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Preface

Fractional Calculus, as an extension of the classical Calculus, started with
the ideas of Gottfried Leibniz by the end of the XVII century and had been de-
veloped progressively up to now. During the recent decades Fractional Calculus
attracted the attention of many researchers in di�erent areas, such as mathe-
matics, physics, biology, chemistry, engineering, social sciences. The main rea-
son is that the di�erential and integral equations of fractional order can model
mathematically various natural and industrial processes more adequately than
these restricted to integer order. In particular, Fractional Calculus has become
a frequently used tool in hereditary physics due to the e�ciency of fractional dif-
ferential equations in the modelling of anomalous di�usion or wave phenomena
when some memory mechanisms of power-law or logarithmic type are present.

Fractional partial di�erential equations are widely used to capture the power-
law dependence on time of the mean squared displacement in anomalous dif-
fusion processes. However, most of the complex systems do not show a mono-
scaling behavior. Instead, transitions between di�erent di�usion regimes in
course of time are observed. One way to model such a multi-scaling behav-
ior is by replacing the single operator of fractional derivative by more general
integro-di�erential operators with speci�c memory kernels. This leads to the
so-called generalized fractional di�usion and di�usion-wave equations.

The present dissertation is devoted to the study of subordination principle
for generalized fractional evolution equations. By means of a subordination
principle, it is possible to construct solutions of such evolution equations from
the solutions of classical integer order equations, or simpler fractional order
ones. It is a useful tool for establishing well-posedness, for deriving integral
representations of the solutions, and for the study of their regularity, asymp-
totic behavior, and other properties. Moreover, the subordination principle
de�nes a hierarchy in the variety of generalized fractional evolution equations,
which is essential for the proper classi�cation and understanding of the related
mathematical models.

i



ii PREFACE

The main tools in the present study are the theory of Fractional Calcu-
lus operators and special functions, Laplace transform, and the properties of
Bernstein functions and related classes of functions.

This dissertation is an outcome of the author's research work during the past
seven years (2015-2021). It is based on 11 articles, published in this period: [10]-
[15], [18]-[20], [22], and [25]. In the outline below for every chapter we indicate
which of these publications have been used.

The dissertation is organized as follows. The Introduction contains a short
overview on subordination principles and motivation for the present study.
Chapter 1 contains notations, de�nitions and basic properties of fractional in-
tegration and di�erentiation operators, Laplace transform, Mittag-Le�er func-
tions and functions of Wright type. In Chapter 2, after an introduction to
Bernstein functions and some background material on abstract Volterra equa-
tions, we prove two general subordination theorems. Chapter 3, [14, 20],
is devoted to a detailed study of subordination principle for space-time frac-
tional evolution equations. As an application, a number of explicit expressions
in terms of special functions and integral representations for the solutions are
derived. The rest of the thesis is concerned with generalized time-fractional evo-
lution equations. To demonstrate the crucial role of the subordination principle
in the study of this class of equations, the fractional Je�reys' heat conduction
equation is considered as a model problem in Chapter 4, [22]. In Chapter 5,
[10, 11, 12], we establish subordination results for the subdi�usion equation
of distributed order in time and for more general subdi�usion equation with
memory kernel. As an application, useful estimates are derived in the scalar
case. Chapter 6, [15], is concerned with a multinomial generalization of the
Mittag-Le�er function, which is related to relaxation equations with multiple
time-derivatives. The last two chapters consider equations describing phenom-
ena intermediate between di�usion and wave propagation. In Chapter 7,
[13, 18], an open problem concerning positivity of the fundamental solution
for distributed-order time-fractional di�usion-wave equations is discussed and
partly answered. Positivity of the fundamental solution is necessary for physical
acceptability of the model, as well as for the proof of subordination principle.
Chapter 8, [13, 19, 25], is concerned with equations governing wave propaga-
tion in viscoelastic media with completely monotone relaxation moduli. The
particular case of fractional Je�reys' �uid is studied in detail and the physical
meaning of the subordination formula is discussed. The dissertation ends with
concluding remarks.
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Introduction

During the recent decades Fractional Calculus attracted the attention of
many researchers [73]. Evolution equations with fractional derivatives are ex-
tensively used for modelling of materials and processes with memory. In the at-
tempt to �nd more adequate models, linear equations involving discrete or con-
tinuous distribution of fractional derivatives, or more general integro-di�erential
operators of convolutional type, are introduced [62, 97, 99]. This raises the need
of methods for study and proper classi�cation of the variety of generalized frac-
tional evolution equations. One useful tool to achieve this goal is the so-called
principle of subordination.

The original subordination principle for stochastic processes in connection
with di�usion equations and semigroups was introduced by S. Bochner in 1949
[28]. A detailed study of stochastic processes, their transition semigroups, gen-
erators, and subordination results can be found in [29], Chapters 4.3 and 4.4.

Bernstein functions play an essential role in the de�nition of Bochner sub-
ordination. A function φ : (0,∞) → R is a Bernstein function if φ is of class
C∞, φ(s) ≥ 0 for all s > 0 and

(−1)n−1φ(n)(s) ≥ 0 for all n ∈ N and s > 0.

If φ is a Bernstein function then it admits a continuous extension to the half-
plane <s ≥ 0, which is holomorphic for <s > 0, and satis�es <φ(s) > 0 for all
<s > 0. A basic example of a Bernstein function is φ(s) = sα, 0 ≤ α ≤ 1.

Consider a family of functions {pt(τ)} indexed by t ≥ 0 and de�ned on
τ ≥ 0, and such that for each �xed t > 0, pt(τ) is a probability density
function on τ ≥ 0, that is,

pt(τ) ≥ 0 and

∫ ∞
0

pt(τ) dτ = 1. (0.1)

For �xed t > 0 the Laplace transform of pt(τ) is de�ned by

L{pt}(s) =

∫ ∞
0

e−sτpt(τ) dτ, <s > 0.

1



2 CHAPTER 0. INTRODUCTION

A Bochner subordinator is a family {pt}t>0 as de�ned above, such that

L{pt}(s) = e−tφ(s), <s > 0,

where φ is a Bernstein function.
A subordinator example which yields a closed form expression is the follow-

ing

pt(τ) =
te−t

2/4τ

2
√
πτ 3/2

, L{pt}(s) = e−t
√
s.

It is the special case α = 1/2 of the important L�evy subordinator family of
index α with corresponding Bernstein function φ(s) = sα, where 0 < α ≤ 1.

Let A be a closed linear operator densely de�ned on a Banach space X,
which generates a C0-semigroup S1(t). Then the �rst order abstract Cauchy
problem

u′(t) = Au(t), t > 0; u(0) = v ∈ X, (0.2)

is well posed and the solution u(t) is given by u(t) = S1(t)v. Let {pt}t>0 be
a Bochner subordinator with corresponding Bernstein function φ. Then the
Bochner integral

Sφ1 (t)v =

∫ ∞
0

pt(τ)S1(τ)v dτ, v ∈ X, t > 0,

de�nes again a C0-semigroup on X. The semigroup Sφ1 (t) is called subordinate
(in the sense of Bochner) to the semigroup S1(t) with respect to the Bernstein

function φ. The semigroup Sφ1 (t) is generated by the operator −φ(−A) [88].

In particular, if φ(s) = sα, then Sφ1 (t) is an analytic semigroup generated by
the operator −(−A)α, where the fractional power is understood in the sense
of Balakrishnan [8] (for more details see [108], Chapter 9). In this way, the
subordination principle in the sense of Bochner gives the possibility to construct
from S1(t) new semigroups, which de�ne the solutions of the Cauchy problem
(0.2) when the operatorA is replaced by a new operator−φ(−A). For details on
subordination and Bochner's functional calculus we refer to [101], Chapter 13.

Another type of subordination formulae establishes a relation between the
solutions of two Cauchy problems with the same operator A, but di�erent
operators acting with respect to the time variable t. For instance, there is
always a simple way to go from the second order Cauchy problem to the �rst
order one. Assume the operator A generates a strongly continuous cosine family
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S2(t), t > 0, on a Banach space X (see e.g. [2], Section 3.14). This is equivalent
to well-posedness of the second order Cauchy problem

u′′(t) = Au(t), t > 0; u(0) = v ∈ X, u′(0) = 0, (0.3)

which solution is given by u(t) = S2(t)v for t > 0. If A generates a cosine
family S2(t) then A generates a holomorphic C0-semigroup S1(t) of angle π/2,
which is related to the cosine family S2(t) by the abstract Weierstrass formula
([2], Theorem 3.14.17)

S1(t) =
1√
πt

∫ ∞
0

e−τ
2/(4t)S2(τ) dτ, t > 0. (0.4)

This formula allows one to compute the solution of the �rst order Cauchy
problem (0.2) from the solution of the second order one (0.3) and shows that
the subordinate solution possesses better regularity. The subordination relation
(0.4) was generalized in [9] to the case of fractional evolution equations.

Denote by CD
α
t the Caputo fractional derivative of order α > 0

CD
α
t u(t) =

1

Γ(m− α)

∫ t

0

(t− τ)m−α−1u(m)(τ) dτ,

where m is a positive integer, such that m − 1 < α ≤ m. Consider the
abstract Cauchy problem for the fractional evolution equation with a general
linear closed operator A densely de�ned on a Banach space X

CD
α
t u(t) = Au(t), t > 0, 0 < α ≤ 2, (0.5)

supplemented with the initial conditions u(0) = v ∈ X for 0 < α ≤ 1 and
u(0) = v ∈ X, u′(0) = 0 for 1 < α ≤ 2. Denote by Sα(t) the solution
operator corresponding to problem (0.5), i.e. the solution of (0.5) is given by
u(t) = Sα(t)v. For α = 1 and α = 2 the corresponding solution operators are
respectively the C0-semigroup of operators S1(t) and the strongly continuous
cosine family S2(t), generated by the operator A.

The subordination principle for the abstract Cauchy problem (0.5) states
that if problem (0.5) is well posed for some α∗ ∈ (0, 2] then it is well posed for
all α ∈ (0, α∗) and the corresponding solution operators Sα and Sα∗ are related
via the subordination identity

Sα(t) =

∫ ∞
0

ϕα/α∗(t, τ)Sα∗(τ) dτ, t > 0, (0.6)
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where ϕγ(t, τ) = t−γMγ(τt
−γ) with Mγ(·) being a function of Wright type

de�ned by the series

Mγ(z) =
∞∑
n=0

(−z)n

n!Γ(−γn+ 1− γ)
, 0 < γ < 1, z ∈ C. (0.7)

For any �xed t > 0 the subordination kernel ϕγ(t, τ) is a probability density
function on τ ≥ 0, i.e.

ϕγ(t, τ) ≥ 0,

∫ ∞
0

ϕγ(t, τ) dτ = 1, t, τ > 0.

If Sα∗ is a bounded solution operator, then Sα is a bounded analytic solution
operator in some sector of the complex plane.

Therefore, the main idea of the subordination principle for problem (0.5) is
that one and the same operator A guarantees better properties of the solution
when α is smaller and that the set of operators A, for which (0.5) is well posed,
shrinks when α increases. In particular, if there exists an exponentially bounded
solution operator for α > 2, then A is necessarily a bounded operator [9]. For
this reason we consider only α ∈ (0, 2].

Subordination principle for fractional evolution equations has found various
applications, e.g. in the study of inverse problems [84], for asymptotic analy-
sis of di�usion wave equations [63], for the study of stochastic solutions [80],
semilinear equations of fractional order [57], systems of fractional order equa-
tions [54]. Based on the subordination principles for space- and time-fractional
di�usion equations and the dominated convergence theorem, exact asymptotic
expressions for the fundamental solution of the multi-dimensional space-time
fractional di�usion equation are established recently in [34]. Stochastic inter-
pretation of the subordination principle for fractional evolution equations is
discussed in [48, 77, 80, 97]. Other useful applications can be found in [110].

It is worth noting that the subordination relation (0.6), considered as an
integral transform

Sf(t) =

∫ ∞
0

ϕγ(t, τ)f(τ) dτ, t > 0,

appears to be a particular case of an integral transform introduced by Stankovi�c
in [104]. For a recent study on related classes of integral transforms we refer
to [94]. Moreover, the subordination relations for time-fractional evolution
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equations can be placed in the general context of parameter-shift formulas and
integral transforms composition method as in [40].

Subordination principle for abstract Volterra evolution equations

u(t) = v +

∫ t

0

k(t− τ)Au(τ) dτ + f(t), t > 0, v ∈ X, (0.8)

is studied in [93], Chapter 4, by employing the notion of completely positive
kernels.

In general, a subordination principle consists of the following: Given two
Cauchy problems, (P ) and (P∗), problem (P ) is called subordinated to problem
(P∗) if and only if well-posedness of problem (P∗) implies well-posedness of
problem (P ) and the solution operator S(t) of problem (P ) admits the integral
representation

S(t) =

∫ ∞
0

ϕ(t, τ)S∗(τ) dτ, t > 0,

where S∗(t) is the solution operator of problem (P∗) and ϕ(t, τ) is a probability
density function (PDF) in τ ≥ 0 when t > 0 is considered as a parameter, that
is

ϕ(t, τ) ≥ 0,

∫ ∞
0

ϕ(t, τ) dτ = 1. (0.9)

An important particular case of (0.5) is the time-fractional di�usion equa-
tion, where 0 < α < 1 and A is some realization of the Laplace operator. It was
derived via the framework of a continuous time random walk under the assump-
tion that the mean waiting time has a power-law decaying tail proportional to
tα, α ∈ (0, 1). The solution of this equation accurately describes the power-law
decaying behavior in a large number of anomalous di�usion processes. To im-
prove the modeling accuracy, evolution equations with multiple time-derivatives
or time-derivatives of distributed order are proposed, which permit to describe
also processes whose scaling law changes with time [97, 98]. Generalized di�u-
sion equations with di�erent memory kernels are popular mathematical tools for
description of a variety of non-Fickian di�usion processes. The relation between
generalized di�usion equations and subordination schemes is recently discussed
in [33]. On the other hand, generalized di�usion-wave equations emerge in
the modeling of wave propagation in viscoelastic media [75, 109]. As a re-
sult, various linear generalizations of the single-order di�usion-wave equation
(0.5), which involve fractional time derivatives in their formulation, have been
proposed in the literature.
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The useful applications of the subordination principle for fractional evolu-
tion equations (0.5), mentioned above, give the author the motivation to study
the subordination principle for di�erent types of generalized linear fractional
evolution equations. In the present dissertation we develop a methodology for
establishing subordination relations, which are helpful for the classi�cation and
understanding of a variety of mathematical models, which use fractional deriva-
tives in their formulation. Several equations of this type are analyzed with the
subordination principle as the unifying theme. The considered equations can
be divided in three classes:

(I) space-time fractional evolution equations;

(II) evolution equations, subordinated to the �rst-order equation (0.2);

(III) evolution equations, subordinated to the second-order equation (0.3),
which do not belong to the class (II).

Class (I) consists of fractional evolution equations (0.5) with α ∈ (0, 1), in which
the operator A is replaced by the operator −(−A)β, where β ∈ (0, 1), i.e. they
are fractional equations simultaneously in space and in time. When the operator
A is the second-order space-derivative, or a multidimensional Laplace operator,
or a more general elliptic operator, then the classical �rst-order problem (0.2)
is a mathematical model of di�usion and the classical second-order problem
(0.3) is a mathematical model of wave propagation. Therefore, for convenience,
in this dissertation we use the notions generalized subdi�usion equations and
generalized di�usion-wave equations for the equations of groups (II) and (III),
respectively.

For a uni�ed approach, the considered equations are represented in the form
of Volterra integral equation (0.8). As in the case of the original Bochner sub-
ordination, the proofs are based on the theory of Bernstein functions [101] and
Laplace transform. Various applications of the derived subordination relations
are presented: integral representations for the solutions of the considered prob-
lems, closed-form solutions in particular cases, analysis of regularity, asymptotic
behaviour, monotonicity; visualization of the solution behaviour; estimates for
the solutions of the scalar equations, which are useful when boundary-value
problems are studied applying eigenfunction expansion technique.



Chapter 1

Fractional calculus operators
and special functions

This chapter contains preliminaries used throughout the whole dissertation.
The operators of fractional integration and di�erentiation of Riemann-Liouville
and Caputo type are introduced, as well as some special functions intimately
related to fractional calculus: Mittag-Le�er function and its Prabhakar gener-
alization, Mainardi function and the L�evy extremal stable density.

1.1 Some notations and de�nitions

The sets of positive integers, real, and complex numbers are denoted by N,
R, C, respectively, and N0 = N∪{0}, R+ = (0,∞), C+ = {z ∈ C, <z > 0}.

By Σ(θ) we denote the open sector in C

Σ(θ) = {z ∈ C\{0}; | arg z| < θ}, θ ∈ (0, π).

For the multivalued complex functions, considered in this dissertation, such
as log z or zα = exp(α log z), we take the principal branch.

Let X be a Banach space with norm ‖.‖. Assume −∞ ≤ a < b ≤ +∞ and
1 ≤ p <∞. Then Lp((a, b);X) denotes the space of all (equivalent classes of)
Bochner-measurable functions f : (a, b) → X, such that ‖f(t)‖p is integrable
for t ∈ (a, b). It is a Banach space with norm

‖f‖Lp((a,b);X) =

(∫ b

a

‖f(τ)‖p dτ
)1/p

.

7



8 CHAPTER 1. FRACTIONAL CALCULUS

Let m ∈ N. We denote by C([a, b];X) and Cm([a, b];X) the spaces of
functions f : [a, b] → X, which are continuous, resp. m-times continuously
di�erentiable, endowed respectively with the norms

‖f‖C = sup
t∈[a,b]

‖f‖, ‖f‖Cm = sup
t∈[a,b]

m∑
k=0

‖f (k)(t)‖.

Let I = (0, T ), I = R+, or I = R, m ∈ N, 1 ≤ p <∞. The Sobolev spaces
can be de�ned in the following way

Wm,p(I;X) =

{
f |∃ϕ ∈ Lp(I;X) : f(t) =

m−1∑
k=0

ck
tk

k!
+

tm−1

(m− 1)!
∗ g(t), t ∈ I

}
,

where ∗ is the Laplace convolution

(f1 ∗ f2)(t) =

∫ t

0

f1(t− τ)f2(τ) dτ.

Note that in the de�ning representation of functions f ∈ Wm,p(I;X) it holds
ck = f (k)(0) and g(t) = f (m)(t). Denote

Wm,p
0 (I;X) =

{
f ∈ Wm,p(I;X)| f (k)(0) = 0, k = 0, 1, . . . ,m− 1

}
.

If X is the scalar �eld R or C, then the image space in the notations of the
function spaces de�ned above will be dropped.

1.2 Laplace transform

Denote by L1
loc(R+;X) the space of functions f : R+ → X, integrable in

the sense of Bochner on any interval [0, τ ], τ > 0.
The Laplace transform of a function f ∈ L1

loc(R+;X) is de�ned by

L{f(t)}(s) = f̂(s) =

∫ ∞
0

e−stf(t) dt, <s > 0,

if the integral is absolutely convergent for <s > 0.
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A real-valued in�nitely di�erentiable on R+ function f(t) is said to be a
completely monotone function (CMF) if

(−1)nf (n)(t) ≥ 0, t > 0, n ∈ N0. (1.1)

The characterization of the class CMF is given by the Bernstein's theorem
which states that a function is completely monotone if and only if it can be
represented as the Laplace transform of a non-negative measure (non-negative
function or generalized function).

Next the Post-Widder inversion formula for the Laplace transform is for-
mulated in the general case of X valued functions (see e.g. [2]):

Theorem 1.1. Let f(t), t ≥ 0, be a X valued continuous function, such that
f(t) = O(eγt) as t→∞ for some real γ. Then

f(t) = lim
n→∞

(−1)n

n!

(n
t

)n+1
(
dnf̂

dsn

)(n
t

)
(1.2)

uniformly on compact subsets of R+.

The asymptotic behaviour of a function f(t) as t→∞ can be determined

by looking at the behaviour of its Laplace transform f̂(s) as s → 0. The
following version of the Karamata-Feller Tauberian theorem establishes such a
correspondence, see [38], Chapter XIII.

Denote by ωα(t) the function

ωα(t) =
tα−1

Γ(α)
, α > 0, t > 0. (1.3)

The Laplace transform of this function satis�es the identity

L{ωα(t)}(s) =
1

Γ(α)

∫ ∞
0

e−sttα−1 dt = s−α, α > 0, <s > 0. (1.4)

Theorem 1.2. [38] Let L : R+ → R+ be a function that is slowly varying at
∞, that is, for every �xed x > 0 we have L(tx)/L(t) → 1 as t → ∞. Let
α > 0 and f : R+ → R be a nonnegative function, which Laplace transform
f̂(s) exists for all s ∈ C+. Then

f̂(s) ∼ 1

sα
L

(
1

s

)
as s→ 0
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if and only if
f(t) ∼ ωα(t)L(t) as t→∞.

Here the function ωα(t) is de�ned in (1.3) and the approaches are on the pos-
itive real axis.

Here and in what follows the notation f(t) ∼ g(t) as t → t∗ means that
limt→t∗ f(t)/g(t) = 1.

The following characterization of functions which are holomorphic and boun-
ded in a sector of the complex plane is useful, see [93], Theorem 0.1.

Theorem 1.3. [93] Let F be a function de�ned on (0,∞) and θ0 ∈ (0, π/2].
Then the assertions (i) and (ii) are equivalent:
(i) F (s) admits holomorphic extension to the sector | arg s| < π/2 + θ0 and
sF (s) is bounded on each sector | arg s| ≤ π/2 + θ, θ < θ0;
(ii) there is a function f(t) holomorphic for | arg t| < θ0 and bounded on each

sector | arg t| ≤ θ < θ0, such that F (s) = f̂(s) for each s > 0.

1.3 Fractional integration and di�erentiation

The Euler gamma function Γ(z) is de�ned by the identity

Γ(z) =

∫ ∞
z

ξa−1e−ξ dξ, <z > 0.

For this function the reduction formula Γ(z + 1) = zΓ(z) holds. In particular,
Γ(n) = (n− 1)! for n ∈ N. The formula for the n-fold iterated integral (n ∈ N,
t > 0) reads

Jnt f(t) =

∫ t

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

f(τn) dτn =
1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ) dτ.

Let I = (0, T ) for some T > 0 and let X be a Banach space. The Riemann-
Liouville fractional integral of order α ∈ R+ is de�ned as a generalization of
the above formula for the n-fold iterated integral as follows

Jαt f(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ = (ωα ∗ f) (t), α > 0, t > 0,

for f ∈ L1(I;X). Let us set J0
t f(t) = f(t). The fractional order integral

operators obey the semigroup property

Jαt J
β
t = Jα+β

t , α ≥ 0, β ≥ 0. (1.5)
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Let α > 0 and 0 ≤ m − 1 < α ≤ m, m ∈ N, and use the notation

Dm
t = d

m

dtm . The fractional Riemann-Liouville derivative Dα
t of order α > 0 is

de�ned for functions f ∈ L1(I;X), such that Jm−αt f ∈ Wm,1(I;X) as follows

Dα
t f(t) = Dm

t J
m−α
t f(t) = Dm

t (ωm−α ∗ f)(t).

The fractional Caputo derivative CD
α
t of order α > 0 is de�ned in the same

class of functions by the relation

CD
α
t f(t) = Dα

t

(
f(t)−

m−1∑
k=0

f (k)(0)ωk+1(t)

)
. (1.6)

For functions f ∈ Wm,1 the fractional Caputo derivative admits the alternative
representation

CD
α
t f(t) = Jm−αt Dm

t f(t) = (ωm−α ∗Dm
t f)(t). (1.7)

Note that the subscript t in the notations of the fractional integration and
di�erentiation operators de�ned above emphasizes that the operators act with
respect to the time variable.

The following basic identities are satis�ed

CD
α
t J

α
t = Dα

t J
α
t = I, (1.8)

Jαt D
α
t f(t) = f(t)−

m−1∑
k=0

(ωm−α ∗ f)(k)(0)ωα+k+1−m(t), (1.9)

Jαt
CD

α
t f(t) = f(t)−

m−1∑
k=0

f (k)(0)ωk+1(t). (1.10)

Some simple but relevant results valid for α, β, t > 0 are

Jαt ωβ(t) = ωα+β(t); Dα
t ωβ(t) = ωβ−α(t), β > α.

In particular, Dα
t 1 = ω1−α(t) for 0 < α < 1, while CD

α
t 1 = 0 for any α > 0.

The Laplace transform of fractional order operators obeys the identities

L{Jαt f}(s) = s−αL{f}(s), (1.11)

L{Dα
t f}(s) = sαL{f}(s)−

m−1∑
k=0

(ωm−α ∗ f)(k)(0) sm−1−k, (1.12)

L{CDα
t f}(s) = sαL{f}(s)−

m−1∑
k=0

f (k)(0) sα−1−k. (1.13)
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In their derivation the Laplace transform pair (1.4) is used.
Let 0 < α < 1. Then identity (1.6) reads

CD
α
t f(t) = Dα

t (f(t)− f(0)) = Dα
t f(t)− f(0)ω1−α(t). (1.14)

Moreover, (1.9) and (1.10) imply

Jαt D
α
t f(t) = f(t)− (ω1−α ∗ f) (0), (1.15)

Jαt
CD

α
t f(t) = f(t)− f(0), (1.16)

and (1.12) and (1.13) read

L{Dα
t f}(s) = sαL{f}(s)− (ω1−α ∗ f) (0), (1.17)

L{CDα
t f}(s) = sαL{f}(s)− f(0)sα−1. (1.18)

Let us note that if f ∈ C([0, T ]) then (ω1−α ∗ f) (0) = 0 and the Laplace
transform pair for the Riemann-Liouville derivative reduces to:

L{Dα
t f}(s) = sαL{f(t)}(s). (1.19)

For more details on fractional calculus operators we refer to [47, 58, 75, 89].

1.4 Mittag-Le�er functions

The classical Mittag-Le�er function

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C,

is an entire function, introduced and studied by G�osta M. Mittag-Le�er at
the beginning of 20-th century. The Mittag-Le�er function provides a simple
generalization of the exponential function, E1(z) = ez. Other notable particular
cases are

E2(−z2) = cos z, E2(z
2) = cosh z, E1/2

(
±z1/2

)
= ezerfc

(
∓z1/2

)
,

where erfc(·) denotes the complementary error function

erfc(z) = 1− erf(z), erf(z) =
2√
π

∫ z

0

e−ξ
2

dξ, z ∈ C,
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The function u(t) = Eα(−λtα) is the solution of the ordinary fractional
di�erential equation

CD
α
t u(t) = −λu(t), λ > 0, t > 0, (1.20)

with initial conditions u(0) = 1, u(k)(0) = 0, k = 1, . . . ,m − 1, where
m − 1 < α ≤ m. Equation (1.20) is referred to as fractional relaxation equa-
tion for α ∈ (0, 1) and fractional relaxation-oscillation equation for α ∈ (1, 2).
In comparison to ordinary relaxation (α = 1), fractional relaxation exhibits
a slower decay for large times (algebraic decay in comparison to exponential
decay). Compared to the ordinary oscillation (α = 2), the solution of the
fractional relaxation-oscillation equation does not exhibit permanent oscilla-
tions, but an asymptotic algbraic decay. There are some attenuated oscillations,
whose number increases with α. Therefore, we bserve features intermediate be-
tween relaxation and oscillation. For illustration of this behavior see Figure 1.1.
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Figure 1.1: Function Eα(−tα): (a) 0 < α ≤ 1; (b) 1 < α ≤ 2.

1.4.1 Mittag-Le�er function with two parameters

The two-parameter Mittag-Le�er function is an entire function de�ned by
the series representation

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β ∈ R, z ∈ C. (1.21)
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It is a generalization of the one parameter Mittag-Le�er function

Eα(z) = Eα,1(z),

and

E1,2(z) =
ez − 1

z
, E2,2(−z2) =

sin z

z
, E2,2(z

2) =
sinh z

z
.

For 0 < α < 2 and β > 0 the following asymptotic expansions hold as
|z| → ∞

Eα,β(z) =


1

α
z(1−β)/α exp(z1/α) + εα,β(z), | arg z| ≤ µ,

εα,β(z), µ ≤ | arg z| ≤ π,
(1.22)

where µ is such that απ/2 < µ < min{π, απ} and

εα,β(z) = −
N−1∑
k=1

z−k

Γ(β − αk)
+O(|z|−N), |z| → ∞.

The asymptotic expansion (1.22) implies the estimate ([89], Theorem 1.6)

|Eα,β(z)| ≤ C

1 + |z|
, µ ≤ | arg z| ≤ π. (1.23)

Moreover, taking into account the identity Γ(−n)−1 = 0 for n ∈ N0, we derive
from (1.22) two useful asymptotic expressions for |z| → ∞ and | arg z| <
(1− α/2)π

Eα(−z) ∼ z−1

Γ(1− α)
, α > 0,

Eα,β(−z) ∼ − z−2

Γ(β − 2α)
, α > 0, β − α = 0,−1,−2, ...

