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Preface

Fractional Calculus, as an extension of the classical Calculus, started with
the ideas of Gottfried Leibniz by the end of the XVII century and had been de-
veloped progressively up to now. During the recent decades Fractional Calculus
attracted the attention of many researchers in different areas, such as mathe-
matics, physics, biology, chemistry, engineering, social sciences. The main rea-
son is that the differential and integral equations of fractional order can model
mathematically various natural and industrial processes more adequately than
these restricted to integer order. In particular, Fractional Calculus has become
a frequently used tool in hereditary physics due to the efficiency of fractional dif-
ferential equations in the modelling of anomalous diffusion or wave phenomena
when some memory mechanisms of power-law or logarithmic type are present.

Fractional partial differential equations are widely used to capture the power-
law dependence on time of the mean squared displacement in anomalous dif-
fusion processes. However, most of the complex systems do not show a mono-
scaling behavior. Instead, transitions between different diffusion regimes in
course of time are observed. One way to model such a multi-scaling behav-
ior is by replacing the single operator of fractional derivative by more general
integro-differential operators with specific memory kernels. This leads to the
so-called generalized fractional diffusion and diffusion-wave equations.

The present dissertation is devoted to the study of subordination principle
for generalized fractional evolution equations. By means of a subordination
principle, it is possible to construct solutions of such evolution equations from
the solutions of classical integer order equations, or simpler fractional order
ones. It is a useful tool for establishing well-posedness, for deriving integral
representations of the solutions, and for the study of their regularity, asymp-
totic behavior, and other properties. Moreover, the subordination principle
defines a hierarchy in the variety of generalized fractional evolution equations,
which is essential for the proper classification and understanding of the related
mathematical models.



ii PREFACE

The main tools in the present study are the theory of Fractional Calcu-
lus operators and special functions, Laplace transform, and the properties of
Bernstein functions and related classes of functions.

This dissertation is an outcome of the author’s research work during the past
seven years (2015-2021). It is based on 11 articles, published in this period: [10]-
[15], [18]-[20], [22], and [25]. In the outline below for every chapter we indicate
which of these publications have been used.

The dissertation is organized as follows. The Introduction contains a short
overview on subordination principles and motivation for the present study.
Chapter 1 contains notations, definitions and basic properties of fractional in-
tegration and differentiation operators, Laplace transform, Mittag-Leffler func-
tions and functions of Wright type. In Chapter 2, after an introduction to
Bernstein functions and some background material on abstract Volterra equa-
tions, we prove two general subordination theorems. Chapter 3, [14, 20],
is devoted to a detailed study of subordination principle for space-time frac-
tional evolution equations. As an application, a number of explicit expressions
in terms of special functions and integral representations for the solutions are
derived. The rest of the thesis is concerned with generalized time-fractional evo-
lution equations. To demonstrate the crucial role of the subordination principle
in the study of this class of equations, the fractional Jeffreys’ heat conduction
equation is considered as a model problem in Chapter 4, [22|. In Chapter 5,
[10, 11, 12|, we establish subordination results for the subdiffusion equation
of distributed order in time and for more general subdiffusion equation with
memory kernel. As an application, useful estimates are derived in the scalar
case. Chapter 6, [15], is concerned with a multinomial generalization of the
Mittag-Leffler function, which is related to relaxation equations with multiple
time-derivatives. The last two chapters consider equations describing phenom-
ena intermediate between diffusion and wave propagation. In Chapter 7,
[13, 18], an open problem concerning positivity of the fundamental solution
for distributed-order time-fractional diffusion-wave equations is discussed and
partly answered. Positivity of the fundamental solution is necessary for physical
acceptability of the model, as well as for the proof of subordination principle.
Chapter 8, [13, 19, 25], is concerned with equations governing wave propaga-
tion in viscoelastic media with completely monotone relaxation moduli. The
particular case of fractional Jeffreys” fluid is studied in detail and the physical
meaning of the subordination formula is discussed. The dissertation ends with
concluding remarks.
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Introduction

During the recent decades Fractional Calculus attracted the attention of
many researchers |73]. Evolution equations with fractional derivatives are ex-
tensively used for modelling of materials and processes with memory. In the at-
tempt to find more adequate models, linear equations involving discrete or con-
tinuous distribution of fractional derivatives, or more general integro-differential
operators of convolutional type, are introduced [62, 97, 99]. This raises the need
of methods for study and proper classification of the variety of generalized frac-
tional evolution equations. One useful tool to achieve this goal is the so-called
principle of subordination.

The original subordination principle for stochastic processes in connection
with diffusion equations and semigroups was introduced by S. Bochner in 1949
|28]. A detailed study of stochastic processes, their transition semigroups, gen-
erators, and subordination results can be found in [29], Chapters 4.3 and 4.4.

Bernstein functions play an essential role in the definition of Bochner sub-
ordination. A function ¢ : (0,00) — R is a Bernstein function if ¢ is of class

C*, ¢(s) > 0 for all s > 0 and
(=1)" o™ (s) >0 forall neN and s> 0.

If ¢ is a Bernstein function then it admits a continuous extension to the half-
plane Rs > 0, which is holomorphic for Rs > 0, and satisfies Rep(s) > 0 for all
Jos > 0. A basic example of a Bernstein function is ¢(s) = s*, 0 < a < 1.

Consider a family of functions {p;(7)} indexed by ¢ > 0 and defined on
7 > 0, and such that for each fixed t > 0, p;(7) is a probability density
function on 7 > 0, that is,

pe(7) >0 and /Ooopt(T) dr = 1. (0.1)

For fixed ¢ > 0 the Laplace transform of p;(7) is defined by
L{p:}(s) :/ e p(r)dr, Rs>0.
0

1



2 CHAPTER 0. INTRODUCTION

A Bochner subordinator is a family {p;};~0 as defined above, such that
L{p}(s)=e ) Rs >0,

where ¢ is a Bernstein function.
A subordinator example which yields a closed form expression is the follow-

ing
t67t2/47'

Plr) =5 e

It is the special case v = 1/2 of the important Lévy subordinator family of
index a with corresponding Bernstein function ¢(s) = s®, where 0 < a < 1.

Let A be a closed linear operator densely defined on a Banach space X,
which generates a Cy-semigroup Si(t). Then the first order abstract Cauchy
problem

L{pi}(s) = e Vs,

u'(t) = Au(t), t>0; u(0)=ve X, (0.2)

is well posed and the solution u(t) is given by wu(t) = Si(t)v. Let {p:}i~0 be
a Bochner subordinator with corresponding Bernstein function ¢. Then the
Bochner integral

SP(t) = / pe(T)S1(T)vdr, ve X, t>0,
0

defines again a Cy-semigroup on X. The semigroup Sf (t) is called subordinate
(in the sense of Bochner) to the semigroup Si(t) with respect to the Bernstein
function ¢. The semigroup S (t) is generated by the operator —¢(—A) [88].
In particular, if ¢(s) = s®, then Sf’(t) is an analytic semigroup generated by
the operator —(—A)%, where the fractional power is understood in the sense
of Balakrishnan [8] (for more details see [108], Chapter 9). In this way, the
subordination principle in the sense of Bochner gives the possibility to construct
from Sy(t) new semigroups, which define the solutions of the Cauchy problem
(0.2) when the operator A is replaced by a new operator —¢(—A). For details on
subordination and Bochner’s functional calculus we refer to [101], Chapter 13.

Another type of subordination formulae establishes a relation between the
solutions of two Cauchy problems with the same operator A, but different
operators acting with respect to the time variable ¢. For instance, there is
always a simple way to go from the second order Cauchy problem to the first
order one. Assume the operator A generates a strongly continuous cosine family



Sa(t), t > 0, on a Banach space X (see e.g. [2], Section 3.14). This is equivalent
to well-posedness of the second order Cauchy problem

u’(t) = Au(t), t>0; u(0)=ve X, v (0)=0, (0.3)

which solution is given by u(t) = So(t)v for t > 0. If A generates a cosine
family S(t) then A generates a holomorphic Cy-semigroup Si(t) of angle 7/2,
which is related to the cosine family Ss(t) by the abstract Weierstrass formula
(|2], Theorem 3.14.17)

1 o 2
i) = —= /O eI G (F) dr, > 0. (0.4)

This formula allows one to compute the solution of the first order Cauchy

problem (0.2) from the solution of the second order one (0.3) and shows that

the subordinate solution possesses better regularity. The subordination relation

(0.4) was generalized in [9] to the case of fractional evolution equations.
Denote by “D;" the Caputo fractional derivative of order o > 0

Diu(t) = ! t — pymeeslym) 0y dr
Diu(t) RGeS () dr,

L(m—a
where m is a positive integer, such that m — 1 < a < m. Consider the
abstract Cauchy problem for the fractional evolution equation with a general
linear closed operator A densely defined on a Banach space X

“Diu(t) = Au(t), t>0, 0<a<2, (0.5)

supplemented with the initial conditions u(0) = v € X for 0 < a < 1 and
uw(0) = v e X, v/(0) =0 for 1 < a < 2. Denote by S,(t) the solution
operator corresponding to problem (0.5), i.e. the solution of (0.5) is given by
u(t) = Sa(t)v. For a = 1 and a = 2 the corresponding solution operators are
respectively the Cyp-semigroup of operators Si(t) and the strongly continuous
cosine family Sy(t), generated by the operator A.

The subordination principle for the abstract Cauchy problem (0.5) states
that if problem (0.5) is well posed for some a* € (0, 2] then it is well posed for
all « € (0, a*) and the corresponding solution operators S, and S, are related
via the subordination identity

Sa(t) = /OOO Pajar(t, T)Sax(T)dr, t >0, (0.6)
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where ¢, (t,7) = t77M,(1t™7) with M,(-) being a function of Wright type
defined by the series

< (—2)"
M”(Z)_nz:%nlr(—mﬂ—fy)’ 0<y<1, zeC. (0.7)

For any fixed ¢ > 0 the subordination kernel ¢, (¢, 7) is a probability density
function on 7 > 0, i.e.

o (t,7) >0, / o (t, 7)dT =1, t,7 > 0.
0

If S, is a bounded solution operator, then S, is a bounded analytic solution
operator in some sector of the complex plane.

Therefore, the main idea of the subordination principle for problem (0.5) is
that one and the same operator A guarantees better properties of the solution
when « is smaller and that the set of operators A, for which (0.5) is well posed,
shrinks when « increases. In particular, if there exists an exponentially bounded
solution operator for a > 2, then A is necessarily a bounded operator [9]. For
this reason we consider only a € (0, 2].

Subordination principle for fractional evolution equations has found various
applications, e.g. in the study of inverse problems [84], for asymptotic analy-
sis of diffusion wave equations [63], for the study of stochastic solutions [80],
semilinear equations of fractional order [57], systems of fractional order equa-
tions [54|. Based on the subordination principles for space- and time-fractional
diffusion equations and the dominated convergence theorem, exact asymptotic
expressions for the fundamental solution of the multi-dimensional space-time
fractional diffusion equation are established recently in [34]. Stochastic inter-
pretation of the subordination principle for fractional evolution equations is
discussed in [48, 77, 80, 97]. Other useful applications can be found in [110].

It is worth noting that the subordination relation (0.6), considered as an
integral transform

SF(t) = / ot () dr, >0,

appears to be a particular case of an integral transform introduced by Stankovié
in [104]. For a recent study on related classes of integral transforms we refer
to [94]. Moreover, the subordination relations for time-fractional evolution



equations can be placed in the general context of parameter-shift formulas and
integral transforms composition method as in [40].
Subordination principle for abstract Volterra evolution equations

u(t):v+/0tk(t—T)Au(T)dT+f(t), t>0, velX, (0.8)

is studied in [93], Chapter 4, by employing the notion of completely positive
kernels.

In general, a subordination principle consists of the following: Given two
Cauchy problems, (P) and (P,), problem (P) is called subordinated to problem
(P,) if and only if well-posedness of problem (P.) implies well-posedness of
problem (P) and the solution operator S(t) of problem (P) admits the integral
representation

S(t) = /OOO o(t, 7)Su(T)dr, t >0,

where S, () is the solution operator of problem (P,) and (¢, 7) is a probability
density function (PDF) in 7 > 0 when ¢ > 0 is considered as a parameter, that
is

(t, ) >0, /000 o(t,7)dr = 1. (0.9)

An important particular case of (0.5) is the time-fractional diffusion equa-
tion, where 0 < o < 1 and A is some realization of the Laplace operator. It was
derived via the framework of a continuous time random walk under the assump-
tion that the mean waiting time has a power-law decaying tail proportional to
t% « € (0,1). The solution of this equation accurately describes the power-law
decaying behavior in a large number of anomalous diffusion processes. To im-
prove the modeling accuracy, evolution equations with multiple time-derivatives
or time-derivatives of distributed order are proposed, which permit to describe
also processes whose scaling law changes with time [97, 98]. Generalized diffu-
sion equations with different memory kernels are popular mathematical tools for
description of a variety of non-Fickian diffusion processes. The relation between
generalized diffusion equations and subordination schemes is recently discussed
in [33]. On the other hand, generalized diffusion-wave equations emerge in
the modeling of wave propagation in viscoelastic media [75, 109]. As a re-
sult, various linear generalizations of the single-order diffusion-wave equation
(0.5), which involve fractional time derivatives in their formulation, have been
proposed in the literature.
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The useful applications of the subordination principle for fractional evolu-
tion equations (0.5), mentioned above, give the author the motivation to study
the subordination principle for different types of generalized linear fractional
evolution equations. In the present dissertation we develop a methodology for
establishing subordination relations, which are helpful for the classification and
understanding of a variety of mathematical models, which use fractional deriva-
tives in their formulation. Several equations of this type are analyzed with the
subordination principle as the unifying theme. The considered equations can
be divided in three classes:

(I) space-time fractional evolution equations;
(IT) evolution equations, subordinated to the first-order equation (0.2);

(IIT) evolution equations, subordinated to the second-order equation (0.3),
which do not belong to the class (II).

Class (I) consists of fractional evolution equations (0.5) with a € (0, 1), in which
the operator A is replaced by the operator —(—A)”, where 8 € (0, 1), i.e. they
are fractional equations simultaneously in space and in time. When the operator
A is the second-order space-derivative, or a multidimensional Laplace operator,
or a more general elliptic operator, then the classical first-order problem (0.2)
is a mathematical model of diffusion and the classical second-order problem
(0.3) is a mathematical model of wave propagation. Therefore, for convenience,
in this dissertation we use the notions generalized subdiffusion equations and
generalized diffusion-wave equations for the equations of groups (II) and (III),
respectively.

For a unified approach, the considered equations are represented in the form
of Volterra integral equation (0.8). As in the case of the original Bochner sub-
ordination, the proofs are based on the theory of Bernstein functions [101]| and
Laplace transform. Various applications of the derived subordination relations
are presented: integral representations for the solutions of the considered prob-
lems, closed-form solutions in particular cases, analysis of regularity, asymptotic
behaviour, monotonicity; visualization of the solution behaviour; estimates for
the solutions of the scalar equations, which are useful when boundary-value
problems are studied applying eigenfunction expansion technique.



Chapter 1

Fractional calculus operators
and special functions

This chapter contains preliminaries used throughout the whole dissertation.
The operators of fractional integration and differentiation of Riemann-Liouville
and Caputo type are introduced, as well as some special functions intimately
related to fractional calculus: Mittag-LefHer function and its Prabhakar gener-
alization, Mainardi function and the Lévy extremal stable density.

1.1 Some notations and definitions

The sets of positive integers, real, and complex numbers are denoted by N,
R, C, respectively, and Ny = NU {0}, R, = (0,00), Cy = {z € C, Rz > 0}.
By >(#) we denote the open sector in C

¥(0) = {z € C\{0}; |arg z| < 0}, 0 € (0,7).

For the multivalued complex functions, considered in this dissertation, such
as log z or z* = exp(alog z), we take the principal branch.

Let X be a Banach space with norm ||.||. Assume —oco < a < b < 400 and
1 <p < oo. Then LP((a,b); X) denotes the space of all (equivalent classes of)
Bochner-measurable functions f : (a,b) — X, such that || f(¢)||? is integrable
for t € (a,b). It is a Banach space with norm

b 1/p
oo = ( / ||f(T)deT> |
7
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Let m € N. We denote by C([a,b]; X) and C™([a,b]; X) the spaces of
functions f : [a,b] — X, which are continuous, resp. m-times continuously
differentiable, endowed respectively with the norms

Iflle = sup, LA W fllom = sup Zl\f

t€a t€a

Let I =(0,7),I =Ry,or I =R, m €N, 1< p< oo. The Sobolev spaces
can be defined in the following way

m—1 k m—1
—0 : :

where * is the Laplace convolution

(fi* f2)(t /fl?f—Tf2

Note that in the defining representation of functions f € W™P(I; X) it holds
cr. = f®(0) and g(t) = f™(t). Denote

Wy (s X) = {f € WL X)| [P (0) =0, k=0,1,...,m—1}.

If X is the scalar field R or C, then the image space in the notations of the
function spaces defined above will be dropped.

1.2 Laplace transform

Denote by L] (Ry;X) the space of functions f : Ry — X, integrable in
the sense of Bochner on any interval [0, 7], 7 > 0.

The Laplace transform of a function f € L} (Ry; X) is defined by

loc

-~

CLFB}Hs) = Fls) = / Tty e, R >0,

if the integral is absolutely convergent for s > 0.
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A real-valued infinitely differentiable on R, function f(¢) is said to be a
completely monotone function (CMF) if

(=) f™M(@t) >0, t>0, neN, (1.1)

The characterization of the class CMF is given by the Bernstein’s theorem
which states that a function is completely monotone if and only if it can be
represented as the Laplace transform of a non-negative measure (non-negative
function or generalized function).

Next the Post-Widder inversion formula for the Laplace transform is for-
mulated in the general case of X valued functions (see e.g. |2]):

Theorem 1.1. Let f(t), t > 0, be a X valued continuous function, such that
f(t) =0(e") ast — oo for some real v. Then

- S () ) 1

uniformly on compact subsets of R..

The asymptotic behaviour of a function f(t) as t — oo can be determined

by looking at the behaviour of its Laplace transform f(s) as s — 0. The
following version of the Karamata-Feller Tauberian theorem establishes such a
correspondence, see [38], Chapter XIII.

Denote by w,(t) the function

toz—l
()’

Wa(t) = a>0, t>0. (1.3)

The Laplace transform of this function satisfies the identity

1 o0
L{wa(t)}(s) = —/ el dt =57 a >0, Ns>0. (1.4)
I'(a) Jo
Theorem 1.2. [38] Let L : R, — R, be a function that is slowly varying at
0o, that is, for every fived x > 0 we have L(tx)/L(t) — 1 ast — oco. Let
a >0 and f :R. — R be a nonnegative function, which Laplace transform

f(s) exists for all s € Cy. Then

]?(3) ~ iL <1> as s — 0

S S
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if and only iof

f(t) ~wa(t)L(t) as t — oc.
Here the function w,(t) is defined in (1.3) and the approaches are on the pos-
itiwe real axis.

Here and in what follows the notation f(t) ~ g(t) as t — t, means that

limg ., f(2)/9(t) =

The following characterization of functions which are holomorphic and boun-
ded in a sector of the complex plane is useful, see [93], Theorem 0.1.

Theorem 1.3. |93] Let F be a function defined on (0,00) and 6y € (0,7/2].
Then the assertions (i) and (ii) are equivalent:

(i) F(s) admits holomorphic extension to the sector |args| < w/2 + 6y and
sF(s) is bounded on each sector |args| < w/2+ 6, 0 < Oy,

(ii) there is a function f(t) holomorphic for |argt| < 6y and bounded on each

sector |argt| < 0 < 0y, such that F(s) = f(s) for each s > 0.

1.3 Fractional integration and differentiation

The Euler gamma function I'(z) is defined by the identity

:/ 7 temtde, Rz > 0.

For this function the reduction formula I'(z + 1) = zI'(z) holds. In particular,
['(n) = (n—1)! for n € N. The formula for the n-fold iterated integral (n € N,
t > 0) reads

() / dr, / dry - / £(7) dTn:ﬁ / (= 7y () dr

Let I = (0,7) for some 7" > 0 and let X be a Banach space. The Riemann-
Liouville fractlonal integral of order a € R, is defined as a generalization of
the above formula for the n-fold iterated integral as follows

1 t
JUf(t) = —/ (t—7)* () dr = (wax f)(t), a>0, t>0,
I'(a) Jo
for f € LY(I;X). Let us set JPf(t) = f(t). The fractional order integral
operators obey the semigroup property

JeJP = JtP >0, 8>0. (1.5)
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Let «a >0and 0 < m—-—1 < a <m, m € N, and use the notation

D" = ((11;. The fractional Riemann-Liouville derivative Dy of order o > 0 is
defined for functions f € L'(I; X), such that J"~*f € W™(I; X) as follows

DEf(t) = D" Ji = f(t) = Dy (wm—a * [)(1).

The fractional Caputo derivative “D;' of order a > 0 is defined in the same
class of functions by the relation

D f(1) = ( Zf Okt ) (16

For functions f € W™! the fractional Caputo derivative admits the alternative
representation

Dy f(t) = J"OD f(8) = (Wm—a * D" f)(). (1.7)

Note that the subscript ¢ in the notations of the fractional integration and
differentiation operators defined above emphasizes that the operators act with
respect to the time variable.

The following basic identities are satisfied

“DiJe = DeJY =1, (1.8)

m—1

JPDRf(t) = f(t)—Z(wm o % D0 warnsrm(t),  (1.9)

JED;f(t) = Zf 0) Wi (¢ (1.10)

Some simple but relevant results valid for o, 5,¢ > 0 are

Jiws(t) = wars(t); Diws(t) = ws—al(t), B> a.

In particular, Df1 = w;_,(t) for 0 < a < 1, while “D;'1 = 0 for any o > 0.
The Laplace transform of fractional order operators obeys the identities

CLEFYs) = s L{f}(s) (1.11)

LIDETYS) = LIS = 3 (@na s HIO) ™15 (112)
k=0

LIODUTY(s) = LI} (s) — 3 FO(0) 5o, (1.13)

k=0
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In their derivation the Laplace transform pair (1.4) is used.
Let 0 < a < 1. Then identity (1.6) reads

Dy f(t) = DF (f(1) = f(0)) = DIf () = fO)wr-alt).  (114)
Moreover, (1.9) and (1.10) imply

JDPf) = f(t) = (wiax £)(0), (1.15)
JECDif(t) = f(t) = £(0), (1.16)
and (1.12) and (1.13) read
L{D; f}(s) = s"L{f}(s) = (Wi % [) (0), (1.17)
LLDfH(s) = s"LEfH(s) = f(0)s™ (1.18)

Let us note that if f € C([0,T]) then (wy_o* f)(0) = 0 and the Laplace
transform pair for the Riemann-Liouville derivative reduces to:

L{D; f}(s) = s"L{f(8)}(s). (1.19)

For more details on fractional calculus operators we refer to [47, 58, 75, 89).

1.4 Mittag-Lefller functions

The classical Mittag-Leffler function
E.(z) = _ >0,z € C,
(2) kz_% [(ak +1) “ ©

is an entire function, introduced and studied by Gosta M. Mittag-Leffler at
the beginning of 20-th century. The Mittag-Lefller function provides a simple
generalization of the exponential function, Fy(z) = e*. Other notable particular
cases are

Ey(—2%) = cosz, E(z*) = coshz, By (iz1/2) = e’erfc (:Fzm) ,

where erfc(-) denotes the complementary error function

erfc(z) = 1 —erf(2), erf(z) = %/ et d¢, zeC,
T Jo
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The function u(t) = E,(—At") is the solution of the ordinary fractional
differential equation

“Diu(t) = =du(t), A>0,t>0, (1.20)

with initial conditions w(0) = 1, «®(0) = 0, k = 1,...,m — 1, where
m —1 < a < m. Equation (1.20) is referred to as fractional relaxation equa-
tion for o € (0,1) and fractional relaxation-oscillation equation for o € (1,2).
In comparison to ordinary relaxation (o = 1), fractional relaxation exhibits
a slower decay for large times (algebraic decay in comparison to exponential
decay). Compared to the ordinary oscillation (o = 2), the solution of the
fractional relaxation-oscillation equation does not exhibit permanent oscilla-
tions, but an asymptotic algbraic decay. There are some attenuated oscillations,
whose number increases with a. Therefore, we bserve features intermediate be-
tween relaxation and oscillation. For illustration of this behavior see Figure 1.1.

Figure 1.1: Function E,(—t%): (a)0<a<1;(b) 1 <a <2.

1.4.1 Mittag-Lefller function with two parameters

The two-parameter Mittag-Leffler function is an entire function defined by
the series representation

R ) 1.21
;Fak Bl a>0,eR, zeC (1.21)
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It is a generalization of the one parameter Mittag-Leffler function
E.(2) = Eyq(2),

and
e* —1 Sin 2

sinh z
Eyo(2) = o Eyo(—2%) = — Ey(2%) = :

z

For 0 < a < 2 and g > 0 the following asymptotic expansions hold as
2| = o0

1
(1-5) /o 1/a
y exp(z/Y) +eqp(2), |argz| < pu,
Bosz)=1{ a p(z/%) +eap(z), |argz| <p (1.22)
€a,8(2), p<largz| <,

where p is such that an/2 < pu < min{m, ar} and
N-1 _k

Ea,p(2) = — T3 — ak) +0(lz[™), |z| = oo.

The asymptotic expansion (1.22) implies the estimate ([89], Theorem 1.6)

Ba(2)] < p< largz| < . (1.23)

1+ 2|

Moreover, taking into account the identity I'(—n)™! = 0 for n € Ny, we derive
from (1.22) two useful asymptotic expressions for |z| — oo and |argz| <
(1—a/2)r

Ey(—z) ~ , a>0,
fi-a) (1.24
z
Eo,g(—2) ~ —————, 0, 6—a=0,-1,-2,..
8(—2) (7 = 2a) a>0, -«
The relations
d
d—Ea(—zo‘) = —2"1E,4(=2%), z€C\(~o0,0], (1.25)
z

can be derived directly from the definition (1.21) of the Mittag-Leffler function.
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The Mittag-Lefler function of real negative argument is completely mono-
tone under some restrictions of the parameters. More precisely, it satisfies the
property [83]:

E.p(—t)eCMFfort>0 iff 0<a<l, f>a. (1.26)

The Laplace transform of the function of Mittag-Leffler type t°~1E,, 5(—\t%),
t > 0, is given by
s P

ﬁ{ﬂ“?ﬂwx—A#Q}@):éﬂ_%A, t>0. (1.27)

It is relevant to point out the following representation of the functions of
Mittag-Leffler type t°~1E, 5(—At®) (excluding the case a = 3 = 1) as Laplace
transform [47]

tﬁlEaﬁ(—)\to‘):/ e "'P, 5(r; \) dr, (1.28)
0

where
rsin S+ Asin(8 —a)r 4

7 (12 + 2Ar® cos am + A\?)
This representation can be derived by inversion of (1.27). Let A > 0 and
0 <a<p <1 Then P,z(r;A) > 0 and representation (1.28) implies the

complete monotonicity of the function t*~1E, 5(—\t%).
Consider the ordinary differential equation of fractional order oo > 0

P, s(r;\) =

(“Dyu)(t) + Mu(t) = f(t), t>0, AeR, (1.29)

with initial conditions w(0) = a and u*(0) = 0, k = 1,2,...,m — 1, where
0 <m—1< a < m. The solution can be obtained by applying Laplace
transform and is given by:

t
u(t) = aFy,(—AMt%) + / T By o (AT f(t — 7) dT. (1.30)

0
In the case a € (0,1) (slow relaxation) the following estimates turn out

to be useful: for any A satisfying A > A\g > 0 and any T" > 0 there exists a
constant C' > 0, depending on «, T, \y, such that

T
0<C< )\/ t By (=AY dt < 1. (1.31)
0
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These bounds are useful in the study of direct and inverse problems for inhomo-
geneous time-fractional diffusion equations, based on eigenfunction expansion

196].

1.4.2 Prabhakar function

The Prabhakar function (or three parameter Mittag-Leffler function) is de-
fined as follows [43, 91|

= (6 2k
Efm(z) = Z (k:)'k Tk 7) 2€C, aeRy, 5,0 €R, (1.32)
k=0

where (0); denotes the Pochhammer symbol
(0)r=6(0+1)...(6+k—=1), keN, (§)o=1
It is a generalization of the classical Mittag-Leffler functions E,(2) and E, 3(2):
Eo(2) = Eo(2), Eap(2) = By ().

The asymptotic behavior of the three-parameter Mittag-Leffler function of real
negative argument can be obtained from the expansion

5oy - =0 (9);
o t)_j_o Faniy e e (1.33)

Recall also the Laplace transform pair

ad—pf
LLPTED J(— M) (s) = ——— 1.34
(B M) = s (134)
The following relations can be established by the use of identity (1.34)
JP (P ES 4(at™)) = t°E? 5. (at®), (1.35)
(7 ED y(at®)) + (tﬁolEggﬁo(ata)) — (PRI (at®). (1.36)

The Prabhakar type function obeys the following complete monotonicity
property:

fOo<a<1l 0<ad <pB <1, then tﬁ_lEgﬁ(—to‘) € CMF. (1.37)

Further details on Fractional Calculus and Mittag-Leffler functions can be

found in [58, 89, 45, 43, 86]. For generalizations and a survey of special functions
related to Fractional Calculus we refer to [59, 60].
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1.5 Functions of Wright type

The Wright function W) ,(-) was introduced and studied by E. Maitland
Wright in a series of papers [106, 107]. It is an entire function defined by the
series expansion

o0 Zn
W)"“(z):z_%n!F()\n—ku)’ A>—-1, neC, zeC.

In particular, the function with A = —y, u = 1 — v, where 0 < v < 1, plays
a crucial role in the study of fractional evolution equations and is sometimes
referred to as M-Wright or Mainardi function. The Mainardi function is an
entire function of Wright type defined as [75, 45|

o0 ( Z)n 1 / B
— v — 7 d 1.38
2\47(2) = ngzo n!F( S ) i Fa exp (J 20 ) o, ( )

where 0 < v <1, z € C, and I' is a contour which starts and ends at —oo and
encircles the origin counterclockwise. The Mainardi function is related to the
Mittag-Leffler function E,(-) through the Laplace transform identity

L{M,()}(s) = /OOO e M, (r)dr = E(—s), 0<~v<1. (1.39)

It is proven in the original paper [107| that the function M, (2) admits the
following asymptotic expansion in the sector | arg z| < min{(1 — )37 /2, 7}
y—1/2

M, (z) ~ a(y)z T exp <—b(’y)zllv> ,|z] = o0, (1.40)

where a(y) and b(y) are positive constants depending only on ~, a(y) =
Ab()2b(y) = (1 = )y, A > 0.
Consider the function L, (-) defined by the Laplace transform pair

L{L,(-)}(s) = /OOO e ""L,(r)dr =exp(—s"), 0<y<L (1.41)

It is referred to as Lévy extremal stable density (Lévy one-sided stable distri-
bution), see e.g. 38, 76, 82|.
The function L, (z) is related to M, (z) via the identity (see e.g. [75, 90])

L(z)=~2"""M,(277), 0<~vy<1, (1.42)
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for z € C cut along the negative real axis. The Lévy extremal stable density
admits the series representation

n+1 (yn + 1) sin(ynm)
27

1
= — , 0<y <1, (1.43)
TZ

||M8

which can be deduced from (1.38), (1.42), and the property of the Gamma

function
T

sin(vym)
The first term of the series in (1.43) provides the following asymptotic expres-

sion of L.(z) for large |z| in the complex plane cut along the negative real
axis

=T(y)I(1 = 7). (1.44)

()
L, (z) ~ sy |z| = oo, (1.45)

with ¢(vy) = v/T'(1 — 7), where the property of the Gamma function (1.44) is

used.

Applying (1.42), the asymptotic behavior of L.(z) for small |z| can be de-
rived from (1.40)

L (z) ~ ~va(7y)z T exp (—b(v)z_lwv> . |z| — 0, (1.46)

for z belonging to the sector | arg z| < min{(1/y—1)37/2,7}. We notice that,
by restricting z to the real positive half-line z = ¢ € (0,00) in (1.46), resp.
(1.45), we recover the asymptotic formulae established in [82].

The functions M, and L,, 0 < v < 1, are unilateral probability density
functions (PDF), that is

M,(r) >0, r>0; / M, (r)dr =1, (1.47)
0

and N
L(r)>0, r>0; / L,(r)dr=1. (1.48)
0

The properties can be deduced from the Laplace transform pairs (1.39) and
(1.41). The non-negativity of M, and L, follows from the complete monotonic-
ity of E,(—s) and exp(—s”) for s > 0 and 0 < v < 1 by the use of Bernstein’s
theorem.
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In the particular case 7 = 1/2 series (1.38) and (1.42) yield the representa-

tions
M, j(2) = % exp(—=2/2) (1.49)

and
Lyj(z) = Wexp(—l/@z)). (1.50)

For more details on the functions M, and L. we refer to [45, 75], see also
[76], where these two functions appear in the context of the one-dimensional
space-time fractional diffusion-wave equation.



20

CHAPTER 1.

FRACTIONAL CALCULUS



Chapter 2

Introduction to
subordination principle

Bernstein functions and related classes of functions play a prominent role
in the theory of generalized fractional evolution equations and appear in appli-
cations quite naturally. First we list definitions and basic properties of these
classes of functions. For a unified approach to the variety of evolution equations
with fractional derivatives we use the framework of abstract Volterra equations,
a short introduction to which is given next. The rest of the chapter is devoted
to subordination principle for evolution equations with the main emphasis on
two general theorems.

2.1 Bernstein functions

Four special classes of functions play an essential role in this dissertation: the
classes of completely monotone functions (CMJF), Bernstein functions (BF),
Stieltjes functions (SF), and complete Bernstein function (CBF). Their defini-
tions and basic properties, which are used in the dissertation, are summarized
next. We use the terminology of the monograph [101].

The class CMF of completely monotone functions consists of all real-valued
infinitely differentiable on R, function ¢(t), satisfying inequalities (1.1). Basic
examples of completely monotone functions are e~ for a > 0, t* ! for 0 < a <
1, as well as some generalizations of these two functions in terms of Mittag-
Leffler functions, see (1.26) and (1.37).

The class BF of Bernstein function consists of all non-negative functions
¢(t) defined on Ry, such that ¢'(t) € CM.F.

21
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The class of Stieltjes functions (SF) consists of all functions defined on R
which have the representation (see [62])

o(s) = g + b+ /000 e T(T)dr, s> 0, (2.1)

where a,b > 0, ¥ € CMF N L, (R,), and the Laplace transform of ¢ exists
for any s > 0.

A function ¢ defined on R, is said to be a complete Bernstein function
(¢ € CBF) if and only if ¢(s)/s € SF, s > 0.

Basic examples of Stieltjes and complete Bernstein functions are the follow-
ing:

if «€l0,1] then s € SF, s* € CBF.

This follows by plugging 1 (t) = w(t) in (2.1), and taking into account (1.4).
Note that w,(t), defined in (1.3), is completely monotone for o € (0, 1).

A selection of properties of the above classes of functions is given in the next
proposition. The sign o denotes composition of functions from the correspond-
ing classes. For the sake of brevity here and throughout the whole dissertation
the abbreviation “ift” is used instead of “if and only if”.

Proposition 2.1. Let s > 0. The following properties are satisfied:

(P1) The class CMUF is closed under pointwise addition, multiplication, and
convergence.

(P2) The classes BF, CBF, and SF are closed under pointwise addition,

multiplication with positive numbers, and convergence.
(P3) SF Cc CMF, CBF C BF.
(P4) If ¢ € BF then ¢(s)/s € CMF.
(P5) Let ¢(s) > 0. Then ¢ € BF iff b o ¢ € CMUF for every 1 € CMUF.
(P6) Let ¢ € LL (R.). Then ¢ € CMF iff p(s) € SF and lim,_, 4 4(s) = 0.
(P7) ¢ € SF iff s¢(s) € CBF.
(P8) Let ¢ #0. Then ¢(s) € CBF iff (¢(s))~! € SF.
(P9) Let ¢ £ 0. Then ¢(s) € CBF iff s/é(s) € CBF.
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(P10) Let ¢ # 0. Then ¢(s) € SF iff (s¢(s))™! € SF.
(P11) CBF oCBF C CBF.
(P12) CBF o SF C SF.

(P13) Let ¢, € CBF. Assume aq, s € (0,1) are such that a1 +as < 1. Then
P (s) - **(s) € CBF.
(P14) Let ¢, € CBF and o € [—1,1]\{0}. Then
(67(s) +¥(s))'/* € CBF.

(P15) Ewvery function ¢ from the classes CBF and SF admits an analytic ex-
tension to C\(—o00,0], such that (¢(2))" = ¢(z*), where * denotes the
complex conjugate, and

|arg ¢(z)| < |arg 2|, z € C\(—o0,0].
Moreover, Sz -S¢(z) > 0 for ¢ € CBF and Sz -S¢p(z) <0 for ¢ € SF.

