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1. Introduction

A finite complete rewriting system & for a somigroup 5 (or [or 4 group
(i) gives a simple solulion Lo the word problem for the semigrowp 8 (or for the
group () as follows: Two words are equivalent iFand only if their f-irreducible
forms {often called normal forms, or canonical Torms) are the same,

In 1942 MILA. Newman [24] intraduced the basic concepls anel gave
the basic results concerning complete rewriting systems, In 1951 T, Evans [13]
introduced a completion procedure in order ta salve the word problem [or loops
and other classes of algebras. In 1970 DLE. Knoth and B, Bendix [17] extended
Evans’ completion procedure 1o an arbitrary fnitely presented varicty ol uni-
vorsal algebras, For an overview on the eritical-pair completion approaches see
e.g. B. Buchberger [1]. In the recent years, the Knuth-Dendix completion pro-
cedure has been used for creating complete rewriling systems for many classes
of semigroups and groups,

In the present paper we give finite complote rowriting systems [or o nm-

ber of semigronps and groups whase word problem have been solved earlier by
different methods.
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All calenlations in the present paper are by Tiand, In Che recent years,
various hmplemendations of the Kouth-Nendix completion procedore have been
developed. For an overview the reader may consult c.g. M. Hermann, C. Kirch-
ner and . Kirchner [1-1).

2. Preliminaries

In this section we review some basic Teets aboul rewriling svslems.

Lot A be aoset and let A7 be the [ree monoid on X, the cmply word of
whicl will be denoted by 1. As usual, the length of & word w e X* is denoted
by |w].

A vewriling syslem (or a sleing-rewriling system) on a sot X Qs & subsel
ool X*x X7 An element () € £, also writlen € — v, i5 called a rufe of
fi. The single-step veduction velation on X7 induced by £, which by abuse of
nolalion will also he denoled by —. is delined as lollows:

w—w il de,ge XNt FHi,r el w=uly and w=ary.

osire = s Lhe veduelion relaofon indoeod by 72,

lis rellexive and fransitive ¢
while its reflexive, symmetric and transilive closure = colncides with the con-
gruence on X * generated by R,

A rewriting systomn 2 on N s called:

terminaling, il lor any word @ £ X7 there s wo infinite chain of single-step

veduclions @ — o = a2 — ...

I

eonflucal, il Tor any reductions @ = ¢ and 2 = = there oxists w € X~ such

Lhal g — w and 2 —

focally conflvent, if Tor any sinple-step reductions @ — y and 2 — 2 Chere
exists w € X* such Whal y — w and 2 = wy

— complete, 10 15 both terminating and conlluent.

We call an irrollesive and transitive binary relation an ardeving, T7 > s
an ordering, then « 2 @ means that cither @ > » or w = n.

Lot = he an ordering on X*. This ordering is called:

I

= mwnotonie, iF it is compatible with the operation of concatenation, i.e. for a
iy € XTI v = v, Lhen also ey > woy;

— weli-founded, il {or any word o € X there is no infinile descending eliain
R = - -
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— veduetion, iU s both monolonic and well-founded.

Lol f2 be a rewriting system oo X and let = be an ordering on X7, The
ordering = is called competible with 8,30 & = ¢ for caclh rule (( — ) € .

Theorem A. (1. S, Lanklord [19]). A weariting systemr B on X s
fermdnaldng, if e ondy & there vrisle o veduetion oede viing e X* weldel fs
conepatbidle witle 1.

AsinJL Steinlach [26], we wse e following abbreviations for ordlerings:
LO ¢ lengtl-reducing ordering;
LLO-L ¢ length-plus-lexicographic ordering rom the left;
LLO-R: fenglh-plos-lexicogralic ordering from the right;
WO weight-reducing ordering;
WLO-L ¢ weight-plus-lexicographic ordering from the lefi:
WLO-R = weight plus-lexicographic ordering Trom the right;
RPO-L : recursive path ordering from the lof:
RPO-1 ¢ recursive path ordering rom the right.

A Tupetion 2 1 X — N satislving @(n) > 0 for all @ € X is ealled 3
weighi-finelion. 1L can uniquely be oxtended to lomamaorphism fram X 1o
N, which by abuse of notation will also he denobod by .

