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Abstract

Consider a compact M ⊂ Rd and l > 0. A maximal distance minimizer problem is to find a connected compact set Σ of
the length (one-dimensional Hausdorff measure H

1) at most l that minimizes

max
y∈M

dist (y,Σ),

where dist stands for the Euclidean distance.
We give a survey on the results on the maximal distance minimizers and related problems.

1 Introduction

This work is devoted to solutions of the following maximal distance minimizer problem.

Problem 1.1. For a given compact set M ⊂ Rn and l > 0 to find a connected compact set Σ of length (one-dimensional
Hausdorff measure H1) at most l that minimizes

max
y∈M

dist (y,Σ),

where dist stands for the Euclidean distance.

It appeared in a very general from in [3] and later has been studied in [11, 13].
A maximal distance minimizer is a solution of Problem 1.1. Such sets can be considered as networks of radiating Wi-Fi

cables with a bounded length arriving to each customer (for the set M of customers) at the distance r, where such r is the
smallest possible.

1.1 Class of problems

Maximal distance minimizers problem could be considered as a particular example of shape optimization problem. A shape
optimization problem is a minimization problem where the unknown variable runs over a class of domains; then every shape
optimization problem can be written in the form minF (Σ) : Σ ∈ A where A is the class of admissible domains and F () is the
cost function that one has to minimize over A.

So for a given compact set M and positive number l ≥ 0 let the admissible set A be a set of all closed connected set Σ′

with length constraint H1(Σ′) ≤ l; and let cost function be the energy FM (Σ) = maxy∈M dist (y,Σ).

1.2 Dual problem

Define the dual problem to Problem 1.1 as follows.

Problem 1.2. For a given compact set M ⊂ Rd and r > 0 to find a connected compact set Σ of the minimal length (one-
dimensional Hausdorff measure H1) such that

max
y∈M

dist (y,Σ) ≤ r.

In a nondegenerate case (i.e. for FM (Σ) > 0) the strict and dual problems have the same sets of solutions for the
corresponding r and l (see [13]) and hence an equality is reached.
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1.3 The first parallels with average distance minimizers problem

Maximal distance minimizers problem is similar to another shape optimization problem: average distance minimizers problem
(see the survey of Antoine Lemenant [10]) and it seems interesting to compare the known results and open questions con-
cerning these two problems. In the average distance minimizers problem’s statement the admissible set A is the same as in
Maximal distance minimizers problem, but the function F (Σa) is defined as

∫

M
A(dist (y,Σa))dφ(x) where A : R+ → R+ is a

nondecreasing function and φ() is a finite nonnegative measure with compact nonempty support in Rn.
Minimization problems for average distance and maximum distance functionals are used in economics and urban planning

with similar interpretations. If it is required to find minimizers under the cardinality constraint ♯Σ ≤ k, instead of the length
and the connectedness constraints, where k ∈ N is given and ♯ denotes the cardinality, then the corresponding problems are
referred to as optimal facility location problems.

1.4 Notation

For a given set X ⊂ Rn we denote by X its closure, by Int (X) its interior and by ∂X its topological boundary.
Let Bρ(O) stand for the open ball of radius ρ centered at a point O, and let Bρ(T ) be the open ρ-neighborhood of a set

T i.e.
Bρ(T ) :=

⋃

x∈T

Bρ(x)

(in other words Bρ(T ) is a Minkowski sum of a ball Bρ centered in the origin and T ). Note that the condition

max
y∈M

dist (y,Σ) ≤ r

is equivalent to M ⊂ Br(Σ).
For given points B, C we use the notation [BC], [BC) and (BC) for the corresponding closed line segment, ray and line

respectively.

1.5 Existence. Absence of loops. Ahlfors regularity and other simple properties

For the both problems existence of solutions is proved easily: according to the classical Blaschke and Golab Theorems, the
class of admissible sets is compact for the Hausdorff distance and both of the functions (maximal distance and also the average
distance) is continuous for this convergence because of the uniform convergence of x→ dist (x,Σ).

