn if and only if f(N) \sim (N/C)1/n.
Here is the crucial lemma.

Lemma 1. For any N > 0 and any positive integer p we have

(2.1) f(N) \leqslant max
a1+a2+\cdot \cdot \cdot +ap\leqslant N/pn - 1

f(a1) + f(a2) + \cdot \cdot \cdot + f(ap).
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1328 DANILA CHERKASHIN AND FEDOR PETROV

Proof. Let H = (V,E) be an n-uniform hypergraph with | E| = N .
Choose the auxiliary colors \eta (v) \in \{ 1, 2, . . . , p\} at random uniformly and inde-

pendently and denote Vi = \eta  - 1(\{ i\} ). Let Hi = (Vi, Ei) be the hypergraph induced
by H on Vi. The expectation of

\sum p
i=1 | Ei| equals | E| /pn - 1 because each edge of H

belongs to some Hi with the same probability 1/pn - 1. Therefore there exists a certain
auxiliary coloring \eta such that \sum 

| Ei| \leqslant N/pn - 1.

Fix such a coloring \eta and properly color each Hi using f(| Ei| ) colors, using disjoint
sets of colors for different i. In total we use

\sum 
f(| Ei| ) colors and H is colored properly.

Since H is an arbitrary n-uniform hypergraph with N edges the proof is com-
pleted.

The rest of the proof is completely analytical; all combinatorics are in Lemma 1.
Namely, the following general statement holds.

Theorem 1. Assume that n > 1 is a fixed integer, N0 > 0 is a constant, f :
\BbbZ \geqslant 0 \rightarrow \BbbR >0 is a function satisfying (2.1) for all N \geqslant N0, and p \in \{ 2, 3\} . Then

lim
x\rightarrow \infty 

f(x)

x1/n

exists and is finite.

To prove Theorem 1 we use the following lemma.

Lemma 2. Denote cn = \lceil (1  - 21/n - 1) - n\rceil . Under the conditions of Theorem 1
for any M \geqslant N0 the inequality

f(N) \leqslant N1/n \cdot max
M\leqslant a<cnM

f(a) \cdot a - 1/n

holds for all N \geqslant M .

Proof. Do an induction on N \in \{ M,M + 1, . . .\} . The base N < cnM is clear.
The induction steps from M,M + 1, . . . , N  - 1 to N assuming N \geqslant cnM .
Denote

\lambda = max
M\leqslant a<cnM

f(a) \cdot a - 1/n.

By (2.1) with p = 2 we have f(N) \leqslant f(a) + f(b) for certain nonnegative integers a, b
such that a + b \leqslant N/2n - 1. If min(a, b) \geqslant M , then by the induction proposition we
get

f(a) + f(b) \leqslant \lambda (a1/n + b1/n) \leqslant 2\lambda 

\biggl( 
a+ b

2

\biggr) 1/n

\leqslant \lambda N1/n,

as desired. If, for example, a < M , we get

f(a) + f(b) \leqslant f(M) + f(b) \leqslant \lambda 

\Biggl( 
M1/n +

\biggl( 
N

2n - 1

\biggr) 1/n
\Biggr) 

\leqslant \lambda N1/n

provided that N \geqslant cnM .
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Lemma 2 in particular implies that the maxima M(k) of the function g(x) :=
f(x)x - 1/n over the segments [ckn, c

k+1
n ] eventually (for k \geqslant k0) do not increase. Let

\alpha 0 denote the limit of M(k); it is also the upper limit of the function g.
Fix p in Lemma 1.
Further we need the following standard technical proposition.

Proposition 1. For any \theta > 1 there exists \delta > 0 such that for all nonnegative
real numbers x1, . . . , xp with the arithmetic mean x0 = (x1+ \cdot \cdot \cdot +xp)/p the inequality

p\sum 
i=1

x
1/n
i \geqslant (p - \delta ) \cdot x1/n

0

yields xi \in [x0/\theta , x0 \cdot \theta ].
Proof. The case x0 = 0 is clear. If x0 > 0, denote yi = xi/x0; then

\sum 
yi = p and\sum 

y
1/n
i \geqslant p - \delta . Let \ell (x) = 1+(x - 1)/n be a tangent line to the graph of the function

x1/n at point (1, 1). We have
\sum 

\ell (yi) = p. By concavity we have y1/n \leqslant \ell (y) with
equality only at y = 1, and for given \theta > 1 there exists \delta > 0 such that \ell (y) - y1/n > \delta 
for y /\in [1/\theta , \theta ]. Therefore

\delta \geqslant p - 
p\sum 

i=1

y
1/n
i =

p\sum 
i=1

\Bigl( 
\ell (yi) - y

1/p
i

\Bigr) 
,

all summands \ell (yi)  - y
1/p
i belong to [0, \delta ], and therefore yi \in [1/\theta , \theta ] and xi \in 

[x0/\theta , x0\theta ].

