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Записки научных
семинаров ПОМИ

Том 488, 2019 г.

D. D. Cherkashin

ON THE ERDŐS–HAJNAL PROBLEM IN THE CASE OF

3-GRAPHS

Abstract. Let m(n, r) denote the minimal number of edges in an
n-uniform hypergraph which is not r-colorable. For the broad history
of the problem see [10]. It is known [4] that for a fixed n the sequence

m(n, r)

rn

has a limit.
The only trivial case is n = 2 in which m(2, r) =

(

r+1

2

)

. In this
note we focus on the case n = 3. First, we compare the existing
methods in this case and then improve the lower bound.

§1. Introduction

A hypergraph H = (V,E) consists of a finite set of vertices V and a
family E of the subsets of V , which are called edges. A hypergraph is called
n-uniform if every edge has size n. A vertex r-coloring of a hypergraph
H = (V,E) is a map from V to {1, . . . , r}. A coloring is proper if there
are no monochromatic edges, i.e., any edge e ∈ E contains two vertices of
different color. The chromatic number of a hypergraph H is the smallest
number χ(H) such that there exists a proper χ(H)-coloring of H . Let
m(n, r) be the minimal number of edges in an n-uniform hypergraph with
chromatic number more than r.

Erdős and Hajnal [7] introduced problems on determining m(n, r) and
related quantities. We are interested in the case when n is much smaller
than r (see [10] for general case and related problems).

1.1. Upper bounds. Erdős conjectured [6] that

m(n, r) =

(

(n− 1)r + 1

n

)

,

for r > r0(n), that is achieved on the complete hypergraph.
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However Alon [3] disproved the conjecture by using the estimate

m(n, r) < min
a>0

T (r(n+ a− 1) + 1, n+ a, n),

where the Turán number T (v, k, n) is the smallest number of edges in an
n-uniform hypergraph on v vertices such that every induced subgraph on
k vertices contains an edge. Different bounds on Turán numbers refine the
complete hypergraph construction when n > 3 (see [11] for a survey). So
the case n = 3 is in some sense the most interesting.

Also note, that using the same inequality with better bounds on Turán
numbers Akolzin and Shabanov [2] showed that

m(n, r) < Cn3 lnn · rn.
Alon conjectured that the sequence m(n, r)/rn has a limit which was

proved by Cherkashin and Petrov [4]. Denote the corresponding limit by
Ln. In this paper we are interested in estimates on L3. The best known
upper bound follows from the complete hypergraph:

L3 6
4

3
.

1.2. Lower bounds. There are several ways to show an inequality of type
m(n, r) > c(n)rn (i.e. Ln > c(n)). Note that Erdős conjecture implies in
particular that

Ln =
(n− 1)n

n!
.

Alon [3] suggested to color vertices of an n-uniform hypergraph in a < r
colors uniformly and independently, and then recolor a vertex in every
monochromatic edge in unused color. The expected number of monochro-
matic edges is

|E| · a1−n.

Note that we have r − a remaining colors, and we can color n − 1 ver-
tices in each unused color such that no new monochromatic edge appears.
Summing up, if

|E| < an−1(r − a)(n− 1)

then a hypergraph H = (V,E) has a proper r-coloring. Substituting a =
⌊

n−1
n r

⌋

, we get

m(n, r) > (n− 1)
⌈ r

n

⌉

⌊

n− 1

n
r

⌋n−1

.
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This method gives L3 > 8/27 > 0.296.
Another way is due to Pluhár [9]. He introduced the following useful

notion. A sequence of edges a1, . . . , ar is an r-chain if |ai ∩ aj | = 1 if
|i − j| = 1 and ai ∩ aj = ∅ otherwise; it is an ordered r-chain if i < j
implies that every vertex of ai is not bigger than any vertex of aj (with
respect to a certain fixed linear ordering on V ).

Pluhár’s theorem states that existence of an order on V without ordered
r-chains is equivalent to r-colorability of H = (V,E). Let us prove a lower
bound on m(n, r) via this theorem. Consider a random order on the vertex
set. Note that the probability of an r-chain to be ordered is

[(n− 1)!]2[(n− 2)!]r−2

((n− 1)r + 1)!
.

From the other hand, the number of r-chains is at most 2|E|r/r! since
every set of r edges generates at most 2 chains. So if

2
|E|r
r!

[(n− 1)!]2[(n− 2)!]r−2

((n− 1)r + 1)!
< 1,

then we have a proper r-coloring of H . After taking r-root and some cal-
culations we have

m(n, r) > c
√
nrn,

and in particular L3 > 4/e3 > 0.199.
Combining two previous arguments with Cherkashin–Kozik approach [5]

Akolzin and Shabanov [2] proved that

m(n, r) > c
n

lnn
rn,

without explicit bounds on c. We show that this method gives the bound
L3 > 0.205 in Section 3.