(1.24)

The relations

d

dz
Eα(−zα) = −zα−1Eα,α(−zα), z ∈ C\(−∞, 0], (1.25)

can be derived directly from the de�nition (1.21) of the Mittag-Le�er function.
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The Mittag-Le�er function of real negative argument is completely mono-
tone under some restrictions of the parameters. More precisely, it satis�es the
property [83]:

Eα,β(−t) ∈ CMF for t > 0 i� 0 < α ≤ 1, β ≥ α. (1.26)

The Laplace transform of the function of Mittag-Le�er type tβ−1Eα,β(−λtα),
t > 0, is given by

L
{
tβ−1Eα,β(−λtα)

}
(s) =

sα−β

sα + λ
, t > 0. (1.27)

It is relevant to point out the following representation of the functions of
Mittag-Le�er type tβ−1Eα,β(−λtα) (excluding the case α = β = 1) as Laplace
transform [47]

tβ−1Eα,β(−λtα) =

∫ ∞
0

e−rtPα,β(r;λ) dr, (1.28)

where

Pα,β(r;λ) =
rα sin βπ + λ sin(β − α)π

π (r2α + 2λrα cosαπ + λ2)
rα−β.

This representation can be derived by inversion of (1.27). Let λ > 0 and
0 < α ≤ β ≤ 1. Then Pα,β(r;λ) ≥ 0 and representation (1.28) implies the
complete monotonicity of the function tβ−1Eα,β(−λtα).

Consider the ordinary di�erential equation of fractional order α > 0

(CD
α
t u)(t) + λu(t) = f(t), t > 0, λ ∈ R, (1.29)

with initial conditions u(0) = a and u(k)(0) = 0, k = 1, 2, . . . ,m − 1, where
0 < m − 1 < α ≤ m. The solution can be obtained by applying Laplace
transform and is given by:

u(t) = aEα(−λtα) +

∫ t

0

τα−1Eα,α(−λτα)f(t− τ) dτ. (1.30)

In the case α ∈ (0, 1) (slow relaxation) the following estimates turn out
to be useful: for any λ satisfying λ ≥ λ0 > 0 and any T > 0 there exists a
constant C > 0, depending on α, T, λ0, such that

0 < C ≤ λ

∫ T

0

tα−1Eα,α(−λtα) dt < 1. (1.31)
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These bounds are useful in the study of direct and inverse problems for inhomo-
geneous time-fractional di�usion equations, based on eigenfunction expansion
[96].

1.4.2 Prabhakar function

The Prabhakar function (or three parameter Mittag-Le�er function) is de-
�ned as follows [43, 91]

Eδ
α,β(z) =

∞∑
k=0

(δ)k
k!

zk

Γ(αk + β)
, z ∈ C, α ∈ R+, β, δ ∈ R, (1.32)

where (δ)k denotes the Pochhammer symbol

(δ)k = δ(δ + 1) . . . (δ + k − 1), k ∈ N, (δ)0 = 1.

It is a generalization of the classical Mittag-Le�er functions Eα(z) and Eα,β(z):

Eα(z) = E1
α,1(z), Eα,β(z) = E1

α,β(z).

The asymptotic behavior of the three-parameter Mittag-Le�er function of real
negative argument can be obtained from the expansion

Eδ
α,β(−t) =

∞∑
j=0

t−δ−j

Γ(β − α(δ + j))

(δ)j
j!
, t→ +∞. (1.33)

Recall also the Laplace transform pair

L{tβ−1Eδ
α,β(−λtα)}(s) =

sαδ−β

(sα + λ)δ
. (1.34)

The following relations can be established by the use of identity (1.34)

Jγt
(
tβ−1Eδ

α,β(atα)
)

= tβEδ
α,β+γ(at

α), (1.35)(
tβ−1Eδ

α,β(atα)
)
∗
(
tβ0−1Eδ0

α,β0
(atα)

)
= tβ+β0−1Eδ+δ0

α,β+β0
(atα). (1.36)

The Prabhakar type function obeys the following complete monotonicity
property:

If 0 < α ≤ 1, 0 < αδ ≤ β ≤ 1, then tβ−1Eδ
α,β(−tα) ∈ CMF . (1.37)

Further details on Fractional Calculus and Mittag-Le�er functions can be
found in [58, 89, 45, 43, 86]. For generalizations and a survey of special functions
related to Fractional Calculus we refer to [59, 60].
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1.5 Functions of Wright type

The Wright function Wλ,µ(·) was introduced and studied by E. Maitland
Wright in a series of papers [106, 107]. It is an entire function de�ned by the
series expansion

Wλ,µ(z) =
∞∑
n=0

zn

n!Γ(λn+ µ)
, λ > −1, µ ∈ C, z ∈ C.

In particular, the function with λ = −γ, µ = 1 − γ, where 0 < γ < 1, plays
a crucial role in the study of fractional evolution equations and is sometimes
referred to as M-Wright or Mainardi function. The Mainardi function is an
entire function of Wright type de�ned as [75, 45]

Mγ(z) =
∞∑
n=0

(−z)n

n!Γ(−γn+ 1− γ)
=

1

2πi

∫
Γ

σγ−1 exp (σ − zσγ) dσ, (1.38)

where 0 < γ < 1, z ∈ C, and Γ is a contour which starts and ends at −∞ and
encircles the origin counterclockwise. The Mainardi function is related to the
Mittag-Le�er function Eγ(·) through the Laplace transform identity

L{Mγ(·)}(s) =

∫ ∞
0

e−srMγ(r) dr = Eγ(−s), 0 < γ < 1. (1.39)

It is proven in the original paper [107] that the function Mγ(z) admits the
following asymptotic expansion in the sector | arg z| < min{(1− γ)3π/2, π}

Mγ(z) ∼ a(γ)z
γ−1/2
1−γ exp

(
−b(γ)z

1
1−γ

)
, |z| → ∞, (1.40)

where a(γ) and b(γ) are positive constants depending only on γ, a(γ) =
Ab(γ)γ−1/2, b(γ) = (1− γ)γγ/(1−γ), A > 0.

Consider the function Lγ(·) de�ned by the Laplace transform pair

L{Lγ(·)}(s) =

∫ ∞
0

e−srLγ(r) dr = exp(−sγ), 0 < γ < 1. (1.41)

It is referred to as L�evy extremal stable density (L�evy one-sided stable distri-
bution), see e.g. [38, 76, 82].

The function Lγ(z) is related to Mγ(z) via the identity (see e.g. [75, 90])

Lγ(z) = γz−γ−1Mγ

(
z−γ
)
, 0 < γ < 1, (1.42)
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for z ∈ C cut along the negative real axis. The L�evy extremal stable density
admits the series representation

Lγ(z) =
1

πz

∞∑
n=1

(−1)n+1 Γ(γn+ 1)

n!

sin(γnπ)

zγn
, 0 < γ < 1, (1.43)

which can be deduced from (1.38), (1.42), and the property of the Gamma
function

π

sin(γπ)
= Γ(γ)Γ(1− γ). (1.44)

The �rst term of the series in (1.43) provides the following asymptotic expres-
sion of Lγ(z) for large |z| in the complex plane cut along the negative real
axis

Lγ(z) ∼ c(γ)

zγ+1
, |z| → ∞, (1.45)

with c(γ) = γ/Γ(1 − γ), where the property of the Gamma function (1.44) is
used.

Applying (1.42), the asymptotic behavior of Lγ(z) for small |z| can be de-
rived from (1.40)

Lγ(z) ∼ γa(γ)z−
2−γ

2(1−γ) exp
(
−b(γ)z−

γ
1−γ

)
, |z| → 0, (1.46)

for z belonging to the sector | arg z| < min{(1/γ−1)3π/2, π}. We notice that,
by restricting z to the real positive half-line z = t ∈ (0,∞) in (1.46), resp.
(1.45), we recover the asymptotic formulae established in [82].

The functions Mγ and Lγ, 0 < γ < 1, are unilateral probability density
functions (PDF), that is

Mγ(r) ≥ 0, r ≥ 0;

∫ ∞
0

Mγ(r) dr = 1, (1.47)

and

Lγ(r) ≥ 0, r ≥ 0;

∫ ∞
0

Lγ(r) dr = 1. (1.48)

The properties can be deduced from the Laplace transform pairs (1.39) and
(1.41). The non-negativity ofMγ and Lγ follows from the complete monotonic-
ity of Eγ(−s) and exp(−sγ) for s > 0 and 0 < γ ≤ 1 by the use of Bernstein's
theorem.
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In the particular case γ = 1/2 series (1.38) and (1.42) yield the representa-
tions

M1/2(z) =
1√
π

exp(−z2/2) (1.49)

and

L1/2(z) =
1

2
√
πz3/2

exp(−1/(4z)). (1.50)

For more details on the functions Mγ and Lγ we refer to [45, 75], see also
[76], where these two functions appear in the context of the one-dimensional
space-time fractional di�usion-wave equation.
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Chapter 2

Introduction to
subordination principle

Bernstein functions and related classes of functions play a prominent role
in the theory of generalized fractional evolution equations and appear in appli-
cations quite naturally. First we list de�nitions and basic properties of these
classes of functions. For a uni�ed approach to the variety of evolution equations
with fractional derivatives we use the framework of abstract Volterra equations,
a short introduction to which is given next. The rest of the chapter is devoted
to subordination principle for evolution equations with the main emphasis on
two general theorems.

2.1 Bernstein functions

Four special classes of functions play an essential role in this dissertation: the
classes of completely monotone functions (CMF), Bernstein functions (BF),
Stieltjes functions (SF), and complete Bernstein function (CBF). Their de�ni-
tions and basic properties, which are used in the dissertation, are summarized
next. We use the terminology of the monograph [101].

The class CMF of completely monotone functions consists of all real-valued
in�nitely di�erentiable on R+ function φ(t), satisfying inequalities (1.1). Basic
examples of completely monotone functions are e−at for a ≥ 0, tα−1 for 0 ≤ α ≤
1, as well as some generalizations of these two functions in terms of Mittag-
Le�er functions, see (1.26) and (1.37).

The class BF of Bernstein function consists of all non-negative functions
φ(t) de�ned on R+, such that φ′(t) ∈ CMF .

21
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The class of Stieltjes functions (SF) consists of all functions de�ned on R+

which have the representation (see [62])

φ(s) =
a

s
+ b+

∫ ∞
0

e−sτψ(τ) dτ, s > 0, (2.1)

where a, b ≥ 0, ψ ∈ CMF ∩ L1
loc(R+), and the Laplace transform of ψ exists

for any s > 0.
A function φ de�ned on R+ is said to be a complete Bernstein function

(φ ∈ CBF) if and only if φ(s)/s ∈ SF , s > 0.
Basic examples of Stieltjes and complete Bernstein functions are the follow-

ing:
if α ∈ [0, 1] then s−α ∈ SF , sα ∈ CBF .

This follows by plugging ψ(t) = ωα(t) in (2.1), and taking into account (1.4).
Note that ωα(t), de�ned in (1.3), is completely monotone for α ∈ (0, 1).

A selection of properties of the above classes of functions is given in the next
proposition. The sign ◦ denotes composition of functions from the correspond-
ing classes. For the sake of brevity here and throughout the whole dissertation
the abbreviation �i�� is used instead of �if and only if�.

Proposition 2.1. Let s > 0. The following properties are satis�ed:

(P1) The class CMF is closed under pointwise addition, multiplication, and
convergence.

(P2) The classes BF , CBF , and SF are closed under pointwise addition,
multiplication with positive numbers, and convergence.

(P3) SF ⊂ CMF , CBF ⊂ BF .

(P4) If φ ∈ BF then φ(s)/s ∈ CMF .

(P5) Let φ(s) > 0. Then φ ∈ BF i� ψ ◦ φ ∈ CMF for every ψ ∈ CMF .

(P6) Let φ ∈ L1
loc(R+). Then φ ∈ CMF i� φ̂(s) ∈ SF and lims→+∞ φ̂(s) = 0.

(P7) φ ∈ SF i� sφ(s) ∈ CBF .

(P8) Let φ 6= 0. Then φ(s) ∈ CBF i� (φ(s))−1 ∈ SF .

(P9) Let φ 6= 0. Then φ(s) ∈ CBF i� s/φ(s) ∈ CBF .
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(P10) Let φ 6= 0. Then φ(s) ∈ SF i� (sφ(s))−1 ∈ SF .

(P11) CBF ◦ CBF ⊂ CBF .

(P12) CBF ◦ SF ⊂ SF .

(P13) Let φ, ψ ∈ CBF . Assume α1, α2 ∈ (0, 1) are such that α1 +α2 ≤ 1. Then

φα1(s) · ψα2(s) ∈ CBF .

(P14) Let φ, ψ ∈ CBF and α ∈ [−1, 1]\{0}. Then

(φα(s) + ψα(s))1/α ∈ CBF .

(P15) Every function φ from the classes CBF and SF admits an analytic ex-
tension to C\(−∞, 0], such that (φ(z))∗ = φ(z∗), where ∗ denotes the
complex conjugate, and

| arg φ(z)| ≤ | arg z|, z ∈ C\(−∞, 0].

Moreover, =z · =φ(z) ≥ 0 for φ ∈ CBF and =z · =φ(z) ≤ 0 for φ ∈ SF .

Proof. Properties (P1), (P2), the �rst part of (P3), and (P7) follow directly
from the de�nitions of the spaces. Properties (P9) and (P10) follow easily from
(P8), taking into account (P7). For proofs of the rest of the statements we refer
to [101], Chapters 6 and 7, and [49], Theorem 2.6, see also [93], Section 4.1.

We close this section with some remarks.
According to (P1) the product of two completely monotone functions is

again completely monotone. Such a nice property does not hold for the other
three classes. However, according to (P13)

if φ, ψ ∈ CBF then
√
φ · ψ ∈ CBF . (2.2)

A useful result is the following: If φ ∈ BF then for any τ > 0

φ(s)

s
e−τφ(s) ∈ CMF , s > 0. (2.3)

Indeed, according to (P5), ϕ(s) ∈ BF is equivalent to e−τϕ(s) ∈ CMF . More-
over, (P4) yields φ(s)/s ∈ CMF . Then (P1) implies that the product of these
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two completely monotone functions is again completely monotone, i.e. (2.3) is
satis�ed.

For convenience we de�ne also the class of functions CMF0. The function
φ ∈ CMF0 if the Laplace transform φ̂(s) exists for all s > 0 and φ̂(s) ∈ SF .
According to (2.1) the functions from the class CMF0 admit the representation

φ(t) = φ0δ(t) + φ1(t), (2.4)

where φ0 ≥ 0 is a constant, δ(·) denotes the Dirac delta function, and φ1(t) ∈
L1
loc(R+) is a completely monotone function. Property (P6) implies

φ0 = lim
s→∞

φ̂(s).

2.2 Abstract Volterra integral equations

Evolution equations are equations that can be interpreted as the di�erential
or integro-di�erential law of the development (evolution) in time of a system.
An example is the classical one-dimensional di�usion equation

∂u

∂t
=
∂2u

∂x2
, (2.5)

where u(x, t) is the state of a system at time t > 0 at point x ∈ R. If the
solution u(x, t) of such an equation is regarded as an element of some space
of functions in x that depend on a parameter t, then one arrives at abstract
evolution equations.

Since many of the results in this dissertation will be formulated in the
general setting of abstract evolution equations, we give some basic de�nitions.

Let X be a Banach space with norm ‖.‖. Let A be a closed linear operator
in X with dense domain D(A) ⊂ X, equipped with the graph norm ‖.‖A,

‖x‖A := ‖x‖+ ‖Ax‖, x ∈ D(A).

Denote by %(A) the resolvent set of A and by R(s, A) the resolvent operator of
A: R(s, A) = (s− A)−1, s ∈ %(A).

If Y is another Banach space, by B(X, Y ) we denote the space of all bounded
linear operators from X to Y ; B(X) = B(X,X).
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The most prominent abstract evolution equation is the classical �rst order
Cauchy problem [2, 36, 108]

u′(t) = Au(t), t > 0; u(0) = v ∈ X, (2.6)

with its equivalent formulation - the semigroup theory. Classical models of
relaxation or di�usion processes, such as (2.5), are particular cases of (2.6).

The second order abstract Cauchy problem [2]

u′′(t) = Au(t), t > 0; u(0) = v ∈ X, u′(0) = 0, (2.7)

is another classical example of abstract evolution equation. Although the second
initial condition can be an arbitrary element of X, for continuity reasons in this
dissertation we consider only initial conditions of the above type. Equations
modeling di�erent oscillation or wave phenomena are particular cases of (2.7).

In this dissertation we consider evolution equations, which contain opera-
tors of Fractional Calculus. In contrast to classical di�erential operators, the
fractional derivatives have a nonlocal character, which makes them relevant in
modeling of materials and processes with memory.

Let CD
α
t be the Caputo fractional derivative of order α ∈ (0, 2]. The most

extensively studied fractional evolution equation is

CD
α
t u(t) = Au(t), t > 0, (2.8)

with the following initial conditions:

u(0) = v ∈ X for α ∈ (0, 1];

u(0) = v ∈ X, u′(0) = 0 for α ∈ (1, 2].

The classical abstract Cauchy problems (2.6) and (2.7) are particular cases of
(2.8) obtained for α = 1 and α = 2, respectively.

For a uni�ed approach to the di�erent evolution equations in this disser-
tation, we rewrite them as equivalent Volterra integral equations and apply
for the study of the obtained weaker formulations the theory developed in the
monograph [93]. The notions of solution, well-posedness, and solution operator,
de�ned next for Volterra integral equations, are used also for the corresponding
equivalent Cauchy problems.

Let A be a closed linear unbounded operator, densely de�ned in a Banach
space X. Consider the Volterra integral equation

u(t) =

∫ t

0

k(t− τ)Au(τ) dτ + f(t), t > 0, (2.9)
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with a scalar kernel k(t) ∈ L1
loc(R+).

De�nition 2.1. A function u ∈ C(R+;X) is called a strong solution of equa-
tion (2.9) if u ∈ C(R+;D(A)) and (2.9) holds on R+.

De�nition 2.2. Equation (2.9) is said to be well posed if for each v ∈ D(A),
there is a unique strong solution u(t; v) of

u(t) = v +

∫ t

0

k(t− τ)Au(τ) dτ, t > 0, v ∈ D(A), (2.10)

and {vn} ⊂ D(A), vn → 0 imply u(t; vn) → 0 in X, uniformly on compact
intervals.

Suppose (2.9) is well posed. Then the solution operator S(t) for (2.9) is
de�ned by:

S(t)v = u(t; v), v ∈ D(A), t ≥ 0.

The solution operator S(t) is linear for each t ≥ 0. Since S(t) is a bounded
operator, it admits extension to all of X, S(t)v is continuous for each v ∈ X.

Since (2.9) is a convolution equation, it is natural to employ the Laplace

transform for its study. Suppose the Laplace transform k̂(s) of the kernel k(t)

exists and k̂(s) 6= 0 for all s > 0 and set for the sake of brevity

g(s) =
(
k̂(s)

)−1

, s > 0. (2.11)

Assume moreover that g(s) ∈ %(A) for any s > 0.
For instance, the Cauchy problem (2.8) corresponds to (2.10) with k(t) =

ωα(t) and g(s) = sα. Let us denote by Sα(t) the related solution operator.
In particular, the solution operator S1(t) of (2.6) is a C0-semigroup and the
solution operator S2(t) of (2.7) is a strongly continuous cosine family, see [2].

De�nition 2.3. A solution operator S(t) is called bounded if there exists a
constant C ≥ 1 such that

‖S(t)‖ ≤ C for all t ≥ 0.

Suppose S(t) is a bounded solution operator for (2.10). Then the Laplace
transform

H(s) =

∫ ∞
0

e−stS(t) dt (2.12)
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is well de�ned for <s > 0 and is given by

H(s) =
g(s)

s
(g(s)− A)−1, (2.13)

where the function g(s) is de�ned in (2.11).
The Generation Theorem for abstract Volterra equations ([93], Theorem

1.3) is formulated next.

Theorem 2.1. [93] Equation (2.9) is well posed and admits a bounded solution
operator S(t) satisfying ‖S(t)‖ ≤ C, t ≥ 0, i� the following conditions hold.

(H1) k̂(s) 6= 0 and (k̂(s))−1 ∈ %(A) for all s > 0;
(H2) the estimates

‖H(n)(s)‖ ≤ C
n!

sn+1
for all s > 0, n ∈ N0, (2.14)

are satis�ed, where H(s) is de�ned in (2.13).

In the case of classical Cauchy problem (2.6) (k(t) ≡ 1, g(s) = s, H(s) =
(s−A)−1) Theorem 2.1 is known as the Hille-Yosida theorem for C0 semigroups,
see e.g. [2, 108].

A generalization of the de�nition of bounded analytic semigroup (see e.g.
[2], Def. 3.7.3) is given next.

De�nition 2.4. A solution operator S(t) is said to be a bounded analytic so-
lution operator of angle θ0 ∈ (0, π/2] if S(·) : R+ → B(X) admits an analytic
extension S(z) to the sector | arg z| < θ0, which is bounded on each subsector
| arg z| ≤ θ, where θ < θ0.

Let us note that a solution operator S(t), which is bounded (i.e. bounded
for t ∈ [0,∞)), and admits an analytic extension to some sector in the complex
plane, is not necessarily a bounded analytic solution operator.

Next we formulate the generation theorem for bounded analytic solution
operators ([93], Theorem 2.1).

Theorem 2.2. [93] Equation (2.9) admits a bounded analytic solution operator
S(t) of angle θ0 ∈ (0, π/2] i� the following conditions hold.

(A1) k̂(s) admits meromorphic extension to Σ(θ0 + π/2);

(A2) k̂(s) 6= 0 and (k̂(s))−1 ∈ %(A) for all s ∈ Σ(θ0 + π/2);
(A3) For each θ < θ0 there is a constant C = C(θ) such that H(s), de�ned in
(2.13), satis�es the estimate

‖H(s)‖ ≤ C

|s|
for all s ∈ Σ(θ + π/2). (2.15)
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2.3 Subordination for fractional evolution equa-

tions

Subordination principle for fractional evolution equations is studied in [9].
The main results are summarized in the next theorem.

Theorem 2.3. Let A be a closed linear and densely de�ned operator in X.
Assume problem (2.8) is well posed for some α, 0 < α ≤ 2. Let β be such
that 0 < β < α and set γ = β/α. Then problem (2.8) with α replaced by β is
well posed and the corresponding solution operators Sα and Sβ are related by
the identity

Sβ(t) =

∫ ∞
0

ϕγ(t, τ)Sα(τ) dτ, t > 0. (2.16)

The subordination kernel ϕγ(t, τ) admits the representation

ϕγ(t, τ) = t−γMγ(τt
−γ),

where Mγ(·) is the Mainardi function (1.38). Moreover, if Sα is a bounded
solution operator, then Sβ is a bounded analytic solution operator of angle

θ(γ) = min

{(
1

γ
− 1

)
π

2
,
π

2

}
. (2.17)

Let us note that due to the properties (1.47) of Mainardi function the sub-
ordination kernels ϕγ(t, τ) are unilateral probability density functions.

Two basic examples of applications of Theorem 2.3 are considered next.

Example 2.1. Consider the fractional relaxation-oscillation equation, which is
the scalar version of equation (2.8), where X = R, and the operator A = −λ,
λ > 0, is multiplication with a constant. Set v = 1. Then the solution is given
by the Mittag-Le�er function

Sα(t) = Eα(−λtα), t > 0.

Let 0 < β < α and set γ = β/α. Then subordination relation (2.16) yields the
following relation between Mittag-Le�er functions

Eβ(−λtβ) = t−γ
∫ ∞

0

Mγ

(
τt−γ

)
Eα(−λτα) dτ, t > 0, (2.18)
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where Mγ(·) is the Mainardi function. Useful relations can be deduced from
(2.18) by setting α = 1, α = 2, or β = α/2. For example, (2.18) with α = 1
implies (1.39), with α = 2 gives

Eβ(−λtβ) = t−β/2
∫ ∞

0

Mβ/2

(
τt−β/2

)
cos(
√
λτ) dτ, t > 0,

and with β = α/2 yields by the use of (1.49)

Eα/2(−λtα/2) =
1√
πt

∫ ∞
0

e−
τ2

2tEα(−λτα) dτ, t > 0.

Example 2.2. Consider the one-dimensional Cauchy problem for the fractional
di�usion-wave equation:

CD
α
t u(x, t) =

∂2

∂x2
u(x, t), x ∈ R, t > 0, 0 < α ≤ 2, (2.19)

with conditions u(±∞, t) = 0, u(x, 0) = f(x), ut(x, 0) = 0 (the last one only
for 1 < α ≤ 2). Set

X = Lp(R), 1 ≤ p <∞, or X = C0(R); (2.20)

A =
∂2

∂x2
, D(A) = {f ∈ X : f ′′ ∈ X},

where C0(R) is the space of continuous functions vanishing at in�nity.
For α = 2 problem (2.19) is the second order Cauchy problem with solution

operator S2(t) given by the d'Alembert formula

(S2(t)f)(x) =
1

2
(f(x+ t) + f(x− t)), t ≥ 0, x ∈ R, f ∈ X. (2.21)

If we set α = 2 in Theorem 2.3 and use (2.21) then for all α ∈ (0, 2) we
obtain

(Sα(t)f)(x) = t−α/2
∫ ∞

0

Mα/2(τt
−α/2)(S2(τ)f)(x) dτ (2.22)

=
1

2
t−α/2

∫ ∞
−∞

Mα/2(|τ |t−α/2)f(x− τ) dτ,

where t > 0 and x ∈ R. This is a well-known result, see e.g. [74]. Taking into
account (1.49), we recover from (2.22) the solution formula for the �rst order
Cauchy problem

(S1(t)f)(x) =
1

2
√
πt

∫ ∞
−∞

f(x− τ)e−τ
2/4t dτ, t > 0, x ∈ R. (2.23)
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For α ∈ (0, 1) the fractional di�usion-wave equation (2.19) models anoma-
lous di�usion, while for α ∈ (1, 2) it governs the propagation of mechanical
di�usive waves, i.e. interpolates between di�usion and wave propagation [75].
Indeed, the time-fractional di�usion-wave equation (2.19) with α ∈ (1, 2) ex-
hibits intermediate character regarding the response to a localized disturbance.
In this case a disturbance spreads in�nitely fast [41], which is typical for di�u-
sion. On the other hand, the fundamental solution possesses a maximum that
disperses with a �nite speed [41, 72], which is typical for the classical wave
equation. Moreover, the fundamental solution 1

2t
−α/2Mα/2(|τ |t−α/2) is a spatial

probability density function evolving in time, which is unimodal in the di�usion
regime and bimodal in the wave propagation regime [75].

2.4 General subordination theorems

The following generalization of Theorem 2.3 will play a central role in this
dissertation. A more general theorem for completely positive kernels can be
found in [93], Theorem 4.1. Our formulation is adapted to the framework of
Bernstein functions, which is more convenient for application.

Theorem 2.4. Let A be a closed linear and densely de�ned operator in X.
Assume the Cauchy problem (2.8) is well posed for some α, 0 < α ≤ 2, and
admits a bounded solution operator Sα(t). For the kernel k(t) of the Volterra

integral equation (2.9) assume k(t) ∈ L1
loc(R+), k̂(s) exists for s > 0, k̂(s) 6= 0

and the function g(s) = (k̂(s))−1 satis�es the condition

g(s)1/α ∈ CBF , s > 0. (2.24)

Then problem (2.9) admits a bounded solution operator S(t), which is related
to Sα(t) via the subordination identity

S(t) =

∫ ∞
0

ϕ(t, τ)Sα(τ) dτ, t > 0, (2.25)

where

ϕ(t, τ) =
1

2πi

∫ c+i∞

c−i∞

g(s)1/α

s
exp

(
st− τg(s)1/α

)
ds, c > 0.
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The subordination kernel ϕ(t, τ) is a unilateral probability density function
(PDF) in τ when t > 0 is considered as a parameter, that is

ϕ(t, τ) ≥ 0,

∫ ∞
0

ϕ(t, τ) dτ = 1, t, τ > 0. (2.26)

Proof. To prove that problem (2.9) is well posed and admits a bounded solu-
tion operator we will check (H1) and (H2) of the Generation theorem (The-
orem 2.1). First, the existence of a bounded solution operator Sα(t) implies
by the Generation theorem that sα ∈ %(A) for all s > 0, thus R+ ⊂ %(A).
Assumption (2.24) implies that g(s) : R+ → R+ and thus g(s) ⊂ %(A) for all
s > 0. Therefore, (H1) is ful�lled and H(s) in (2.13) is well de�ned.

Now we prove that the conditions (H2) of the Generation theorem are
ful�lled. Set

h(s, τ) =
g(s)1/α

s
exp

(
−τg(s)1/α

)
. (2.27)

Assumption (2.24) implies that the function h(s, τ) is completely monotone as
a function of s, s > 0, for any τ > 0 considered as a parameter, see (2.3).

Let

H(s) =

∫ ∞
0

h(s, τ)Sα(τ) dτ, (2.28)

where h is de�ned in (2.27). Since the Laplace transform of the solution oper-
ator Sα(t) is given by (2.13) with g(s) = sα, that is∫ ∞

0

e−stSα(t) dt = sα−1(sα − A)−1, (2.29)

we derive

H(s) =
g(s)1/α

s

∫ ∞
0

exp
(
−τg(s)1/α

)
Sα(τ) dτ =

g(s)

s
(g(s)− A)−1.

Therefore, the function (2.13) admits the representation (2.28).
It is assumed that Sα(t) is a bounded solution operator, that is, ‖Sα(t)‖ ≤

C, t ≥ 0, for some C ≥ 1.
De�ne the operator

Lns =
(−1)n

n!

∂n

∂sn
.

