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Abstract1

We consider a family of distance graphs in R
n and find its independence numbers in 12

some cases. Define the graph J±(n, k, t) in the following way: the vertex set consists 23

of all vectors from {−1, 0, 1}n with exactly k nonzero coordinates; edges connect the4

pairs of vertices with scalar product t . We find the independence number of J±(n, k, t)5

for an odd negative t and n > n0(k, t). 36

1 Introduction7

We start with common definitions. Let G = (V , E) be a graph. A subset I of vertices8

of G is independent if no edge connects vertices of I . The independence number of a9

graph G is the maximal size of an independent set in G; we denote it by α(G).10

Generalized Johnson graphs are the graphs J (n, k, t) defined as follows: the vertex11

set consists of vectors from the hypercube {0, 1}n with exactly k nonzero coordinates,12

edges connect vertices with scalar product t (so J (n, k, t) is nonempty if k < n and13

2k − n ≤ t < k). Generalized Kneser graphs K (n, k, t) have the same vertex set but14

the edges connect vertices with scalar product at most t .15

Now we introduce the main hero of the paper. Define graphs J±(n, k, t) as follows:16

the vertex set consists of vectors from {−1, 0, 1}n with exactly k nonzero coordinates,17

edges connect vertices with scalar product t . The graph J±(n, k, t) is nonempty if18

k < n and −k ≤ t < k, and also if k = n and n − t is even. If t = −k, then the19

graph J±(n, k, t) is a matching. Note that the edges connect vertices of the Euclidean20

distance
√

2(k − t), which means that J±(n, k, t) is a distance graph.21
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_####_ Page 2 of 22 D. Cherkashin, S. Kiselev

Finally, define K±(n, k, t) as the graph which shares the vertex set with J±(n, k, t)22

but the edges connect vertices with scalar product at most t .23

1.1 Independence and Chromatic Numbers of J(n, k, t) and K(n, k, t)24

Independent sets in these families of graphs are classical combinatorial objects. Indeed,25

we have a natural bijection between the set of k-subsets of [n] and V [J (n, k, t)] =26

V [K (n, k, t)]. The celebrated Erdős–Ko–Rado theorem (Erdős et al. 1961) determines27

all maximal independent sets in J (n, k, 0) = K (n, k, 0). A natural generaliza-28

tion was done by Erdős and Sós, who introduce “forbidden intersection problem”,29

which involves finding the independence numbers of graphs J (n, k, t). Then the30

Frankl–Wilson theorem (Frankl and Wilson 1981), the Frankl–Füredi theorem (Frankl31

and Füredi 1985) and the Ahlswede–Khachatryan Complete Intersection Theorem32

(Ahlswede and Khachatrian 1997) answered a lot of questions about the size and the33

structure of maximal independent sets in the graphs J (n, k, t) and K (n, k, t).34

On the other hand a lot of questions in combinatorial geometry are related to embed-35

dings of these graphs into R
n . Frankl and Wilson (1981) used the graphs J (n, k, t)36

to get an exponential lower bound on the chromatic number of the Euclidean space37

(Nelson–Hadwiger problem); Kahn and Kalai (1993) used them to disprove Borsuk’s38

conjecture.39

Let us describe the picture for some small k and t . Erdős et al. (1961) proved that40

n ≥ 2k implies41

α[J (n, k, 0)] =
(

n − 1

k − 1

)
.42

Then Lovász (1978) proved Kneser’s conjecture, namely that χ [J (n, k, 0)] = n −43

2k + 2 for n ≥ 2k. The following result was introduced to get a constructive bound44

on the Ramsey number.45

Proposition 1 (Nagy 1972) Let n = 4s + t , where 0 ≤ t ≤ 3. Then46

α[J (n, 3, 1)] =

⎧⎪⎨
⎪⎩

n if t = 0,

n − 1 if t = 1,

n − 2 if t = 2 or 3.

47

Then Larman and Rogers (1972) used the bound χ [J (n, 3, 1)] ≥ |V [J (n,3,1)]|
α[J (n,3,1)] to show48

that the chromatic number of the Euclidean space is at least quadratic in the dimension49

(initially it was proposed by Erdős and Sós). It turns out that the chromatic number of50

J (n, 3, 1) is very close to |V [J (n,3,1)]|
α[J (n,3,1)] (and sometimes is equal to this ratio).51

Theorem 1 (Balogh–Kostochka–Raigorodskii 2013) Consider l ≥ 2. If n = 2l , then52

χ [J (n, 3, 1)] ≤ (n − 1)(n − 2)

6
.53
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Independence Numbers of Johnson-Type Graphs Page 3 of 22 _####_

If n = 2l − 1, then54

χ [J (n, 3, 1)] ≤ n(n − 1)

6
.55

Finally, for an arbitrary n56

χ [J (n, 3, 1)] ≤ (n − 1)(n − 2)

6
+ 11

2
n.57

Tort (1983) proved that for n ≥ 6,58

χ [K (n, 3, 1)] =
[
(n − 1)2

4

]
.59

Zakharov (2020a) showed that the existence of Steiner systems (see Sect. 2.5) implies60

that61

χ [J (n, k, t)] ≤ (1 + o(1))
(k − t − 1)!

