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1 Introduction
The dissertation is devoted to extremal problems in the intersection of Euclidean geometry and
combinatorics. Consider a distance graph G(Rd) of a Euclidean space, which is a complete weighted
graph with vertex set Rd and the weights from Euclidean metrics. A typical framework is G or its
“subgraph” G(V, ρ) = (V,Eρ), where V is a subset of Rd and Eρ consists of pairs of vertices at a
distance of ρ. We consider both finite and infinite V . We focus on several classical combinatorial
problems: Steiner tree problem, finding a maximal independent set and finding the chromatic number.
Note that these three problems belong to the initial Karp’s list of 21 NP-complete problems [24].

Let us start with finite and infinite versions of the Euclidean Steiner problem.

Problem 1.1. For a given finite set P = {x1, . . . , xn} ⊂ Rd find a connected set St with minimal
length (one-dimensional Hausdorff measure H1) containing P .

For a basic results on Problem 1.1 see paper [21] and book [22]. In particular it is known that
there is a finite (but possibly factorial in n) number of local minima. NP-hardness of the Euclidean
Steiner problem was shown by Garey, Graham and Johnson [19].

Problem 1.2. For a given compact set A ⊂ Rd find a set St with minimal length (one-dimensional
Hausdorff measure H1) such that St ∪ A is connected.

Existence and some local properties of a solution of Problem 1.2 are shown by Paolini and
Stepanov [32]. A solution of Problem 1.1 or 1.2 is called Steiner tree due to the absence of cycles.

Let us go to independent and chromatic numbers of metric spaces. A coloring of a given set M is
a map from M to the set of colors. A coloring of a subset M of a metric space is proper if no pair of
monochromatic points lie at distance 1 apart. The minimum number of colors that admits a proper
coloring of M is called the chromatic number of M ; we denote it by χ(M). In the case of M ⊂ Rd,
the distance typically comes from the induced Euclidean metric on M .

A slightly different point of view is to consider a unit distance graph G(M): the points of M are the
vertices of G(M) and edges connect points at unit distance apart. By definition, χ(M) = χ(G(M)).
The de Bruijn–Erdős theorem [13] states that if χ(M) is finite then there is a finite subgraph H of
G(M) such that χ(H) = χ(G(M)).

To find the chromatic numbers of a metric space is a classical problem; the most famous particular
question belongs to Nelson and Hadwiger and consists in the finding the chromatic number χ(R2) of
the Euclidean plane. The best known bounds in this case are 5 ≤ χ(R2) ≤ 7, see [14].

Define graph G(d, k, ε), which vertices are the point of

Slice(d, k, ε) := Rd × [0, ε]k

and edges connect points at the Euclidean distance 1 apart. Put

χ[Slice(d, k, ε)] := χ[G(d, k, ε)],

where χ(H) is the chromatic number of a graph H. Obviously for every positive ε one has

χ(Rd) ≤ χ[Slice(d, k, ε)] ≤ χ(Rd+k).

Since χ(Rd) = (3 + o(1))d (see [27]), the chromatic number of a slice is finite. Note that the best
known lower bound is also exponential [36].
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2 Results

2.1 Results of Chapter 2

The first chapter of the dissertation is devoted to the Euclidean Steiner tree problem. It is well-known
that the Steiner problem may have several solutions; the simplest example is the vertices of a square.
We show that this situation is rare for planar configurations.

Let us denote by Pd := (Rd)n \ diag the space of labelled n-point configurations x1, . . . , xn ∈ Rd

of distinct points in the Euclidean space, where diag is the union of (dn− d)-dimensional subspaces
xi = xj, i ̸= j. A configuration P ∈ Pd is ambiguous if there are several Steiner trees for P . It was
shown by Ivanov and Tuzhilin [23] that the set of non-ambiguous configurations contains a subset
which is open and dense in P2. We strengthen it as follows.

Theorem 2.1 (Basok–Cherkashin–Rastegaev–Teplitskaya [1]). Assume that n ≥ 4, d ≥ 2. Then the
set of planar ambiguous configurations in P2 has Hausdorff dimension 2n− 1.

Edelsbrunner and Strelkova [16, 15] showed that is we fix a combinatorics of a solution, then for
every d ≥ 2 the subset of configuration in Pd for which a unique Steiner tree has a given combinatorics
is path-connected. We extend this result.

Theorem 2.2 (Basok–Cherkashin–Rastegaev–Teplitskaya [1]). The subset of n-point configurations
in Pd for which there is a unique Steiner tree is path-connected.

In the proof of Theorem 2.2 we use the existence of a universal Steiner tree, id est a tree which
contains a solution of every possible finite combinatorics. The first example of such Steiner tree was
given in [34]. Also, it was the first example of an infinite indecomposable (id est cannot be represented
as a union of the solutions for A1,A2 ⊂ A) Steiner tree. However it was not self-similar and had
zero Hausdorff dimension. We provide an example of indecomposable Steiner tree for the input of
Hausdorff dimension − ln 2

lnλ
, for λ < 1/300. Let A∞(λ) be the (uncountable, compact) set consisting

of the root and the leaves of a fractal binary tree Σ(λ) with the ratio of length of edges on consecutive
levels equal to λ.