Letw,n € X7 ek @ he a welght-Tunction, lel o be g woll-Tonnded ordering
on A, called o precedenee on X et =gy (resp, =05 he Ui legieagraphic
ordering lrom the lelt (resp. from e right) on X induced by the prrecodence
e, and let > denole Lhe usual ordering on N Deline the ol e rbn s

W =po v all |rr1 e |:r|;

t>pro-g v il either |uf > |
ot Ju] = [v] and u >, b

w >rro—p v il cither [u] > |0
ar |u] = o] and u =reeepn v

uzwo v il elu) = olv);
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= ro—t v Al either @ln) > o(v)
o @lu) = sle) and w0

t >ypo-pn 0 il either plu) > ¢v)
ar ¢{u) = ele)and u >0 0

U =ppo—p ¢ either w1, v=1
oru=oau, r=0", abcX. v 0" X" anl
cibler o foand au’ >=ppo_p
o a=band W =ppooy, o
or ' Zppo_g, bo';

w =ppo_p v il cither w1, v=1
or =, v=0v'b abe X, v, e X and
either ae b and wa >ppo_p o
or @ =band v =ppo.p v
or #' Zppo-p b,

The above orderings are reduction orderings. (See epg. M. Dershowits
[11] or J. Steinhach [26]).

Lel (wey — s) € fi, (vio — 1) € £ and w, v, w are noncmply words, Then
the word wewe 1s called an overlop ambigeity of 1. Lel (v — s} € R, (war —
e fandlet w =1 and w =1 mply 5 £ 1. Then the word v is called an
inelusion antbiguity of £, The pair of words (sw,wd) or {wsie, 1), respectively,
is called a eritical puir o . A critical pair (p.q) of /£ is resofeed, i there s a
word z € X such Lhat p = z and g = z, nnresolocd otherwise,

Theovem B. Lel ff be a terminaling rewriting system, Then the follow-

g eonditions are equivalent:

(i} R s conflucnt;
(ii) R iz lweally confluent;
() all critical poirs of B are vesolved,
The equivalence (i) <= (i) is due to MJILA. Newman [24] and the

equivalenve (ii) <= (i) to D15 Knoth and 1B, Bendix [17].

Given a semigroup S, a rewriting system 2 on X is callod a vewviling
system for 5,00 sgp( X 3 € =» where (£ — r) € ) is a semigroup presentation
for &, Given a monoid A4, a rewriting system Bon X s called a rewmeiting system
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Jor M iCmon(X 5 C=r where (f — r) & )15 a monoid presentation lor M.
A rewriting system Tor a group &7 s a rowriting system Tor 07 as a monoid.

A word w € X705 called f-ivvedueible, i0 Choere is no singlesstep reduetion
wo— o for some ¢ & X7 The set of all B-irreducible words is denoloed by
FRACR). IT R is worowriting system for a semigronp, Lhen we denote by £ 5( 1)
the set of all f-irreducible wards, distinet Trom Che cmply word 1. A word
v & A% is called an fl-irreducible fornr of Ve word o 00 # s an f-irredncible
word and w — v, Wo denote by S0} an f-irvodueible Torm of .

Theorem C. (M.ILA, Newman [24])

(L} Ir i ois w r'mr.l.pfr'f.r; vewneiling systew for o sendgroup 5, e here eaisls
exaelly one fi-irreducible word representing each clement of 5.

(i) If & i a complele rewriling systew for o growp G, then there exists exactly
one fE-irvedueille word represcnting cacl element of 0.

A rewriling system 2 on X ds fiwife, 0 hoth X and 2 are finite sels.

Two rewriting systems iy and £2y on the same sel X are called equivg-
lent, il they generale the same congruence on X7 Let ff e a finite rowriling
systom aud 1ot = he o reduction ordering which is compatible with &, D.15,
Kuuth and P.B. Bendix [17] {see also DUE. Colen [4]) have developed a pro-
cedure for creating a complete rewriting system which s equivalont 1o B, A
simplilied version of the Kauth-Bendix completion procedure is as lollow, For
gvery unresolved erilical pair (p,g) and every corresponcding pair (8] ), S{g))
we add a new rule S{p) — Slq) 108 (p) = Slg) or Slg) — S(ph il Sig) = Sip).
I S5(p)y and S(g) are not comparable with respoct lo Che ordertng >, Chen we
extend > such that either S(p) > S{g) or S(g} > S(p). The Knuth-Tendix
completion procedure ilerales this basic step, 1T the procediure stops, then it
will create a finite camplete rewriling system which is equivalent 1o £,

IFor some resulis ol the anthor on ['mvr']l.in'-u_; s¥sbons, see [Hﬂ, | ”f

3. Applying rewriting methods to semigroups

Given a semigroup 5, B8] denotes o contplete rewriling svatem lor 5,

I 1967 B 0L Newmano [23] introduced an cimneration wethad for
finilely presented semigroups analogons to the Todd-Coxeter ennmeration pro-
ceclnre for groups. n 1978 A, Jura [16] gave a proal ol the Newmann’s method
and in 1992 Il 1. Roberkson and Y. Unli [25] deseribed an implementation of
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the method, B, M. Neumann [23] gave two examples Lo illustrate the method,
Iu Examples 1.1 and 1.2 we give new prools of the B. 1L Nenmann's A pes.