To establish (H2) we will prove

‖LnsH(s)‖ ≤ C

sn+1
, s > 0, n ∈ N0. (2.30)
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Since Lnsh(s, τ) ≥ 0 due to the complete monotonicity of h(s, τ), we obtain
from (2.28) for s > 0, n ∈ N0

‖LnsH(s)‖ =

∥∥∥∥∫ ∞
0

Lnsh(s, τ)Sα(τ) dτ

∥∥∥∥
≤
∫ ∞

0

Lnsh(s, τ)‖Sα(τ)‖ dτ

≤ C

∫ ∞
0

Lnsh(s, τ) dτ

= CLns

∫ ∞
0

h(s, τ) dτ = CLns

(
1

s

)
=

C

sn+1
,

where we have used∫ ∞
0

h(s, τ) dτ = =

∫ ∞
0

g(s)1/α

s
exp

(
−τg(s)1/α

)
dτ

=
1

s

∫ ∞
0

e−ξ dξ =
1

s
, s > 0, (2.31)

and Lns (s
−1) = s−(n+1), which can be easily established by induction. In this

way we proved (H1) and (H2) for problem (2.9), which guarantees that it is
well posed and admits a bounded solution operator.

De�ne the function ϕ(t, τ) such that its Laplace transform with respect to
t satis�es

ϕ̂(s, τ) =

∫ ∞
0

e−stϕ(t, τ) dτ = h(s, τ). (2.32)

Since h(·, τ) ∈ CMF , according to Bernstein's theorem the function ϕ(t, τ)
exists and is nonnegative, ϕ(t, τ) ≥ 0. Let us also check that the function
ϕ(t, τ) is normalized. Applying (2.32) and (2.31) we deduce

L
{∫ ∞

0

ϕ(t, τ) dτ

}
(s) =

∫ ∞
0

ϕ̂(s, τ) dτ =

∫ ∞
0

h(s, τ) dτ =
1

s
, s > 0.

Then, taking the inverse Laplace transform, it follows∫ ∞
0

ϕ(t, τ) dτ = 1.
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Let the operator S(t) be de�ned by (2.25). Then (2.32) and identity (2.29)
imply for the Laplace transform of S(t)∫ ∞

0

e−stS(t) dt =

∫ ∞
0

ϕ̂(s, τ)Sα(τ) dτ

=
g(s)1/α

s

∫ ∞
0

exp
(
−τg(s)1/α

)
Sα(τ) dτ

=
g(s)

s
(g(s)− A)−1.

Therefore (2.13) is satis�ed and S(t) is the solution operator of problem (2.9)
due to the uniqueness property of Laplace transform.

Relation (2.25) suggests that the subordinated solution operator S(t) inher-
its the main properties of Sα(t). Since the solution operators S1(t) and S2(t)
of the classical problems (2.6) and (2.7) are well studied, Theorem 2.4 is most
useful for α = 1 and α = 2. Let us note that according to condition (2.24)
the general problem (2.9) is subordinated to the �rst order Cauchy problem
(2.6) if g(s) ∈ CBF and to the second order Cauchy problem (2.7) provided√
g(s) ∈ CBF .
Property (2.24) implies g(s)1/α1 ∈ CBF for any α1 > α. This follows from

the representation

g(s)1/α1 = (g(s)1/α)α/α1,

which implies that g(s)1/α1 = f1(f2(s)) is a composition of two complete Bern-
stein functions f1(s) = sα/α1 and f2(s) = g(s)1/α. According to property (P11)
in Proposition 2.1 it is again complete Bernstein function. For this reason it is
useful to know the smallest α > 0, for which (2.24) is satis�ed.

Let us note that the property h(s, τ) ∈ CMF holds under a weaker assump-
tion, namely CBF in (2.24) can be replaced by BF , see (2.3). However, there
is an instructive example in [62] showing that the class BF can lead to discon-
tinuous solutions. Therefore, in this dissertation we will work with condition
(2.24).

The fact that the function ϕ(t, τ) in subordination identity (2.25) is a PDF
has several important implications. One of them is that if ‖Sα(t)‖ ≤ C for
t ≥ 0, then the same holds for S(t). Indeed, from (2.25) it follows

‖S(t)‖ ≤
∫ ∞

0

ϕ(t, τ)‖Sα(τ)‖ dτ ≤ C

∫ ∞
0

ϕ(t, τ) dτ = C, t ≥ 0.
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Another implication is that positivity of the solutions is preserved after
subordination. To formulate this result in a general abstract setting we suppose
that X is an ordered Banach space (for a simple introduction see e.g. [2], [36]).
For example, such are the spaces of type Lp(Ω) or C0(Ω) for some Ω ∈ Rn,
n ∈ N, where C0(Ω) is the space of continuous functions vanishing at in�nity.
We consider the canonical ordering in these spaces: a function v ∈ X is positive
(in symbols: v ≥ 0) if v(x) ≥ 0 for (almost) all x ∈ Ω.

A solution operator S(t) in an ordered Banach space X is called positive if
v ≥ 0 implies S(t)v ≥ 0 for any t ≥ 0.

In other words, positivity of a solution operator means that positivity of the
initial condition is preserved in time.

Corollary 2.1. Let X be an ordered Banach space. Suppose that the conditions
of Theorem 2.4 are satis�ed and the solution operator Sα(t) is positive. Then
the solution operator S(t) is positive.

In general, the integral representation (2.25) implies that S(t) has at least
the same regularity as Sα(t). More detailed results are given next.

According to property (P15) in Proposition 2.1 the assumption g(s)1/α ∈
CBF in (2.24) implies that g(s)1/α admits an analytic extension to C\(−∞, 0]
and

| arg{g(s)1/α}| ≤ | arg s|, s ∈ C\(−∞, 0].

Then, according to Theorem 2.2 if Sα(t) is a bounded analytic solution oper-
ator of angle φ0 ∈ (0, π/2], the same holds true for the subordinated solution
operator S(t).

In the next theorem we make the following stronger assumption:

| arg{g(s)1/β}| ≤ | arg s|, 0 < β < α, s ∈ C\(−∞, 0]. (2.33)

Theorem 2.5. Suppose the assumptions of Theorem 2.4 and condition (2.33)
are satis�ed. Then S(t) is a bounded analytic solution operator of angle

θ∗ = min

{(
α

β
− 1

)
π

2
,
π

2

}
. (2.34)

If, moreover, Sα(t) is a bounded analytic solution operator of angle φ0 ∈
(0, π/2] then S(t) is a bounded analytic solution operator of angle

θ0 = min

{
α

β
φ0 +

(
α

β
− 1

)
π

2
,
π

2

}
. (2.35)
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Proof. Suppose �rst Sα(t) is a bounded solution operator, ‖Sα(t)‖ ≤ C for
t ≥ 0. Then the Laplace transform H(s) is de�ned for <s > 0 and satis�es

‖H(s)‖ =

∥∥∥∥∫ ∞
0

e−stSα(t) dt

∥∥∥∥ ≤ ∫ ∞
0

e−(<s)t‖Sα(t)‖ dt ≤ C

<s
, <s > 0.

Moreover, sα ∈ ρ(A) for <s > 0 and H(s) = sα−1 (sα − A)−1. Therefore

‖sα−1 (sα − A)−1 ‖ ≤ C

<s
, <s > 0,

which implies

‖sα (sα − A)−1 ‖ ≤ C

cos(arg s)
, <s > 0. (2.36)

Let s ∈ Σ(θ + π/2) for some �xed θ < θ∗, where θ∗ is de�ned in (2.34). Then∣∣∣arg g(s)1/α
∣∣∣ ≤ β

α

(
θ +

π

2

)
<
β

α

(
θ∗ +

π

2

)
≤ π

2
.

Thus, <g(s)1/α > 0 and we can replace s in (2.36) by g(s)1/α, which gives

‖g(s) (g(s)− A)−1 ‖ ≤ C

cos(arg g(s)1/α)
≤ C

cos
(
β
α

(
θ + π

2

)) = C1.

Therefore ∥∥∥∥g(s)

s
(g(s)− A)−1

∥∥∥∥ ≤ C1

|s|
, s ∈ Σ(θ + π/2).

This implies (see Theorem 2.2) that S(t) is a bounded analytic solution operator
of angle θ∗.

Suppose now that Sα(t) is a bounded analytic solution operator of angle φ0.
Then, according to Theorem 2.2, sα ∈ ρ(A) for s ∈ Σ(φ0 + π/2) and for each
φ < φ0

‖sα (sα − A)−1 ‖ ≤ C, s ∈ Σ(φ+ π/2),

which is equivalent to

‖z (z − A)−1 ‖ ≤ C, z ∈ Σ (α(φ+ π/2)) .

Let s ∈ Σ(θ + π/2) for some �xed θ < θ0, where θ0 is de�ned in (2.35). Then
g(s) ∈ Σ (α(φ0 + π/2)) and we can plug z = g(s) in the above inequality,
wnich yields ∥∥∥∥g(s)

s
(g(s)− A)−1

∥∥∥∥ ≤ C

|s|
, s ∈ Σ(θ + π/2).
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Therefore, according to Theorem 2.2, the solution operator S(t) is bounded
analytic of angle θ0.



Chapter 3

Space-time fractional
evolution equations

This chapter is devoted to subordination principle for the fractional evo-
lution equation with the Caputo derivative of order β ∈ (0, 1) and operator
−(−A)α, α ∈ (0, 1), where A generates a strongly continuous one-parameter
semigroup on a Banach space. Some properties of the subordination kernel are
established and representations in terms of Mainardi function Mβ and L�evy
extremal stable densities Lα are derived. Analyticity of the solution operator
is deduced by taking into account the asymptotic behavior of the subordina-
tion kernel. The subordination formulae are applied to the multi-dimensional
space-time fractional di�usion equation to obtain some closed-form solutions.
Integral representations in terms of Mittag-Le�er functions are derived for the
fundamental solution and the subordination kernel.

3.1 Derivation of subordination formula

Assume the operator A is a closed densely de�ned operator in a Banach
space X, which is the in�nitesimal generator of a bounded C0-semigroup.
Therefore, the classical abstract Cauchy problem

u′(t) = Au(t), t > 0; u(0) = v ∈ X, (3.1)

is well posed with a bounded solution operator. The assumptions on the oper-
ator A in particular imply that −A is a non-negative operator, i.e. (−∞, 0) ⊂
%(−A) and

‖λ(λ− A)−1‖ ≤ C <∞, λ > 0.

37
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For 0 < α < 1 we de�ne the fractional power (−A)α of the non-negative
operator −A using the Balakrishnan de�nition [8, 108]

(−A)αv =
sinαπ

π

∫ ∞
0

λα−1(λ− A)−1(−Av) dλ, v ∈ D(A). (3.2)

Then −(−A)α is a closed densely de�ned operator, which generates a bounded
analytic C0-semigroup [108]. This semigroup is the solution operator to the
abstract Cauchy problem

u′(t) = −(−A)αu(t), t > 0; u(0) = v ∈ X. (3.3)

This chapter is devoted to the Cauchy problem for the fractional evolution
equation

CD
β
t u(t) = −(−A)αu(t), t > 0; u(0) = v ∈ X; 0 < α, β ≤ 1, (3.4)

where CD
β
t is the Caputo time-fractional derivative. Applying Theorem 2.3, the

well-posedness of problem (3.3) implies that problem (3.4) is well posed.
In this chapter we use the double-index notation Sα,β(t) for the solution

operator of problem (3.4), where 0 < α, β ≤ 1. In particular, the solution
operator S1,1(t) to the classical problem (3.1) is the C0 - semigroup of operators
generated by the operator A. The solution operator corresponding to α = 1
is denoted in this chapter by S1,β(t) (while in the rest of the dissertation the
simpler notation Sβ(t) is used).

Our �rst aim is to obtain a subordination formula

Sα,β(t) =

∫ ∞
0

ψα,β(t, τ)S1,1(τ) dτ, t > 0,

which relates the solution operator Sα,β(t) of problem (3.4) with the solution
operator S1,1(t) of the classical abstract Cauchy problem (3.1), where ψα,β(t, τ)
is a unilateral probability density function in τ . To derive such a formula we
apply successively two already known subordination results.

First, let us set β = 1 in (3.4) and apply a classical theorem (see [108],
Chapter IX) according to which the operator −(−A)α generates a bounded
analytic semigroup Sα,1(t), related to the semigroup S1,1(t) via the identity

Sα,1(t) =

∫ ∞
0

fα(t, τ)S1,1(τ) dτ, t > 0, (3.5)
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where the subordination kernel fα(t, τ) is de�ned by the inverse Laplace inte-
gral

fα(t, τ) =
1

2πi

∫ σ+i∞

σ−i∞
ezτ−tz

α

dz, σ > 0. (3.6)

The semigroup Sα,1(t) is the solution operator to the Cauchy problem (3.3). It
is worth noting that in the scalar case −A = λ > 0 relation (3.5) reads

e−λ
αt =

∫ ∞
0

fα(t, τ)e−λτ dτ, t > 0. (3.7)

Second, according to the subordination principle for fractional evolution
equations, see Theorem 2.3, the well-posedness of problem (3.3) implies well-
posedness of problem (3.4) for all β ∈ (0, 1) and the corresponding solution
operator Sα,β(t) is expressed by the formula

Sα,β(t) =

∫ ∞
0

ϕβ(t, τ)Sα,1(τ) dτ, t > 0, (3.8)

where

ϕβ(t, τ) =
1

2πi

∫ σ+i∞

σ−i∞
zβ−1ezt−τz

β

dz, σ > 0. (3.9)

Since in the scalar case −A = λ > 0 the solution operator Sα,β(t) of problem
(3.4) is given by the Mittag-Le�er function Eβ(−λαtβ), the scalar version of
relation (3.8) is

Eβ(−λαtβ) =

∫ ∞
0

ϕβ(t, τ)e−λ
ατ dτ, t > 0. (3.10)

This holds for any 0 < α ≤ 1, while the function ϕβ(t, τ) is independent of α.
As a result of the successive application of the above two steps we deduce

Sα,β(t) =

∫ ∞
0

ϕβ(t, σ)

∫ ∞
0

fα(σ, τ)S1,1(τ) dτ dσ

=

∫ ∞
0

(∫ ∞
0

ϕβ(t, σ)fα(σ, τ) dσ

)
S1,1(τ) dτ. (3.11)

In this way we derived the following result.
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Theorem 3.1. Let A be a generator of a bounded C0-semigroup S1,1(t). Then
problem (3.4) admits a bounded solution operator Sα,β(t), which is related to
S1,1(t) via the subordination identity

Sα,β(t) =

∫ ∞
0

ψα,β(t, τ)S1,1(τ) dτ, t > 0, (3.12)

where the subordination kernel

ψα,β(t, τ) =

∫ ∞
0

ϕβ(t, σ)fα(σ, τ) dσ (3.13)

is a unilateral probability density in τ , i.e. it satis�es

ψα,β(t, τ) ≥ 0,

∫ ∞
0

ψα,β(t, τ) dτ = 1. (3.14)

Proof. The subordination identity is derived in (3.11). It remains to prove
(3.14). Since it is already well-known that fα and ϕβ are probability densities
(which can be also directly checked using the de�ning identities (3.6) and (3.9))
the fact that ψα,β is a PDF can be derived from the composition rule (3.13).

Alternatively, let us note that in the scalar case the subordination identity
(3.12) reduces to

Eβ(−λαtβ) =

∫ ∞
0

ψα,β(t, τ)e−λτ dτ, t > 0. (3.15)

Then the normalization identity can be derived by letting λ → 0 in (3.15),
which implies ∫ ∞

0

ψα,β(t, τ) dτ = Eβ(0) = 1.

The nonnegativity of the function ψα,β(t, τ) can be established from its Laplace
transform (3.15) by applying Bernstein's theorem. Indeed, the Mittag-Le�er
function Eβ(−λαtβ) is completely monotone as a function of λ > 0 for any
�xed t > 0 (as a composition of the completely monotone function Eβ(−ax)
and the Bernstein function λα, see property (P5) in Proposition 2.1).

The subordination identity (3.12) and (3.14) imply that if ‖S1,1(t)‖ ≤ C,
t ≥ 0, then

‖Sα,β(t)‖ ≤
∫ ∞

0

ψα,β(t, τ)‖S1,1(τ)‖ dτ ≤ C

∫ ∞
0

ψα,β(t, τ) dτ = C

for any t ≥ 0, 0 < α ≤ 1 and 0 < β ≤ 1.
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Let us note that in the case of ordered Banach space X, subordination iden-
tity (3.12) shows that positivity of the C0-semigroup S1,1(t) implies positivity
of the solution operator Sα,β(t) for any 0 < α ≤ 1 and 0 < β ≤ 1.

Proposition 3.1. The subordination kernel ψα,β(t, τ) obeys the following Laplace
transform pairs ∫ ∞

0

ψα,β(t, τ)e−λτ dτ = Eβ(−λαtβ), (3.16)

and ∫ ∞
0

ψα,β(t, τ)e−st dt = sβ−1τα−1Eα,α(−sβτα). (3.17)

Proof. For convenience we use in this chapter the following notations for the
Laplace transform

L{f(t, τ); t→ s} =

∫ ∞
0

e−stf(t, τ) dt

and the double Laplace transform

L2{f(t, τ); t→ s, τ → λ} =

∫ ∞
0

∫ ∞
0

e−(st+λτ)f(t, τ) dt dτ,

where, due to Fubini's theorem the order of integration may be switched for
su�ciently well behaved functions. The Laplace transform of the subordination
kernel ψα,β(t, τ) with respect to the variable τ is obtained in (3.15).

In order to �nd the Laplace transform of ψα,β(t, τ) with respect to t, we
note �rst that (3.15) and (1.27) imply

L2{ψα,β(t, τ); t→ s, τ → λ} = L{Eβ(−λαtβ); t→ s} =
sβ−1

sβ + λα
. (3.18)

Then, taking inverse Laplace transform L−1 {·;λ→ τ} in (3.18) we deduce by
the use of (1.27):

L{ψα,β(t, τ); t→ s} = sβ−1τα−1Eα,α(−sβτα).

Let us note that in the limiting case α = 1 and β = 1 the subordination
kernels are Dirac delta functions

f1(t, τ) = ϕ1(t, τ) = ψ1,1(t, τ) = δ(t− τ). (3.19)
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Moreover, the kernels fα(t, τ) and ϕβ(t, τ) are particular cases of the composite
kernel ψα,β(t, τ), namely

fα(t, τ) = ψα,1(t, τ), ϕβ(t, τ) = ψ1,β(t, τ). (3.20)

Therefore, the Laplace transform pairs for fα(t, τ) and ϕβ(t, τ) can be derived
from the identities (3.15), (3.18), and (3.17), taking β = 1 or α = 1, respec-
tively.

Remark 3.1. Let us emphasize that the integral expression in (3.13) is not
commutative: ψα,β(t, τ) 6≡

∫∞
0 fα(t, σ)ϕβ(σ, τ) dσ. This is due to the fact that

the order of the two steps in the derivation procedure of subordination identity
(3.12) is essential.

For example, let us consider the case α = β = 1/2, in which the subordina-
tion kernels can be expressed in terms of elementary functions as follows (e.g.
[108, 2]):

f1/2(t, τ) =
te−t

2/4τ

2
√
πτ 3/2

, ϕ1/2(t, τ) =
1√
πt
e−τ

2/4t. (3.21)

Plugging expressions (3.21) in the composition rule (3.13) we get

ψ1/2,1/2(t, τ) =

∫ ∞
0

ϕ1/2(t, σ)f1/2(σ, τ) dσ =

√
t

π
√
τ(t+ τ)

. (3.22)

The last formula can also be directly derived from eq. (3.54). On the other
hand, ∫ ∞

0

f1/2(t, σ)ϕ1/2(σ, τ) dσ =
2t

π(t2 + τ 2)
, (3.23)

which can be obtained by introducing a new integration variable (t2 + τ 2)/4σ.
A comparison of identities (3.22) and (3.23) con�rms the non-commutativity

pointed out in the remark.
Next we establish some properties of the subordination kernels based on the

Laplace transform pairs (3.15), (3.18), (3.17), and identities (3.20).

Proposition 3.2. Assume 0 < α, α′, β, β′ ≤ 1. Then

fαα′(t, τ) =

∫ ∞
0

fα(t, σ)fα′(σ, τ) dσ, (3.24)

ϕββ′(t, τ) =

∫ ∞
0

ϕβ(t, σ)ϕβ′(σ, τ) dσ. (3.25)
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Proof. To prove (3.24) we apply Laplace transform with respect to τ and obtain

by using (3.15) with β = 1 and Fubini's theorem L{fαα′(t, τ); τ → λ} = e−tλ
αα′

and

L
{∫ ∞

0

fα(t, σ)f ′α(σ, τ) dσ; τ → λ

}
=

∫ ∞
0

fα(t, σ)e−σλ
α′

dσ = e−tλ
αα′

.

In order to prove (3.25) we apply double Laplace transform, which gives by
using (3.15) and (3.18) with α = 1

L2

{∫ ∞
0

ϕβ(t, σ)ϕβ′(σ, τ) dσ; t→ s, τ → λ

}
= sβ−1

∫ ∞
0

e−σs
β

Eβ(−λσβ′) dσ = sβ−1 s
β(β′−1)

sββ′ + λ
=

sββ
′−1

sββ′ + λ

= L2{ϕββ′(t, τ); t→ s, τ → λ}.

To �nish the proof it remains to apply the uniqueness property of Laplace
transform.

Let us note that (3.24) is equivalent to the following natural operator iden-
tity

((−A)α)α
′
= ((−A)α

′
)α = (−A)αα

′
, 0 < α, α′ ≤ 1, (3.26)

for a generator −A of a bounded C0-semigroup. Indeed, (3.24) together with
subordination formula (3.5) shows that any of the operators in (3.26) is in-
�nitesimal generator of one and the same semigroup: Sαα′,1(t). For a di�erent
proof of (3.26) see e.g. [108], Chapter IX.

Identity (3.25) is related to successive application of the subordination prin-
ciple for time-fractional evolution equations and is in agreement with The-
orem 2.3. Let us note that the composite function ψα,β does not satisfy a
property, analogous to those in Proposition 3.2. This is due to the non-
commutativity of de�nition (3.13), see Remark 3.1.

Corollary 3.1. Let 0 < α ≤ β < 1. Under the conditions of Theorem 3.1 the
solution operator Sα,β(t) admits the representation

Sα,β(t) =

∫ ∞
0

ψβ,β(t, τ)Sα/β,1(τ) dτ, t > 0, (3.27)

where Sα/β,1(t) is the C0-semigroup generated by the operator −Aα/β and the
function ψβ,β(t, τ) is de�ned in (3.54).
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Proof. This subordination identity is derived by plugging in (3.12) the identity

fα(t, τ) =

∫ ∞
0

fβ(t, σ)fα/β(σ, τ) dσ

following from (3.24), and applying (3.13), Fubini's theorem, and (3.5).

3.2 The subordination kernel

In this section some representation formulae for the subordination kernel
ψα,β(t, τ) are derived.

3.2.1 Relations to Lα and Mβ

We start with scaling laws for the subordination kernels. From the de�ni-
tions (3.6), (3.9) and (3.13) of the subordination kernels fα, ϕβ and ψα,β we
derive the following self-similarity properties

fα(t, τ) = t−1/αfα(1, τ t−1/α), ϕβ(t, τ) = t−βϕβ(1, τ t−β), (3.28)

ψα,β(t, τ) = t−β/αψα,β(1, τ t−β/α). (3.29)

Introducing the functions of one variable Lα, Mβ and Kα,β as follows

Lα(r) = fα(1, r), Mβ(r) = ϕβ(1, r), Kα,β(r) = ψα,β(1, r), (3.30)

we deduce from (3.28) and (3.29) the following representations for the subordi-
nation kernels

fα(t, τ) = t−1/αLα(τt−1/α), ϕβ(t, τ) = t−βMβ(τt−β), (3.31)

ψα,β(t, τ) = t−β/αKα,β(τt−β/α). (3.32)

In addition, identities (3.19) and (3.20) imply for the new functions

Lα(r) = Kα,1(r), Mβ(r) = K1,β(r), (3.33)

and L1(r) = M1(r) = K1,1(r) = δ(r − 1).
From (3.30) and (3.15) we deduce:

L{Kα,β(r); r → λ} = Eβ(−λα), (3.34)

i.e. Kα,β(r) can be de�ned as the inverse Laplace transform of the Mittag-Le�er
function Eβ(−λα).
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Theorem 3.2. The subordination kernel admits the representation

ψα,β(t, τ) = t−β/αKα,β(τt−β/α),

where Kα,β(r) is a unilateral probability density function, i.e.

Kα,β(r) ≥ 0,

∫ ∞
0

Kα,β(r) dr = 1,

de�ned as the inverse Laplace transform of a Mittag-Le�er function:

Eβ(−λα) =

∫ ∞
0

e−λrKα,β(r) dr.

The Laplace transform pairs (1.41) and (1.39) for the functions Lα(r) and
Mβ(r) can be derived from (3.34), taking β = 1 and α = 1, respectively. There-
fore, we recognize the L�evy extremal stable density Lα(r) and the Mainardi
function Mβ(r), see Section 1.5.

In the next theorem we derive representations for the function Kα,β(r) in
terms of Lα(r) and Mβ(r).

Theorem 3.3. The function Kα,β(r) admits the following representations

Kα,β(r) =

∫ ∞
0

σ−1/αLα(rσ−1/α)Mβ(σ) dσ, (3.35)

Kα,β(r) =

∫ ∞
0

σβ/αLα(rσβ/α)Lβ(σ) dσ, (3.36)

Kα,β(r) = αrα−1

∫ ∞
0

σMα(σ)Mβ(σrα) dσ. (3.37)

Moreover, in the particular case α = β it holds

Kα,α(r) =
1

π

rα−1 sinαπ

r2α + 2rα cosαπ + 1
(3.38)

and if 0 < α ≤ β ≤ 1 then

Kα,β(r) =

∫ ∞
0

σ−β/αLα/β(rσ−β/α)Kβ,β(σ) dσ. (3.39)

Here Lα(r) is the L�evy extremal stable density and Mβ(r) is the Mainardi
function.
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Proof. Expression (3.35) follows directly from (3.13), (3.31) and (3.32). Rep-
resentations (3.36) and (3.37) can be deduced from (3.35) after applying the
formula (1.42) Representation (3.38) follows directly from (1.28) and (3.34) for
α = β. To prove (3.39) we �nd the inverse Laplace transform of Eβ(−λα) by us-
ing (1.28) and the following property (see e.g. [26]): If I(λ) = L{H(r); r → λ}
and I(λα) = L{Hα(r); r → λ} then

Hα(r) =

∫ ∞
0

σ−1/αLα(rσ−1/α)H(σ) dσ, 0 < α ≤ 1. (3.40)

(In fact, formula (3.40) can be veri�ed by proving that Laplace transforms of
both sides are equal.) From (3.40) and (3.34) it follows for 0 < α ≤ β ≤ 1

Kα,β(r) = L−1{Eβ(−(λα/β)β;λ→ r} =

∫ ∞
0

σ−β/αLα/β(rσ−β/α)Kβ,β(σ) dσ

and the last identity is proved.

3.2.2 Other representations and properties of Kα,β

Next, representations of the functionKα,β(r) are deduced by direct inversion
of the Laplace transform in (3.34).

Theorem 3.4. Assume

0 < α < max{β, 1− β/2} < 1. (3.41)

Then the function Kα,β(r) admits the representations

Kα,β(r) =
−1

π

∫ ∞
0

e−rσ={Eβ(−σαeiαπ)} dσ, (3.42)

Kα,β(r) =
1

πr

∞∑
n=0

(−1)n+1 Γ(αn+ 1)

Γ(βn+ 1)

sinαnπ

rαn
. (3.43)

Proof. Applying the complex Laplace inversion formula to (3.34) yields:

Kα,β(r) =
1

2πi

∫ c+i∞

c−i∞
eλrEβ(−λα) dλ, c > 0. (3.44)

For the multivalued function λα = exp(α lnλ) the principal branch is consid-
ered.
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Let �rst 0 < α, β < 1 are arbitrary and �x some θ0, which satis�es the
inequalities

π

2
< θ0 < min

{
1− β/2

α
π, π

}
. (3.45)

Since the Mittag-Le�er function is an entire function, Eβ(−λα) is analytic for
λ ∈ C\(−∞, 0]. Therefore, by the Cauchy's theorem, the integration in (3.44)
can be replaced by integration on the composite contour Γ+

1 ∪ Γ+
2 ∪ Γ+

3 ∪ Γ4 ∪
Γ−3 ∪ Γ−2 ∪ Γ−1 , where (with appropriate orientation)

Γ±1 = {λ = q ± iR, q ∈ (0, c)},
Γ±2 = {λ = Re±iθ, θ ∈ (π/2, θ0)}, R→∞,
Γ±3 = {λ = σe±iθ0, σ ∈ (ε, R)},
Γ4 = {λ = εeiθ, θ ∈ (−θ0, θ0)}, ε→ 0.