Proof. Properties (P1), (P2), the first part of (P3), and (P7) follow directly
from the definitions of the spaces. Properties (P9) and (P10) follow easily from

(P8), taking into account (P7). For proofs of the rest of the statements we refer
to [101], Chapters 6 and 7, and [49], Theorem 2.6, see also [93], Section 4.1. [J

We close this section with some remarks.

According to (P1) the product of two completely monotone functions is
again completely monotone. Such a nice property does not hold for the other
three classes. However, according to (P13)

if ¢ 4 € CBF then \/¢- o € CBF. (2.2)

A useful result is the following: If ¢ € BF then for any 7 > 0

Me_W(s) eCMF, s>0. (2.3)

S

Indeed, according to (P5), ¢(s) € BF is equivalent to e ™) € CMF. More-
over, (P4) yields ¢(s)/s € CMF. Then (P1) implies that the product of these
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two completely monotone functions is again completely monotone, i.e. (2.3) is
satisfied.
For convenience we define also the class of functions CMJFy. The function

¢ € CMF, if the Laplace transform ¢(s) exists for all s > 0 and ¢(s) € SF.
According to (2.1) the functions from the class CMJF( admit the representation

P(t) = pod(t) + ¢1(2), (2.4)

where ¢y > 0 is a constant, §(-) denotes the Dirac delta function, and ¢;(t) €
L} (R.) is a completely monotone function. Property (P6) implies

loc

¢o = lim &(s).

§—00

2.2 Abstract Volterra integral equations

Evolution equations are equations that can be interpreted as the differential
or integro-differential law of the development (evolution) in time of a system.
An example is the classical one-dimensional diffusion equation

ou B 0%u

where u(z,t) is the state of a system at time ¢t > 0 at point € R. If the
solution u(z,t) of such an equation is regarded as an element of some space
of functions in x that depend on a parameter ¢, then one arrives at abstract
evolution equations.

Since many of the results in this dissertation will be formulated in the
general setting of abstract evolution equations, we give some basic definitions.

Let X be a Banach space with norm ||.||. Let A be a closed linear operator
in X with dense domain D(A) C X, equipped with the graph norm ||.| 4,

lzlla = [lzll + | Az]], = € D(A).

Denote by o(A) the resolvent set of A and by R(s, A) the resolvent operator of
A: R(s,A) = (s — A)7 s € o(A).

If Y is another Banach space, by B(X,Y") we denote the space of all bounded
linear operators from X to Y; B(X) = B(X, X).
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The most prominent abstract evolution equation is the classical first order
Cauchy problem |2, 36, 108]

u'(t) = Au(t), t>0; u(0)=ve X, (2.6)

with its equivalent formulation - the semigroup theory. Classical models of
relaxation or diffusion processes, such as (2.5), are particular cases of (2.6).
The second order abstract Cauchy problem [2]

u'(t) = Au(t), t>0; u(0)=ve X, v (0)=0, (2.7)

is another classical example of abstract evolution equation. Although the second
initial condition can be an arbitrary element of X, for continuity reasons in this
dissertation we consider only initial conditions of the above type. Equations
modeling different oscillation or wave phenomena are particular cases of (2.7).

In this dissertation we consider evolution equations, which contain opera-
tors of Fractional Calculus. In contrast to classical differential operators, the
fractional derivatives have a nonlocal character, which makes them relevant in
modeling of materials and processes with memory.

Let “D;" be the Caputo fractional derivative of order o € (0,2]. The most
extensively studied fractional evolution equation is

“Diu(t) = Au(t), t >0, (2.8)
with the following initial conditions:

uw(0) =v e X for «a € (0,1];
uw(0) =v e X, v'(0)=0for ae (1,2]

The classical abstract Cauchy problems (2.6) and (2.7) are particular cases of
(2.8) obtained for @ = 1 and a = 2, respectively.

For a unified approach to the different evolution equations in this disser-
tation, we rewrite them as equivalent Volterra integral equations and apply
for the study of the obtained weaker formulations the theory developed in the
monograph [93|. The notions of solution, well-posedness, and solution operator,
defined next for Volterra integral equations, are used also for the corresponding
equivalent Cauchy problems.

Let A be a closed linear unbounded operator, densely defined in a Banach
space X. Consider the Volterra integral equation

u(t) = /O k(t — 1) Au(r) dr + f(t), t >0, (2.9)
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with a scalar kernel k(t) € L} (R,).

loc

Definition 2.1. A function uw € C(Ry; X) is called a strong solution of equa-
tion (2.9) if u € C(Ry; D(A)) and (2.9) holds on R..

Definition 2.2. Fquation (2.9) is said to be well posed if for each v € D(A),
there is a unique strong solution u(t;v) of

Mﬂ:v+é%@—ﬂAMﬂM3 t>0, veD(A),  (2.10)

and {v,} C D(A), v, = 0 imply u(t;v,) — 0 in X, uniformly on compact
intervals.

Suppose (2.9) is well posed. Then the solution operator S(t) for (2.9) is

defined by:
S(t)v =u(t;v), ve DA, t>0.

The solution operator S(t) is linear for each ¢ > 0. Since S(¢) is a bounded
operator, it admits extension to all of X, S(¢)v is continuous for each v € X.

Since (2.9) is a convolution equation, it is natural to employ the Laplace
transform for its study. Suppose the Laplace transform k(s) of the kernel k(t)
exists and k(s) # 0 for all s > 0 and set for the sake of brevity

q@:(u@)4,5>o. (2.11)

Assume moreover that g(s) € o(A) for any s > 0.

For instance, the Cauchy problem (2.8) corresponds to (2.10) with k(t) =
wa(t) and g(s) = s Let us denote by S,(t) the related solution operator.
In particular, the solution operator S;(t) of (2.6) is a Cy-semigroup and the
solution operator Sy(t) of (2.7) is a strongly continuous cosine family, see [2].

Definition 2.3. A solution operator S(t) is called bounded if there exists a
constant C' > 1 such that

IS < C  forallt > 0.

Suppose S(t) is a bounded solution operator for (2.10). Then the Laplace
transform

H(s) = /OOO e *'S(t) dt (2.12)
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is well defined for Rs > 0 and is given by
S _
H(s) = 28 4(s5) - a) 1, (213)

where the function g(s) is defined in (2.11).
The Generation Theorem for abstract Volterra equations ([93], Theorem
1.3) is formulated next.

Theorem 2.1. [93| Equation (2.9) is well posed and admits a bounded solution
operator S(t) satisfying ||S(t)|| < C, t > 0, iff the following conditions hold.
(H1) k(s) # 0 and (k(s))™' € o(A) for all s > 0;
(H2) the estimates
" n!
1H™ (s)]| < CW
are satisfied, where H(s) is defined in (2.13).

In the case of classical Cauchy problem (2.6) (k(t) =1, g(s) = s, H(s) =
(s—A)~!) Theorem 2.1 is known as the Hille-Yosida theorem for Cy semigroups,
see e.g. [2, 108].

A generalization of the definition of bounded analytic semigroup (see e.g.
[2], Def. 3.7.3) is given next.

Definition 2.4. A solution operator S(t) is said to be a bounded analytic so-
lution operator of angle 6y € (0,7/2] if S(-) : Ry — B(X) admits an analytic
extension S(z) to the sector |arg z| < 60y, which is bounded on each subsector
|arg z| < 0, where 6 < 6.

for all s >0, n € Ny, (2.14)

Let us note that a solution operator S(t), which is bounded (i.e. bounded
for t € [0, 00)), and admits an analytic extension to some sector in the complex
plane, is not necessarily a bounded analytic solution operator.

Next we formulate the generation theorem for bounded analytic solution
operators ([93|, Theorem 2.1).

Theorem 2.2. [93] Equation (2.9) admits a bounded analytic solution operator
S(t) of angle 0y € (0,7/2] iff the following conditions hold.

(A1) k(s) admits meromorphic extension to S(6y + 7/2);

(A2) k(s) # 0 and (k(s))™* € o(A) for all s € (0 + 7/2);

(A3) For each 6 < 0y there is a constant C' = C(0) such that H(s), defined in
(2.13), satisfies the estimate

C

) <

for all s € X(0 + 7/2). (2.15)



28 CHAPTER 2. INTRODUCTION TO SUBORDINATION PRINCIPLE

2.3 Subordination for fractional evolution equa-
tions

Subordination principle for fractional evolution equations is studied in [9].
The main results are summarized in the next theorem.

Theorem 2.3. Let A be a closed linear and densely defined operator in X.
Assume problem (2.8) is well posed for some a, 0 < o < 2. Let B be such
that 0 < 8 < « and set v = B/a. Then problem (2.8) with o replaced by B is
well posed and the corresponding solution operators S, and Sz are related by
the identity

Ss(t) = /OOO o~ (t, 7)Sa(T)dT, t>0. (2.16)

The subordination kernel @ (t,T) admits the representation
o (t, ) =TT M (Tt77),

where M. (-) is the Mainardi function (1.38). Moreover, if S, is a bounded
solution operator, then Sg is a bounded analytic solution operator of angle

0(v) :min{G— 1) gg} (2.17)

Let us note that due to the properties (1.47) of Mainardi function the sub-
ordination kernels ¢-(t,7) are unilateral probability density functions.
Two basic examples of applications of Theorem 2.3 are considered next.

Example 2.1. Consider the fractional relaxation-oscillation equation, which is
the scalar version of equation (2.8), where X = R, and the operator A = —\,
A > 0, is multiplication with a constant. Set v = 1. Then the solution is given
by the Mittag-Leffler function

Su(t) = Ba(=M), t> 0.

Let 0 < B < av and set v = 5/a. Then subordination relation (2.16) yields the
following relation between Mittag-Leffler functions

EB(—M):H/ M, (1t77) Eo(=AT%) dr, t >0, (2.18)
0
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where M, (-) is the Mainardi function. Useful relations can be deduced from
(2.18) by setting o = 1, a« = 2, or = a/2. For example, (2.18) with a =1
implies (1.39), with o = 2 gives

Es(—Xt?) = t—m/ Mg)s (rt—W) cos(VAT)dr, t >0,
0
and with § = «/2 yields by the use of (1.49)

1 o© T2
Ea/g(—)\ta/2) = ﬁ/o e_TtEa(—/\TO‘) dT, t > 0.

Example 2.2. Consider the one-dimensional Cauchy problem for the fractional
diffusion-wave equation:

a 0>
CDtu(:c,t) =5 2u(x,t), reR, t>0, 0<a<2, (2.19)
x

with conditions u(+o00,t) =0, wu(x,0) = f(x), ui(x,0) =0 (the last one only
for 1 < a <2). Set

X = LP(R), 1 <p<oo, or X =CyR); (2.20)
62 2

where Cy(R) is the space of continuous functions vanishing at infinity.
For a = 2 problem (2.19) is the second order Cauchy problem with solution
operator So(t) given by the d’Alembert formula

(Sg(t)f)(:v):%(f(ert)Jrf(:c—t)), t>02€R, feX.  (221)

If we set @ = 2 in Theorem 2.3 and use (2.21) then for all « € (0,2) we
obtain

(Salh)f)(x) = 170/ / C Map(rt ) Sy @) dr (2.22)

1 - > -
= 5t [ Mot o = 7y,

where t > 0 and x € R. This is a well-known result, see e.g. [74]. Taking into
account (1.49), we recover from (2.22) the solution formula for the first order
Cauchy problem

(S(0)f) () = —

2/t

/ f(x — 7)6_72/4t dr, t>0, x €R. (2.23)
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For a € (0, 1) the fractional diffusion-wave equation (2.19) models anoma-
lous diffusion, while for a € (1,2) it governs the propagation of mechanical
diffusive waves, i.e. interpolates between diffusion and wave propagation [75].
Indeed, the time-fractional diffusion-wave equation (2.19) with o € (1,2) ex-
hibits intermediate character regarding the response to a localized disturbance.
In this case a disturbance spreads infinitely fast [41], which is typical for diffu-
sion. On the other hand, the fundamental solution possesses a maximum that
disperses with a finite speed [41, 72|, which is typical for the classical wave
equation. Moreover, the fundamental solution 3¢t~/2M, jo(|7|t~*/?) is a spatial
probability density function evolving in time, which is unimodal in the diffusion
regime and bimodal in the wave propagation regime |75].

2.4 (General subordination theorems

The following generalization of Theorem 2.3 will play a central role in this
dissertation. A more general theorem for completely positive kernels can be
found in [93], Theorem 4.1. Our formulation is adapted to the framework of
Bernstein functions, which is more convenient for application.

Theorem 2.4. Let A be a closed linear and densely defined operator in X.
Assume the Cauchy problem (2.8) is well posed for some o, 0 < a < 2, and
admits a bounded solution operator S,(t). For the kernel k(t) of the Volterra

integral equation (2.9) assume k(t) € L} (R.), k(s) exists for s > 0, k(s)#0

loc

and the function g(s) = (k(s))™" satisfies the condition
g(s)* e CBF, s>0. (2.24)

Then problem (2.9) admits a bounded solution operator S(t), which is related
to Su(t) via the subordination identity

,ﬂﬂzlwﬂnﬂ%hmnt>0, (2.25)

where

1 c+ioo 1/a
o(t,7) = —/ 9(s) exp (st — Tg(s)l/o‘) ds, c¢>0.
c s
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The subordination kernel @(t,T) is a unilateral probability density function
(PDF) in T when t > 0 is considered as a parameter, that is

o(t,7) >0, / o(t,7)dr =1, t,7>0. (2.26)
0

Proof. To prove that problem (2.9) is well posed and admits a bounded solu-
tion operator we will check (H1) and (H2) of the Generation theorem (The-
orem 2.1). First, the existence of a bounded solution operator S,(t) implies
by the Generation theorem that s* € o(A) for all s > 0, thus R, C p(A).
Assumption (2.24) implies that ¢g(s) : Ry — R and thus g(s) C o(A) for all
s > 0. Therefore, (H1) is fulfilled and H(s) in (2.13) is well defined.

Now we prove that the conditions (H2) of the Generation theorem are
fulfilled. Set

1/a
h(s,T) = g(si exp (—Tg(s)l/o‘> : (2.27)

Assumption (2.24) implies that the function h(s, 7) is completely monotone as
a function of s, s > 0, for any 7 > 0 considered as a parameter, see (2.3).

Let

H(s) = /OOO h(s,T)Sa(T)dT, (2.28)

where h is defined in (2.27). Since the Laplace transform of the solution oper-
ator S, (t) is given by (2.13) with g(s) = s¢, that is

/ S, () dt = 215 — A) (2.29)
0
we derive

(s = 98 | exo (=rats)e) sutr dr = 9) g5y — 4y,

S S

Therefore, the function (2.13) admits the representation (2.28).

[t is assumed that S, (t) is a bounded solution operator, that is, || S,(t)]| <
C, t >0, for some C' > 1.

Define the operator
(_1)n an

n! Os*

L=

S

To establish (H2) we will prove

s >0, neN. (2.30)
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Since L?h(s,7) > 0 due to the complete monotonicity of h(s, ), we obtain
from (2.28) for s > 0, n € Ny

L2l = |

/000 L2h(s,7)Sa(T)dr
/0 " L h(s, 7)1 Sulr)]| dr

< C/ L2h(s,7)dr
0

= C’LS/O h(s,7)dr = CL] (—) =

IA

S

where we have used

/OOO h(s,7)dr = = /OOO 9(s)"" exp (—Tg(s)l/a) dr

S

1 [> 1
= —/ e tdé ==, s>0, (2.31)
0 S

S

and L"(s7') = s~ which can be easily established by induction. In this
way we proved (H1) and (H2) for problem (2.9), which guarantees that it is
well posed and admits a bounded solution operator.

Define the function ¢(t, 7) such that its Laplace transform with respect to
t satisfies

o(s,7) = /OOO e *o(t,7)dr = h(s,T). (2.32)

Since h(-,7) € CMUF, according to Bernstein’s theorem the function (¢, 7)
exists and is nonnegative, ¢(t,7) > 0. Let us also check that the function
©(t, ) is normalized. Applying (2.32) and (2.31) we deduce

c{/ooogp(t,ﬂdf}(s):/OOO@(S,T)dT:/OOOh(s,T)dT:é, 550,

Then, taking the inverse Laplace transform, it follows

/ o(t,7)dr = 1.
0
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Let the operator S(t) be defined by (2.25). Then (2.32) and identity (2.29)
imply for the Laplace transform of S(t)

/OOO e SS(t)dt = /OOO o(8,7)Se(T) dT

Therefore (2.13) is satisfied and S(t) is the solution operator of problem (2.9)
due to the uniqueness property of Laplace transform. H

Relation (2.25) suggests that the subordinated solution operator S(t) inher-
its the main properties of S,(t). Since the solution operators Si(t) and Sy(t)
of the classical problems (2.6) and (2.7) are well studied, Theorem 2.4 is most
useful for « = 1 and @ = 2. Let us note that according to condition (2.24)
the general problem (2.9) is subordinated to the first order Cauchy problem
(2.6) if g(s) € CBF and to the second order Cauchy problem (2.7) provided

Vg(s) € CBF.

Property (2.24) implies g(s)”* € CBF for any ay > a. This follows from
the representation

g(S)l/al _ (g(s)l/a)a/al,

which implies that g(s)"/® = fi(fa(s)) is a composition of two complete Bern-
stein functions fi(s) = s/ and fa(s) = g(s)"/. According to property (P11)
in Proposition 2.1 it is again complete Bernstein function. For this reason it is
useful to know the smallest v > 0, for which (2.24) is satisfied.

Let us note that the property h(s, 7) € CMUF holds under a weaker assump-
tion, namely CBF in (2.24) can be replaced by BF, see (2.3). However, there
is an instructive example in [62] showing that the class BF can lead to discon-
tinuous solutions. Therefore, in this dissertation we will work with condition
(2.24).

The fact that the function (¢, 7) in subordination identity (2.25) is a PDF
has several important implications. One of them is that if ||S,(¢)|| < C for
t > 0, then the same holds for S(¢). Indeed, from (2.25) it follows

IS < / oS dr < © / T oltrydr=C, t>0.
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Another implication is that positivity of the solutions is preserved after
subordination. To formulate this result in a general abstract setting we suppose
that X is an ordered Banach space (for a simple introduction see e.g. [2], [36]).
For example, such are the spaces of type LF(Q2) or Cp(Q2) for some Q € R",
n € N, where C(€2) is the space of continuous functions vanishing at infinity.
We consider the canonical ordering in these spaces: a function v € X is positive
(in symbols: v > 0) if v(x) > 0 for (almost) all z € Q.

A solution operator S(t¢) in an ordered Banach space X is called positive if
v > 0 implies S(t)v > 0 for any ¢ > 0.

In other words, positivity of a solution operator means that positivity of the
initial condition is preserved in time.

Corollary 2.1. Let X be an ordered Banach space. Suppose that the conditions
of Theorem 2.4 are satisfied and the solution operator S, (t) is positive. Then
the solution operator S(t) is positive.

In general, the integral representation (2.25) implies that S(¢) has at least
the same regularity as S,(t). More detailed results are given next.

According to property (P15) in Proposition 2.1 the assumption g(s)l/a €
CBF in (2.24) implies that g(s)"/® admits an analytic extension to C\(—o0, 0]
and

|arg{g(s)"/*}| < |args|, s € C\(~00,0].

Then, according to Theorem 2.2 if S,(t) is a bounded analytic solution oper-
ator of angle ¢y € (0,7/2], the same holds true for the subordinated solution
operator S(t).

In the next theorem we make the following stronger assumption:

larg{g(s)/?}| < |args|, 0 < <a, s € C\(—o0,0]. (2.33)

Theorem 2.5. Suppose the assumptions of Theorem 2.4 and condition (2.33)
are satisfied. Then S(t) is a bounded analytic solution operator of angle

0, :min{<%— 1) gg} (2.34)

If, moreover, S, (t) is a bounded analytic solution operator of angle ¢y €
(0,7/2] then S(t) is a bounded analytic solution operator of angle

fy = min {%qﬁo + <% - 1) g g} . (2.35)
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Proof. Suppose first S,(t) is a bounded solution operator, [|S,(t)|| < C for
t > 0. Then the Laplace transform H(s) is defined for R8s > 0 and satisfies

o) o¢} C’
= | [T eesita < [T s o< g w0
0 0 Rs
Moreover, s* € p(A) for Rs > 0 and H(s) = s* 1 (s* — A)~". Therefore
_ C
[s°7H (5" = A) T < o Rs >0,
which implies
_ C
[s%(s* — A) 7| < ———, Rs>0. (2.36)
cos(arg s)
Let s € ¥(0 + 7/2) for some fixed 0 < 0., where 0, is defined in (2.34). Then

B B m
Q (8 i 2) <0 * 2) 2
Thus, Rg(s)"/* > 0 and we can replace s in (2.36) by g(s)"/*, which gives

1 C ¢
lg(s) (g(s) = A) || < cos(arg g(s)'/) = cos (é (6 + %))
<g s €X(0+7/2).

"2 00— < T

This implies (see Theorem 2.2) that S(t) is a bounded analytic solution operator
of angle 0,.

Suppose now that S, () is a bounded analytic solution operator of angle ¢y.
Then, according to Theorem 2.2, s* € p(A) for s € (¢ + 7/2) and for each

¢ < o

arg g(s)"/?| <

= Cl.

Therefore

| s (s* — A)_1 | <C, seX(p+7/2),

which is equivalent to
lz(z—A)7|<C, zeT(a(d+7/2)).

Let s € 3(0 + 7/2) for some fixed 6§ < 6y, where 6 is defined in (2.35). Then
g(s) € X (a(pp+7/2)) and we can plug 2 = g(s) in the above inequality,
wnich yields

C

< =L se€X0+7/2).
s
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Therefore, according to Theorem 2.2, the solution operator S(t¢) is bounded
analytic of angle 6. ]



Chapter 3

Space-time fractional
evolution equations

This chapter is devoted to subordination principle for the fractional evo-
lution equation with the Caputo derivative of order 5 € (0,1) and operator
—(—=A)Y, a € (0,1), where A generates a strongly continuous one-parameter
semigroup on a Banach space. Some properties of the subordination kernel are
established and representations in terms of Mainardi function Mz and Lévy
extremal stable densities L, are derived. Analyticity of the solution operator
is deduced by taking into account the asymptotic behavior of the subordina-
tion kernel. The subordination formulae are applied to the multi-dimensional
space-time fractional diffusion equation to obtain some closed-form solutions.
Integral representations in terms of Mittag-Lefller functions are derived for the
fundamental solution and the subordination kernel.

3.1 Derivation of subordination formula

Assume the operator A is a closed densely defined operator in a Banach
space X, which is the infinitesimal generator of a bounded Cy-semigroup.
Therefore, the classical abstract Cauchy problem

u'(t) = Au(t), t>0; u(0)=veX, (3.1)

is well posed with a bounded solution operator. The assumptions on the oper-
ator A in particular imply that —A is a non-negative operator, i.e. (—00,0) C
o(—A) and

IMA=A) 7 <C <00, A>0.

37
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For 0 < a < 1 we define the fractional power (—A)® of the non-negative
operator —A using the Balakrishnan definition [8, 108|

(—AWv:Sm&ﬂAwX%XA—AYH—AwdA v € D(A). (3.2)

v

Then —(—A)“ is a closed densely defined operator, which generates a bounded
analytic Cy-semigroup [108]. This semigroup is the solution operator to the
abstract Cauchy problem

u'(t) = —(—A)"u(t), t>0; u(0)=veX. (3.3)

This chapter is devoted to the Cauchy problem for the fractional evolution
equation

°Dlu(t) = —(—A)ut), t >0; u(0)=veX; 0<a,B<1, (34)

where CDf is the Caputo time-fractional derivative. Applying Theorem 2.3, the
well-posedness of problem (3.3) implies that problem (3.4) is well posed.

In this chapter we use the double-index notation S, s(t) for the solution
operator of problem (3.4), where 0 < a,f < 1. In particular, the solution
operator S11(t) to the classical problem (3.1) is the Cj - semigroup of operators
generated by the operator A. The solution operator corresponding to a = 1
is denoted in this chapter by S1 5(t) (while in the rest of the dissertation the
simpler notation Sg(t) is used).

Our first aim is to obtain a subordination formula

Supl(t) = / bt 7)S1a(r) dry t >0,
0

which relates the solution operator S, s(t) of problem (3.4) with the solution
operator S11(t) of the classical abstract Cauchy problem (3.1), where 1, s(t, 7)
is a unilateral probability density function in 7. To derive such a formula we
apply successively two already known subordination results.

First, let us set § = 1 in (3.4) and apply a classical theorem (see [108],
Chapter IX) according to which the operator —(—A)“ generates a bounded
analytic semigroup S, 1(t), related to the semigroup S11(t) via the identity

Sa,l(t> = /OOO fa(t, 7')5171(’7') dT, t > 0, (35)
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where the subordination kernel f, (¢, 7) is defined by the inverse Laplace inte-
gral

1 J+iOO N
faltr) = 5~ / ez >0 (3.6)

The semigroup S, 1(¢) is the solution operator to the Cauchy problem (3.3). It
is worth noting that in the scalar case —A = X\ > 0 relation (3.5) reads

e Mt = / falt,T)edr, t>0. (3.7)
0

Second, according to the subordination principle for fractional evolution
equations, see Theorem 2.3, the well-posedness of problem (3.3) implies well-
posedness of problem (3.4) for all 8 € (0,1) and the corresponding solution
operator S, (t) is expressed by the formula

Sa5(t) :/ 0p(t, 7)Sa1(T)dr, t >0, (3.8)
0
where
1 J+ioo 5 Lo 5
t,7) = — et d > 0. 3.9
©s(t,T) 5 /a—ioo 2P re Z, O (3.9)

Since in the scalar case —A = X\ > 0 the solution operator S, 5(t) of problem
(3.4) is given by the Mittag-Leffler function Ej5(—\%t"), the scalar version of
relation (3.8) is

Eﬂ(—wﬁ):/ ws(t, T)e N Tdr, t>0. (3.10)
0

This holds for any 0 < a < 1, while the function yg(t, 7) is independent of «.
As a result of the successive application of the above two steps we deduce

Sap(t) = /OOO ps(t, o) _/Ooofa(a,f)sl,l(r) dr do
- /OOO (/Ooo ws(t,0) falo, ) da) S11(7)dr. (3.11)

In this way we derived the following result.
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Theorem 3.1. Let A be a generator of a bounded Cy-semigroup S11(t). Then
problem (3.4) admits a bounded solution operator S, 5(t), which is related to
S1.1(t) via the subordination identity

Sus(t) = / o st 7)1 () dr, >0, (3.12)
0
where the subordination kernel
VYo p(t,T) = / (t, o) folo,7)do (3.13)
0

15 a unilateral probability density in T, i.e. it satisfies

VYo p(t, ) >0, /0Oo VYo p(t,7)dr = 1. (3.14)

Proof. The subordination identity is derived in (3.11). It remains to prove
(3.14). Since it is already well-known that f, and yg are probability densities
(which can be also directly checked using the defining identities (3.6) and (3.9))
the fact that ¢, 5 is a PDF can be derived from the composition rule (3.13).

Alternatively, let us note that in the scalar case the subordination identity
(3.12) reduces to

Eﬂ(—Aatﬁ):/ Vas(t,T)e N dr, t >0, (3.15)
0

Then the normalization identity can be derived by letting A — 0 in (3.15),
which implies

/OOO ’g/)aﬁ(t,T) dr = Eﬁ(O) = 1.

The nonnegativity of the function v, (¢, 7) can be established from its Laplace
transform (3.15) by applying Bernstein’s theorem. Indeed, the Mittag-Leffler
function Eg(—\t") is completely monotone as a function of A > 0 for any
fixed ¢ > 0 (as a composition of the completely monotone function Eg(—ax)
and the Bernstein function A%, see property (P5) in Proposition 2.1).

The subordination identity (3.12) and (3.14) imply that if |S11(¢)]| < C,
t > 0, then

1Sus(t)]] < / bas(t, D) Sua (Ml dr < C / Yaplt, 7)dr = C

foranyt>0,0<a<land0< g <1. n
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Let us note that in the case of ordered Banach space X, subordination iden-
tity (3.12) shows that positivity of the Cy-semigroup Si1(t) implies positivity
of the solution operator S, g(t) for any 0 <a <land 0 < 5 < 1.

Proposition 3.1. The subordination kernel 1, s(t, T) obeys the following Laplace
transform pairs

/OO Va5t T)e N dr = Eg(—\"t"), (3.16)
0

and N
/ Vas(t, T)e 5 dt = 87107 E, o (—877%). (3.17)
0

Proof. For convenience we use in this chapter the following notations for the
Laplace transform

L{f(t,T);t — s} = /OOO e S f(t,T)dt

and the double Laplace transform

LHf(t,T)t — 5,7 —= A} = / / e~ £ (¢ 1) dt d,
0o Jo

where, due to Fubini’s theorem the order of integration may be switched for
sufficiently well behaved functions. The Laplace transform of the subordination
kernel 1, (¢, 7) with respect to the variable 7 is obtained in (3.15).

In order to find the Laplace transform of ¢, (¢, 7) with respect to ¢, we
note first that (3.15) and (1.27) imply

B-1
L{taslt )it = 5,7 = A} = L{ES(-X¢)it = s} = — (3.18)

+ A

Then, taking inverse Laplace transform £7! {-; A\ — 7} in (3.18) we deduce by
the use of (1.27):

L{ap(t, 7)it = s} = "7 By 0 (=577,
[

Let us note that in the limiting case @« = 1 and 8 = 1 the subordination
kernels are Dirac delta functions

filt,7) = @i(t, 7)) = Y1a(t,7) = 6(t — 7). (3.19)
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Moreover, the kernels f, (¢, 7) and @pg(t, 7) are particular cases of the composite
kernel 1, 5(t, 7), namely

fa(tv T) - 77boz,1 (tv 7_)7 gOg(t, T) - wl,ﬂ(tv 7_)' (3'20)

Therefore, the Laplace transform pairs for f,(¢,7) and @g(t, 7) can be derived
from the identities (3.15), (3.18), and (3.17), taking 5 = 1 or a = 1, respec-
tively.

Remark 3.1. Let us emphasize that the integral expression in (3.13) is not
commutative: Vo 5(t,7) # [ falt,0)pp(o,7)do. This is due to the fact that
the order of the two steps in the derivation procedure of subordination identity
(3.12) is essential.

For example, let us consider the case « = 8 = 1/2, in which the subordina-
tion kernels can be expressed in terms of elementary functions as follows (e.g.

[108, 2]):
te—t2/47' 1

t e — t R
f1/2( ,T) NItk p1/2(t,7) it
Plugging expressions (3.21) in the composition rule (3.13) we get

> Vit
V1/2,1/2(t,7) :/0 ©1/2(t,0) fiy2(0,7)do = ATl (3.22)

e T (3.21)

The last formula can also be directly derived from eq. (3.54). On the other
hand,

/0 fia(t,0)p12(0,7) do = ! (3.23)

(2 + 2’
which can be obtained by introducing a new integration variable (t* + 72) /40
A comparison of identities (3.22) and (3.23) confirms the non-commutativity
pointed out in the remark.
Next we establish some properties of the subordination kernels based on the
Laplace transform pairs (3.15), (3.18), (3.17), and identities (3.20).

Proposition 3.2. Assume 0 < o, o, 3,5 < 1. Then

foa (t,T) = /Ooofa(t,a)fo/(d,T)dO', (3.24)
enitr) = | " s(t,0)pplo, ) do (3.25)
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Proof. To prove (3.24) we apply Laplace transform with respect to 7 and obtain
by using (3.15) with 8 = 1 and Fubini’s theorem L{ foor (£, 7);7 — A} = 7™
and

N o)fi(o,7)do;T _ [ e do = e
,C{/O falt,o)fo(0,T)do; —>)\} /0 falt,o)e do =e :

In order to prove (3.25) we apply double Laplace transform, which gives by
using (3.15) and (3.18) with a =1

L? {/ os(t,o)pp (o, 7)dost — s, 7 — )\}
0
LGN
PLL AN ST NS

= 551/ e*JSﬂEg(—/\aﬂ/) do =s
0
= £2{gpg5/(t, )t — s, 7 — A}

To finish the proof it remains to apply the uniqueness property of Laplace
transform. ]

Let us note that (3.24) is equivalent to the following natural operator iden-

tity

(=AY = ((—A)")* = (=A™, 0<a,a <1, (3.26)
for a generator —A of a bounded Cy-semigroup. Indeed, (3.24) together with
subordination formula (3.5) shows that any of the operators in (3.26) is in-
finitesimal generator of one and the same semigroup: Syq 1(t). For a different
proof of (3.26) see e.g. [108], Chapter IX.

Identity (3.25) is related to successive application of the subordination prin-
ciple for time-fractional evolution equations and is in agreement with The-
orem 2.3. Let us note that the composite function 1, 3 does not satisty a
property, analogous to those in Proposition 3.2. This is due to the non-
commutativity of definition (3.13), see Remark 3.1.

Corollary 3.1. Let 0 < a < 8 < 1. Under the conditions of Theorem 3.1 the
solution operator S, g(t) admits the representation

Sa,ﬁ(t) = / @b@’g(t, T)Sa/g,l(T) dT, t > 0, (3.27)
0

where Sqp1(t) is the Cy-semigroup generated by the operator — AP and the
function g p(t, T) is defined in (3.54).
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Proof. This subordination identity is derived by plugging in (3.12) the identity

fa(t,T):/O f5(t,0) fayp(o,7)do

following from (3.24), and applying (3.13), Fubini’s theorem, and (3.5). O

3.2 The subordination kernel

In this section some representation formulae for the subordination kernel
Vo 5(t, T) are derived.

3.2.1 Relations to L, and Mjp

We start with scaling laws for the subordination kernels. From the defini-
tions (3.6), (3.9) and (3.13) of the subordination kernels f,, ¢z and 1,5 we
derive the following self-similarity properties

falt,7) =t VL (1,7t wp(t, ) =t Pps(1,7t77),  (3.28)

Vo p(t, T) =t %% 5(1, TP/, (3.29)
Introducing the functions of one variable L,, Mg and K, 3 as follows
La(r) = fa(1,7), Ms(r) = ¢p(1,7), Kap(r) =vas(l,7), (3.30)

we deduce from (3.28) and (3.29) the following representations for the subordi-
nation kernels

falt,7) =t 7VOLG (V) st 7) =t P My(rt™?),  (3.31
Yo p(t,T) = tPUK, (Tt P,

In addition, identities (3.19) and (3.20) imply for the new functions
Lo(r) = Koa(r), Ms(r) = K;(r), (3.33)

and Ll(T) = Ml(T) = Kl’l(T) = (5(7’ - 1)
From (3.30) and (3.15) we deduce:

L{K,p5(r);r — A} = Eg(—=\Y), (3.34)

i.e. K, p(r)can be defined as the inverse Laplace transform of the Mittag-LefHler
function Eg(—A\%).
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Theorem 3.2. The subordination kernel admits the representation
wavﬁ (t7 7_) = t_ﬂ/aKavﬂ (Tt_ﬁ/a)7

where K, p(r) is a unilateral probability density function, i.e.

Kap(r) >0, / K, p(r)dr =1,
0

defined as the inverse Laplace transform of a Mittag-Leffler function:

Ez(—\?) :/0 e_MKa,ﬂ(r) dr.

The Laplace transform pairs (1.41) and (1.39) for the functions L, (r) and
Mpz(r) can be derived from (3.34), taking 8 = 1 and o = 1, respectively. There-
fore, we recognize the Lévy extremal stable density L,(r) and the Mainardi
function Mpg(r), see Section 1.5.

In the next theorem we derive representations for the function K, g(r) in
terms of L,(r) and Ma(r).

Theorem 3.3. The function K, 3(r) admits the following representations

Ko (r) = /O oL (ro YO My (o) do. (3.35)
K, 5(r) = /000 P10 Lo(ra® ) Ly(0) do, (3.36)
Kaop(r) = ar®! /OOO oM, (o) Ma(or®) do. (3.37)

Moreover, in the particular case o = 3 it holds

1 re~lgin ar

Ka o _ — 3-38
o(r) T2 4 2racosam + 1 ( )
and if 0 < a < 8 <1 then
Koslt) = [ 07 Lyyalra ) K o) do (3.39
0

Here L, (r) is the Lévy extremal stable density and Mpg(r) is the Mainardi
function.
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Proof. Expression (3.35) follows directly from (3.13), (3.31) and (3.32). Rep-
resentations (3.36) and (3.37) can be deduced from (3.35) after applying the
formula (1.42) Representation (3.38) follows directly from (1.28) and (3.34) for
a = . To prove (3.39) we find the inverse Laplace transform of Ez(—\*) by us-
ing (1.28) and the following property (see e.g. [26]): If I(A\) = L{H(r);r — A}
and I(\*) = L{H,(r);7 — A} then

H,(r) = /0 o VL (ro Y H(o)do, 0<a<1. (3.40)

(In fact, formula (3.40) can be verified by proving that Laplace transforms of
both sides are equal.) From (3.40) and (3.34) it follows for 0 < a < <1

Koplr) = £ HES(-O5A > 1k = [0 90 Ls(r0 ) K (o) do
0

and the last identity is proved. ]

3.2.2 Other representations and properties of K, s

Next, representations of the function K, g(r) are deduced by direct inversion
of the Laplace transform in (3.34).

