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1. Introduction

Many of the results of the present paper hold over an arbitrary field of characteristic 0. 
But in the spirit of classical invariant theory we shall work over the field C of complex 
numbers. A possible way to develop noncommutative invariant theory is the following. 
One considers the tensor algebra

T (Wm) =
∑
n≥0

W⊗n
m = C ⊕Wm ⊕ (Wm ⊗Wm) ⊕ (Wm ⊗Wm ⊗Wm) ⊕ · · ·

of the m-dimensional complex vector space Wm = CXm, m ≥ 2, with basis Xm =
{x1, . . . , xm} with the canonical action of the general linear group GLm(C). Then the 
action of GLm(C) is extended diagonally on T (Wm). For a subgroup G of GLm(C) one 
studies the G-invariants of the factor algebra T (Wm)/I, where I is an ideal of T (Wm)
which is stable under the action of GLm(C). Maybe the most interesting algebras to 
study are the relatively free algebras Fm(R) of varieties of unitary associative algebras 
R. One considers the free unitary associative algebra C〈Xm〉 which is isomorphic to 
the tensor algebra T (Wm) and the ideal I consists of all polynomial identities of the 
variety R. Relatively free associative algebras share a lot of nice properties typical for 
polynomial algebras. More generally, one may consider the free nonassociative (unitary 
or nonunitary) algebra C{Xm} modulo the ideal of the polynomial identities of a variety 
R of not necessarily associative algebras. For a subgroup G of GLm(C) one studies the 
algebra of G-invariants

(T (Wm)/I)G = {f(Wm) ∈ T (Wm)/I | g(f) = f for all g ∈ G}.

The algebra (T (Wm)/I)G is graded and its Hilbert (or Poincaré) series is

H((T (Wm)/I)G, z) =
∑
n≥0

dim(W⊗n
m /(W⊗n

m ∩ I))Gzn.

As in the case of classical invariant theory the computation of the Hilbert series of the 
algebra of G-invariants is one of the main problems in noncommutative invariant theory.

In our paper we consider a more general situation. We have a direct sum of polynomial 
GLd(C)-modules

W =
∑
n≥0

W (n) = W (0) ⊕W (1) ⊕W (2) ⊕ · · · .

Then W has a canonical N0-grading with W (n) being the homogeneous component of de-
gree n. The GLd(C)-action induces an Nd

0 -grading. The homogeneous component W (n,α)

of W (n) of degree α = (α1, . . . , αd) consists of all elements w of W (n) with the property
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diag(ξ1, . . . , ξd)(w) = ξα1
1 · · · ξαd

d w, where diag(ξ1, . . . , ξd) =

⎛
⎜⎜⎝
ξ1 0 · · · 0
0 ξ2 · · · 0
...

...
. . .

...
0 0 · · · ξd

⎞
⎟⎟⎠ .

(When we consider factor algebras of the free associative algebra C〈Xd〉 or, equivalently, 
of the tensor algebra of Wd with the canonical action of GLd(C), the Nd

0 -grading of 
C〈Xd〉 is the usual one which counts the number of entries of xi in the monomials of 
C〈Xd〉.) Then the Hilbert series of W is

HGLd
(W,Td, z) = HGLd

(W, t1, . . . , td, z) =
∑

αi,n≥0
dimW (n,α)tα1

1 · · · tαd

d zn.

It is easy to see that for any subgroup G of GLd(C) the Hilbert series HGLd
(W, Td, z)

determines the Hilbert series

H(WG, z) =
∑
n≥0

dim(W (n))Gzn

of the vector space of G-invariants

WG =
∑
n≥0

(W (n))G.

Recently Domokos and one of the authors of the present paper [3] have shown that if the 
Hilbert series HGLd

(W, Td, z) is a rational function of a special kind (the so called nice 
rational function), then the Hilbert series H(WG, z) is a rational function for a large 
class of groups G, including the cases when G is reductive or G is a maximal unipotent 
subgroup of a reductive subgroup of GLm(C). In particular this holds when W is a 
relatively free associative algebra Fm(R) and R is a proper subvariety of the variety of 
associative algebras.