Theorem 2.3 (Cherkashin–Teplitskaya, [8]). A binary tree Σ(λ) is a Steiner tree for A∞(λ) provided
that λ < 1/300.

It is worth noting that very recently Theorem 2.3 was significantly improved.

Theorem 2.4 (Paolini–Stepanov, [33]). A binary tree Σ(λ) is a unique Steiner tree for A∞(λ)
provided that λ < 1/25.

2.2 Results of Chapter 3

The Gilbert–Steiner problem [20, 2] is a generalization of the Steiner tree problem on a specific
optimal mass transportation. Let us proceed with the formal definition.

Definition 2.1. Let µ+, µ− be two finite measures on a metric space (X, ρ(·, ·)) with finite supports
such that total masses µ+(X) = µ−(X) are equal. Let V ⊂ X be a finite set containing the support of
the signed measure µ+−µ−, the elements of V are called vertices. Further, let E be a finite collection
of unordered pairs {x, y} ⊂ V which we call edges. So, (V,E) is a simple undirected finite graph.
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Assume that for every {x, y} ∈ E two non-zero real numbers m(x, y) and m(y, x) are defined so that
m(x, y) +m(y, x) = 0. This data set is called a (µ+, µ−)-flow if

µ+ − µ− =
∑

{x,y}∈E

m(x, y) · (δy − δx)

where δx denotes a delta-measure at x (note that the summand m(x, y) · (δy − δx) is well-defined in
the sense that it does not depend on the order of x and y).

Let C : [0,∞) → [0,∞) be a cost function. The expression∑
{x,y}∈E

C(|m(x, y)|) · ρ(x, y)

is called the Gilbert functional of the (µ+, µ−)-flow.
The Gilbert–Steiner problem is to find the flow which minimizes the Gilbert functional with cost

function C(x) = xp, for a fixed p ∈ (0, 1); we call a solution minimal flow.
Vertices from supp (µ+) \ supp (µ−) are called terminals. A vertex from V \ supp (µ+) \ supp (µ−)

is called a branching point. Formally, we allow a branching point to have degree 2, but clearly it never
happens in a minimal flow.

Local structure in the Gilbert–Steiner problem was discussed in [2], and the paper [28] deals with
planar case. A local picture around a branching point b of degree 3 is clear due to the initial paper
of Gilbert. Similarly to the finding of the Fermat–Torricelli point in the celebrated Steiner problem
one can determine the angles around b in terms of masses.

Theorem 2.5 (Lippmann–Sanmartín–Hamprecht [28], 2022). A solution of the planar Gilbert–
Steiner problem has no branching point of degree at least 5.

The goal of this section is to give some conditions on a cost function under which all branching
points in a planar solution have degree 3. They are slightly stronger than the Schoenberg [37]
conditions of the embedding of the metric of the form ρ(x, y) := f(x − y) to a Hilbert space. In
particular, this covers the case of the standard cost function xp, 0 < p < 1.

Definition 2.2. Let λ be a Borel measure on R for which∫
min(x2, 1)dλ(x) < ∞. (1)

Assume additionally that the support of λ is uncountable. A function f : R≥0 → R≥0 of the form

f(t) =

√∫
sin2(tx) dλ(x) =

1

2
∥e2itx − 1∥L2(λ) (2)

is called admissible.

The main result of Chapter 3 is the following theorem.

Theorem 2.6 (Cherkashin–Petrov [5]). Let µ+, µ− be two measures with finite support on the Eu-
clidean plane R2, and assume that the cost function C is admissible. Then if a (µ+, µ−)-flow has a
branching point of degree at least 4, then there exists a (µ+, µ−)-flow with strictly smaller value of
Gilbert functional.

In particular it has the following corollary.

Theorem 2.7 (Cherkashin–Petrov [5]). A solution of the planar Gilbert–Steiner problem has no
branching point of degree at least 4.
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2.3 Results of Chapter 4

In Chapter 4 we consider the problem of minimizing the maximal distance to a given compact set
M among the sets of a given length ℓ. This problem appeared in [3] and later has been studied
in [30, 31].

First, we give a survey of the results on the maximal distance minimization problem. Then we
find maximal distance minimizers for a closed planar curve of a small enough curvature. Such an
answer was conjectured by Miranda, Paolini and Stepanov [30] for a circle of radius R > r. Let Mr

be the curve equidistant to M at a distance r in the inner direction.

Theorem 2.8 (Cherkashin–Teplitskaya, 2018 [6]). Let r be a positive real, M be a convex closed
curve with the radius of curvature at least 5r at every point, Σ be an arbitrary minimizer for M .
Then Σ is a union of an arc of Mr and two segments that are tangent to Mr at the ends of the
arc (so-called horseshoe, see Fig. 1). In the case when M is a circumference with the radius R, the
condition R > 4.98r is enough.

M

Σ

x
M

Σ

Figure 1: A minimizer for a convex closed planar curve M with the radius of curvature at least 5r at
every point, so-called horseshoe (left). A minimizer for M = ∂BR(x), where R > 4.98r (right)

The proof is technically complicated, and the main idea is to reduce the comparison of length
to the comparison of the angular measure. Some technical moments are simplified and generalized
in [11].