(2k − 2t − 1)!nk−t
62

for fixed k > t . In general χ [J (n, k, t)] = �(nt+1) for k > 2t +1 and χ [J (n, k, t)] =63

�(nk−t ) for k ≤ 2t + 1.64

1.2 Known Facts About the Graphs J±(n, k, t) and K±(n, k, t)65

From a geometrical point of view J±(n, k, t) is a natural generalization of J (n, k, t).66

Raigorodskii (2000, 2001) used the graphs J±(n, k, t) to significantly refine the67

asymptotic lower bounds in the Borsuk’s problem and the Nelson–Hadwiger problem.68

Unfortunately, there is no general method to find the independence number of69

J±(n, k, t) even asymptotically. One of the reasons is that the known answers have70

varied and sometimes rather complicated structures. For instance the proof of the71

following result analogous to Proposition 1 is relatively long and the answer is quite72

surprising.73

Theorem 2 (Cherkashin–Kulikov–Raigorodskii 2018) For n ≥ 1 define c(n) as74

follows:75

c(n) =

⎧⎪⎨
⎪⎩

0 if n ≡ 0

1 if n ≡ 1

2 if n ≡ 2 or 3

(mod 4).76

Then77

α[J±(n, 3, 1)] = max{6n − 28, 4n − 4c(n)}.78

79
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_####_ Page 4 of 22 D. Cherkashin, S. Kiselev

In recent papers (Frankl and Kupavskii 2018a, b, 2020) Frankl and Kupavskii gen-80

eralized the Erdős–Ko–Rado theorem for some subgraphs of J±(n, k, t). We need81

additional definitions.82

Vk,l := {v ∈ {−1, 0, 1}n | v has exactly k ′1′ and exactly l ′ − 1′}.83

J (n, k, l, t) := (Vk,l , {(v1, v2) | 〈v1, v2〉 = t}).84

85

Theorem 3 (Frankl–Kupavskii 2018a) For 2k ≤ n ≤ k2 the equality86

α[J (n, k, 1,−2)] = k

(
n − 1

k

)
87

holds. In the case n > k2 the following equality holds88

α[J (n, k, 1,−2)] = k

(
k2 − 1

k

)
+

n−1∑
i=k2

(
i

k

)
.89

Paper Frankl and Kupavskii (2018b) deals with a more generic problem.90

Theorem 4 (Frankl–Kupavskii 2018b) For 2k ≤ n the following bounds hold91

(
n

k + l

)(
k + l − 1

l − 1

)
≤ α[J (n, k, l,−2l)] ≤

(
n

k + l

)(
k + l − 1

l − 1

)
92

+
(

n

2l

)(
2l

l

)(
n − 2l − 1

k − l − 1

)
.93

In the case 2k ≤ n ≤ 3k − l the following equality holds94

α[J (n, k, l,−2l)] = k

n
|Vk,l |.95

To introduce the next result, we will need the following definition.96

Definition 1

S(n, D) :=
{∑d

j=0

(n
j

)
if D = 2d,(n−1

d

) + ∑d
j=0

(n
j

)
if D = 2d + 1.

97

In Frankl and Kupavskii (2017) (see Frankl and Kupavskii 2019 for a version98

with a fixed mistake) Frankl and Kupavskii determined the independence number of99

K±(n, k, t) for n > n0(k, t) and found the asymptotics of the independence number100

of J±(n, k, t) if t < 0 and n > n0(k, t).101

Theorem 5 (Frankl–Kupavskii 2019) For any k ∈ N and n ≥ n(k0) we have:102
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Independence Numbers of Johnson-Type Graphs Page 5 of 22 _####_

1. α[K±(n, k, t)] = (n−t−1
k−t−1

)
for −1 ≤ t ≤ k − 1,103

2. α[K±(n, k, t)] = S(k, |t | − 1)
(n

k

)
for odd t such that −k − 1 ≤104

t < 0,105

3. α[K±(n, k, t)] = α[J (n, k − |t |
2 ,

|t |
2 , t)] + S(k, |t | − 2)

(n
k

)
for even t such that106

−k − 1 ≤ t < 0.107

Theorem 6 (Frankl–Kupavskii 2017) For any k ∈ N, t < 0 and n > n0(k, t) we have108

α[J±(n, k, t)] ≤ S(k, |t | − 1)

(
n

k

)
+ O

(
nk−1

)
.109

The main technique in the Frankl–Kupavskii theorems is shifting. It turns out that110

shifting can not increase a scalar product, so it preserves the independence property of111

a set in a Kneser-type graph. Unfortunately, the latter does not hold for Johnson-type112

graphs. Using additional arguments one can derive weaker results which are tight only113

in asymptotics. But it looks impossible to find the independence number of J±(n, k, t)114

for t > −k using shifting.115

1.3 Results116

Let J (n, k, even) be a graph with the vertex set {0, 1}n , where edges connect ver-117

tices with even scalar product (note that each vertex has a loop if k is even). Define118

J (n, k, odd) in a similar way. Let J±(n, k, even) and J±(n, k, odd) be defined119

analogously to J (n, k, even) and J (n, k, odd).120

Observation 1 If n > n0(k), then121

α[J±(n, k, even)] = 2kα[J (n, k, even)],122

α[J±(n, k, odd)] = 2kα[J (n, k, odd)].123

124

For n > n0(k) the exact values of α[J±(n, k, even)] and α[J±(n, k, odd)] are125

determined in Theorem 15.126

Proof of Observation 1 Let pari ty stand for odd or even.127

To prove the lower bounds consider an arbitrary maximal independent set I in128

the graph J (n, k, pari ty). Then all the vertices on the supports from I form an129

independent set I± in J±(n, k, pari ty). So130

α[J±(n, k, pari ty)] = 2kα[J (n, k, pari ty)].131

The upper bounds simply follow from Lemma 1, since J (n, k, pari ty) is a subgraph132

of J±(n, k, pari ty). 
�133

Observation 2 For every n ≥ k we have134

α[J±(n, k, k − 1)] = 2kα[J (n, k, k − 1)].135
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_####_ Page 6 of 22 D. Cherkashin, S. Kiselev

Note that α[J (n, k, k−1)] is the size of a largest partial Steiner (n, k, k−1)-system.136

In particular, if the divisibility conditions hold, then α[J (n, k, k − 1)] = ( n
k−1