Definition 1.3. A closed set Σ is said to be Ahlfors regular if there exists some constants C1, C2 > 0 and a radius ε0 > 0
such that C1ε ≤ H1(Σ ∩Bε(x)) ≤ C2ε for every x ∈ Σ and ε < ε0.

In the work [13] Paolini and Stepanov proved

• the absence of closed loops for maximum distance minimizers and, under general conditions on φ, the absence of closed
loops for average distance minimizers;

• the Ahlfors regularity of maximum distance minimizers and, under the additional summability condition on φ, the
Ahlfors regularity of average distance minimizers. Gordeev and Teplitskaya [8] refine Ahlfors constants of maximum
distance minimizers to the best possible, i.e. show that H1(Σ ∩Bε(x)) = ord xΣ · ε+ o(ε), where ord xΣ ∈ {1, 2, 3}.

• Maximal distance minimizers problem and the dual problem have the same sets of solutions (planar case was proved
before by Miranda, Paolini, Stepanov in [11]). It particularly implies that maximal distance minimizers must have
maximum available length l. Paolini and Stepanov also proved that average distance minimizers, (with additional
properties of φ) have maximum available length.

In the work [6] the following basic results were showed.

(i) Let Σ be an r-minimizer for some M . Then Σ is an r-minimizer for Br(Σ).

(ii) Let Σ be an r-minimizer for Br(Σ). Then Σ is an r′-minimizer for Br′(Σ), where 0 < r′ < r.

1.6 Local maximal distance minimizers

Definition 1.4. Let M ⊂ Rn be a compact set and let r > 0. A connected compact set Σ ⊂ Rn is called a local maximal
distance minimizer if FM (Σ) ≤ r and there exists ε > 0 such that for any connected set Σ′ satisfying FM (Σ′) ≤ r and
diam (Σ△Σ′) ≤ ε the inequality H1(Σ) ≤ H1(Σ′) holds, where △ is the symmetric difference.

Any maximal distance minimizer is also a local minimizer. Usually the properties of maximal distance minimizers are also
true for local maximal distance minimizers (see [8]).

2



2 Regularity

2.1 Tangent rays. Blow up limits in Rn

Definition 2.1. We say that the ray (ax] is a tangent ray of the set Γ ⊂ Rn at the point x ∈ Γ if there exists a sequence of
points xk ∈ Γ \ {x} such that xk → x and ∠xkxa → 0.

In the work [8] it is proved that for every maximal distance minimizer Σ at any point of Σ the pairwise angles between
the tangent rays are at least 2π/3. Thus every point x ∈ Σ has at most 3 tangent rays of Σ.

In works concerning average distance minimizers the notion of blow up limits is used. Santambrogio and Tilli in [14] proved
that for any average distance minimizers blow up sequence Σε := ε−1(Σa ∩ Bε(x) – x) with x ∈ Σa, converges in B1(0) (for
the Hausdorff distance) to some limit Σ0(x) when ε → 0, and the limit is one of the following below (see Pic. 1 which is
analogues to a picture from [10]), up to a rotation.

x

a general x has tangent line
ψ(x) = 0

x

x is a leaf
ψ(x) > 0

x

x is a corner point
ψ(x) > 0

x

x is a branching point
ψ(x) = 0

Figure 1: All possible variants of tangent rays at any point of a maximal distance minimizer (or blow up limits of an average
distance minimizer)

It is clear that for maximal distance minimizers blow up limits also exists and are more or less the same: Σ0 can be a
radius, a diameter, a corner points with the angle between the segments greater or equal to 2π/3 or a center of a regular
tripod. Herewith at the second and third case (id est when ψ(x) > 0) the point x has to be energetic; see the following
definition.

Definition 2.2. A point x ∈ Σ is called energetic, if for all ρ > 0 one has

FM (Σ \Bρ(x)) > FM (Σ).

Herewith if a point x of a maximal distance minimizer Σ is energetic then there exists such a point y ∈ M (may be not
unique) such that dist (x, y) = r and Br(y) ∩ Σ = ∅; such y is called corresponding to x.