In our paper we consider an arbitrary W =
∑
n≥0

W (n) which is a sum of polynomial 

GLd(C)-modules and assume that we know the decomposition of all W (n) into a sum 
of irreducible components. We present a method which allows to find the Hilbert se-
ries H(WG, z) when G is one of the classical subgroups of GLd(C) – the symplectic 
group Spd(C) (when d is even), the orthogonal group Od(C), and the special orthog-
onal group SOd(C). The approach is similar to the case when G is the special linear 
group SLd(C) or the unitriangular group UTd(C) considered in [1]. Unfortunately we 
know the GLd(C)-module structure of W in very few cases. Examples of such W are 
the relatively free algebras Fd(R) where R is the variety G generated by the Grassmann 
(or exterior) algebra E = Λ(W∞) on the infinitely dimensional vector space W∞, the 
variety T generated by the algebra of 2 × 2 upper triangular matrices, the variety M
generated by the algebra of 2 × 2 matrices, the variety var(E ⊗ E) generated by the 
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tensor square of E, as well as the relatively free algebras of some varieties of Lie and 
Jordan algebras. Other examples are the Grassmann algebra Ed = Λ(Wd), the universal 
enveloping algebra U(Fd(N2)) of the free nilpotent of class 2 Lie algebra Fd(N2) and 
the d-generated generic Clifford algebra Cld(Wp) of the p-dimensional vector space Wp, 
p ∈ N ∪ ∞. If W = T (Wm)/I is a factor algebra of the tensor algebra T (Wm) and 
Wm is a GLd(C)-module with m �= d, then the GLd(C)-module structure of W may 
be quite complicated and it is not a trivial task to find it. In this case if we know the 
GLd(C)-module structure of Wm and the Hilbert series HGLm

(T (Wm)/I, Tm, z) with 
respect to the canonical Nm

0 × N0-grading, then we can compute the Hilbert series 
HGLd

(T (Wm)/I, Td, z) with respect to the Nd
0 × N0-grading induced by the action of 

GLd(C). In the special case when the Hilbert series HGLm
(T (Wm)/I, Tm, z) is a nice ra-

tional function the methods described in [1] allow to find the decomposition of T (Wm)/I
as a GLd(C)-module and hence to compute the Hilbert series H((T (Wm)/I)G, z) for 
G = Spd(C), Od(C), and SOd(C).

As an illustration of our approach we apply our results to the algebra of invariants 
when the classical group acts on the relatively free algebras Fd(G) and Fd(T). The cele-
brated theorem of Regev [15] gives the exponential growth of the codimension sequence 
cn(R), n = 1, 2, . . ., for any proper variety of associative algebras. Later Giambruno and 
Zaicev [7,8] proved that the exponent

exp(R) = lim sup
n→∞

n
√

cn(R)

exists and is a nonnegative integer. In [9] they described the minimal varieties R of a 
given exponent, i.e., the varieties R with the property exp(S) < exp(R) for any proper 
subvariety S of R. It has turned out that G and T are the only minimal varieties of 
exponent 2. But from the point of view of invariant theory there is a big difference 
between G and T. By a result of Domokos and one of the authors [2] the algebra of 
invariants FG

m(R) is finitely generated for any reductive group if and only if R satisfies 
the polynomial identity of Lie nilpotency [x1, . . . , xc+1] = 0 and this is the case of G. 
For such varieties the recent paper [4] suggests constructive methods which allow to find 
explicit sets of generators of FG

m(R). The variety T is the minimal variety of unitary 
associative algebras with the property that there exists a reductive group G such that 
FG
m(R) is not finitely generated. Then we consider the more complicated case when 

GLd(C) acts on Wm in a noncanonical way and again compute the Hilbert series of 
FG
m(G) and FG

m(T) for several actions of GLd(C) and for G = Spd(C), Od(C), SOd(C).
In a forthcoming paper we calculate the Hilbert series of the algebras of G-invariants 

for different actions of these three classical groups on several m-generated algebras (also 
for m �= d): the relatively free algebras of the varieties of associative algebras M and 
var(E ⊗ E) which are minimal in the class of varieties of exponent 4, of three varieties 
of Lie algebras: the metabelian variety A2, the center-by-metabelian variety [A2, E], and 
the variety var(sl2(C)) generated by the algebra of 2 ×2 traceless matrices. We calculate 
also the Hilbert series of EG

m, UG(Fm(N2)), and ClGm(Wp) for the same groups G.
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2. The method