)
/k (see137

Sect. 2.5).138

Proof of Observation 2 Since J (n, k, k −1) is a subset of J±(n, k, k −1), by Lemma 1139

we have140

α[J±(n, k, k − 1)] ≤ 2kα[J (n, k, k − 1)].141

To prove the lower bound consider an arbitrary maximal independent set I in the142

graph J (n, k, k −1). Then all the vertices on the supports from I form an independent143

set I± in J±(n, k, k − 1). 
�144

We use the Katona averaging method and Reed–Solomon codes to prove the145

following theorem.146

Theorem 7 Suppose that n > k2k+1. Then147

α[J±(n, k,−1)] =
(

n

k

)
.148

Theorem 7 can be generalized as follows.149

Theorem 8 Suppose that t is a negative odd number, n > n0(k). Then150

α[J±(n, k, t)] = S (k, |t | − 1)

(
n

k

)
,151

where S is defined in Definition 1.152

The next theorem is a consequence of Theorems 10 and 7.153

Theorem 9 Let n > 9
2 k32k . Then154

α[J±(n, k, 0)] = 2

(
n − 1

k − 1

)
.155

One can extract a stability version of the previous theorem from its proof.156

The support of a vertex v is the set of nonzero coordinates of v; we denote it by157

supp v. Let Hk = (Vk, Ek) be a k-graph such that158

Vk :=
⋃

u∈[n]
{u+, u−}, Ek :=

{
A ∈

(
V (H)

k

) ∣∣∣∣ {u+, u−} �⊂ A for every u

}
.159

There is a natural bijection between Ek and V (J±(n, k, t)). Introduce notion signplace160

for a vertex of Hk and place for a pair of vertices {u+, u−}, u ∈ [n]; note that the161

latter definition does not depend on k.162
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Independence Numbers of Johnson-Type Graphs Page 7 of 22 _####_

Corollary 1 Suppose that I is an independent set in J±(n, k, 0) and no place intersects163

all the vertices of I . Then164

|I | ≤ C(k)

(
n

k − 2

)
.165

Structure of the paper. In Sect. 2 we describe several classical definitions and166

theorems, that are used in examples and proofs: Katona averaging methods, non-167

trivial intersecting families, isodiametric inequality for the Hamming cube, simple168

hypergraphs and Reed–Solomon codes, Steiner systems and finally families with169

intersections of prescribed parity.170

Section 3 contains examples, Sect. 4 provides proofs, Sect. 5 specifies the results in171

the case k ≤ 3. We finish with open questions in Sect. 6.172

2 Tools173

2.1 Katona AveragingMethod174

Properties of a graph with a rich group of automorphisms sometimes can be established175

via consideration of a proper subgraph. We say that a graph G is vertex-transitive if for176

every vertices v1, v2, G has an automorphism f such that f (v1) = v2. The following177

lemma is a special case of Lemma 1 from Katona (1975).178

Lemma 1 (Katona 1975) Let G = (V , E) be a vertex-transitive graph. Let H be a179

subgraph of G. Then180

α(G)

|V (G)| ≤ α(H)

|V (H)| .181

For example Lemma 1 immediately implies that for every fixed k, t the following182

decreasing sequences converge183

an := α[J±(n, k, t)]
|V [J±(n, k, t)]| and bn := α[K±(n, k, t)]

|V [K±(n, k, t)]| ,184

as J±(n − 1, k, t) and K±(n − 1, k, t) are isomorphic to subgraphs of J±(n, k, t)185

and K±(n, k, t), respectively, and both J±(n, k, t) and K±(n, k, t) graphs are clearly186

vertex-transitive.187

Also since J (n, k, t) is a subgraph of J±(n, k, t), Lemma 1 implies188

α[J±(n, k, t)]
|V [J±(n, k, t)]| ≤ α[J (n, k, t)]

|V [J (n, k, t)]| ,189

which gives by |V [J±(n, k, t)]| = 2k
(n

k

) = 2k |V [J (n, k, t)]| the following bound190

α[J±(n, k, t)] ≤ 2kα[J (n, k, t)]. (1)191
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_####_ Page 8 of 22 D. Cherkashin, S. Kiselev

It turns out that bound (1) is rarely close to the optimal. On the other hand sometimes192

it is tight, for instance in Propositions 1 and 2.193

2.2 Nontrivial Intersecting Families194

A family of sets A is intersecting if every a, b ∈ A have nonempty intersection. A195

transversal is a set that intersects each member of A.196

Theorem 10 (Erdős–Lovász 1975) Let A be an intersecting family consisting of k-197

element sets. Then at least one of the following statements is true:198

(i) A has a transversal of size at most k − 1;199

(ii) |A| ≤ kk.200

One can find better bounds in the case (ii) (Arman and Retter 2017; Cherkashin 2011;201

Frankl 2019; Zakharov 2020b). In particular, for k = 3 it is known that 33 = 27 in (ii)202

can be replaced with 10 and this result is sharp (Frankl et al. 1996).203

Theorem 11 (Deza 1974) Let A be a family of k-element sets such that |A ∩ A′| is the204

same for all distinct A, A′ ∈ A. Then at least one of the following statements is true:205

(i) A ∩ A′ is the same for all distinct A, A′ ∈ A;206

(ii) |A| ≤ k2 − k + 1.207

2.3 An Isodiametric Inequality208

Define the Hamming distance between two subsets of [n] as the size of their symmetric209

difference. The Hamming distance between two vectors v1, v2 ∈ {−1, 0, 1}n is the210

number of coordinates that differ between v1 and v2. The diameter of a family A ⊂ 2[n]
211

or A ⊂ {−1, 0, 1}n is the maximal distance between its members.212

Theorem 12 (Kleitman 1966) Let A ⊂ 2[n] be a family with diameter at most D for213

n > D. Then214

|A| ≤ S(n, D),215

where S is defined in Definition 1.216

Theorem 12 is sharp: in the case of even D the equality holds for the family217

K(n, D) := {A ⊂ [n] : |A| ≤ D
2 } and in the case of odd D the equality holds for218

the family Kx (n, D) := {A ⊂ [n] : |A\{x}| ≤ D
2 } for some fixed x ∈ [n].219

Moreover, in Frankl (2017) Frankl proved the following stability result. Let A�B220

stand for the symmetric difference of the sets A and B. We say that a family A′ is a221

translate of a family A if A′ = {A�T : A ∈ K(n, D)} for some T ⊂ [n].222

Theorem 13 (Frankl 2017) Let A ⊂ 2[n] be a family with the diameter at most D and223

|A| = S(n, D) for n ≥ D + 2. Then in the case of even D family A is a translate of224