Cherkashin and Petrov [4] suggested an approach, based on the evalua-
tion of the inverse function, to show that the sequence m(n, r)/rn has
a limit. Denote by f(N) the maximal possible chromatic number of an
n-uniform hypergraph with N edges. Also f(0) = 1 by agreement. The
function f non-strictly increases and satisfies

m(n, r) = min{N : f(N) > r}.

Therefore m(n, r) ∼ Crn if and only if f(N) ∼ (N/C)1/n. The following
lemmas were proved in [4].
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Lemma 1. For any N > 0 and any positive integer p we have

f(N) 6 max
a1+a2+···+ap6N/pn−1

f(a1) + f(a2) + · · ·+ f(ap).

Lemma 2. Denote cn = ⌈(1− 21/n−1)−n⌉. For any M > 0 the inequality

f(N) 6 N1/n · max
M6a<cnM

f(a) · a−1/n

holds for all N > M .

It is known that f(0) = 1, f(1) = . . . = f(6) = 2, f(7) = . . . = f(26) =
3 (see [1]). Lemmas 1, 2 and computer calculations were used to get

L3 > 0.324.

The contribution of the paper is the following theorem, which is proved
by refining Pluhár approach via inducibility arguments.

Theorem 1.

L3 >
4

e2
> 0.54.

Structure of the paper. In Section 2 we show how to apply inducibility
to the chain argument and prove Theorem 1. In Section 3 we find the
constant in Akolzin–Shabanov theorem for n = 3 and show that even if we
apply Theorem 2 to the corresponding part of the proof, the constant will
be still worse than in Theorem 1.

§2. Inducibility tool

Theorem 2. Suppose H = (V,E) is a hypergraph. Then it has at most

|E|
( |E| − 1

r − 1

)r−1

r-chains.

We need a notion of inducibility. Denote by I(G,H) the number of
induced subgraphs of G, isomorphic to H . Let Pr be a graph with r vertices
and r− 1 edges which form a simple path. The following basic bound was
proved by Pippenger and Golumbic.

Lemma 3 (Pippenger–Golumbic [8]). Let G be a graph on N vertices.
Then

I(G,Pr) 6
N

2

(

N − 1

r − 1

)r−1

.



172 D. D. CHERKASHIN

It turns out that the bound is close to optimal. The following example
is about e2/2 times worse than the bound in Lemma 3 (we assume that r
is fixed and n tends to infinity).

Example 1. We construct the sequence of graphs Gk inductively. Let G1

be a copy of Cr+1. Define an auxiliary graph Fk = (Vk, Ek) (which is the
(r + 1)k−1-blow-up of Cr+1):

Vk := W 1
k ⊔W 2

k ⊔ · · · ⊔W r+1
k

with |W i
k| = (r+1)k−1 for all i; edges connect all the pairs of vertices from

parts with adjacent indices (i is adjacent to i+1 modulo r+1, in particular
r+1 is adjacent to 1). Then, Gk is obtained from Fk by drawing the graph
Gk−1 on each vertex set W i

k.
Now consider the graph Gk on N = (r + 1)k vertices. Note that

I(Gk, Pr) = I(Fk, Pr) + (r + 1)I(Gk−1, Pr)

= (r + 1)

(

N

r + 1

)r

+ (r + 1)I(Gk−1, Pr).

Proof of Lemma 3. Let X(q, l) denote the largest possible number of
ways of sequentially choosing q objects w0, w1, . . . , wq−1 from among l
objects, subject to rules whereby the set of objects that are eligible to be
chosen as wi depends only on the previous choices w0, w1, . . . , wi−1, and
whereby no object that is eligible to be chosen as wi will be eligible to be
chosen as wj for any i+1 6 j 6 q−1. Also, define X(0, l) = 1. If q > 0, let
m denote the number of objects eligible to be chosen as w0. For any choice
of w0, the remaining q−1 objects can be chosen in at most X(q−1, l−m)
ways. Thus

X(q, l) 6 max
16m6l

mX(q − 1, l −m).

From these relations, we obtain

X(q, l) 6

(

l

q

)q

(1)

by induction on q: the base q = 1 is obvious. To prove the step it is enough
to maximize the right-hand side of

X(q, l) 6 max
16m6l

m

(

l −m

q − 1

)q−1

.