If a point x ∈ Σ is not energetic then in a sufficiently small neighbourhood it is a center of a regular tripod or a segment
(and coincides there with its one-sided tangents).

A key object in all the study of the average distance problem is the pull-back measure of µ with respect to the projection
onto Σa, where Σa is a solution of the average distance minimizer problem. More precisely, if µ does not charge the Ridge
set (which is defined as the set of all x ∈ Rn for which the minimum distance to Σa is attained at more than one point) of
Σa (this is the case for instance when µ is absolutely continuous with respect to the Lebesgue measure), then it is possible to
choose a measurable selection of the projection multimap onto Σ, i.e. a map πΣ :M → Σ such that d(x,Σ) = d(x, πΣa

) (this
map is uniquely defined everywhere except the Ridge set). Then one can define the measure ψ as being ψ(A) := µ(π−1

Σa
(A)),

for any Borel set A ⊂M . In other words ψ = πΣa
♯µ.

For the maximal distance minimizers in Rn we can define measure ψ the similar way, but replace M by ∂Br(Σ) and with
(n− 1)-dimensional Hausdorff measure as µ (or accordingly Br(Σ) and n-dimensional Hausdorff measure). Thus Fig. 1 is true
both for maximal and average distance minimizers.

2.2 Properties of branching points in R2

It is known at the plane (see [8]) that for every compact set M and a positive number r a maximal distance minimizer can
have only finite number of points with 3 tangent rays.

At the plane it is also known (see [2]) that every average distance minimizer is topologically a tree composed by a finite
union of simple curves joining by number of 3.

Every branching point of a planar maximal distance minimizer should be the center of a regular tripod. If x ∈ Σ ⊂ R2 has
3 tangent rays then there exists such a neighbourhood of x in which the minimizer coincides with its tangent rays. Id est, there

3



exists such ε > 0 that Σ ∩Bε(x) = [Ax] ∪ [Bx] ∪ [Cx] where {A,B,C} = Σ ∩ ∂Bε(x) and ∠AxB = ∠BxC = ∠CxA = 2π/3.
For planar average distance minimizers it is proved that any branching point admits such a neighbourhood in which three
pieces of Σ are C1,1.

2.3 Continuity of one-sided tangent rays in R2

Definition 2.3. We will say that the ray (ax] is a one-sided tangent of the set Γ ⊂ Rn at the point x ∈ Γ if there exists a
connected component Γ1 of Γ\{x} with the property that any sequence of points xk ∈ Γ1 such that xk → x satisfies ∠xkxa→ 0.
In this case we will also say that (ax] is tangent to the connected component Γ1.

Lemma 2.4. Let Σ be a (local) maximal distance minimizer and let x ∈ Σ. Let Σ1 be a connected component of Σ \ {x} with
one-sided tangent (ax] (it has to exist) and let x̄ ∈ Σ1.

1. For any one-sided tangent (āx̄] of Σ at x̄ the equality ∠((āx̄), (ax)) = o|x̄x|(1) holds.

2. Let (āx̄] be a one-sided tangent at x̄ of any connected component of Σ\{x̄} not containing x. Then ∠((āx̄], (ax]) = o|x̄x|(1).

For planar average distance minimizers it is proved (see [10]) that away from branching points an average distance minimizer
Σa is locally at least as regular as the graph of a convex function, namely that the Right and Left tangent maps admit some
Right and Left limits at every point and are semicontinuous. More precisely, for a given parametrization γ of an injective
Lipschitz arc Γ ⊂ Σa, by existence of blow up limits one can define the Left and Right tangent half-lines at every point x ∈ Γ
by

TR(x) := x+ R+. lim
h→0

γ(t0 + h)− γ(t0)

h

and

TL(x) := x+ R+. lim
h→0

γ(t0 − h)− γ(t0)

h
.

Then the following planar theorem for average distance minimizers holds.