For the integration on Γ+
1 we obtain∣∣∣∣∫

Γ+
1

eλrEβ(−λα) dλ

∣∣∣∣ ≤ ∫ c

0

eqr|Eβ(−(q + iR)α)| dq → 0, R→∞, (3.46)

due to the asymptotic expansion (1.22) for the Mittag-Le�er function in the
integrand, which is satis�ed since (q + iR)α ∼ Rαeiαπ/2 as R → ∞ and π −
απ/2 > βπ/2. The integral on Γ−1 is treated in an analogous way. Further,∣∣∣∣∫

Γ+
2

eλrEβ(−λα) dλ

∣∣∣∣ ≤ ∫ θ0

π/2

eRr cos θ|Eβ(−Rαeiαθ)|Rdθ → 0, R→∞, (3.47)

where we have taken into account cos θ < 0 and the asymptotic expansion
(1.22) for the Mittag-Le�er function under the integral sign, which is satis�ed
due to the inequality π − αθ > βπ/2, implied by assumption (3.45). The
integral on Γ−2 is estimated analogously. Concerning the integral over Γ4 we
have∣∣∣∣∫

Γ4

eλrEβ(−λα) dλ

∣∣∣∣ ≤ ∫ θ0

−θ0
eεr cos θ|Eβ(−εαeiαθ)|ε dθ → 0, ε→ 0, (3.48)

since the Mittag-Le�er function is bounded as ε→ 0. Therefore, (3.44), (3.46),
(3.47), and (3.48) imply that Kα,β(r) is given by the integral over Γ+

3 ∪Γ−3 with
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ε→ 0 and R→∞, that is

Kα,β(r) = lim
ε→0,R→∞

1

2πi

∫
Γ+
3 ∪Γ−3

eλrEβ(−λα) dλ

= lim
ε→0,R→∞

1

2πi

(∫ R

ε

eσr(cos θ0+i sin θ0)Eβ(−σαeiαθ0)eiθ0 dσ

+

∫ ε

R

eσr(cos θ0−i sin θ0)Eβ(−σαe−iαθ0)e−iθ0 dσ

)
.

Therefore, for 0 < α, β < 1 the function Kα,β(r) admits the integral represen-
tation

Kα,β(r) =
1

π

∫ ∞
0

erσ cos θ0={ei(θ0+rσ sin θ0)Eβ(−σαeiαθ0)} dσ, (3.49)

with θ0 satisfying (3.45).
Suppose now that the parameters α and β obey the assumption (3.41).

Assume �rst α < 1− β/2. Then min
{

1−β/2
α π, π

}
= π in (3.45) and we can let

θ0 → π in (3.49), which implies (3.42). Let now 1 − β/2 < α < β. Then we
can repeat the above argument to prove (3.46) and (3.48) with θ0 = π. Let us
prove that the integral in (3.47) with θ0 = π vanishes as R→∞. In this case∣∣∣∣∫

Γ+
2

eλrEβ(−λα) dλ

∣∣∣∣ ≤ ∫ π

π/2

eRr cos θ|Eβ(−Rαeiαθ)|Rdθ. (3.50)

We split the integral in (3.50) into two integrals
∫ π
π/2 =

∫ θ0
π/2 +

∫ π
θ0
, where θ0

satis�es (3.45). It is already proven in (3.47) that the �rst integral vanishes as
R→∞. For the Mittag-Le�er function in the second integral the asymptotic
expansion (1.22) holds, implying

|Eβ(−Rαeiαθ)| ≤ 1

β
exp

(
Rα/β cos

π − αθ
β

)
+

C

1 +Rα
, R→∞. (3.51)

Note that cos π−αθ
β ≥ 0 for θ ∈ (θ0, π), so that the exponent in (3.51) is not

bounded as R → ∞. However, due to the assumption α < β, the dominant
term of the integrand eRr cos θ|Eβ(−Rαeiαθ)|R asR→∞ is eRr cos θ and therefore
the integral vanishes. Therefore, again (3.49) holds with θ0 = π. This completes
the proof of the integral representation (3.42).

The series representation (3.43) can be deduced from (3.42) by inserting the
de�nition(1.21) of the Mittag-Le�er function under the integral sign.
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Next, the regularity of the function Kα,β(r) is discussed brie�y. We start
with the asymptotic identity implied by (1.22)

Eβ(−λα) ∼ λ−α

Γ(1− β)
, λ→ +∞, (3.52)

which, by (3.34) and applying Karamata-Feller Tauberian theorem, is equiva-
lent to

Kα,β(r) ∼ rα−1

Γ(α)Γ(1− β)
, r → 0 + . (3.53)

Therefore, if α < 1 and β < 1, then Kα,β(r) has a singularity at the origin:
Kα,β(r) → +∞ as r → 0+. This is in contrast with the regular behaviour of
any of the functions Lα(r) = Kα,1(r) and Mβ(r) = K1,β(r), which can be seen
again from (3.53), taking β = 1 or α = 1 and noting that Γ(0) =∞.

Moreover, the Laplace transforms (1.41) and (1.39) of Lα(r) and Mβ(r)
satisfy (ii) of Proposition 1.3, which means that these functions admit bounded
analytic extensions to appropriate sectors of the complex plane. In contrast, if
α < 1 and β < 1, then (3.52) implies that λEβ(−λα) → +∞ as λ → +∞,
therefore (ii) is not satis�ed, thus, Kα,β(r) does not admit a bounded analytic
extension to any sector of the complex plane.

In contrast to the singular behaviour of Kα,β(r) when α < 1 and β < 1,
the related subordination kernel ψα,β(t, τ) exhibits a regular behaviour in t (see
Proposition 3.3). As an illustration let us consider the particular case α = β,
in which formula (3.38) together with (3.32) yields

ψα,α(t, τ) = t−1Kα,α(τt−1) =
1

π

tατα−1 sinαπ

t2α + 2tατα cosαπ + τ 2α
. (3.54)

Indeed, Kα,α(r)→∞ as r → 0, while ψα,α(t, τ)→ 0 as t→ 0 and t→∞.

3.2.3 Integral representation for the subordination kernel

Representations of the subordination kernel ψα,β(t, τ) are useful in view of
the integral expression (3.77) for the fundamental solution. In a limited num-
ber of particular cases the subordination kernel can be expressed in terms of
elementary functions, e.g. the relation (3.54), (3.21), (3.22). However, for arbi-
trary values of the fractional parameters explicit expressions are not available
and other types of representations are needed.

Next we deduce an integral representation of the subordination kernel ψα,β
by inversion of the Laplace transform pair (3.17). We choose (3.17) instead
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of (3.16), because of the faster decay for large arguments of the correponding
Mittag-Le�er function, see (1.24).

Assume 0 < α, β ≤ 1 and αβ 6= 1. Applying the complex Laplace inversion
formula to (3.17) yields:

ψα,β(t, τ) =
τα−1

2πi

∫ c+i∞

c−i∞
estsβ−1Eα,α(−ταsβ) ds, c > 0, (3.55)

where sβ = exp(β ln s) means the principal branch of the corresponding multi-
valued function de�ned in the whole complex plane cut along the negative real
semi-axis. Since the Mittag-Le�er function is an entire function, Eα,α(−ταsβ)
is analytic for s ∈ C\(−∞, 0].

Γ
-
2

Γ
+
1

Γ
-
1

-R

R

c

ρ

0
-ρ

ℜ s

ℑ s

Γ
+
2

Γ
3

Figure 3.1: Contour Γ.

Therefore, by the Cauchy's theorem, the integral in (3.55) can be replaced
by an integral over the composite contour Γ = Γ−1 ∪ Γ−2 ∪ Γ3 ∪ Γ+

2 ∪ Γ+
1 , where

Γ±1 = {s = q ± iR, q ∈ (0, c)}, Γ±2 = {s = re±iπ/2, r ∈ (ρ,R)},
Γ3 = {s = ρeiθ, θ ∈ (−π/2, π/2)},

with appropriate orientation (see Figure 3.1) and letting ρ→ 0, R→∞.
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Since (q+iR)β ∼ Rβeiβπ/2 as R→∞, for the integration on Γ+
1 as R→∞

we obtain∣∣∣∣∫
Γ+
1

estsβ−1Eα,α(−ταsβ) ds

∣∣∣∣ ≤ C

∫ c

0

eqtRβ−1|Eα,α(−ταRβeiβπ/2)| dq → 0

(3.56)
as R→∞ due to the asymptotic expansion (1.24) for the Mittag-Le�er func-
tion, which is satis�ed since | arg(ταRβeiβπ/2)| = βπ/2 < (1 − α/2)π. The
integral on Γ−1 is treated in the same way.

Concerning the integral over Γ3 we have for ρ→ 0∣∣∣∣∫
Γ3

estsβ−1Eα,α(−ταsβ) ds

∣∣∣∣ ≤ ∫ π/2

−π/2
eρt cos θεβ|Eα,α(−ταρβeiβθ)| dθ → 0,

(3.57)
since the Mittag-Le�er function under the integral sign is bounded as ρ → 0.
Therefore, (3.55), (3.56), and (3.57) imply that ψα,β(t, τ) is given by the integral
over Γ+

2 ∪ Γ−2 along the imaginary axis with ρ→ 0 and R→∞. This implies

ψα,β(t, τ) =
τα−1

2πi

∫ i∞

−i∞
estsβ−1Eα,α(−ταsβ) ds

=
τα−1

2πi

(∫ ∞
0

exp(rteiπ/2)rβ−1eiβπ/2Eα,α(−ταrβeiβπ/2) dr

+

∫ ∞
0

exp(rte−iπ/2)rβ−1e−iβπ/2Eα,α(−ταrβe−iβπ/2 dr

)
.

Therefore

ψα,β(t, τ) =
τα−1

π

∫ ∞
0

rβ−1=
{
ei(rt+βπ/2)Eα,α(−ταrβeiβπ/2)

}
dr. (3.58)

We observe that the integral in (3.58) is convergent since the integrand behaves
as rβ−1 for r → 0 and as r−β−1 for r → ∞ due to the asymptotic expansion
(1.24) for the Mittag-Le�er function. In this way, from (3.58) we obtain the
following

Theorem 3.5. Let 0 < α ≤ 1, 0 < β ≤ 1, and αβ 6= 1. Then the subordina-
tion kernel ψα,β(t, τ) admits the integral representation

ψα,β(t, τ) =
τα−1

π

∫ ∞
0

rβ−1 (Cβ(r, t)Iα,β(r, τ) + Sβ(r, t)Rα,β(r, τ)) dr, (3.59)
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where Cβ(r, t) = cos(rt+ βπ/2), Sβ(r, t) = sin(rt+ βπ/2), and

Iα,β(r, τ) = ={τα−1Eα,α(−ταrβeiβπ/2)} =
∞∑
k=0

(−1)kταk+α−1rβk sin kβπ/2

Γ(αk + α)
,

Rα,β(r, τ) = <{τα−1Eα,α(−ταrβeiβπ/2)} =
∞∑
k=0

(−1)kταk+α−1rβk cos kβπ/2

Γ(αk + α)
.

For the numerical implementation of formula (3.59) the above real and imag-
inary parts can be numerically calculated employing a method of computation
of the Mittag-Le�er function of complex argument.

In the particular case α = 1 (time-fractional di�usion) representation (3.59)
yields the following simpler formula for the subordination kernel

ϕβ(t, τ) =
1

π

∫ ∞
0

rβ−1 sin
(
rt+ βπ/2− τrβ sin βπ/2

)
exp(−τrβ cos βπ/2) dr.

Let us recall the relation ϕβ(t, τ) = t−βMβ(τt−β), where Mβ(·) denotes the
Mainardi function. In this way, as a byproduct, we obtained also an integral
representation of this function.

The technique used in this section for deriving of the integral representa-
tion for the subordination kernel does not rely on the scaling property and
can be extended to equations with more general nonlocal operators in space
and operators with a general memory kernel in time, which are considered in
Chapter 5.

3.3 Analyticity of the solution operator

First we prove that the subordination kernel ψα,β(t, τ), considered as a
function of t, admits a bounded analytic extension to a sector in the complex
plane.

Proposition 3.3. Assume 0 < α, β ≤ 1, αβ 6= 1, and let

θ0 = min

{
(2− α− β)π

2β
,
π

2

}
. (3.60)

For any τ > 0 the function ψα,β(t, τ) as a function of t admits analytic exten-
sion to the sector | arg t| < θ0, which is bounded on each sector | arg t| ≤ θ,
0 < θ < θ0.
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Proof. We apply Proposition 1.3 for the Laplace transform pair (3.17): F (s) =
sβ−1τα−1Eα,α(−sβτα), and f(t) = ψα,β(t, τ), where τ > 0 is considered as
a parameter. The function F (s) admits analytic extension to C cut along
the negative real axis. According to the estimate (1.23) for the Mittag-Le�er
function

|sF (s)| ≤ Cτ−1 τα|s|β

1 + τα|s|β
< Cτ−1,

for all s ∈ C such that

| arg(s)| ≤ min

{
(2− α)π

2β
− ε, π

}
.

To obtain the desired statement it remains to apply implication (i) ⇒ (ii).

Proposition 3.3 together with subordination formula (3.12) implies that
Sα,β(t) is a bounded analytic solution operator according to the above de�-
nition. The proof is similar to the one in [9], Theorem 3.2, where, based on
analogous property for the function ϕβ(t, τ), analyticity of the subordinated
solution operator for the time-fractional evolution equation is established.

Taking into account relations (3.20) we can derive the corresponding sec-
tors of existence of bounded analytic extensions for the functions fα(t, τ) and
ϕβ(t, τ) (setting in (3.60) β = 1 or α = 1). In this way known results for an-
alyticity of the semigroup Sα,1(t) [108, 66] and of the solution operator S1,β(t)
[9, 66] are recovered.

Proposition (3.3) implies that if 0 < α, β ≤ 1, αβ 6= 1, and if A is the
generator of a bounded C0-semigroup S(t) on X, then problem (3.4) admits a
bounded analytic solution operator Sα,β(t) of angle θ, where

θ = min

{
(2− α− β)π

2β
,
π

2

}
. (3.61)

Now we suppose that the C0-semigroup generated by the operator A is a
bounded analytic semigroup. In this case we expect that the solution operator
Sα,β(t) will be bounded analytic in a larger sector of the complex plane. To
formulate the precise result we prove some estimates for the functions Mγ(z)
and Lγ(z) in appropriate sectors of the complex plane.

The sectors in the complex plane, in which the functions Mγ(z) and Lγ(z)
are bounded analytic functions can be easily found from the behavior of their
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Laplace transforms (1.39) and (1.41), applying Proposition 1.3. The asymptotic
expansion for the Mittag-Le�er function (1.22) implies that

sL{Mγ(·)}(s) = sEγ(−s)

is bounded for s ∈ Σ((1− γ/2)π). On the other hand,

sL{Lγ(·)}(s) = s exp(−sγ)

is bounded when | arg(sγ)| < π/2, i.e. for s ∈ Σ(γ−1π/2). Based on the above
statement, we deduce that the functions Mγ(z) and Lγ(z) are analytic in the
sectors Σ(θM) and Σ(θL), respectively, and bounded on each proper subsector
of these sectors, where

θM(γ) = (1−γ)π/2 for Mγ(z); θL(γ) = (1/γ−1)π/2 for Lγ(z). (3.62)

In fact, the asymptotic expansions for the functions Mγ and Lγ imply a
stronger property in the same sectors as we see next.

Concerning Mγ, expansion (1.40) implies that there exists r∗, such that for
any r > r∗

|Mγ(re
iθ))| ≤ a(γ)r

γ−1/2
1−γ exp

(
−b(γ)r

1
1−γ cos

(
θ

1− γ

))
.

Therefore, this function is integrable at r →∞ provided

|θ| < (1− γ)π/2 = θM(γ),

recovering the same angle as in (3.62). In addition, (1.38) shows that |Mγ(re
iθ)|

is a bounded function as r → 0. Therefore, the following integral is uniformly
bounded ∫ ∞

0

|Mγ(re
iθ)| dr ≤ CM , |θ| < θM(γ). (3.63)

Concerning the function Lγ, expansion (1.45) shows that |Lγ(reiθ)| admits
an integrable singularity for r → ∞. For small r the asymptotic expression
(1.46) implies the estimate

|Lγ(reiθ)| ≤ γa(γ)r−
2−γ

2(1−γ) exp

(
−b(γ)r−

γ
1−γ cos

(
γθ

1− γ

))
.

This shows that the function |Lγ(reiθ)| is integrable for r → 0 provided

|θ| < (1/γ − 1)π/2 = θL(γ),
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the same angle as de�ned in (3.62). Therefore, we established the uniform
boundedness of the integral∫ ∞

0

|Lγ(reiθ)| dr ≤ CL, |θ| < θL(γ). (3.64)

The constants CM and CL in (3.63) and (3.64) depend on γ, but do not depend
on θ.

In this way we obtained the sectors Σ(θM(γ)) and Σ(θL(γ)) of "good be-
havior" of the functions Mγ(z) and Lγ(z), respectively.

Theorem 3.6. If 0 < α, β ≤ 1, αβ 6= 1, and if A is the generator of a bounded
analytic semigroup of angle φ0 ∈ (0, π/2], then Sα,β(t) is a bounded analytic
solution operator of angle θ0, where

θ0 = min

{
αφ0

β
+

(2− α− β)π

2β
,
π

2

}
. (3.65)

Proof. The proof of this statement is divided into two steps, based on sub-
ordination identities (3.5) and (3.8). We use the uniform boundedness of the
integrals in (3.63) and (3.64), established in the previous section.

First step. Assume S(t) is a bounded analytic semigroup of angle φ0, i.e.
S(t) admits an analytic extension to the sector Σ(φ0) and it is bounded on each
proper subsector, i.e.

‖S(z)‖ ≤ C, z ∈ Σ(φ), φ < φ0. (3.66)

We start from the subordination identity (3.5). Let us consider the path in the
complex plane

ΓR,φ = {z = r, r ∈ [0, R]} ∪ {z = Reiϕ, ϕ ∈ [0, φ]} ∪ {z = reiφ, r ∈ [0, R]}
(3.67)

with counter-clockwise orientation, where φ ∈ (−φ0, φ0), R > 0. An appli-
cation of Cauchy's theorem shows that

∫
ΓR,φ

fα(t, z)S(z) dz = 0 and, letting

R→∞, we obtain from (3.5) and (3.31)

Sα,1(t) =

∫ ∞
0

fα(t, reiφ)S(reiφ)eiφ dr = t−1/α

∫ ∞
0

Lα(reiφt−1/α)S(reiφ)eiφ dr.

Now let

Sα,1(z) = z−1/α

∫ ∞
0

Lα(reiφz−1/α)S(reiφ)eiφ dr, (3.68)



56CHAPTER 3. SPACE-TIME FRACTIONAL EVOLUTION EQUATIONS

where αφ− (1− α)π/2 < arg z < αφ + (1− α)π/2. Let us set z = ρeiψ with
ρ > 0. Then (3.68) implies |φ− ψ/α| < θL(α) with θL de�ned in (3.60) and

Sα,1(z) = ρ−1/αe−iψ/α

∫ ∞
0

Lα(reiφρ−1/αe−iψ/α)S(reiφ)eiφ dr

= ei(φ−ψ/α)

∫ ∞
0

Lα(σei(φ−ψ/α))S(σρ1/αeiφ) dσ,

where we have set σ = ρ−1/αr. Therefore, applying (3.66) and (3.64) we deduce

‖Sα,1(z)‖ ≤
∫ ∞

0

|Lα(σei(φ−ψ/α))| ‖S(σρ1/αeiφ)‖ dσ (3.69)

≤ C

∫ ∞
0

|Lα(σei(φ−ψ/α))| dσ ≤ C1.

Varying φ ∈ (−φ0, φ0) in (3.68) provides an analytic extension of Sα,1 to the
sector Σ(φα), which is bounded on each proper subsector, where

φα = αφ0 + (1− α)π/2. (3.70)

Second step. Let us apply now the subordination identity (3.8), where Sα,1(t) is
a bounded analytic solution operator of angle φα, de�ned in (3.70). We proceed
in a way analogous to the �rst step. Take φ ∈ (−φα, φα) and consider the path
(3.67). By applying the Cauchy's theorem it follows that∫

ΓR,φ

ϕβ(t, z)Sα,1(z) dz = 0

for φ ∈ (−φα, φα). Therefore, for R → ∞ we obtain from (3.8), taking into
account (3.31),

Sα,β(t) =

∫ ∞
0

ϕβ(t, reiφ)Sα,1(re
iφ)eiφ dr = t−β

∫ ∞
0

Mβ(reiφt−β)Sα,1(re
iφ)eiφ dr.

Consider the operator-valued function

Sα,β(z) = z−β
∫ ∞

0

Mβ(reiφz−β)Sα,1(re
iφ)eiφ dr, (3.71)

where φ/β− (1/β−1)π/2 < arg z < φ/β+(1/β−1)π/2. Let z = ρeiψ, ρ > 0.
Then (3.71) implies |φ− βψ| < θM(β) with θM de�ned in (3.60) and

Sα,β(z) = ρ−βe−iβψ

∫ ∞
0

Mβ(reiφρ−βe−iβψ)Sα,1(re
iφ)eiφ dr

= ei(φ−βψ)

∫ ∞
0

Mβ(σei(φ−βψ))Sα,1(σρ
βeiφ) dσ,
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where we have set σ = ρ−βr. Applying (3.69) and (3.63) it follows

‖Sα,β(z)‖ ≤
∫ ∞

0

|Mβ(σei(φ−βψ))| ‖Sα,1(σρβeiφ)‖ dσ,

≤ C1

∫ ∞
0

|Mβ(σei(φ−βψ))| dσ ≤ C2.

Therefore, varying φ ∈ (−φα, φα) in (3.71) provides an analytic extension of
Sα,β to the sector Σ(θ0), which is bounded on each proper subsector, where

θ0 = φα/β + (1/β − 1)π/2. (3.72)

Combining the results of the above two steps and inserting the value (3.70) of
φα in (3.72), we derive the angle of analyticity (3.65). In this way the statement
is proven.

Particular cases of this result can be found in [2], see Theorem 3.8.3, as well
as in [9, 66, 10].

3.4 Multi-dimensional fundamental solution

First, let us recall that the Fourier transform of a function v(x), x ∈ Rn, is
de�ned by

F{v}(ξ) = ṽ(ξ) =

∫
Rn
eiξ·xv(x) dx, ξ ∈ Rn.

The Fourier transform pair corresponding to the Laplace operator ∆ of a func-
tion v(x), x ∈ Rn, such that lim|x|→∞ v(x) = 0, is (see e.g. [3, Chapter 15])

F{∆v}(ξ) = −|ξ|2F{v}(ξ), ξ ∈ Rn. (3.73)

The main example of the considered abstract problem (3.4) is the space-time
fractional di�usion equation

CD
β
t u(x, t) = −(−∆)αu(x, t), t > 0, x ∈ Rn; u(x, 0) = v(x); (3.74)

where 0 < α, β ≤ 1, CD
β
t is the Caputo time-fractional derivative, and ∆ is the

full-space fractional Laplace operator in Rn. Then the fractional power (−∆)α

coincides with the pseudo-di�erential operator de�ned as follows

F{(−∆)αf ; ξ} = |ξ|2αF{f ; ξ}, ξ ∈ Rn, (3.75)
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where F{f ; ξ} denotes the Fourier transform of a function f at the point ξ.
In particular, in the one-dimensional case −(−∆)α coincides with the Riesz
space-fractional derivative of order 2α. We refer to the survey paper [64], where
the equivalence of ten di�erent de�nitions of full-space fractional Laplacian is
proven.

Assume X is one of the spaces Lp(Rn), 1 < p <∞, or the space C0(Rn) of
continuous functions vanishing at in�nity. Let A = ∆ be the Laplace operator
de�ned on X with maximal domain. For details on the de�nition of the full-
space Laplace operator we refer to [79]. In this case the operator (−A)α is
de�ned by (3.75). The operator A is a generator of a bounded analytic C0-
semigroup S1,1(t) with corresponding Green function [2]

G1,1,n(x, t) =
1

(4πt)n/2
e−|x|

2/4t, x ∈ Rn, t > 0. (3.76)

For any 0 < α ≤ 1 and 0 < β ≤ 1 the solution operator Sα,β(t) of problem
(3.74) is given by

(Sα,β(t)v)(x) =

∫
Rn
Gα,β,n(y, t)v(x− y) dy, v ∈ X, t > 0, x ∈ Rn,

where Gα,β,n(x, t) is the corresponding Green function. Therefore, the subordi-
nation formula (3.12) can be written in terms of Green functions as follows

Gα,β,n(x, t) =

∫ ∞
0

ψα,β(t, τ)G1,1,n(x, τ) dτ, x ∈ Rn. (3.77)

It is worth noting that some known basic properties of Gα,β,n(x, t) follow
in a straightforward way from the subordination relation (3.77), taking into
account that the subordination kernel is a PDF. In this way we can prove that
for any dimension n ≥ 1 the fundamental solution Gα,β,n(x, t) is a spatial PDF
evolving in time:

Gα,β,n(x, t) ≥ 0,

∫
Rn
Gα,β,n(x, t) dx = 1.

Therefore, Gα,β,n(x, t), 0 < α, β ≤ 1, inherits this property of the classical
Gaussian kernel G1,1,n(x, t). In a similar way, estimates for the fundamental
solution Gα,β,n(x, t) can be derived from known estimates for the Gaussian
kernel G1,1,n(x, t). For example, since ‖G1,1,n(·, t)‖L1(Rn) = 1 (see e.g.[2], Re-
mark 3.7.10.), the subordination formula (3.77) together with properties (3.14)
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imply

‖Gα,β,n(·, t)‖L1(Rn) ≤
∫ ∞

0

ψα,β(t, τ)‖G1,1,n(·, τ)‖L1(Rn) dτ

≤
∫ ∞

0

ψα,β(t, τ) dτ = 1.

3.4.1 Some closed-form solutions

Based on (3.77) and (3.76), we �nd closed form expressions for Gα,β,n(x, t).
Assume �rst α = β. In this case Eq. (3.74) is the so-called α-fractional di�usion
equation studied in [69]. Taking into account (3.54), the subordination formula
(3.77) reads

Gα,α,n(x, t) =
1

π

∫ ∞
0

tατα−1 sinαπ

t2α + 2tατα cosαπ + τ 2α
G1,1,n(x, τ) dτ, x ∈ Rn. (3.78)

For x = 0 the integral in (3.78) is convergent only if α > n/2. Therefore,
Gα,α,n(0, t) is �nite only for n = 1 and α > 1/2. The same conclusion can be
found in [69].

Next, applying the subordination formula (3.78), we derive a closed-form
expression for the two-dimensional Green function. Plugging (3.76) with n = 2
in (3.78) yields

Gα,α,2(x, t) =
tα

4π2

∫ ∞
0

τα−2 sinαπ

t2α + 2tατα cosαπ + τ 2α
e−|x|

2/4τ dτ

=
1

4πt

∫ ∞
0

σα sinαπ

σ2α + 2σα cosαπ + 1
e−(|x|2/4t)σ dσ,

where we have made the change of variables σ = t/τ . Formula (1.28) gives the
following expression in terms of Mittag-Le�er functions

Gα,α,2(x, t) =
1

4πt
(|x|2/4t)α−1Eα,α(−(|x|2/4t)α), x ∈ R2. (3.79)

Expression (3.79) can be found also in [70].
Further, we restrict our attention to the special case α = β = 1/2. Plugging

(3.22) in the subordination formula (3.77) yields

G1/2,1/2,n(x, t) =

√
t

π

∫ ∞
0

1√
τ(t+ τ)

G1,1,n(x, τ) dτ, x ∈ Rn. (3.80)
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Inserting (3.76) in (3.80) and introducing a new integration variable σ = t/τ
gives

G1/2,1/2,n(x, t) =
Γ
(
n+1

2

)
2nπn/2+1tn/2

U

(
n+ 1

2
,
n+ 1

2
,
|x|2

4t

)
, x ∈ Rn, (3.81)

where U is the Tricomi's con�uent hypergeometric function (3.100).
Let us �rst note that relation (3.101) con�rms that formula (3.81) with

n = 2 is the same as (3.79) with α = 1/2.
Applying (3.103), expression (3.81) for the Green function can be rewritten

in terms of the incomplete Gamma function (3.102) as follows

G1/2,1/2,n(x, t) =
Γ
(
n+1

2

)
2nπn/2+1tn/2

e|x|
2/4tΓ

(
1− n

2
,
|x|2

4t

)
, x ∈ Rn. (3.82)

In the one-dimensional case representations (3.81) and (3.82) reduce to

G1/2,1/2,1(x, t) =
1

2π3/2
√
t
ex

2/4tE1

(
x2

4t

)
, (3.83)

where E1(z) is the exponential integral (3.105). The asymptotic expansion
(3.107) implies for x2/4t→∞ (i.e. as x→∞ and t > 0 is �xed or t→ 0 and
x 6= 0 is �xed)

G1/2,1/2,1(x, t) ∼
2
√
t

π3/2x2
, x2/4t→∞.

Similar asymptotic behaviour is observed for α > 1/2 in [69], Eq. 25.
On the other hand, the expansion (3.106) of the exponential integral gives

for x ∈ R, x 6= 0 and t > 0

G1/2,1/2,1(x, t) =
ex

2/4t

2π3/2
√
t

(
−γ − ln

(
x2

4t

)
−
∞∑
k=1

(
x2/4t

)k
k(k!)

)
.

This expansion implies the following asymptotic behaviour

G1/2,1/2,1(x, t) ∼
ln 4t− lnx2

2π3/2
√
t
, x2/4t→ 0.

Therefore, G1/2,1/2,1(x, t)→∞ with logarithmic growth as x→ 0 for any �xed
t > 0 and G1/2,1/2,1(x, t) → 0 as t → ∞ and x 6= 0 is �xed. Let us note that
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when α > 1/2 the asymptotic behaviour of Gα,α,1(x, t) as x → 0 is of a power
law type (see [69], Eq. 24), which is in contrast to the observed here logarithmic
growth for α = 1/2.

In addition, inequalities (3.108) imply that the Green function G1/2,1/2,1(x, t)
is bracketed for any x ∈ R, x 6= 0, and t > 0 as follows

1

4π3/2
√
t

ln

(
1 +

8t

x2

)
< G1/2,1/2,1(x, t) <

1

2π3/2
√
t

ln

(
1 +

4t

x2

)
.