Example 1.1. The IZ\Imuun.nu semigron.
8 =sgp (e h oy U= a®, ba = a”b).
(5] = {0% — a®, b — a*h, B — b, o7 —a'}.
Termination: RPO-1: bea.
The orderings WLO-L, WLO-It and RIPO-R. are not able to prove the
termination of 1t (5. '

FRE(R(5)) = {a, e ot a®, 0" b ab, @b, ah, ot b,

Example 1.2 helow gives a finite complete rewriting system f£2(5) for &
such that TRE((5)) coincides with the set of representatives given in 1 [1
Neumann [23].

Example 1.2, The Newmann senigroup.

S = sgp (a,b; 0¥ =a,) ba = a?b).
a8y = {a* — %, a?b — ba, bPe — ab®, b — e,
bad? — aba?, balie — abal},

Termination = LLO-L : fea

The orderings LLO-R, WO, RPO-L and RPO-I are not able to prove
the termmation of Ry(5).

TRE(Ra(8)) = {a, a®, b, 0%, ab, ab?, ba, ba®, abu, bab, aba®, abael}.

Fxamples 2.1 to 2.4 below give four equivalent finite complete rewriling
systems for the quaternion group Qs. Note that these examples illustrate 1he
mutnal independence of the orderings LLO-L, LLO-R, RPO-L and RPO-R.

Example 2.1. The quaternion group.

Qs = sqp {a,b; abe =b, beb = a).
0s) = {0* = a*, a® = a, b — a?b, o'l — b},
Termination : RPO-L: bea

The orderings WLO-L, WLO-IL and RIPPO-IU are not alile 1o prove the
termination ol J{0s).

TRE(R(Qa)) = {a, a0, et b, ab, ah, a*h}.
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Example 2.2. The quateriion group.
Qs = sgp (a,b 5 aba = b, bab = a).
Ra(Qs) = {0 — a2, @ — , ab — ba®, bt — 0},
Termination : RPO-R: boa.

The orderings WLO-L, WLO-R and BPO-L are not able to prove the
termination ol f2a( ).

TRE(Ra(Qs)) = {a.a® 0 b ba, ba®, ba®),

Example 2.3. The quaternion group.
Us = sgp (a,b ; abu = b, bab = a).
R3(Qs) = {nbe — b, bab — a, b — a2, & — a, ba? — a2h. &0 — ba}.
Termination : LLO-L : boa.

The orderings LLO-R, WO, RPO-L and RPO-IL sare not able to prove
the termination of By,

TRE(( ) = {a, 02, 0, a0, b, ab, 02h, Ber}.

Example 2.4, The quaternion group.,
(s = sgp (a,b; aba = b, bab = a).
Rl Qs) = {aba — b, bal — a, I — o2, o® — a, o2b — ba?, be® — alr} .
Termination : LLO-R : bea.

The orderings LLO-L, WO, RPO-L and RPO-I are not able to prove
the termination of 740 Qg).

TRE(F(Qs)) = {a, a2, o® ' b, ba, ba?, ab).

In 1968 1. C. Buek [2] introduced a semigroup B given in terms of gell-
eralors and defining relations and gave a solution to the word problem for B,
Examples 3.1 and 3.2 helow give two equivalent finite complote rewriling systems
for the Buck semigroup.

Example 3.1. The Duck semigroup,

B = sgp (e, by aba = b, bab = a"),
where n > 1.

Ba(B) = {0? — o™t ™42 gn) o — @01, g2ty h}.
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Clearly, il o= 1, When B = Og and 2,01 = 1{0Qx).

Termination : RPO-L: bea.

The orderings WLO-L, WLO-1L and RPO-I% are not able 1o prove He
terminalion of 27, '

TRE(RB)) = {aya?, o o™ b ad,a®h, o a0V

Fxample 3.2 below pives a linite complete rewriling svtem 250 7} for
such that [RR(Ra( B)) colucides with the set of representatives given in R C,
Buck [2, p.85d].