Theorem 2.5 (Lemenant, 2011 [9]). Let Γ ⊂ Σa be an open injective Lipschitz arc. Then the Right and Left tangent maps
x → TR(x) and x → TL(x) are semicontinuous, id est for every y0 ∈ Γ there holds limy→y0;y<γy0

TL(y) = TL(y0) and
limy→y0;y>γy0

TR(y) = TR(y0). In addition the limit from the other side exists and we have limy→y0;y>γy0
TL(y) = TR(y0) and

limy→y0;y<γy0
TR(y) = TL(y0).

An immediate consequence of the theorem is the following corollary:

Corollary 2.6. Assume that Γ ⊂ Σ is a relatively open subset of Σ that contains no corner points nor branching points. Then
Γ is locally a C1-regular curve.

2.4 Planar example of infinite number of corner points

Recall that each maximal distance minimizer at the plane is a finite union of simple curves. These curves should have
continuous one-sided tangents but do not have to be C1: there exists a minimizer with infinite number of points without
tangent lines. The following example is provided in [6].

Fix positive reals r and R and let N be a large enough integer. Consider a sequence of points {Ai}∞i=1 belonging to
circumference ∂BR(0) such that N · |A2A1| = r,

|Ai+1Ai+2| =
1

2
|AiAi+1|

and ∠AiAi+1Ai+2 >
π
2

for every i ∈ N (see Fig. 2). Let A∞ be the limit point of {Ai}. We claim that polyline

Σ =

∞
⋃

i=1

AiAi+1

is a unique maximal distance minimizer for the following M .
Let V0 ∈ (A1A2] be such point that |V0A1| = r; say that A0 := V0. For i ∈ N ∪ {∞} define Vi as the point satisfying

|ViAi| = r and ∠Ai−1AiVi = ∠Ai+1AiVi > π/2. Finally, let V∞+1 be such point that V∞+1A∞ ⊥ OA∞ and |V∞+1A∞| = r.
Clearly M := {Vi}

∞+1
i=0 is a compact set.

Theorem 2.7 (Cherkashin–Teplitskaya, 2022 [6]). Let Σ and M be defined above. Then Σ is a unique maximal distance
minimizer for M .
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V2
V3

V4
V5

A1

A2 A3

A4 A5 A6

A∞

V6

V0

V∞

V∞+1

Figure 2: The example of a minimizer with infinite number of corner points

2.5 Every C1,1-smooth simple curve is a minimizer

For planar average distance minimizers Tilli proved in [15] that any C1,1 simple curve is a minimizer for some given data.
The same thing with a similar but much simpler explanations is true for maximal distance minimizers.

Theorem 2.8. Let γ be a C1,1-curve. Then γ is a maximal distance minimizer for a small enough r and M = Br(γ).

3 Explicit examples for maximal distance minimizers

Recall that Theorems 2.7 and 2.8 provide explicit examples.

3.1 Simple examples. Finite number of points and r-neighbourhood. Inverse minimizers

Here we consider Problem 1.2 in a case when M is a finite set. Then it is closely related with the following Steiner problem.

Problem 3.1. For a given finite set P = {x1, . . . , xn} ⊂ Rn to find a connected set St(P ) with the minimal length (one-
dimensional Hausdorff measure) containing P .

A solution of Problem 3.1 is called Steiner tree. Any maximal distance minimizer for any finite set in Rn is a finite union of
at most 2♯M − 1 segments. In this case maximal distance minimizers problem comes down to connecting r-neighborhoods of
all the points from M . If Br(A) are disjoint for every A ∈M then a maximal distance minimizer is a Steiner tree connecting
points of ∂Br(A), A ∈M .

The following observations and statements of this paragraph are from the paper [6].

Remark 3.2. (i) Let Σ be a maximal distance minimizer for some M and r > 0. Then Σ is a maximal distance minimizer
for Br(Σ), r.

(ii) Let Σ be a minimizer for Br(Σ) and r > 0. Then Σ is a minimizer for Br′(Σ) and r′, where 0 < r′ < r.

In all known examples a St with n terminals is an r-minimizer for a set M of n points and a small enough positive r if
and only if St in the unique Steiner tree for its terminals.