K(n, D) and in the case of odd D the family A is a translate of Ky(n, D).225
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Independence Numbers of Johnson-Type Graphs Page 9 of 22 _####_

2.4 Simple Hypergraphs and Reed–Solomon Codes226

A hypergraph H = (V , E) is a collection of (hyper)edges E on a finite set of vertices227

V . A hypergraph is called k-uniform if every edge has size k. A hypergraph is simple228

if every two edges share at most one vertex. The following construction is a special229

case of Reed–Solomon codes (MacWilliams and Sloane 1977, Chapter 10); it is also230

known as Kuzjurin’s construction (Kuzjurin 1995).231

Fix a prime p > k and let the vertex set V be the union of k disjoint copies of a field232

with p elements F = G F(p); call them F1, . . . , Fk . Consider the following system233

of linear equations234

k∑
i=1

i j xi = 0, j = 0, 1, . . . , k − 3235

over Fp. The solutions {x1, . . . xk} ∈ F1 � · · · � Fk , where xi ∈ Fi , form the edge236

set E . Fixing two arbitrary variables there is a unique solution over Fp, because the237

corresponding square matrix is a Vandermonde matrix with nonzero determinant. It238

means that there are p2 different solutions and |e1 ∩ e2| ≤ 1 for every distinct e1, e2 ∈239

E . Summing up, Hp(k) := (V , E) is a p-regular k-uniform simple hypergraph with240

|V | = pk and |E | = p2.241

A k-uniform hypergraph is b-simple if every two edges share at most b vertices.242

The same construction with k − b − 1 equations gives an example of a k-uniform243

b-simple hypergraph H(p, k, b).244

Further we use regularity of H = H(p, k, b) in the following sense. Consider an245

arbitrary vertex subset A of size b. If A contains at most 1 vertex from every copy246

of Fp, then H has exactly p hyperedges containing A; otherwise H contains no such247

edges. Slightly abusing the notation we say that b-degree of H is p.248

2.5 Steiner Systems249

A Steiner system with parameters n, k and l is a collection of k-subsets of [n] such that250

every l-subset of [n] is contained in exactly one set of the collection. There are some251

obvious necessary ‘divisibility conditions’ for the existence of Steiner (n, k, l)-system:252

(
k − i

l − i

)
divides

(
n − i

k − i

)
for every 0 ≤ i ≤ k − 1.253

In a breakthrough paper Keevash (2014) proved the existence of Steiner (n, k, l)-254

systems for fixed k and l under the divisibility conditions and for n > n0(k, l) (different255

proofs can be found in Glock et al. 2023 and Keevash 2018).256

Partial Steiner system. When the divisibility conditions do not hold we are still able257

to construct a large partial Steiner system, that is, a collection of k-subsets of [n]258

such that every l-subset of [n] is contained in at most one set of the collection. Rödl259

confirmed a conjecture of Erdős and Hanani and proved the following theorem.260
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_####_ Page 10 of 22 D. Cherkashin, S. Kiselev

Theorem 14 (Rödl 1985) For every fixed k and l < k, and for every n there exists a261

partial (n, k, l)-system with262

(1 − o(1))

(
n

l

)
/

(
k

l

)
263

k-subsets.264

Later the result was refined in Grable (1999), Kim (2001), Kostochka and Rödl (1998).265

Also it follows from the mentioned results on Steiner systems.266

2.6 Families with Even or Odd Intersections267

Recall that J (n, k, even) and J (n, k, odd) were defined in Sect. 1.3. Frankl and268

Tokushige determined the independence numbers of these graphs.269

Theorem 15 (Frankl–Tokushige 2016) Let n ≥ n0(k). Then270

α[J (n, k, odd)] =
(�n/2�

k/2

)
for even k,271

α[J (n, k, even)] =
(�(n − 1)/2�

(k − 1)/2

)
for odd k.272

In the case when k is even, the equality is achieved for the following family: we273

split [n] into pairs and take all sets consisting of k/2 pairs. In the case when k is odd274

we also add a fixed point x ∈ [n] to each constructed set.275

3 Examples276

Let us start with a simple example which is rarely close to the independence number.277

Example 1 Let t < 0, k > |t |. Then α[J±(n, k, t)] ≥ 2|t |−1
(n

k

)
.278

Proof Fix an ordering of the coordinates. Take all vertices of J±(n, k, t) with the first279

k−|t |+1 nonzero coordinates equal to 1. Any two such vertices can have different signs280

on at most |t | − 1 positions, therefore their scalar product is at least −|t | + 1 = t + 1.281


�282

The following example is a part of Theorem 5.283

Example 2 For any t < 0 and k > |t | we have284

α[J±(n, k, t)] ≥ S(k, |t | − 1)

(
n

k

)
,285

and for even t we also have286

α[J±(n, k, t)] ≥ S(k, |t | − 1)

(
n

k

)
+

(
k − 1

|t |/2

)
.287
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Independence Numbers of Johnson-Type Graphs Page 11 of 22 _####_

Proof We start with the first bound for the case of odd t . Let Iodd be the set of all288

vertices of J±(n, k, t) with at most (|t | − 1)/2 negative entries. Each k-set is the289

support of exactly290

(|t |−1)/2∑
j=0

(
k

j

)
= S(k, |t | − 1)291

vertices in Iodd . Any two vectors in Iodd may differ in at most 2(|t | − 1)/2 = |t | − 1292

coordinates, so their scalar product is at least t + 1, and Iodd is an independent set of293

the desired size.294

Now we deal with the case of even t . Fix an ordering of the coordinates. For every295

k-set f add to Ieven all the vertices with support f and with at most |t |/2 − 1 negative296

entries on f and all the vertices with −1 on the last coordinate of f and exactly297

|t |/2 − 1 other negative coordinates. Then each k-set is the support of exactly298

|t |/2−1∑
j=0

(
k

j

)
+

(
k − 1

|t |/2 − 1

)
= S(k, |t | − 1)299

vertices in Ieven . Assume that Ieven is not independent, i.e. the scalar product of some300

v1, v2 ∈ Ieven is equal to t . Then v1 and v2 together have at least |t | negative entries.301