Example 3.2. The Buck semigroup.
B o= sgp (e, by aba =0, bab = a™),
where i > 1.
Ra(B) = {aba — b, bab — a®, §? — @*F1 g F2 — g @iy byt
bt b, bafh — @dH-RE B — 2 a)
Clearly, il n = 1, then Ra( ) = (=)
Termination : WLO-R 1 glal=1, @lb) =20, bea.
The orvderings LLO-L, WO, RPO-L and RPO-R are nol able to prove
the lermivation ol #a(1).
TR ,.Ir:i'.-ﬁ.;fl 1Y) = {a, e, 0T b baba®, b ab fh, L )

In 1969 V. Dlab and 1. 1. Neumann [12, pG1] gave an example of
ane-relalion semigroup 5§ which has no endomorphisms other than the identity
antomorphist, They lave used the method of R, Croisol [7] (see also A, L
Clifford and G. . Prestan (3, pp.169-171]) to solve the word problem for 5.
Example 4 below gives a new proofl of Lemma .2 of [12].

Example 4. The Dlab-Newmann semigroup.
S =sgp (a by ab® = bale).
B8 = {nd* — bithal.

Termination : RPO-IL: bea.
The ardreings WLO-L, WLO-IL and RPO-L are not able to prove Lhe
termination of f£{.5).
TRRIR(SY) = {Wa® ba™ b 2oz 1, 020, 8, 20,
and & > 1 for 1< &< 'H}.
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4. Applying rewriling methods to groups
Given a group €, R(€) denotes a complele rewriting system lor &,
Examples 5.0 to 54 helow give four equivalent linite complete rowriting
sysloms Tor the qualernion group (.
Example 5.1. The qualernion grougp.
Qs = mon (a,b; et = 1, 0% = a?, aba = b).
Ri(Qs) = {at — 1, 1? = o?, ab — ba?}.
Termination: RPO-R: e a.

The orderings WLO-L, WLO-R and RPO-L are not able to prove the
lermination of 72(Q).

TRE(R(Qs)) = {1, 0,0% e b, ba, ba®, ba?)
Example 5.2 below gives a linite camplete rewriting system Rq(Q3s) for
(g sueh that TRR(R2((e)) coincides with the sel of representatives given in
W, Magnus, A, Karrass and 1. Solitar [22, ClLI, Sect. 1, Exercise 7] or in A. L
Kostrikin [L8, Ch. 7, Sect. 3.5, Example 2).
Example 5.2. The quaternion graup.
(Js = mon (a,b o' =1, b* =a*, aba=1b).
Rl Q) = {at — 1, 6% — a?, ba — D).
Termination : RPO-L: b,

The orderings WLO-L, WLO-R and RPO-R are not alle to prove the
termination ol fig((2g).

TRR((Qs)) = {1, a, 0%, a®, b, ab, o, 5D},

Example 5.3. The quaternion group.
Qs =mon {a,b; o' =1, §? =a®, aba=1)
Ra(Qs) = {a* — 1, 8% — a?, aba — b, ba® — ab, a*b — ba?, bab — u}.

Termination : LLO-RL: bhea.
The orderings LLO-L, RPO-L and RPO-R are not able to prove the
termination of f5{Qs).

TRE(Ry(Qg)) = {L e, e, 0 b, ba, ba®, abd}.
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Ixample 5.4. The quaternion group.

Qs =mon (a.b; at =1, b =a® aba=1).

RalQs) = {e' = 1, 02 — a?, aba — b, a®b— ba, ba* — a®h, bab — .

Termination + LLO-1.: ben.
The erderings LLO-R, RIPO-L and RPO-R are nol able o prove e
termination of fidQs).

TR Ra(Qs)) = {1, 0,02, 0, b, ba, ab, a2}

Fxample 6 below gives a finite complete rewriting system for the dicyelic
aroup < 2,2,n = mon (a,b; o = 1, & = «", abe = ). (Sec 1. 5. ML
Coxeter and W. 0. J. Moser [6, Ch. I, Sect. 6]). Clearly, the main special cases
ofl G=< 2. 2,n>are Qg =< 2,22 and T =< 2,2,3 >. [We use the notation
T for < 2,2,3 > in accordanee with T. W, Hungerlord [13, p.98]).