Theorem 3.3 (Cherkashin–Teplitskaya, 2022 [6]). Let St be a Steiner tree for terminals A = (A1, . . . , An), Ai ∈ Rd such
that every Steiner tree for an n-tuple in the closed 2r-neighbourhood of A (with respect to ρ) has the same topology as St for
some positive r. Then St is an r-minimizer for an n-tuple M and such M is unique.

Proposition 3.4. Suppose that St is a full Steiner tree for terminals A1, . . . , An ∈ R2, which is not unique. Then St can not
be a minimizer for M being an n-tuple of points.

Fig. 4 shows that another Steiner tree connecting the vertices of a square becomes an r-minimizer for every positive r.

3.2 Circle. Curves with big radius of curvature

Theorem 3.5 (Cherkashin–Teplitskaya, 2018 [5]). Let r be a positive real, M be a convex closed curve with the radius of
curvature at least 5r at every point, Σ be an arbitrary minimizer for M . Then Σ is a union of an arc of Mr and two segments
that are tangent to Mr at the ends of the arc (so-called horseshoe, see Fig. 5). In the case when M is a circumference with
the radius R, the condition R > 4.98r is enough.

Miranda, Paolini and Stepanov [11] conjectured that all the minimizers for a circumference of radius R > r are horseshoes.
Theorem 3.5 solves this conjecture with the assumption R > 4.98r; for 4.98r ≥ R > r the conjecture remains open.
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A

B

C

Figure 3: A maximal distance minimizer for 3-point set M = {A,B,C}

1 2

34

1 2

34

Figure 4: An example to Proposition 3.4

Problem 3.6. Find maximal distance minimizers for a circumference of radius 4.98r > R > r.

At the same time, the statement of Theorem 3.5 does not hold for a general M if the assumption on the minimal radius
of curvature is omitted as we show below.

Define a stadium to be the boundary of the R-neighborhood of a segment. By the definition, a stadium has the minimal
radius of curvature R. Let us show that if R < 1.75r and a stadium is long enough, then there is the connected set Σ′ that
has the length smaller than an arbitrary horseshoe and covers M .

Define Σ0 to be the local Steiner tree depicted in Fig. 7. Let Σ′ consist of copies of Σ0, glued at points A and B along the
stadium. Note that FM (Σ′) ≤ r by the construction. In the case R < 1.75r the length of Σ0 is strictly smaller than 2|AB|.
Thus for a long enough stadium Σ′ has length αL + O(1), where L is the length of the stadium and α < 2 is a constant
depending on Σ0 and R. On the other hand, any horseshoe has length 2L+O(1).

This example leads to the following problems.

Problem 3.7. Find the minimal α such that Theorem 3.5 holds with the replacement of 5r with αr.

Problem 3.8. Describe minimizers for a given stadium.

3.3 Rectangle

Theorem 3.9 (Cherkashin–Gordeev–Strukov–Teplitskaya, 2021 [4]). Let M = A1A2A3A4 be a rectangle, 0 < r < r0(M).
Then a maximal distance minimizer has the following topology with 21 segments, depicted in the left part of Fig. 8. The middle
part of the picture contains an enlarged fragment of the minimizer near A1; the labeled angles are equal to 2π

3
. The rightmost

part contains a much larger fragment of minimizer near A1.
All maximal distance minimizers have length approximately Per− 8.473981r, where Per is the perimeter of the rectangle.

6



M
Σ

O
M

Σ

Figure 5: A minimizer for a convex closed planar curve M with the radius of curvature at least 5r at every point, so-called
horseshoe (left). A minimizer for M = ∂BR(O), where R > 4.98r (right)

M

Σ

M

Σ

Figure 6: M is r-neighbourhood for a sufficiently smooth curve Σ and small enough r > 0

In fact, every maximal distance minimizer is very close (in the sense of Hausdorff distance) to the one depicted in the
picture.

Analogously to the stadium case one can easily show that for some sufficiently small |A1A2|
|A2A3|

< 1 and some r > 0 a minimizer

should have another topology than depicted at Fig. 8.
Also one may consider the following relaxation of Problem 3.8.