Hence both v1 and v2 have exactly |t |/2 negative entries, so both v1 and v2 have −1302

at the last coordinates x1 and x2 of supp v1 and supp v2, respectively. But then both v1303

and v2 can not have +1 at coordinates x2 and x1 respectively, so the scalar product is304

at least t + 1. This contradiction shows that Ieven is an independent set of the desired305

size.306

Now we proceed to the second bound. Let us add to Ieven all the vertices on the307

lexicographically first support {1, . . . , k} with exactly |t |/2 negative entries and having308

+1 at the k-th coordinate. Obviously the resulting set I has the claimed size. By309

definition, no edge connects two vertices from I on the support {1, . . . , k}.310

Consider a vertex v from Ieven and a vertex u ∈ I\Ieven . Note that u and v together311

have at most |t | negative entries. Since the largest coordinate of supp v is greater than312

k and v has −1 in this coordinate, the scalar product of u and v is at least t + 1. Thus313

I is independent. 
�314

Example 3 For t ≥ 0 we have315

α[J±(n, k, t)] ≥ 2α[J (n, k, t)].316

317

Proof Let I ⊂ V [J (n, k, t)] be an independent set of size α[J (n, k, t)]. Define I± as318

a subset of V [J±(n, k, t)] consisting of vertices with all positive or all negative entries319

on every support f = supp v, v ∈ I . It is easy to see that the subset I± is independent320

in J±(n, k, t). 
�321
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_####_ Page 12 of 22 D. Cherkashin, S. Kiselev

4 Proofs322

4.1 Proof of Theorem 7323

We start with the lower bound. One can take the vertices only with non-negative324

coordinates (so exactly one vertex on each support is taken); obviously the scalar325

product of such vertices is always non-negative, so326

α[J±(n, k,−1)] ≥
(

n

k

)
.327

Now we will show the upper bound. Denote G := J±(n, k,−1). Fix a prime p,328

n/(2k) ≤ p ≤ n/k (so by the statement of the theorem p > 2k), and let H := Hp(k)329

(see Sect. 2.4) be a p-regular k-uniform simple hypergraph with V (H) ⊂ [n]. Define330

graph G[H ] as a subgraph of G, consisting of the vertices with support on edges of331

H . So we have332

|V (G[H ])| = 2k |E(H)|.333

Fix an independent set I in G[H ]; consider the set X ⊂ [n] of coordinates on334

which the vertices from I have both signs. Denote by supp I the set of all supports of335

vertices from I (supp I ⊂ E(H)) and for a given e ∈ E(H) put eX := e ∩ X .336

Note that I has at most 2|eX | vertices on the support e (|eX | might be zero). Hence337

|I | ≤
∑

e∈supp I

2|eX | ≤
∑

e∈E(H):|eX |=0

2|eX | +
∑

e∈E(H):|eX |>0

2|eX |
338

≤ |{e ∈ E(H) : |eX | = 0}| +
∑

e∈E(H):|eX |>0

2|eX |. (2)339

Let us show that eX form a disjoint cover of X . Suppose the contrary, i.e. there are340

e, f ∈ supp I such that eX ∩ fX �= ∅. Since the hypergraph H is simple, and e, f341

correspond to its hyperedges, we have |eX ∩ fX | = |e ∩ f | = 1. Put {u} := e ∩ f .342

By the definition of X there are vertices v1, v2 ∈ I having different signs on u. Since343

I is independent and any two different supports intersect in at most 1 coordinate, v1344

and v2 have the same support (say, not f ). So every vertex of G[H ] with support f345

forms an edge in G[H ] with one of v1 or v2, thus I is not independent; contradiction.346

So
∑ |eX | = |X |. Since the sequence 2k/k, k ≥ 1, is non-decreasing and347

a1 + a2 + . . . + at

b1 + b2 + . . . + bt
≤ max

(
a1

b1
,

a2

b2
, . . . ,

at

bt

)
,348

we have349 ∑
e∈E(H):|eX |>0

2|eX | ≤ |X |
k

2k . (3)350
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Independence Numbers of Johnson-Type Graphs Page 13 of 22 _####_

By definition, every e ∈ {e ∈ E(H) : |eX | = 0} has empty intersection with X .351

Since H is p-regular, X intersects at least p|X |
k edges of H (since every k-edge is352

counted at most k times), so353

|{e ∈ E(H) : |eX | = 0}| ≤ |E(H)| − p|X |
k

. (4)354

Summing up, by (2), (3), (4) and the choice of p, we have355

|I | ≤ |E(H)| − |X |
k

p + |X |
k

2k ≤ |E(H)|,356

which implies α(G[H ]) ≤ |E(H)|, hence357

V (G[H ])
α(G[H ]) ≥ 2k .358

By the definition G[H ] is a subgraph of the graph G, so Lemma 1 finishes the proof.359

For some k one can choose a smaller H and require a weaker inequality for n, for360

instance in the case k = 3 (see Sect. 5.2).361

4.2 Proof of Theorem 8362

This is a generalization of the proof of Theorem 7. The lower bound is provided in the363

first part of Example 2.364

Denote G = J±(n, k, t) during the proof. The case t = −k is obvious, because365

J±(n, k,−k) is a matching. From now |t | ≤ k − 1. Fix n and a prime p ≤ n/k366

to be large enough. Let H = H(p, k, |t |) (see Sect. 2.4) be a k-uniform |t |-simple367

hypergraph with |t |-codegree p. Fix an embedding of V (H) into [n].368

Define G[H ] as a subgraph of G, consisting of all the vertices with support on369

edges of H . Fix an independent set I in G[H ].370

Let an object O be a pair of opposite vectors {o,−o} with support of size |t |371

with {0,±1} entries. Let X be the set of objects O = {o,−o} such that (v1, o) =372