We proceed with the proof of Theorem 1.
LetN be a large integer with g(N) = \alpha 0+o(1). In other words, N grows to infinity

along such a subsequence that g(N) converges to \alpha 0. Find for this N the numbers
a1, . . . , ap as in Lemma 1. Note that for any \varepsilon > 0 there exists C > 0 such that
f(a) \leqslant (\alpha 0+\varepsilon )a1/n+C for all integers a \geqslant 0. It follows that f(a) \leqslant \alpha 0a

1/n+o(N1/n)
uniformly for all a \leqslant N . Therefore

\alpha 0 \cdot p \cdot 
\biggl( 
a1 + \cdot \cdot \cdot + ap

p

\biggr) 1/n

\leqslant \alpha 0N
1/n = f(N) + o(N1/n) \leqslant \alpha 0

p\sum 
i=1

a
1/n
i + o(N1/n).

So all inequalities here are equalities with accuracy o(N1/n). In particular
\sum 

ai =
N/pn - 1 + o(N) and all ai are asymptotically equal to N/pn + o(N) by Proposition 1.
Also f(ai) = \alpha 0N

1/n/p+ o(N1/n) for all i = 1, . . . , p. Equivalently, g(ai) = \alpha 0 + o(1)
for all i = 1, . . . , p.

Consider the numbers of the form 2nx3ny with nonnegative integer x, y; call them
appropriate numbers.

So we proved that for largeN with g(N) = \alpha 0+o(1) there exists \~N = N/pn+o(N)
with g( \~N) = \alpha 0 + o(1). Consecutively using this for p \in \{ 2, 3\} we conclude that
whenever g(N) = \alpha 0 + o(1) and R is appropriate, then there exists a = N/R+ o(N)
such that g(a) = \alpha 0 + o(1).

The ratio of two consecutive appropriate numbers tends to 1 by the basic Dirichlet--
Kronecker Diophantine approximation lemma. Fix \rho > 1 and choose appropriate
numbers r1 < r2 < \cdot \cdot \cdot < rm so that ri+1/ri < \rho , but r1 < cSn , rm > cS+10

n for certain
positive integer S.

So we may find numbers Ni = N/ri + o(N) such that g(Ni) = \alpha 0 + o(1) for all
i = 1, 2, . . . ,m.
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1330 DANILA CHERKASHIN AND FEDOR PETROV

For large k choose N \in [ckn, c
k+1
n ] with maximal possible value g(N); we have

g(N) = \alpha 0 + o(1). For any integer number x in the segment [ck - S - 2
n , ck - S - 1

n ] choose
minimal i such that x > Ni. Then x \leqslant Ni \cdot \rho and

f(x) \geqslant f(Ni) = (\alpha 0 + o(1))N
1/n
i \geqslant (\alpha 0 + o(1))(x/\rho )1/n.

Therefore
lim inf f(x)x - 1/n \geqslant \alpha 0\rho 

 - 1/n,

and since \rho > 1 was arbitrary, the lower limit of the function g(x) = f(x)x - 1/n equals
its upper limit \alpha 0. This completes the proof of Theorem 1.

Theorem 1 and Lemma 1 immediately yield the following.

Theorem 2. For fixed n, the sequence m(n, r)/rn has a limit.

3. List colorings. Here we prove the choice version of Theorem 2.

Theorem 3. For fixed integer n > 1 the sequence mc(n, r)/r
n has a finite positive

limit.

Denote by fc(N) the maximal possible list chromatic number of an n-uniform
hypergraph with N edges. Since the list chromatic number is always not less than
the chromatic number, we get

(3.1) fc(N) \geqslant \delta N1/n

for certain \delta > 0 depending only on n. Theorem 3 is equivalent to the existence of a
finite limit of fc(N)/N1/n.

We use the following Chernoff-type concentration inequality for the sum of inde-
pendent \{ 0, 1\} -valued random variables.

Proposition 2. If n is a positive integer and \xi 1, . . . , \xi n are independent random
variables taking values in \{ 0, 1\} , A is the expectation of S :=

\sum n
i=1 \xi i, T \in [0, A], then

prob\{ S \leqslant A - T\} \leqslant e - 
T2

2A .