Theorem 3.4. Assume
0 <a<max{f,1—p5/2} <1. (3.41)

Then the function K, 5(r) admits the representations

1 [ .
Kapl(r) = — [ e7°3{By(=0"€")} do, (3.42)
1 ['(an + 1) sinant
K, = — ) (=1)"*! : 3.43
»5(T) Tr nz:;( ) F(BTL‘{‘ 1) ron ( )

Proof. Applying the complex Laplace inversion formula to (3.34) yields:

1 c+ioco
Koplr) = 5 / CE(-A)dA, >0, (3.44)

For the multivalued function A* = exp(aIn \) the principal branch is consid-
ered.
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Let first 0 < a, 8 < 1 are arbitrary and fix some 6y, which satisfies the

inequalities
1—73/2
<< min{ b/ 7r,7r} : (3.45)

2 Qa

Since the Mittag-Leffler function is an entire function, Eg(—A®) is analytic for
A € C\(—00,0]. Therefore, by the Cauchy’s theorem, the integration in (3.44)
can be replaced by integration on the composite contour I'f UT3 UTT UT, U
I'y Ul Uy, where (with appropriate orientation)

I'f ={A=q%iR, g€ (0,0)},

Iy = {\=Re* 0c(1/2,00)}, R— oo,
' ={\=0efh o5c(c,R)},
Ty={\=ce? 6ec(-6),60)}, —0.

For the integration on I'{” we obtain

/ N Eg(—\%) d)\‘ < / e"|Eg(—(q¢+iR)")|dg — 0, R — oo, (3.46)
rf 0

due to the asymptotic expansion (1.22) for the Mittag-Leffler function in the
integrand, which is satisfied since (g +iR)® ~ R®™/? as R — oo and 7 —
am/2 > fr/2. The integral on I'] is treated in an analogous way. Further,

00 .
/ e”Eﬂ(—Aa)dA|§/ freost| Bo(— R |Rd§ — 0, R — oo, (3.47)
ry /2

where we have taken into account cosf < 0 and the asymptotic expansion
(1.22) for the Mittag-Leffler function under the integral sign, which is satisfied
due to the inequality m — af > [7/2, implied by assumption (3.45). The
integral on I'; is estimated analogously. Concerning the integral over I'y we
have

00 .
/ e”Eg(—)\O‘)dA‘g / (T B~ e dh 5 0, -0, (3.48)
P4 _90

since the Mittag-Leffler function is bounded as ¢ — 0. Therefore, (3.44), (3.46),
(3.47), and (3.48) imply that K, s(r) is given by the integral over I'; UT; with
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e — 0 and R — oo, that is

1
Kop(r) = lim —— M Eg(—A*) dA

e—0,R—o0 271 F;UF:;

R
= lim L </ eor(cos90+isinHo)Eﬁ(_Jaeiaeo)eieo do
g

e—0,R—o0 271

5
+/ ear(cosHO—isinHO)Eﬁ(_O_ae—iaeo)e—iﬁo dO’) .
R

Therefore, for 0 < «, 8 < 1 the function K, g(r) admits the integral represen-
tation

1 > . . .
Ka,ﬁ (7“) _ % /0 "0 Cos 90%{61(90—1—7"0 smHo)Eﬂ(_O_aelaHo)} dO’, (349)

with 6y satisfying (3.45).
Suppose now that the parameters a and § obey the assumption (3.41).
Assume first « < 1 — /2. Then min {#W, 7'('} = 7 in (3.45) and we can let

0p — 7 in (3.49), which implies (3.42). Let now 1 — 3/2 < o < . Then we
can repeat the above argument to prove (3.46) and (3.48) with 6, = 7. Let us
prove that the integral in (3.47) with 6y = 7 vanishes as R — oo. In this case

b/ieﬁfEb(—Aa)dA‘jgu/1 RSt (L RO Rp. (3.50)
ry /2

We split the integral in (3.50) into two integrals f;T/Q = fﬂ% —i—f;;, where 6
satisfies (3.45). It is already proven in (3.47) that the first integral vanishes as
R — oo. For the Mittag-LefHler function in the second integral the asymptotic

expansion (1.22) holds, implying

. 1 _
|Es(—RYe)| < Eexp (Ra/ﬁ cos 049) ¢

B 1+ R’

Note that cos 77_;9 > 0 for 6 € (6, m), so that the exponent in (3.51) is not
bounded as R — oo. However, due to the assumption a < (3, the dominant
term of the integrand e’ °*| Es(—RY1%%)|R as R — oo is el % and therefore
the integral vanishes. Therefore, again (3.49) holds with 6, = 7. This completes
the proof of the integral representation (3.42).

The series representation (3.43) can be deduced from (3.42) by inserting the
definition(1.21) of the Mittag-Leffler function under the integral sign. ]

R— 0. (3.51)
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Next, the regularity of the function K, g(r) is discussed briefly. We start
with the asymptotic identity implied by (1.22)

A @
Ez(=A\%) ~ ——— A\ — 400, 3.52
X~ 5 (3.52)
which, by (3.34) and applying Karamata-Feller Tauberian theorem, is equiva-
lent to
o 0 (3.53)
Kqp(r) ~ , T —=0+. :
0 T g)

Therefore, if & < 1 and f < 1, then K, g(r) has a singularity at the origin:
K, p(r) = 400 as r — 0+. This is in contrast with the regular behaviour of
any of the functions L, (r) = K, 1(r) and Mg(r) = K; g(r), which can be seen
again from (3.53), taking 6 =1 or & = 1 and noting that I'(0) = oc.

Moreover, the Laplace transforms (1.41) and (1.39) of L,(r) and Mp(r)
satisfy (ii) of Proposition 1.3, which means that these functions admit bounded
analytic extensions to appropriate sectors of the complex plane. In contrast, if
a < 1 and f < 1, then (3.52) implies that AEz(—A*) — 400 as A — 400,
therefore (ii) is not satisfied, thus, K, g(r) does not admit a bounded analytic
extension to any sector of the complex plane.

In contrast to the singular behaviour of K, g(r) when @ < 1 and 8 < 1,
the related subordination kernel v, (¢, 7) exhibits a regular behaviour in ¢ (see
Proposition 3.3). As an illustration let us consider the particular case o = 3,
in which formula (3.38) together with (3.32) yields

1 t*r* sin an

wat,T) =t K, (1t = = . 3.54
Vaalt,7) ol7t7) T3¢ + 2107 cos amr + T2 (3-54)

Indeed, K, o(r) — 0o as r — 0, while 9, o(t,7) = 0 as t — 0 and t — oc.

3.2.3 Integral representation for the subordination kernel

Representations of the subordination kernel v, (¢, 7) are useful in view of
the integral expression (3.77) for the fundamental solution. In a limited num-
ber of particular cases the subordination kernel can be expressed in terms of
elementary functions, e.g. the relation (3.54), (3.21), (3.22). However, for arbi-
trary values of the fractional parameters explicit expressions are not available
and other types of representations are needed.

Next we deduce an integral representation of the subordination kernel ¢, 3
by inversion of the Laplace transform pair (3.17). We choose (3.17) instead
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of (3.16), because of the faster decay for large arguments of the correponding
Mittag-Leffler function, see (1.24).

Assume 0 < o, f < 1 and aff # 1. Applying the complex Laplace inversion
formula to (3.17) yields:

a—1 petico
Vo p(t,T) = 72 , / 1" By o(—7%5") ds, ¢ >0, (3.55)
i ).

—ioco

where s7 = exp(31n s) means the principal branch of the corresponding multi-
valued function defined in the whole complex plane cut along the negative real
semi-axis. Since the Mittag-LefHler function is an entire function, E, ,(—7%s")
is analytic for s € C\(—o0, 0].

s F+
R [—>—
F+
21 |
p s
s
o )
-p
A
A
FZ
-R <
Fl

Figure 3.1: Contour I'.

Therefore, by the Cauchy’s theorem, the integral in (3.55) can be replaced
by an integral over the composite contour I' = T'7 UT, UT3UTS UL, where

It ={s=q%iR, q€(0,0)}, I3 ={s=re? re(pR)}
[3={s= peig, 0e(—m/2,7/2)},

with appropriate orientation (see Figure 3.1) and letting p — 0, R — oc.
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Since (¢+iR)? ~ R%e7/2 as R — oo, for the integration on I'{ as R — oo
we obtain

/+ e*'s" By o(—1%5") ds
1—‘1

< C/ eqtRﬁ_l\Eava(—TaRﬁeiﬁﬂ/z)\ dg — 0
0

(3.56)
as R — oo due to the asymptotic expansion (1.24) for the Mittag-Leffler func-
tion, which is satisfied since |arg(7*R%e¥"/?)| = Br/2 < (1 — a/2)7. The
integral on I'] is treated in the same way.

Concerning the integral over I's we have for p — 0

/2 .
< / eptcosgeﬁ\Eaﬂ(—To‘pBelﬁe)\ df — 0,
/2

/ e*'s" B, o(—1%5") ds
s

(3.57)
since the Mittag-Leffler function under the integral sign is bounded as p — 0.

Therefore, (3.55), (3.56), and (3.57) imply that 1, 5(t, 7) is given by the integral
over I'; UT; along the imaginary axis with p — 0 and R — oo. This implies

a—1 ioco
Yap(t, 7) = ;m / eStsﬂ_lEa,a(—Tasﬁ) ds
Ta—l 00 710(.3 ’ .
- 2ml (/ eXp(Ttem/Q)Tﬂ_lelﬁﬂ/QEa,a(_Tarﬁelﬁﬂﬂ) dr
1 0

(0.]
+/ exp(7'756_1”/2)7"ﬁ_1e_iﬁ7r/2Ea’oé(—To‘rﬁe_m”/2 dr).
0

Therefore

a—1

Vo p(t,T) = ! / rf1g {eim%ﬁmEma(—Tarﬁew”/Q)} dr. (3.58)
™ Jo

We observe that the integral in (3.58) is convergent since the integrand behaves
as 7771 for r — 0 and as r?~! for r — oo due to the asymptotic expansion
(1.24) for the Mittag-Leffler function. In this way, from (3.58) we obtain the
following

Theorem 3.5. Let 0 < a <1,0< <1, and aff # 1. Then the subordina-
tion kernel v, 5(t, ) admits the integral representation

Ta—l

Vo s(t,T) = /OOO 1 (Cs(r,t) I, 5(r,7) + Sa(r, t)Rap(r, 7)) dr, (3.59)

v
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where Cg(r,t) = cos(rt + pn/2), Sp(r,t) = sin(rt + f7/2), and

(—1)krakta=tpbk gin kB /2

L s(r, 1) = {1 By o (— 17?2} = Z

— I'(ak + «) ’

. = (= 1)krokta=lypfE cos kB /2

N — a_lEaa o, B ifT/2 _ ( .
R p(r,7) =R{7 ao(—T%"e )} kEZO T(ak 1 )

For the numerical implementation of formula (3.59) the above real and imag-
inary parts can be numerically calculated employing a method of computation
of the Mittag-Lefler function of complex argument.

In the particular case a = 1 (time-fractional diffusion) representation (3.59)
yields the following simpler formula for the subordination kernel

1 o
wp(t, ) = —/ r’“Lsin (rt + Br/2 — 7P sin B /2) exp(—7r” cos B /2) dr.
0

T
Let us recall the relation @s(t,7) = t P Mg(rt~7), where Mg(-) denotes the
Mainardi function. In this way, as a byproduct, we obtained also an integral
representation of this function.

The technique used in this section for deriving of the integral representa-
tion for the subordination kernel does not rely on the scaling property and
can be extended to equations with more general nonlocal operators in space
and operators with a general memory kernel in time, which are considered in

Chapter 5.

3.3 Analyticity of the solution operator

First we prove that the subordination kernel v, s(t,7), considered as a
function of ¢, admits a bounded analytic extension to a sector in the complex
plane.

Proposition 3.3. Assume 0 < o, < 1, af # 1, and let

eozmm{@_‘;‘ﬁ_ﬁ)”,g}. (3.60)

For any 7 > 0 the function 1 p(t,7) as a function of t admits analytic exten-
sion to the sector |argt| < Oy, which is bounded on each sector |argt| < 0,
0<6<by.
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Proof. We apply Proposition 1.3 for the Laplace transform pair (3.17): F(s) =
sP o B, ((=sP71?), and f(t) = (L, T), where 7 > 0 is considered as
a parameter. The function F'(s) admits analytic extension to C cut along
the negative real axis. According to the estimate (1.23) for the Mittag-Leffler
function

s/’

1+ 7¢|s|8

-1

|sF(s)] < COrt <C1t77,

for all s € C such that

|arg(s)] < min{% —m}.

To obtain the desired statement it remains to apply implication (i) = (ii). O

Proposition 3.3 together with subordination formula (3.12) implies that
Sa.p(t) is a bounded analytic solution operator according to the above defi-
nition. The proof is similar to the one in [9], Theorem 3.2, where, based on
analogous property for the function ¢g(t, 7), analyticity of the subordinated
solution operator for the time-fractional evolution equation is established.

Taking into account relations (3.20) we can derive the corresponding sec-
tors of existence of bounded analytic extensions for the functions f,(¢,7) and
@p(t, 7) (setting in (3.60) B8 =1 or @ = 1). In this way known results for an-
alyticity of the semigroup S, 1(¢) [108, 66] and of the solution operator S s(t)
|9, 66| are recovered.

Proposition (3.3) implies that if 0 < o, < 1, af # 1, and if A is the
generator of a bounded Cy-semigroup S(¢) on X, then problem (3.4) admits a
bounded analytic solution operator S, 5(t) of angle 6, where

9:min{(2_zﬁ_ﬁ)ﬂ,g}. (3.61)

Now we suppose that the Cy-semigroup generated by the operator A is a
bounded analytic semigroup. In this case we expect that the solution operator
Sa.p(t) will be bounded analytic in a larger sector of the complex plane. To
formulate the precise result we prove some estimates for the functions M, (z)
and L. (z) in appropriate sectors of the complex plane.

The sectors in the complex plane, in which the functions M, (z) and L, (2)
are bounded analytic functions can be easily found from the behavior of their
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Laplace transforms (1.39) and (1.41), applying Proposition 1.3. The asymptotic
expansion for the Mittag-Leffler function (1.22) implies that

SLAM,()}(5) = sBy(—s)
is bounded for s € %((1 —v/2)7). On the other hand,

SL{LL(-)}(s) = s exp(—s7)

is bounded when |arg(s?)| < /2, i.e. for s € ¥(y !7/2). Based on the above
statement, we deduce that the functions M, (z) and L,(z) are analytic in the
sectors X(0yy) and 3(61), respectively, and bounded on each proper subsector
of these sectors, where

Or(v) = 1 —7)m/2 for My(2);  Or(y) = (1/y—1)n/2 for L,(z). (3.62)

In fact, the asymptotic expansions for the functions M, and L, imply a
stronger property in the same sectors as we see next.

Concerning M., expansion (1.40) implies that there exists r*, such that for
any r > r*

M) < ) e (b cos (1))

-7

Therefore, this function is integrable at » — oo provided
0] < (1 =7)7/2 = Ou(7),

recovering the same angle as in (3.62). In addition, (1.38) shows that | M. (re®)]
is a bounded function as r — 0. Therefore, the following integral is uniformly

bounded -
/ M, (re®) | dr < Car, 18] < Oar(7). (3.63)
0

Concerning the function L., expansion (1.45) shows that |L,(re'?)] admits
an integrable singularity for » — oo. For small r the asymptotic expression
(1.46) implies the estimate

i0 2=y . ’}/(9
Ly (re®)] < qa(y)r20=0 exp | =b(y)r ™ cos  7—— ] |-
-7
This shows that the function |L,(rel’)| is integrable for r — 0 provided

0] < (1/y =17 /2 =01(7),
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the same angle as defined in (3.62). Therefore, we established the uniform
boundedness of the integral

/ |L,(re?)| dr < Cr, 10] < 0L(7). (3.64)
0

The constants Cyy and C, in (3.63) and (3.64) depend on ~, but do not depend
on 0.

In this way we obtained the sectors 3(0(7)) and X(01(7)) of "good be-
havior" of the functions M, (z) and L, (z), respectively.

Theorem 3.6. If0 < o, 3 < 1, af # 1, and if A is the generator of a bounded
analytic semigroup of angle ¢y € (0,7/2], then S, 5(t) is a bounded analytic
solution operator of angle 6y, where

2—a—0)r w
eozrmn{0?0+( ZB’@ ,5}. (3.65)

Proof. The proof of this statement is divided into two steps, based on sub-
ordination identities (3.5) and (3.8). We use the uniform boundedness of the
integrals in (3.63) and (3.64), established in the previous section.

First step. Assume S(t) is a bounded analytic semigroup of angle ¢y, i.e.
S(t) admits an analytic extension to the sector X(¢y) and it is bounded on each
proper subsector, i.e.

1S(2) < C, z€X(9), ¢ < o (3.66)
5).

We start from the subordination identity (3.
complex plane

Let us consider the path in the

Pry={z=rre[0,R}U{z=Re¥ pel0,¢]}U{z=re?rel0,R]}
(3.67)
with counter-clockwise orientation, where ¢ € (—¢g, ¢g), R > 0. An appli-

cation of Cauchy’s theorem shows that frw fa(t,2)S(2)dz = 0 and, letting
R — o0, we obtain from (3.5) and (3.31)

Sualt) = [ ultare)S(re)e dr = £ [ L (et S(re dr
0 0

Now let ~
Sai(z) = zl/o‘/ Lo (re’ 271 S(re)e' dr, (3.68)
0
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where a¢ — (1 — a)r/2 < argz < a¢ + (1 — a)7/2. Let us set z = pe’¥ with
p > 0. Then (3.68) implies |¢ — ¢/a| < 01 («) with 67, defined in (3.60) and
Sai(z) = p_l/o‘e_“/’/o‘/ Lo (re®p= e /) S (rel®) el dr
0
_ io/a) / Lo (0601085 p/ i) o,
0

where we have set o = p~%/%r. Therefore, applying (3.66) and (3.64) we deduce

[Sar(2)]l < / | La(0e @) ||S(op! )| do (3.69)
0

< c / Lo (0 @/0)) | dor < .
0

Varying ¢ € (—¢o, ¢o) in (3.68) provides an analytic extension of S, to the
sector X(¢, ), which is bounded on each proper subsector, where

o = app+ (1 — a)m/2. (3.70)

Second step. Let us apply now the subordination identity (3.8), where S, 1(t) is
a bounded analytic solution operator of angle ¢, defined in (3.70). We proceed
in a way analogous to the first step. Take ¢ € (—¢q, ¢o) and consider the path
(3.67). By applying the Cauchy’s theorem it follows that

/ 05(t,2)S01(2)dz =0
Tro

for ¢ € (—¢a, Pa). Therefore, for R — oo we obtain from (3.8), taking into
account (3.31),

Sap(t) = / p(t,re?)San(re?)e dr =7 / Mis(re®t=%) S, 1 (rél) e dr
0 0
Consider the operator-valued function

Sap(z) = 2_5/ Mp(re'2")S, 1 (rel?)e dr, (3.71)
0

where ¢/B—(1/8—1)n/2 < argz < ¢/B+(1/8—1)m/2. Let 2 = pe', p > 0.
Then (3.71) implies |¢ — S| < Op(8) with 8y defined in (3.60) and

o0
Saslz) = ple / Mp(re®p Pe7)S, 1 (re)e dr
0

_ ilo-59) / My(0e@B0NS, (op%ei®) do,
0
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where we have set o = p~"r. Applying (3.69) and (3.63) it follows
IS, < [ Maloe® )] Sas(o )] do
< ¢ / Mo )| do < Cb.
0

Therefore, varying ¢ € (—¢q, @) in (3.71) provides an analytic extension of
Sa.p to the sector (), which is bounded on each proper subsector, where

O = ¢a/B + (1/8 — D /2. (3.72)

Combining the results of the above two steps and inserting the value (3.70) of
¢ in (3.72), we derive the angle of analyticity (3.65). In this way the statement
1s proven. [l

Particular cases of this result can be found in |2], see Theorem 3.8.3, as well
as in [9, 66, 10].

3.4 Multi-dimensional fundamental solution

First, let us recall that the Fourier transform of a function v(x), x € R", is
defined by

n

f{u}(g):’ﬁ(g):/ e Ty(x) de, € €R™

The Fourier transform pair corresponding to the Laplace operator A of a func-
tion v(z), x € R", such that lim,_., v(x) = 0, is (see e.g. [3, Chapter 15])

F{Av}(§) = —[¢PF{v}(E), €€R™ (3.73)

The main example of the considered abstract problem (3.4) is the space-time
fractional diffusion equation

Dlu(x,t) = —(~A)u(x,t), t>0, x€R" u(x,0)=0v(x); (3.74)

where 0 < o, 8 < 1, CDf is the Caputo time-fractional derivative, and A is the
full-space fractional Laplace operator in R"”. Then the fractional power (—A)®
coincides with the pseudo-differential operator defined as follows

F{(=A)"f; €} = [E*F{f; €}, €eR", (3.75)
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where F{f; &} denotes the Fourier transform of a function f at the point &.
In particular, in the one-dimensional case —(—A)“ coincides with the Riesz
space-fractional derivative of order 2c. We refer to the survey paper [64], where
the equivalence of ten different definitions of full-space fractional Laplacian is
proven.

Assume X is one of the spaces LP(R"), 1 < p < oo, or the space Cy(R"™) of
continuous functions vanishing at infinity. Let A = A be the Laplace operator
defined on X with maximal domain. For details on the definition of the full-
space Laplace operator we refer to [79]. In this case the operator (—A)* is
defined by (3.75). The operator A is a generator of a bounded analytic Cp-
semigroup S11(t) with corresponding Green function 2]

1

T P/ n
(47rt)”/26 , xeR" t>0. (3.76)

gl,l,n(X7 t) =
For any 0 < a <1 and 0 < 8 <1 the solution operator S, g(t) of problem
(3.74) is given by

(Sap(t)v)(x) = Gopn(y,t)v(x—y)dy, veX, t>0, xeR",
Rn
where G, g, (%, 1) is the corresponding Green function. Therefore, the subordi-
nation formula (3.12) can be written in terms of Green functions as follows

Gapn(x,1) :/ Vo p(t, T)G110(x,7)dr, x€R" (3.77)
0

It is worth noting that some known basic properties of G, s, (x,t) follow
in a straightforward way from the subordination relation (3.77), taking into
account that the subordination kernel is a PDF. In this way we can prove that
for any dimension n > 1 the fundamental solution G, s, (x,t) is a spatial PDF
evolving in time:

Gapn(x,t) >0, Gapn(x,t)dx = 1.
R’I’L
Therefore, G, pn(x,t), 0 < «, 8 < 1, inherits this property of the classical
Gaussian kernel Gy ,(x,t). In a similar way, estimates for the fundamental
solution G, g,(x,t) can be derived from known estimates for the Gaussian
kernel G 1,(x,t). For example, since [|G11,(-,t)|[z1mny = 1 (see e.g.[2], Re-
mark 3.7.10.), the subordination formula (3.77) together with properties (3.14)
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imply
1Ga - 8) | gy < / Wit Gran (o P 1

< / Yo p(t,7)dr =1.
0

3.4.1 Some closed-form solutions

Based on (3.77) and (3.76), we find closed form expressions for G, 5.,(x,1).
Assume first o« = 5. In this case Eq. (3.74) is the so-called a-fractional diffusion
equation studied in [69]. Taking into account (3.54), the subordination formula
(3.77) reads

1 [~ ter=lgin o
n(x,t) = — WX, 7)dr, x € R". (3.78
ga’a’ ( ) 7T/0 120 4 2tar cog aw+72ag1’1’ ( T) g ( )

For x = 0 the integral in (3.78) is convergent only if a > n/2. Therefore,
Ga.an(0,t) is finite only for n = 1 and a > 1/2. The same conclusion can be
found in |69].

Next, applying the subordination formula (3.78), we derive a closed-form

expression for the two-dimensional Green function. Plugging (3.76) with n = 2
in (3.78) yields

t o Ta_2 sin o —|X‘2/4T
Goo2(x,t) = —5 5 G dr
Ame Jo 20 4 2t*7% cos amm + T
1 > o%sin a7

_ 1 e—(x2/4000 g
Adrt Jy o2+ 20%cosam + 1

where we have made the change of variables o = ¢/7. Formula (1.28) gives the
following expression in terms of Mittag-Lefller functions

1
Goa2(x,t) = 4—7Tt(|x|2/4t)a‘1Ea,a(—(|x]2/4t)0‘), x € R% (3.79)

Expression (3.79) can be found also in [70].
Further, we restrict our attention to the special case a = § = 1/2. Plugging
(3.22) in the subordination formula (3.77) yields

Vit [ .
Gi/21/2.0(X,t) = 7/ Giin(x,7)dr, x€R" (3.80)
0

R
T+ )
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Inserting (3.76) in (3.80) and introducing a new integration variable o = t/7
gives

()

onn/24+14n/2

g1/2,1/2,n (X7 t) =

n+1 n+1 |x?
2 72 T 4t

) , xeR"  (3.81)

where U is the Tricomi’s confluent hypergeometric function (3.100).

Let us first note that relation (3.101) confirms that formula (3.81) with
n = 2 is the same as (3.79) with a = 1/2.

Applying (3.103), expression (3.81) for the Green function can be rewritten
in terms of the incomplete Gamma function (3.102) as follows

(%)

1 — 2
omn n/2+1tn/26|X|2/4tF (Tn7 %) , X € R". (382)
v

In the one-dimensional case representations (3.81) and (3.82) reduce to

91/2 1/2, n(X,t) =

1 22 $2
A DT 3.83
Gija,1/2,1(7,t) = 7r3/2\/_ 1 <4t> : (3.83)

where Eq(z) is the exponential integral (3.105). The asymptotic expansion
(3.107) implies for 2*/4t — oo (i.e. as x — oo and t > 0 is fixed or ¢t — 0 and

x # 0 is fixed)
2/t 5
g1/2,1/271(x,t) ~ W, T /4t — OQ.

Similar asymptotic behaviour is observed for @ > 1/2 in [69], Eq. 25.
On the other hand, the expansion (3.106) of the exponential integral gives
forr e Ryx£0andt >0

o7 /At 0 2/475
Gij2.1/21(2,t) = i —y — Il< ) Z .

=1

This expansion implies the following asymptotic behaviour

In 4t — In 22 9

Tt) ~ ————— 2[4t — 0.
Therefore, Gy /21/2,1(x,t) — oo with logarithmic growth as  — 0 for any fixed
t > 0and Gio1/01(2,t) = 0 as t — oo and x # 0 is fixed. Let us note that
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when o > 1/2 the asymptotic behaviour of G, 41(x,t) as  — 0 is of a power
law type (see [69], Eq. 24), which is in contrast to the observed here logarithmic
growth for a = 1/2.

In addition, inequalities (3.108) imply that the Green function G /91 /2,1 (2, )
is bracketed for any x € R,z # 0, and ¢ > 0 as follows

: St 1 4t
In (14> ; A
mﬂw@n(+xJ<gwwmm)<%W%Gn(+xQ

Expressions for the multi-dimensional Green function Gy 9 1 /2, (X, t) in terms
of the exponential integral E; (for odd dimensions) or the Mittag-Leffler func-
tion E/91/2 (for even dimensions) can be obtained from (3.83) and (3.79) by
applying representation (3.82) and the recurrence relation (3.104) between the
incomplete Gamma functions. For example, in this way we derive from (3.82),
(3.83), and (3.104), the following expression for the three-dimensional Green

function

1 1 2 [x/°

= _ x> /4t [ 12 R3.
91/2,1/2,3(39) 27?5/2\/ﬂX\2 87r5/2t3/2€ ! At )7 X €

Finally, we present an application of the subordination formula (3.27), which
for 8 = 2« gives in terms of Green functions

1 /oo tero—Llgin ar
0

7t = - ) d ) S Rn)
Ga/20n(%:1) 20 4 2tara cos am + T2 Gi21n(x,7)d7, X

T
(3.84)
where Gy /91,,(x, ) is the n-dimensional Poisson kernel [2]
L (%)t .
gl/Q’l’”(X’t) - 7r(n+1)/2(t2 + |X|2)(n+1)/2’ x € R". (3.85)

For example, applying (3.84) for n = 1, we can recover the following known
closed-form expression (see e.g. [76], Eq. (4.38))

1 tex* Lsin(am/2)

T2 + 2tz cos(am /2) 4+ 22

Gofr.an(T,1) = x> 0,t>0. (3.86)

Indeed, starting from the following integral obtained from (3.84) and (3.85)

1 /OO ter=lsin arr T ir. (3.87)

t) = —
ga/Q,a,l('x7 ) 7T2 0 t2a + AT oS T + 7_2a 7-2 + 332
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inserting in (3.87) the identity
1 1 [
ﬁ = —/ e "7 sinxo do
T x T Jo
and changing the order of integration we obtain by the use of (1.28)

tOl o0
Gaj2,a1(,t) = —/ 0" 1 By o(—t"0®) sinzo do. (3.88)
T Jo

Note that the integral in (3.88) is convergent due to the asymptotic expansion
(1.22) of the Mittag-Leffler function. Formal integration in (3.88) by using the
identity sina = ${e"} and the Laplace transform pair (1.27) yields (3.86).

3.4.2 Integral representations

According to the subordination relation (3.77) and the formula for the Gaus-
sian kernel (3.76), the fundamental solution of problem (3.4) admits the repre-
sentation

1 = -n —X2 T n
Gapn(X, 1) = (4@”/2/0 Yap(t, )T e P dr x € R > 0. (3.89)

Subordination formula (3.89) yields after the change of variables ¢ = 1/7

1 > - n — —ao
Gapn(X, 1) = W/o Vas(t, o Do 2e % do, a = |x[>/4.  (3.90)

Applying the formula for the Laplace transform (|37], Section 4.1, Eq. (25))
/ oo )e ™ do = a7 / s2"J,(2v/as)f(s)ds, Rev > —1,
0 0

where J,,(+) denotes the Bessel function (3.109) and f is the Laplace transform
of f, we deduce from (3.90) and (3.16) the following representation

-3
(2m)?

The obtained integral representation (3.91) is not new, see e.g. [70, 30],
where it is deduced applying a different argument.

ga,ﬁ,n(xv t) -

/ ot T 1(|Xo) Es(—o® ") do.  (3.91)
0
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Let us first note that for § = 1 the integral in (3.91) is always convergent
and gives the following representation for the fundamental solution to the space-

fractional diffusion equation:
[x|'2

(27)"/2

G (3, 1) = / 0" sy (|x]o) exp(—0**t) dor
0

We observe, however, that if § < 1 the integral in (3.91) is convergent only
for very limited ranges for the values of the other two parameters. Indeed,
according to the asymptotic expansions of the Bessel and the Mittag-Leffler
functions, (3.111) and (1.24), the integral in (3.91) is convergent only in the
following cases: n =1and a > 1/20orn = 2 and a > 3/4. If n > 3 the integral
is divergent for any o € (0,1). Our aim here is to derive from (3.91) convergent
integral representations for n = 1,2, 3, which hold for all o, g € (0, 1).

Let first n = 1. Plugging in (3.91) the representation for J_i(-) from (3.110)
yields

1 0
Goalast) = 1 [ cosllalo) Bx(-o™t") do, (3.92)
™ Jo

which, according to (1.24), is convergent at +oo only if 2c¢ > 1, unless 5 = 1.
However, we can improve the convergence by performing integration by parts
in (3.92). We use the identity

d 2
—Ey(—0™t") = —%a%‘ltﬂEﬁﬁ(—aQatﬂ), (3.93)
which is derived from (1.25). In this way the following integral representation

is established.
Theorem 3.7. Let 0 < o, 8 < 1 and af # 1. Then

15} 0

Gosa(r,t) = 221 [ Gin(|2|o)0® 1 By (=024 do. (3.94)

B omlz] Jo
The asymptotic expression (1.24) indicates that the integral in (3.94) is
convergent for all 0 < «, f < 1. In the particular case a = [3/2 representation

(3.94) coincides with eq. (3.88).
Let us consider now n = 3. Plugging in the general formula (3.91) the

representation for Ji(-) from (3.110) yields

1 o0
ga”g’g(x, t) = WA O'Sin(|X|O')E5(—O'2ata) do.
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This integral is divergent for all 0 < «, 8 < 1. Integration by parts gives

1 o d .
gaﬁ,g(x, t) = m/; COS(‘XlO‘)% (O-Eﬁ(_0'2 t )) do

and, by applying formula (3.93), we obtain the following integral expression for
the three-dimensional fundamental solution

1

Gops(x,t) = 272‘X|2/0 cos(|x|o) F p(0,t) do, (3.95)

where )
Fos(0,t) = By(—ot%) — §02atﬂEﬁ,ﬂ(—02atﬁ). (3.96)

The asymptotic expansions (1.24) of the Mittag-Leffler functions imply that
the integral in (3.95) is convergent for 1/2 < o < 1 and 0 < 8 < 1. Applying
again integration by parts in (3.95) yields

1

Gops(x,t) = 272‘X|3/0 sin(|x|o)H, 5(0, t) do, (3.97)

where H, 5(0,t) = —LF, 5(0,t). Therefore, from (3.96), (1.25), and the iden-
tity
d a— (% a— o
- (27 Epa(—2%)) = 2 ?Ega-1(—2%) (3.98)
it follows
Haﬁ(d, t) = ,LLUQQ_ltB ((1 + ) Eﬂﬁ(—dzatﬁ) + ,uEg’gfl(—O'Qatﬁ)) . (3.99)

where p1 = 2a/f8. The asymptotic behavior of the Mittag-Leffler functions
(1.24) implies that the integral in (3.97) is convergent for all 0 < a, § < 1.
We summarize the result for the three-dimensional case as follows.

Theorem 3.8. Let 0 < o, 8 < 1, a8 # 1, and n = 3. Then the fundamental
solution admits the integral representation (3.97), where the function H, g is
defined in (3.99).

In an analogous way, for n = 2 we deduce from (3.91) and (3.110) the
following result.
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Theorem 3.9. Let 0 < o, <1 and af # 1. Then

1 1 >0
Gapa(x,t) = —/ — <1+/ cos(|x|o cos0)H, g0, ) da) do,
0 0

- 2m2|x|? cos? 0
where the function H, g is defined in (3.99).

Let us emphasize that identities for the derivatives of Mittag-Lefler func-
tions (1.25) and (3.98) together with the asymptotic expansions (1.24) show a
faster decay for large |z| after repeated differentiation, which is essentially used
in the above representations.

3.5 Appendix: some special functions

The Tricomi’s confluent hypergeometric function can be defined by the
Laplace integral ([1], Eq. 13.2.5)

1 0
Ula,c,z) = / M1+ e dE, a > 0,2 > 0. (3.100)

['(a) Jo

The following representations of Mittag-Leffler functions in terms of Tricomi’s
confluent hypergeometric function can be obtained from (1.28) for o = 5 = 1/2

1
E1/2(_t1/2) - TU(l/Qu 1/27 t)u
! (3.101)
t71/2E1/2,1/2(_t1/2) = mU(g/Q, 3/27 t)

For a = ¢ the Tricomi’s confluent hypergeometric function (3.100) is related to
the upper incomplete Gamma, function

T(a,z) = / et de (3.102)
as follows (1], Eq. 13.6.28)

Ula,a,z) =€eT(1 —a,z). (3.103)
Integration by parts in (3.102) yields the following recurrence relation

[(a+1,2) =z%*+al(a,z2). (3.104)
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The incomplete Gamma function (3.102) with a = 0 gives the exponential

integral
00 6—5
Ei(z) = — d¢, (3.105)

S
which satisfies Eq(z) = ['(0, 2) = e *U(1, 1, ). For real or complex arguments
off the negative real axis, it can be expressed as ([1], Eq. 5.1.11)
Ei(2) = —y—Inz— i (=2)" larg z| <7 (3.106)
— k(k!) ’ ’ '

where 7 is the Euler-Mascheroni constant. For large values of Rz the following
approximation is valid [27]

o~ V-1

kv

(3.107)

z
k=

For real positive values of the argument the exponential integral can be brack-
eted by elementary functions as follows (1], Eq. 5.1.20)

0.5e *In(1+2/z) <Eiy(z)<e *In(1+1/z), = >0. (3.108)
The Bessel function of the first kind J,(z) is defined by the series [1]

X (_1VE(5/2) 2k
To(z) = ; Sg!r()u(+//<;)+ 1) (3.109)

The following particular expressions are of interest in this dissertation

2
Jo10(2) = \/Ecosz,
2
Jijo(2) = \/Esinz, (3.110)

Jo(z) = l/ cos(z cosf)df.
0

v

The asymptotic expansions of the Bessel function J,(r) for small and large
real arguments are as follows
( 1 r\V
— (= — 0;
G a) T

Jy(r) ~ 5
\| —cos(r —vm/2 —7m/4), r— +o0.
(Vo

(3.111)




Chapter 4

Transition from diffusion to
wave propagation

In this chapter we study a fractional Jeffreys-type heat conduction equa-
tion as a model problem to demonstrate the application of the general sub-
ordination theorem (Theorem 2.4). This is an evolution equation containing
time-fractional differential operators, which, depending on the model parame-
ters, obeys two different subordination properties, and, respectively, two fun-
damentally different types of behaviour: diffusion and wave propagation. The
one-dimensional Cauchy problem is studied and explicit representations for the
fundamental solution and the mean squared displacement are derived. The fun-
damental solution is shown to be a spatial probability density function evolving
in time, which is unimodal in the diffusion regime and bimodal in the propaga-
tion regime.