Problem 3.10. Fix a real a > 2r. Let M(l) be the union of 2 sides of length l of a rectangle a× l and Σ(l) be a minimizer
for M(l). Find

s(a) := lim
l→∞

H1(Σ(l))

l
.

If a > 10r one may add up M(l) to a stadium and use Theorem 3.5 to get s(a) = 2.

4 Tools

For the planar problem the notion of energetic points (which is also correct in Rn) is very useful.
Recall that a point x ∈ Σ is called energetic, if for all ρ > 0 one has FM (Σ \ Bρ(x)) > FM (Σ). The set of all energetic

points of Σ is denoted by GΣ. Each minimizer Σ can be split into three disjoint subsets:

Σ = EΣ ⊔XΣ ⊔ SΣ,

where XΣ ⊂ GΣ is the set of isolated energetic points (i.e. every x ∈ XΣ is energetic and there is a ρ > 0 possibly depending
on x such that Bρ(x) ∩GΣ = {x}), EΣ := GΣ \XΣ is the set of non isolated energetic points and SΣ := Σ \GΣ is the set of
non energetic points also called the Steiner part.

Note that it is possible for a (local) minimizer in Rn, n > 2 to have no non-energetic points at all. Moreover, in some
sense, any (local) minimizer does not have non-energetic points in a larger dimension:

Example 4.1. Let Σ be a (local) minimizer for a compact set M ⊂ Rn and r > 0. Then Σ̄ := Σ × {0} ⊂ Rn+1 is a (local)
minimizer for M̄ = (M × {0}) ∪ (Σ× {r}) ⊂ Rn+1 and EΣ̄ = Σ̄.

Recall that for every point x ∈ GΣ there exists a point y ∈ M (may be not unique) such that dist (x, y) = r and

Br(y) ∩ Σ = ∅. Thus all points of Σ \ Br(M) can not be energetic and thus Σ \Br(M) is so-called Steiner forest id est each
connected component of it is a Steiner tree with terminal points on the ∂Br(M).
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Σ0

A B

Figure 7: Horseshoe is not a minimizer for long enough stadium with R < 1.75r.

A1

A2 A3

A4

r

r

A1

≈
11π

12

≈ 0.98 π

Figure 8: The minimizer for a rectangle M with r < r0(M).

At the plane it makes sense to define energetic rays.

Definition 4.2. We say that a ray (ax] is the energetic ray of the set Σ with a vertex at the point x ∈ Σ if there exists non
stabilized sequence of energetic points xk ∈ GΣ such that xk → x and ∠xkxa → 0.

Remark 4.3. Let {xk} ⊂ GΣ and let x ∈ EΣ be the limit point of {xk}: xk → x. By basic property of energetic points for
every point xk ∈ GΣ there exists a point yk ∈M (may be not unique) such that dist (xk, yk) = r and Br(yk) ∩Σ = ∅. In this
case we will say that yk corresponds to xk.

Let y be an arbitrary limit point of the set {yk}. Then set Σ does not intersect r-neighbourhood of y: Br(y) ∩Σ = ∅ and
the point y belongs to M and corresponds to x.

Let [sx] ⊂ Σ be a simple curve. Let us define turn ( ˘[sx]) as the upper limit (supremum) over all sequences of points of the
curve:

turn ( ˘[sx]) = sup
n∈N,s�t1≺···≺tn≺x

n
∑

i=2

t̂i, ti−1,

where ti denotes the ray of the one-sided tangent to the curve ˘[sti] ⊂ ˘[sx[ at point ti, and t1, . . . , tn is the partition of the curve
˘[sx[ in the order corresponding to the parameterization, for which s is the beginning of the curve and x is the end. In this

case, the angle ̂(ti, ti+1) ∈ [−π, π[ between two rays is counted from ray ti to ray ti+1; positive direction is counterclockwise.

Let s̆x lay in the sufficiently small neighbourhood of x. Then if Br(y(x)) ∩ ˘[sx] = ∅, it is true that

|turn ([sx])| < 2π.