Expressions for the multi-dimensional Green function G1/2,1/2,n(x, t) in terms
of the exponential integral E1 (for odd dimensions) or the Mittag-Le�er func-
tion E1/2,1/2 (for even dimensions) can be obtained from (3.83) and (3.79) by
applying representation (3.82) and the recurrence relation (3.104) between the
incomplete Gamma functions. For example, in this way we derive from (3.82),
(3.83), and (3.104), the following expression for the three-dimensional Green
function

G1/2,1/2,3(x, t) =
1

2π5/2
√
t|x|2

− 1

8π5/2t3/2
e|x|

2/4tE1

(
|x|2

4t

)
, x ∈ R3.

Finally, we present an application of the subordination formula (3.27), which
for β = 2α gives in terms of Green functions

Gα/2,α,n(x, t) =
1

π

∫ ∞
0

tατα−1 sinαπ

t2α + 2tατα cosαπ + τ 2α
G1/2,1,n(x, τ) dτ, x ∈ Rn,

(3.84)
where G1/2,1,n(x, t) is the n-dimensional Poisson kernel [2]

G1/2,1,n(x, t) =
Γ
(
n+1

2

)
t

π(n+1)/2(t2 + |x|2)(n+1)/2
, x ∈ Rn. (3.85)

For example, applying (3.84) for n = 1, we can recover the following known
closed-form expression (see e.g. [76], Eq. (4.38))

Gα/2,α,1(x, t) =
1

π

tαxα−1 sin(απ/2)

t2α + 2tαxα cos(απ/2) + x2α
, x > 0, t > 0. (3.86)

Indeed, starting from the following integral obtained from (3.84) and (3.85)

Gα/2,α,1(x, t) =
1

π2

∫ ∞
0

tατα−1 sinαπ

t2α + 2tατα cosαπ + τ 2α

τ

τ 2 + x2
dτ, (3.87)
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inserting in (3.87) the identity

1

τ 2 + x2
=

1

x

∫ ∞
0

e−τσ sinxσ dσ

and changing the order of integration we obtain by the use of (1.28)

Gα/2,α,1(x, t) =
tα

πx

∫ ∞
0

σα−1Eα,α(−tασα) sinxσ dσ. (3.88)

Note that the integral in (3.88) is convergent due to the asymptotic expansion
(1.22) of the Mittag-Le�er function. Formal integration in (3.88) by using the
identity sin a = ={eia} and the Laplace transform pair (1.27) yields (3.86).

3.4.2 Integral representations

According to the subordination relation (3.77) and the formula for the Gaus-
sian kernel (3.76), the fundamental solution of problem (3.4) admits the repre-
sentation

Gα,β,n(x, t) =
1

(4π)n/2

∫ ∞
0

ψα,β(t, τ)τ−n/2e−|x|
2/4τ dτ, x ∈ Rn, t > 0. (3.89)

Subordination formula (3.89) yields after the change of variables σ = 1/τ

Gα,β,n(x, t) =
1

(4π)n/2

∫ ∞
0

ψα,β(t, σ−1)σn/2−2e−aσ dσ, a = |x|2/4. (3.90)

Applying the formula for the Laplace transform ([37], Section 4.1, Eq. (25))∫ ∞
0

σν−1f(σ−1)e−aσ dσ = a−
1
2ν

∫ ∞
0

s
1
2νJν(2

√
as)f̂(s) ds, Re ν > −1,

where Jν(·) denotes the Bessel function (3.109) and f̂ is the Laplace transform
of f , we deduce from (3.90) and (3.16) the following representation

Gα,β,n(x, t) =
|x|1−n2
(2π)

n
2

∫ ∞
0

σ
n
2Jn

2−1(|x|σ)Eβ(−σ2αtβ) dσ. (3.91)

The obtained integral representation (3.91) is not new, see e.g. [70, 30],
where it is deduced applying a di�erent argument.
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Let us �rst note that for β = 1 the integral in (3.91) is always convergent
and gives the following representation for the fundamental solution to the space-
fractional di�usion equation:

Gα,1,n(x, t) =
|x|1−n2
(2π)n/2

∫ ∞
0

σn/2Jn
2−1(|x|σ) exp(−σ2αt) dσ.

We observe, however, that if β < 1 the integral in (3.91) is convergent only
for very limited ranges for the values of the other two parameters. Indeed,
according to the asymptotic expansions of the Bessel and the Mittag-Le�er
functions, (3.111) and (1.24), the integral in (3.91) is convergent only in the
following cases: n = 1 and α > 1/2 or n = 2 and α > 3/4. If n ≥ 3 the integral
is divergent for any α ∈ (0, 1). Our aim here is to derive from (3.91) convergent
integral representations for n = 1, 2, 3, which hold for all α, β ∈ (0, 1).

Let �rst n = 1. Plugging in (3.91) the representation for J− 1
2
(·) from (3.110)

yields

Gα,β,1(x, t) =
1

π

∫ ∞
0

cos(|x|σ)Eβ(−σ2αtβ) dσ, (3.92)

which, according to (1.24), is convergent at +∞ only if 2α > 1, unless β = 1.
However, we can improve the convergence by performing integration by parts
in (3.92). We use the identity

d

dσ
Eβ(−σ2αtβ) = −2α

β
σ2α−1tβEβ,β(−σ2αtβ), (3.93)

which is derived from (1.25). In this way the following integral representation
is established.

Theorem 3.7. Let 0 < α, β ≤ 1 and αβ 6= 1. Then

Gα,β,1(x, t) =
2α

β

tβ

π|x|

∫ ∞
0

sin(|x|σ)σ2α−1Eβ,β(−σ2αtβ) dσ. (3.94)

The asymptotic expression (1.24) indicates that the integral in (3.94) is
convergent for all 0 < α, β ≤ 1. In the particular case α = β/2 representation
(3.94) coincides with eq. (3.88).

Let us consider now n = 3. Plugging in the general formula (3.91) the
representation for J 1

2
(·) from (3.110) yields

Gα,β,3(x, t) =
1

2π2|x|

∫ ∞
0

σ sin(|x|σ)Eβ(−σ2αtα) dσ.
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This integral is divergent for all 0 < α, β < 1. Integration by parts gives

Gα,β,3(x, t) =
1

2π2|x|2

∫ ∞
0

cos(|x|σ)
d

dσ

(
σEβ(−σ2αtα)

)
dσ

and, by applying formula (3.93), we obtain the following integral expression for
the three-dimensional fundamental solution

Gα,β,3(x, t) =
1

2π2|x|2

∫ ∞
0

cos(|x|σ)Fα,β(σ, t) dσ, (3.95)

where

Fα,β(σ, t) = Eβ(−σ2αtβ)− 2α

β
σ2αtβEβ,β(−σ2αtβ). (3.96)

The asymptotic expansions (1.24) of the Mittag-Le�er functions imply that
the integral in (3.95) is convergent for 1/2 < α < 1 and 0 < β ≤ 1. Applying
again integration by parts in (3.95) yields

Gα,β,3(x, t) =
1

2π2|x|3

∫ ∞
0

sin(|x|σ)Hα,β(σ, t) dσ, (3.97)

where Hα,β(σ, t) = − d
dσFα,β(σ, t). Therefore, from (3.96), (1.25), and the iden-

tity
d

dz

(
zα−1Eα,α(−zα)

)
= zα−2Eα,α−1(−zα) (3.98)

it follows

Hα,β(σ, t) = µσ2α−1tβ
(
(1 + µ)Eβ,β(−σ2αtβ) + µEβ,β−1(−σ2αtβ)

)
, (3.99)

where µ = 2α/β. The asymptotic behavior of the Mittag-Le�er functions
(1.24) implies that the integral in (3.97) is convergent for all 0 < α, β < 1.

We summarize the result for the three-dimensional case as follows.

Theorem 3.8. Let 0 < α, β ≤ 1, αβ 6= 1, and n = 3. Then the fundamental
solution admits the integral representation (3.97), where the function Hα,β is
de�ned in (3.99).

In an analogous way, for n = 2 we deduce from (3.91) and (3.110) the
following result.
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Theorem 3.9. Let 0 < α, β ≤ 1 and αβ 6= 1. Then

Gα,β,2(x, t) = − 1

2π2|x|2

∫ π

0

1

cos2 θ

(
1 +

∫ ∞
0

cos(|x|σ cos θ)Hα,β(σ, t) dσ

)
dθ,

where the function Hα,β is de�ned in (3.99).

Let us emphasize that identities for the derivatives of Mittag-Le�er func-
tions (1.25) and (3.98) together with the asymptotic expansions (1.24) show a
faster decay for large |z| after repeated di�erentiation, which is essentially used
in the above representations.

3.5 Appendix: some special functions

The Tricomi's con�uent hypergeometric function can be de�ned by the
Laplace integral ([1], Eq. 13.2.5)

U(a, c, z) =
1

Γ(a)

∫ ∞
0

ξa−1(1 + ξ)c−a−1e−zξ dξ, a > 0, z > 0. (3.100)

The following representations of Mittag-Le�er functions in terms of Tricomi's
con�uent hypergeometric function can be obtained from (1.28) for α = β = 1/2

E1/2(−t1/2) =
1√
π
U(1/2, 1/2, t);

t−1/2E1/2,1/2(−t1/2) =
1

2
√
π
U(3/2, 3/2, t).

(3.101)

For a = c the Tricomi's con�uent hypergeometric function (3.100) is related to
the upper incomplete Gamma function

Γ(a, z) =

∫ ∞
z

ξa−1e−ξ dξ (3.102)

as follows ([1], Eq. 13.6.28)

U(a, a, z) = ezΓ(1− a, z). (3.103)

Integration by parts in (3.102) yields the following recurrence relation

Γ(a+ 1, z) = zae−z + aΓ(a, z). (3.104)
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The incomplete Gamma function (3.102) with a = 0 gives the exponential
integral

E1(z) =

∫ ∞
z

e−ξ

ξ
dξ, (3.105)

which satis�es E1(z) = Γ(0, z) = e−zU(1, 1, z). For real or complex arguments
o� the negative real axis, it can be expressed as ([1], Eq. 5.1.11)

E1(z) = −γ − ln z −
∞∑
k=1

(−z)k

k(k!)
, | arg z| < π, (3.106)

where γ is the Euler-Mascheroni constant. For large values of <z the following
approximation is valid [27]

E1(z) ∼ e−z

z

N−1∑
k=0

k!

(−z)k
. (3.107)

For real positive values of the argument the exponential integral can be brack-
eted by elementary functions as follows ([1], Eq. 5.1.20)

0.5e−x ln (1 + 2/x) < E1(x) < e−x ln (1 + 1/x) , x > 0. (3.108)

The Bessel function of the �rst kind Jν(z) is de�ned by the series [1]

Jν(z) =
∞∑
k=0

(−1)k(z/2)ν+2k

k!Γ(ν + k + 1)
. (3.109)

The following particular expressions are of interest in this dissertation

J−1/2(z) =

√
2

πz
cos z,

J1/2(z) =

√
2

πz
sin z, (3.110)

J0(z) =
1

π

∫ π

0

cos(z cos θ) dθ.

The asymptotic expansions of the Bessel function Jν(r) for small and large
real arguments are as follows

Jν(r) ∼


1

Γ(ν + 1)

(r
2

)ν
, r → 0;√

2

πr
cos(r − νπ/2− π/4), r → +∞.

(3.111)



Chapter 4

Transition from di�usion to
wave propagation

In this chapter we study a fractional Je�reys-type heat conduction equa-
tion as a model problem to demonstrate the application of the general sub-
ordination theorem (Theorem 2.4). This is an evolution equation containing
time-fractional di�erential operators, which, depending on the model parame-
ters, obeys two di�erent subordination properties, and, respectively, two fun-
damentally di�erent types of behaviour: di�usion and wave propagation. The
one-dimensional Cauchy problem is studied and explicit representations for the
fundamental solution and the mean squared displacement are derived. The fun-
damental solution is shown to be a spatial probability density function evolving
in time, which is unimodal in the di�usion regime and bimodal in the propaga-
tion regime.

4.1 Problem formulation

The heat conduction equation with a fractional Je�reys-type constitutive
law in abstract form reads as follows [6], Chapter 7,

(1 + aDα
t )u′(t) = (1 + bDα

t )Au(t), t > 0, (4.1)

where Dα
t is the fractional Riemann-Liouville derivative of order α ∈ (0, 1],

a ≥ 0, b ≥ 0 are given parameters, and A is a closed linear densely de�ned
operator in a Banach space X (usually A is some realization of the Laplace
operator, one example is the operator de�ned in (2.20)). The equation (4.1) is

67
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supplemented with the usual initial conditions u(0) = v ∈ X and u′(0) = 0.
For derivation details and relevant references we refer to [22].

In this chapter the main emphasis will be on the di�erences in the model
governed by equation (4.1) in the two cases: a < b and a > b, where α ∈ (0, 1]
is arbitrarily chosen. Based on the theory of Bernstein functions, we establish
two di�erent types of subordination principles in the two cases: for a < b
the equation is subordinated to the �rst order Cauchy problem (2.6), while for
a < b it is subordinated to the second order Cauchy problem (2.7). Accordingly,
two fundamentally di�erent types of behavior are established in the two cases:
di�usion regime for a < b and wave propagation regime for a > b. This is a
demonstration how the subordination principle can be applied for the proper
classi�cation and understanding of the variety of mathematical models in the
form of generalized fractional evolution equations.

4.2 Subordination results

We �rst recast the fractional Je�reys-type heat conduction equation (4.1)
as a Volterra integral equation. By the use of (1.17) equation (4.1) with initial
conditions u(0) = v and u′(0) = 0 in Laplace domain reads

û(s) = v
1

s
+

1 + bsα

s(1 + asα)
Aû(s). (4.2)

Taking the inverse Laplace transform in (4.2) yields the Volterra integral equa-
tion

u(t) = v +

∫ t

0

k(t− τ)Au(τ) dτ, (4.3)

with kernel k(t) satisfying k̂(s) = 1/g(s), where

g(s) =
s(1 + asα)

1 + bsα
, s > 0. (4.4)

Applying inverse Laplace transform we derive by the use of (1.27) the explicit
representation for the kernel

k(t) = 1−
(

1− b

a

)
Eα

(
−1

a
tα
)
. (4.5)
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Let us note that k(t) > 0. Indeed, according to (1.25), the �rst derivative
of k(t) is

k′(t) =
1

a

(
1− b

a

)
tα−1Eα,α

(
−1

a
tα
)
.

Therefore, for a < b the function k(t) is decreasing from k(0) = b/a > 1 to
k(+∞) = 1 and for a > b the function k(t) is increasing from k(0) = b/a < 1
to k(+∞) = 1. Moreover, the complete monotonicity of the Mittag-Le�er type
function tα−1Eα,α (−tα/a) implies k(t) ∈ CMF for a < b and k(t) ∈ BF for
a > b.

The following properties of the function g(s) play a crucial role in the study
of equations (4.3) and (4.1).

Proposition 4.1. Let 0 < α ≤ 1. For any a, b ≥ 0 the function
√
g(s) is a

complete Bernstein function. If moreover 0 ≤ a < b then g(s) is a complete
Bernstein function.

Proof. We use the relation g(s) = sf(s), where

f(s) =
1 + asα

1 + bsα
.

The function f(s) satis�es the properties:

• f(s) ∈ SF for a < b;

• f(s) ∈ CBF for a > b.

Taking into account (P8) in Proposition 2.1 it is su�cient to prove only one of
these two properties. Let a < b and use the representation

f(s) =
a

b

(
1

a
− 1

b

)
1

sα + 1/b
+
a

b
. (4.6)

Since sα ∈ CBF , then sα + 1/b ∈ CBF and therefore, (P8) in Proposition 2.1
implies (sα + 1/b)−1 ∈ SF . Therefore, f(s) is a Stieltjes function for a < b
as a linear combination with positive coe�cients of two Stieltjes functions. In
this way the properties of f(s) are proved.

Let a < b. Then f(s) ∈ SF , which according to (P8) in Proposition 2.1
implies g(s) ∈ CBF . Since square root of a complete Bernstein function is
again a complete Bernstein function (by (P11) in Proposition 2.1), this also
gives

√
g(s) ∈ CBF .
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If a > b then f(s) ∈ CBF . Therefore, g(s) is a product of two complete
Bernstein functions (s and f(s)) and (2.2) implies

√
g(s) ∈ CBF .

An alternative way to check that
√
g(s) ∈ CBF for a > b is as follows.

Consider the function h(s) =
√
g(s)/s. Then

h2(s) =
1 + asα

s(1 + bsα)

is a Stieltjes function since, according to (1.27), it is Laplace transform of the
completely monotone function 1 + (a/b − 1)Eα(−tα/b). On the other hand,
s1/2 is a complete Bernstein function. This together with property (P12) in
Proposition 2.1 implies that h(s) is a Stieltjes function. Then property (P7)
implies

√
g(s) = sh(s) is a complete Bernstein function.

Let us point out that g(s) /∈ CBF for a > b. In fact, g(s) is not even
a Bernstein function in this case. Indeed, for s → 0 we have the asymptotic
expansion g(s) ∼ s + (a − b)sα+1 and thus g′′(s) ∼ (a − b)(α + 1)αsα−1 > 0
for a > b, hence g(s) /∈ BF .

Now we can apply the general subordination theorem (Theorem 2.4) and
formulate the following subordination principles.

Theorem 4.1. Let a, b ≥ 0 and 0 < α ≤ 1. Assume the operator A is a
generator of a bounded strongly continuous cosine function S2(t). Then problem
(4.1) is well posed and the corresponding solution operator S(t) satis�es the
following subordination relation

S(t) =

∫ ∞
0

ϕ1(t, τ)S2(τ) dτ, t > 0, (4.7)

where the kernel ϕ1(t, τ) is a unilateral probability density (i.e. satis�es (2.26)),
which is de�ned via the Laplace transform

ϕ̂1(s, τ) =

√
g(s)

s
exp

(
−τ
√
g(s)

)
, s, τ > 0. (4.8)

Theorem 4.2. Let 0 ≤ a < b and 0 < α ≤ 1. Suppose the operator A is a
generator of a bounded C0-semigroup of operators S1(t). Then problem (4.1)
is well posed with solution operator S(t) satisfying the subordination relation

S(t) =

∫ ∞
0

ϕ2(t, τ)S1(τ) dτ, t > 0.
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The kernel ϕ2(t, τ) is a unilateral probability density (i.e. satis�es (2.26)),
which is de�ned via the Laplace transform

ϕ̂2(s, τ) =
g(s)

s
exp (−τg(s)) , s, τ > 0.

A stronger subordination result in the case a > b ≥ 0 is established next.

Theorem 4.3. Let a > b ≥ 0 and 0 < α ≤ 1. Suppose the fractional evolution
equation (2.8) of order α+ 1 is well posed and admits a bounded solution oper-
ator Sα+1(t). Then problem (4.1) is well posed and the corresponding solution
operator S(t) satis�es the subordination relation

S(t) =

∫ ∞
0

ϕ(t, τ)Sα+1(τ) dτ, t > 0.

The kernel ϕ(t, τ) is a unilateral probability density (i.e. satis�es (2.26)), which
is de�ned via the Laplace transform

ϕ̂(s, τ) =
g(s)1/(α+1)

s
exp

(
−τg(s)1/(α+1)

)
, s, τ > 0.

Proof. According to Theorem 2.4 we need to prove

g(s)1/(α+1) ∈ CBF (4.9)

for the function g(s), de�ned in (4.4). According to property (P7) in Proposi-
tion 2.1) (4.9) holds if and only if

h(s) =
g(s)1/(α+1)

s
∈ SF .

We observe that

(h(s))α+1 =
g(s)

sα+1
=

1 + asα

sα(1 + bsα)
=

1

sα
+

a/b− 1

sα + 1/b
∈ SF ,

since sα ∈ CBF , a > b > 0, and using properties (P2) and (P8) from Propo-
sition 2.1. Let F (s) = s1/(α+1). Then F (s) ∈ CBF for 0 < α < 1. Then
h(s) = F (h(s))α+1) composition property (P12) yields h(s) ∈ SF .
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Let us note that property (4.9) can be used to give an example of application
of Theorem 2.5. Indeed, it implies for the analytic extension of

√
g(s) to

C\(−∞, 0]

| arg
√
g(z)| ≤ α + 1

2
| arg z|, z ∈ C\(−∞, 0]. (4.10)

If α < 1 and the operator A is a generator of a bounded cosine function
S2(t) then since α+1

2 < 1 the subordinated solution operator S(t) is a bounded
analytic solution operator in some sector of the complex plane.

4.3 One-dimensional Cauchy problem

Consider the one-dimensional Cauchy problem for the fractional Je�reys'
heat conduction equation

(1 + aDα
t )

∂

∂t
u(x, t) = (1 + bDα

t )
∂2

∂x2
u(x, t), x ∈ R, t > 0, (4.11)

u(x, 0) = u0(x); lim
t→0+

∂

∂t
u(x, t) = 0, x ∈ R, (4.12)

lim
|x|→∞

u(x, t) = 0, t > 0. (4.13)

Problem (4.11)-(4.12)-(4.13) is conveniently treated using Laplace transform
with respect to the temporal variable and Fourier transform with respect to the
spatial variable.

By applying Laplace and Fourier transforms to equation (4.11) and tak-
ing into account initial conditions (4.12), the boundary condition (4.13), and
identities (1.17) and (3.73) we derive the solution in Fourier-Laplace domain

̂̃u(ξ, s) =
g(s)/s

g(s) + |ξ|2
ũ0(ξ), ξ ∈ R, s > 0, (4.14)

where g(s) denotes the characteristic function, de�ned in (4.4).
Therefore, the solution of the Cauchy problem (4.11)-(4.12)-(4.13) is given

by the integral

u(x, t) =

∫ ∞
−∞
G(x− y, t)u0(y) dy, x ∈ R, t > 0.
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where G(x, t) is the fundamental solution (Green function), de�ned in Fourier-
Laplace domain as

̂̃G(ξ, s) =
g(s)/s

g(s) + |ξ|2
, ξ ∈ R, s > 0. (4.15)

By inversion of the Fourier transform and using the well-known formula

F {exp(−c|x|)} (ξ) =
2c

c2 + ξ2
, c > 0; x, ξ ∈ R,

we derive the Laplace transform of the fundamental solution

Ĝ(x, s) =

√
g(s)

2s
exp

(
−|x|

√
g(s)

)
, x ∈ R. (4.16)

Let us note the relation with the subordination kernel, which Laplace transform
is given in (4.8).

Let us note that in the special case a = b equation (4.11) reduces to the
classical di�usion equation. The fundamental solution in this special case is the
Gaussian function

G1(x, t) =
1

(4πt)1/2
exp

(
−|x|2/4t

)
, x ∈ R, t > 0.

4.3.1 Fundamental solution

To study the behavior of the fundamental solution G(x, t), the properties of
the characteristic function g(s) from Proposition 4.1 are used.

Theorem 4.4. The fundamental solution G(x, t) is a spatial probability density
function evolving in time.

Proof. For the proof we use representation (4.16). First, cccording to Propo-
sition 4.1

√
g(s) ∈ CBF ⊂ BF for all values of the parameters a, b. Then

property (2.3) yields Ĝ(x, s) ∈ CMF . Therefore, by Bernstein's theorem,
G(x, t) ≥ 0. Further, (4.16) yields

L
{∫ ∞
−∞
G(x, t)dx

}
=

∫ ∞
−∞
Ĝ(x, s)dx =

√
g(s)

s

∫ ∞
0

exp
(
−x
√
g(s)

)
dx =

1

s
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and, applying inverse Laplace transform we obtain∫ ∞
−∞
G(x, t)dx = 1.

The theorem is proved.

To �nd explicit integral expression for the fundamental solution G(x, t) we
apply integral inversion formula for Laplace transform to (4.16), which yields
for x ∈ R\{0} and t > 0

G(x, t) =
1

2πi

∫ c+i∞

c−i∞
estĜ(x, s) ds =

1

4πi

∫ c+i∞

c−i∞

√
g(s)

s
exp

(
st− |x|

√
g(s)

)
ds,

where c > 0.
The function under the integral sign is holomorphic with s = 0 and s =∞

as the only branch points. It has no singularities in C cut along the negative
real axis. Hence, the integral can be evaluated using the Cauchy's theorem and
the integration on the Bromwich path {s ∈ C|<s = c,=s ∈ (−∞,+∞)} can
be replaced by an integral over the composite contour

Γ = Γ−1 ∪ Γ−2 ∪ Γ3 ∪ Γ+
2 ∪ Γ+

1 ,

where

Γ±1 = {s = q ± iR, q ∈ (0, c)}, Γ±2 = {s = re±iπ/2, r ∈ (ρ,R)},
Γ3 = {s = ρeiθ, θ ∈ (−π/2, π/2)},

with appropriate orientation (see Figure 3.1) and letting ρ→ 0, R→∞.
The integrals on the contours Γ+

1 and Γ−1 vanish for R → ∞ due to the
following asymptotic expression∣∣∣√g(s)

∣∣∣ ∼√a

b
|s| =

(a
b

(q2 +R2)1/2
)1/2

, R→∞,

and

<
√
g(s) ∼

√
a

b
|s| cos

arg s

2
∼
(a
b

(q2 +R2)1/2
)1/2

cos(±π/4), R→∞.

Moreover, since

lim
|s|→0

s

(√
g(s)

s
exp

(
st− |x|

√
g(s)

))
= 0,
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it follows that the integral on the semi-circular contour Γ3 also vanishes. There-
fore, the original integral yields

G(x, t) = =
1

4πi
lim

ρ→0,R→∞

∫
Γ−2 ∪Γ+

2

√
g(s)

s
exp

(
st− |x|

√
g(s)

)
ds

=
1

2π

∫ ∞
0

=
{√

g(ir) exp
(

irt− |x|
√
g(ir)

)} dr

r
.

To express the imaginary part under the integral sign in terms of elementary
real functions we apply the formula for real and imaginary parts of the square
root of a complex number z:

<
{
z1/2
}

=
1√
2

(
a+

(
a2 + b2

)1/2
)1/2

,

=
{
z1/2
}

=
b

|b|
√

2

(
−a+

(
a2 + b2

)1/2
)1/2

,
(4.17)

where a = <z, b = =z. In this way we obtain after some standard manipula-
tions the following result.

Theorem 4.5. The fundamental solution G(x, t) of the Cauchy problem (4.11)-
(4.12)-(4.13) admits the following integral representation for x ∈ R\{0} and
t > 0:

G(x, t) =
1

2π

∫ ∞
0

exp
(
−|x|K−(r)

) (
K−(r) sin

(
rt− |x|K+(r)

)
+ K+(r) cos

(
rt− |x|K+(r)

)) dr
r
, (4.18)

where the functions K±(r) are de�ned by

K±(r) =
(r

2

)1/2 ((
A2(r) +B2(r)

)1/2 ± A(r)
)1/2

(4.19)

with

A(r) =
(a− b)rα sin(απ/2)

1 + 2brα cos(απ/2) + b2r2α
,

B(r) =
1 + (a+ b)rα cos(απ/2) + abr2α

1 + 2brα cos(απ/2) + b2r2α
.
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(a) (b)

Figure 4.1: Plots of the the fundamental solution G(x, t) versus x (x > 0)
for di�erent values of t; a = τq, b = τT ; (a) di�usion regime (a < b); (b)
propagation regime (a > b).

We note that the convergence of the integral in (4.18) is guaranteed by the
following properties of the functions K±(r): K±(r) > 0, K±(r) ∼ r(1−α)/2 as
r → +∞ and K±(r) ∼ r(1+α)/2as r → 0.

In [22] the integral representation (4.18) is used for numerical computation
and visualization of the fundamental solution. Figures 4.1 and 4.2 are from this
publication.

Fig. 4.1 shows the evolution in time of the fundamental solution G(x, t),
starting from a delta function δ(x) at t = 0. The solution is plotted for �ve
di�erent time instances. In the di�usion regime (a) the maximum remains at
t = 0, i.e. the probability density function is unimodal. In the propagation
regime (b) the maximum moves away from the origin, the PDF is bimodal.

In Fig. 4.2 the fundamental solution is plotted for di�erent values of the
fractional parameter α ∈ (0, 1]. For α→ 1 the solution approaches that of the
classical Je�reys' heat conduction equation. For α → 0 the fractional deriva-
tives become identity operators and (4.11) approaches the classical di�usion
equation with the one-dimensional Gaussian as fundamental solution (see the
plots for α = 0.05, which are qualitatively close to a Gaussian function).

In all �gures we observe behavior, typical for a di�usion process for a < b:
the fundamental solution is monotonically decreasing in x for x > 0. For a > b
the behavior is typical for a wave propagation process, with a maximum moving
away from the origin. In this respect there is a strong analogy with the fractional
di�usion-wave equation with Caputo time-derivative of order α ∈ (0, 2) with
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(a) (b)

Figure 4.2: Plots of the the fundamental solution G(x, t) versus x (x > 0)
for �xed t and di�erent values of α, α = 0.05, 0.25, 0.5, 0.75, 0.95, compared
to α = 1 (dashed line); a = τq, b = τT ; (a) di�usion regime (a < b); (b)
propagation regime (a > b).

the two corresponding regimes: subdi�usion (0 < α < 1) and di�usion-wave
propagation (1 < β < 2), c.f. [75, Fig. 6.1], [51].