4.1 Problem formulation

The heat conduction equation with a fractional Jeffreys-type constitutive
law in abstract form reads as follows 6], Chapter 7,

(1+aDM)u'(t) = (1+0Dy) Au(t), t>0, (4.1)

where Df is the fractional Riemann-Liouville derivative of order a € (0, 1],
a > 0,b > 0 are given parameters, and A is a closed linear densely defined
operator in a Banach space X (usually A is some realization of the Laplace
operator, one example is the operator defined in (2.20)). The equation (4.1) is

67
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supplemented with the usual initial conditions u(0) = v € X and «/(0) = 0.
For derivation details and relevant references we refer to [22].

In this chapter the main emphasis will be on the differences in the model
governed by equation (4.1) in the two cases: a < b and a > b, where « € (0, 1]
is arbitrarily chosen. Based on the theory of Bernstein functions, we establish
two different types of subordination principles in the two cases: for a < b
the equation is subordinated to the first order Cauchy problem (2.6), while for
a < bit is subordinated to the second order Cauchy problem (2.7). Accordingly,
two fundamentally different types of behavior are established in the two cases:
diffusion regime for a < b and wave propagation regime for a > b. This is a
demonstration how the subordination principle can be applied for the proper
classification and understanding of the variety of mathematical models in the
form of generalized fractional evolution equations.

4.2 Subordination results

We first recast the fractional Jeffreys-type heat conduction equation (4.1)
as a Volterra integral equation. By the use of (1.17) equation (4.1) with initial
conditions u(0) = v and «/(0) = 0 in Laplace domain reads

1 14+bs*
-+ ———A : 4.2
s i s(1+ as®) ls) (42)
Taking the inverse Laplace transform in (4.2) yields the Volterra integral equa-
tion

t
u(t) =v+ / k(t — 7)Au(T) dr, (4.3)
0
with kernel k(t) satisfying k(s) = 1/g(s), where

s(1+ as®
g(S) = ﬁ, s> 0. (44)

Applying inverse Laplace transform we derive by the use of (1.27) the explicit
representation for the kernel

k() = 1 — (1 _ g) E, (—%ta) | (4.5)



4.2. SUBORDINATION RESULTS 69

Let us note that k() > 0. Indeed, according to (1.25), the first derivative

of k(t) is
K (t) = ! <1 — 9) U O <—1t“> :
a a a

Therefore, for a < b the function k(¢) is decreasing from k(0) = b/a > 1 to
k(400) = 1 and for a > b the function k() is increasing from k(0) = b/a < 1
to k(4+00) = 1. Moreover, the complete monotonicity of the Mittag-Leffler type
function t* ' E, , (—t*/a) implies k(t) € CMF for a < b and k(t) € BF for
a > b.

The following properties of the function g(s) play a crucial role in the study
of equations (4.3) and (4.1).

Proposition 4.1. Let 0 < o« < 1. For any a,b > 0 the function \/g(s) is a
complete Bernstein function. If moreover 0 < a < b then g(s) is a complete
Bernstein function.

Proof. We use the relation g(s) = sf(s), where

B 1+ as®
14 bs

f(s)
The function f(s) satisfies the properties:
o f(s) € SF fora <
e f(s) € CBF for a >b.

Taking into account (P8) in Proposition 2.1 it is sufficient to prove only one of
these two properties. Let a < b and use the representation

a1l 1 1 a
O e e (£9)

Since s* € CBF, then s* + 1/b € CBF and therefore, (P8) in Proposition 2.1
implies (s + 1/b)~! € SF. Therefore, f(s) is a Stieltjes function for a < b
as a linear combination with positive coefficients of two Stieltjes functions. In
this way the properties of f(s) are proved.

Let a < b. Then f(s) € SF, which according to (P8) in Proposition 2.1
implies g(s) € CBF. Since square root of a complete Bernstein function is
again a complete Bernstein function (by (P11) in Proposition 2.1), this also

gives \/g(s) € CBF.
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If @ > b then f(s) € CBF. Therefore, g(s) is a product of two complete
Bernstein functions (s and f(s)) and (2.2) implies 1/g(s) € CBF.

An alternative way to check that y/g(s) € CBF for a > b is as follows.
Consider the function h(s) = 1/g(s)/s. Then

14 as®
hi(s) = ————
(5) s(1 4 bs®)

is a Stieltjes function since, according to (1.27), it is Laplace transform of the
completely monotone function 1 + (a/b — 1)E,(—t*/b). On the other hand,
s/ is a complete Bernstein function. This together with property (P12) in
Proposition 2.1 implies that h(s) is a Stieltjes function. Then property (P7)
implies 1/g(s) = sh(s) is a complete Bernstein function. O

Let us point out that g(s) ¢ CBF for a > b. In fact, g(s) is not even
a Bernstein function in this case. Indeed, for s — 0 we have the asymptotic
expansion g(s) ~ s + (a — b)s**! and thus ¢"(s) ~ (a — b)(a + 1)as®! >0
for a > b, hence g(s) ¢ BF.

Now we can apply the general subordination theorem (Theorem 2.4) and
formulate the following subordination principles.

Theorem 4.1. Let a,b > 0 and 0 < o < 1. Assume the operator A is a
generator of a bounded strongly continuous cosine function Sa(t). Then problem
(4.1) is well posed and the corresponding solution operator S(t) satisfies the
following subordination relation

S(t) = /000 1(t, 7)So(T)dr, t >0, (4.7)

where the kernel o1(t, ) is a unilateral probability density (i.e. satisfies (2.26)),
which is defined via the Laplace transform

5i(s,7) = i<3) exp (—T\/@>, 5,7 > 0. (4.8)

Theorem 4.2. Let 0 < a < b and 0 < o < 1. Suppose the operator A is a
generator of a bounded Cy-semigroup of operators Syi(t). Then problem (4.1)
is well posed with solution operator S(t) satisfying the subordination relation

S(t) = /OOO wo(t, 7)S1(T)dr, t>0.
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The kernel po(t, T) is a unilateral probability density (i.e. satisfies (2.26)),
which is defined via the Laplace transform

Da(s,T) = @exp(—tq(s)), s, 7> 0.

A stronger subordination result in the case a > b > 0 is established next.

Theorem 4.3. Leta > b >0 and 0 < o < 1. Suppose the fractional evolution
equation (2.8) of order a+1 is well posed and admits a bounded solution oper-
ator Sa+1(t). Then problem (4.1) is well posed and the corresponding solution
operator S(t) satisfies the subordination relation

S(t) = /0 (L) S (P dr, 1> 0,

The kernel o(t, 7) is a unilateral probability density (i.e. satisfies (2.26)), which
15 defined via the Laplace transform

g(S)l/(a+1)

o(s, 1) = exp <—Tg(s)1/(0‘+1)> , s, 7> 0.

S

Proof. According to Theorem 2.4 we need to prove
g(s)Y/et) e cBF (4.9)

for the function ¢(s), defined in (4.4). According to property (P7) in Proposi-
tion 2.1) (4.9) holds if and only if

1/(a+1)
ns) = 98 s

S

We observe that

1+ as® 1 a/b—1
h/ a+1 — g(S) _ -
(h(s)) setl 5914 bs¥)  s@ T +1/b €57,

since s* € CBF, a > b > 0, and using properties (P2) and (P8) from Propo-
sition 2.1. Let F(s) = s/(@*1, Then F(s) € CBF for 0 < a < 1. Then
h(s) = F(h(s))*™) composition property (P12) yields h(s) € SF. ]
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Let us note that property (4.9) can be used to give an example of application
of Theorem 2.5. Indeed, it implies for the analytic extension of /g(s) to

C\(—o0,0]

1
Jarg v/g(2)] < o arg 2], 2 € C\(—00,0] (4.10)

If « < 1 and the operator A is a generator of a bounded cosine function
Sa(t) then since 2! < 1 the subordinated solution operator S(t) is a bounded
analytic solution operator in some sector of the complex plane.

4.3 One-dimensional Cauchy problem

Consider the one-dimensional Cauchy problem for the fractional Jeffreys’
heat conduction equation

2

(14 aDy) %u(m,t) = (1+0bDy) a—u(x,t), reR, t>0, (4.11)

Ox?
u(z,0) = up(x); hm+ gu(:ﬁ t)=0, xeR, (4.12)
|l|1m u(z,t) =0, t>0. (4.13)
T|—00

Problem (4.11)-(4.12)-(4.13) is conveniently treated using Laplace transform
with respect to the temporal variable and Fourier transform with respect to the
spatial variable.

By applying Laplace and Fourier transforms to equation (4.11) and tak-
ing into account initial conditions (4.12), the boundary condition (4.13), and
identities (1.17) and (3.73) we derive the solution in Fourier-Laplace domain

~ 9(s)/s

U, s) = ()+|€\2~(€)’ £ER, s>0, (4.14)

where g(s) denotes the characteristic function, defined in (4.4).
Therefore, the solution of the Cauchy problem (4.11)-(4.12)-(4.13) is given
by the integral

wawzj‘gu—%ww@wm rER, >0,
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where G(x,t) is the fundamental solution (Green function), defined in Fourier-
Laplace domain as

= _g(s)/s )
G(E,s) = T £ER, 5>0. (4.15)

By inversion of the Fourier transform and using the well-known formula,

Flesp(ca)} () = o ¢>0 neR

we derive the Laplace transform of the fundamental solution

s‘
—~
~—

G(z,s) = 255 exp (—|x\\/g(s)> , veR (4.16)
Let us note the relation with the subordination kernel, which Laplace transform
is given in (4.8).

Let us note that in the special case a = b equation (4.11) reduces to the
classical diffusion equation. The fundamental solution in this special case is the
Gaussian function

1
Gi(x,t) = 75 OXP (—|z[?/4t), z€R, t>0.

(4rt)

4.3.1 Fundamental solution

To study the behavior of the fundamental solution G(x,t), the properties of
the characteristic function g(s) from Proposition 4.1 are used.

Theorem 4.4. The fundamental solution G(x,t) is a spatial probability density
function evolving in time.

Proof. For the proof we use representation (4.16). First, cccording to Propo-
sition 4.1 /g(s) € CBF C BF for all values of the parameters a,b. Then

~

property (2.3) yields G(x,s) € CMUF. Therefore, by Bernstein’s theorem,
G(x,t) > 0. Further, (4.16) yields

c {/_:Q(a:,t)dx} _ /: Gz, s)dx = @ /OOO exp (—v/g(3)) do = %
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and, applying inverse Laplace transform we obtain

/OO G(z,t)dx = 1.

The theorem is proved. H

To find explicit integral expression for the fundamental solution G(x,t) we
apply integral inversion formula for Laplace transform to (4.16), which yields

for v € R\{0} and t > 0

G(z,t) = L /C+ioo "G (z, s) ds = L o mexp <st — ]:L‘h/@) ds,

27 i AT Jo o 5

where ¢ > 0.

The function under the integral sign is holomorphic with s =0 and s = 00
as the only branch points. It has no singularities in C cut along the negative
real axis. Hence, the integral can be evaluated using the Cauchy’s theorem and
the integration on the Bromwich path {s € C|Rs = ¢,3s € (—o0,+00)} can
be replaced by an integral over the composite contour

=T7Ul,Ulrsuly Ury,
where

M= {s=qLiR qe (0,0}, Tf = {s=re™™ re(pR)},
I's = {3 - pelea 0 € (_7/277T/2)}a
with appropriate orientation (see Figure 3.1) and letting p — 0, R — oc.

The integrals on the contours T'{ and T'] vanish for R — oo due to the
following asymptotic expression

a a 1/2
Vls)| ~y[5lsl = (Gl + B)Y) T R oo,

and
1/2
R/ g(s) ~ @/%\s\ oS ar2gs ~ (%((f + R2)1/2> cos(xm/4), R — oo.

Moreover, since

lim s ( 9(s) exp (st — |x|\/@)> =0,

|s|]—0 S
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it follows that the integral on the semi-circular contour I's also vanishes. There-
fore, the original integral yields

G(x,t) = = 1 lim ' g(s) exp (st — \x\Vg(s)) ds

471 p—0,R—00 r;ury
= —/ Vg(ir) exp <1rt—\x\\/ ir >}

To express the imaginary part under the integral sign in terms of elementary
real functions we apply the formula for real and imaginary parts of the square
root of a complex number z:

1/2

R{2) = L (s @ )") "
\5{21/2} |b‘lz/_ (—a+ (a2+b2)1/2>1/27

where a = Rz, b = &z. In this way we obtain after some standard manipula-
tions the following result.

(4.17)

Theorem 4.5. The fundamental solution G(x,t) of the Cauchy problem (4.11)-
(4.12)-(4.13) admits the following integral representation for x € R\{0} and
t>0:

G(z,t) = % OOO exp (—|z|K~(r)) (K~ (r)sin (rt — |z|K*(r))
+ K*(r)cos(rt — [z|K*(r))) %, (4.18)
where the functions K=(r) are defined by
KE(r) = (g)” i (40r) + B2(r) " = A(r))l/ 2 (4.19)
with
(@ — b)r*sin(ar/2)
Alr) 1 4 2bre cos(am/2) + b>r2e’
B(r) 1+ (a+ b)r®cos(am/2) + abr=®

1 + 2bre cos(am/2) + b2r2
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Figure 4.1: Plots of the the fundamental solution G(x,t) versus z (z > 0)
for different values of ¢; a = 7, b = 7p; (a) diffusion regime (a < b); (b)
propagation regime (a > b).

We note that the convergence of the integral in (4.18) is guaranteed by the
following properties of the functions K*(r): K*(r) > 0, K*(r) ~ r1=/2 as
r — 400 and K*(r) ~ r(179/245 1 — 0.

In [22] the integral representation (4.18) is used for numerical computation
and visualization of the fundamental solution. Figures 4.1 and 4.2 are from this
publication.

Fig. 4.1 shows the evolution in time of the fundamental solution G(z,t),
starting from a delta function d(z) at ¢ = 0. The solution is plotted for five
different time instances. In the diffusion regime (a) the maximum remains at
t = 0, i.e. the probability density function is unimodal. In the propagation
regime (b) the maximum moves away from the origin, the PDF is bimodal.

In Fig. 4.2 the fundamental solution is plotted for different values of the
fractional parameter « € (0,1]. For a — 1 the solution approaches that of the
classical Jeffreys’ heat conduction equation. For o — 0 the fractional deriva-
tives become identity operators and (4.11) approaches the classical diffusion
equation with the one-dimensional Gaussian as fundamental solution (see the
plots for a = 0.05, which are qualitatively close to a Gaussian function).

In all figures we observe behavior, typical for a diffusion process for a < b:
the fundamental solution is monotonically decreasing in x for x > 0. For a > b
the behavior is typical for a wave propagation process, with a maximum moving
away from the origin. In this respect there is a strong analogy with the fractional
diffusion-wave equation with Caputo time-derivative of order o € (0,2) with
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! I I ! I ! I I | I | I | I !
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X

(a) (b)

Figure 4.2: Plots of the the fundamental solution G(x,t) versus = (z > 0)
for fixed ¢ and different values of o, a = 0.05,0.25,0.5,0.75,0.95, compared
to a = 1 (dashed line); a = 7, b = 7p; (a) diffusion regime (a < b); (b)
propagation regime (a > b).

the two corresponding regimes: subdiffusion (0 < a < 1) and diffusion-wave
propagation (1 < § < 2), c.f. [75, Fig. 6.1], |51].

Let us briefly give analytical arguments for this behavior of G(x,t) on the
basis of the properties of the characteristic function g(s). Since the function
G(z,t) is a spatial PDF, it is positive and G(x,t) — 0 as z — oo for any fixed
t. Since G(x,t) = G(—x,t), we further consider only x > 0.

First, let a < b. In this case g(s) € BF and y/g(s) € BF, see Proposi-
tion 4.1. Therefore, (2.3) implies

@ exp(—|z|\/g(s)) € CMF, a<b. (4.20)
Differentiation of (4.16) yields (the differentiation under the improper integral
can be justified in a standard way)

L {g—i} (x,s) = %é(w,s) = —% exp (—xm) , ©>0,5>0. (4.21)

For a < b this function is completely monotone, see (4.20), and Bernstein’s
theorem implies that g—g > 0 and, thus, G(z,t) is monotonically decreasing in
x for = > 0.

Let now a > b. We show that in this case the solution G(z, t) is an increasing
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function of x near the origin, for all £ > 0. Indeed, (4.21) yields

_9(s) 1+ as” a (b—a 1
lim — == = —— 1
il 8xg( =% 2(1+bs2)  2b < b s i)

which, after inverting the Laplace transform by the use of (1.27) implies

0 a (b—a , 4 t*
Jm 579 =5, < b b Hee <_ b> +oll )>
Therefore, due to the fact that the Mittag-Leffler function is positive, it follows
forallt >0

0
xlg& %Q(aﬁ t) >0, a>b,

and G(x,t) is an increasing function of = near the origin.

4.3.2 Mean squared displacement

Next, we study the temporal behavior of the mean squared displacement

(MSD)
{lz](t)) = /Rx2g x,t)dr

which is determining for the character of the solution.
Representation (4.16) implies for the MSD in Laplace domain

(al(s)) = / xsdx—r/xexp (Vo) dr.

Calculation of the integral yields

5 2 2(14bsY)
<|Jf| (3)> = sg(s) - $2(1 + as®)’

(4.22)

where g(s) is the characteristic function (4.4). By the use of Laplace transform
pair (1.27) we invert (4.22) and get two equivalent expressions in terms of
Mittag-Leftler functions

(a()) = 2t+2(9_1> tEaz( ta) (4.23)

a a

b 2 b to
— 24 = <1 - )ta+1Ew+2 (--). (4.24)
a

a a a
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Both expressions are valid for all a,b > 0. However we give the two different
forms, since (4.23) seems more natural for the diffusion regime (¢ < b) and
(4.24) for the wave propagation regime (a > b). Let us note that the Mittag-
Leffler functions in the MSD representations are positive functions, due to the
relation

t
tﬂEa’ﬂH(—ato‘):/ Tﬂ_lEaﬁ(—aTa)dT.
0

From the definition (1.21) of the Mittag-Leffler functions and their asymp-
totics (1.33) we derive the following asymptotic behavior for the MSD for short
and long times

(2bt ozt ® t—0
a ab T(a+2))’ ’

(J2*(8)) ~ 1

\ Qt(l-l—(b—a)r(;;_a&)), t — 0.

The established asymptotic expansions show linear asymptotic behavior for
short and long times. We also observe that the dominating term in the gradient
of the MSD is 2b/a for t — 0 versus 2 for t — oco. Therefore, in the diffusion
regime (a < b) the MSD increases faster near the origin than for large times.
The opposite behavior is observed in the wave propagation regime (a > b):
the MSD increases slower near the origin than for large times. Let us note
that qualitatively comparable asymptotic behavior of the MSD is observed in
the fractional diffusion-wave equation (2.19), where MSD is proportional to ¢
with a € (0, 1) in the diffusion regime and o € (1,2) in the wave propagation
regime.

4.4 Generalized diffusion-wave equations

4.4.1 Diffusion regime

A generalized subdiffusion equation has the form [62, 98]

/0 K(t —T)gu(xﬂ') dr = 0 (x,1), (4.25)

oT @u

where r(t) € L], (Ry) is a non-negative function, such that its Laplace trans-

form k(s) € SF.
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By the use of Laplace transform we recast problem (4.11)-(4.12)-(4.13) into
the generalized diffusion equation (4.25) with kernel x(t), such that

B 1+ as®
14 bse’

K(s) (4.26)
In the proof of Proposition 4.1 we established that K(s) is a Stieltjes function
for a < b. Taking into account (4.6) and (1.27) we get from (4.26) the explicit
form of the kernel x(t)

K(t) = %5(15) + (1 - %) %ta—lEa,a (—%t“) , (4.27)

where §(¢) is the Dirac delta function. Therefore, in the considered in this
subsection case 0 < a/b < 1 the function x(t) is non-negative. In this way we
proved that the required conditions on the kernel k() in equation (4.25) are
satisfied.

Plugging the expression (4.27) for the kernel into the diffusion equation
(4.25) gives the following representation of the fractional Jeffreys’ equation in
the diffusion case

ou b—a [ o1 (t—7)*\ Ou b 0u
E + ab /0 (t - T) Ea,a <— b ) E dr = a@ (428)

4.4.2 Wave propagation regime

In the case a > b we are looking for a representation of problem (4.11)-
(4.12)-(4.13) as a generalized diffusion-wave equation of the form [99]

t 32 82
/0 n(t — T)ﬁu(a;‘, T)dr = @u(x,t) (4.29)

where n(t) € Li, (R,) is a non-negative function, such that 7(s) € SF.

loc
The initial condition

.0
tlir(% au(m,t) =0, (4.30)

s {g—;u} (z,8) = sL {%u} (2, 5).

implies
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With the help of this identity we obtain in Laplace domain
1+ as” 0? 0?
L = — : 4.31

Therefore, the fractional Jeffreys’ equation is equivalent to the generalized wave
equation (4.29) with kernel 7(t), such that

a—1

N 1+ as® 1 a S
SR Y (P ) 4.32
) = Sy 5 T <b )sa+1/b (4.32)

Applying inverse Laplace transform in (4.32) gives by the use of (1.27)

n =1+ (3-1) B, (-%ta) | (4.33)

Since a/b > 1 the kernel 7(t) is a non-negative function. Moreover, n(t) €
CMF and therefore 7(s) € SF. Hence, the requirements on the kernel 7(t)
are satisfied.

We point out some general relations of the kernels x and 7 to the kernel
k of the equivalent Volterra integral equation (4.3). First, in the diffusion
regime, g(s) = sk(s) € CBF if and only if K(s) € SF, see property (P7) in
Proposition 2.1. Therefore, a generalized subdiffusion equation is subordinated
to the classical diffusion equation. For the wave propagation regime we note
that g(s) = s?7)(s). Then the property 7j(s) € SF implies that g(s) is a product
of two complete Bernstein functions (s and s7(s)), and thus \/g(s) € CBF,
see (2.2). Therefore, a generalized diffusion-wave equation is subordinated to
the classical wave equation.

In this section we studied the fractional Jeffreys’ type heat conduction equa-
tion as a model problem. Depending on the model parameters it governs the
two fundamental types of behavior, considered in the dissertation: subdiffusion
and propagation of diffusive waves. By employing the Bernstein functions tech-
nique we establish diffusion regime for a/b < 1 and wave propagation regime
for a/b > 1. The two regimes are related to two different subordination prin-
ciples. In the diffusion regime the abstract Cauchy problem for the Jeffreys’
equation is subordinated to the first order Cauchy problem (2.6), while in the
wave propagation regime it is subordinated to the second order Cauchy problem
(2.7). The fractional Jeffreys-type heat conduction equation in the two different
regimes is represented as a generalized subdiffusion equation, and generalized
diffusion-wave equation, respectively.
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The established properties indicate a strong analogy between the fractional
Jeffreys-type equation (4.1) and the fractional diffusion-wave equation with
the Caputo fractional time-derivative (2.8) with its two different regimes: it
is a subdiffusion equation for 0 < a < 1 and a diffusion-wave equation for
l<a<2

We close the chapter with a remark concerning the terminology in this dis-
sertation. For the sake of brevity, equations subordinated to the first order
Cauchy problem (2.6) are called generalized subdiffusion equations; equations
subordinated to the second order Cauchy problem (2.7), which are not general-
ized subdiffusion equations, are called generalized diffusion-wave equations. In
other words, if we set

o, = min{a > 0| g(s)/* € CBF, s> 0},

where g(s) is the function (2.11), then the abstract Volterra equation (2.10)
(respectively, any fractional order integro-differential equation, which is equiv-
alent to (2.10)), is called generalized subdiffusion equation if A is a generator
of Cy semigroup and «a, € (0, 1] and generalized diffusion-wave equation if A is
a generator of a cosine family and «, € (1,2].



Chapter 5

(ceneralized subdiffusion
equations

First, the abstract Cauchy problem for the distributed order fractional evo-
lution equation in the Caputo and in the Riemann-Liouville sense is studied
for operators generating a strongly continuous one-parameter semigroup on a
Banach space. Continuous as well as discrete distribution of fractional time-
derivatives of orders in the interval [0, 1] are considered. The problem with a
general convolutional derivative is studied next and two types of subordina-
tion results are established. The subordination principle in the particular case
of general relaxation equation is applied to derive estimates for the relaxation
functions, which are applied to prove uniqueness and stability for an inverse
source problem.

5.1 Distributed order diffusion equations

In this section, we consider the fractional evolution equation of distributed
order in the following two alternative forms:

/1 w(B)6DPu(t) dB = Au(t), ¢ >0, (5.1)
0
and X
W (t) = / w(8)D) Au(t) dB, ¢ >0, (5.2)
0

with the initial condition u(0) = a € X. Here °D/ and D! are fractional time-
derivatives in the Caputo and in the Riemann-Liouville sense, respectively, and

83
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A is a closed linear operator densely defined in a Banach space X. The weight
function g may be a generalized function in the sense of Gelfand and Shilov
[42] that represents a nonnegative measure.

For the weight function p two cases are considered:

e discrete distribution
p(B) =08(8—a)+ > bi6(B—ay), (5.3)
j=1
where 1 > o > aq... >, >0, b; >0, 5 =1,...,m, m >0, and 90 is
the Dirac delta function;
e continuous distribution
pe Clo,1], u(B) =0, 8el0,1], (5.4)

and p(f) # 0 on a set of a positive measure.

In the case of discrete distribution, equations (5.1) and (5.2) are reduced to
the multi-term time-fractional equations

“Diu(t) + Y b °Dyult) = Au(t), t>0, (5.5)
j=1
and .
(t) = D Au(t) + Y by D}V Au(t), t >0, (5.6)
j=1

respectively. Note that if m = 0 (single-term fractional evolution equation)
problem (5.5) is equivalent to (5.6) with « replaced by 1 — a. However, in
general, similar equivalence does not hold for equations (5.1) and (5.2),

In this chapter, it is assumed that the operator A is a generator of a Cy-
semigroup, i.e. that the classical abstract Cauchy problem

u'(t) = Au(t), t>0; u(0)=ac€X, (5.7)

is well-posed. Reformulating problems (5.1) and (5.2) as abstract Volterra in-
tegral equations, we propose a unified approach to their study. We prove that
the scalar kernels of the corresponding integral equations have certain com-
plete monotonicity properties and derive useful consequences for the original
equations (5.1) and (5.2) based mainly on these properties.
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5.1.1 Integral reformulation and properties of the kernels

We reformulate problems (5.1) and (5.2) as Volterra integral equations of the
form (2.10) with appropriate kernels k(¢). By applying (formally) the Laplace
transform and, by the use of properties (1.17) and (1.18), it follows for the
solution of (2.10)

1 ~
(1—Fk(s)A)ta (5.8)

i(s) =

and for the solutions of problems (5.1) and (5.2), respectively

i(s) = @ (h(s)— A) Va, @(s) = é ( _ @A)_ o (59
where .
) = [ ()" as, (5.10)

Note that in the discrete distribution case (5.3) h(s) admits the representation
h(s)=s"+> bjs™. (5.11)
j=1

Comparing (5.9) to (5.8), it follows for the kernels k1 (¢) and ko(t), corresponding
to problems (5.1) and (5.2), respectively:

Fi(s) = (h(s)) ", Fa(s) = h(s)/s. (5.12)

Define the functions R
gi(s) = 1/ki(s), 1=1,2,
that is
91(s) = h(s), ga(s) = s/h(s), (5.13)
where h(s) is defined in (5.10).

Some useful properties of the functions k;(t) and g;(s), i = 1,2, are estab-
lished in the next theorem.

Theorem 5.1. Let u(B) be either of the form (5.8) or of the form (5.4) with
the additional assumptions p € C3[0,1], u(1) # 0, and u(0) # 0 or pu(B) = cB”
as f — 0, where c,v > 0. Then the functions k;(t) and g;(s), i = 1,2, have
the following properties:
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ki € L} (Ry), limyo ki (t) = 400, and lim;_, o ki(t) = 0;
ki(t) € CMF fort > 0;
kl * k’Q = 1

gi(s) € CBF for s >0, lim,_0 g;(s) = 0 and lim,_,,~ g;(s) = +00;
e) hH1$—>0 gz( )/3 = +00 and th—H—oo gl( )/3 = 0.

()
(b)
(c)
(d)
(

Let us first consider some particular cases. Applying (1.4), (5.11),

(1.2
(5.12) and (5.13), it follows in the single-term case ((5.11) with m =

7),
0):
ta—l @ -

=) ko(t) = T —a) g1(s) = 5%, ga(s) =5,

and in the double-term case ((5.11) with m = 1):

t—O[ t—al

ki(t) = ta_lEa—aha(_blta_m)’ Fa(t) = ['(1 - «) * b1F(1 —aq)’

S
SO 4 hrso

g1(s) = 5% 4+ b1s™, go(s) =

Thus, in the single-term case Theorem 5.1 is straightforward. In the double
term case, statements (a) and (b) are trivial for ke; for k1 they follow from the
asymptotic behavior of Mittag-Leffler function and the fact that the function
E.p(—x) € CMF for x > 0,0 < a < 1,8 > a. On the other hand,
properties (d) and (e) are trivial for g;. Since ga(s) = s/¢i(s), according to
(P9) in Proposition 2.1 ¢1(s) and go(s) are simultaneously complete Bernstein
functions.

In the case of continuous distribution in its simplest form: constant weight
function x(8) = 1. Then (5.10) implies (taking s’ = e?10¢*)

s—1 () slog s
s) = :
92 P

s) = ,
91(5) log s
Based on these explicit representations, the positivity of the functions g;(s) for
s > 0 and their limiting behavior as s — 0 and s — +o00 can be straightfor-
wardly established. However, the fact that g;(s) € CBF is not easily recognized.

Now, we proceed with the proof of Theorem 5.1.

Proof. Let us start with the kernel ko(t). Application of the inverse Laplace
transform to ko(s) = h(s)/s, see (5.12), implies by the use of (1.4):

1 -3
b(t) = [ W= 95 (5.14)
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In the particular case of discrete distribution

Therefore

t—Oé t_am

()~ pzay (70 RO ~bapa s treo

and thus (a) is satisfied for this kernel.
In the case of continuous distribution it is proven in [61], Proposition 2.1,
that

1
ko(t) ~ ————, t — 0.
2(t) t(logt)?’ — 0

Therefore, it is integrable at ¢ = 0 (note that the singularity at ¢ = 0 is quite
strong). Moreover, since I'(1 — ) > 1 for 5 € [0, 1], (5.14) implies for ¢ > 1

0 < kalt) < sup (3 \/tﬁdﬁ c!

Be0,1] tlogt

and thus ko(t) — 0 as t — 0.

Complete monotonicity of k() follows directly from (5.14) by noticing that
t# e CMF, T(1—pB)>0for B (0,1) and applying properties (P1) in
Proposition 2.1. In this way, (a) and (b) are proven for the kernel k2(¢) in both
discrete and continuous case. R

Consider now the kernel k1(¢). The identity ki(s) = 1/h(s), see (5.12),
implies the following representation for this kernel as an inverse Laplace integral:

3 (t)—i/wm ot L gs 4> 0 (5.15)
W) R T ‘

Consider first the discrete case in which h(s) is defined by (5.11). The function
h(s) has no zeros in C cut along the negative real axis. Indeed, for s = re'®,
with r > 0, ¢ € (—m,7),

m m
S{s" + Z bjs™} =rsina¢ + Z bir“ sino¢ # 0,
j=1 j=1
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since sin a¢ and sin «;¢ have the same sign and b; > 0. Then the function under
the integral sign in (5.15) is analytic in >, and we can bend the integration
contour to the contour I', 4 defined by

Lpp=T,,Ul) Ul p>0, 1/2<6<m,

where
Fie = {ret: r>p}, Fgﬂ = {pe”: || <0},

and I', p is oriented in the direction of growth of arg s. Hence

1 1
ki(t) = — e — ds. 5.16
1( ) 27.‘_1 /Fpﬁ P + ijl bjSaj ( )

The integral over Fgﬂ is a function from C*°|[0,00). Take p = R so large that

m m
57 Dby = [l = D bilsl > Jsl/2 15| = R
j=1 j=1

Then, noting that cos@ < 0 for 7/2 < 6 < 7, it follows

< C’/ erteostp—agr < ot (5.17)
R

1
st
e — ds
« o7
/ ST by

Therefore, ki(t) ~ t*! for t — 0 and thus it has an integrable singularity at
t = 0. Since in the discrete case l;l(s) ~ s~ % as s — 0, Karamata-Feller
Tauberian theorem implies ki () ~ t*~1 ¢ — oo. Thus (a) is proven for the
discrete variant of ki(t). To prove its complete monotonicity we take p — 0
and @ — 7 in (5.16). Since

1 s
e’ — ds| < C/ ePteosv pl=am gy, 5.18
/ S S ; >19)

the integral over Fgﬁ vanishes when p — 0. Therefore, only the contributions
of the integrals over Ffa remain in (5.16), implying

ki(t) = /OOO e K (r)dr, (5.19)
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s=rei™ }

where

1
s+ 300, bjs

K(r) = —%%{

Simplifying this expression, we get

1 B(r)
K —
S TTAmy - By
where
A(r) =r®cosam + Z bjr® cosam, B(r) =r"sinamr + Z bjr sinagm,
j=1 j=1

and thus K (r) > 0 for r > 0. This together with representation (5.19) implies
that ki (t) € CMF.

In the case of continuous distribution it is proven in [61], Proposition 3.1,
that for small values of ¢

1
k’l(t) S ClOg ;,

therefore this kernel has integrable singularity at ¢ — 0. Further, by [61],
Proposition 2.2, (ii) and (iii),

R 1\ M
ki(s) ~ (log g) , s —0, (5.20)

where
o 1(0) # 0,
]l v>0 if u(B) =cp” as g — 0.

Applying again Karamata-Feller Tauberian theorem (Theorem 1.2) it follows

(logt)*

ki(t) ~ P

t — 00,

and thus k() — 0 as t — oo. Complete monotonicity of ki(¢) in the case
of continuous distribution is proven in [61], Propositions 3.1. In this way the
proof of properties (a) and (b) is completed for all cases.

According to (5.12)

Fa(s)ka(s) = 1/s
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and taking the inverse Laplace transform of this identity we derive (c).

The fact that g;(s) € CBF can be established directly. Indeed, since
sP € CBF for 8 € [0,1], it follows by applying (P2) in Proposition 2.1 that
h(s) € CBF. Therefore, g1(s) € CBF and, taking into account (P9) in Propo-
sition 2.1, it also follows go(s) € CBF.

The limiting behaviors of g;(s) as s — 0 and s — +00 are easily established
for the cases of discrete distribution. For continuous distribution, inserting the
limit (5.20) in the identities g1(s) = 1/ki(s) and go(s) = ski(s), it follows
limg_,0 g;(s) = 0 and lim,_, g;(s)/s = +o0.

According to [61], Proposition 2.2, (i),

g1(s) ~ u(1) , S — 4o0.

log s
This together with the identity g2(s) = s/¢1(s) implies lims 1~ gi(s) = +00
and lim,_,,  gi(s)/s = 0. O]

Let us note that kernels ky(t) and ko(t), satisfying property (c), are called
a pair of Sonine kernels.

The limiting cases of the multi-term equations, (5.5) with @ = 1 and (5.6)
with a,, = 0 also deserve attention, since they appear in the modeling of some
physical processes. The simplest two-term particular case of the first one was
introduced in the modeling of fractal mobile-immobile solute transport [103],
while the two-term case of the second is related to the Rayleigh-Stokes problem
for a generalized second grade fluid [11, 109].

The abstract form of the fractal mobile-immobile solute transport equation
is

u(t) +b“Du(t) = Au(t), t>0, u(0)=a€ X, (5.21)
where “D¢ is the Caputo fractional derivative of order a, 0 < o < 1, b > 0,
and A is an unbounded closed linear operator defined on a Banach space X.
The kernel of the equivalent Volterra equation obeys the relations

k(t) = Er_o(—=bt'™), g(s) = (k(s)) ' =s+bs", a€(0,1).