This property is the first one which is true for the plane and false in Rn with n > 2, so this is the main difference between
planar and non-planar cases. At the plane the turn is a very useful tool, see for example the proof of Theorem 3.5 [5].

The second main differ between plane and other Euclidean spaces is also concerning angles: at the plane if you know the

angles t̂i, ti−1 for i = 2, . . . k then you know the angle t̂1, tk which is not true for Rn with n > 2.

4.1 Derivation in the picture

During this subsection M is a planar convex closed smooth curve with the radius of curvature greater than r.

Lemma 4.4. (i) Let x be an isolated energetic point of degree 1 (i.e. Q is the end of the segment [QX ] ⊂ Σ) with unique
y(Q). Then Q, X and y(Q) lie on the same line.

(ii) Let W be an isolated energetic point of degree 2 (i.e. W is the end of the segments [WZ1] and [WZ2] ⊂ Σ) with unique
y(W ). Then ∠Z1Wy(W ) = ∠y(W )WZ2.

The following proposition describes the possible situation to apply some calculus of variation.

8



Proposition 4.5. Let y ∈ M be a point such that Br(y) ∩ Σ = ∅ and ∂Br(y) contains energetic points x1 and x2. Define
Y = ∂Br(y) ∩Mr. Then

(i) points x1 and x2 lie on opposite sides of the line (yY );

(ii) derivatives of length of Σ in neighborhoods of x1 and x2 when moving y along M are equal.

In [7] the derivative of length of Σ in a neighborhood of x when moving y along M is calculated. The derivative depends
on the behavior of Σ in the neighborhood of x. Since M has large radius of curvature, ∂Br(x) intersects M in at most 2
points, so every energetic point has at most 2 corresponding y. Thus, we have the following 4 cases.

1. x has order 1, and there is unique corresponding y(x). Then the derivative is equal to

cosα,

where α = ∠([xy(x)), l), l is a tangent ray to M at point y(x), in the direction of increasing γ(x).

2. x has order 2, and the unique corresponding y(x). Since x has order 2, Bε(x) ∩Σ = [xz1] ∪ [xz2] for small enough
ε > 0. Then the derivative is equal to

2 cosα cos
∠z1xz2

2
,

where α = ∠([xy(x)), l), l is a tangent ray to M at point y(x), in the direction of increasing γ(x).

3. The degree of point x is 1, and there are two distinct points y1(x) and y2(x). Define α = ∠xy1(x)y2(x) =
∠xy2(x)y1(x) and let δ be the angle between y1(x)y2(x) and M .

Let β be the angle between [zx] and the x axis. Then the derivative is equal to

cos(α+ δ) sin(α+ β)

sin(2α)
.

4. The degree of point x is 2, and there are two distinct points y1(x) and y2(x). The derivative is equal to

cos(α + δ)

sin(2α)
(sin(α+ β) + sin(α+ γ)),

where β and γ are the angles between the x axis and the segments [z1x] and [z2x], respectively, α and δ are similar to the
previous case.

If M is piece-wise smooth one can also apply such type of derivation, in particular it is heavily used in the proof of
Theorem 3.9.

4.2 Convexity argument

Suppose that we fix some M0 ⊂M and consider a (possible infinite) tree T which vertices are encoded by points of M0. Let
us pick an arbitrary point from Br(m) for every m ∈ M0 and connect such points by segments with respect to T . Consider
the length L of such a representation of T ; note that we allow the representation to contain cycles or edges of zero length.

Then L is a convex function from (Rd)M0 to R. Also if v, u ∈ Br(m), then αv + (1 − α)u also lies in Br(m). It implies
that the sets of local and global minimums of L coincide and form a convex set. It usually means that L is a unique local
minimum.

This approach allows to show that if one fix a topology of a solution, then Steiner problem has a unique solution.

5 The rest

5.1 Γ-convergence

Γ-convergence is an important tool in studying minimizers based on approximation of energy. For Euclidean space the following
definition of Γ-convergence can be used. Let X be a first-countable space and Fn: X → R a sequence of functionals on X .
Then Fn are said to Γ-converge to the Γ-limit F : X → R if the following two conditions hold:

• Lower bound inequality: For every sequence xn ∈ X such that xn → x as n→ +∞, F (x) ≤ lim infn→∞ Fn(xn).