Let us brie�y give analytical arguments for this behavior of G(x, t) on the
basis of the properties of the characteristic function g(s). Since the function
G(x, t) is a spatial PDF, it is positive and G(x, t)→ 0 as x→∞ for any �xed
t. Since G(x, t) = G(−x, t), we further consider only x > 0.

First, let a < b. In this case g(s) ∈ BF and
√
g(s) ∈ BF , see Proposi-

tion 4.1. Therefore, (2.3) implies

g(s)

s
exp(−|x|

√
g(s)) ∈ CMF , a < b. (4.20)

Di�erentiation of (4.16) yields (the di�erentiation under the improper integral
can be justi�ed in a standard way)

L
{
∂G
∂x

}
(x, s) =

∂

∂x
Ĝ(x, s) = −g(s)

2s
exp

(
−x
√
g(s)

)
, x ≥ 0, s > 0. (4.21)

For a < b this function is completely monotone, see (4.20), and Bernstein's
theorem implies that ∂G

∂x ≥ 0 and, thus, G(x, t) is monotonically decreasing in
x for x > 0.

Let now a > b. We show that in this case the solution G(x, t) is an increasing
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function of x near the origin, for all t > 0. Indeed, (4.21) yields

lim
x→0+

∂

∂x
Ĝ(x, s) = −g(s)

2s
= − 1 + asα

2(1 + bsα)
= − a

2b

(
b− a
ab

1

sα + 1/b
+ 1

)
,

which, after inverting the Laplace transform by the use of (1.27) implies

lim
x→0+

∂

∂x
G(x, t) = − a

2b

(
b− a
ab

tα−1Eα,α

(
−t

α

b

)
+ δ(t)

)
.

Therefore, due to the fact that the Mittag-Le�er function is positive, it follows
for all t > 0

lim
x→0+

∂

∂x
G(x, t) > 0, a > b,

and G(x, t) is an increasing function of x near the origin.

4.3.2 Mean squared displacement

Next, we study the temporal behavior of the mean squared displacement
(MSD) 〈

|x|2(t)
〉

=

∫
R
x2G(x, t) dx,

which is determining for the character of the solution.
Representation (4.16) implies for the MSD in Laplace domain

〈
|x|2(s)

〉
=

∫
R
x2Ĝ(x, s) dx =

√
g(s)

s

∫ ∞
0

x2 exp
(
−x
√
g(s)

)
dx.

Calculation of the integral yields〈
|x|2(s)

〉
=

2

sg(s)
=

2(1 + bsα)

s2(1 + asα)
, (4.22)

where g(s) is the characteristic function (4.4). By the use of Laplace transform
pair (1.27) we invert (4.22) and get two equivalent expressions in terms of
Mittag-Le�er functions〈

|x|2(t)
〉

= 2t+ 2

(
b

a
− 1

)
tEα,2

(
−t

α

a

)
(4.23)

= 2
b

a
t+

2

a

(
1− b

a

)
tα+1Eα,α+2

(
−t

α

a

)
. (4.24)
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Both expressions are valid for all a, b ≥ 0. However we give the two di�erent
forms, since (4.23) seems more natural for the di�usion regime (a < b) and
(4.24) for the wave propagation regime (a > b). Let us note that the Mittag-
Le�er functions in the MSD representations are positive functions, due to the
relation

tβEα,β+1(−atα) =

∫ t

0

τβ−1Eα,β(−aτα) dτ.

From the de�nition (1.21) of the Mittag-Le�er functions and their asymp-
totics (1.33) we derive the following asymptotic behavior for the MSD for short
and long times

〈
|x|2(t)

〉
∼


2
b

a
t

(
1 +

a− b
ab

tα

Γ(α + 2)

)
, t→ 0,

2t

(
1 + (b− a)

t−α

Γ(2− α)

)
, t→∞.

The established asymptotic expansions show linear asymptotic behavior for
short and long times. We also observe that the dominating term in the gradient
of the MSD is 2b/a for t → 0 versus 2 for t → ∞. Therefore, in the di�usion
regime (a < b) the MSD increases faster near the origin than for large times.
The opposite behavior is observed in the wave propagation regime (a > b):
the MSD increases slower near the origin than for large times. Let us note
that qualitatively comparable asymptotic behavior of the MSD is observed in
the fractional di�usion-wave equation (2.19), where MSD is proportional to tα

with α ∈ (0, 1) in the di�usion regime and α ∈ (1, 2) in the wave propagation
regime.

4.4 Generalized di�usion-wave equations

4.4.1 Di�usion regime

A generalized subdi�usion equation has the form [62, 98]∫ t

0

κ(t− τ)
∂

∂τ
u(x, τ) dτ =

∂2

∂x2
u(x, t), (4.25)

where κ(t) ∈ L1
loc(R+) is a non-negative function, such that its Laplace trans-

form κ̂(s) ∈ SF .
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By the use of Laplace transform we recast problem (4.11)-(4.12)-(4.13) into
the generalized di�usion equation (4.25) with kernel κ(t), such that

κ̂(s) =
1 + asα

1 + bsα
. (4.26)

In the proof of Proposition 4.1 we established that κ̂(s) is a Stieltjes function
for a < b. Taking into account (4.6) and (1.27) we get from (4.26) the explicit
form of the kernel κ(t)

κ(t) =
a

b
δ(t) +

(
1− a

b

) 1

b
tα−1Eα,α

(
−1

b
tα
)
, (4.27)

where δ(t) is the Dirac delta function. Therefore, in the considered in this
subsection case 0 < a/b < 1 the function κ(t) is non-negative. In this way we
proved that the required conditions on the kernel κ(t) in equation (4.25) are
satis�ed.

Plugging the expression (4.27) for the kernel into the di�usion equation
(4.25) gives the following representation of the fractional Je�reys' equation in
the di�usion case

∂u

∂t
+
b− a
ab

∫ t

0

(t− τ)α−1Eα,α

(
−(t− τ)α

b

)
∂u

∂τ
dτ =

b

a

∂2u

∂x2
. (4.28)

4.4.2 Wave propagation regime

In the case a > b we are looking for a representation of problem (4.11)-
(4.12)-(4.13) as a generalized di�usion-wave equation of the form [99]∫ t

0

η(t− τ)
∂2

∂τ 2
u(x, τ) dτ =

∂2

∂x2
u(x, t) (4.29)

where η(t) ∈ L1
loc(R+) is a non-negative function, such that η̂(s) ∈ SF .

The initial condition

lim
t→0+

∂

∂t
u(x, t) = 0, (4.30)

implies

L
{
∂2

∂t2
u

}
(x, s) = sL

{
∂

∂t
u

}
(x, s).
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With the help of this identity we obtain in Laplace domain

1 + asα

s(1 + bsα)
L
{
∂2

∂t2
u

}
(x, s) =

∂2

∂x2
û(x, s). (4.31)

Therefore, the fractional Je�reys' equation is equivalent to the generalized wave
equation (4.29) with kernel η(t), such that

η̂(s) =
1 + asα

s(1 + bsα)
=

1

s
+
(a
b
− 1
) sα−1

sα + 1/b
. (4.32)

Applying inverse Laplace transform in (4.32) gives by the use of (1.27)

η(t) = 1 +
(a
b
− 1
)
Eα

(
−1

b
tα
)
. (4.33)

Since a/b > 1 the kernel η(t) is a non-negative function. Moreover, η(t) ∈
CMF and therefore η̂(s) ∈ SF . Hence, the requirements on the kernel η(t)
are satis�ed.

We point out some general relations of the kernels κ and η to the kernel
k of the equivalent Volterra integral equation (4.3). First, in the di�usion
regime, g(s) = sκ̂(s) ∈ CBF if and only if κ̂(s) ∈ SF , see property (P7) in
Proposition 2.1. Therefore, a generalized subdi�usion equation is subordinated
to the classical di�usion equation. For the wave propagation regime we note
that g(s) = s2η̂(s). Then the property η̂(s) ∈ SF implies that g(s) is a product
of two complete Bernstein functions (s and sη̂(s)), and thus

√
g(s) ∈ CBF ,

see (2.2). Therefore, a generalized di�usion-wave equation is subordinated to
the classical wave equation.

In this section we studied the fractional Je�reys' type heat conduction equa-
tion as a model problem. Depending on the model parameters it governs the
two fundamental types of behavior, considered in the dissertation: subdi�usion
and propagation of di�usive waves. By employing the Bernstein functions tech-
nique we establish di�usion regime for a/b < 1 and wave propagation regime
for a/b > 1. The two regimes are related to two di�erent subordination prin-
ciples. In the di�usion regime the abstract Cauchy problem for the Je�reys'
equation is subordinated to the �rst order Cauchy problem (2.6), while in the
wave propagation regime it is subordinated to the second order Cauchy problem
(2.7). The fractional Je�reys-type heat conduction equation in the two di�erent
regimes is represented as a generalized subdi�usion equation, and generalized
di�usion-wave equation, respectively.
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The established properties indicate a strong analogy between the fractional
Je�reys-type equation (4.1) and the fractional di�usion-wave equation with
the Caputo fractional time-derivative (2.8) with its two di�erent regimes: it
is a subdi�usion equation for 0 < α ≤ 1 and a di�usion-wave equation for
1 < α ≤ 2.

We close the chapter with a remark concerning the terminology in this dis-
sertation. For the sake of brevity, equations subordinated to the �rst order
Cauchy problem (2.6) are called generalized subdi�usion equations; equations
subordinated to the second order Cauchy problem (2.7), which are not general-
ized subdi�usion equations, are called generalized di�usion-wave equations. In
other words, if we set

α∗ = min{α > 0| g(s)1/α ∈ CBF , s > 0},

where g(s) is the function (2.11), then the abstract Volterra equation (2.10)
(respectively, any fractional order integro-di�erential equation, which is equiv-
alent to (2.10)), is called generalized subdi�usion equation if A is a generator
of C0 semigroup and α∗ ∈ (0, 1] and generalized di�usion-wave equation if A is
a generator of a cosine family and α∗ ∈ (1, 2].



Chapter 5

Generalized subdi�usion
equations

First, the abstract Cauchy problem for the distributed order fractional evo-
lution equation in the Caputo and in the Riemann-Liouville sense is studied
for operators generating a strongly continuous one-parameter semigroup on a
Banach space. Continuous as well as discrete distribution of fractional time-
derivatives of orders in the interval [0, 1] are considered. The problem with a
general convolutional derivative is studied next and two types of subordina-
tion results are established. The subordination principle in the particular case
of general relaxation equation is applied to derive estimates for the relaxation
functions, which are applied to prove uniqueness and stability for an inverse
source problem.

5.1 Distributed order di�usion equations

In this section, we consider the fractional evolution equation of distributed
order in the following two alternative forms:∫ 1

0

µ(β)CDβ
t u(t) dβ = Au(t), t > 0, (5.1)

and

u′(t) =

∫ 1

0

µ(β)Dβ
t Au(t) dβ, t > 0, (5.2)

with the initial condition u(0) = a ∈ X. Here CDβ
t and D

β
t are fractional time-

derivatives in the Caputo and in the Riemann-Liouville sense, respectively, and

83
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A is a closed linear operator densely de�ned in a Banach space X. The weight
function µ may be a generalized function in the sense of Gelfand and Shilov
[42] that represents a nonnegative measure.

For the weight function µ two cases are considered:

• discrete distribution

µ(β) = δ(β − α) +
m∑
j=1

bjδ(β − αj), (5.3)

where 1 > α > α1... > αm > 0, bj > 0, j = 1, ...,m, m ≥ 0, and δ is
the Dirac delta function;

• continuous distribution

µ ∈ C[0, 1], µ(β) ≥ 0, β ∈ [0, 1], (5.4)

and µ(β) 6= 0 on a set of a positive measure.

In the case of discrete distribution, equations (5.1) and (5.2) are reduced to
the multi-term time-fractional equations

CDα
t u(t) +

m∑
j=1

bj
CD

αj
t u(t) = Au(t), t > 0, (5.5)

and

u′(t) = Dα
t Au(t) +

m∑
j=1

bjD
αj
t Au(t), t > 0, (5.6)

respectively. Note that if m = 0 (single-term fractional evolution equation)
problem (5.5) is equivalent to (5.6) with α replaced by 1 − α. However, in
general, similar equivalence does not hold for equations (5.1) and (5.2).

In this chapter, it is assumed that the operator A is a generator of a C0-
semigroup, i.e. that the classical abstract Cauchy problem

u′(t) = Au(t), t > 0; u(0) = a ∈ X, (5.7)

is well-posed. Reformulating problems (5.1) and (5.2) as abstract Volterra in-
tegral equations, we propose a uni�ed approach to their study. We prove that
the scalar kernels of the corresponding integral equations have certain com-
plete monotonicity properties and derive useful consequences for the original
equations (5.1) and (5.2) based mainly on these properties.
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5.1.1 Integral reformulation and properties of the kernels

We reformulate problems (5.1) and (5.2) as Volterra integral equations of the
form (2.10) with appropriate kernels k(t). By applying (formally) the Laplace
transform and, by the use of properties (1.17) and (1.18), it follows for the
solution of (2.10)

û(s) =
1

s
(1− k̂(s)A)−1a (5.8)

and for the solutions of problems (5.1) and (5.2), respectively

û(s) =
h(s)

s
(h(s)− A)−1 a, û(s) =

1

s

(
1− h(s)

s
A

)−1

a, (5.9)

where

h(s) =

∫ 1

0

µ(β)sβ dβ. (5.10)

Note that in the discrete distribution case (5.3) h(s) admits the representation

h(s) = sα +
m∑
j=1

bjs
αj . (5.11)

Comparing (5.9) to (5.8), it follows for the kernels k1(t) and k2(t), corresponding
to problems (5.1) and (5.2), respectively:

k̂1(s) = (h(s))−1 , k̂2(s) = h(s)/s. (5.12)

De�ne the functions
gi(s) = 1/k̂i(s), i = 1, 2,

that is
g1(s) = h(s), g2(s) = s/h(s), (5.13)

where h(s) is de�ned in (5.10).
Some useful properties of the functions ki(t) and gi(s), i = 1, 2, are estab-

lished in the next theorem.

Theorem 5.1. Let µ(β) be either of the form (5.3) or of the form (5.4) with
the additional assumptions µ ∈ C3[0, 1], µ(1) 6= 0, and µ(0) 6= 0 or µ(β) = cβν

as β → 0, where c, ν > 0. Then the functions ki(t) and gi(s), i = 1, 2, have
the following properties:
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(a) ki ∈ L1
loc(R+), limt→0 ki(t) = +∞, and limt→+∞ ki(t) = 0;

(b) ki(t) ∈ CMF for t > 0;
(c) k1 ∗ k2 ≡ 1;
(d) gi(s) ∈ CBF for s > 0, lims→0 gi(s) = 0 and lims→+∞ gi(s) = +∞;
(e) lims→0 gi(s)/s = +∞ and lims→+∞ gi(s)/s = 0.

Let us �rst consider some particular cases. Applying (1.4), (1.27), (5.11),
(5.12) and (5.13), it follows in the single-term case ((5.11) with m = 0):

k1(t) =
tα−1

Γ(α)
, k2(t) =

t−α

Γ(1− α)
, g1(s) = sα, g2(s) = s1−α,

and in the double-term case ((5.11) with m = 1):

k1(t) = tα−1Eα−α1,α(−b1t
α−α1), k2(t) =

t−α

Γ(1− α)
+ b1

t−α1

Γ(1− α1)
,

g1(s) = sα + b1s
α1, g2(s) =

s

sα + b1sα1
.

Thus, in the single-term case Theorem 5.1 is straightforward. In the double
term case, statements (a) and (b) are trivial for k2; for k1 they follow from the
asymptotic behavior of Mittag-Le�er function and the fact that the function
Eα,β(−x) ∈ CMF for x > 0, 0 ≤ α ≤ 1, β ≥ α. On the other hand,
properties (d) and (e) are trivial for g1. Since g2(s) = s/g1(s), according to
(P9) in Proposition 2.1 g1(s) and g2(s) are simultaneously complete Bernstein
functions.

In the case of continuous distribution in its simplest form: constant weight
function µ(β) ≡ 1. Then (5.10) implies (taking sβ = eβ log s)

g1(s) =
s− 1

log s
, g2(s) =

s log s

s− 1
.

Based on these explicit representations, the positivity of the functions gi(s) for
s > 0 and their limiting behavior as s → 0 and s → +∞ can be straightfor-
wardly established. However, the fact that gi(s) ∈ CBF is not easily recognized.

Now, we proceed with the proof of Theorem 5.1.

Proof. Let us start with the kernel k2(t). Application of the inverse Laplace

transform to k̂2(s) = h(s)/s, see (5.12), implies by the use of (1.4):

k2(t) =

∫ 1

0

µ(β)
t−β

Γ(1− β)
dβ. (5.14)
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In the particular case of discrete distribution

k2(t) =
t−α

Γ(1− α)
+

m∑
j=1

bj
t−αj

Γ(1− αj)
.

Therefore

k2(t) ∼
t−α

Γ(1− α)
, t→ 0; k2(t) ∼ bm

t−αm

Γ(1− αm)
, t→∞,

and thus (a) is satis�ed for this kernel.
In the case of continuous distribution it is proven in [61], Proposition 2.1,

that

k2(t) ∼
1

t(log t)2
, t→ 0.

Therefore, it is integrable at t = 0 (note that the singularity at t = 0 is quite
strong). Moreover, since Γ(1− β) ≥ 1 for β ∈ [0, 1], (5.14) implies for t > 1

0 ≤ k2(t) ≤ sup
β∈[0,1]

|µ(β)|
∫ 1

0

t−β dβ ≤ C
t− 1

t log t

and thus k2(t)→ 0 as t→∞.
Complete monotonicity of k2(t) follows directly from (5.14) by noticing that

t−β ∈ CMF , Γ(1 − β) > 0 for β ∈ (0, 1) and applying properties (P1) in
Proposition 2.1. In this way, (a) and (b) are proven for the kernel k2(t) in both
discrete and continuous case.

Consider now the kernel k1(t). The identity k̂1(s) = 1/h(s), see (5.12),
implies the following representation for this kernel as an inverse Laplace integral:

k1(t) =
1

2πi

∫ γ+i∞

γ−i∞
est

1

h(s)
ds, γ > 0. (5.15)

Consider �rst the discrete case in which h(s) is de�ned by (5.11). The function
h(s) has no zeros in C cut along the negative real axis. Indeed, for s = reiφ,
with r > 0, φ ∈ (−π, π),

={sα +
m∑
j=1

bjs
αj} = rα sinαφ+

m∑
j=1

bjr
αj sinαjφ 6= 0,
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since sinαφ and sinαjφ have the same sign and bj > 0. Then the function under
the integral sign in (5.15) is analytic in Σπ and we can bend the integration
contour to the contour Γρ,θ de�ned by

Γρ,θ = Γ−ρ,θ ∪ Γ0
ρ,θ ∪ Γ+

ρ,θ, ρ > 0, π/2 < θ < π,

where

Γ±ρ,θ =
{
re±iθ : r ≥ ρ

}
, Γ0

ρ,θ =
{
ρeiψ : |ψ| ≤ θ

}
,

and Γρ,θ is oriented in the direction of growth of arg s. Hence

k1(t) =
1

2πi

∫
Γρ,θ

est
1

sα +
∑m

j=1 bjs
αj
ds. (5.16)

The integral over Γ0
ρ,θ is a function from C∞[0,∞). Take ρ = R so large that

|sα +
m∑
j=1

bjs
αj | ≥ |s|α −

m∑
j=1

bj|s|αj ≥ |s|α/2, |s| ≥ R.

Then, noting that cos θ < 0 for π/2 < θ < π, it follows∣∣∣∣∣
∫

Γ−R,θ∪Γ+
R,θ

est
1

sα +
∑m

j=1 bjs
αj
ds

∣∣∣∣∣ ≤ C

∫ ∞
R

ert cos θr−α dr ≤ Ctα−1. (5.17)

Therefore, k1(t) ∼ tα−1 for t → 0 and thus it has an integrable singularity at

t = 0. Since in the discrete case k̂1(s) ∼ s−αm as s → 0, Karamata-Feller
Tauberian theorem implies k1(t) ∼ tαm−1, t→∞. Thus (a) is proven for the
discrete variant of k1(t). To prove its complete monotonicity we take ρ → 0
and θ → π in (5.16). Since∣∣∣∣∣

∫
Γ0
ρ,θ

est
1

sα +
∑m

j=1 bjs
αj
ds

∣∣∣∣∣ ≤ C

∫ π

0

eρt cosψρ1−αm dψ, (5.18)

the integral over Γ0
ρ,θ vanishes when ρ → 0. Therefore, only the contributions

of the integrals over Γ±ρ,θ remain in (5.16), implying

k1(t) =

∫ ∞
0

e−rtK(r) dr, (5.19)
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where

K(r) = −1

π
=

{
1

sα +
∑m

j=1 bjs
αj

∣∣∣∣∣
s=reiπ

}
.

Simplifying this expression, we get

K(r) =
1

π

B(r)

(A(r))2 + (B(r))2

where

A(r) = rα cosαπ +
m∑
j=1

bjr
αj cosαjπ, B(r) = rα sinαπ +

m∑
j=1

bjr
αj sinαjπ,

and thus K(r) > 0 for r > 0. This together with representation (5.19) implies
that k1(t) ∈ CMF .

In the case of continuous distribution it is proven in [61], Proposition 3.1,
that for small values of t

k1(t) ≤ C log
1

t
,

therefore this kernel has integrable singularity at t → 0. Further, by [61],
Proposition 2.2, (ii) and (iii),

k̂1(s) ∼
(

log
1

s

)λ+1

, s→ 0, (5.20)

where

λ =

{
0 if µ(0) 6= 0,

ν > 0 if µ(β) = cβν as β → 0.

Applying again Karamata-Feller Tauberian theorem (Theorem 1.2) it follows

k1(t) ∼
(log t)λ

t
, t→∞,

and thus k1(t) → 0 as t → ∞. Complete monotonicity of k1(t) in the case
of continuous distribution is proven in [61], Propositions 3.1. In this way the
proof of properties (a) and (b) is completed for all cases.

According to (5.12)

k̂1(s)k̂2(s) = 1/s
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and taking the inverse Laplace transform of this identity we derive (c).
The fact that gi(s) ∈ CBF can be established directly. Indeed, since

sβ ∈ CBF for β ∈ [0, 1], it follows by applying (P2) in Proposition 2.1 that
h(s) ∈ CBF . Therefore, g1(s) ∈ CBF and, taking into account (P9) in Propo-
sition 2.1, it also follows g2(s) ∈ CBF .

The limiting behaviors of gi(s) as s→ 0 and s→ +∞ are easily established
for the cases of discrete distribution. For continuous distribution, inserting the
limit (5.20) in the identities g1(s) = 1/k̂1(s) and g2(s) = sk̂1(s), it follows
lims→0 gi(s) = 0 and lims→0 gi(s)/s = +∞.

According to [61], Proposition 2.2, (i),

g1(s) ∼ µ(1)
s

log s
, s→ +∞.

This together with the identity g2(s) = s/g1(s) implies lims→+∞ gi(s) = +∞
and lims→+∞ gi(s)/s = 0.

Let us note that kernels k1(t) and k2(t), satisfying property (c), are called
a pair of Sonine kernels.

The limiting cases of the multi-term equations, (5.5) with α = 1 and (5.6)
with αm = 0 also deserve attention, since they appear in the modeling of some
physical processes. The simplest two-term particular case of the �rst one was
introduced in the modeling of fractal mobile-immobile solute transport [103],
while the two-term case of the second is related to the Rayleigh-Stokes problem
for a generalized second grade �uid [11, 109].

The abstract form of the fractal mobile-immobile solute transport equation
is

u′(t) + b CDα
t u(t) = Au(t), t > 0, u(0) = a ∈ X, (5.21)

where CDα
t is the Caputo fractional derivative of order α, 0 < α < 1, b > 0,

and A is an unbounded closed linear operator de�ned on a Banach space X.
The kernel of the equivalent Volterra equation obeys the relations

k(t) = E1−α(−bt1−α), g(s) = (k̂(s))−1 = s+ bsα, α ∈ (0, 1).

The following properties of the functions k(t) and g(s) are easily derived:
(a) k ∈ L1

loc(R+) ∩ CMF ;
(b) limt→0 k(t) = 1, limt→+∞ k(t) = 0;
(c) g(s) ∈ CBF for s > 0;
(d) lims→0 g(s) = 0, lims→+∞ g(s) = +∞;
(e) lims→0 g(s)/s = +∞ and lims→+∞ g(s)/s = 1.
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We see that, compared to the properties in Theorem 5.1, the only di�erences
are in the limiting behaviour of the functions k(t) and g(s).

5.1.2 A limiting case

In this subsection we study in detail the second limiting case, which is given
by the fractional di�erential equation:

u′(t) = Au(t) + γDα
t Au(t), t > 0, u(0) = a ∈ X, (5.22)

where Dα
t is the Riemann-Liouville fractional derivative of order α ∈ (0, 1),

γ > 0, A is an unbounded closed linear operator de�ned on a Banach space X.
Our motivation for the study of this equation comes from recent works where

related problems appear in the modeling of unidirectional viscoelastic �ows.
For example, if the operator A is some realization of the Laplace operator,
then the inhomogeneous version of (5.22) is the Rayleigh-Stokes problem for a
generalized second-grade �uid, see e.g. [109].

Integral reformulation of the problem

Assume u,Au ∈ C(R+, X). Integrating both sides of the governing equa-
tion in (5.22), by the use of the identity (J1−α

t Au)(0) = 0, we obtain:

u(t) = a+

∫ t

0

(1 + γω1−α(t− τ))Au(τ) dτ (5.23)

that is the Volterra integral equation (2.10) with kernel k(t) given by:

k(t) = 1 + γω1−α(t) (5.24)

where the function ωα is de�ned in (1.3). Conversely, di�erentiating both sides
of (5.92) and using that:

d

dt
(ω1−α ∗ Au) =

d

dt

(
J1−α
t Au

)
= Dα

t Au

we get back the governing equation in (5.22). Since (k ∗Au)(0) = 0, the initial
condition is also satis�ed.

We begin with summarizing some properties of the kernel k(t) de�ned in
(5.24) and the related function:

g(s) = (k̂(s))−1 =
s

1 + γsα
. (5.25)
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Here, k̂ is the Laplace transform of k, and the Laplace transform pair (1.4) is
used.

Theorem 5.2. The functions k(t) and g(s), de�ned in (5.24) and (5.25),
respectively, have the following properties:
(a) k ∈ L1

loc(R+) ∩ CMF ;
(b) limt→0 k(t) = +∞, limt→+∞ k(t) = 1;
(c) g(s) ∈ CBF for s > 0;
(d) lims→0 g(s) = 0, lims→+∞ g(s) = +∞;
(e) lims→0 g(s)/s = 1 and lims→+∞ g(s)/s = 0.
(f) the estimate holds true:

|g(s)| ≤ C min(|s|, |s|1−α), s ∈ Σ(π − θ), θ ∈ (0, π).

Proof. The function k(t) is in�nitely continuously di�erentiable for t > 0 with
integrable singularity at t = 0, and its derivatives satisfy (5.72); thus, (a) is
ful�lled. Limits (b) and (d) follow by direct check. Since 1 + γsα ∈ CBF for
α ∈ (0, 1), then (P9) in Proposition 2.1 implies g(s) ∈ CBF . Alternatively,
this can be seen from the representation

g(s) = s
1

1 + γsα
= sL{γ−1tα−1Eα,α(−γ−1tα)}(s).

Since α ∈ (0, 1), the Mittag-Le�er function Eα,α(−x) ∈ CMF for x > 0.
Then, the function E(t) = γ−1tα−1Eα,α(−γ−1tα) ∈ CMF for t > 0. There-
fore, L{E(t)}(s) ∈ SF , see (2.1) and by (P7) in Proposition 2.1 g(s) =
sL{E(t)}(s) ∈ BF . To prove property (f) we let s ∈ Σ(π − θ), i.e. s = reiψ,
|ψ| < π − θ, r > 0. Then

|1 + γsα|2 = 1 + 2γrα cosαψ + γ2r2α > 1 + 2γrα cosαπ + γ2r2α. (5.26)

Let b = cosαπ. Since f(x) = 1 + 2bx+ x2 ≥ 1− b2, it follows from (5.26) that

|1 + γsα|2 > 1− cos2 απ = sin2 απ.

Since sinαπ > 0 we obtain

|g(s)| =
∣∣∣∣ s

1 + γsα

∣∣∣∣ < |s|
sinαπ

.

From (5.26) it also follows that

|1 + γsα|2 = (1 + γrα cosαπ)2 + (γrα sinαπ)2 ≥ γ2 sin2 απr2α,
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and consequently we get

|g(s)| ≤ r

γrα sinαπ
=
|s|1−α

γ sinαπ
.

This completes the proof of the theorem.

Let us note that the limiting behaviour of the functions k(t) and g(s) in the
above theorem is di�erent from those in Theorem 5.1.