The following properties of the functions k(t) and g(s) are easily derived:
) ke L (R)NCMF;

a
C
d

) lim, g 9(3) =0, hms—)—i—oo g(S) = +00;
e) limg o g(s)/s = +oo and lim,_, 1 g(s)/s = 1.
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We see that, compared to the properties in Theorem 5.1, the only differences
are in the limiting behaviour of the functions k(¢) and g(s).

5.1.2 A limiting case

In this subsection we study in detail the second limiting case, which is given
by the fractional differential equation:

u'(t) = Au(t) +yDfAu(t), t >0, u(0)=a€ X, (5.22)

where Df' is the Riemann-Liouville fractional derivative of order a € (0,1),
~v > 0, A is an unbounded closed linear operator defined on a Banach space X.

Our motivation for the study of this equation comes from recent works where
related problems appear in the modeling of unidirectional viscoelastic flows.
For example, if the operator A is some realization of the Laplace operator,
then the inhomogeneous version of (5.22) is the Rayleigh-Stokes problem for a
generalized second-grade fluid, see e.g. [109].

Integral reformulation of the problem

Assume u, Au € C(Ry, X). Integrating both sides of the governing equa-
tion in (5.22), by the use of the identity (J}~*Au)(0) = 0, we obtain:

u(t) =a+ /0 (1 4+ ywi_a(t — 7)) Au(r) dr (5.23)

that is the Volterra integral equation (2.10) with kernel k(t) given by:
k(t) =1+ ywi—a(t) (5.24)

where the function w,, is defined in (1.3). Conversely, differentiating both sides
of (5.92) and using that:
d d — a
7 (Wi x Au) = — (J}~*Au) = Dy Au
we get back the governing equation in (5.22). Since (k% Au)(0) = 0, the initial
condition is also satisfied.
We begin with summarizing some properties of the kernel k(¢) defined in
(5.24) and the related function:

g(s) = (k(s))™"

s
14 yse

(5.25)
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Here, K is the Laplace transform of k, and the Laplace transform pair (1.4) is
used.

Theorem 5.2. The functions k(t) and g(s), defined in (5.24) and (5.25),
respectively, have the following properties:

( ) ke Lloc(R-l-) mCM‘/—_';

(b) limy 0 k(t) = +o00, limy, 40 k(1) = 1;

(c) g(s) € CBF fors>0;

(d) limg0g(s) =0, lims, 4 g(s) = +00;

(e) limspg(s)/s =1 and limg_, 1 g(s)/s = 0.

(f) the estimate holds true:

l9(s)| < Cmin(|s], [s]'"™®), s € S(x —0), 6€(0,n).

Proof. The function k(t) is infinitely continuously differentiable for ¢t > 0 with
integrable singularity at ¢ = 0, and its derivatives satisfy (5.72); thus, (a) is
fulfilled. Limits (b) and (d) follow by direct check. Since 1 + vs* € CBF for

€ (0,1), then (P9) in Proposition 2.1 implies g(s) € CBF. Alternatively,
this can be seen from the representation

1
9(8) =577
Since a € (0,1), the Mittag-Leffler function E,,(—x) € CMF for x > 0.
Then, the function E(t) = v 1* 'E,o(—7 't*) € CMF for t > 0. There-
fore, L{E(t)}(s) € SF, see (2.1) and by (P7) in Proposition 2.1 g(s) =
sC{E(t)}(s) € BF. To prove property (f) we let s € X(m — ), i.e. s = re?,
Y| <7 —86,r > 0. Then

= S'C{’Y_lta_lEa,a(_'V_lta)}(S)-

114+ s> = 1+ 29r® cos arp + v*r*® > 1 + 2yr®cos am + v*r*.  (5.26)
Let b = cosan. Since f(x) =1+ 2bx +2? > 1 —b?, it follows from (5.26) that
11+ 75> > 1 — cos® ar = sin® ar.

Since sin am > 0 we obtain

905 =

From (5.26) it also follows that

5]

sin o

S
14 ys@

11+ ~5Y* = (1 4+ 47r% cosam)? + (yr®sinan)? >~ sin® amr®®,
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and consequently we get

r

< = )
l9(s)l < yrésinam - ysinam

‘S‘l—a

This completes the proof of the theorem. ]
Let us note that the limiting behaviour of the functions k() and g(s) in the

above theorem is different from those in Theorem 5.1.

The scalar case

It is instructive to study first the scalar version of equation (5.22), where
A = —)\is a given negative constant. Consider the problem:

u' () + Au(t) + My Diu(t) =0, w(0) =1, (5.27)

where A > 0. Denote its solution by wu(t; A). To solve (5.27), we apply the
Laplace transform and use the identities (1.17) and L{u'}(s) = sL{u}(s) —
u(0). In this way, for the Laplace transform of u(t; A), one gets:

/ e Mu(t; \) dt =
0

Theorem 5.3. For any A > 0, the solution u(t; \) of Problem (5.27) has the
following properties:

(a) u(t; A) is a positive nonincreasing function for t > 0 and u(t; \) — 0 as
t — +o0 with:

1
S+ YAsE + N

(5.28)

'}/t_a_l
t:\) ~ — t .2
W0 ~ Rt 4o, (5.20
(b) u(t;\) e CMF, t >0,
(¢) The identity is satisfied:
A / Wt ) dt = 1, (5.30)
0

(d) The solution admits the following explicit representation.:

- (_1)k a—1)(k+1) mk+1 e e
u(t; ) = Z—wl St T B (). (5.31)
k=0
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Proof. Properties (a) and (b), with the exception of the asymptotic estimate
(5.29), are proven in [24], Theorem 2.2. To prove (5.29), we apply the Karamata—
Feller—Tauberian theorem (see Theorem 1.2). Since for small |s|, the Laplace
transform (5.28) of u(t; ) is dominated by the function

1
Ays® + A

applying the asymptotic estimate (1.33) (note that I'(0)~! = 0), we obtain for
large t:

t,a,1

1 1 1
u(t; A) ~ L7 {—} = — B, o (—=t%) ~ —L t — 4-o00.

AYs® + A Ay v CA(—a)’

Identity (5.30) is obtained taking s — 0 in (5.28). Representation (5.31)

in terms of three-parameter Mittag—Leffler functions is obtained by taking the
inverse Laplace transform of function (5.28). If |sA™(ys® + 1)7!| < 1, then:

1 1 ( s )1
= +1
S+ YASY + A A(ys® + 1) \ A(ys* + 1)

B 0 (_1)k sk
= kz:;(,y)\)k—i—l (8a+f>/—1)k+1

and, applying term-wise the inverse Laplace transform, we get (5.31) by the
use of (1.34). O

Remark 5.1. From the Laplace transform pair (5.28) it follows also the fol-
lowing representation as a multinomial Mittag-Leffler function (see Chapter 6)

u(l; ) = Eaaa) 1t A A).

Subordination principle

Assume the operator A generates a bounded Cjy semigroup Si(t). The main
goal now is to prove that in this case, problem (5.22) is well-posed, and its
solution operator S(t) satisfies the relationship:

S(t) = /000 o(t, 7)S1(T)dr, t >0, (5.32)

with an appropriate function (¢, 7).
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We give next a complete proof of the subordination principle for problem
(5.22), without the use of the general subordination theorem. Let the function
©(t, ) be such that its Laplace transform with respect to t satisfies:

/ e ot T)dt = @6_79(‘9), s, 7 >0, (5.33)
0 S

where ¢(s) is defined in (5.25). The reason is that in this case the operator
S(t), defined by (5.32), will satisfy (2.13). Indeed, by (5.32) and (5.33) and the
identity for the Laplace transform of a Cy-semigroup

/OOO e "SI (r)dr = (n— A)7Y,

it follows:

[ eswa = [T [7etetna) simar

_ 9 / 105, (r) dr = 8 (g(s) — 4). (5.34)
S 0 S
Then, by the uniqueness of the Laplace transform, S(¢) will be the solution
operator of problem (5.22). For the strict proof we refer to Theorem 2.4 with
a=1.
Identity (5.33) implies that the function (¢, 7) can be found by the inverse
Laplace integral:

1 c+ioco . g(S)
_ st=rg(s) J\°)
o(t, ) 5 /c_ioo e p ds, ¢>0,t,7>0. (5.35)

Let us check that the function (¢, 7) is well defined in this way. Since
g(s) € CBF, then R{s} > 0 implies R{g(s)} > 0. More precisely, if s = re'’,
then: ; 1 cos( v
rcost + yr*t cos(1 — «
R{g(s)} = a 2,20

1 + 2vyr@cos af + vy*r

Hence, when r — o0, || — 7/2, the dominant term of R{g(s)} is

r~*sinan/2 > 0.

This together with the estimate (f) of Theorem 5.2 shows that the integral in
(5.35) is absolutely convergent.
We are ready to formulate the main subordination result for problem (5.22).



96 CHAPTER 5. GENERALIZED SUBDIFFUSION EQUATIONS

Theorem 5.4. Let A be a generator of a bounded Cy semigroup Si(t), such
that |S(t)|| < C, t > 0. Then, problem (5.22) is well-posed, with bounded
solution operator S(t) satisfying the same bound. Moreover, the subordination
identity (5.32) holds, where the function ¢(t,T) admits the representation for
t, 7 >0:

00 ~1)(k+1) -k

Z A EEzzl(ml)—k(_V_lta)- (5.36)

k=0

The function o(t,T) is a probability density function with respect to both vari-
ables t and T, 1.e., it satisfies the following properties for t, 7 > 0:

p(t,7) = 0 (5.37)
/Oow(tﬁ)df =1 (5.38)

/ Cotdt = 1. (5.39)
0

Proof. Let us find the Laplace transform of ¢(t, 7) with respect to 7. Applying
(5.35) and interchanging the order of integration, it follows:

> =T 1 cHioe st (S) > —(A+g(s))T
e ot T)dr = — e’ —— e IS dr | ds
0 2mi c—ioo S 0

1 c+ioo
= — 657“& dS
271 c—ioco (g(S) + )\)

From the definition of g(s) in (5.25):

g(s)  _ 1
s(g(s) +A) s+ s+ A

Therefore, (5.28) implies that the last integral gives exactly the solution wu(t; \)
of the scalar equation (5.27), i.e

/ e Mot T)dr = u(t; \), A\ t>0. (5.40)
0

Inserting representation (5.31) of u(¢; A) in (5.40) and using (1.4), we deduce the
series expansion of the function (¢, 7) in (5.36). Alternatively, this expansion
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can be deduced, inserting the series expansion of the function @e”g(s) in
(5.35) and using the Laplace transform pair (1.34).

The complete monotonicity of u(¢; \) for t > 0 and (5.40) imply the posi-
tivity of (¢, 7) by applying Bernstein’s theorem. Alternatively, the positivity
of p(t,7) can be also deduced from (5.33), since g(s) € CBF yields using (2.3)

96) —rato) € cMF.

S

Further, letting s — 0in (5.33) and A — 0in (5.40) and noting that u(¢;0) = 1,
we deduce by applying the dominated convergence theorem the integral identi-
ties, (5.38) and (5.39).

The definition (5.32), the estimate for S;(¢) and the properties (5.37) and
(5.38) imply:

oo

1S5(8)]] :/Ooow(t,T)H&(T)HdTSC'/O o(t,7)dr =C, t>0.

Next, we deduce the strong continuity of S(¢) at the origin from the strong
continuity of Si(¢) at the origin:

lim S;(t)a = a. (5.41)

t—0

On the basis of the dominated convergence theorem and by the change of
variables o = t*"'7 in (5.32), we obtain:

oo

lim S(t)a = lim t'%(t, ot' ) Sy (ot ) a do. (5.42)

t—0 t—0 0

For the function under the integral sign, we get from (5.36):

oo

11—« 1a_
% (t, ot _Z k'

k=0

k+1 -1
71<:+1 L, a(k+1)— H(=7E%)

and thus:
. 11—« 11—« _ - (_1)k0k — l M z

where Mp(z), 5 € (0,1), is the Mainardi function (1.38). Therefore, (5.42)
together with (5.41) and the integral identity in (1.47) for the Mainardi function




98 CHAPTER 5. GENERALIZED SUBDIFFUSION EQUATIONS

imply:

0.9} 1 oo
lim S(t)a = —M_, <g> doa = / Mi_ (1) dra = a.
=0 o 7 Y 0

In this way, we proved that S(t), defined by (5.32), is a strongly continuous
bounded operator-valued function. Moreover, in (5.34), we proved that the
Laplace transform of S(t) satisfies:

/ N e *'S(t)dt = H(s) (5.43)
0

where

After easily justified differentiation under the integral sign in (5.43), we
obtain the estimates (2.14) and, thus, the well-posedness of problem (5.22).
Then, identity (5.43) implies by the uniqueness of the Laplace transform that
S(t) is exactly the solution operator of (5.22). The proof of the theorem is
completed. O

Let us note that in the case of single-term fractional evolution equation the
subordinated solution operator S(t) is always analytic in some sector without
assuming the analyticity of the Cy-semigroup S1(t), see Theorem 2.3. How-
ever, this is not true for the considered here equation (5.22). The question of
analyticity will be discussed later in this chapter.

5.2 (General convolutional derivative

Generalized fractional derivative of Caputo type is introduced in [62] in the
form

BP0 = G [ e=ns@ar—sfo), 120 (G4

where k(t) is a nonnegative locally integrable kernel. For the kernel () we
assume that its Laplace transform (s) exists for all s > 0 and obeys

k(s) € SF and lim sk(s) = 400, (5.45)

s——+00
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where SF denotes the class of Stieltjes functions.
If £’ is integrable function (f € Wh1) then by applying the identity

(rx f)'(t) = (k= f1)(t) + () f(0) (5.46)

we obtain the representation (OID)E'{)f)(t) = (kx f)(1).

The operator C]Dg@ reduces to the first-order derivative % when K(s) = 1.
It is the Caputo time-fractional derivative of order o € (0, 1) when %(s) = s 1.

Let us note that assumptions (5.45) are weaker than those required in the
original definition of the so-called general fractional derivative, introduced in
|62]. More precisely, the operator C]D),E”) is a general fractional derivative, if,
along with (5.45), the following additional limiting behavior conditions are im-
posed: K(s) — 0 as s — 00; kK(s) — oo and sk(s) — 0 as s — 0. In order
to cover some examples of physically meaningful models with corresponding
memory kernels, which do not satisfy some of the additional conditions, they
are not required here. Such examples are the subdiffusion equation with the
truncated power-law memory kernel k(t) = e Mwy 4(t), v > 0, a € (0,1),
considered in |98, 99|, the Jeffreys’ type heat conduction model in the diffusion
regime, see Chapter 4, and the two examples of Section 5.1.2. On the other
hand, the assumption k(s) € SF is typical for a subdiffusion model (see e.g.,
|98, 99]) and allows the use of the convenient Bernstein functions technique. It
implies that the kernel x(¢) admits the representation

k() = Rod () + w1 (), (5.47)

where kg > 0, 0(-) denotes the Dirac delta function, and x;(t) € L} (R,) is a

loc
completely monotone function. The space of functions, which admit represen-

tation (5.47) was denoted by CMFy, see (2.4).

For example, in the case of the first-order derivative kg = 1 and xk; = 0,
while kg = 0 and k1 = wy_4(t) for the Caputo time-fractional derivative of
order a € (0, 1).

Along with the kernel x(t) we are also interested in the corresponding Sonine
kernel k(t) € L} (R.), which is related to x(t) by the following identity

loc

(kxk)(t) = 1. (5.4

8)
In Laplace domain (5.48) reads %(s)k(s) = 1/s. Therefore assumptions (5.45)

imply 7%(3) € SF (see property (P10) in Proposition 2.1) and lim;_, /k\(s) =
0. Hence k(s) obeys representation (2.1) with b = 0. Therefore, under the
assumptions (5.45) a resolvent kernel k(t) exists and k(t) € CM.F.
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Basic examples of kernels k() are considered next, together with their So-
nine kernels k(¢). For the sake of brevity the notation (1.3) is used, as well as
the Laplace transform pair (1.4).

Example 5.1. The power-law memory kernel
k(t) = wia(t), K(s)=s""1 0<a<l; (5.49)
k() = walt), k(s)=s "

Example 5.2. The multi-term power-law memory kernel:

m m
k(t) = quwl_aj (t), R(s)= Z ;8% ",
j=1 j=1

where 1 > a1 > as > ... >, >0,¢;, >0, 7=1,...,m, m > 1. Without
loss of generality we assume ¢; = 1. In this case

1 sM

7{\(5) = _ .
Zgnzl qjsv 1+ Z;n:Q qjs*(ar@j)

(5.50)

Therefore, k(t) admits a representation as a multinomial Mittag-LefHler function
(for the definition see Chapter 6)

B = 9 By (@t gt ) (5.51)
In particular, in the two-term case (m = 2)
K(t) = Wi, (t) + qui_a,(t), R(s) = st 4gst . (5.52)
where 1 > a3 > as > 0, ¢ > 0. Therefore,
Fs) = 57 (87 ), K(t) = 19 B ey (—qt™), (5.5
where we have used the Laplace transform pair (1.34).

Example 5.3. The distributed-order memory kernel:

K(t) = /0 o a(Bp(a) da,  F(s) = /0 O ulayda,  (5.54)

where p(+) is a nonnegative weight function.
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In the particular case of uniform distribution, ¢ = 1, the memory kernel
becomes

K(t) :/0 wi_o(t)da,  R(s) :/0 s* 1 da = s 1 (5.55)

slogs
Therefore, the Sonine kernel k(t) satisfies

~ log s
k =
(5) = =7

and, by applying the Titchmarsh theorem for the inverse Laplace transform we
get

h(t) = /O et K () dr,

1
s=reiT B T+ Iy
This implies the representation

k(1) = /0 T e R0, (5.56)

r—+1

where
log s

s—1

v

K(r) = —1%{

where Eq(t) denotes the exponential integral (see Section 3.5)

B = [ ¢’ de.

IS

Any of the kernels k(t) in the above examples can be considered in a
weighted form, e "k (¢), where v > 0. Indeed, if the kernel x(¢) satisfies (5.45),
then the Laplace transform relation

L{e "R (1)}(s) = R(s + ) (5.57)

imply that requirements (5.45) are satisfied for the kernel e k() as well. The
next example is of this type.

Example 5.4. The truncated power-law memory kernel
k() = e Mwi_o(t), R(s)=(s+7)L O<a<l, v>0  (5.38)

In this case the Sonine kernel k(s) = (s + 7)}7%s71 and, therefore, identities
(5.57) and (1.34) imply the representation

k(t) =e "t B, (1) . (5.59)
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In any of the above examples both kernels x and k satisfy (5.45) and there-
fore can be switched, that is the kernel £ can be taken as kernel s in the

definition (5.44) for the operator CID)EK).

Example 5.5. Jeffreys kernel (4.27):

a a\ 1 ,_ 1,
H(t) — Eé(t) + (1 — 6) Et 1Ea,a (—Et ) ,

where 0 < a < b, with corresponding Laplace transform

N 1+ as®
= : 5.60
~(s) 1+ bs™ ( )
In this case the Sonine kernel k(t) satisfies
~ 14 bs®
k(s) = ———
(5) s(14 as®)
and therefore ) |
k) =1— (1 - _) E, <——t°‘> .
a a
5.3 Subordination theorems
Consider the generalized subdiffusion equation
DIu(t) = Au(t), t>0; u(0)=ac€ X, (5.61)

where C]Dg@ is the general convolutional derivative (5.44) and A is a closed
densely defined operator in the Banach space X, which generates a bounded
Co-semigroup.

Let us emphasize that the distributed-order equations (5.1) and (5.2), stud-
ied in Section 5.1, are special cases of equation (5.61) (this concerns equations in
both Caputo and Riemann-Liouville sense, with continuous as well as discrete
distribution, including the limiting cases (5.21) and (5.22)).

The equivalent to problem (5.61) Volterra integral equation is

u(t) =a+ /Ot k(t —7)Au(t)dr, t>0, a€X, (5.62)
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where the kernel k(¢) is the Sonine kernel of x(t), i.e. (5.48) is satisfied. This
can be proved by applying the convolution operator kx to both sides of (5.61),
which yields

(k: " CD§“>U> () = ko ((k*u)(t) — w(t)u(0))
= kx(k*xu)=(kxr)xu = (1xu)(t)
= u(t) — u(0) (5.63)

where we used the identity (5.46).
We continue with the study of the integral equation (5.62). Let us set

g(s) = —— = 5R(s).

k(s)

According to (P7) in Proposition 2.1 the assumption k(s) € SF is equivalent
to g(s) € CBF. Then the general subordination theorem (Theorem 2.4) with
a = 1 implies the following

Theorem 5.5. Let A be a generator of a bounded Cy-semigroup Si(t) and
assume the conditions (5.45) hold. Then problem (5.61) is well posed with
bounded solution operator S(t), which satisfies the subordination identity

o(t, 7)S1(T)dr, t>0, (5.64)
0

with subordination kernel o(t, T) defined by
1 y+ioco
= —/ et (S) ds, ~,t,7 >0, (5.65)
2 )i s

where g(s) = sk(s). The function p(t,T) is a probability density function, i.e.
it satisfies the properties (2.26).

An alternative subordination result is formulated next, which provides a

generalization of the exponential representation for the solution of the classical
Cauchy problem (5.7)

u(t) = Tim (1 _ fA) T

n—oo mn
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Theorem 5.6. Let A be a generator of a bounded Cy-semigroup. Assume the
kernel k satisfies (5.45). Then problem (5.61) is well-posed and its solution
u(t) admits the representation

u(t) = lim = (n/t) “HZanM (n/t) (g (njt) — A" Ha  (5.66)

nﬁoon' k=0 p=1
p=

where the convergence 1s uniform on bounded intervals of t > 0. The functions
bnip(s) are nonnegative for s > 0 and are defined by

bup(s) = (—1)"7 (Z) (ﬂ) " o 520, (567

s
where a,(s) are given by the recurrence relation

arr1p(8) = agp-1()g'(s) + a;ﬁp(s), 1<p<k+1, k>1, (568)

agp = a1 = 0, a1,1($) =4 s).

Proof. As usual we denote by R(s, A) the resolvent operator of A: R(s, A) =
(s — A)7', s € p(A). The assumptions on the operator A imply by the Hille-
Yosida theorem that (0,00) C o(A) and

|R(s, A)"|| < M/s", s>0, neN. (5.69)

To establish well posedness we prove estimates (2.14), where

Note that g(s) > 0 for s > 0 (since g(s) € CBF) and thus g(s) € o(A), i.e.
the resolvent operator R(g(s), A) is well defined. By the Leibniz rule it follows

HO () =Y (Z) (@) " w(s). (5.70)

S
k=0
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The formula for the k-th derivative of a composite function (see [105]) gives

k
w®(s) = ar,(s)(=1)"p(R(g(s), A)P*, (5.71)

p=l1

where the functions ay ,(s) are defined by (5.68).
We will prove inductively that for any £ > 1and 1 <p <k

(—1)"*Pqy ,(s) € CMF. (5.72)

For k = p = 1 this is fulfilled since a11(s) = ¢'(s) and ¢'(s) € CMF by
Theorem 3.1(d). Further, as; = ¢”, as2 = (¢')? and the assertion (5.72) holds
for these functions applying Theorem 3.1.(d) and Proposition 2.1.(a). Now
fix some kg > 2 and suppose that (5.72) holds for all £ < ko, 1 < p < k.
Then, (5.68) implies that (5.72) is satisfied for k = kg + 1, 1 < p < ko, since
(—1D)kotPtlg, o 1(s)g'(s) € CMF as a product of two completely monotone
functions and (—1)**"*'a; (s) € CMF by (5.72). In addition, by (5.68),
Qlot1ko+1 = ko kg and it is completely monotone since ay,r, € CMF and
g € CMUF. In this way the proof of (5.72) is completed.
In particular, (5.72) implies

(—1)"*Pqy ,(s) >0, s> 0. (5.73)
On the other hand, by Theorem 3.1(e) g(s)/s € CMF, i.e.
(=1)" " (g(s)/s)" ™ >0, s>0. (5.74)
Inserting (5.71) in (5.70) we get
n k
(F1)"H™(s) =D > baip(s)(Rlg(s), )y, (5.75)
k=0 p=1

where the functions b, ;,(s) are defined in (5.67). Moreover, inserting (5.73)
and (5.74) in (5.67), it follows

bnip(s) >0, s> 0. (5.76)
In addition, let us note that in the trivial case A = 0 (5.75) implies the identity

n k
(FD"(s™H™ =D > busa(s)(9(s) P, (5.77)

k=0 p=1
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Now, applying successively (5.76), (5.69) and (5.77) we obtain from (5.75)

n k
[HO )] < 0> bura(s)I(R(g(s), )P

k=0 p=1

< MY Y buna(s)((g(s) 0t

k=0 p=1
= M(-1)"(s H™ = Mnls~™*D s> 0.

Therefore, conditions (2.14) are satisfied and Theorem 2.1 implies that problem
(5.62) is well-posed with bounded solution operator S(¢). Finally, since u(t) =
S(t)a is a continuous and bounded function for ¢ > 0, the Post-Widder inversion
theorem (Theorem 1.1) can be applied and gives the representation (5.66). [

The positivity of the coefficients by, 1, in representation (5.66) has a useful
direct consequence: it implies the positivity of the solution operator.

Corollary 5.1. Let X be an ordered Banach space. Assume the conditions
of Theorem 5.6 are satisfied and the solution operator Si(t) of the classical
Cauchy problem (5.7) is positive. Then the solution operators S(t) of problem
(5.61) is positive.

Proof. Since
Ris4)= [ esian s>,
0
the positivity of the Cp-semigroup S;(¢) implies that the resolvent operator
R(s, A) is positive: if a € X and a > 0, then R(s,A)a > 0, s > 0. There-
fore R(g(s), A)a > 0 for all s > 0. This together with the positivity of the

coefficients (5.67) in the representation formula (5.66) implies the positivity of
S(t). O

5.4 Generalized relaxation equation
In this section we apply the subordination results to study the behavior of
solution to the equation with generalized convolutional time-derivative in the

scalar case. Consider the relaxation equation (A > 0)

Du(t) + Au(t) = f(t), t>0; u(0)=a€cR (5.78)



5.4. GENERALIZED RELAXATION EQUATION 107

Denote by u(t; \) the fundamental solution and by v(¢; A) the impulse-response
solution, corresponding respectively to a = 1, f =0, and a = 0, f(t) = §(¢t).
The functions u(t; \) and v(¢; A) are also referred to as relaxation functions.
The unique solution of the relaxation equation (5.78) is given by

u(t) = au(t; \) + /0 o(T; N) f(t —7)dr. (5.79)

In the particular case when C]D)Eﬁ) is the Caputo fractional derivative “D}' it

is known that the relaxation functions are expressed in terms of Mittag-LefHler
functions: u(t; \) = E,(=Mt%) and v(t; \) = t*7LE, (=A%), see (1.30). The
main aim now is to generalize estimates (1.31) to the case of the generalized
relaxation equation (5.78). The proof is based on two properties: subordination
identity and analyticity of the relaxation functions for ¢ > 0.

By applying Laplace transform to equation (5.78), we obtain the following
representations of the fundamental and impulse-response solutions in Laplace
domain

u(s; A) = ﬁ, v(s;A) = g(s)%’ g(s) = sk(s). (5.80)

The assumptions (5.45) on the kernel k(t) are equivalent to the following as-
sumptions on the function g(s)

g(s) € CBF; g(s) — oo as s — o0. (5.81)

5.4.1 Subordination relations

Subordination relations for the relaxation functions u(¢; \) and v(t; A) are
formulated next.

Theorem 5.7. The relazation functions u(t; \) and v(t; \) of problem (5.78)
satisfy the subordination identities

u(t; A) = / o(t, T)e " dr, t >0, (5.82)
0

v(t; \) = /Ooow(t,T)eM dr, t>0, (5.83)
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where the functions (t,7) and (t, ) obey the properties

o(t,7) >0, ¥(t,T) > 0; /OOO o(t,7)dr =1, /Ooow(tﬂ') dr = k(t), (5.84)

where k(t) is the Sonine kernel of k(t), i.e. (k*r)(t) =1.

Proof. Relation (5.82) is a particular scalar version of Theorem 5.5 with A =
-\, Sl(t) = e M.

To prove relation (5.83) let us define a function (¢, 7) via the Laplace
transform pair

W(s, ) = / e_Stgp(t,T) dt = 6_79(8), s, 7 >0,
0

Since g(s) € CBF then e"™9) € CMF, see (2.3). Then Bernstein’s theorem
imply that (¢, 7) exists and (¢, 7) > 0.
If we define a function v(¢; \) by (5.83), then for its Laplace transform we

obtain
/OOO “Sty(t; \) dt :/ (/ U(t, T)e ”dT>dt
= / V(s m)e N dr

1
— e TN dr =
/0 g(s) + A

Comparing this result to (5.80), it follows by the uniqueness of the Laplace
transform that v(¢; \) defined by (5.83) and the impulse-response solution of
(5.78) coincide. In this way (5.83) is established.

The integral identity in (5.84) for (¢, 7) follows as a particular case of
(5.83) by letting A — 0 and taking into account that v(¢;0) = k(t) since

U(s;0) = (si(s)) ' = g(s) " -

5.4.2 Properties of the relaxation functions

In the next theorem, further useful properties of the relaxation functions are
established (in the statements the functions wu(t; ) and v(¢; \) are considered
as functions of one variable ¢ > 0, while \ is a parameter).
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Theorem 5.8. For any \ > 0 the functions u(t; \) and v(t; \) admit holomor-
phic extensions to the half-plane C and

u(t; A),v(t; A) € CMF int > 0; (5.85)
u(0; ) =1; 0<u(t;\) <1, v(t;A) >0, t>0; (5.86)
%u(t; A) = =du(t; N). (5.87)
Moreover ]
u(t; \) (5.88)

<

T 1+ A1 xk)()

where k(t) is the resolvent kernel of k(t), i.e. (k*r)(t) = 1.
Forany A\> X g >0 andt >0

u(t; N) < wu(t; M), v(t;N) < o(t; Ao), (5.89)

and

T
C < )\/ vt A dt <1, T >0, (5.90)
0

where the constant C' =1 —u(T; Ng) > 0 is independent of .

Proof. First, applying Proposition 1.3, we prove that the function u(¢; \) admits
holomorphic extensions to the half-plane C,. Since the function f(t) = e
is holomorphic and bounded for Rt > 0, then, using that (ii) implies (i), it
follows that the Laplace transform f(s) = — admits holomorphic extension
to the sector | arg s| < 7 and

e -

Since g(s) € CBF this function admits holomorphic extension to C\(—o0, 0]
and therefore, in view of (5.80), this will hold also for

9(s)
s(g(s) +A)

5+A‘§M’ largs| <6, VO <. (5.91)

Q(s;\) =

Moreover,
|arg g(s)| < [args|, s € C\(—o0,0],

which together with (5.91) gives

|su(s; )| = ‘g(g)(i)_)\' < M, |args| < 6,0 < .
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From implication (i)=-(ii) in Proposition 1.3, it follows that function w(t; \)
admits holomorphic extension to C,. The analyticity of v(¢; A) is then inferred

taking into account relation (5.87), which is proven below.
From (5.80) and u(0; A) = 1 we deduce

du o 9(8) B A o
L{E}(s,)\)—m—l——m——)\v(s,)\).

Identity (5.87) then follows from the uniqueness property of the Laplace trans-
form.

To prove that u(t;\) € CMF we first, note that =5 € CBF, since

(S%\)_l =1+ As"! € SF, see (P9) in Proposition 2.1. Therefore the function
9(s)
g(s)+A

in Proposition 2.1. Therefore, the function S(gﬁ‘;l)\) € SF by (P7) and van-

ishes as s — +00. Then property (P6) gives for the inverse Laplace transform
u(t; \) € CMF. Applying (5.87) it follows v(t; A) € CMF.

Since u(t; \), v(t; A) € CMF, they are nonnegative and nonincreasing func-
tions for £ > 0. This fact, together with their analyticity, implies that these
functions are positive and strictly decreasing.

The relaxation functions u(t; \) satisfies the integral equation

€ CBF as a composition of two complete Bernstein functions, see (P11)

u(t; \) =1— )\/t k(t —m)u(t; A)dr, t >0, (5.92)

where k is the resolvent kernel of k. Taking into account the fact that w(t; A)
are positive and decreasing functions, the integral equation (5.92) yields

L=u(t;\) + /\/tk(t — T)u(T; N) dr > u(t; \) + Au(t; \) /t k(T)dr,

which implies estimates (5.88).
The inequalities (5.89) follow directly from the subordination identities
(5.82) and (5.83). Indeed, for A > Ag

u(t; \) = / go(t,T)e*M dr < / gp(t,T)e*”\(’T dr = u(t; M),
0 0

and analogously for v(¢; A). Here the nonnegativity of the functions ¢(t, 7) and
Y(t, T) is essential,
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Applying (5.87) we deduce

)\/Tv(t;)\) dt =1 —u(T;N).

This together with the first inequality in (5.89) and 0 < u(7T;A) < 1 implies
(5.90). =

5.4.3 Application to an inverse source problem

As an application of the obtained estimates (5.90), uniqueness and a con-
ditional stability result are established for an inverse source problem for the
general time-fractional diffusion equation on a bounded domain.

Let © C R be a bounded domain with sufficiently smooth boundary 0,
and T" > 0. Consider the initial-boundary-value problem

CDEH)u(x,t) = Au(z,t) + F(x,t), x€Q, te(0,T),
u(z,t) =0, €0, te(0,T), (5.93)
u(z,0) =a(x), =€,
where the operator C]Dy”') is the general convolutional derivative that acts with
respect to time variable and A is the Laplace operator acting on space variables.
Define the Laplace operator A in the Hilbert space L?*(€2) with domain
D(A) = Hi () N H?(2), where H(Q2) and H?(2) are standard notations for
Sobolev spaces, for more details we refer to [56, 96]. Denote by {—\,, g},
the corresponding eigensystem. Then 0 < A\ < Ay < ...) A\, = 00 as n — o0,
and the functions {(,}°°, form an orthonormal basis of L?*(£2).
Denote by (.,.) the inner product in L?(1).
An equivalent norm in the Hilbert space H}(2) N H?(Q) is given by (see
e.g. [56])
o]l gt @nmz@) = [[Av] 20

where HAUH%Q(Q) =21 A, 0n)”.
Applying eigenfunction decomposition, we obtain the following formal rep-
resentation of the solution of problem (5.93)

Zanun On( +§:(/ Unt—TF()dT>g0n(:c) (5.94)

n=1
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where u,(t) = u(t; \,), vp(t) = v(t; A\,) are the fundamental and impulse-
response solution of the relaxation equation (5.78) with A = A,, n € N, and

an = (a,pn), F.(t)=(F(,t),¢,), neN.

Assume now a = 0 and F'(z,t) = f(x)q(t), where the function ¢ € C|[0,T] is
known and satisfies ¢(t) > qp > O for allt € [0, 7). Consider the inverse problem
to determine the solution u(x,t) and source term f(x), (x € Q,t € (0,7)), such
that (5.93) is satisfied together with the additional overdetermination condition

u(z,T) = h(zx), z € Q. (5.95)

Theorem 5.9. Let T > 0 be arbitrarily fized. For any given h € H}(Q) N
H?(QY), there exists a unique solution (f(z), u(z,t)) to problem (5.93), satis-

fying f € L*(Q) and
u e C([0,T]; L*(0,1)) N C((0, T; Hy(2) N H* ().
Moreover, there exist constants C > 0 and C > 0, such that

Cllf 2@y < IMlm@nm@ < Clfllw)- (5.96)

If f satisfies the apriori bound condition || f|| g1 )nm2) < E then
| £llzz@) < CT2E 1A fo- (5.97)

Proof. Taking t = T in the formal expansion (5.94) of the solution of (5.93) we

obtain
= nf; In (/OT un(T = 7)q(7) dT) on (), (5.98)

where f, = (f, on).
Introducing the notations h,, = (h, ) and Q,(t) fo va(t — 7)q(7) dT,
(5.98) gives

hn = faQu(T). (5.99)

Since Q,(T) > qo fo vn(7) dr and Qn(T) < ||ql|cpor fOT vn(7) d7, the bounds
in (5.90) imply _
0<C/A S Qu(T) < C/A,, (5.100)

where the constants C and C do not depend on n.
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In particular, @,(7") > 0. This implies that the solution {f(z ),u(x,t
problem (5.93), (5.95) is unique. Indeed, if h(z) = 0 then f(z) = 0 by (
and from the uniqueness of the direct problem, also u(x,t) = 0.

Estimates (5.100) for @, (7") and (5.99) imply (5.96).

The lower bound in (5.100) can be used to prove the conditional stability
result (5.97). Indeed, by (5.99)

1F11720) Z =Z 2 n<ZQ ) (Zhi) (5.101)

Applying (5.100), the first term is estimated as follows

)} of
5.99)

2

Z T~ 2 2(T)
<CPY NS
n=1

Q72||f“%{g(9)mﬂ2(9)
072 2

3

—_

IA

Plugging this bound in (5.101) completes the proof of (5.97). O
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Chapter 6

Multinomial Mittag-Lefller
type functions

We continue the study of the evolution equations with multiple derivatives
in time with the main emphasis on the multinomial Mittag-Leffler function,
which appear in the representation of their solutions. Basic properties of this
function and its Prabhakar type generalization are studied, including complete
monotonicity. Some subordination relations are established. The obtained
results extend known properties of the classical Mittag-Leffler function.