See the proof, for example, in [6, Theorem 4.5].
We need the following technical statements.

Lemma 3. Assume that n > 1 is a fixed integer; f : \BbbZ \geqslant 0 \rightarrow \BbbR >0 is a function
satisfying

(3.2) f(x) \leqslant max
a+b\leqslant x/2n - 1

f(a) + f(b) +M(f(a)\alpha + f(b)\alpha ) \forall x \geqslant x0

for certain constants x0 > 0, \alpha \in (0, 1), M > 0. Then f(x) = O(x1/n) for large x.

Proof. We recursively define the increasing sequence h0 \leqslant h1 \leqslant \cdot \cdot \cdot of positive
numbers such that

(3.3) f(x) \leqslant hk \cdot x1/n for 1 \leqslant x \leqslant x0 \cdot 2(n - 1)k.

Choose h0 large enough (so that h0 > 1, (3.3) for k = 0 is satisfied, and also something
else, to be specified later, holds). Assume that k \geqslant 1 and (3.3) holds for 0, 1, . . . , k - 1.
Choose x \in (x0 \cdot 2(n - 1)(k - 1), x0 \cdot 2(n - 1)k]. This x satisfies (3.2). Fix corresponding
a, b and consider two cases: either min(a, b) = 0 or both a, b are positive.

D
ow

nl
oa

de
d 

07
/2

9/
20

 to
 1

50
.2

16
.1

32
.4

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MAXIMAL HYPERGRAPH CHROMATIC NUMBER IS REGULAR 1331

In the first case we get

(3.4) f(x) \leqslant hk - 1(2
1 - nx)1/n +Mh\alpha 

k - 1(2
1 - nx)\alpha /n + f(0) +M(f(0))\alpha .

If hk - 1 is large enough, the right-hand side does not exceed hk - 1x
1/n. This may be

guaranteed by choosing large enough h0.
In the second case both a and b satisfy the induction hyphothesis and we get

(3.5)
f(x) \leqslant hk - 1(a

1/n + b1/n) + 2Mh\alpha 
k - 1(2

1 - nx)\alpha /n \leqslant hk - 1x
1/n + 2Mh\alpha 

k - 1(2
1 - nx)\alpha /n.

The right-hand side of (3.5) does not exceed

hk - 1x
1/n
\Bigl( 
1 + 2Mx(\alpha  - 1)/n

\Bigr) 
.

Since x \geqslant x0 \cdot 2(n - 1)(k - 1), it allows us to choose

hk = hk - 1

\Bigl( 
1 + 2Mx

(\alpha  - 1)/n
0 \cdot 2(\alpha  - 1)(k - 1)(n - 1)/n

\Bigr) 
and (3.3) for k holds. The sequence hk obviously increases and the sequence hk/hk - 1 - 
1 decays exponentially. Thus the infinite product of hk/hk - 1 converges, i.e., hk is
bounded. The lemma is proved.

Lemma 4. Assume that n > 1 is a fixed integer, \alpha \in (0, 1), M > 0 and \delta > 0 are
fixed constants. Then there exist constants C > 0 and x0 > 0 such that for p = 2 and
p = 3 we have

(3.6) \delta 

\Biggl( 
x1/n  - 

p\sum 
i=1

a
1/n
i

\Biggr) 
\geqslant C

\Biggl( 
x\alpha /n  - 

p\sum 
i=1

a
\alpha /n
i

\Biggr) 
+Mx\alpha /n

for every x \geqslant x0 and ai \geqslant 0 such that

p\sum 
i=1

ai \leqslant p1 - n \cdot x.

Proof. The left-hand side of (3.6) is always nonnegative by the Jensen inequality
for the concave function t1/n. Note that if ai = p - nx for all i = 1, . . . , p, then

x\alpha /n  - 
\sum p

i=1 a
\alpha /n
i = x\alpha /n(1 - p1 - \alpha ) < 0. Fix C such that C(21 - \alpha  - 1) > M .

Then we may fix \varepsilon > 0 such that whenever | ai/x  - p - n| < \varepsilon for all i = 1, . . . , p,
the right-hand side of (3.6) is nonpositive and therefore (3.6) holds in this case.

By Proposition 1, otherwise there exists \varepsilon 1 > 0 such that left-hand side of (3.6)
is not less than \varepsilon 1x

1/n. It implies that (3.6) holds in this case for large enough x.