(v2,−o) = |t | for some vertices v1, v2 ∈ I (this means that v1 and v2 coincide on373

supp o with o and −o, respectively).374

Let Etight be the set consisting of such edges e ∈ E(H) that diam I [e] < |t |, where375

I [e] stands for the set of vertices of I with the support e. Put Ewide := E(H)\Etight .376

Let Itight and Iwide stand for the sets of vertices of I with the support from Etight and377

Ewide respectively. Then |I | = |Itight | + |Iwide|.378

Consider an arbitrary support e ∈ Ewide; by the definition of Ewide there are an379

object X = {x,−x} ∈ X and vertices v1, v2 ∈ I [e], such that (v1, x) = (v2,−x) =380

|t |. Since I is independent and H is |t |-simple, distinct e1 and e2 ∈ Ewide cannot lead381

to the same X ∈ X , so382

|X | ≥ |Ewide|. (5)383
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_####_ Page 14 of 22 D. Cherkashin, S. Kiselev

For every e ∈ Etight we have diam I [e] < |t |, thus Theorem 12 implies384

|I [e]| ≤ S (k, |t | − 1) . (6)385

Let us study the case of equality in (6). Fix a support f ⊂ [n], | f | = k, and consider386

a family A ⊂ {−1, 1} f with diameter at most |t | − 1 and size S(k, |t | − 1). Also387

consider an object O = {o,−o} such that supp O ⊂ f (recall that | supp O| = |t |).388

By the pigeon-hole principle and the oddity of t , one of o,−o has at most (|t | − 1)/2389

negative entries. Thus there is a vector v from K(k, |t | − 1) such that (v, o) = |t |390

or (v,−o) = |t |. By Theorem 13 A is a translate of K(k, |t | − 1), so the previous391

conclusion also holds for A.392

Fix an object X ∈ X and consider an arbitrary support e ∈ Etight containing393

supp X . Assume that (v, x) = ±t for some v ∈ I [e]. Consider a support g ∈ Ewide394

such that there are u1, u2 ∈ I [g], satisfying (u1, x) = (u2,−x) = t (g exists because395

X ∈ X ). Since H is |t |-simple, (u1, v) = t or (u2, v) = t ; a contradiction. By396

Theorem 13 we can refine the bound (6) in this case:397

|I [e]| ≤ S (k, |t | − 1) − 1. (7)398

By the construction of H for every X ∈ X , supp X is contained in exactly p edges399

of H (because it is contained in at least one edge). Every edge of H is the support of400 ( k
|t |

)
2|t |−1 objects, so is counted above at most

( k
|t |

)
2|t |−1 times. By (5) at most |X | of401

the edges are wide. So the refined bound (7) is applicable to at least402

p|X |( k
|t |

)
2|t |−1

− |X |403

tight edges. Then404

|Itight | ≤ S (k, |t | − 1) |Etight | − p|X |( k
|t |

)
2|t |−1

+ |X |.405

On the other hand there is a straightforward bound406

|Iwide| ≤ 2k |Ewide| ≤ 2k |X |.407

Putting it all together408

|I | = |Itight | + |Iwide| ≤ S (k, |t | − 1) |Etight | − p|X |( k
|t |

)
2|t |−1

+ (2k + 1)|X |. (8)409

For a large n (then p is also large enough) the inequality (8) implies α(G[H ]) ≤410

S (k, |t | − 1) |E(H)|. By the definition G[H ] is a subgraph G and411

α(G[H ])
V (G[H ]) ≤ S (k, |t | − 1)

2k
,412
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Independence Numbers of Johnson-Type Graphs Page 15 of 22 _####_

so Lemma 1 finishes the proof.413

4.3 Proof of Theorem 9414

Consider an arbitrary independent set I in the graph J±(n, k, 0). Note that supports415

of the vertices of I form an intersecting family; denote it by F . Let U be a minimal416

(by inclusion) transversal of F . As U is minimal, for every coordinate a ∈ U there is417

a vertex xa ∈ I , such that supp xa ∩ U = {a}.418

In the case |U | > 1 we can consider the set419

C := U ∪ supp xa ∪ supp xb420

for two different a, b ∈ U . Note that |C | ≤ 3k and every f ∈ F intersects C in at421

least two places (suppose that | f ∩U | = 1, then it should intersect either (supp xa)\U422

or (supp xb) \ U ). Hence423

|I | ≤ 2k
(|C |

2

)(
n

k − 2

)
< 2k 9k2

2

(
n

k − 2

)
.424

Recall that n > 9
2 k32k , so425

2k 9k2

2

(
n

k − 2

)
< 2k 9k2

2

nk−2

(k − 2)! <
n

k − 1

nk−2

(k − 2)! < 2

(
n − 1

k − 1

)
.426

The remaining case is |U | = 1, say U = {u}. Consider only vertices containing427

u+, by Theorem 7 we have at most
(n−1

k−1

)
such vertices. The same bound for u− gives428

the desired bound.429

Example 3 and Erdős–Ko–Rado theorem give a lower bound.430

4.4 Proof of Corollary 1431

Let us repeat the proof of Theorem 9. Let I be an arbitrary independent set in432

J±(n, k, 0). Then433

|I | < 2k 9k2

2

(
n

k − 2

)
434

or the family of all supports of vertices from I has a transversal of size 1. The first435

possibility implies436

|I | ≤ C(k)

(
n

k − 2

)
;437

the latter one contradicts the condition of the corollary.438
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_####_ Page 16 of 22 D. Cherkashin, S. Kiselev