6.1 Definition and basic relations

Various types of multi-index generalizations of the classical Mittag-LefHer
function (1.21) are studied, see e.g. [86], the recent surveys [59, 60, 87| and the
monographs [45, 85]. One of them is the multinomial Mittag-Leffler function

m k;

- k! e, 2
E(U17~--7Mm)a5(zla o 7Zm) — Z Z J J

| | m ’
k=0 ki+...4+km=k Fal. .kl (5 + Zj:l Njkj)
k1 >0,... k>0

where z; € C, p; > 0, S € R, j =1,...,m. It is proposed in [50] and used
for solving multi-term fractional differential equations with constant coefficients
by operational method in [71]. The multinomial Mittag-Leffler function plays a
crucial role in the study of multi-term time-fractional diffusion equations. This
is due to the fact that the time-dependent components in the eigenfunction
expansion of the solution to initial-boundary value problems for multi-term

115
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equations are expressed in terms of multinomial Mittag-Leffler functions, see
e.g. [56, 67, 68].

Initial-boundary-value problems for diffusion equations with multiple time
derivatives and nonlocal boundary conditions are considered in |23]. The nonlo-
cal character of the boundary conditions leads to a non-selfadjoint problem and
multidimensional eigenspaces. This, in turn, implies that the time-dependent
components in the generalized eigenfunction expansions of the solutions are
expressed in terms of multinomial Mittag-Lefller functions and convolutions of
them. It is known that convolution of two classical Mittag-Leffler functions is a
Prabhakar function, see (1.36). Therefore, in the context of nonlocal boundary
value problems for multi-term time-fractional differential equations the need of
Prabhakar type generalization of the multinomial Mittag-Leffler function nat-
urally emerge. Such a generalization, which is at the same time a multinomial
generalization of the Prabhakar function (1.32) is defined next.

For the sake of brevity we use the vector notation i = (1, ft2, - - -, fhm)-

The multinomial Prabhakar function is defined as follows [15]

ILANEE, B SN (9) Uiz (6.1)

l... |
k=0 ki+...4km=Fk Fale -kl <6 + Z;n:l ﬂjkj)
k1>0,...,kp >0

where z; € C, pj, 8,0 € R, p; > 0, j = 1,...,m. Here (§); denotes the
Pochhammer symbol

(5)k:M:5(5+1)...(5+k—1), keN  (§)o=1.
['(9)

In general, the parameters u;, 3,0, are allowed to assume complex values
with Rp; > 0. In this work, however, we restrict our attention to real parame-
ters, which are of particular interest for the considered applications.

The classical Prabhakar function (1.32) is recovered from (6.1) for m = 1.
The binomial variant (m = 2) of function (6.1) was recently introduced and
studied in [39]. In the special case § = 1 the Pochhammer symbol yields
(1) = k! and the function (6.1) is the multinomial Mittag-Leffler function

By op) 82153 2m) = E(lﬂ1 Mm),ﬂ(zl’ ey Zm)- (6.2)

.....

If = —n is a negative integer then the Prabhakar function (6.1) is defined by
a finite sum (since (—n)y, = 0 for k > n+1), and E} 4(-) = 1/T(5).
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Let us note that the double summation in (6.1) can be formally replaced by
the multiple summation, that is

m k‘
E(Z L ki+... 4k L
7 a(21 ]; z_:oF(B+ZJ Lk )Hk

This yields a multiple power series, which converges absolutely and locally uni-
formly, and thus defines an entire function in each z;, 7 = 1,...,m. Therefore,
both representations are equivalent.

Applying successive term by term differentiation in (6.1) and using the
identity (0)g+1 = 6(0 + 1), we deduce the relation

o\" i
<8_Z) E° ﬂ(zl,... Zm) = (0)n Egtw +B(21,...,zm),
j

which generalizes a well-known identity for m = 1, see e.g. [91], Eq.(2.1).

In the rest of this work we are concerned only with the following multino-
mial Prabhakar type function of a single variable ¢ > 0, which is of particular
importance for the study of multi-term time-fractional equations

E i gtian, ) =t B, a(—agth L —att™),  (6.3)

where p; >0, 8>0,0 € R, a; >0, 7=1,...,m. For the sake of brevity the
short notation Sgﬁ(t; @) is used for the function (6.3). Definition (6.1) yields
the series representation

| |
=0 ky+otkn=k R knt (5 + 2000 Mjkj>
k1>03 akm>0

(6.4)

The first terms in the power series (6.4) give the following asymptotic expansion

for t — 0:
tﬁ T+p;

)
EL 4t @) ~ 52 YEET L) t— 0. (6.5)

We study the multinomial Prabhakar type function (6.3) applying Laplace
transform technique For this reason we are concerned only with locally inte-
grable functions &2 5 5(t; @). Taking into account (6.5), this is guaranteed by the
assumptions on the parameters of function (6.3).



118CHAPTER 6. MULTINOMIAL MITTAG-LEFFLER TYPE FUNCTIONS

Theorem 6.1. The Laplace transform Sqﬁ(s a) of the multinomial Prabhakar
type function Egﬁ(t, a) is given by the identity
) 5 (4= 5"
Eip(s:a) == LA{E 4(t:a) } (s) = 5 (6.6)
(1 +2 00 ajs_“j>

for s € C, such that Rs > 0.

Proof. By applying term-wise Laplace transform to the series (6.4) and using
the Laplace transform pair (1.4) for a > 0, s > 0, we obtain

—1)k(0) 17 N
L{&: st )} —S_BZ Z %H(aﬁ_’”)j. (6.7)

k=0 ky+..+k,=k — 70 =1
klZO 77777 kaO

By the use of the binomial series

= (6
(1+2)” Z% —Z2), 7] <1, (6.8)
k=0

and the multinomial theorem

Ko B
(Zit+ oo+ Z) = Y WHZJ’“

by ke, =k LM Sy
by >0, J >0

(6.7) implies (6.6) for Rs > 0, provided ’Z;n:l ajs_”j‘ < 1. The last condition
can be avoided by using analytic continuation. In this way the statement is
established for any s € C, such that s > 0. ]

The Laplace transform pair (6.6) shows that, in general, the representation
as a multinomial Prabhakar type function is not unique. For example, the iden-
tity Sifsﬁ( a) = S‘L a5 24, a?) can be proven by the use of (6.6). Moreover,
the order of parameters p; in (6.3) can be changed (together with the corre-
sponding a;). For clarity, in what follows we choose the representation with
minimal m and when a special arrangement of the parameters p; (resp. a;) is
assumed, this is explicitly stated.

A reduction of parameters result is established next.
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Theorem 6.2. For any j = 1,...,m, there holds

d (4.7 — - (5)k k ok+6 .
gﬁﬁ(t’ a) = Ll (=a;) g(ﬂlr-wﬂj—laﬂj-&-l ,,,,, ,um)vl’éjk"i_ﬁ(t’ a), (6.9)
k=0

where @ = (al, .. .,am) and d = (al, ey A1, A4, - .,am).

Proof. Representation (6.9) is deduced from the following identity obtained by
the use of the binomial series (6.8)

N e\ 0 X (6) g Hik—p
g s;a —s P14+ _5<1—|—%8 ) = —k—wk—,
plsi@) =577 (1+3) ) 2w W

where ¥/ = > s, 1 =1,2,...,j— 1,574+ 1,...,m, by applying (6.6) and
the uniqueness of Laplace transform. ]

The integration, differentiation and convolution properties for the multi-
nomial Prabhakar type functions, given next, extend those for the classical
Prabhakar function (see e.g. [43]).

Theorem 6.3. The following identities hold true

T (&5t Q) = Eipralt: @), a >0, (6.10)
d\" 3 )

(@) Erp(ti@) = Enpy(t:0), B >n, (6.11)

(.55 @)) * (55?50('567)> (t) = &340, (td), (6.12)

where J 1s the Riemann-Liouville fractional integral and x denotes the Laplace
convolution.

The above identities can be verified directly from the series definition (6.4),
or, proving by the use of (6.6) that the Laplace transforms of both sides coincide.
Technically, the second method is shorter. Since the proofs are straightforward,
they are omitted here. In the binomial case m = 2 the identities in Theorem 6.3
are proved in detail in [39].

6.2 Complete monotonicity

This section is devoted to the study of complete monotonicity property
of the multinomial Prabhakar type function (6.3) for ¢ > 0. Concerning the
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classical Prabhakar type function the current most general result states that
the function t°~ 1E‘gﬁ(— "), t > 0, is completely monotone if the parameters
satisfy the conditions [43]

O<pu<l, 0<uw <p <1

A detailed proof can be found in [31]. This result is extended next to the
multinomial case. To this end, we prove first an auxiliary statement.

Proposition 6.1. Let a € (0,1] and 0 < aj <a <1,¢ >0,j=1,...,m.
Then

m

m 1/a -1/«
(so‘ + Z qjso‘j> € CBF and (sa + Z qjso‘j> e CBF.
j=1

j=1

Proof. Property (P14) in Proposition 2.1 implies by induction that for any
f,f;€eCBF, j=1,...,m,and a € [-1,1]\{0} there holds

m 1/
( )+ ff(s)) € CBF. (6.13)

It remains to plug in (6.13) the complete Bernstein functions f(s) = s, fi(s) =
qjl-/aso‘j/o‘, j=1,...,m, and use property (P11) in Proposition 2.1 O

Theorem 6.4. Let 1 > g > ps > ... >y >0, 0 < 10 < B < 1, and
a; >0,7=1,...,m. Then

) um),ﬂ<t5 at,...,a,) € CMF, t>0. (6.14)

Proof. We prove complete monotonicity of 2 B(t @) by applying criterion (P6)
in Proposition 2.1. To establish Eqﬂ(s d) € SF we note that, according to

(P8) in Proposition 2.1, it is equivalent to (é\gﬁ(s;c?» € CBF, or, taking

into account (6.6), to

m 5
sP—mo (3‘“ + Z ajs“l‘“) € CBF. (6.15)

J=1
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Let first 8 # p10. To prove (6.15) we apply (P7) to the function ¢ (s).10*2(s)
with a1 = 8 — 10 > 0, as = 10 > 0, and

m 1/,u1
o(s) =5, b(s) = ( +Zajsw> ,
j=1

where ¢ € CBF and ¢ € CBF (according to Proposition 6.1).

If 3 = uid then the function in (6.15) is ¥*°(s) and it is a complete
Bernstein function as a composition of two complete Bernstein functions: ) (s)
and s#1°, where 1116 < 1, see (P11).

In this way (6.15) is verified and, thus, we proved that ggvﬁ(s;ﬁ) c SF.

Moreover, since 5 > 0, (6.6) implies 6! 5(s;@) — 0 as s — oo. Therefore, the

conditions in (P6) are established and the prootf of the theorem is completed.
O

Let us note that the condition § < 1 is also necessary for complete mono-
tonicity property (6.14). Indeed, Sgﬁ(t;cf) € CMF implies that the asymp-
totic expansions of this function for ¢ — 0 as well as for £ — 400 should be
completely monotone functions. We see from (6.5) that at ¢ — 0 the func-
tion Egﬁ(t; @) behaves as 771 /T'(3), which is completely monotone only when
<1

Next we derive the asymptotic expansion for ¢ — oo. To this end we need
the expansion of 52/3(3 a) for s = 0. Let ug > po > ... > py, > 0. Then for
s —=0

3#15—5 5#15—ﬁ

8 () = ~
7.5 0) (M1 4 @psta=Hm 4 4 agstTH2 4+ ap)? (agstTH2 4 aq)?

and, therefore

Séﬂ(t @) ~ ay tPHe0" 1E21 ot (— ara; ')t — +oo.

From the asymptotic behavior of the Prabhakar function (see e.g. [43], e
(3.13)) the leading term as ¢ — 400 is obtained as follows

s $B—p10-1
5 ay F(ﬁ— 15) Mld#ﬁv
Eqp(t; @) ~ T e , t—+oo. (6.16)
—da;’ay , 10 =03
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We observe that the leading terms in (6.16) are completely monotone functions
under the assumptions of Theorem 6.4.

Let us point out that (6.16) can be guaranteed only when a; > 0 for each
j = 1,...,m. In the classical case m = 1 this is known [43]. A relevant
counterexample concerning the two-term case is provided in [67], Remark 4.1.

We also note that, according to (P6) and (P15) in Proposition 2.1, the
complete monotonicity property (6.14) implies that ggﬁ(s;ﬁ) can be analyt-
ically extended to the whole complex plane cut along the negative real axis.
Therefore, the function s** + a,,s" "™ + ... + ass" "2 + a; should not have
any zeros there. This is guaranteed by the assumptions p; < pg < 1 and
a; > 0. The question whether these conditions are also necessary for complete
monotonicity property (6.14) in the multinomial case needs further investiga-
tion.

Further, let us note that identity (6.6) implies

Erp(s:D)EL_5(s:@) = 1/s, s> 0. (6.17)

Therefore, according to property (P10) in Proposition 2.1 ggﬂ(s;c_i) e SF
if and only if 5}{‘1575(8;5) € SF. If 5 € (0,1) then both Laplace transforms
vanish as s — oo and according to (P3) 52,,6(75;6) € CMUF if and only if
Eiffﬁ(t; d) € CMF. In other words, identity (6.17) implies that Sgﬁ(t; @) and
E/{‘lg_ﬁ(t; @) are Sonine kernels, that is

gg,ﬁ(t? @) * 5;7,(1575(75; a=1, t>0,

and the complete monotonicity of the one implies the complete monotonicity
of the other. In this way we obtained the following

Corollary 6.1. Under the assumptions of Theorem 6.4 and B # 1 there holds

E i ptia,. . an) €CMF, t>0. (6.18)

6.3 Equations with multiple time-derivatives

Let “D; and D{ be the fractional time-derivatives in the Caputo and
Riemann-Liouville sense, respectively, and let A be a generator of a bounded
Co- semigroup in a Banach space X. In this section we continue the study of
the two types of multi-term generalizations of the fractional evolution equation

“Diu(t) = Au(t) + f(t), t>0, 0<a<l. (6.19)
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Let 1 > a>a; > ... >a, >00 >0 5 =1,...,m We consider the
multi-term time-fractional differential equation in the Caputo form

“Diru(t) + > b °Diu(t) = Au(t) + f(t), t >0, (6.20)
j=1
and in the Riemann-Liouville form
W(t) = DI Au(t) + Y by Dy Ault) + f(t), t> 0. (6.21)
j=1

For notational convenience equation (6.21) is written here in a slightly different
form compared to (5.6) in the previous chapter. We point out that in our
considerations of equations (6.20) and (6.21) the case @ = 1 is included in
order to cover important models, such as the two time-scale mobile-immobile
model for the subdiffusive transport of solutes in heterogeneous porous media
[103], and the Rayleigh-Stokes problem for a generalized second grade fluid [24].
Therefore, it is not possible to use for the study of equations (6.20) and (6.21)
the framework of general fractional derivative proposed in [62]. Indeed, if for
example, the multi-term derivative operator in (6.20) with o = 1 is represented
as a general fractional derivative, the corresponding kernel of this derivative
would contain a Dirac delta function, see also [51] for a related discussion.

For a unified approach to the two types of multi-term time-fractional dif-
ferential equations, (6.20) and (6.21), we rewrite them for f = 0 as a Volterra
integral equation

u(t) = u(0) + /Otk(t — 7)Au(r)dr, t >0, (6.22)

where the kernel k(t) = ki(t) in the case of equation (6.20) and k(t) = ko(t)
in the case of equation (6.21). The Laplace transforms of the kernels obey

ki(s) = 1/gi(s), i = 1,2, where

m m -1
gi(s) ="+ bis™,  ga(s) = <sa +> bjs%> . (6.23)
j=1 j=1

Therefore, taking into account (6.6), we deduce

kl(t) = g(a—al ..... a—am),a(t; by, .. -abm)a (624)

m tO[j—l

ko) = ——+5 b (6.25)
M) 2 ey
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The kernels k;(t) € C(Ry) N L}

loe(R4) are completely monotone functions, see
Theorem 6.4.

6.3.1 Subordination

In order to apply the general subordination theorem (Theorem 2.4) we have
to establish (2.24) for some a. We know from the previous chapter that g;(s) €
CBF, i =1,2. According to Proposition 6.1 a stronger property is satisfied:

gi(s)Y* € CBF, i=1,2. (6.26)

This together with property (P11) in Proposition 2.1 also implies

/B
gi(s)l/ﬂ = (gi(s)l/o‘) eECBF, 0<a<p<l, i=1,2,

as a composition of two complete Bernstein functions.

Proposition 6.2. The functions gi1(s) and go(s) defined in (6.23) satisfy
gi(s)/P e CBF, 0<a<p<1, i=1,2 (6.27)
Theorem 2.4 and property (6.27) imply the following subordination result.

Theorem 6.5. Let 0 < a < § < 1 and assume the single-term problem (6.19)
of order 8 admits a bounded solution operator Sg(t). Then the solution operator
S(t) of problem (6.20), resp. (6.21), satisfies the subordination identity

S(t) = /O () S dr, >0,

with function o(t,7) defined by

1 y+ico 1/5
o(t, ) = —/ exp (st — Tgl/ﬁ(s)> g—(s) ds, ~,t,7 >0,
271 . S

—ioco

where g(s) = g1(s) in case of problem (6.20) and g(s) = ga(s) in case of
problem (6.21). The function ¢(t,T) is a probability density function, i.e. it
satisfies the properties (2.26).

Moreover, if a < 3, then there exists 6y € (0,7/2) such that p(t,T) admits
analytic extension to the sector |argt| < 6y and is bounded on each subsector
|argt| < 6, where 0 < 0 < 6.
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Proof. We have to prove only the last part - the analyticity property of the
subordination kernel (¢, 7), since the rest follows from Theorem 2.4. Next, g(s)
stands for either gi(s) or go(s). Applying property (P15) in Proposition 2.1
to the complete Bernstein functions g(s)'/® (see (6.26)) it follows

|arg g(s)| < afargs|, s € C\(—o0,0].

This estimate can be also derived from the definitions g;(s) and go(s) in (6.23)
by applying the rules | arg(s”)| = 8| arg s|, | arg(si+s2)| < max{|args|, | arg ss|}
and arg(s™!) = arg s. Therefore

|arg g(s)'/7| < 7| arg |, s € C\(~00,0],

where v = a/f € (0, 1).
Define

0y = min{(1/v — 1)w/2,7/2} — ¢, (6.28)

where € > 0 is small enough, such that 6, > 0. According to Theorem 1.3
it suffices to prove that the function @(s,7) admits analytic extension to the
sector |arg s| < m/2+6y and the function sp(s, 7) is bounded on each subsector
largs| < 7/2 + 60, 6 < ;. The complete Bernstein function g(s)'/? can be
extended analytically to C\(—o0,0], see (P15) in Proposition 2.1, thus this
holds also for the function

1/6(5)

Bs,7) = I exp (9" (5))

Take s such that |args| < 7/240, 0 < 0y, where 0 is defined in (6.28). Then
|arg g(s)"/7] < 4| args| < /2 — e
Therefore, g(s)"/? = pe'®, for some p > 0, || < /2 — e, and thus
[59(s, 7)| = [g(s)e ™| < pe TP < pem” < (ea) ™,
where a = 7sinye > 0. Here we have used that the function f(p) = pe=*, p >

0, admits its maximum for p = 1/a. Therefore, we can apply Theorem 1.3 to
obtain the desired result. H
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6.3.2 Relaxation functions

Setting A = —A, A > 0, in equations (6.20) and (6.21) leads to two forms
of multi-term relaxation equations. In this section we study the properties of
the relaxation functions, obtained as solutions of these equations.

By the use of Laplace transform we deduce that the solution of the relaxation
equation in the Caputo form

“Du(t) +zm:bj Difu(t) + Mu(t) = f(t), t>0; u(0)=1, (6.29)

is given by t
u(t) = ui(t; A) + / vi(t — 7 A) f(7) dr, (6.30)
0

and the solution of the relaxation equation in the Riemann-Liouville form
W)+ AD; T u(t) + A b Dy Vu(t) = f(t),  t>0; u(0)=1, (6.31)
j=1

is represented as

u(t) = uao(t; A) + /0 us(t — 3 N) f (1) dr, (6.32)

where the functions ui(¢; \), v1(t; A), and us(t; A) satisty the following Laplace
transform identities

Gi(s: \) = % P= 1.2 Ty(s:A) = gl(s)ﬁ (6.33)

with ¢1(s) and ga(s) defined in (6.23).

The functions u1(¢; A) and vi(¢; \) are the relaxation functions related to
problem (6.29) and wus(t; A) is the relaxation function related to problem (6.31).
Laplace transform inversion in (6.33) by the use of (6.6) yields the following
explicit representations in terms of multinomial Mittag-Leffler functions

ur(t;A) = 1= Xaa—ar,..aamhat1 E A D01, b)), (6.34)

.....

ur(t;A) = Elasan,am)1 (A AL L ADy,) (6.35)
vi(t;A) = Eaa—ar,a—am)a (A DL by) (6.36)

.....
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In the single term case the relaxation functions reduce to the classical
Mittag-Leftler functions

Uit N) = Eo(—M9), i =1,2, v(t;N) =t E, o(=AtY).

Subordination identities for the relaxation functions wu;(t; A) can be de-
rived from the scalar version of Theorem 6.5, where S(t) = w;(¢t; \), Ss(t) =
Eg(—At?). In particular, for 3 = 1 it follows

wi(t; A) = / oi(t,T)e dr, t>0,i=1,2, (6.37)
0

where the functions @;(¢, 7) are nonnegative and normalized. A subordination
result for the third relaxation function vy (; \) is given next.

Theorem 6.6. The relazation function vi(t; \) obeys the identity

vi(t; A) = /Ooow(t,T)e’\T dr, t>0, (6.38)

where the kernel 1(t, T) is nonnegative and admits the representation
Y(t,7) = ho(t,T) * hoy (8, 017) % ... % hg, (T, 057). (6.39)

Here x denotes the Laplace convolution and
ho(t, o) = o~ VL, (ta_l/a> : (6.40)

where Lo (+) is the Lévy extremal stable density, defined in (1.41).

Proof. Consider a subordination kernel (¢, 7), which Laplace transform with
respect to t satisfies

~

Y(s,T) = /000 e lp(t, T)dt = e TN, (6.41)

Then, the functions vy (¢; A) defined by identity (6.38) obeys
0 0 1

et (t; N\ dt = / S R e —

/0 1) 0 g1(s) + A

Comparing this result to (6.23), it follows by the uniqueness of the Laplace
transform that vy (¢; A) defined by (6.38) is indeed the relaxation function (6.36).
In this way (6.38) is established.
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Since g1(s) € CBF then by applying (P2) it follows e 79() € CMF. The
nonnegativity of ¢ (¢, 7) then follows by the Bernstein’s theorem. From (6.41)
and (6.23)

m
'l/p\(S, 7_) = 677—91(5) — e_T(Sa+Z;n:1 bjs(y]) _ 677-804 H efTbjsaj’
j=1
which, after Laplace transform inversion, yields representation (6.39). ]

By fractional integration of (6.38) and taking into account (6.36) and iden-
tity (6.10) we deduce the following representation for completely monotone
multinomial Mittag-Leffler functions, which is of independent interest.

Corollary 6.2. Let0<a<f8<1,0<a; <a, A>0,b;>0,5j=1,...,m.
Then

where the kernel ¢(t,T) is nonnegative and admits the representation
tﬂ—a—l
I'(f—a)

if « < B and ¢(t,7) = Y(t,7), defined in (6.39), when o = 3. The functions
ha(t,-) are defined in (6.40).

o(t,7) = k he (8, 7) % ho (8, 017) % ... % he, (t, by, T)

Some properties of the relaxation functions, including useful estimates, are
collected in the next theorem. The proof is analogous to that of Theorem 5.8
and is omitted.

Theorem 6.7. For any A\ > 0 the relaxation functions ui(t; \), ua(t; A), and
v1(t; N), defined in (6.34)-(6.36), are positive, strictly decreasing, completely
monotone fort > 0, and admit analytic extensions to the half-plane C.. The
relation holds true P

aul(t; A) = —Avui(t; N).

The following uniform bounds are satisfied
0<w(t;\) <1, t>0, w;(O;N) =1, i=1,2

1
Zt7>\ S ) -:1727
wltiN S T
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where
Iy (t) = (1 * kl) ( ) = g(a—al ..... a—am),a+1(t7 bln 7bm)7 (643)
te i £
L) = (1xky)(t) = e ;bjr(% .y (6.44)

Forany A>X g >0 andt >0
ui(t; A) <t do), i =1,2,  oi(t;A) < vt o),

and there holds the estimate
T
Cg)\/ vi(t; N)dt <1, T >0,
0

where the constant C' =1 — uy(T; Ng) > 0 is independent of \.

6.3.3 Moments of the fundamental solution

As an application of the multinomial Prabhakar type functions (6.4), in
this section we derive expressions for the moments of the Green functions of
the multiterm time-fractional differential equations in terms of such functions.
Consider the Cauchy problem for the multi-term equations (6.20) and (6.21),

where A = (8%)2, x € R (for the precise definition see (2.20)). The fundamental
solution G(z,t) is defined by assuming the initial and boundary conditions
G(z,0) =0(x); x € R, |1|im G(z,t) =0, t>0,
T|—00
where §(-) is the Dirac delta function. Applying as usual Laplace transform
with respect to the temporal variable and Fourier transform with respect to

the spatial variable, we derive for the Green function G(x,t) in Fourier-Laplace
domain

3 9(s)/s

G(&,s) o(s) + €2 EeR, s>0. (6.45)
Here g(s) = ¢1(s) in the case of equation (6.20) and g(s) = ga(s) in the case of
equation (6.21), and the definitions of these functions are given in (6.23). By
Fourier inversion in (6.45) the Laplace transform of the solution is obtained as
follows

s‘
—~
~—

é(az,s) = i exp (—|x\m> , T €R. (6.46)

2s
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Let v > 0. Next we derive the moments of the fundamental solution

(|x|7(t)) :/R:L’VQ(:L’,IS) dzx.

Representation (6.46) implies for the Laplace transforms of the moments (|x|7(¢))
of order

/Rﬂg(x,s) dr = @/000 27 exp (—x\/@) dr = %7

where the formula fooo 2" le @ dy = T'(b)a~" is used. Taking inverse Laplace
transform, we obtain by the use of (6.6)

(eli(6) = Cr €17 (£ by b1, ey by)

(e}
(Q=Qp, =1,y —1 ), G +1

for the equation (6.20), where C7 = I'(y + 1), and

) 1 by by
v . v/2 e m—1
<|x‘2(t)> - 02 g(a*am@ll*am ----- am—lfam)7w+l <t’ bm) bm’ Y bm ) ,

for the equation (6.21), where Cy = I'(y + l)b?n/Q.

Let us note that the indices in the brackets of the above multinomial Prab-
hakar type functions are specially arranged, so that the first index, a — au,,
is the largest. The obtained representations for the moments, together with
the properties (6.10), (6.14), and (6.18), imply that the moments of the Green
functions of both equations are Bernstein functions (integrals of completely
monotone functions) provided ay < 2.

The corresponding mean squared displacements <\a:]22(t)> are derived by
setting v = 2. This yields

(Jalf(t)) = 2u(t), i=1,2,

where the functions [1(t) and l5(t) are defined in (6.43) and (6.44). As we see,
l5(t) is a finite sum, and this is the case for all moments of even order for the
equation in the Riemann-Liouville form (6.21).

The asymptotic behavior of the derived moments can be deduced from the
asymptotic expansions (6.5) and (6.16) for the multinomial Prabhakar type
functions. In this way we obtain {|z|](¢)) ~ ct®/? as t — 0 and (|z|](t)) ~
ct®m/? as t — oo for the equation (6.20), while for the equation (6.21) the
opposite behavior is observed: (|z|3(t)) ~ ct®/? as t — 0 and (|z[}(t)) ~
ct®/? as t — co. Here ¢ denotes different positive constants.




Chapter 7

Distributed-order
diffusion-wave equations

In the last two chapters we study the subordination principle for generalized
time-fractional diffusion-wave equations. Various linear generalizations of the
fractional diffusion-wave equation have been proposed in the literature. The
most studied examples are the distributed-order time-fractional diffusion-wave
equation and various equations governing wave propagation in viscoelastic me-
dia. The present chapter is devoted to the distributed-order time-fractional
diffusion-wave equation with discrete or continuous distribution of fractional
Caputo time derivatives over the interval (0,2]. We first discuss an open
problem concerning the interpretation of the fundamental solution to the cor-
responding one-dimensional Cauchy problem as a spatial probability density.
Then the subordination principle for multi-term time-fractional diffusion-wave
equation is studied in detail.

7.1 Positivity of the fundamental solution

The time-fractional diffusion-wave equation
a 0?
“D)u(z,t) = mu(m,t), a€(l,2), zeR, t>0, (7.1)
x

where D} denotes the Caputo fractional time derivative of order o € (1,2)
has been extensively studied as a model of evolution processes intermediate
between diffusion and wave propagation, see e.g. [6, 72, 75, 78, 80].

131
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Consider the equation derived by replacing the single fractional time deriva-
tive in (7.1) by a distribution of fractional Caputo time derivatives over the
interval (0, 2|:

5'2

Wu(:r:,t), reRt>0, (7.2)
T

2
B
| oD utat) 5 =
0
where p(/) is a nonnegative (generalized) weight function, such that

supp 1 N (1,2] # 0.

The Cauchy problem for equation (7.2) with initial conditions u(z,0) = f(x)
and u(z,0) = 0 is studied in [46] with the main focus on the interpretation of
the fundamental solution G(x,t) (corresponding to f(x) = d(x)) as a spatial
probability density function:

G(x,t) > 0 for x € R, t > 0; / G(x,t)dr =1 for t > 0. (7.3)

The importance of properties (7.3) for the stochastic interpretation of the dis-
tributed order wave equation and for its physical meaning is explained by Goren-
flo in [44]. In addition, it appears to be essential for subordination of equation
(7.2) to second order Cauchy problem, as we will see next.

The Laplace transform of the fundamental solution with respect to the time
variable is given by the formula [46]

)
:

G(z,s) = 233 exp (—|a:|\/g(s)) , x€eR, s>0, (7.4)

where
o) = [ u®)s'as (7.5)

Therefore, the integral identity in (7.3) is easily established, see [46]. The
more difficult part is the nonnegativity of G(z,t), that, according to Bernstein’s
theorem, is equivalent to complete monotonicity of the Laplace transform (7.4).
Based on Bernstein functions technique, it is proven in [46] that the fundamental
solution G(x,t) of (7.2) is non-negative if the weight p(5) vanishes identically
on the interval (0,1). The question whether this assumption can be relaxed is
stated in [46] as an open problem. Here we discuss this problem together with
its relation to subordination principle.
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Consider the distributed-order diffusion-wave equation in abstract form
2
/ WD u(t) dB = Auft), t > 0: u(0)=ac X, W'(0)=0, (7.6
0

where the operator A is a generator of a strongly continuous cosine family in a
Banach space X, that is, the second-order Cauchy problem (2.7) is well posed.
By applying Laplace transform, the Cauchy problem (7.6) is reformulated as
Volterra integral equation (2.10) with kernel k(¢) with characteristic function
g(s) = 1/k(s) given by (7.5). According to the general subordination theo-
rem (Theorem 2.4) problem (7.6) is subordinated to the second-order Cauchy
problem (2.7) provided

g(s)'? € CBF, s>0. (7.7)

This condition ensures for any fixed 7 > 0

P(s, 1) = Z(S) exp (—TVg(S)) €eCMF, s>0, (7.8)
which is equivalent to ¢(t,7) > 0 (@(t,7) is the corresponding subordination
kernel). A comparison to (7.4) shows that the problem of nonnegativity of the
fundamental solution G(x,t) is equivalent to the above problem of subordina-
tion. Both problems reduce to proving complete monotonicity of the expression
in (7.8). In this case the well-posedness of the second order Cauchy problem
implies well-posedness of the distributed-order Cauchy problem (7.6).

In this section we discuss conditions on the weight functions p, implying
(7.7). In the next theorem we relax the condition supp pu C [1,2], which was
considered in [46]. We prove that the support of the function u(3) can be any
interval with length at most 1, not necessarily the interval [1, 2].

Proposition 7.1. Assume
supppu C la—1,0], 1<a<2 (7.9)
Then the function g(s), defined in (7.5), satisfies (7.7).

Proof. Under the assumption (7.9)

[e%

o) = [ st =t [ st

a—1
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Since s7~*! € CBF for € [a — 1,a],a € (1,2], then also the integral of
sP=o*+1 with positive weight is a complete Bernstein function as a point-wise
limit of positive linear combinations of complete Bernstein functions, see (P2)
in Proposition 2.1. Moreover, s* ! € CBF for a € (1,2]. Therefore, g(s)
is a product of two complete Bernstein functions and property (2.2) implies

(7.7). O

The next example of power-law weight function on an interval with ar-
bitrary length (< 2) shows that the assumption on the weight function in
Proposition 7.1 is not necessary for (7.7).

Proposition 7.2. Let a > 0 and 0 < oq < ag < 2. Assume p(f) = a° for
B € lag,as], and u(B) =0 for B € (0,a1) U (az,2]. Then the function g(s),
defined in (7.5), satisfies (7.7).

Proof. Taking into account s” = %185 we deduce

o) = [ ey ap =

) log(as)
(as)*?/? — (as)™/?

log(as)
Ot2/2

— ((as)a2/2 + (as)o‘l/?) / (as)ﬂ dg. (7.10)

041/2

= ((as)a2/2 + (as)a1/2)

Since o, /2 € (0,1], then (as)®/? € CBF, i = 1,2, and their sum is again in
CBF. The integral in (7.10) is a complete Bernstein function as a point-wise
limit of positive linear combinations of complete Bernstein functions (as)?,
B € (0,1]. Therefore, g(s) is a product of two complete Bernstein functions

and (2.2) implies (7.7). O

The situation is different in the case of discrete distribution, as we will see
in the next example..

Example 7.1. Let u(8) = §(8—a1)+90(Bf—az), where 0 < ag < as < 2. Then
g(s) = s* + s™. If as — a1 > 1, then representation g(s) = s*(s*2 * 4 1)
implies that g(s) has a zero in C\(—o0, 0]. Therefore, the multivalued complex
function g(s)"/? has a branch point in C\(—o0, 0] and, according to property
(P15) in Proposition 2.1, g(s)"/? cannot be a complete Bernstein function.
This shows that, in order to have (7.7) for multi-term equations, the distance
between the largest and the smallest fractional orders should not exceed 1.
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In fact, also the weaker property /g(s) € BF does not hold without a
restriction on the distance ao — a;. Considering the above two-term example
with different values of the parameters a and oy such that a —a; > 1 (e.g.
a=19a € (0,0.5]; « = 1.8,y € (0,0.3]) we obtain by direct computation
that the second derivative d?/ds*(/g(s)) admits positive values for some s > 0.
Therefore, the function y/g(s) is not concave for all s > 0, which implies that

v g(s) & BF.

7.2 Multi-term diffusion-wave equation

This section is devoted to a detailed study of the class of multi-term time-
fractional diffusion-wave equations

cCDju(t) + zm: ;DY u(t) = Au(t), w(0)=ac X, ¥'(0)=0, (7.11)

where A is a closed linear unbounded operator densely defined in a Banach
space X, which generates a strongly continuous cosine family. We suppose that
the parameters o, oy, ¢, ¢j, satisty the following restrictions

ae (L2, a>a1>-->a, >0, a—a,<]1,

7.12
c>0, ¢,>0, g=1,---,m. ( )

7.2.1 Propagation function

Consider first the following problem for the spatially one-dimensional ver-
sion of the multi-term equation in (7.11)

a = o 0*
D w(z, t) + chCDt]w(x,t) = —w(z,t), z,t>0, (7.13)

, 02
j=1
w(z,0) = w(z,0) =0, x>0, (7.14)
w(0,t) =0O(t), w—0asz— o0, t>0, (7.15)
where the parameters o, a;,¢,c¢j,j = 1,...,m, satisfy conditions (7.12), and

O(t) is the Heaviside unit step function.

Problem (7.13)-(7.14)-(7.15) models the propagation in time of a distur-
bance at x = 0. That is why the solution w(z,t) is referred to as propagation
function.
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By applying Laplace transform with respect to the temporal variable in
(7.13) and (7.15) and taking into account initial conditions (7.14) we obtain
using (1.13) the following problem

g(s)w(z,s) = Wy(x,s), w(0,s) =1/s, w(x,s) - 0asx— oo, (7.16)

where
g(s) = cs™ + Z cjs™, s> 0. (7.17)
j=1
Solving (7.16) as ODE of second order (with s considered as a parameter) we
deduce |
w(z,s) = —exp (—ng(s)) : (7.18)
s
Properties

Problem (7.13)-(7.14)-(7.15) is physically meaningful when the propagation
function w(z,t) is nonnegative. By Bernstein’s theorem this is equivalent to
w(z,s) € CMF, which is guaranteed if /g(s) is a Bernstein function. In fact,
conditions (7.12) imply a stronger property: \/g(s) € CBF C BF.