Taking the derivative with respect to m, we get the maximum at m = l/q,
and we are done.
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Now we are ready to prove the initial statement. Fix the first vertex
v0. The number of ways to continue an induced r-path is at most X(r −
1, N − 1). There are N ways to choose the first vertex and every copy of
induced Pr is counted twice. Substitution of (1) finishes the proof. �

Proof of Theorem 2. Consider an auxiliary graph G = (E,F ) with ver-
tex set being equal to the edge set of H and edges connecting pairs of
vertices which intersect (as hyperedges) on exactly one vertex.

Note that every r-chain forms induced Pr in G (note that the reverse
consequence is wrong, because a non-edge in G can correspond to the pair
of hyperedges with large intersection, which is impossible in r-chain). Every
copy of Pr is formed by at most two different r-chains, so the number of
r-chains is at most 2I(G,Pr). Hence, Lemma 3 finishes the proof. �

Proof of Theorem 1. Let us try to color H via Pluhár’s greedy algo-
rithm. Recall that the probability of an r-chain to be ordered is

[(n− 1)!]2[(n− 2)!]r−2

((n− 1)r + 1)!
=

4

(2r + 1)!
.

Using Theorem 2 we get that if

|E|(|E| − 1)r−1

(r − 1)r−1

4

(2r + 1)!
< 1,

then hypergraph is r-colorable. Summing up,

L3 > lim
r→∞

r

√

(2r + 1)!(r − 1)r−1

4

1

r3
=

4

e2
. �

§3. Analysis of the Akolzin–Shabanov proof

We rewrite the proof from [2] with optimization in the case n = 3.
First, for every vertex v introduce the weight w(v) as randomly (accor-

dingly to the uniform distribution and independently) chosen number from
[0, 1]. Fix parameters p ∈ [0, 1], a < r. An edge e is called bad if

max
v∈e

w(v) −min
v∈e

w(v) 6
1− p

a
;

otherwise it is called good.
The coloring algorithm is the following. First we color a (random) subhy-

pergraph, consisting of all good edges, in a colors via Pluhár
approach; then we color (or recolor) some vertices from bad edges in un-
used r − a colors. If Pluhár approach succeeds (i.e. there are no ordered
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a-chains) and we have at most (n−1)(r−a) bad edges, then the algorithm
return a proper r-coloring. Let us evaluate the probability of success.

Lemma 4 (Akolzin–Shabanov [2]). Let e be an edge, then

P
[

e is bad
]

=
(1−p

a

)n−1(1−p

a
+n

(

1−1−p

a

))

6n
(1− p

a

)n−1

=3
(1− p

a

)2

.

Let C(A1, . . . , Aa) denote the event that all the edges Aj are good and
(A1, . . . , Aa) is an ordered a-chain.

Lemma 5 (Akolzin–Shabanov [2]).

P [C(A1, . . . , Aa)] 6 a−a(n−2) pa−1

(a− 1)!
= a−a pa−1

(a− 1)!
.

By Theorem 2 we have at most (|E|/(a − 1))a−1 a-chains. Define c =
|E|/r3; we need

( |E|
a− 1

)a−1

a−a pa−1

(a− 1)!
=
(

(1 + o(1))
|E|pe
a3

)a

=
(

(c+ o(1))
r3pe

a3

)a

<1.

Also we need at most (n− 1)(r − a) = 2(r − a) bad edges:

P [X > 2(r − a)] 6
1

2(r − a)

3(1− p)2|E|
a2

< 1.

Define x = r/a. Then we need cx3pe < 1 and

3c(1− p)x3

2(x− 1)
< 1.

Computer simulations give that for p = 0.741 and x = 1.05 the algorithm
with c = 0.42 returns a proper coloring with positive probability, which
implies L3 > 0.42.

If we simply follow the initial proof, the required inequalities are

cx3pe2 < 1 and
3c(1− p)x3

2(x− 1)
< 1.

So pure Akolzin–Shabanov approach gives L3 > 0.205. Both constants are
worse than in Theorem 1.
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§4. Open problems

• First, recall that the Erdős conjecture is still open in the case n = 3.
• Also it is natural to ask if m(n, r) is regular on the first variable, i.e.

lim
n→∞

m(n+ 1, r)

m(n, r)
= r?

• In the proof of Theorem 2 we consider an auxiliary graph G. The
problem is to describe the set of graphs, which may be achieved from an
r-chromatic n-uniform hypergraph. Also it may be reasonable to evaluate
the minimal number of vertices N(r) in a graph G, which has an ordered
induced r-path in every linear order of V (G).
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ciencies in the paper. Also Alexander Sidorenko pointed to an inattention,
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mous referee, who made a lot of helpful remarks.
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