The scalar case

It is instructive to study �rst the scalar version of equation (5.22), where
A = −λ is a given negative constant. Consider the problem:

u′(t) + λu(t) + λγDα
t u(t) = 0, u(0) = 1, (5.27)

where λ > 0. Denote its solution by u(t;λ). To solve (5.27), we apply the
Laplace transform and use the identities (1.17) and L{u′}(s) = sL{u}(s) −
u(0). In this way, for the Laplace transform of u(t;λ), one gets:∫ ∞

0

e−stu(t;λ) dt =
1

s+ γλsα + λ
. (5.28)

Theorem 5.3. For any λ > 0, the solution u(t;λ) of Problem (5.27) has the
following properties:
(a) u(t;λ) is a positive nonincreasing function for t > 0 and u(t;λ) → 0 as
t→ +∞ with:

u(t;λ) ∼ − γt−α−1

λΓ(−α)
, t→ +∞, (5.29)

(b) u(t;λ) ∈ CMF , t > 0,
(c) The identity is satis�ed:

λ

∫ ∞
0

u(t;λ) dt = 1, (5.30)

(d) The solution admits the following explicit representation:

u(t;λ) =
∞∑
k=0

(−1)k

γk+1λk+1
t(α−1)(k+1)Ek+1

α,α(k+1)−k(−γ
−1tα). (5.31)
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Proof. Properties (a) and (b), with the exception of the asymptotic estimate
(5.29), are proven in [24], Theorem 2.2. To prove (5.29), we apply the Karamata�
Feller�Tauberian theorem (see Theorem 1.2). Since for small |s|, the Laplace
transform (5.28) of u(t;λ) is dominated by the function

1

λγsα + λ

applying the asymptotic estimate (1.33) (note that Γ(0)−1 = 0), we obtain for
large t:

u(t;λ) ∼ L−1

{
1

λγsα + λ

}
=

1

λγ
tα−1Eα,α(−1

γ
tα) ∼ − γt−α−1

λΓ(−α)
, t→ +∞.

Identity (5.30) is obtained taking s → 0 in (5.28). Representation (5.31)
in terms of three-parameter Mittag�Le�er functions is obtained by taking the
inverse Laplace transform of function (5.28). If

∣∣sλ−1(γsα + 1)−1
∣∣ < 1, then:

1

s+ γλsα + λ
=

1

λ(γsα + 1)

(
s

λ(γsα + 1)
+ 1

)−1

=
∞∑
k=0

(−1)k

(γλ)k+1

sk

(sα + γ−1)k+1

and, applying term-wise the inverse Laplace transform, we get (5.31) by the
use of (1.34).

Remark 5.1. From the Laplace transform pair (5.28) it follows also the fol-
lowing representation as a multinomial Mittag-Le�er function (see Chapter 6)

u(t;λ) = E(1,1−α),1(t;λ, γλ).

Subordination principle

Assume the operator A generates a bounded C0 semigroup S1(t). The main
goal now is to prove that in this case, problem (5.22) is well-posed, and its
solution operator S(t) satis�es the relationship:

S(t) =

∫ ∞
0

ϕ(t, τ)S1(τ) dτ, t > 0, (5.32)

with an appropriate function ϕ(t, τ).
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We give next a complete proof of the subordination principle for problem
(5.22), without the use of the general subordination theorem. Let the function
ϕ(t, τ) be such that its Laplace transform with respect to t satis�es:∫ ∞

0

e−stϕ(t, τ) dt =
g(s)

s
e−τg(s), s, τ > 0, (5.33)

where g(s) is de�ned in (5.25). The reason is that in this case the operator
S(t), de�ned by (5.32), will satisfy (2.13). Indeed, by (5.32) and (5.33) and the
identity for the Laplace transform of a C0-semigroup∫ ∞

0

e−µτS1(τ) dτ = (µ− A)−1,

it follows:∫ ∞
0

e−stS(t) dt =

∫ ∞
0

(∫ ∞
0

e−stϕ(t, τ) dt

)
S1(τ) dτ

=
g(s)

s

∫ ∞
0

e−τg(s)S1(τ) dτ =
g(s)

s
(g(s)− A)−1. (5.34)

Then, by the uniqueness of the Laplace transform, S(t) will be the solution
operator of problem (5.22). For the strict proof we refer to Theorem 2.4 with
α = 1.

Identity (5.33) implies that the function ϕ(t, τ) can be found by the inverse
Laplace integral:

ϕ(t, τ) =
1

2πi

∫ c+i∞

c−i∞
est−τg(s) g(s)

s
ds, c > 0, t, τ > 0. (5.35)

Let us check that the function ϕ(t, τ) is well de�ned in this way. Since
g(s) ∈ CBF , then <{s} > 0 implies <{g(s)} > 0. More precisely, if s = reiθ,
then:

<{g(s)} =
r cos θ + γrα+1 cos(1− α)θ

1 + 2γrα cosαθ + γ2r2α
.

Hence, when r →∞, |θ| → π/2, the dominant term of <{g(s)} is

r1−α sinαπ/2 > 0.

This together with the estimate (f) of Theorem 5.2 shows that the integral in
(5.35) is absolutely convergent.

We are ready to formulate the main subordination result for problem (5.22).
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Theorem 5.4. Let A be a generator of a bounded C0 semigroup S1(t), such
that ‖S(t)‖ ≤ C, t ≥ 0. Then, problem (5.22) is well-posed, with bounded
solution operator S(t) satisfying the same bound. Moreover, the subordination
identity (5.32) holds, where the function ϕ(t, τ) admits the representation for
t, τ > 0:

ϕ(t, τ) =
∞∑
k=0

(−1)k
t(α−1)(k+1)

γk+1

τ k

k!
Ek+1
α,α(k+1)−k(−γ

−1tα). (5.36)

The function ϕ(t, τ) is a probability density function with respect to both vari-
ables t and τ , i.e., it satis�es the following properties for t, τ > 0:

ϕ(t, τ) ≥ 0 (5.37)∫ ∞
0

ϕ(t, τ) dτ = 1 (5.38)∫ ∞
0

ϕ(t, τ) dt = 1. (5.39)

Proof. Let us �nd the Laplace transform of ϕ(t, τ) with respect to τ . Applying
(5.35) and interchanging the order of integration, it follows:∫ ∞

0

e−λτϕ(t, τ) dτ =
1

2πi

∫ c+i∞

c−i∞
est
g(s)

s

(∫ ∞
0

e−(λ+g(s))τ dτ

)
ds

=
1

2πi

∫ c+i∞

c−i∞
est

g(s)

s(g(s) + λ)
ds

From the de�nition of g(s) in (5.25):

g(s)

s(g(s) + λ)
=

1

s+ γλsα + λ

Therefore, (5.28) implies that the last integral gives exactly the solution u(t;λ)
of the scalar equation (5.27), i.e.,∫ ∞

0

e−λτϕ(t, τ) dτ = u(t;λ), λ, t > 0. (5.40)

Inserting representation (5.31) of u(t;λ) in (5.40) and using (1.4), we deduce the
series expansion of the function ϕ(t, τ) in (5.36). Alternatively, this expansion
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can be deduced, inserting the series expansion of the function g(s)
s e
−τg(s) in

(5.35) and using the Laplace transform pair (1.34).
The complete monotonicity of u(t;λ) for t > 0 and (5.40) imply the posi-

tivity of ϕ(t, τ) by applying Bernstein's theorem. Alternatively, the positivity
of ϕ(t, τ) can be also deduced from (5.33), since g(s) ∈ CBF yields using (2.3)

g(s)

s
e−τg(s) ∈ CMF .

Further, letting s→ 0 in (5.33) and λ→ 0 in (5.40) and noting that u(t; 0) = 1,
we deduce by applying the dominated convergence theorem the integral identi-
ties, (5.38) and (5.39).

The de�nition (5.32), the estimate for S1(t) and the properties (5.37) and
(5.38) imply:

‖S(t)‖ =

∫ ∞
0

ϕ(t, τ)‖S1(τ)‖ dτ ≤ C

∫ ∞
0

ϕ(t, τ) dτ = C, t > 0.

Next, we deduce the strong continuity of S(t) at the origin from the strong
continuity of S1(t) at the origin:

lim
t→0

S1(t)a = a. (5.41)

On the basis of the dominated convergence theorem and by the change of
variables σ = tα−1τ in (5.32), we obtain:

lim
t→0

S(t)a = lim
t→0

∫ ∞
0

t1−αϕ(t, σt1−α)S1(σt
1−α)a dσ. (5.42)

For the function under the integral sign, we get from (5.36):

t1−αϕ(t, σt1−α) =
∞∑
k=0

(−1)k

k!

σk

γk+1
Ek+1
α,α(k+1)−k(−γ

−1tα)

and thus:

lim
t→0

(
t1−αϕ(t, σt1−α)

)
=

∞∑
k=0

(−1)kσk

γk+1k!Γ(α(k + 1)− k)
=

1

γ
M1−α

(
σ

γ

)
where Mβ(z), β ∈ (0, 1), is the Mainardi function (1.38). Therefore, (5.42)
together with (5.41) and the integral identity in (1.47) for the Mainardi function
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imply:

lim
t→0

S(t)a =

∫ ∞
0

1

γ
M1−α

(
σ

γ

)
dσa =

∫ ∞
0

M1−α (r) dra = a.

In this way, we proved that S(t), de�ned by (5.32), is a strongly continuous
bounded operator-valued function. Moreover, in (5.34), we proved that the
Laplace transform of S(t) satis�es:∫ ∞

0

e−stS(t) dt = H(s) (5.43)

where

H(s) =
g(s)

s
(g(s)− A)−1.

After easily justi�ed di�erentiation under the integral sign in (5.43), we
obtain the estimates (2.14) and, thus, the well-posedness of problem (5.22).
Then, identity (5.43) implies by the uniqueness of the Laplace transform that
S(t) is exactly the solution operator of (5.22). The proof of the theorem is
completed.

Let us note that in the case of single-term fractional evolution equation the
subordinated solution operator S(t) is always analytic in some sector without
assuming the analyticity of the C0-semigroup S1(t), see Theorem 2.3. How-
ever, this is not true for the considered here equation (5.22). The question of
analyticity will be discussed later in this chapter.

5.2 General convolutional derivative

Generalized fractional derivative of Caputo type is introduced in [62] in the
form

(CD(κ)
t f)(t) =

d

dt

∫ t

0

κ(t− τ)f(τ) dτ − κ(t)f(0), t > 0, (5.44)

where κ(t) is a nonnegative locally integrable kernel. For the kernel κ(t) we
assume that its Laplace transform κ̂(s) exists for all s > 0 and obeys

κ̂(s) ∈ SF and lim
s→+∞

sκ̂(s) = +∞, (5.45)
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where SF denotes the class of Stieltjes functions.
If f ′ is integrable function (f ∈ W 1,1) then by applying the identity

(κ ∗ f)′(t) = (κ ∗ f ′)(t) + κ(t)f(0) (5.46)

we obtain the representation (CD(κ)
t f)(t) = (κ ∗ f ′)(t).

The operator CD(κ)
t reduces to the �rst-order derivative d

dt when κ̂(s) = 1.
It is the Caputo time-fractional derivative of order α ∈ (0, 1) when κ̂(s) = sα−1.

Let us note that assumptions (5.45) are weaker than those required in the
original de�nition of the so-called general fractional derivative, introduced in

[62]. More precisely, the operator CD(κ)
t is a general fractional derivative, if,

along with (5.45), the following additional limiting behavior conditions are im-
posed: κ̂(s) → 0 as s → ∞; κ̂(s) → ∞ and sκ̂(s) → 0 as s → 0. In order
to cover some examples of physically meaningful models with corresponding
memory kernels, which do not satisfy some of the additional conditions, they
are not required here. Such examples are the subdi�usion equation with the
truncated power-law memory kernel κ(t) = e−γtω1−α(t), γ > 0, α ∈ (0, 1),
considered in [98, 99], the Je�reys' type heat conduction model in the di�usion
regime, see Chapter 4, and the two examples of Section 5.1.2. On the other
hand, the assumption κ̂(s) ∈ SF is typical for a subdi�usion model (see e.g.,
[98, 99]) and allows the use of the convenient Bernstein functions technique. It
implies that the kernel κ(t) admits the representation

κ(t) = κ0δ(t) + κ1(t), (5.47)

where κ0 ≥ 0, δ(·) denotes the Dirac delta function, and κ1(t) ∈ L1
loc(R+) is a

completely monotone function. The space of functions, which admit represen-
tation (5.47) was denoted by CMF0, see (2.4).

For example, in the case of the �rst-order derivative κ0 = 1 and κ1 ≡ 0,
while κ0 = 0 and κ1 = ω1−α(t) for the Caputo time-fractional derivative of
order α ∈ (0, 1).

Along with the kernel κ(t) we are also interested in the corresponding Sonine
kernel k(t) ∈ L1

loc(R+), which is related to κ(t) by the following identity

(κ ∗ k)(t) ≡ 1. (5.48)

In Laplace domain (5.48) reads κ̂(s)k̂(s) = 1/s. Therefore assumptions (5.45)

imply k̂(s) ∈ SF (see property (P10) in Proposition 2.1) and lims→∞ k̂(s) =

0. Hence k̂(s) obeys representation (2.1) with b = 0. Therefore, under the
assumptions (5.45) a resolvent kernel k(t) exists and k(t) ∈ CMF .
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Basic examples of kernels κ(t) are considered next, together with their So-
nine kernels k(t). For the sake of brevity the notation (1.3) is used, as well as
the Laplace transform pair (1.4).

Example 5.1. The power-law memory kernel

κ(t) = ω1−α(t), κ̂(s) = sα−1, 0 < α < 1; (5.49)

k(t) = ωα(t), k̂(s) = s−α.

Example 5.2. The multi-term power-law memory kernel:

κ(t) =
m∑
j=1

qjω1−αj(t), κ̂(s) =
m∑
j=1

qjs
αj−1,

where 1 ≥ α1 > α2 > . . . > αm > 0, qj > 0, j = 1, . . . ,m, m > 1. Without
loss of generality we assume q1 = 1. In this case

k̂(s) =
1∑m

j=1 qjs
αj

=
s−α1

1 +
∑m

j=2 qjs
−(α1−αj)

. (5.50)

Therefore, k(t) admits a representation as a multinomial Mittag-Le�er function
(for the de�nition see Chapter 6)

k(t) = tα1−1E(α1−α2,...,α1−αm),α1

(
−q2t

α1−α2, . . . ,−qmtα1−αm
)
. (5.51)

In particular, in the two-term case (m = 2)

κ(t) = ω1−α1
(t) + qω1−α2

(t), κ̂(s) = sα1−1 + qsα2−1, . (5.52)

where 1 ≥ α1 > α2 > 0, q > 0. Therefore,

k̂(s) = s−α2/(sα1−α2 + q), k(t) = tα1−1Eα1−α2,α1
(−qtα1−α2), (5.53)

where we have used the Laplace transform pair (1.34).

Example 5.3. The distributed-order memory kernel:

κ(t) =

∫ 1

0

ω1−α(t)µ(α) dα, κ̂(s) =

∫ 1

0

sα−1µ(α) dα, (5.54)

where µ(·) is a nonnegative weight function.
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In the particular case of uniform distribution, µ ≡ 1, the memory kernel
becomes

κ(t) =

∫ 1

0

ω1−α(t) dα, κ̂(s) =

∫ 1

0

sα−1 dα =
s− 1

s log s
. (5.55)

Therefore, the Sonine kernel k(t) satis�es

k̂(s) =
log s

s− 1

and, by applying the Titchmarsh theorem for the inverse Laplace transform we
get

k(t) =

∫ ∞
0

e−rtK(r) dr,

where

K(r) = −1

π
=
{

log s

s− 1

∣∣∣∣
s=reiπ

}
=

1

r + 1
.

This implies the representation

k(t) =

∫ ∞
0

e−rt

r + 1
dr = etE1(t), (5.56)

where E1(t) denotes the exponential integral (see Section 3.5)

E1(t) =

∫ ∞
t

e−ξ

ξ
dξ.

Any of the kernels κ(t) in the above examples can be considered in a
weighted form, e−γtκ(t), where γ > 0. Indeed, if the kernel κ(t) satis�es (5.45),
then the Laplace transform relation

L{e−γtκ(t)}(s) = κ̂(s+ γ) (5.57)

imply that requirements (5.45) are satis�ed for the kernel e−γtκ(t) as well. The
next example is of this type.

Example 5.4. The truncated power-law memory kernel

κ(t) = e−γtω1−α(t), κ̂(s) = (s+ γ)α−1, 0 < α < 1, γ > 0. (5.58)

In this case the Sonine kernel k̂(s) = (s + γ)1−αs−1 and, therefore, identities
(5.57) and (1.34) imply the representation

k(t) = e−γttα−1E1,α (γt) . (5.59)
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In any of the above examples both kernels κ and k satisfy (5.45) and there-
fore can be switched, that is the kernel k can be taken as kernel κ in the

de�nition (5.44) for the operator CD(κ)
t .

Example 5.5. Je�reys kernel (4.27):

κ(t) =
a

b
δ(t) +

(
1− a

b

) 1

b
tα−1Eα,α

(
−1

b
tα
)
,

where 0 < a < b, with corresponding Laplace transform

κ̂(s) =
1 + asα

1 + bsα
. (5.60)

In this case the Sonine kernel k(t) satis�es

k̂(s) =
1 + bsα

s(1 + asα)

and therefore

k(t) = 1−
(

1− b

a

)
Eα

(
−1

a
tα
)
.

5.3 Subordination theorems

Consider the generalized subdi�usion equation

CD(κ)
t u(t) = Au(t), t > 0; u(0) = a ∈ X, (5.61)

where CD(κ)
t is the general convolutional derivative (5.44) and A is a closed

densely de�ned operator in the Banach space X, which generates a bounded
C0-semigroup.

Let us emphasize that the distributed-order equations (5.1) and (5.2), stud-
ied in Section 5.1, are special cases of equation (5.61) (this concerns equations in
both Caputo and Riemann-Liouville sense, with continuous as well as discrete
distribution, including the limiting cases (5.21) and (5.22)).

The equivalent to problem (5.61) Volterra integral equation is

u(t) = a+

∫ t

0

k(t− τ)Au(τ) dτ, t > 0, a ∈ X, (5.62)
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where the kernel k(t) is the Sonine kernel of κ(t), i.e. (5.48) is satis�ed. This
can be proved by applying the convolution operator k∗ to both sides of (5.61),
which yields(

k ∗ CD(κ)
t u
)

(t) = k ∗ ((κ ∗ u)′(t)− κ(t)u(0))

= k ∗ (κ ∗ u′) = (k ∗ κ) ∗ u′ = (1 ∗ u′)(t)
= u(t)− u(0) (5.63)

where we used the identity (5.46).
We continue with the study of the integral equation (5.62). Let us set

g(s) =
1

k̂(s)
= sκ̂(s).

According to (P7) in Proposition 2.1 the assumption κ̂(s) ∈ SF is equivalent
to g(s) ∈ CBF . Then the general subordination theorem (Theorem 2.4) with
α = 1 implies the following

Theorem 5.5. Let A be a generator of a bounded C0-semigroup S1(t) and
assume the conditions (5.45) hold. Then problem (5.61) is well posed with
bounded solution operator S(t), which satis�es the subordination identity

S(t) =

∫ ∞
0

ϕ(t, τ)S1(τ) dτ, t > 0, (5.64)

with subordination kernel ϕ(t, τ) de�ned by

ϕ(t, τ) =
1

2πi

∫ γ+i∞

γ−i∞
est−τg(s) g(s)

s
ds, γ, t, τ > 0, (5.65)

where g(s) = sκ̂(s). The function ϕ(t, τ) is a probability density function, i.e.
it satis�es the properties (2.26).

An alternative subordination result is formulated next, which provides a
generalization of the exponential representation for the solution of the classical
Cauchy problem (5.7)

u(t) = lim
n→∞

(
I − t

n
A

)−n
a.
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Theorem 5.6. Let A be a generator of a bounded C0-semigroup. Assume the
kernel κ satis�es (5.45). Then problem (5.61) is well-posed and its solution
u(t) admits the representation

u(t) = lim
n→∞

1

n!
(n/t)n+1

n∑
k=0

k∑
p=1

bn,k,p (n/t) (g (n/t)− A)−(p+1) a, (5.66)

where the convergence is uniform on bounded intervals of t > 0. The functions
bn,k,p(s) are nonnegative for s > 0 and are de�ned by

bn,k,p(s) = (−1)n+p

(
n
k

)(
g(s)

s

)(n−k)

ak,p(s)p!, s > 0, (5.67)

where ak,p(s) are given by the recurrence relation

ak+1,p(s) = ak,p−1(s)g
′(s) + a′k,p(s), 1 ≤ p ≤ k + 1, k ≥ 1, (5.68)

ak,0 = ak,k+1 ≡ 0, a1,1(s) = g′(s).

Proof. As usual we denote by R(s, A) the resolvent operator of A: R(s, A) =
(s − A)−1, s ∈ %(A). The assumptions on the operator A imply by the Hille-
Yosida theorem that (0,∞) ⊂ %(A) and

‖R(s, A)n‖ ≤M/sn, s > 0, n ∈ N. (5.69)

To establish well posedness we prove estimates (2.14), where

H(s) =
g(s)

s
R(g(s), A), s > 0.

Let us express H(n)(s) in terms of powers of

w(s) = R(g(s), A).

Note that g(s) > 0 for s > 0 (since g(s) ∈ CBF) and thus g(s) ∈ %(A), i.e.
the resolvent operator R(g(s), A) is well de�ned. By the Leibniz rule it follows

H(n)(s) =
n∑
k=0

(
n
k

)(
g(s)

s

)(n−k)

w(k)(s). (5.70)
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The formula for the k-th derivative of a composite function (see [105]) gives

w(k)(s) =
k∑
p=1

ak,p(s)(−1)pp!(R(g(s), A))p+1, (5.71)

where the functions ak,p(s) are de�ned by (5.68).
We will prove inductively that for any k ≥ 1 and 1 ≤ p ≤ k

(−1)k+pak,p(s) ∈ CMF . (5.72)

For k = p = 1 this is ful�lled since a1,1(s) = g′(s) and g′(s) ∈ CMF by
Theorem 3.1(d). Further, a2,1 = g′′, a2,2 = (g′)2 and the assertion (5.72) holds
for these functions applying Theorem 3.1.(d) and Proposition 2.1.(a). Now
�x some k0 ≥ 2 and suppose that (5.72) holds for all k ≤ k0, 1 ≤ p ≤ k.
Then, (5.68) implies that (5.72) is satis�ed for k = k0 + 1, 1 ≤ p ≤ k0, since
(−1)k0+p+1ak0,p−1(s)g

′(s) ∈ CMF as a product of two completely monotone
functions and (−1)k0+p+1a′k0,p(s) ∈ CMF by (5.72). In addition, by (5.68),
ak0+1,k0+1 = ak0,k0g

′ and it is completely monotone since ak0,k0 ∈ CMF and
g′ ∈ CMF . In this way the proof of (5.72) is completed.

In particular, (5.72) implies

(−1)k+pak,p(s) ≥ 0, s > 0. (5.73)

On the other hand, by Theorem 3.1(e) g(s)/s ∈ CMF , i.e.

(−1)n−k (g(s)/s)(n−k) ≥ 0, s > 0. (5.74)

Inserting (5.71) in (5.70) we get

(−1)nH(n)(s) =
n∑
k=0

k∑
p=1

bn,k,p(s)(R(g(s), A))p+1, (5.75)

where the functions bn,k,p(s) are de�ned in (5.67). Moreover, inserting (5.73)
and (5.74) in (5.67), it follows

bn,k,p(s) ≥ 0, s > 0. (5.76)

In addition, let us note that in the trivial case A ≡ 0 (5.75) implies the identity

(−1)n(s−1)(n) =
n∑
k=0

k∑
p=1

bn,k,p(s)(g(s))−(p+1). (5.77)
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Now, applying successively (5.76), (5.69) and (5.77) we obtain from (5.75)

‖H(n)(s)‖ ≤
n∑
k=0

k∑
p=1

bn,k,p(s)‖(R(g(s), A))p+1‖

≤ M
n∑
k=0

k∑
p=1

bn,k,p(s)((g(s))−(p+1)

= M(−1)n(s−1)(n) = Mn!s−(n+1), s > 0.

Therefore, conditions (2.14) are satis�ed and Theorem 2.1 implies that problem
(5.62) is well-posed with bounded solution operator S(t). Finally, since u(t) =
S(t)a is a continuous and bounded function for t ≥ 0, the Post-Widder inversion
theorem (Theorem 1.1) can be applied and gives the representation (5.66).

The positivity of the coe�cients bn,k,p in representation (5.66) has a useful
direct consequence: it implies the positivity of the solution operator.

Corollary 5.1. Let X be an ordered Banach space. Assume the conditions
of Theorem 5.6 are satis�ed and the solution operator S1(t) of the classical
Cauchy problem (5.7) is positive. Then the solution operators S(t) of problem
(5.61) is positive.

Proof. Since

R(s, A) =

∫ ∞
0

e−stS1(t) dt, s > 0,

the positivity of the C0-semigroup S1(t) implies that the resolvent operator
R(s, A) is positive: if a ∈ X and a ≥ 0, then R(s, A)a ≥ 0, s > 0. There-
fore R(g(s), A)a ≥ 0 for all s > 0. This together with the positivity of the
coe�cients (5.67) in the representation formula (5.66) implies the positivity of
S(t).

5.4 Generalized relaxation equation

In this section we apply the subordination results to study the behavior of
solution to the equation with generalized convolutional time-derivative in the
scalar case. Consider the relaxation equation (λ > 0)

CD(κ)
t u(t) + λu(t) = f(t), t > 0; u(0) = a ∈ R. (5.78)
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Denote by u(t;λ) the fundamental solution and by v(t;λ) the impulse-response
solution, corresponding respectively to a = 1, f ≡ 0, and a = 0, f(t) = δ(t).
The functions u(t;λ) and v(t;λ) are also referred to as relaxation functions.
The unique solution of the relaxation equation (5.78) is given by

u(t) = au(t;λ) +

∫ t

0

v(τ ;λ)f(t− τ) dτ. (5.79)

In the particular case when CD(κ)
t is the Caputo fractional derivative CD

α
t it

is known that the relaxation functions are expressed in terms of Mittag-Le�er
functions: u(t;λ) = Eα(−λtα) and v(t;λ) = tα−1Eα,α(−λtα), see (1.30). The
main aim now is to generalize estimates (1.31) to the case of the generalized
relaxation equation (5.78). The proof is based on two properties: subordination
identity and analyticity of the relaxation functions for t > 0.

By applying Laplace transform to equation (5.78), we obtain the following
representations of the fundamental and impulse-response solutions in Laplace
domain

û(s;λ) =
g(s)

s(g(s) + λ)
, v̂(s;λ) =

1

g(s) + λ
, g(s) = sκ̂(s). (5.80)

The assumptions (5.45) on the kernel κ(t) are equivalent to the following as-
sumptions on the function g(s)

g(s) ∈ CBF ; g(s)→∞ as s→∞. (5.81)

5.4.1 Subordination relations

Subordination relations for the relaxation functions u(t;λ) and v(t;λ) are
formulated next.

Theorem 5.7. The relaxation functions u(t;λ) and v(t;λ) of problem (5.78)
satisfy the subordination identities

u(t;λ) =

∫ ∞
0

ϕ(t, τ)e−λτ dτ, t > 0, (5.82)

v(t;λ) =

∫ ∞
0

ψ(t, τ)e−λτ dτ, t > 0, (5.83)
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where the functions ϕ(t, τ) and ψ(t, τ) obey the properties

ϕ(t, τ) ≥ 0, ψ(t, τ) ≥ 0;

∫ ∞
0

ϕ(t, τ) dτ = 1,

∫ ∞
0

ψ(t, τ) dτ = k(t), (5.84)

where k(t) is the Sonine kernel of κ(t), i.e. (k ∗ κ)(t) = 1.

Proof. Relation (5.82) is a particular scalar version of Theorem 5.5 with A =
−λ, S1(t) = e−λt.

To prove relation (5.83) let us de�ne a function ψ(t, τ) via the Laplace
transform pair

ψ̂(s, τ) =

∫ ∞
0

e−stϕ(t, τ) dt = e−τg(s), s, τ > 0,

Since g(s) ∈ CBF then e−τg(s) ∈ CMF , see (2.3). Then Bernstein's theorem
imply that ψ(t, τ) exists and ψ(t, τ) ≥ 0.

If we de�ne a function v(t;λ) by (5.83), then for its Laplace transform we
obtain ∫ ∞

0

e−stv(t;λ) dt =

∫ ∞
0

e−st
(∫ ∞

0

ψ(t, τ)e−λτ dτ

)
dt

=

∫ ∞
0

ψ̂(s, τ)e−λτ dτ

=

∫ ∞
0

e−τg(s)e−λτ dτ =
1

g(s) + λ
.

Comparing this result to (5.80), it follows by the uniqueness of the Laplace
transform that v(t;λ) de�ned by (5.83) and the impulse-response solution of
(5.78) coincide. In this way (5.83) is established.

The integral identity in (5.84) for ψ(t, τ) follows as a particular case of
(5.83) by letting λ → 0 and taking into account that v(t; 0) = k(t) since
v̂(s; 0) = (sκ̂(s))−1 = g(s)−1.

5.4.2 Properties of the relaxation functions

In the next theorem, further useful properties of the relaxation functions are
established (in the statements the functions u(t;λ) and v(t;λ) are considered
as functions of one variable t ≥ 0, while λ is a parameter).
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Theorem 5.8. For any λ > 0 the functions u(t;λ) and v(t;λ) admit holomor-
phic extensions to the half-plane C+ and

u(t;λ), v(t;λ) ∈ CMF in t > 0; (5.85)

u(0;λ) = 1; 0 < u(t;λ) < 1, v(t;λ) > 0, t > 0; (5.86)
d

dt
u(t;λ) = −λv(t;λ). (5.87)

Moreover

u(t;λ) ≤ 1

1 + λ(1 ∗ k)(t)
, (5.88)

where k(t) is the resolvent kernel of κ(t), i.e. (k ∗ κ)(t) = 1.
For any λ ≥ λ0 > 0 and t > 0

u(t;λ) ≤ u(t;λ0), v(t;λ) ≤ v(t;λ0), (5.89)

and

C ≤ λ

∫ T

0

v(t;λ) dt < 1, T > 0, (5.90)

where the constant C = 1− u(T ;λ0) > 0 is independent of λ.