The chapter finished with a pack of open questions from [7]; let us emphasize the following.

Question 2.1. Does there exist a nonplanar maximal distance minimizer with infinite number of
branching points?

2.4 Results of Chapter 5

A subset I of vertices of G is independent if no edge connects vertices of I. The independence number
of a graph G is the maximal size of an independent set in G; we denote it by α(G).

Chapter 5 has a deal with independence and chromatic numbers of Johnson-type graphs. The
Johnson-type graph J±(d, k, t) in defined the following way: the vertex set consists of all vectors from
{−1, 0, 1}d with exactly k nonzero coordinates; edges connect the pairs of vertices with scalar product
t.
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We found the exact values of the independent sets in several corner cases. Let S(d,D) be the
constant of the corresponding solution of the isodiametric problem on the Hamming cube defined in
the paper by Kleitman [26],

S(d,D) :=

{∑m
j=0

(
d
j

)
if D = 2m,(

d−1
m

)
+
∑m

j=0

(
d
j

)
if D = 2m+ 1,

Theorem 2.9 (Cherkashin–Kiselev [4]). Suppose that t is a negative odd number. Then there exists
such d0(k) that for d > d0(k) one has

α[J±(d, k, t)] = S (k, |t| − 1)

(
d

k

)
.

The case t = −1 and additional arguments imply

Theorem 2.10 (Cherkashin–Kiselev [4]). Let d > 9
2
k32k. Then

α[J±(d, k, 0)] = 2

(
d− 1

k − 1

)
.

Note that for fixed k and negative t the equality

α[J±(d, k, t)] = (1 + o(1))S (k, |t| − 1)

(
d

k

)
was obtained by Frankl and Kupavskii [17, 18], but for even negative t one can not exclude o(1)-
term. Main technique in the Frankl–Kupavskii proofs is shifting, which cannot be directly applied to
Johnson type graphs, which explained this o(1)-term. Our proofs are based on the Katona averaging
method [25] which states

α(G)

|V (G)|
≤ α(H)

|V (H)|
for every subgraph H of a vertex-transitive graph G. To find a proper subgraph H is a Johnson-type
graph we use some constructions of simple hypergraphs which come from Reed–Solomon codes.

Also for k = 3 and t = −2 we found the asymptotic of the chromatic number of Johnson-type
graphs.

Theorem 2.11 (Cherkashin [10]). For all d ≥ 3 the inequalities are satisfied

⌈log2 ⌈log2 d⌉⌉ ≤ χ(J±[d, 3,−2]) ≤ 4 ⌈log2 ⌈log2 d⌉⌉+ 6.

The intuition of the proof of Theorem 2.11 comes from the fact that edges of a complete n-vertex
graph cannot be covered by less than ⌈log2(n)⌉ complete bipartite graphs.
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2.5 Results of Chapter 6

In 1976 Simmons [38] conjectured that every coloring of a 2-dimensional sphere of radius strictly
greater than 1/2 in three colors has a pair of monochromatic points at distance 1 apart. Chapter 6
contains the proof of the conjecture. This refines the result of Lovász [29], who show that there is
a sequence of radii rk with the limit 1/2, such that a 2-dimensional sphere with radius rk has the
chromatic number at least 4.

Theorem 2.12 (Cherkashin–Voronov [9]). For every r > 1
2

we have

χ(S2(r)) ≥ 4,

where S2(r) ⊂ R3 is a two-dimensional sphere.

For the case 1
2
< r ≤

√
3−

√
3

2
theorem is tight, i.e. χ(S2(r)) = 4.

Recall that the chromatic number of a sphere is finite, so the de Bruijn–Erdős theorem implies
that it is achieved on a finite subgraph. However our proof do not provide an explicit example of a
spherical subgraph with the chromatic number 4. We assume that there is a proper 3-coloring of a
sphere; then the first step of the proof shows that every color is dense in the sphere. The second step
use implicit function theorem applied to an embedding of an odd cycle with additional pendant of
every vertices. This application and density condition allow us to move every pendant vertex to a
point of color 1, which immediately gives a contradiction.

2.6 Results of Chapter 7

Chapter 7 deals with the chromatic numbers of 3-dimensional slices. The main result gives the
following bounds.

Theorem 2.13 (Cherkashin–Kanel-Belov–Strukov–Voronov [39]). There is ε0 > 0, such that for
every positive ε < ε0 holds

10 ≤ χ[Slice(3, 6, ε)] ≤ 15.

Note that the upper bound is a modification of a well-known bound which comes from a well-
known permutohedron tiling [35, 12]. The proof combines combinatorial and topological arguments.
In particular, we use the following result which is of independent interest.

Theorem 2.14 (Cherkashin–Kanel-Belov–Strukov–Voronov [10]). Let T ⊂ Rd be a regular simplex
with the edge length a =

√
2d(d+ 1). Then every proper coloring of Rd in a finite number of colors

contains a point from T belonging to the closures of at least d+ 1 colors.
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