For a background and details on representation theory of the general linear group 
GLd(C) we refer to the book by Macdonald [11]. Every polynomial GLd(C)-module 
is a direct sum of irreducible submodules. The irreducible GLd(C)-modules Vd(λ) are 
indexed by partitions λ, where

λ = (λ1, . . . , λd), λ1 ≥ · · · ≥ λd ≥ 0,

is a partition in not more than d parts. The Hilbert series

HGLd
(Vd(λ), Td) =

∑
αi≥0

dimV
(α)
d (λ)tα1

1 · · · tαd

d

of Vd(λ) describing the Nd
0 -grading induced by the action of GLd(C) is equal to the Schur 

function sλ(Td) = sλ(t1, . . . , td). In particular, if

W =
∑
n≥0

W (n) =
∑
n≥0

∑
λ

mnλVd(λ),

where mnλ is the multiplicity of Vd(λ) in the decomposition of W (n) into a sum of 
irreducible GLd(C)-submodules, then

HGLd
(W,Td, z) =

∑
n≥0

∑
λ

mnλsλ(Td)zn.

As in [1] and in the papers cited there it is convenient to introduce two formal power series 
called the multiplicity series of W which carry the information for the GLd(C)-structure 
of W :

M(W,Td, z) =
∑
n≥0

(∑
λ

mnλT
λ
d

)
zn =

∑
n≥0

(∑
λ

mnλt
λ1
1 · · · tλd

d

)
zn,

M ′(W,Ud, z) =
∑
n≥0

(∑
λ

mnλu
λ1−λ2
1 · · ·uλd−1−λd

d−1 uλd

d

)
zn,

where the second multiplicity series is obtained from the first one using the change of 
variables

u1 = t1, u2 = t1t2, . . . , ud = t1 · · · td.

The following easy lemma gives the expression of the Hilbert series of WG for any 
subgroup G of GLd(C).
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Lemma 2.1. Let

W =
∑
n≥0

W (n) =
∑
n≥0

∑
λ

mnλVd(λ),

be a direct sum of polynomial GLd(C)-modules W (n) and let G be an arbitrary subgroup 
of GLd(C). Then the Hilbert series of the G-invariants of W is

H(WG, z) =
∑
n≥0

(∑
λ

mnλ dimVd(λ)G
)
zn.

Proof. If V (1)
d (λ(1)) ⊕ · · · ⊕ V

(k)
d (λ(k)) ⊂ W and

w = w(1) + · · · + w(k) ∈ WG, w(i) ∈ V
(i)
d (λ(i)),

then g(w) = g(w(1)) + · · · + g(w(k)) = w(1) + · · · + w(k) = w for all g ∈ G. Since 
g(V (i)

d ) = V
(i)
d we obtain that g(w(i)) = w(i), w(i) ∈ (V (i)

d )G, and

WG =
∑
n≥0

(W (n))G =
∑
n≥0

∑
λ

mnλV
G
d (λ)

which implies the formula for H(WG, z). �
As a consequence we obtain the following method for the computing the Hilbert series 

of WG when G = Spd(C), Od(C), SOd(C).

Theorem 2.2. In the notation of Lemma 2.1

H(W Spd(C), z) =
∑
n≥0

⎛
⎝∑

μ2

mnμ2

⎞
⎠ zn, d = 2p,

where the summation runs on all partitions μ2 = (μ1, μ1, μ2, μ2, . . . , μp, μp) with even 
length of the columns of the corresponding Young diagram [μ2];

H(WOd(C), z) =
∑
n≥0

(∑
2ν

mn,2ν

)
zn,

where the sum is on all even partitions 2ν = (2ν1, . . . , 2νd), i.e., partitions with even 
parts;

H(W SOd(C), z) =
∑(∑

mn,2ν +
∑

mn,2ν+1

)
zn,
n≥0 2ν 2ν+1



204 V. Drensky, E. Hristova / Linear Algebra and its Applications 581 (2019) 198–213
where the sum is on all even partitions 2ν = (2ν1, . . . , 2νd) and all odd partitions 2ν+1 =
(2ν1 + 1, . . . , 2νd + 1).