Proposition 7.3. Assume g(s) is defined by (7.17) with parameters o, o, ¢, c;,
j=1,--- m, satisfying conditions (7.12). Then \/g(s) € CB.F.

Proof. Consider first the case o, > 1. Set f(s) = g(s)/s. Since 2 > a, a; >
1 the function f(s) = es* "+ 31", ¢js% " € CBF as a sum of complete
Bernstein functions. Also, s € CBF. Then, applying property (2.2) it follows
that v/g(s) =+/s\/f(s) € CBF.

In the case a,;, < 1 weset f(s) = g(s)/s*. The assumption 0 < a—ay, <1
implies again f(s) € CBF. Since also s*m € CBJF, we obtain in the same way

as above \/g(s) = /s \/f(s) € CBF. O

Proposition 7.3 implies important properties of the propagation function.

Theorem 7.1. Under conditions (7.12) the propagation function w(z,t) sat-
isfies the properties
0

0
w(z,t) >0, —tw(x,t) 0, xw(x,t) 0, z,t>0 (7.19)
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Proof. According to Bernstein’s theorem it is sufficient to prove that the Laplace
transforms of the three functions in (7.19) are completely monotone. We have
from Proposition 7.3 that \/g(s) € CBF C BF. Then, by property (P5) in

Proposition 2.1, the function exp (—:U\/g(s)) € CMF as a composition of the
completely monotone exponential function and the Bernstein function /g(s).

Since 1/s € CMF, applying (P1) in Proposition 2.1 and taking into ac-
count (7.18) it follows w(zx,s) € CMF as a product of two completely mono-

tone functions. Further, since lim; g w(x,t) = lim,_ oo sw(z,s) = 0, (7.18)
and (7.17) imply

L{w}(x,s) = sw(x,s) —w(x,0) =exp (—x\/g(s)) c CMF.
For the third function we obtain

L{—w,}(x,s) = —%@(x,s) =

ﬁ
/
(V)
~—

exp (—:L‘ g(s)) e CMF (7.20)

s
by applying (2.3). O

Theorem 7.1 implies that w(x,t) is a nonincreasing function in x and non-
decreasing function in ¢ with limiting value found by applying Finite value
theorem for Laplace transform

li =1 w = 1. 21
t_}inoow(x,t) lim sw(x, s) (7.21)
The fundamental solution G(z, t) of the Cauchy problem for equation (7.11)

with A = 9?/02? can be expressed in terms of the propagation function w(z,t)
as follows:

G, 1) = —%wx(\x\,t), TER, (7.22)

which is deduced by comparison of (7.4) and (7.20). Therefore Theorem 7.1
implies that G(z,t) is a nonnegative function, as it was expected.

Next we distinguish two cases o < 2 and o = 2. For a < 2 the propagation
function w(x,t) admits an analytic extension to a sector in the complex plane
t € C\0, |argt| < 6y (the proof is essentially the same as that of Theorem
7.6). Therefore, for any « > 0 the set of zeros of w(z,t) on ¢ > 0 can be only
discrete. This together with (7.19) and (7.21) implies that w(x,t) > 0 for all
x,t > 0, which means that a disturbance spreads infinitely fast.

Theorem 7.2. If 1 < a < 2 then w(x,t) > 0 for all x,t > 0.
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On the other hand, in the case a = 2, a disturbance spreads with finite
speed as in the case of classical wave equation (m = 0,a = 2) and classical
telegraph equation (m = 1, @ = 2,y = 1). However, in contrast to the classical
equations, in the case when there is at least one fractional time-derivative in
equation (7.13) a phenomenon of coexistence of finite propagation speed and
absence of wave front is established. This is a memory effect, not observed in
linear integer-order differential equations.

We will prove that for o = 2 a disturbance spreads with a finite propagation
speed 1/4/c. Let us define the function

h(s) =/g(s) = Ves.
Then (7.18) implies

w(z,t) = L7 {% exp (—zh(s))exp (—z cs)} (7.23)
= wy(z,t — Vex)O(t — Vex),

where

S

wo(z, ) = £ {1 exp (—xh(s))}

and ©O(t) is the Heaviside unit-step function. Here we have used the property
L{f(t —a)O(t —a)}(s) = exp(—as)L{f}(s). Since h(s),h'(s) >0 for s > 0
and \/g(s) € BF, it follows that h(s) € BF. Therefore, wy(x,t) > 0 by the
same argument as in the proof of Theorem 7.1. Formula (7.23) implies that the
propagation function w(x,t) vanishes for x > t/4/c, i.e. the propagation speed

is 1/4/c.
Theorem 7.3. If a = 2 then w(z,t) =0 for x >t/ /c.

Except in the two classical cases (wave equation and classical telegraph
equation) there holds lim,_, h(s) = oo, which implies that there is no wave
front (jump discontinuity) at x = ¢/4/c (cf. [93], Chapter 5).

The behaviour of the propagation function w(z,t) is illustrated in Fig-
ures 7.1 and 7.2. Three different cases for the equation (7.13) with two time-
derivatives are considered: the classical telegraph equation (Fig. 7.1) which
exhibits finite propagation speed and wave front, an equation with a = 2 and
ap € (1,2) (Fig. 7.2(a)) exhibiting finite propagation speed and no wave front,
and an equation with av < 2 (Fig. 7.2(b)) exhibiting infinite propagation speed.
The figures are from [18]. The plots are obtained by numerical computation
based on the explicit integral representation for w(z,t) derived next.
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Figure 7.1: Propagation function w(z,t) for the classical telegraph equation as
a function of x for different values of ¢: finite propagation speed and wave front.
Explicit representation

To derive an explicit representation for the propagation function we apply
the complex Laplace inversion formula to (7.18), which yields

1 y-+ioco
w(z,t) = o | e*'w(x, 5) ds
y—ioo
1 y+ioco d
_ b exp (st—x\/g(s)) oy 0. 0 (7.24)
271 )y ioo s

Since 1/g(s) € CBF it can be analytically extended to C\(—o0,0]. There-
fore, this holds also for the function under the integral sign in (7.24). By the
Cauchy’s theorem, the integration on the contour {s = y+ir, r € (—o0, +00)}
can be replaced by integration on the contour Dy U D U Dy U D}, where (with
appropriate orientation)

D={s=ir, r € (—o0,—€) U (e,00)}, D. = {s =¢ee, 0 € [-n/2,7/2]},

Df; ={|s| = R, Rs €[0,7], Is >0}, Dy ={|s| = R, Rs € [0,7], Is < 0}.

To prove that the integrals on the arcs Dy and D7 vanish for R — oo it is
sufficient to show that for any x > 0 the function w(z, s) is uniformly bounded
on DEn and Dp , where R, — oo, and that @(x,s) — 0 for s € Dy, and
R — o0, see e.g. [35], Chapter 2, Lemma 2. This follows from the fact that
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Figure 7.2: Propagation function w(x,t) for a two-term equation as a function
of z for different values of ¢; (a) o = 2, oy = 1.5: finite propagation speed, no
wave front; (b) a = 1.5, a3 = 1: infinite propagation speed.

R+/g(s) > 0 for Rs > 0 and therefore

'%exp (—x@)‘ < %exp (—xé)fe\/g(T)) < %, s € DE. (7.25)

The integral on the semi-circular contour D, equals 1/2 when € — 0. This can
be obtained by direct check using that

lim s G exp (st - x@)) ~ 1

s—0

Integration on the contour D yields after letting ¢ — 0 and R — oc:

1 1 1 [>1
— [ —exp (st — a:\/g(s)) ds = —/ —&exp (irt — ng(ir)) dr.
2mi TJo T

DS

Here we have used the fact that \/g(s*) = (\/g(s)) , where x denotes the com-

plex conjugate, see property (P15) in Proposition 2.1. Applying the formula
(4.17) for real and imaginary parts of the square root of a complex number we
obtain the following result.

Theorem 7.4. The propagation function w(x,t) admits the integral represen-
tation:

+ 1 /OOO exp(—z K" (r))sin(rt — 2K~ (r)) @, z,t >0, (7.26)

1
t) ==
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where
1/2

K*(r) = == ((A%() + B2()"* + A(r) (7.27)

Sl

with

A(r) = Rg(ir) = cr® cos(ar/2) + Z c;jr® cos(a;m/2),

J=1

B(r) = Sg(ir) = er®sin(ar/2) + Z cjr® sin(o;m/2).

To check that the obtained integral in (7.26) is convergent we note that
K*(r) >0, K¥(r) ~ r*/% as r — 0 and K*(r) ~ r*? as r — co. Therefore,
the function under the integral sign in (7.26) has an integrable singularity at
r = 0, while at 7 — oo the term exp(—xz K" (7)) ensures integrability not only
of this function, but also of all derivatives with respect to ¢t. Therefore, w(x,t)
is well defined function, which is infinitely differentiable in t.

Corollary 7.1. In the single-term case m = 0 and ¢ = 1 the propagation
function w(x,t) admits the integral representation for x,t > 0:

dr

1 1 [
w(z,t) = 5t %/0 exp <—xro‘/2 cos(om/4)> sin (rt — xro/? Sin(om/4)> —

7.2.2 Subordination results

We suppose first that A generates a cosine family. This means that the
second-order Cauchy problem (2.7) is well posed with solution operator S(t).

We establish subordination results for the Cauchy problem (7.11) for the
multi-term diffusion-wave equation with parameters satisfying (7.12). Applying
Laplace transform we rewrite problem (7.11) as the abstract Volterra integral
equation

t
u(t) =a +/ k(t — 1)Au(T) dT. (7.28)
0
The scalar kernel k(t) is defined by its Laplace transform
k(s) = 1/g(s), (7.29)

where the function g(s) is defined in (7.17).
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Problem (7.11) is well posed iff the corresponding Volterra integral equa-
tion (7.28) is well posed. In this case the solution operator of problem (7.28)
coincides with the solution operator of problem (7.11). Denote by S(t) this
solution operator.

Since /g(s) € CBF (see Proposition 7.3), applying Theorem 2.4 we obtain
that problem (7.11) is subordinated to the second order Cauchy problem.

Theorem 7.5. If A is a generator of a bounded cosine family Sa(t) in X then
problem (7.11) admits a bounded solution operator S(t). It is related to Sy(t)
via the subordination identity

S(t) = /000 o(t, 7)So(T) dr, t > 0. (7.30)

The function o(t, ) is a PDF in T (i.e. satisfies conditions (2.26)) and admits
the following integral representation

o(t,T) = %/000 exp (—TK+(7“)) (K+(T‘) sin (rt — TK_(T))
+ K (r)cos(rt — 7K (r))) %, t,7 >0, (7.31)

where K=(r) are the functions defined in (7.27).

Proof. We have to prove only integral representation (7.31). Indeed, the sub-
ordination kernel (¢, 7) is related to the propagation function w(z,t) via the
identity

o(t,7) = —wy(z,t)|4=r, t, 7 >0, (7.32)
which can be deduced by comparing their Laplace transforms. Then the inte-

gral representation (7.31) follows after easily justified differentiation under the
integral sign in (7.26). O

Plots of the subordination kernel (¢, 7) in (7.30) in the case of some two-
term equations are shown in Figure 7.3. The numerical computations are based
on the integral representation (7.31). The figure is from [18].

In the case a = 2 identity (7.32) and Theorem 7.3 imply that ¢(t,7) =0
for 7 > t/y/c. Therefore in this case the integral in (7.30) is finite.

Corollary 7.2. Let o = 2. Under the hypotheses of Theorem 7.5 the subordi-
nation relation (7.30) has the form

S(t) = /Ot/ﬁ o(t, 7)S(7) dr, t>0. (7.33)
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Figure 7.3: Subordination function ¢(t, 7) for a two-term equation as a function
of 7; (a) @ = 1.9, g = 1.5, and different values of ¢; (b) a = 1.9, t = 2 and
different values of aj.

Taking into account the asymptotic expansions of the functions K*(r), it
is clear that the function under the integral sign in (7.31) can be infinitely
differentiated in ¢. Therefore, this should hold also for the function (¢, 7). In
the next theorem we prove a stronger regularity property in the case o < 2.

Theorem 7.6. Assume 1 < o < 2 and let

2—a)rm
90 = % — &, (734)
where € > 0 is arbitrarily small. For any T > 0 the function ¢(t,7) as a
function of t admits analytic extension to the sector ¥(0y) and is bounded on

each sector 3(0), 0 < 0 < 6.

Proof. First note that o > 1 implies 6y < /2. It suffices to prove that
for any 7 > 0 the Laplace transform (s, 7) of the function ¢(t,7) admits
analytic extension for s € 3(w/2 + 6y), such that s@(s,7) is bounded for
se€X(m/2+0), 0 <0< b, see Theorem 1.3.

Indeed, since \/g(s) € CBF, it can be extended analytically to C\(—oo, 0].
Therefore this holds also for the function

55, 7) = Y9 on (o fg).

S
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For s € ¥(w/2+0), 0 < 6y, the definition (7.17) of g(s) together with the
property |arg(s; + s2)| < max{|argsi|,|argss|} and (7.34) implies

larg v/g(s)| < %]args\ <m/2 —ea/2. (7.35)
Therefore,
s2(s. 1) = Vo) exp (~7v/50))|
< pexp (—Tp CoS (arg \/@))
< pe < (ea)™!, (7.36)
where p = ’\/@’ and a = 7sin(ea/2) > 0. ]

Theorem 7.7. Let 1 < o < 2. Under the hypotheses of Theorem 7.5 the
solution operator S(t) of problem (7.11) is a bounded analytic solution operator

of angle 0y, defined in (7.34).

Proof. Roughly speaking, since Ss(t) is bounded, according to Theorem 7.6 the
function under the integral sign in (7.30) is analytic in ¢t € ¥(6y) and the integral
is absolutely and uniformly convergent on compact subsets of ¥(6y). Therefore,
S(t) given by (7.30) is analytic in ¥(6p) and bounded in the subsectors.

Strictly, this result follows from Theorem 2.5 taking into account (7.35). [J

Theorem 7.7 is in agreement with Theorem 3.2. in [9], where the same
property is established for the solution operators S, ().

In fact, problem (7.11) is not only subordinate to the second order Cauchy
problem, but also to the fractional Cauchy problem (2.8) of order «, which is
a stronger result for v < 2. To deduce this fact, according to Theorem 2.4 we
only need to prove the following property of g(s).

Proposition 7.4. If g(s) is defined as in (7.17) with parameters o, aj, ¢, ¢;, j =
1,...,m, satisfying (7.12), then g(s)"/* € CBF.

Proof. According to property (P7) in Proposition 2.1 it is sufficient to prove

that
g(s)t®

S

f(s) = € SF. (7.37)
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Since 0 < o — oy, < 1 the function

() = 9(s)

S

m
=c+ g c;shi
J=1

is a Stieltjes function. Moreover, s/ € CBF for a > 1. This together with
property (P12) in Proposition 2.1 gives (7.37). O

As discussed earlier, the property g(s)Y/® € CBF is stronger than the prop-

erty ¢(s)'/? € CBF proven in Proposition 7.3. This follows from the repre-
sentation g(s)"/? = (g(s)"/*)*? as a composition of two complete Bernstein
functions, which by property (P11) in Proposition 2.1 is again a complete

Bernstein function.

Theorem 7.8. Assume problem (2.8) has a bounded solution operator S,(t).
Then problem (7.11) admits a bounded solution operator S(t), which is related
to Se(t) by the subordination identity

S(t) = /0 BTV Su(r) dr, t> 0, (7.38)

where the function W(t,T) is a unilateral PDF in T, defined as the inverse
Laplace transform

1 y+ioo 1/
Y(t, ) = —/ () exp (st — Tg(s)l/a> ds, ~,t,7 > 0.
v

21 Jo i s

Theorem 7.8 implies that the solution operator S(t) has (at least) the same
regularity as S,(t). This result is in agreement with Theorem 3.4 in |65].

Let us note that the subordination results of this section can be generalized
to the case of continuous distribution, depending on the support of the weight
function p(B) in (7.5). For instance, if condition (7.9) is satisfied then the
distributed-order equation (7.6) is subordinated to the single-term equation
(2.8) of order . To prove this, it suffices to check that g(s)/* € CBF for

g(s) = [ u(B)s’dB. If we define f(s) = g(s)"/*/s then

(f(s)™ = 5 _ /: w(B)s’~dp € SF.

Since s/ € CBF for a > 1 the composition rule (P12) in Proposition 2.1
yields f(s) € SF, which implies g(s)"/* € CBF.
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7.2.3 Applications

Simple examples of application of the subordination theorems are given in
this section.

Example 7.2. Let X = LP(R),1 < p < 0o. Define the operator A by means of
(Au)(x) = u"(x), with domain D(A) = {u € X : v” € X}. Then A generates
a bounded cosine family given by the d’Alembert formula

(Sy(t))(z) = % (0@ +1) +v(z —1). (7.39)

Inserting (7.39) in the subordination formula (7.30) we obtain for the solution
of problem (7.11)

u(z,t) = (S(t)v)(z) = /OOO (t, 7)(S2(7)v) (x) dr

1

—5 [ ettt - de

(7.40)

In this way the relation between the fundamental solution of the spatially one-
dimensional Cauchy problem and the subordination kernel G(z,t) = 3(t, |2])
is reestablished. It is remarkable that, due to the specific form of the d’Alembert
formula (7.39), the convolution in time in subordination relation is transformed
to a convolution relation for the space variable in (7.40).

Example 7.3. Assume 2 C R" is an open set and let X = L?(Q). Let A
be the Laplace operator with Dirichlet boundary conditions: A = A, D(A) =
Hi () N H?(Q) (see also Section 5.4.3). It is known that the operator A
generates a bounded cosine family, see e.g [2], Section 7.2.

If {—\u, o0} is the eigensystem of the operator A, then 0 < A\ < Ay <
ey Ay = 00 as n — oo, and {¢,}°°, form an orthonormal basis of L*().
The cosine family Sy(t) admits the following eigenfunction decomposition

Sy(t)v = Z U €08(\/ Ant) on, (7.41)

with v, = (v, ,), where (.,.) is the inner product in L*(Q).
Therefore, applying Theorem 7.5 we obtain the solution of problem (7.11)
in the form:

S(t)v = Z Vnn (1) n, (7.42)



7.2. MULTI-TERM DIFFUSION-WAVE EQUATION 147

where the eigenmodes u,(t) admit the integral representation

up(t) = / N o(t, 7) cos(y/ AnT) dr. (7.43)

0

The eigenmodes u,(t) can be numerically computed by the use of (7.43) and
(7.31).

In particular, in the one-dimensional case, 2 = (0,1), the eigensystem is
Ao = 0272, o, = \/2sin(nmz), n = 1,2, ...

The following example illustrates the application of the stronger subordina-
tion result in Theorem 7.8.

Example 7.4. Consider the neutral-fractional telegraph equation [30)]

“Div(x,t) —I—bCD?ﬂv(x,t) = Rov(x,t), v(x,0)=0d(x), vi(x,0) =0, (7.44)
where x € Rt > 0, a € (1,2), b > 0, and R? denotes the spatial Riesz

fractional pseudo-differential operator (see Section 3.4). It is known that the
solution to the Cauchy problem for the neutral fractional wave equation (ob-

tained from (7.44) for b = 0)
“Diu(z,t) = Rou(z,t), u(z,0)=6(x), u(z,0)=0, z€R, t>0, (7.45)
is a spatial probability density function [44, 76]. Since (s® + bs®/?)Y/* € CBF

(see Proposition 7.4), Theorem 7.8 implies that the solutions of equations (7.44)
and (7.45) are related by the identity

v(x,t) = /Ooow(t, T)u(x,t)dr, (7.46)

where (¢, 7) is a unilateral probability density in 7, defined in Laplace domain
by
(Sa + bsa/Q)l/oz

s, ) =

Representation (7.46) of the solution v(z,t) to the neutral-fractional telegraph
equation (7.44) in particular implies that it is as well a spatial PDF.

exp (—T(Sa + bs“/Z)l/O‘> ,



148CHAPTER 7. DISTRIBUTED-ORDER DIFFUSION-WAVE EQUATIONS



Chapter 8

Wave propagation in linear
viscoelastic media

In this chapter subordination principle is established for equations modelling
the propagation of waves in linear viscoelastic media. Various constitutive
models are considered, which are fractional-order generalizations of the classical
ones. All of them have completely monotone relaxation moduli. In particular,
equations modelling unidirectional flows of fractional Jeffreys’ fluids are studied
in detail. Applications of the subordination relation, as well as its physical
interpretation are discussed. The chapter is closed with a short comment on
the definition of the class of generalized fractional diffusion-wave equations.

8.1 Evolution equation and subordination

Phenomena intermediate between diffusion and wave propagation, and there-
fore intrinsically related to some kind of attenuated waves, are known to occur in
viscoelastic media that combine the characteristics of elastic solids exhibiting
wave propagation and viscous fluids that support diffusion processes. Rheo-
logical constitutive equations involving fractional derivatives in time play an
important role in linear viscoelasticity and have a long history [55, 75, 95]. It
appears that using fractional derivatives in time, the damping behaviour of vis-
coelastic media can be modelled with much less parameters, compared to the
integer-order models [75, 95|. For a review of the main aspects of wave prop-
agation in linear homogeneous viscoelastic media and the simplest and most
used fractional constitutive models we refer to [75].

In linear viscoelasticity the rheological properties of a viscoelastic medium

149
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are described through a linear constitutive relation between stress o and strain
e. Following |75], we restrict our considerations to the uniaxial case, in which
o =o(x,t) and € = g(x,t), and consider systems quiescent for all times prior

to some starting time, ¢ = 0. The constitutive equation in this case admits the
form [75]

o(x,t) = /0 G(t —71)é(x,7)dr, t>0, (8.1)

where G(t) is the so-called relaxation modulus and the over-dot denotes the
first derivative in time.

In a physically meaningful model the relaxation modulus G(t) should be a
non-negative and non-increasing function for ¢ > 0. This is related to the phys-
ical phenomenon of stress relaxation, an inherent property of real materials. If
G(+00) = 0 (full relaxation), the model governs fluid-like behaviour, otherwise
the behaviour is solid-like [75].

Based on the stress-strain relation (8.1), the equation of motion, and the
kinematic equation, the uniaxial wave equations in different viscoelastic media
can be written in a unified manner in terms of the relaxation modulus G(t)

192, 93]
u(t) = / k(t— ) Au(r)dr + f(8), >0, (8.2)

where the kernel k(t) is defined by the identity

k(1) = /0 G(r) dr. (3.3)

Then the characteristic function g(s) = (k(s))~" is expressed in terms of the
Laplace transform of the relaxation modulus G(s) as follows

g(s) = , >0, (8.4)

Let us note that the function w in (8.2) is either particle displacement or velocity,
depending whether the model exhibits solid-like or fluid-like behaviour.

All constitutive equations considered in this chapter have completely mono-
tone relaxation moduli, more exactly they satisfy G(t) € CMF,, where the
class CMF is defined in (2.4). This property follows from the thermody-
namic restrictions on their parameters. For the simplest models this is related
to the complete monotonicity of the Mittag-Leffler function. Let us also note
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that G(t) € CMF, implies that the kernel k(t) of the corresponding Volterra
equation, defined in (8.3), is a Bernstein function. Next we establish a prop-

erty of the characteristic function g(s), necessary to apply the subordination
Theorem 2.4.

Proposition 8.1. If G(t) € CMF, then g(s)'/?> € CBF.

Proof. Under the assumption of the proposition G (s) € SF which, by property
(P8) in Proposition 2.1, is equivalent to 1/G(s) € CBF. Then the function

g(s) = s/G(s) is a product of two complete Bernstein functions (s and 1/G(s))
and property (2.2) implies g(s)'/? € CBF. O

Applying Theorem 2.4 we formulate the following result.

Theorem 8.1. Let A be a generator of a strongly continuous bounded cosine
family Sy(t) in a Banach space X. Assume G(t) € CMF,. Then the abstract
Volterra equation (8.2) with kernel k(t) defined in (8.3) is well posed with
bounded solution operator S(t), which satisfies the subordination relation

S(t) = /OOO o(t, 7)S(T)dr, t>0. (8.5)

The subordination kernel o(t, T) is a unilateral probability density function, i.e.
it obeys (2.26), and its Laplace transform is given by

g(s)"?

o(s, 1) = exp (—Tg(s)l/z) : (8.6)

S
where g(s) is defined in (8.4).

As in the previous chapter, the integral in the subordination relation (8.5)
is finite in the case of finite propagation speed of a disturbance. From general
theory, see e.g. [75, Chapter 4], [93, Chapter 5|, the velocity of propagation of
a disturbance c is <
In the case of finite propagation speed, a jump discontinuity at the planar
surface x = ct exists if and only if

n = lim (g(8)1/2 — s/c) < 00, (8.8)

§—00
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The relations (8.4), (8.7), (8.8), and the initial and final value theorems for
Laplace transform yield
G'(0)
—GO)?, p= 8.9
=GO = 89
where G(t) is the relaxation modulus.
In the case of finite propagation speed (¢ < co) and absence of wave front
(n = o0) the subordination to cosine families (8.5) is given by a finite integral
relation:

S(t) = /OCtgp(t,T)Sg(T) dr, t >0, (8.10)

since in this case the subordination kernel ¢(¢, 7) vanishes for 7 > ¢t (the proof
is the same as that of Corollary 7.2.

8.2 Analysis of fractional viscoelastic models

Application of Laplace transform with respect to time variable in (8.1) leads
to a stress-strain relation in Laplace domain |75]

(-, s) = sG(s)8(, ). (8.11)

The representations of the relaxation moduli for the specific constitutive re-
lations below are derived by applying Laplace transform to the constitutive
equation and comparing the result to (8.11). Some properties of the relaxation
moduli can be directly derived on the basis of their representation in Laplace
domain.

To characterize a viscoelastic medium whose mechanical properties are in-
termediate between those of pure elastic solid (Hooke model: o = be) and of
pure viscous fluid (Newton model: o = b¢), the fractional Scott-Blair stress-
strain law was introduced [75]

o(x,t) =bDfe(z,t), 0<a<l1. (8.12)

Here b is a positive constant and Dy denotes fractional time derivative in
the Riemann-Liouville sense. This fractional-order model has led to various
fractional-order generalizations of the classical integer-order constitutive mod-
els.

In this section we give a short analysis of some basic constitutive models
with time fractional derivatives, derive the corresponding relaxation moduli,
and study their complete monotonicity.
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8.2.1 Fractional Kelvin-Voigt model

As a first example we consider the fractional Kelvin-Voigt model |75]
o(xz,t) = (1+bD)e(x,t), 0<a<l, b>0. (8.13)

Applying Laplace transform and using (1.19) we obtain & = (1 + bs®)&, which,
compared to (8.11) yields G(s) = st + bs* 1. By the use of (1.4) we obtain
the corresponding relaxation modulus

G(t) =1+ bwi_q(t).

It is completely monotone under the assumptions on the parameters 0 < o <
1, b > 0. Moreover, G(+00) = 1 and G(0) = +o0o indicate that the fractional
Kelvin-Voigt model governs solid-like behaviour with infinite propagation speed
of a disturbance.

A distributed-order generalization of constitutive laws (8.12) and (8.13) is
proposed in [32] in the form

o(z,t) = /0 p-(B)Dle(x,t) dB, (8.14)

where p.(-) is a weight function. The corresponding relaxation modulus

6t) = [ pBra(t)dp (8.15)

is again a completely monotone function, which follows by the use of property
(P1) in Proposition 2.1. The limiting behaviour of the functions of the form
(8.15) is studied in Theorem 5.1. In the case of continuous weight function
G(+00) = 0, i.e. constitutive equation (8.14) models fluid-like behaviour.
Since G(0) = 400, the propagation speed of a disturbance is infinite.

8.2.2 Fractional Maxwell model
Consider the fractional Maxwell constitutive equation [55, Chapter 7|
(1+aDMo(z,t) = bDle(x,t), 0<a<B<1, a,b>0. (8.16)
Applying Laplace transform to (8.16) we obtain by the use of (1.19) and (8.11)

~ bsP1
Gls) = 1+ as®
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Therefore, applying (1.27) we obtain
G(t) =t PEqq g1 (—t%/a), (8.17)

In the next proposition we prove that under the constraints on the parameters in
(8.16) the relaxation modulus G(t) is completely monotone. In fact, it appears
that the assumption on the fractional parameters a < (3 is also necessary for
thermodynamic compatibility of the fractional Maxwell model.

Proposition 8.2. Assume 0 < o, < 1, a,b > 0, t > 0. The following
assertions are equivalent:

(a) 0<a<p<I;

(b) G(t) is monotonically non-increasing;

(¢) G(t) is a completely monotone function.

Proof. Using representation (8.17) for the function G(t), we prove that con-
dition (a) is equivalent to any of the conditions (b) and (c¢). First we show
that if 1 > o > > 0 then (b) and (c) are not satisfied. The definition of
Mittag-Leffler function (1.21) implies G(t) ~ Ct* % for t — 0. Therefore, if
a > B, G(t) is increasing function for ¢ near 0, i.e., (b) and (c) are violated.
Therefore, any of the conditions (b) and (c¢) implies (a). It remains to prove
that (a) implies (b) and (c). Indeed, if 0 < o < B < 1 then t*° € CMF
and E, o—pt+1 (—t*/a) € CMF as a composition of the completely monotone
Mittag-Leffler function of negative argument (see (1.26)) and the Bernstein
function t*. Therefore, G(t) € CMUF as a product of two completely mono-
tone functions. The proof is completed. ]

Representation (8.17) together with the asymptotic expansion (1.22) yields
G(+00) = 0. Therefore, the fractional Maxwell constitutive equation models
fluid-like behavior. More precisely, (1.33) implies for ¢ — +oo that G(t) ~
Ctif § < 1and G(t) ~ Ct—*1if 3 = 1. This means that for 8 = 1 the
relaxation function G(t) is integrable at infinity and the integral over (0, c0) is
finite.

The asymptotic expansion for t — 07 is G(t) ~ Ct* 5. Therefore, if
a < [ then G(0%) = 400, while if @ = § different behavior is observed:
G(07) = b/a < oco. This means that the fractional Maxwell viscoelastic model
supports finite propagation speed if and only if a = .
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8.2.3 Distributed order fractional Zener model
The fractional Zener constitutive equation |75
(14+aDf)o(z,t) = (1 +bD)e(x,t), 0<a<1l 0<a<hb, (8.18)

is extensively studied as a model of solid-like viscoelastic behaviour |6, 7, 55].
The constraints on the parameters imply the complete monotonicity of the
corresponding relaxation modulus, which admits the representation in terms of
Mittag-Leffler function [75],

Git)=1+((b/a—1)E,(—t%/a), 0<a <1, 0<a<b. (8.19)
Consider the multi-term stress-strain relation |5
N N
> anDimo(x,t) =Y b,Di"e(x,t), (8.20)
n=0 n=0

where 0 < oy < g < --- < ay <1, apb, >0, n=0,1,...,N. This multi-
term viscoelastic model a generalization of (8.18). It is consistent with the
second law of thermodynamics if the following restrictions on the parameters
are satisfied [5]
U (8.21)
bo 1 bn
Note that if a, = a®, b, = b, and 0 < a < b, then conditions (8.21) are
automatically satisfied.

A more general distributed-order stress-strain relation is proposed in [4]

/ po(@) Do, 1) da — / po(a) D% (x, ) do, (8.22)
0 0

where p,(«) and p.(«a) are non-negative (generalized) weight functions. The
distributed-order constitutive equation (8.22) and the related mechanical mod-
els are studied in [6], Chapter 3.

The power type distributed-order model (8.22) is obtained when the weight
functions are power functions

po(a) =a® pa)=0b" a,b>0. (8.23)

It is found in [5] that rheological model (8.22) with weight functions (8.23)
is thermodynamically compatible under the constraint

a <b. (8.24)



156 CHAPTER 8. WAVE PROPAGATION IN VISCOELASTIC MEDIA

Next we study the distributed-order fractional Zener model in the cases of
discrete distribution (8.20) and continuous distribution with power-law weight
functions (8.22)-(8.23). We prove the complete monotonicity of the relaxation
moduli provided the thermodynamic restrictions on the parameters (8.21) and
(8.24), respectively, are satisfied. We discuss the asymptotic behaviour of the
relaxation moduli. In addition, we show that for model (8.20) with N < 2
and for the power type model (8.22)-(8.23) conditions (8.21), resp. (8.24), are
also necessary for physical acceptability. In the course of the proof of complete
monotonicity we derive integral representations for the relaxation moduli.

Relaxation modulus in the case of discrete distribution

Applying Laplace transform to constitutive law (8.20) we obtain by the use
of (1.19):

N N
Z anso(x,s) = Z b,s®e(x, s).
n=0 n=0

Comparing this result to (8.11), the following representation in Laplace domain
for the relaxation modulus is deduced

@ s) = Ziv:o bns™ ) )
(s) ) (fo:o ansan) (8.25)

Let us first discuss the small- and large-time behaviour of this function.
Initial and final value theorems for Laplace transform yield

N
. bos% b
limG(t) = lim sG(s) = lim XD”NZO—”S =X
t—0 5—++00 5—+400 ano @, 8% an

lim G(t) = lim sG(s) = @.

t——+00 s—+0 ag

(8.26)

As expected, the initial value is greater than the final value, due to (8.21).
Since G(t) has a finite value at ¢ = 0, waves in a viscoelastic medium with
constitutive model (8.20) propagate with finite speed ¢ = \/G(0) = /by /an.
The second limit in (8.26) shows that there is no full relaxation (G(400) > 0).
This means that the constitutive equation indeed models solid-like behaviour.

More precise asymptotic expressions for the relaxation modulus follow by
taking into account the dominant terms in (8.25). For small s, neglecting all
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s“ with a > aq in (8.25), we deduce using the expansion (1+ 2)™! ~ 1 — 2 for
z — 0,

G(s) ~

bos™ + bys™t b by (b
0S 15 N0_|_0(1 ai

== == ) sul g 5.
s(ags® 4+ a;s™)  ags ag \by g

This implies by the use of (1.4) the following large-time asymptotic expression
for the relaxation modulus

bo by [ by al) oM
Gt)~—4 == ——=  t— +oo. 8.27
( ) ap on <bo on F(l + oy — @1) >0 ( )

Note that the second term in the expansion (8.27) is positive due to constraints
(8.21). On the other hand, for large s, neglecting s* for all @ < ay_1 in (8.25),
we obtain in a similar way

by_18“N-1 + bys*N
s(an—18N-1 + ans®N)
bn N by (bN—l _an-1

G(s) ~

~n —

anNs anN

sov-men—l s s oo,
by an

which implies by the use of (1.4) the following small-time asymptotic expansion
for the relaxation modulus

by by (b1 an— feNTaN-1
G(t) ~ —+ — — . t—0. 8.28
( ) an an < bN an ) F(l—i—OzN—OéN_l) ( )

Let us note that the second term in the expansion (8.28) has a negative sign
due to the thermodynamic restrictions (8.21).

The behaviour of G'(¢) for small times indicates whether there is a jump
discontinuity at the wave front: such a discontinuity appears when G’(0) is
finite, see (8.9). In our case

lim (1) = lim sC{G'(1)}(s) = lim s(s@(s)—G(O))

t——+0 S——+00 S—+00

N o
. (Z_b_b_N) e

N

because the dominant term in the expression (up to positive multiplicative con-
stant) is (ayby_1 —byay_1)s'T¥-179 and taking into account (8.21). There-
fore, waves in this medium propagate with finite wave speed, and the wave front
is smooth.
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Consider the particular case of (8.20) with N =2 and oy = 0, ag = by = 1:
(1 4+ a1 D" 4+ as D) o(z,t) = (1 + by D™ + bo Dy?) e(x, t). (8.29)

We prove next that in this simpler case of constitutive equation thermodynamic
constraints (8.21) are also necessary for physical admissibility of the model.
Assume that (8.29) is thermodynamically compatible, that is,

G(t) >0 and G'(t) <0 for all t > 0. (8.30)
We will prove that
1 Z a1/61 Z az/bz. (831)

First, condition G'(t) < 0 for all ¢t > 0, implies L{G'(t)}(s) < 0 for all s > 0.
Since

' A 1+ b1s* +bgs® b
LIG[)}(s) = sG(s) = G(0) = 1+ aisal - ansaz B a_z

(CLQ — bg) + (agbl — bQCLl)Sal
as(1 + a1s™ + aps2)

and it should be non-positive for small as well for large s, then ay — by < 0
and asby — byay; < 0, ie. ai;/by > as/by. To prove that by > a; we use the
asymptotic expansion (8.27) for large ¢, which in this particular case implies

oy
G(t) ~ 1+ (bl — al)m, t — 400
and take into account that G(t) > 1 for any ¢ > 0 (since G(400) = 1 and G(t)
is non-increasing). In this way we deduced the thermodynamic constraints
(8.31) from the conditions (8.30).
[t remains to prove the main result in this subsection: the complete mono-
tonicity of the relaxation modulus.