5 The Case k ≤ 3439

We have implemented Östergård algorithm (Östergård 2002) to find independence440

numbers of several small graphs. All the calculations were done on a standard laptop441

in a few hours. The source can be found in Kiselev (2020).442

5.1 The Case k = 2443

The case t = −1. By simple calculations we have444

α[J±(2, 2,−1)]=α[J±(3, 2,−1)] = 4, α[J±(4, 2,−1)]=8, α[J±(5, 2,−1)]=10.445

In Sect. 2.1 we show that the sequence446

α[J±(n, 2,−1)]
|V [J±(n, 2,−1)]|447

is non-increasing, so448

α[J±(n, 2,−1)] =
(

n

2

)
449

for n ≥ 5.450

The case t = 0. It is straightforward to check that451

α[J±(2, 2, 0)] = 2, α[J±(3, 2, 0)] = α[J±(4, 2, 0)] = 6.452

For the case n > 4 we can repeat the proof of the Theorem 9 and show that453

α[J±(n, 2, 0)] = 2(n − 1).454

The case t = 1. From Proposition 2 we have455

α[J±(n, 2, 1)] = 2n for even n,456

α[J±(n, 2, 1)] = 2(n − 1) for odd n.457

5.2 The Case k = 3, t = −1458

Proposition 2 Let n ≥ 7. Then459

α[J±(n, 3,−1)] =
(

n

3

)
.460

461

Proof Fano plane is the projective plane over G F(2) i.e. the following simple 3-graph462

on 7 vertices463

{1, 2, 3}, {1, 4, 7}, {1, 5, 6}, {2, 4, 6}, {2, 5, 7}, {3, 4, 5}, {3, 6, 7}.464

123

Journal: 574 Article No.: 0350 TYPESET DISK LE CP Disp.:2023/6/5 Pages: 22 Layout: Small-Ex



un
co

rr
ec

te
d

pr
oo

f

Independence Numbers of Johnson-Type Graphs Page 17 of 22 _####_

Consider an arbitrary embedding F of the Fano plane into V [J±(n, 3,−1)]. As usual465

consider the subgraph G[F]; it has 7 · 23 = 56 vertices. One may check by hands or466

via computer that α(G[F]) = 7. By Lemma 1467

α[J±(n, 3,−1)] ≤
(

n

3

)
.468

On the other hand, Example 1 implies α[J±(n, 3,−1)] = (n
3

)
. 
�469

By the computer calculations we have470

α[J±(6, 3,−1)] = 21 >

(
6

3

)
= 20,471

so Proposition 2 is sharp. Also472

α[J±(5, 3,−1)] = 14, α[J±(4, 3,−1)] = 8, α[J±(3, 3,−1)] = 2.473

5.3 The Case k = 3, t = 0474

By the computer calculations we have475

α[J±(3, 3, 0)] = α[J±(4, 3, 0)] = 8, α[J±(5, 3, 0)] = 20, α[J±(6, 3, 0)] = 32,476

α[J±(7, 3, 0)] = α[J±(8, 3, 0)] = α[J±(9, 3, 0)] = 56.477

Proposition 3 Let n ≥ 9. Then478

α[J±(n, 3, 0)] = 2

(
n − 1

2

)
.479

480

Proof The example is inherited from Theorem 9.481

Let us proceed with the upper bound. For the case n = 9 the computer calculations482

give us the desired result. Let us repeat the proof of Theorem 9, updating it for small483

values of n. Let I be a maximal independent set in G := J±(n, 3, 0).484

Clearly supports of vertices of I form a 3-uniform intersecting family. Theorem 10485

states that an intersecting family either contains at most 27 sets or has a 2-transversal.486

It is known (Frankl et al. 1996) that the constant 27 can be refined to 10.487

In the first case the family of supports has no 2-transversal. Then |I | ≤ 8 ·10, which488

is enough for n > 10. Assume the contrary to the statement in the case n = 10, id489

est |I | > 72. It implies that vertices in I have exactly 10 different supports. Suppose490

that every pair of supports shares exactly one vertex. Then by Theorem 11 all the491

supports have one common vertex, so at least 1+2 ·10 > 10 coordinates are required.492

Thus there are supports f1, f2 such that | f1 ∩ f2| = 2. The initial graph G has 16493

vertices with supports f1 and f2; by the equality α[J±(4, 3, 0)] = 8, I has at least494
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_####_ Page 18 of 22 D. Cherkashin, S. Kiselev

8 missing vertices on these supports. This refines the bound |I | ≤ 80 to the desired495

|I | ≤ 72 = 2
(9

2

)
.496

In the second case we have a one-point transversal set, say U = {u}. Let Isign be a set497

of vertices from I containing usign , where sign ∈ {+,−}. Clearly |I | = |I+| + |I−|.498

After removing coordinate u from every vertex, I+ becomes an independent set in499

J±(n − 1, 2,−1). By the Sect. 5.1 |I+| ≤ (n−1
2

)
. The same bound for I− finishes the500

proof in this case.501

In the last case we have a transversal set of size 2, say {a, b}. Let Ia be the set of502

vertices of I containing a and not containing b, Ib is defined analogously. Both Ia and503

Ib are nonempty, otherwise there is a one-point transversal set which is the previous504

case. Define Iab = I\Ia\Ib. Computer calculations show that for n = 10 we have at505

most 48 vertices in an independent set with such conditions.506

Let n be greater than 10; for every set A ⊂ [n], such that |A| = 10 and507

a, b ∈ A, we have α(G[A]) ≤ 48 (here G[A] stands for the subgraph of G508

containing all the vertices v such that supp v ⊂ A). Define I [A] as the set of ver-509

tices i from I such that supp i ⊂ A; note that I [A] is an independent set. Every510