Proof. By our paper [6] for d = 2p the irreducible GLd(C)-module Vd(λ) contains one-
dimensional Spd(C)-invariant subspace if and only if λ is a partition with even length of 
the columns of the Young diagram [λ] and does not contain Spd(C)-invariants otherwise. 
Together with Lemma 2.1 this gives the formula for the Hilbert series H(W Spd(C), z). 
The proof of the other two cases is similar since by [6] dimV

Od(C)
d (λ) = 1 when λ is 

an even partition and V Od(C)
d (λ) = 0 otherwise. For SOd(C) we obtain from [6] that 

dimV
SOd(C)
d (λ) = 1 when λ is either an even or an odd partition and V SOd(C)

d (λ) = 0
otherwise. �

The following theorem expresses the Hilbert series of the G-invariants in terms of the 
multiplicity series for G = Spd(C), Od(C), SOd(C).

Theorem 2.3. Let W = W (0) ⊕ W (1) ⊕ W (2) ⊕ · · · be a direct sum of polynomial 
GLd(C)-modules with multiplicity series M(W, Td, z) and M ′(W, Ud, z). Then the Hilbert 
series of W Spd(C) for d even and of WOd(C) and W SOd(C) are equal to

H(W Spd(C), z) = M ′(W, 0, 1, 0, 1, . . . , 0, 1, z);

H(WOd(C), z) = Md(W, z),

where Md(W, z) is defined iteratively by

M1(W, t2, . . . , td, z) = 1
2(M(W,−1, t2, . . . , td, z) + M(W, 1, t2, . . . , td, z)),

M2(W, t3, . . . , td, z) = 1
2(M1(W,−1, t3, . . . , td, z) + M1(W, 1, t3, . . . , td, z)),

· · · · · ·
Md(W, z) = 1

2(Md−1(W,−1, z) + Md−1(W, 1, z));

H(W SOd(C), z) = M ′
d(W, z),

and M ′
d(W, z) is defined iteratively by

M ′
1(W,u2, . . . , ud, z) = 1

2(M ′(W,−1, u2, . . . , ud, z) + M ′(W, 1, u2, . . . , ud, z)),

M ′
2(W,u3, . . . , ud, z) = 1

2(M ′
1(W,−1, u3, . . . , ud, z) + M ′

1(W, 1, u3, . . . , ud, z)),

· · · · · ·
M ′

d−1(W,ud, z) = 1
2(M ′

d−2(W,−1, ud, z) + M ′
d−2(W, 1, ud, z)),

M ′
d(W, z) = M ′

d−1(W, 1, z).
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Proof. The arguments of the proof repeat verbatim the arguments of a similar theorem 
from [6] in the case when W is the symmetric algebra S(W (1)) of the GLd(C)-module 
W (1) because in both cases we start with the multiplicity series of S(W (1)) and W , 
respectively, and take a summation on the partitions λ which correspond to those 
GLd(C)-modules Vd(λ) which contribute to the Hilbert series of the G-invariants with 
nontrivial G-invariants for each of the classical groups G = Spd(C), Od(C), SOd(C). �
Remark 2.4. The formulas for the Hilbert series of the invariants of Spd(C), Od(C), and 
SOd(C) in Theorem 2.3 are in the spirit of similar formulas for the invariants of the 
special linear group SLd(C) and the unitriangular group UTd(C) given in [1]:

H(W SLd(C), z) = M ′(W, 0, 0, . . . , 0, 1, z),

H(WUTd(C), z) = M(W, 1, . . . , 1, z) = M ′(W, 1, . . . , 1, z).

3. Canonical action of GLd(C)

In this section we compute the Hilbert series of the algebras of invariants when the 
group GLd(C) acts canonically on the vector space Wd = CXd generating the algebra. 
The algebras in consideration are the relatively free algebras of the varieties of associative 
algebras G and T. The necessary background including the application of representation 
theory of the general linear group to relatively free algebras may be found in the book 
by one of the authors [5]. In what follows we assume that the relatively free algebras are 
freely generated by the set Xd. We also assume that with respect to the basis Xd = X2p
the group Sp2p(C) consists of the (2p) × (2p) matrices g with the property gtΩg = Ω, 

where gt is the transpose of g, Ω =
(

0 Ip
−Ip 0

)
, and Ip is the identity p × p matrix. 

Similarly, the group Od(C) consists of the d × d matrices g such that gtg = Id and 
SOd(C) = {g ∈ Od(C) | det(g) = 1}.