Theorem 8.2. Assume that constraints (8.21) are satisfied. Then the relaz-
ation modulus G(t) of the constitutive equation (8.20) is completely monotone.

Proof. We will prove that the relaxation modulus G(¢) is a completely mono-
tone function by establishing the following integral representation:

G(t) = % + /OOO e ""K(r)dr, (8.32)

ag
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where the function K(r) > 0.
To establish (8.32) we apply the inverse Laplace integral in (8.25) and obtain

1 y+ioo N b, s
G(t) = — / e 2o bns ds, (8.33)
21 Jyciee s (Ziv—o ansan>

where v > 0. For the multivalued complex function s* we take the principal
branch. The function under the integral sign in (8.33) has no poles in the

complex plane cut along the negative real axis, since {Zg:o anso‘"} # 0 for

s € C\(—00,0]. This is due to the fact that for a, > 0 and «, € (0,1) the
imaginary part of any term in this sum (a, sin (o, arg s)) has the same sign. Let
us bend the contour in (8.33) into the Hankel path Ha(p), which starts from
—oo along the lower side of the negative real axis, encircles the disc |s| = p
counterclockwise and ends at —oo along the upper side of the negative real
axis. The integral on the circular contour |s| = p equals by/ag when p — 0.
This can be obtained by direct check, taking into account that

lim s Z”N:O 5™ = %

s—0 N a '
S (ano ansan) 0

The sum of the integrals along the lower and the upper sides of the negative
real axis yields the integral in (8.32) where

N a
()= —Lgd 2an=abus
T S (ZnNzo ansan>

J

s=reiT

which implies

1 ey (@b — a;b)r® T sin (a; — oy)m
iy = 1 Doercienlody = oy sinfay —agr

- 2 2
r N o N o
< > o An T COS oznw) + (E np AnT ™ SIN an7r>

Thermodynamic constraints (8.21) imply that all terms in the sum in the nu-
merator in (8.34) are non-negative. Therefore, K(r) > 0, and representation
(8.32) implies that the function G(t) is completely monotone (by applying the
Bernstein theorem or by direct check). O
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An alternative way to prove the complete monotonicity property of the
relaxation modulus is directly from the properties of G(s) by applying property
(P6) in Proposition 2.1. For this we will need to prove that G(s) € SF
for s > 0. An advantage of Theorem 8.2 is that it also provides an integral
representation for G(t).

On the other hand, Theorem 8.2 implies by the use of property (P6) in
Proposition 2.1 that under the conditions (8.21) the function G(s) defined in
(8.25) is a Stieltjes function.

Relaxation modulus of the power type distributed order model

Consider the distributed order constitutive equation (8.22) with weight func-
tions defined in (8.23). Applying Laplace transform to the constitutive equa-
tion and comparing the result to (8.11) results in the following representation
in Laplace domain

N fol(bs)o‘ do (bs — 1) Inas

Gls) = sfol(as)o‘ dov - s(as —1)Inbs’ (8:35)

where the integration is performed taking into account that z* = e*™*  The
initial and final value theorems for Laplace transform pairs imply

_ — 1)1
lim G(t) — lim sG(s) — lim (2 —Dmas b

t—+0 s—+00 sotoo (as — 1) Inbs  a
lim G(t) = lim 5@(3) = 1.
t—+o00 s—+0

First, from the two limits we see that constraint (8.24), i.e. b > a, is not only
sufficient, but also a necessary condition for physical acceptability of this model,
taking into account that in a physically meaningful model G(¢) is monotonically
decreasing function, i.e. G(0) > G(400). Moreover, the two limits show again
that this is a model for solid-like behaviour and the propagation speed of a

disturbance is finite ¢ = \/b/a. In addition,
. / . . / . . =~ .
. bs*(lna —Inb)
= lim
s—=+o0 (as —1)Inbs

= —00,

since Ina < Inb. This implies again that also in this medium there is no
discontinuity at the wave front, see (8.9).
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More precise asymptotic expansion of the relaxation modulus for ¢ — +o00
can be obtained by the use of the Karamata-Feller Tauberian theorem, see
Theorem 1.2. Taking f(s) = (Ina+Ins)/(s(Inb+1ns)) and the slowly varying
function L(z) = (Ina —Inz)/(Inb — Inx) we deduce

Inb—Ina  Inb—1Ina In(b/a)

t N]_— — ~
Gt) Inb—1Int (Inb—Int)? i Int

as t — oo, (8.36)

i.e. the relaxation modulus exhibits a very slow logarithmic decay to its final
value.

Theorem 8.3. If a < b then the relazation modulus G(t) defined in (8.35) is
completely monotone.

Proof. To prove that the relaxation modulus G(t) is a completely monotone
function we apply the same technique as in the proof of Theorem 8.2. We will
find representation of the form

G(t) =1+ / e K () dr (8.37)

with appropriate function K(r), such that K(r) > 0. Taking the inverse
Laplace integral in (8.35) we obtain

1 rHco & (bs — 1) In(as)
G(r) = 5= l e s, (8.38)

where v > 0. For the multivalued complex logarithmic function we take the
principal branch. The function under the integral sign in (8.33) has no poles
in the complex plane cut along the negative real axis. This is implied by the
fact that the imaginary part of the denominator, & {fol(as)o‘ doz} =% 0 for
s € C\(—o00,0] (since a > 0, € (0,1)). Let us also note that the integrand
in (8.35) has finite limits when s — 1/a and s — 1/b. Bending the contour
Br into the Hankel path Ha(p), we obtain for the integral on the circle |s| = p
when taking p — 0

lim s (bs — 1) In(as)

s—0 s(as — 1) In(bs)
The sum of the two complex integrals along the lower and the upper sides of
the negative real axis gives the real integral in (8.37) with

_ 14 (bs — 1) In(as) _ (r+1)(Inb—1Ina)
K(r) = { s(as — 1) In(bs) s:rei”} r(ar 4+ 1) (In*(br) + 72)°

™

= 1.

(8.39)
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Representation (8.39) implies K (r) > 0 when the thermodynamic constraint
a < b is satisfied. Therefore, under this condition, G(t) is a completely mono-
tone function. O

Compared to other methods of proof of complete monotonicity of the re-
laxation modulus, an advantage of Theorem 8.3 is that at the same time it
provides an integral representation for G(t).

Theorem 8.3 and property (P6) in Proposition 2.1 also imply that if a < b
then the function G(s) defined in (8.35) is a Stieltjes function.

8.2.4 Binomial Mittag-Lefller type relaxation

Next we propose a constitutive model with relaxation modulus in the form
of a binomial Mittag-Leffler type function, which appears to generalize known
relaxation laws.

Let 0 <ap<a<1,0<d<1,and \,\g >0, and 0 < C < \°. Consider
the relaxation modulus

G(t)=1- (ﬁtaéEfa’%)’&5+1 (=A%, —Agt™) | (8.40)

1)
where E(a,ao),a5+

function (8.40) is completely monotone, which follows from Theorem 6.4.
The asymptotic expansions of G(t) for ¢ — 0 and ¢ — +oo are obtained

from (8.40) by applying (6.5) and (6.16), respectively:

, is the binomial Prabhakar function, see (6.1). The relaxation

taé tad—i—ao
t) ~ 1—C—x+CoA t
Gt) CF(a5+1)+O "T(ad+ap+ 1)’ =0,
G(t) T + CONTTIN e t— +
~ 1 == Q.
A0 T(—a+ o)’

In particular, G(0) = 1, G(+o0) = 1 — C/)N?, i.e. the function G(t) is mono-
tonically decreasing in (0,400) from G(0) =1 to G(+0o0) € (0,1). Therefore,
this is a model for solid-like behaviour.

Applying (6.6) we obtain the Laplace transform of the relaxation modulus

Gs) =+ (1 - d ) | (8.41)

s as® + a; s + 1)9

where a = A7!, a1 = MA™!, and d = C/\° < 1. From (8.41) we recognize some
known viscoelastic models as particular cases. For instance, if 6 = 1 then (8.41)
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is a particular case of the two-term fractional Zener model (8.29). For \j = 0
(a1 = 0) we recognize from (8.41) the Havriliak-Negami relaxation model (see
e.g. [53]). For § = 1 and Ay = 0 the fractional Zener relaxation modulus (8.19)
(up to a multiplicative constant) is recovered from (8.40):

G(t) =1— Ct*Ep o1 (—At") = ( - %) + %Ea(—At“).

For the viscoelastic model with relaxation modulus (8.40) the propagation
speed of a disturbance is finite, c = 1. The model withd =1, a =1 and oy < 1
provides a (nonclassical) example, for which there is a jump discontinuity at
the wave front, since in this case n = C//2 < oo, where 7 is defined in (8.8).
Except this special case, in all other cases the wave front is smooth.

8.2.5 Fractional Jeffreys’ model

The fractional Jeftreys’ constitutive equation
(14 aD®) o(z,t) = (14 bDY)é(x, t), (8.42)

where a,b > 0 and 0 < a, 8 < 1, is introduced in the experimental work [102]
as a model for viscoelastic fluid-like behaviour.

In the next theorem we formulate conditions, which are necessary and suffi-
cient for thermodynamic compatibility of model (8.42). In particular, we derive
the following thermodynamic restrictions on the parameters

a= [ and a > b. (8.43)
from the monotonicity properties of the relaxation function.

Theorem 8.4. Assume a, 5 € (0,1), a,b > 0, t > 0. The following assertions
are equivalent:

(a) « = and a > b;

(b) G(t) is non-negative;

(¢) G(t) is non-increasing;

(d) G(t) € CMFy.

If any of the above conditions is satisfied then G(t) admits the representation

Glt) = () + (1 - 0 —

where 6(t) is the Dirac delta function.

Eoo(—t%/a), p=>b/a, (8.44)
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Proof. Applying Laplace transform to (8.42) we obtain by the use of (1.19)
and (8.11) the following identity for the relaxation function of the fractional
Jeffreys” model

~ 1+ bs?
G(s) = )
(S) 1+ as®

Taking inverse Laplace transform in (8.45) the following explicit expression for
G(t) is derived by the use of (1.27):

(8.45)

1 1 b 1
<;u)::_#%4£%%¥(—_¢a)-+-¢aﬂ*4E@aﬂs<—~¢a>- (8.46)
a

a a a
We will prove that (a) is equivalent to any of the conditions (b)-(d).
First we prove that any of conditions (b) and (c¢) implies @ = S. Indeed,

if we assume that o < 3, then taking the first terms of the expansions of the
Mittag-LefHler functions in (8.46) we obtain

b oot
al(a—p)

Since in this case —1 < a — < 0 and thus ['(a — ) < 0 it follows from
(8.47) that any of conditions (b) and (c) is violated. On the other hand, if we
suppose a > (3 then the asymptotic expansion of the Mittag-Leffler function
(1.22) implies

G(t) ~ t— 0. (8.47)

G~ bt
£) ~ b, t — +o00,
I(=p)
which indicates violation of conditions (c¢) and (d) for large t. Therefore o = f3.
To prove that a > b we deduce representation (8.44) first. To this end we
take @ = 8 in (8.45) and obtain

~ 14+0s* b 1 b 1
_ — 4+ (1= — 8.48
Gls) 1+ as® a+a ( a) s®+1/a (8.48)

Applying inverse Laplace transform to (8.48) and using the identities (1.27)
we deduce representation (8.44). Further, since t* 1 FE, ,(—t*/a) is completely
monotone for ¢ > 0 (see (1.26)), representation (8.44) shows that any of (b)
and (c) implies a > b. In this way we finished the nontrivial part of the proof:
that any of the conditions (b) and (c¢) implies (a). In addition, representation
(8.44) shows that (a) implies (d). To finish the proof, we note that (d) implies
both (b) and (¢) by definition. O
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Representation (8.44) and the asymptotic expansion (1.33) give
G(t) =0t 1), t— +oo,

i.e. limy o G(t) = 0 and G(t) is integrable on (0,00). In fact

/OOOG(t)dtzl,

which follows from (8.44) by applying the identity (1.25).

This behavior of the relaxation modulus confirms that the fractional Jef-
freys’ constitutive equation indeed models fluid-like behavior.

Let us note that, in general, thermodynamic compatibility of a constitutive
equation does not necessarily imply complete monotonicity of the relaxation
modulus.

8.3 Unidirectional Hlows of fractional Jeffreys’
fluids

This section is devoted to a detailed study of evolution equations with the
fractional Jeffreys’ constitutive model.

8.3.1 Stokes’ first problem

Consider a plane Couette flow of an incompressible viscoelastic fluid with
the thermodynamically compatible fractional Jeffreys’ constitutive equation

(14+aDf)o(z,t) = (1 +bDMe(z,t), 0<a<l, a>b>0. (8.49)

Assume the fluid fills a half-space x > 0 and is set into motion by a sudden
movement of the bounding plane z = 0. Denote by u(x,t) the induced velocity
field. Noting that ¢ = Ou/Jdx and eliminating o between Eq. (8.49) and
Cauchy’s first law Ou/0t = 0o /Ox we obtain the following problem

2

(14 aDy) %u(x, t)=(1+ bDf)%u(x, t), x,t>0, (8.50)

0
= im — = .0l
u(x,0) =0, Jim atu(x,t) 0, >0, (8.51)

u(0,t) =0O(t), u—>0asx— oo, t>0, (8.52)
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where O(t) is the Heaviside unit step function.

Problem (8.50)-(8.51)-(8.52) is referred to as Stokes’ first problem. Let
us note that the solution to this problem is exactly the propagation function,
considered in Section 7.2.1.

By applying Laplace transform with respect to the temporal variable in
(8.50) and (8.52) and using (8.51) we obtain for the Laplace transform of u(z, t)

with respect to t
1
u(zr,s) = —exp <—x\/g(s)) : (8.53)
s

s(1+ as®)
g(s) = e (8.54)
Let us note that equations with the same characteristic function (8.54) are stud-
ied in Chapter 4 in the context of fractional Jeffreys’ heat conduction equation.
Therefore, we can use here some results already obtained in Chapter 4.
To find explicit integral expression for the solution u(z, t) we apply Bromwich

integral inversion formula to (8.53):

1 y-+ioco 1
u(z,t) = —/ — exp (st — :C\/g(s)) ds, ~v>0.
y

271 —i00

where

By the Cauchy’s theorem, the integration on the Bromwich path can be replaced
by integration on the contour D U Dy, where

D={s=ir, r € (—o0,—)U(e,00)}, Dy ={s =e€?,0 € [-m/2,7/2]}.

This is possible since the integrals on the contours {s = o £iR,0 € (0,7)}
vanish for R — oo due to the following asymptotic expression

1/2
R/ g(s) ~ 4 /%|3| COS ar;gs ~ (%(02 - R2)1/2) cos(£m/4), R — oo.

Further, since

s (S oxp (st~ v/53]) ) = 1.

s—0 S

it follows that the integral on the semi-circular contour Dy equals 1/2. Inte-
gration on the contour D yields after letting ¢ — 0 and R — oc:

i 1exp (st — x@) ds = %/Ooo%exp (irt — xW) %

21 DS
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Applying the formula (4.17) for the real and imaginary parts of the square root
of a complex number we obtain after some standard manipulations the following
result.

Theorem 8.5. The solution of the Stokes’ first problem (8.50)-(8.51)-(8.52)

admits the integral representation:

u(z,t) = % + 1 /0OO exp(—z K~ (r))sin(rt — zK*(r)) ﬁ, z,t >0, (8.55)

m r
where the functions K*(r) are defined in (4.19).

According to Proposition 4.1, the function /g(s) is a complete Bernstein
function, where g(s) is defined by (8.54). This implies the following

Theorem 8.6. The solution of the Stokes’ first problem (8.50)-(8.51)-(8.52)
satisfies

u(z,t) >0, %u(x,t) <0, %u(a:,t) >0 z,t>0. (8.56)

The proof is the same as that of Theorem 7.1.

In fact, for 0 < a < 1, all inequalities in Theorem 8.6 are strict. To prove
this we will show that u(x,t) considered as a function of ¢t admits an analytic
extension to some sector in the complex plane by applying Theorem 1.3. Set
v =91 < 1. Let s € C is such that |args| < 7/2+ 6, 0 < 6 < 6, where
0o = (1/v —1)7w/2 — &yp. Then, by the use of (4.10)

a—+1
Jarg /9(s)| < “—args| < 7/2 — 920,

Taking into account (8.53) we obtain

|su(z, s)| < exp (—:z;|g(s)|1/2 sin(750)> <1.

Therefore, the conditions of Theorem 1.3 are satisfied and u(z,t) is analytic
function in ¢ in the sector 3(6y). Analyticity and monotonicity of the function
u(z,t) imply that u # 0.

Theorem 8.6 implies that the solution to the Stokes’ first problem has a
physically acceptable behavior (positive, decreasing in x, and increasing in t),
see Figure 8.1. The figure is from [16], where for the numerical computation
formula (8.55) is used.
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Figure 8.1: Solution (8.55) of Stokes’ first problem as a function of « for different
values of £, compared to the numerical solution by finite difference method
(circles).

8.3.2 Subordination relation

Consider the abstract Cauchy problem

(1+aD®)u/'(t) = (14 bDP)Au(t) + (1 +aD®) f(t), t >0, (8.57)
u(0) = u/(0) = 0, (8.58)

where A is a linear operator densely defined in a suitably chosen Banach space
X and f is a continuous X-valued function, f € C(Ry;X). Problems for
the velocity distribution u of a unidirectional flow of fractional Jeftfreys’ fluid
usually can be written in abstract form as (8.57)-(8.58), where A is a one- or
two-dimensional realization of the Laplace operator, or a more general elliptic
operator, see e.g. [109].

We study the general problem (8.57)-(8.58) assuming that A is a generator
of a bounded strongly continuous cosine family. We consider only thermody-
namically compatible models, i.e. in equation (8.57) we assume

O<a=p<1, a>b>0,

which implies that the properties listed in Theorem 8.4 are satisfied.

Applying Laplace transform to (8.57) we deduce by the use of (1.19) and
(8.58)

~

(14 as®)su(s) = (1 4 bs*)Au(s) + (1 + as®)f(s)
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and hence

i(s) = 2 (gfs) — 4 i),

where ¢(s) is defined in (8.54). Therefore, taking into account (2.13), the
solution of (8.57)-(8.58) is given by

u(t) = /0 S(t— ) f(r)dr, (8.59)

where S(t) is the solution operator of the abstract Cauchy problem for the
homogeneous equation
(14 aD)u'(t) = (1 +bDy)Au(t), ¢ >0, (8.
u(0) =v € X, ¥/(0) =0. (8.

0)
1)
[t is equivalent to the abstract Volterra equation u(t) = U—I—fot k(t—7)Au(T)dr

with characteristic function g(s) = (k(s))~! defined by (8.54). The kernel k(t)
admits the explicit representation

k(t):/o G(r)dr =1 — (1— bja) By(—t°/a).

where we have used (8.44) and (1.25). Since G(t) € CMF (see Theorem 8.4),
we can apply subordination Theorem 8.1. The subordination kernel is pro-
portional to the fundamental solution of the corresponding one-dimensional
Cauchy problem (see their Laplace transforms (8.6) and (4.16)). Therefore, ex-
plicit representation of the subordination kernel can be found in Theorem 4.5.
In this way we establish the following subordination result.

6
6

Theorem 8.7. Let a > b > 0 and 0 < o < 1. Assume A is a generator
of a bounded cosine family So(t) in X. Then problem (8.60)-(8.61) admits a
bounded solution operator S(t). It is related to Sa(t) by the identity

S(t) = /0 () Se(r) dr, >0, (8.62)

where the function @(t,7) is a PDF in T (i.e. conditions (2.26) hold) and
admits the integral representation

o(t,7) = %/000 exp (—TK_(T>> (K_(r) sin (rt - 7K+(T))

+ K*(r)cos (rt — 7K"(r))) %, t,7 >0, (8.63)
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where K=(r) are defined in (4.19).

We note that the convergence of the integral in (8.63) is guaranteed by
the fact that K*(r) > 0 and the asymptotic properties K*(r) ~ rl1=)/2 ag
r — +oo and K*(r) ~ r(1+0)/2 a5+ — 0. These properties imply as well that
infinite differentiation under the integral sign with respect to t is allowed by
the use dominated convergence theorem.

Let us note that ¢(t, 7) is also related to the solution u(x,t) of the Stokes’
first problem via the identity

o(t,7) = — %u(m,t} , t,7>0, (8.64)

T=T

which together with the expression (8.55) gives an alternative way to obtain the
explicit representation (8.63) for ¢(¢, 7). The differentiation under the integral
sign is allowed by dominated convergence theorem.

Let 0 < a < 1, that is, v = O‘TH < 1. Then for any 7 > 0 the function
@(t, ) as a function of ¢ admits analytic extension to the sector () and is
bounded on each sector ¥(6), 0 < 6 < 6y, where 6y = (1/y — 1) 7/2 — (. This
can be proven in the same way as Theorem 7.6.

Let us note that the subordination identity (8.62) splits the solution of
problem (8.60)-(8.61) into two parts. The first part (the PDF) depends only on
the constitutive model (8.49) and the second part (the cosine family, which gives
the solution of a related wave equation) depends only on the flow geometry.

In the limiting case a = b problem (8.60)-(8.61) reduces to the classical
first-order Cauchy problem and

ot 7) = \/%exp (—72/(4t)) .

In this case the subordination relation (8.62) reduces to the abstract Weierstrass
formula (0.4).

8.3.3 The scalar equation

Let us consider first the scalar variant of Cauchy problem (8.60)-(8.61),
where X = R and operator A is defined as multiplication by a scalar —A\,
v = 1. We denote by u(t; A) the solution of the scalar equation. To



8.3. UNIDIRECTIONAL FLOWS OF FRACTIONAL JEFFREYS’ FLUIDS171

For the solution we employ Laplace transform technique and obtain by the
use of (1.19)

(1 4+ as®)(su(s; A) — 1) = =A(1 4+ bs™)v(s; A).
Therefore, the functions u(¢; \) are defined by their Laplace transforms u(s; \)
as follows

where g(s) is given in (8.54). Representation (8.65) implies

(s \) = % (1 + %) | (8.66)

Using the same rearrangement as in (8.48) we rewrite expression (8.66) for large
|s| in a series form

0=t (B) (28 e o)

a
k=0 m=0 H

where p = b/a. Taking the inverse Laplace transform in (8.67) and using the
identity (1.34) the representation is deduced

u(t;\) = exp(k—u/\t) (8.68)
+ kf;n;(M)k (i) (:ﬁ“)nﬂbt“m@gfam%ﬂ (—t%/a)

where = b/a and E}}!5(-) is the three-parameter Mittag-Leffler function (1.32).
Let us note that in the limiting case a = b (u = 1) corresponding to a
Newtonian fluid Eq. (8.68) reduces to u(t; A) = exp(—At).
We deduce next the asymptotic behavior of the solution u(t; A). First, (8.68)
implies
w(t; A) ~ 1 — pAt, t—0,
Further, it follows from (8.66)

TPV PUNCRUAE Y SOV Al S, B NG
Y NA b5 A\D b Ttbs ) ’
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and taking the inverse Laplace transform yields

b—

1
¢ o= 'Foa (_Eta> .t — o0,

which by the use of (1.33) gives the asymptotic behavior of the eigenmodes for
large ¢
a—b

AL (—a)totl’

Therefore, the functions u(t; A) admit the following behavior: starting from 1
at t = 0, after some oscillations, they become permanently negative and vanish.

To find another representation of the solution wu(f; \) we can apply the
subordination formula (8.62). Since the cosine family in the scalar case is given

by the function Sy(t) = cos(v/At), formula (8.62) implies

u(t; A) ~ t — +o0. (8.69)

w(t\) = /O " (1 7) cos(VAr) dr, (8.70)

where the function ¢(¢, 7) is given in (8.63). The integral representation (8.70)
1s appropriate for numerical computation.

8.3.4 Applications

Example 8.1. Consider a problem governing the velocity distribution of a
plane Poiseuille flow between two parallel plates set in motion due to sudden
application of a constant pressure gradient (P = const). The corresponding
initial-boundary-value problem is

(1+aDf)uy = ( bDM g, + (1 + aDy) P,
u(0,t) = u(l,t) = (8.71)
u(z,0) = u(z, )

Let us set now X = L*([0, 1]) and define A by (Au)(z) = v"(z), = € [0,1] with
domain D(A) = {u € X : v, v" € X,u(0) = u(1) = 0}. The corresponding
cosine family Sy(t) is defined by the solution of the following problem for the
wave equation

ut(t():f) xzx’u(l,t) =0, (8.72)
u(z,0) =v(z), w(x,0)=0.
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Therefore, if v(x) has the eigenexpansion v(x) =Y | v, sin(nrz) then

WK

(S2(t)v)(z) =

vy sin(nmz) cos(nt). (8.73)

n=1

From the subordination identity (8.62) and the variation of parameters formula
(8.59) we have

w(w, ) = /0 ' S(r)Pdr = /0 t /0  olr. VS0V Pdodr.  (8.74)

Here S5(t) P is the solution of problem (8.72) with v = P. Applying (8.73) it

follows -
5y(t)P = 225 L2 O G mar cos (). (8.75)
n

e
n=1

Inserting (8.75) in (8.74) and using (8.70) we derive the following explicit rep-
resentation of the solution of problem (8.71)

L —(=1)"
u(z,t) = Z sin(nmx / / (1,0) cos(nmo) dodr,
m

D"

S
I

2P

T

1—

Mg

(=
1 El sin(nmz) /O (i n?n?) dr,

3
I

where the function u(¢; \) is the solution of the scalar problem, see (8.68) and
(8.70).

In the next example we consider a two-dimensional variant of problem
(8.71), governing Poiseuille flow in a channel.

Example 8.2. Poiseuille flow of a fractional Jeffreys’ fluid in a rectangular
channel with cross-section 2 = (0,1) x (0,1) is governed by the equation for
the velocity field u(x,y,t) [17]

du
ot

= (14+0Dy}) (i + i) + f(t), (z,y)€Q, t>0, (8.76)

(1+aDy) 02t o

subject to homogeneous Dirichlet boundary condition

u(z,y,t) =0, (x,y) €, t>0, (8.77)
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and initial conditions

u(r,y,0) = u(r,y,0) =0, (v,y) € (8.78)
Here a € (0,1), a > b > 0, are given constant parameters and
f(t) =14 awi_a(t),

where the notation (1.3) is used.
Applying eigenfunction decomposition, the solution of problem (8.76)-(8.77)-
(8.78) admits the form

u(z,y,t) = Z Z U (t) sin(mmx) sin(nmy), (8.79)

where the time-dependent components wu,,,(t) satisty the following ordinary
differential equations

(1 4+ aDf)uy,, (t) = _/ng(l + 0D ) umn(t) + frn(t),
Unn(0) = 1y, (0) = 0

with iy, = 7vm? + n? and

(8.80)

4

mnim

S (t) = Bunf(t), By = ; (1= (=1)") A= (=1)"). (8:81)

By applying Laplace transform we solve problem (8.80) and obtain

umn(t) — anGmn(t)a

where By, are given in (8.81) and the functions G,,,(t) are defined through
their Laplace transforms

~ 1+ as®
Gn8) = S asn) + 42 (15 b)) (8.82)

Therefore

Gun(t) = /Otu (o u?nn) do = /Ot /OOO o(o, ) cos(tmnT) drdo, (8.83)
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where the function ¢(t,7) admits the integral representation (8.63). Inter-
changing the order of integration in (8.83) we obtain

Gun(t) = /Oow(t, 7) oS(tynT) d, (8.84)
0
where

P(t,7) = 1 /000 exp (—TK_(T’)) [K+(r) (Sin (rt — TK+(T)) + sin (TK+(T’))>

— K1) (cos (7K (1) + cos (rt — 7K ()] G, 7 >0

Here K*(r) are defined by (4.19).
In this way the following representation of the solution of problem (8.76)-
(8.77)-(8.78) is derived

u(z,y,t) = % Z Z (1= (=" - (_1)n)Gmn(t) sin(mmz) sin(nry),
with functions G, (t) given in (8.84).

8.4 Generalized diffusion-wave equation

After the study in the last two chapters of various generalizations of the
fractional diffusion-wave equation, we conclude with a short discussion on the
definition of generalized diffusion-wave equation.

A generalization of the Caputo fractional derivative (1.7) of order o € (0, 1)
in the form

©D" £)(¢) = /O tﬁ(t—T) Fr)dr, t>0, (8.85)

is discussed in Section 4.2. The kernel k € L; (R.) is a nonnegative func-
tion, such that K(s) € SF for s > 0. The generalized relaxation /subdiffusion
equation with convolutional derivative (8.85) corresponds to a Volterra integral

equation with kernel k(t) such that
k(s)R(s) = 1/s. (8.86)

Pairs of kernels satisfying relation (8.86) (Sonine kernels) have the property
that ®(s) € SF if and only if k(s) € SF. Moreover, assumption k(s) € SF
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is equivalent to g(s) = 1/k(s) = sk(s) € CBF (see properties (P7) and
(P10) in Proposition 2.1). Therefore, according to Theorem 2.4, the class of
generalized subdiffusion equations consists of equations which are subordinated
to the classical diffusion equation.

By analogy with the above considerations, the notion of generalized diffusion-
wave equation is introduced in [98] in the following one-dimensional form

t 32 82
/0 n(t — T)wu(x, T)dr = @u(x, t), (8.87)

where the integro-differential operator in time is supposed to generalize the
Caputo fractional derivative (1.7) of order o € (1,2). In the case of Caputo
derivative n(t) = t19/T'(2 — ), a € (1,2). Therefore, it is natural to assume
again for the kernel n(t), see [98],

i(s) € SF. (8.88)

~

Denote by £(t) the corresponding Sonine kernel, i.e. £(s)7(s) = 1/s. Therefore,
(8.88) is equivalent to g(s) € SF. By applying the operator (1 % £)x to both
sides of (8.87), we deduce that the generalized diffusion-wave equation (8.87)
with initial conditions u(z,0) = v(z) and w;(x,0) = 0 is equivalent to the
Volterra integral equation

82

u(z,t) =v(x) + /Ot k(t — T)@u(x, T)dr
with kernel k() = (1 % £)(¢). Therefore, k(s) = £(s)/s and
k(s)i(s) = 1/s% (8.89)
We first note that (8.88) and property (P10) in Proposition 2.1 imply
s1(s) € CBF.

Relation (8.89) yields g(s) = 1/k(s) = s%(s). Therefore, assumption (8.88)
implies that ¢(s) is a product of two complete Bernstein functions (s and s7(s))
and, thus, by (2.2), g(s)l/2 € CBF. Hence, according to Theorem 2.4, equation
(8.87) is subordinated to the classical one-dimensional wave equation.

Wave equations in viscoelastic media with completely monotone relaxation
moduli G(t), considereed in this chapter, satisfy g(s) = s/G(s), see (8.4).
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Therefore, they are generalized diffusion-wave equations of the form (8.87),
where 7)(t) is the Sonine kernel of G(t). Vice versa, any generalized diffusion-
wave equation (8.87) can be interpreted as a wave equation in viscoelastic
medium with completely monotone relaxation modulus G(t) = £(t).

However, the class of equations, subordinated to the classical wave equa-
tion, is larger. Namely, there exists equations with characteristic function g(s),

satisfying g(s)"/* € CBF, which are not of the form (8.87)-(8.88). Next we give
two such examples.

Example 8.3. Consider a distributed-order diffusion-wave equation (7.2), such
that supp p € [1,2]. For example, let us consider the two-term time-fractional
diffusion-wave equation

82

Cn® Cny*

D,u(z,t)+ "D, u(x,t) = =—u(x,t

e, ) + D ule 1) = —u(e,)

where o € (1,2),1 € (0,1),a — a3 < 1. According to Theorem 7.5, this
equation is subordinated to the classical wave equation. It is equivalent to
Volterra integral equation with g(s) = s* 4+ s*. If we rewrite it in the form

~

(8.87), then &(s) = s/g(s) = s' 71 /(s* ™ + 1) and (1.27) yields
f(t) = ta_QEafal,afl(_ta_Oq)-

The asymptotic formula for Mittag-Leffler function (1.24) implies
E(t) ~t 2T (g — 1) ast — oo,

which is negative for aq € (0,1). Therefore £(s) ¢ SF, which is equivalent to
n(s) ¢ SF. Therefore, the considered two-term diffusion-wave equation is not

of the form (8.87)-(8.88).

Example 8.4. The second example is Jeffreys’ type equation (8.57) with f(t) =
0 and standard initial conditions «(0) = v, 4'(0) = 0, where

O<a,f<1 a#p, a>b>0.

Even though it is not thermodynamically well behaved for o # 8 (see Theo-
rem 8.4), the corresponding equation (8.57) is actually well posed and subordi-
nated to wave equation. Indeed, for this equation condition g(s)/? € CBF is
satisfied for all 0 < a, 8 < 1. This follows from the representation

~ s(14as?)

9(s) = = 5 (8.90)
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which implies that g(s) is a product of two complete Bernstein functions: 1+as®
and s/(1+bs?) (see property (P9)). Then property (2.2) yields g(s)'/? € CBF.
Therefore, the conditions of Theorem 2.4 are satisfied with o = 2 and equation
(8.57) is subordinated to a wave equation. On the other hand, according to
Theorem 8.4, in the considered case £(t) = G(t) ¢ CMF, that is, 7(s) ¢ SF,
and equation (8.57) is not of the form (8.87)-(8.88).

The above observations suggest a revision of the definition of generalized
fractional diffusion-wave equations, which should include equations subordi-
nated to the classical wave equation.



Main scientific contributions

In this dissertation we developed a unified methodology for establishing a
subordination relation between a linear evolution equation in a general form
and a linear fractional or integer-order evolution equation. The problem of
subordination is reduced to proving that a characteristic function belongs to
the class of complete Bernstein functions.

We establish subordination relations for a number of equations with frac-
tional derivatives, which have been recently proposed in the literature. The
subordination relations for generalized time-fractional evolution equations split
the solution into two parts: a probability density function, containing all in-
formation about the operators acting in time, and the solution of a simpler
(integer-order or single-term fractional-order) problem.

Subordination principle for space-time fractional evolution equations is stud-
ied. Various representations for the subordination kernel are derived and its
properties are studied. As an application, integral representations for the n-
dimensional fundamental solution are established for n = 1,2,3 (Chapter 3).

Evolution equations with the fractional Jeffreys’ constitutive law are stud-
ied in detail (it appears in heat conduction equations, as well as in equations
modelling wave propagation in viscoelastic fluids, see Chapter 4, Section 8.3,
and Section 5.1.2 for a particular case). Based on this model, the relationship
between the subordination principle and the physical character of an evolution
equation is illustrated.

Subordination relations are established for the generalized time-fractional
subdiffusion equations (Chapter 5). An explicit approximation formula for
the solution is obtained, which generalizes the exponential formula for Cj-
semigroups. As an application of subordination principle, useful estimates for
the solution of the generalized relaxation equation are derived. They are applied
in the study of an inverse-source problem.

A multinomial function of Prabhakar type is introduced and studied (Chap-
ter 6). It is related to differential equations with multiple time-derivatives.

179
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Along with other properties, we formulate sufficient conditions for complete
monotonicity of this function. As an application of this function, we propose a
viscoelastic constitutive model, which generalizes some well-known relaxation
laws (Section 8.2.4).

An open problem concerning the interpretation of the fundamental solu-
tion to distributed-order time-fractional diffusion-wave equation as a probabil-
ity density is partly solved (Section 7.1). The class of allowed weight functions
is extended from functions with support contained in the interval [1, 2] to func-
tions with support contained in the interval [a,a + 1], 0 < a < 1. An example
shows that this condition can be further relaxed.

Subordination principle for the multi-term time-fractional diffusion-wave
equation is studied in detail (Section 7.2). Integral representation for the sub-
ordination kernel is derived. The cases of finite and infinite propagation speed
are considered.

The relaxation modulus of a number of generalized fractional viscoelas-
tic constitutive models is studied, such as fractional Maxwell, Jeffreys’ and
distributed-order Zener models. It is proven for these models that the thermo-
dynamic constraints imply complete monotonicity of the relaxation modulus
(Section 8.2). This property plays an important role in establishing a subordi-
nation principle for the corresponding wave equation.

Based on subordination principle, the considered in the dissertation gen-
eralized fractional evolution equations are divided into two main classes: sub-
diffusion equations (subordinated to the first order abstract Cauchy problem,
see Chapters 5 and 6) and diffusion-wave equations (subordinated to the sec-
ond order abstract Cauchy problem, which are not subdiffusion equations, see
Chapters 7 and 8). Thus, we propose a new way to define those two classes of
equations, which allows to cover important physically meaningful models.
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