vertex from Iab belongs to
(n−3

7

)
different A, every vertex from Ia ∪ Ib belongs511

to
(n−4

6

)
different A. Summing up inequalities |I [A]| ≤ α(G[A]) ≤ 48 over all512

choices of A we got513

(
n − 3

7

)
|Iab| +

(
n − 4

6

)
(|Ia | + |Ib|) ≤ 48

(
n − 2

8

)
514

which is equivalent to515

n − 3

7
|Iab| + (|Ia | + |Ib|) ≤ 48

56
(n − 2)(n − 3).516

Finally,517

|I | = |Iab| + |Ia | + |Ib| ≤ n − 3

7
|Iab| + (|Ia | + |Ib|)518

≤ 48

56
(n − 2)(n − 3) < 2

(
n − 1

2

)
.519


�520

5.4 The Case k = 3, t = −2521

Example 2 gives us a lower bound α[J±(n, 3,−2)] ≥ 2
(n

2

) + 2. Note that the Katona522

averaging method does not give an exact result because of the additional term of a523

smaller order of growth.524

First, note that Theorem 6 in this case gives the bound525

α[J±(n, 3,−2)] ≤ 2

(
n

3

)
+ 8

(
n

2

)
.526
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Independence Numbers of Johnson-Type Graphs Page 19 of 22 _####_

Indeed, let I be an independent set in J±(n, 3,−2). We call a vertex v ∈ I bad if there527

is another vertex with the same support which differs in exactly two places. Otherwise528

we call a vertex good. From Theorem 12 there are at most 2
(n

3

)
good vertices.529

Let us show that the number of bad vertices is at most 8
(n

2

)
. Indeed, each bad vertex530

has a pair of signplaces such that antipodal pair of signplaces contained in another531

vertex. But then all vertices containing one of these two pairs of signplaces must have532

the same third place therefore there are at most 8
(n

2

)
bad vertices. 
�533

Using more accurate double counting we can prove the following upper bound.534

Proposition 4 For n ≥ 6 we have535

α[J±(n, 3,−2)] ≤ 2

(
n

3

)
+ 8

3

(
n

2

)
.536

Proof A pair of vertices v,w ∈ I is called tangled if these vertices have the same537

support and differ exactly at two places. Define the weight cI (v, i, j), where v ∈ I538

and i, j ∈ v, in the following way:539

cI (v, i, j) =
⎧⎨
⎩

1, if v does not have tangled vertices in G,

2, if v has a tangled vertex in G which differs at places i, j,
0.5, otherwise.

540

Note that for a vertex v sum of corresponding weights is at least 3. Let di, j be the sum541

of weight of vertices containing places i and j and let us estimate an upper bound for542

di, j . Then there are three cases which depend on whether there are tangled vertices543

containing places i, j and whether these vertices have antipodal signs on places i, j .544

In the first case there are no tangled vertices in I which differ in places i, j . Then545

for any place l the total weight of vertices with support {i, j, l} is at most 2. Then546

di, j ≤ 2(n − 2). In the second case there are tangled vertices in I which contain all547

four pairs of signplaces on places i, j . Then there are at most 8 vertices containing548

these places and di, j ≤ 16.549

In the last case there are two vertices in I which are antipodal on places i, j and550

there are no vertices in I which contain one of the pairs of signplaces on places i, j .551

Then there are at most 4 vertices which differ in places i, j and their total weight is at552

most 8. The rest of vertices containing places i, j have the same signs on these places553

therefore their total weight is at most 2(n − 2).554

Therefore, di, j ≤ 2n + 4 and555

3|I | ≤
∑

1≤i< j≤n

di, j ≤
(

n

2

)
(2n + 4) = 6

(
n

3

)
+ 8

(
n

2

)
.556


�557
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_####_ Page 20 of 22 D. Cherkashin, S. Kiselev

6 Open Questions558

It seems very challenging to find a general method providing the independence number559

of J±(n, k, t). Here we discuss questions that seem for us both interesting and relatively560

easy.561

Small values of the parameters. The smallest interesting case is J±(n, 3,−2). We562

hope that for n > n0 Example 2 is the best possible, i.e.563

α[J±(n, 3,−2)] = α[K±(n, 3,−2)] = 2

(
n

3

)
+ 2.564

Recall that the last equality is established by Theorem 5.565

Another small case leads to the following conjecture.566

Conjecture 1 Let n > n0 be an even number. Then567

α[J±(n, 4, 1)] = 2n(n − 2).568

Obviously α[J±(n, 4, 1)] ≥ α[J±(n, 4, odd)] = 2n(n − 2) (see Proposition 2).569

Chromatic numbers. Usually finding or evaluating the chromatic number is a more570

complicated problem than finding or evaluating the independence number. In particular571

Lovász (1978) proved Kneser’s conjecture on the chromatic number of K (n, k, 0) 17572

year after Erdős, Ko and Rado determined the independence number of this graph.573

In the setting of this paper we have574

c(k, t)n ≤ |V [J±(n, k, t)]|
α[J±(n, k, t)] ≤ χ [J±(n, k, t)] ≤ |V [J±(n, k, t)]|

α[J±(n, k, t)] log |V [J±(n, k, t)]|575

≤ C(k, t)n log n576

for some positive constants c(k, t), C(k, t). The second inequality holds since577

J±(n, k, t) is a vertex-transitive graph (see Lovász 1975).578

Recently Cherkashin (2022) proved that log log n ≤ χ [J±(n, 3,−2)] ≤579

4 log log n + 6, which means that the chromatic number of a Johnson-type graph580

may not coincide with simple general bounds.581

Difference between J±(n, k, t) and K±(n, k, t). It turns out that for a negative odd582

t Theorems 5 and 8 give583

α[J±(n, k, t)] = α[K±(n, k, t)].584

Does it hold for all negative t? Do we have585

χ [J±(n, k, t)] = χ [K±(n, k, t)]586

in this case?587

123

Journal: 574 Article No.: 0350 TYPESET DISK LE CP Disp.:2023/6/5 Pages: 22 Layout: Small-Ex



un
co

rr
ec

te
d

pr
oo

f

Independence Numbers of Johnson-Type Graphs Page 21 of 22 _####_

The general comparison of the behavior of independence numbers and chromatic4 588

numbers of these graphs is also of interest.589
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