3.1. The relatively free algebra Fd(G)

The description of the polynomial identities and the cocharacter sequence of the va-
riety G generated by the Grassmann algebra E was given by Krakowski and Regev [10]
and by Olsson and Regev [14]. The variety is defined by the polynomial identity

[x1, x2, x3] = [[x1, x2], x3] = 0.

It is well known that Fd(G) has a basis consisting of all

xn1
1 · · ·xnd

d [xi1 , xi2 ] · · · [xi2q−1 , xi2q ],

nj ≥ 0, 1 ≤ i1 < i2 < · · · < i2q−1 < i2q ≤ d, 0 ≤ 2q ≤ d, and in Fd(G)
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[xσ(1), xσ(2)] · · · [xσ(2q−1), xσ(2q)] = sign(σ)[x1, x2] · · · [x2q−1, x2q], σ ∈ S2q.

The cocharacter sequence of G is

χ0(G) = χ(0), χn(G) =
n∑

i=1
χ(i, 1n−i), n = 1, 2, . . . ,

where χ(λ), λ � n, is the irreducible Sn-character indexed by the partition λ. In other 
words, the summation is on all partitions λ with Young diagram consisting of one long 
row and one long column. This implies that

Fd(G) = C +
∑
n≥1

n∑
i=1

Vd(i, 1n−i),

where Vd(λ) = 0 if λ is a partition in more than d parts.

Proposition 3.1. Let d = 2p. Then the Hilbert series of Fd(G)Spd(C) is

H(Fd(G)Spd(C), z) = 1 + z2 + z4 + · · · + z2p

and the algebra Fd(G)Spd(C) is generated by

f = [x1, xp+1] + [x2, xp+2] + · · · + [xp, x2p].

Proof. The first part of the proposition follows immediately from Theorem 2.2 because 
the only partitions (i, 1n−i) in not more than 2p parts and with even length of the 
corresponding Young diagram are (0), (12), (14), . . . , (12p). Easy computations show that 
f ∈ Fd(G)Spd(C) and f, f2, . . . , fp �= 0 which immediately implies that {1, f, f2, . . . , fp}
is a basis of the vector space Fd(G)Spd(C). �
Proposition 3.2. The Hilbert series of the algebra Fd(G)Od(C) is

H(Fd(G)Od(C), z) = 1
1 − z2

and the algebra Fd(G)Od(C) is the symmetric algebra generated by the element of Fd(G)

f = x2
1 + · · · + x2

d.

Proof. We repeat the arguments in the proof of Proposition 3.1. Since the only even 
partitions (i, 1n−i) are (2q), q = 0, 1, 2, . . ., applying Theorem 2.2 we derive that

H(Fd(G)Od(C), z) = 1 + z2 + z4 + · · · = 1
2 .
1 − z
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Since the element f is an Od(C)-invariant and its powers are nonzero in Fd(G) we 
conclude that {1, f, f2, . . .} is a basis of Fd(G)Od(C) which completes the proof. �
Proposition 3.3. The Hilbert series of the algebra Fd(G)SOd(C) is

H(Fd(G)SOd(C), z) = 1 + zd

1 − z2

and the algebra Fd(G)SOd(C) is generated by the element

f = x2
1 + · · · + x2

d

and the standard polynomial of degree d

Std(x1, . . . , xd) =
∑
σ∈Sd

sign(σ)xσ(1) · · ·xσ(d).

Proof. As in the proof of Proposition 3.2, Theorem 2.2 gives that the one-dimensional 
contributions to the algebra Fd(G)Od(C) come from the even partitions (i, 1n−i) = (2q), 
q = 0, 1, 2, . . ., and from the odd partitions (i, 1n−i) = (2k + 1, 1d−1), k = 0, 1, 2, . . ., i.e.,

H(Fd(G)SOd(C), z) = (1 + zd)(1 + z2 + z4 + · · · ) = 1 + zd

1 − z2 .