Corollary 1. Assume that n > 1 is a fixed integer, f : \BbbZ \geqslant 0 \rightarrow \BbbR >0 is a function
satisfying f(x) \geqslant \delta x1/n for all x \geqslant 0, and

(3.7) f(x) \leqslant max
a1+\cdot \cdot \cdot +ap\leqslant x/pn - 1

\sum 
f(ai) +Mx\alpha /n \forall x \geqslant x0

for p \in \{ 2, 3\} and certain constants x0 > 0, \alpha \in (0, 1), M > 0. Then there exist
C > 0 and x1 > 0 such that the function \~f(x) := f(x) + Cx\alpha /n  - \delta x1/n satisfies

(3.8) \~f(x) \leqslant max
a1+\cdot \cdot \cdot +ap\leqslant x/pn - 1

\sum 
\~f(ai) \forall x \geqslant x1.
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Proof. Inequality (3.8) is obtained by subtracting (3.6) from (3.7).

Now we give a recursive estimate for the maximal possible list chromatic number for
an n-uniform hypergraph with prescribed number of edges.

Lemma 5. There exists a constant M > 0 such that for p \in \{ 2, 3\} and all non-
negative integers N we have

fc(N) \leqslant max
a1+\cdot \cdot \cdot +ap\leqslant N/pn - 1

p\sum 
i=1

fc(ai) +M(fc(ai))
2/3.

Proof. Let H = (V,E) be an n-uniform hypergraph with | E| = N . Assume that
any vertex v \in V edge has a list L(v) consisting of

\sum p
i=1 fc(ai)+ ci admissible colors,

where

ci := \lfloor M(fc(ai))
2/3\rfloor .

It suffices to prove that H has a proper list coloring with these lists.
As in the proof of Lemma 1, we partition V onto disjoints subsets Vi so that

the corresponding induced subgraphs Hi = (Vi, Ei) of H satisfy
\sum 

| Ei| \leqslant N/pn - 1.
Denote ai = | Ei| .

For any color \alpha choose \xi (\alpha ) \in \{ 1, . . . , p\} independently at random with proba-
bility of \{ \xi (\alpha ) = i\} proportional to fc(ai) + ci. Call an edge e \in E nice if it either
contains the vertices from different Vi's, or e \in Ei and | L(v) \cap \xi  - 1(i)| \geqslant fc(ai) for all
n vertices v \in e. Due to Proposition 2 the probability that an edge e \in Ei is not nice
does not exceed

n exp

\biggl( 
 - c2i
2(fc(ai) + ci)

\biggr) 
(the multiple n comes from the number of vertices in e and applying the union bound).

If we permanently denote fc(a) = x for nonnegative integer a, y = \lfloor Mx2/3\rfloor , then
using the lower bound (3.1) and assuming M > 100 we conclude that

y2

2(y + x)
\geqslant 

M2x4/3

10max(x,Mx2/3)
=

1

10
min

\Bigl( 
M2x1/3,Mx2/3

\Bigr) 
\geqslant 

Mx1/3

10
\geqslant 

M\delta 1/3a1/(3n)

10
,

and

a exp

\biggl( 
 - y2

2(x+ y)

\biggr) 
< 1/n

for all a = 0, 1, . . . provided that the constant M is chosen large enough.
Fix such a value of M , then

n

p\sum 
i=1

ai exp

\biggl( 
 - c2i
2(fc(ai) + ci)

\biggr) 
< 1

and with positive probability all edges are nice. This allows us to properly color each
Hi using the colors only from \xi  - 1(i) and get a proper coloring of H.

Now Lemmas 3 and 5 for p = 2 yield fc(x) = O(x1/n). Therefore fc satisfies
the conditions of Corollary 1 for \alpha = 2/3 and certain M > 0 (and x0 = 1). The
corresponding function \~fc satisfies the conditions of Theorem 1, hence fc(x)/x

1/n has
a finite limit and Theorem 3 is proved.
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4. Further questions.
\bullet First, recall that the Erd\H os conjecture is still open in the case n = 3. The

survey and the best current lower bound are given in [3].
\bullet A hypergraph is called simple if every pair of edges shares at most 1 vertex.
Let s(n, r) be the minimal number of edges in a simple n-graph which has no
proper r-coloring. It is known [5] that for a fixed n one has

cr2n - 2 ln r \leqslant s(n, r) \leqslant Cr2n - 2 ln r.

Unfortunately, we cannot show regularity of s(n, r).
\bullet Also it is natural to ask if m(n, r) is regular on the first variable, i.e., does

lim
n\rightarrow \infty 

m(n+ 1, r)

m(n, r)
= r?
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