• Upper bound inequality: For every x ∈ X , there is a sequence xn converging to x such that F (x) ≥ lim supn→∞ Fn(xn).
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In the case of maximal distance minimizers for a given compact set M and number l > 0 we can consider a space X
of connected compact sets with one-dimensional Hausdorff measure at most l; the distance in X is Hausdorff distance (the
distance between A,C ∈ X is the smallest ρ such that A ⊂ Bρ(C) and C ⊂ Bρ(A)); for S ∈ X let us define

Fn(S) := FMn
(S) = max

y∈Mn

dist (y, S)

and a sequence xn in the second condition is a solution of the dual maximal distance minimizer problem for l > 0 and Mn (id
est xn minimizes Fn() among all points of X), where a finite set Mn ⊂M is a finite 1/n-network of M .

Clearly, both conditions hold as F (x) = limn→∞ xn for every sets xn → x.
Thus, as each maximal distance minimizer for a finite set should be a Steiner tree with a finite number of leaves, we get

that every maximal distance minimizer is a limit of Steiner trees.
This result is also proved in [1]). A relations of finite Steiner trees and maximal distance minimizer are considered in

Section 3.1.

5.2 Penalized form

Let M be a given compact set. Let us consider a problem of minimization FM (S) + λH1(S) for some λ > 0, where FM (S) =
maxy∈M dist (y, S) among all connected compact sets S. We will call this problem λ-penalized.

Clearly every set T which minimizes λ-penalized problem for some λ is a maximal distance minimizer for a given data M
and the restriction of energy r := FM (T ). Hence the solutions of this problem inherit all regularity properties of maximal
distance minimizers.

As usual in variational calculus on a restricted class, it may happen for a small variation Φε(Σ) of Σ, that the length
constraint H1(Φε(Σ)) ≤ l is violated. Hence to compute Euler–Lagrange equation associated to the maximal distance mini-
mizers problem a possible way is to consider first the penalized functional FM (S) + λH1(S) for some constant λ, for which
any competitor Σ is admissible without length constraint.

Hence it is also make sense to consider local penalisation problem: the problem of searching such a connected compact set
S that H1(S)+λFM (S) ≤ H1(T )+λFM (T ) for every connected compact T with diam (S△T ) < ε for sufficiently small ε > 0.
The solutions of this problems also inherit properties of local maximal distance minimizers.

Proposition 5.1. Consider
min

Σ compact and connected
FM (Σ) + λ(H1(Σ)− l)+

for any constant λ > 1. Then this problem is equivalent to maximal distance minimizers problem.

Proof. The same as for average distance minimizers (see Proposition 23 in [10]). We use the fact that for a connected set
S \ Tε if S is a maximal distance minimizer and H1(Tε) = ε there holds r − FM (S \ Tε) ≤ ε.

5.3 Lower bounds on the length of a minimizer

The proof of the following folklore inequality can be found, for instance in [12].

Lemma 5.2. Let γ be a compact connected subset of Rd with H1(γ) <∞. Then

Hd({x ∈ Rd : dist (x, γ) ≤ t}) ≤ H1(γ)ωd−1t
d−1 + ωdt

d,

where ωk denotes the volume of the unit ball in Rk.

The following corollary is very close to a theorem of Tilli on average distance minimizers [15].

Corollary 5.3. Let V and r be positive numbers. Then for every set M with Hd(M) = V a maximal distance r-minimizer
has the length at least

max

(

0,
V − ωdr

d

ωd−1rd−1

)

.

Theorem 2.8 follows from the fact that for a C1,1-curve and small enough r the inequality in Corollary 5.3 is sharp. Let
us provide a lower bound on the length of a minimizer in planar case.

Proposition 5.4. Let M be a planar convex set and Σ is an r-minimizer for M . Then

H1(Σ) ≥
H1(∂M)− 2πr

2
.
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