Since the standard polynomial Std = Std(x1, . . . , xd) is an SOd(C)-invariant we derive 
that Fd(G)SOd(C) has a basis

{1, f, f2, . . .} ∪ {Std, Stdf, Stdf2, . . .}

and hence is generated by f and Std. �
Remark 3.4. Applying ideas from [1] we obtain that

H(Fd(G)SLd(C), z) = 1 + zd

and Fd(G)SLd(C) has a basis consisting of 1 and Std(x1, . . . , xd).
For the unitriangular group UTd(C) we have

H(Fd(G)UTd(C), z) = (1 + z + z2 + · · · )(1 + z2 + z3 + · · ·+ zd) = 1 + z2 + z3 + · · · + zd

1 − z

and Fd(G)UTd(C) is generated by x1 and Stn(x1, . . . , xn), n = 2, 3, . . . , d.



208 V. Drensky, E. Hristova / Linear Algebra and its Applications 581 (2019) 198–213
3.2. The relatively free algebra Fd(T)

By a theorem of Maltsev [12] the polynomial identities of the algebra of c × c upper 
triangular matrices follow from the polynomial identity

[x1, x2] · · · [x2c−1, x2c] = 0.

In the special case c = 2 the cocharacter sequence of the variety T was computed by 
Mishchenko, Regev, and Zaicev [13]:

χn(T) =
∑
λ�n

mλ(T)χλ,

where

mλ(T) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if λ = (n);
λ1 − λ2 + 1, if λ = (λ1, λ2), λ2 > 0;
λ1 − λ2 + 1, if λ = (λ1, λ2, 1);
0 in all other cases.

Proposition 3.5. Let d = 2p. Then the Hilbert series of Fd(T)Spd(C) is

H(Fd(T)Spd(C), z) = 1
1 − z2 .

The algebra Fd(T)Spd(C) is not finitely generated. A set of generators can be defined 
inductively by

f1 = [x1, xp+1] + [x2, xp+2] + · · · + [xp, x2p] =
p∑

i=1
[xi, xp+i],

fn+1 =
p∑

i=1
xifnxp+i − xp+ifnxi, n = 1, 2, . . . .

Proof. As in the previous subsection the nonzero coefficients of the Hilbert series come 
from the partitions μ2 = (μ1, μ1, μ2, μ2, . . . , μp, μp). In our case these partitions are 
μ2 = (q, q), q = 0, 1, 2, . . ., and all they are of multiplicity 1. This gives the Hilbert series 
H(Fd(T)Spd(C), z). As in the case of Fd(G)Spd(C) it is easy to see that the elements fn, 
n = 0, 1, 2, . . ., are Spd(C)-invariants and they form a basis of Fd(G)Spd(C). Since fmfn =
0 for m, n > 0, we derive that the algebra of invariants is not finitely generated. �
Proposition 3.6. The Hilbert series of the algebra Fd(T)Od(C) is

H(Fd(T)Od(C), z) = 1 − 2z2 + 2z4

(1 − z2)3 .

The algebra Fd(T)Od(C) is not finitely generated.
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Proof. Again, the nth coefficient of the Hilbert series H(Fd(T2A)Od(C), z) is equal to the 
sum of the multiplicities mλ(T) of the even partitions λ of n. Hence

H(Fd(T)Od(C), z) = (1 + z2 + z4 + · · · ) + z4(1 + z4 + z8 + · · · )
∑
i≥0

(2i + 1)z2i

= 1
1 − z2 + z4

1 − z4
d

dz

∑
i≥0

z2i+1 = 1
1 − z2 + z4

1 − z4
d

dz

z

1 − z2 = 1 − 2z2 + 2z4

(1 − z2)3 .

As in the case of Fd(G)Od(C) the element

f = x2
1 + · · · + x2

d

is an Od(C)-invariant and its powers give the contribution 1 + z2 + z4 + · · · to the 
Hilbert series. The Od(C)-invariants in the commutator ideal F ′

d(T) of Fd(T) form an 
S(Cf)-bimodule. If this bimodule is generated by the homogeneous system {wj | j ∈ J}, 
then F ′

d(T)Od(C) is spanned as a vector space by

{fqwjf
r | q, r ≥ 0, j ∈ J}

and the coefficients of the Hilbert series are bounded from above by the coefficients of 
the series

1
1 − z2 + 1

(1 − z2)2
∑
j∈J

zdeg(wj).

Comparing this expression with the already computed Hilbert series we obtain

∑
j∈J

zdeg(wj) ≥ z4

1 − z4 = z4 + z8 + z12 + · · · ,

where the inequality between the series means an inequality between the corresponding 
coefficients. Since F ′

d(T)2 = 0 this implies that the algebra Fd(T)Od(C) is not finitely 
generated. �

The proof of the following proposition is similar to the proof of the previous one.