Example 6. The dicyelic groap.
(= mon (b a?® =1, ¥ =a", bo=a®""10).
where n > 2.
RBG) = fa® — 1, b* — a®, bo — a?" 710,

Termination : HPO-L 1 bea.
The orderings WLO-L, WLO-IU and RPO-JU are not able to prove Lhe
termination of f&).

TRE(R(GY = {afb0<i< 20,057 < 1]

In 1986 P'h. LeChenadec [20, Ch.6, Sect.3] gave a finite complete rewrit-
ing system for the dihedral group 0, Examples 7.1 and 7.2 helow give two
equivalent finite complete rewriting systems {or 1., distinct from the rewriling
system due to LeChonadee [20]. Example 7.1 gives a finite complele rewriting
system f,(D,) for D, such that TRE{ R (D)) coincides with the sel of repre-
senabives given in W, Magnus, A, Karrass and D, Solitar (lov the case n = 3)
[22, Ch.T, Sect.], Txercise G(a)], or in P. M. Cahn (for the case w = 3) [, p.157].

Example 7.1. The dilicdral group of dogree .

Dy=mon (a,b; a" =1, 0¥ =1, ab=ba""1)

where n > 3.

Ry D)= ‘{”«ﬂ - 1, b? — 1, ah— D1 }
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Termination : RPO-R: bea.
The orderings WLO-L, WLO-IU and RPO-I are nol able o prove the
terminalion of £, ).

TRE(I D)) = {La,a® . a"  bobaba®, 0 b=

Example 7.2 below gives o finite complete rewriting system fa(02,) Tor
D, sweh that SRR L0000 coineides with the sel of represontilives given in
W. Magnus, A, Karrass and 1. Solitar [22, Ch.I, Secl.1, Bxercse 8], or in A,
I Kostrikin [18, Cl.7. Sect.3.3, Example U, or in T W, Hungerford [15, CL.I,
Thearem G.13].

Example 7.2. The diliedral group of degree n.
Dy =mon {a,b ; =1, i =1, ba=a*" '),
where n = 3.
Ro(2,) = {a* — 1, 1* = 1, ba — a™ 1},

Termination : RPO-L: bea.
The orderings WLO-L, WLO-IU and RPO-IR are not able to prove the
termination of (D, ).

TRE(Ry( D)) = {loaa®, o a™ b ab, e, ..., 0" 1)

Lixample 8 helow gives a finite complete rewriling system for Lhe meta-
cyclic gronp O x¢ O {see 5. Maclane and G, Birkholl [21, CLL 13, Section 2]}
Here we denote the metacyelic group by A (w,m, &) or simply by /. Clearly,
the main special cases of M {(n, m, E) are the dihedral group £, = M{n,2,m1-1)
and the direct product of two cyelic groups € and Y, or orders n and m,
reapectively, O, x Oy = M(n,m, 1),

Example 8 The metacyclic group.
M=wmon (a,b; a® =1, ™ =1, ba = a*h),
where n 22, m 22, > 1and 2™ =1 (modn).
R{M)={a" — 1, 0™ =1, be— ab}.
Clearly, if w 2 3, m =2 and L =un — 1, then R(M) = .0 02,).
Termination : WPO-L: bea.

If i = 2, then the orderings WLO-L, WLO-R and RPO-IL are not able
to prove the Ltermination of £( A1),
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ITRE(RIM Y = {a'bi s 0 i<m, 0 <m).

I 1986 Ph. LeChenadee (20, ChG, Sect.3] gave o linite complete rewrit-

ing system for the allernating group A Example 9 helow gives o new finite
complete rewriting system 00 Ayg) Tor Ay such Chat £RECRCAL)) coineides wilh
the sel of representatives given in W, Magnus, A, Karrass and D Solitar [22,
Ch.l, Sect.2, Exercise 12].

Example 9. The alternating group of degree .
Ay =mon (a,b; o = 1, 0* = 1, bab = a2ba?).
Ry = {o — 1, 8 — 1, bab — a%ba®, bath — wba).

Termination: RPO-L : bea,
or RPO-IL: boa,
or WO @ ofa) =1, «(h) =1

The orderings LLO-L and LLO-R are not able to prove the tormination

84

J.

4.

ey |

3.

TRE(B AN = {l.,fr-,r:"l,fr,aﬁ,r:zf;,Em,l4';;;;2,.—;#;,-;,_;.u_br;"_n_'-ff;.r;..r;%.r.l_'""}_
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