Proposition 3.7. The Hilbert series of the algebra Fd(T)SOd(C) is

H(Fd(T)SOd(C), z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − z2 + 2z4

(1 − z2)3 , if d = 2;

1 − 2z2 + z3 + 2z4

(1 − z2)3 , if d = 3;

H(Fd(T)Od(C), z), if d > 3.

The algebra Fd(T)SOd(C) is not finitely generated.
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Remark 3.8. As in Remark 3.4 one can compute the Hilbert series of Fd(T)SLd(C) and 
Fd(T)UTd(C):

H(Fd(T)SLd(C), z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1 − z2 , if d = 2;

1 + z3, if d = 3;
1, if d > 3,

H(Fd(T)UTd(C), z) =

⎧⎪⎪⎨
⎪⎪⎩

1
1 − z

+ z2

(1 − z)2(1 − z2) , if d = 2;

1
1 − z

+ z2

(1 − z)3 , if d ≥ 3.

The algebras F2(T)SL2(C) and Fd(T)UTd(C) are not finitely generated.

4. Other actions of GLd(C)

In this section we compute the Hilbert series of the algebras Fm(G)G and Fm(T)G
when G = Spd(C) (d even), Od(C), and SOd(C) for several noncanonical actions of 
the group GLd(C) on Wm. The most important step of the calculations is to find 
the multiplicity series M(Fm(G), Td, z) and M(Fm(T), Td, z) and their counterparts 
M ′(Fm(G), Ud, z) and M ′(Fm(T), Ud, z). These computations use the methods in [1].

4.1. The algebra Fm(G)

The Hilbert series of the algebra Fm(G) which counts the canonical action of GLm(C)
is

HGLm(C)(Fm(G), Tm, z) = 1
2 + 1

2

m∏
i=1

1 + tiz

1 − tiz
.

Example 4.1. Let as a GL2(C)-module W3 be isomorphic to V2(2). Then

HGL2(C)(F3(G), T2, z) = 1
2 + (1 + t21z)(1 + t1t2z)(1 + t22z)

2(1 − t21z)(1 − t1t2z)(1 − t22z)
,

M(F3(G), T2, z) = 1
1 − t21z

+ t21t2(t1 + t2)z2

(1 − t21z)(1 − t1t2z)
,

M ′(F3(G), U2, z) = 1
1 − u2

1z
+ u2(u2

1 + u2)z2

(1 − u2
1z)(1 − u2z)

.

Applying Theorem 2.3 we obtain

H(F3(G)Sp2(C), z) = M ′(F3(G), 0, 1, z) = 1 + z2
,
1 − z
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M1(F3(G), t2, z) = 1
2(M(F3(G),−1, t2, z) + M(F3(G), 1, t2, z))

= 1
1 − z

+ t22z
2(1 + z)

(1 − z)(1 − t22z
2) ,

H(F3(G)Od(C), z) = M2(F3(G), z) = 1
1 − z

+ z2

(1 − z)2 ,

M ′
1(F3(G), u2, z) = 1

2(M ′(F3(G),−1, u2, z) + M ′(F3(G), 1, u2, z))

= 1
1 − z

+ u2(1 + u2)z2

(1 − z)(1 − u2z)
,

H(F3(G)SO2(C), z) = M ′
2(F3(G), z) = M ′

1(F3(G), 1, z) = 1
1 − z

+ 2z2

(1 − z)2 .

Example 4.2. Let as a GL2(C)-module W4 be isomorphic to V2(1) ⊕ V2(1). Then

HGL2(C)(F4(G), T2, z) = 1
2 + (1 + t1z)2(1 + t2z)2

2(1 − t1z)2(1 − t2z)2
,

M(F4(G), T2, z) = 1 + t1(t1 + 3t2)z2 + 2t21t2z3 + t21t2(−t1 + 4t2)z4 − 2t31t22z5

(1 − t1z)2(1 − t1t2z2) ,

M ′(F3(G), U2, z) = 1 + (u2
1 + 3u2)z2 + 2u1u2z

3 + u2(−u2
1 + 4u2)z4 − 2u1u

2
2z

5

(1 − u1z)2(1 − u2z2) .

H(F4(G)Sp2(C), z) = M ′(F4(G), 0, 1, z) = 1 + 3z2 + 4Z4

1 − z2 ,

H(F4(G)O2(C), z) = 1 + z2 + 7z4 − z6

(1 − z2)3 ,

H(F4(G)SO2(C), z) = 1 + 5z2 + 11z4 − z6

(1 − z2)3 .

4.2. The algebra Fm(T)

The Hilbert series of Fm(T) is

HGLm(C)(Fm(T), Tm, z) = 2
m∏
i=1

1
1 − tiz

+ ((t1 + · · · + tm)z − 1)
m∏
i=1

1
(1 − tiz)2

.

Most of the multiplicity series for Fm(T) in the cases considered in the sequel were 
computed in [1] using the Hilbert series HGLm(C)(Fm(T), Tm, z).

Example 4.3. Let as a GL3(C)-module W3 be isomorphic to V3(12). Then

M(F3(T), T3, z) = 1 − t1t2z + t21t
2
2(t1 + t3)t3z3

2 2 2 ,
(1 − t1t2z) (1 − t1t2t3z )
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M ′(F3(T), U3, z) = 1 − u2z + (u1u2 + u3)u3z
3

(1 − u2z)2(1 − u1u3z2) ,

H(F3(T)O3(C), z) = H(F3(T)SO3(C), z) = 1 − z − z2 + 2z3

(1 − z)(1 − z2)2 .

Example 4.4. Let as a GL2(C)-module W4 be isomorphic to V2(1) ⊕ V2(1). Then

M(F4(T), T2, z) = 1
(1 − t1z)4(1 − t1t2z2)5 (1 − 2t1z + t1(2t1 − t2)z2 + 10t21t2z3

+ 3t21t2(−3t1 + 4t2)z4 − 34t31t22z5 + t31t
2
2(19t1 − 8t2)z6 + 18t41t32z7

+ 2t41t32(−4t1 + t2)z8 − 4t51t42z9 + 2t61t42z10),

M ′(F4(T), U2, z) = 1
(1 − u1z)4(1 − u2z2)5 (1 − 2u1z − u2z

2 + 10u1u2z
3

+ 3u2(−3u2
1 + 4u2)z4 − 34u1u

2
2z

5 + u2
2(19u2

1 − 8u2)z6 + 2u2
1z

2

+ 18u1u
3
2z

7 + 2u3
2(u2 − 4u2

1)z8 − 4u1u
4
2z

9 + 2u2
1u

4
2z

10),

H(F4(T)Sp2(C), z) = 1 − z2 + 12z4 − 8z6 + 2z8

(1 − z2)5 ,

H(F4(T)O2(C), z) = 1 − 3z2 + 30z4 + 2z8

(1 − z2)7 ,

H(F4(T)SO2(C), z) = 1 + z2 + 43z4 + 19z6 − 6z8 + 2z10

(1 − z2)7 .

Example 4.5. Let as a GL2(C)-module W3 be isomorphic to V2(2). Then

M(F3(T), T2, z) = 1 − t1(t1 + t2)z + t21t2(2t1 − t2)z2 + 2t31t22(t1 + t2)z3 − 2t51t32z4

(1 − t21z)2(1 − t1t2z)(1 − t21t
2
2z

2)2 ,

M ′(F3(T), U2, z) = 1 − (u2
1 + u2)z + (2u2

1 − u2)u2z
2 + 2(u2

1 + u2)u2
2z

3 − 2u2
1u

3
2z

4

(1 − u2
1z)2(1 − u2z)(1 − u2

2z
2)2 ,

H(F3(T)O3(C), z) = 1 − 2z + 4z3 − 2z4

(1 − z)3(1 − z2)2 ,

= H(F3(T)SO3(C), z) = 1 − 2z + z2 + 4z3 − 2z4

(1 − z)3(1 − z2)2 .

Example 4.6. Let as a GL3(C)-module W6 be isomorphic to V3(2). Then

H(F6(T)O3(C), z) = H(F6(T)SO3(C), z)

= 1 − 2z − z2 + 4z3 + 6z4 + 2z5 − 12z6 + z7 + 6z8 + 4z9 − 2z10 − 4z11 + 2z12

((1 − z)(1 − z2)(1 − z3))3 .
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