Proof. First, applying Proposition 1.3, we prove that the function u(t;λ) admits
holomorphic extensions to the half-plane C+. Since the function f(t) = e−λt

is holomorphic and bounded for <t > 0, then, using that (ii) implies (i), it

follows that the Laplace transform f̂(s) = 1
s+λ admits holomorphic extension

to the sector | arg s| < π and∣∣∣sf̂(s)
∣∣∣ =

∣∣∣∣ s

s+ λ

∣∣∣∣ ≤M, | arg s| ≤ θ, ∀ θ < π. (5.91)

Since g(s) ∈ CBF this function admits holomorphic extension to C\(−∞, 0]
and therefore, in view of (5.80), this will hold also for

û(s;λ) =
g(s)

s(g(s) + λ)
.

Moreover,
| arg g(s)| ≤ | arg s|, s ∈ C\(−∞, 0],

which together with (5.91) gives

|sû(s;λ)| =
∣∣∣∣ g(s)

g(s) + λ

∣∣∣∣ ≤M, | arg s| ≤ θ, θ < π.
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From implication (i)⇒(ii) in Proposition 1.3, it follows that function u(t;λ)
admits holomorphic extension to C+. The analyticity of v(t;λ) is then inferred
taking into account relation (5.87), which is proven below.

From (5.80) and u(0;λ) = 1 we deduce

L
{
du

dt

}
(s;λ) =

g(s)

g(s) + λ
− 1 = − λ

g(s) + λ
= −λv̂(s;λ).

Identity (5.87) then follows from the uniqueness property of the Laplace trans-
form.

To prove that u(t;λ) ∈ CMF we �rst, note that s
s+λ ∈ CBF , since(

s
s+λ

)−1
= 1 +λs−1 ∈ SF , see (P9) in Proposition 2.1. Therefore the function

g(s)
g(s)+λ ∈ CBF as a composition of two complete Bernstein functions, see (P11)

in Proposition 2.1. Therefore, the function g(s)
s(g(s)+λ) ∈ SF by (P7) and van-

ishes as s→ +∞. Then property (P6) gives for the inverse Laplace transform
u(t;λ) ∈ CMF . Applying (5.87) it follows v(t;λ) ∈ CMF .

Since u(t;λ), v(t;λ) ∈ CMF , they are nonnegative and nonincreasing func-
tions for t > 0. This fact, together with their analyticity, implies that these
functions are positive and strictly decreasing.

The relaxation functions u(t;λ) satis�es the integral equation

u(t;λ) = 1− λ
∫ t

0

k(t− τ)u(τ ;λ) dτ, t > 0, (5.92)

where k is the resolvent kernel of κ. Taking into account the fact that u(t;λ)
are positive and decreasing functions, the integral equation (5.92) yields

1 = u(t;λ) + λ

∫ t

0

k(t− τ)u(τ ;λ) dτ ≥ u(t;λ) + λu(t;λ)

∫ t

0

k(τ) dτ,

which implies estimates (5.88).
The inequalities (5.89) follow directly from the subordination identities

(5.82) and (5.83). Indeed, for λ ≥ λ0

u(t;λ) =

∫ ∞
0

ϕ(t, τ)e−λτ dτ ≤
∫ ∞

0

ϕ(t, τ)e−λ0τ dτ = u(t;λ0),

and analogously for v(t;λ). Here the nonnegativity of the functions ϕ(t, τ) and
ψ(t, τ) is essential.
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Applying (5.87) we deduce

λ

∫ T

0

v(t;λ) dt = 1− u(T ;λ).

This together with the �rst inequality in (5.89) and 0 < u(T ;λ) < 1 implies
(5.90).

5.4.3 Application to an inverse source problem

As an application of the obtained estimates (5.90), uniqueness and a con-
ditional stability result are established for an inverse source problem for the
general time-fractional di�usion equation on a bounded domain.

Let Ω ⊂ Rd be a bounded domain with su�ciently smooth boundary ∂Ω,
and T > 0. Consider the initial-boundary-value problem

CD(κ)
t u(x, t) = ∆u(x, t) + F (x, t), x ∈ Ω, t ∈ (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = a(x), x ∈ Ω,

(5.93)

where the operator CD(κ)
t is the general convolutional derivative that acts with

respect to time variable and ∆ is the Laplace operator acting on space variables.
De�ne the Laplace operator ∆ in the Hilbert space L2(Ω) with domain

D(∆) = H1
0(Ω) ∩H2(Ω), where H1

0(Ω) and H2(Ω) are standard notations for
Sobolev spaces, for more details we refer to [56, 96]. Denote by {−λn, ϕn}∞n=1

the corresponding eigensystem. Then 0 < λ1 ≤ λ2 ≤ ..., λn →∞ as n→∞,
and the functions {ϕn}∞n=1 form an orthonormal basis of L2(Ω).

Denote by (., .) the inner product in L2(Ω).
An equivalent norm in the Hilbert space H1

0(Ω) ∩ H2(Ω) is given by (see
e.g. [56])

‖v‖H1
0 (Ω)∩H2(Ω) = ‖∆v‖L2(Ω),

where ‖∆v‖2
L2(Ω) =

∑∞
n=1 λ

2
n(v, ϕn)

2.

Applying eigenfunction decomposition, we obtain the following formal rep-
resentation of the solution of problem (5.93)

u(x, t) =
∞∑
n=1

anun(t)ϕn(x) +
∞∑
n=1

(∫ t

0

vn(t− τ)Fn(τ) dτ

)
ϕn(x) (5.94)
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where un(t) = u(t;λn), vn(t) = v(t;λn) are the fundamental and impulse-
response solution of the relaxation equation (5.78) with λ = λn, n ∈ N, and

an = (a, ϕn), Fn(t) = (F (., t), ϕn), n ∈ N.

Assume now a = 0 and F (x, t) = f(x)q(t), where the function q ∈ C[0, T ] is
known and satis�es q(t) ≥ q0 > 0 for all t ∈ [0, T ]. Consider the inverse problem
to determine the solution u(x, t) and source term f(x), (x ∈ Ω, t ∈ (0, T )), such
that (5.93) is satis�ed together with the additional overdetermination condition

u(x, T ) = h(x), x ∈ Ω. (5.95)

Theorem 5.9. Let T > 0 be arbitrarily �xed. For any given h ∈ H1
0(Ω) ∩

H2(Ω), there exists a unique solution (f(x), u(x, t)) to problem (5.93), satis-
fying f ∈ L2(Ω) and

u ∈ C([0, T ];L2(0, 1)) ∩ C((0, T ];H1
0(Ω) ∩H2(Ω)).

Moreover, there exist constants C > 0 and C > 0, such that

C‖f‖L2(Ω) ≤ ‖h‖H1
0 (Ω)∩H2(Ω) ≤ C‖f‖L2(Ω). (5.96)

If f satis�es the apriori bound condition ‖f‖H1
0 (Ω)∩H2(Ω) ≤ E then

‖f‖L2(Ω) ≤ C−1/2E1/2‖h‖1/2
L2(Ω). (5.97)

Proof. Taking t = T in the formal expansion (5.94) of the solution of (5.93) we
obtain

h(x) =
∞∑
n=1

fn

(∫ T

0

vn(T − τ)q(τ) dτ

)
ϕn(x), (5.98)

where fn = (f, ϕn).

Introducing the notations hn = (h, ϕn) and Qn(t) =
∫ t

0 vn(t − τ)q(τ) dτ ,
(5.98) gives

hn = fnQn(T ). (5.99)

Since Qn(T ) ≥ q0

∫ T
0 vn(τ) dτ and Qn(T ) ≤ ‖q‖C[0,T ]

∫ T
0 vn(τ) dτ , the bounds

in (5.90) imply
0 < C/λn ≤ Qn(T ) ≤ C/λn, (5.100)

where the constants C and C do not depend on n.
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In particular, Qn(T ) > 0. This implies that the solution {f(x), u(x, t)} of
problem (5.93), (5.95) is unique. Indeed, if h(x) = 0 then f(x) = 0 by (5.99)
and from the uniqueness of the direct problem, also u(x, t) = 0.

Estimates (5.100) for Qn(T ) and (5.99) imply (5.96).
The lower bound in (5.100) can be used to prove the conditional stability

result (5.97). Indeed, by (5.99)

‖f‖2
L2(Ω) ≤

∞∑
n=1

f 2
n =

∞∑
n=1

hn
Q2
n(T )

hn ≤

( ∞∑
n=1

h2
n

Q4
n(T )

) 1
2
( ∞∑
n=1

h2
n

) 1
2

. (5.101)

Applying (5.100), the �rst term is estimated as follows

∞∑
n=1

h2
n

Q4
n(T )

=
∞∑
n=1

f 2
n

Q2
n(T )

≤ C−2
∞∑
n=1

λ2
nf

2
n

= C−2‖f‖2
H1

0 (Ω)∩H2(Ω)

≤ C−2E2.

Plugging this bound in (5.101) completes the proof of (5.97).
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Chapter 6

Multinomial Mittag-Le�er
type functions

We continue the study of the evolution equations with multiple derivatives
in time with the main emphasis on the multinomial Mittag-Le�er function,
which appear in the representation of their solutions. Basic properties of this
function and its Prabhakar type generalization are studied, including complete
monotonicity. Some subordination relations are established. The obtained
results extend known properties of the classical Mittag-Le�er function.

6.1 De�nition and basic relations

Various types of multi-index generalizations of the classical Mittag-Le�er
function (1.21) are studied, see e.g. [86], the recent surveys [59, 60, 87] and the
monographs [45, 85]. One of them is the multinomial Mittag-Le�er function

E(µ1,...,µm),β(z1, . . . , zm) =
∞∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

k!

k1! . . . km!

∏m
j=1 z

kj
j

Γ
(
β +

∑m
j=1 µjkj

) ,
where zj ∈ C, µj > 0, β ∈ R, j = 1, . . . ,m. It is proposed in [50] and used
for solving multi-term fractional di�erential equations with constant coe�cients
by operational method in [71]. The multinomial Mittag-Le�er function plays a
crucial role in the study of multi-term time-fractional di�usion equations. This
is due to the fact that the time-dependent components in the eigenfunction
expansion of the solution to initial-boundary value problems for multi-term

115
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equations are expressed in terms of multinomial Mittag-Le�er functions, see
e.g. [56, 67, 68].

Initial-boundary-value problems for di�usion equations with multiple time
derivatives and nonlocal boundary conditions are considered in [23]. The nonlo-
cal character of the boundary conditions leads to a non-selfadjoint problem and
multidimensional eigenspaces. This, in turn, implies that the time-dependent
components in the generalized eigenfunction expansions of the solutions are
expressed in terms of multinomial Mittag-Le�er functions and convolutions of
them. It is known that convolution of two classical Mittag-Le�er functions is a
Prabhakar function, see (1.36). Therefore, in the context of nonlocal boundary
value problems for multi-term time-fractional di�erential equations the need of
Prabhakar type generalization of the multinomial Mittag-Le�er function nat-
urally emerge. Such a generalization, which is at the same time a multinomial
generalization of the Prabhakar function (1.32) is de�ned next.

For the sake of brevity we use the vector notation ~µ = (µ1, µ2, . . . , µm).
The multinomial Prabhakar function is de�ned as follows [15]

Eδ
~µ, β(z1, . . . , zm) =

∞∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

(δ)k
k1! · · · km!

∏m
j=1 z

kj
j

Γ
(
β +

∑m
j=1 µjkj

) , (6.1)

where zj ∈ C, µj, β, δ ∈ R, µj > 0, j = 1, . . . ,m. Here (δ)k denotes the
Pochhammer symbol

(δ)k =
Γ(δ + k)

Γ(δ)
= δ(δ + 1) . . . (δ + k − 1), k ∈ N, (δ)0 = 1.

In general, the parameters µj, β, δ, are allowed to assume complex values
with <µj > 0. In this work, however, we restrict our attention to real parame-
ters, which are of particular interest for the considered applications.

The classical Prabhakar function (1.32) is recovered from (6.1) for m = 1.
The binomial variant (m = 2) of function (6.1) was recently introduced and
studied in [39]. In the special case δ = 1 the Pochhammer symbol yields
(1)k = k! and the function (6.1) is the multinomial Mittag-Le�er function

E(µ1,...,µm),β(z1, . . . , zm) = E1
(µ1,...,µm),β(z1, . . . , zm). (6.2)

If δ = −n is a negative integer then the Prabhakar function (6.1) is de�ned by
a �nite sum (since (−n)k = 0 for k ≥ n+ 1), and E0

~µ, β(·) = 1/Γ(β).
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Let us note that the double summation in (6.1) can be formally replaced by
the multiple summation, that is

Eδ
~µ, β(z1, . . . , zm) =

∞∑
k1=0

. . .
∞∑

km=0

(δ)k1+...+km

Γ
(
β +

∑m
j=1 µjkj

) m∏
j=1

z
kj
j

kj!
.

This yields a multiple power series, which converges absolutely and locally uni-
formly, and thus de�nes an entire function in each zj, j = 1, . . . ,m. Therefore,
both representations are equivalent.

Applying successive term by term di�erentiation in (6.1) and using the
identity (δ)k+1 = δ(δ + 1)k we deduce the relation(

∂

∂zj

)n
Eδ
~µ, β(z1, . . . , zm) = (δ)nE

δ+n
~µ, nµj+β

(z1, . . . , zm),

which generalizes a well-known identity for m = 1, see e.g. [91], Eq.(2.1).
In the rest of this work we are concerned only with the following multino-

mial Prabhakar type function of a single variable t > 0, which is of particular
importance for the study of multi-term time-fractional equations

Eδ(µ1,...,µm),β(t; a1, . . . , am) := tβ−1Eδ
(µ1,...,µm),β(−a1t

µ1, . . . ,−amtµm), (6.3)

where µj > 0, β > 0, δ ∈ R, aj > 0, j = 1, . . . ,m. For the sake of brevity the
short notation Eδ~µ,β(t;~a) is used for the function (6.3). De�nition (6.1) yields
the series representation

Eδ~µ,β(t;~a) =
∞∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

(−1)k(δ)k
k1! . . . km!

(∏m
j=1 a

kj
j

)
tβ−1+

∑m
j=1 µjkj

Γ
(
β +

∑m
j=1 µjkj

) . (6.4)

The �rst terms in the power series (6.4) give the following asymptotic expansion
for t→ 0:

Eδ~µ,β(t;~a) ∼ tβ−1

Γ(β)
− δ

m∑
j=1

aj
tβ−1+µj

Γ(β + µj)
, t→ 0. (6.5)

We study the multinomial Prabhakar type function (6.3) applying Laplace
transform technique. For this reason we are concerned only with locally inte-
grable functions Eδ~µ,β(t;~a). Taking into account (6.5), this is guaranteed by the
assumptions on the parameters of function (6.3).
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Theorem 6.1. The Laplace transform Êδ~µ,β(s;~a) of the multinomial Prabhakar

type function Eδ~µ,β(t;~a) is given by the identity

Êδ~µ,β(s;~a) := L
{
Eδ~µ,β(t;~a)

}
(s) =

s−β(
1 +

∑m
j=1 ajs

−µj
)δ (6.6)

for s ∈ C, such that <s > 0.

Proof. By applying term-wise Laplace transform to the series (6.4) and using
the Laplace transform pair (1.4) for α > 0, <s > 0, we obtain

L
{
Eδ~µ,β(t;~a)

}
(s) = s−β

∞∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

(−1)k(δ)k
k1! . . . km!

m∏
j=1

(
ajs
−µj
)kj . (6.7)

By the use of the binomial series

(1 + Z)−δ =
∞∑
k=0

(δ)k
k!

(−Z)k, |Z| < 1, (6.8)

and the multinomial theorem

(Z1 + . . .+ Zm)k =
∑

k1+...+km=k
k1≥0,...,km≥0

k!

k1! . . . km!

m∏
j=1

Z
kj
j ,

(6.7) implies (6.6) for <s > 0, provided
∣∣∣∑m

j=1 ajs
−µj
∣∣∣ < 1. The last condition

can be avoided by using analytic continuation. In this way the statement is
established for any s ∈ C, such that <s > 0.

The Laplace transform pair (6.6) shows that, in general, the representation
as a multinomial Prabhakar type function is not unique. For example, the iden-
tity E2δ

µ,β(t; a) = Eδ(µ,2µ),β(t; 2a, a2) can be proven by the use of (6.6). Moreover,

the order of parameters µj in (6.3) can be changed (together with the corre-
sponding aj). For clarity, in what follows we choose the representation with
minimal m and when a special arrangement of the parameters µj (resp. aj) is
assumed, this is explicitly stated.

A reduction of parameters result is established next.
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Theorem 6.2. For any j = 1, . . . ,m, there holds

Eδ~µ,β(t;~a) =
∞∑
k=0

(δ)k
k!

(−aj)kEk+δ
(µ1,...,µj−1,µj+1,...,µm),µjk+β(t;~a′), (6.9)

where ~a = (a1, . . . , am) and ~a′ = (a1, . . . , aj−1, aj+1, . . . , am).

Proof. Representation (6.9) is deduced from the following identity obtained by
the use of the binomial series (6.8)

Êδ~µ,β(s;~a) = s−β (1 + Σ′)
−δ
(

1 +
ajs
−µj

1 + Σ′

)−δ
=

∞∑
k=0

(δ)k
k!

(−aj)k
s−µjk−β

(1 + Σ′)k+δ
,

where Σ′ =
∑

l als
−µl, l = 1, 2, . . . , j − 1, j + 1, . . . ,m, by applying (6.6) and

the uniqueness of Laplace transform.

The integration, di�erentiation and convolution properties for the multi-
nomial Prabhakar type functions, given next, extend those for the classical
Prabhakar function (see e.g. [43]).

Theorem 6.3. The following identities hold true

Jαt
(
Eδ~µ,β(t;~a)

)
= Eδ~µ,β+α(t;~a), α > 0, (6.10)(

d

dt

)n
Eδ~µ,β(t;~a) = Eδ~µ,β−n(t;~a), β > n, (6.11)(

Eδ~µ,β(·;~a)
)
∗
(
Eδ0~µ,β0(·;~a)

)
(t) = Eδ+δ0~µ,β+β0

(t;~a), (6.12)

where Jαt is the Riemann-Liouville fractional integral and ∗ denotes the Laplace
convolution.

The above identities can be veri�ed directly from the series de�nition (6.4),
or, proving by the use of (6.6) that the Laplace transforms of both sides coincide.
Technically, the second method is shorter. Since the proofs are straightforward,
they are omitted here. In the binomial casem = 2 the identities in Theorem 6.3
are proved in detail in [39].

6.2 Complete monotonicity

This section is devoted to the study of complete monotonicity property
of the multinomial Prabhakar type function (6.3) for t > 0. Concerning the
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classical Prabhakar type function the current most general result states that
the function tβ−1Eδ

µ,β(−tµ), t > 0, is completely monotone if the parameters
satisfy the conditions [43]

0 < µ ≤ 1, 0 < µδ ≤ β ≤ 1.

A detailed proof can be found in [31]. This result is extended next to the
multinomial case. To this end, we prove �rst an auxiliary statement.

Proposition 6.1. Let α ∈ (0, 1] and 0 ≤ αj < α ≤ 1, qj > 0, j = 1, . . . ,m.
Then(

sα +
m∑
j=1

qjs
αj

)1/α

∈ CBF and

(
s−α +

m∑
j=1

qjs
−αj

)−1/α

∈ CBF .

Proof. Property (P14) in Proposition 2.1 implies by induction that for any
f, fj ∈ CBF , j = 1, . . . ,m, and α ∈ [−1, 1]\{0} there holds(

fα(s) +
m∑
j=1

fαj (s)

)1/α

∈ CBF . (6.13)

It remains to plug in (6.13) the complete Bernstein functions f(s) = s, fj(s) =

q
1/α
j sαj/α, j = 1, . . . ,m, and use property (P11) in Proposition 2.1

Theorem 6.4. Let 1 ≥ µ1 > µ2 > . . . > µm > 0, 0 < µ1δ ≤ β ≤ 1, and
aj > 0, j = 1, . . . ,m. Then

Eδ(µ1,...,µm),β(t; a1, . . . , am) ∈ CMF , t > 0. (6.14)

Proof. We prove complete monotonicity of Eδ~µ,β(t;~a) by applying criterion (P6)

in Proposition 2.1. To establish Êδ~µ,β(s;~a) ∈ SF we note that, according to

(P8) in Proposition 2.1, it is equivalent to
(
Êδ~µ,β(s;~a)

)−1

∈ CBF , or, taking
into account (6.6), to

sβ−µ1δ

(
sµ1 +

m∑
j=1

ajs
µ1−µj

)δ

∈ CBF . (6.15)
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Let �rst β 6= µ1δ. To prove (6.15) we apply (P7) to the function ϕ
α1(s).ψα2(s)

with α1 = β − µ1δ > 0, α2 = µ1δ > 0, and

ϕ(s) = s, ψ(s) =

(
sµ1 +

m∑
j=1

ajs
µ1−µj

)1/µ1

,

where ϕ ∈ CBF and ψ ∈ CBF (according to Proposition 6.1).
If β = µ1δ then the function in (6.15) is ψµ1δ(s) and it is a complete

Bernstein function as a composition of two complete Bernstein functions: ψ(s)
and sµ1δ, where µ1δ ≤ 1, see (P11).

In this way (6.15) is veri�ed and, thus, we proved that Êδ~µ,β(s;~a) ∈ SF .
Moreover, since β > 0, (6.6) implies Êδ~µ,β(s;~a) → 0 as s → ∞. Therefore, the
conditions in (P6) are established and the proof of the theorem is completed.

Let us note that the condition β ≤ 1 is also necessary for complete mono-
tonicity property (6.14). Indeed, Eδ~µ,β(t;~a) ∈ CMF implies that the asymp-
totic expansions of this function for t → 0 as well as for t → +∞ should be
completely monotone functions. We see from (6.5) that at t → 0 the func-
tion Eδ~µ,β(t;~a) behaves as tβ−1/Γ(β), which is completely monotone only when
β ≤ 1.

Next we derive the asymptotic expansion for t → ∞. To this end we need
the expansion of Êδ~µ,β(s;~a) for s → 0. Let µ1 > µ2 > . . . > µm > 0. Then for
s→ 0

Êδ~µ,β(s;~a) =
sµ1δ−β

(sµ1 + amsµ1−µm + . . .+ a2sµ1−µ2 + a1)δ
∼ sµ1δ−β

(a2sµ1−µ2 + a1)δ

and, therefore

Eδ~µ,β(t;~a) ∼ a−δ2 tβ−µ2δ−1Eδ
µ1−µ2,β−µ2δ

(
−a1a

−1
2 tµ1−µ2

)
, t→ +∞.

From the asymptotic behavior of the Prabhakar function (see e.g. [43], eq.
(3.13)) the leading term as t→ +∞ is obtained as follows

Eδ~µ,β(t;~a) ∼


a−δ1

tβ−µ1δ−1

Γ(β − µ1δ)
, µ1δ 6= β,

−δa−δ−1
1 a2

t−µ1+µ2−1

Γ(−µ1 + µ2)
, µ1δ = β.

, t→ +∞. (6.16)
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We observe that the leading terms in (6.16) are completely monotone functions
under the assumptions of Theorem 6.4.

Let us point out that (6.16) can be guaranteed only when aj > 0 for each
j = 1, . . . ,m. In the classical case m = 1 this is known [43]. A relevant
counterexample concerning the two-term case is provided in [67], Remark 4.1.

We also note that, according to (P6) and (P15) in Proposition 2.1, the

complete monotonicity property (6.14) implies that Êδ~µ,β(s;~a) can be analyt-
ically extended to the whole complex plane cut along the negative real axis.
Therefore, the function sµ1 + ams

µ1−µm + . . . + a2s
µ1−µ2 + a1 should not have

any zeros there. This is guaranteed by the assumptions µj < µ1 ≤ 1 and
aj > 0. The question whether these conditions are also necessary for complete
monotonicity property (6.14) in the multinomial case needs further investiga-
tion.

Further, let us note that identity (6.6) implies

Êδ~µ,β(s;~a)Ê−δ~µ,1−β(s;~a) = 1/s, s > 0. (6.17)

Therefore, according to property (P10) in Proposition 2.1 Êδ~µ,β(s;~a) ∈ SF
if and only if Ê−δ~µ,1−β(s;~a) ∈ SF . If β ∈ (0, 1) then both Laplace transforms

vanish as s → ∞ and according to (P3) Eδ~µ,β(t;~a) ∈ CMF if and only if

E−δ~µ,1−β(t;~a) ∈ CMF . In other words, identity (6.17) implies that Eδ~µ,β(t;~a) and

E−δ~µ,1−β(t;~a) are Sonine kernels, that is

Eδ~µ,β(t;~a) ∗ E−δ~µ,1−β(t;~a) = 1, t > 0,

and the complete monotonicity of the one implies the complete monotonicity
of the other. In this way we obtained the following

Corollary 6.1. Under the assumptions of Theorem 6.4 and β 6= 1 there holds

E−δ(µ1,...,µm),1−β(t; a1, . . . , am) ∈ CMF , t > 0. (6.18)

6.3 Equations with multiple time-derivatives

Let CD
α
t and Dα

t be the fractional time-derivatives in the Caputo and
Riemann-Liouville sense, respectively, and let A be a generator of a bounded
C0- semigroup in a Banach space X. In this section we continue the study of
the two types of multi-term generalizations of the fractional evolution equation

CDα
t u(t) = Au(t) + f(t), t > 0, 0 < α ≤ 1. (6.19)
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Let 1 ≥ α > α1 > ... > αm > 0, bj > 0, j = 1, ...,m. We consider the
multi-term time-fractional di�erential equation in the Caputo form

CDα
t u(t) +

m∑
j=1

bj
CD

αj
t u(t) = Au(t) + f(t), t > 0, (6.20)

and in the Riemann-Liouville form

u′(t) = D1−α
t Au(t) +

m∑
j=1

bjD
1−αj
t Au(t) + f(t), t > 0. (6.21)

For notational convenience equation (6.21) is written here in a slightly di�erent
form compared to (5.6) in the previous chapter. We point out that in our
considerations of equations (6.20) and (6.21) the case α = 1 is included in
order to cover important models, such as the two time-scale mobile-immobile
model for the subdi�usive transport of solutes in heterogeneous porous media
[103], and the Rayleigh-Stokes problem for a generalized second grade �uid [24].
Therefore, it is not possible to use for the study of equations (6.20) and (6.21)
the framework of general fractional derivative proposed in [62]. Indeed, if for
example, the multi-term derivative operator in (6.20) with α = 1 is represented
as a general fractional derivative, the corresponding kernel of this derivative
would contain a Dirac delta function, see also [51] for a related discussion.

For a uni�ed approach to the two types of multi-term time-fractional dif-
ferential equations, (6.20) and (6.21), we rewrite them for f ≡ 0 as a Volterra
integral equation

u(t) = u(0) +

∫ t

0

k(t− τ)Au(τ) dτ, t > 0, (6.22)

where the kernel k(t) = k1(t) in the case of equation (6.20) and k(t) = k2(t)
in the case of equation (6.21). The Laplace transforms of the kernels obey

k̂i(s) = 1/gi(s), i = 1, 2, where

g1(s) = sα +
m∑
j=1

bjs
αj , g2(s) =

(
s−α +

m∑
j=1

bjs
−αj

)−1

. (6.23)

Therefore, taking into account (6.6), we deduce

k1(t) = E(α−α1,...,α−αm),α(t; b1, . . . , bm), (6.24)

k2(t) =
tα−1

Γ(α)
+

m∑
j=1

bj
tαj−1

Γ(αj)
. (6.25)
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The kernels ki(t) ∈ C(R+) ∩ L1
loc(R+) are completely monotone functions, see

Theorem 6.4.

6.3.1 Subordination

In order to apply the general subordination theorem (Theorem 2.4) we have
to establish (2.24) for some α. We know from the previous chapter that gi(s) ∈
CBF , i = 1, 2. According to Proposition 6.1 a stronger property is satis�ed:

gi(s)
1/α ∈ CBF , i = 1, 2. (6.26)

This together with property (P11) in Proposition 2.1 also implies

gi(s)
1/β =

(
gi(s)

1/α
)α/β

∈ CBF , 0 < α ≤ β ≤ 1, i = 1, 2,

as a composition of two complete Bernstein functions.

Proposition 6.2. The functions g1(s) and g2(s) de�ned in (6.23) satisfy

gi(s)
1/β ∈ CBF , 0 < α ≤ β ≤ 1, i = 1, 2. (6.27)

Theorem 2.4 and property (6.27) imply the following subordination result.

Theorem 6.5. Let 0 < α ≤ β ≤ 1 and assume the single-term problem (6.19)
of order β admits a bounded solution operator Sβ(t). Then the solution operator
S(t) of problem (6.20), resp. (6.21), satis�es the subordination identity

S(t) =

∫ ∞
0

ϕ(t, τ)Sβ(τ) dτ, t > 0,

with function ϕ(t, τ) de�ned by

ϕ(t, τ) =
1

2πi

∫ γ+i∞

γ−i∞
exp

(
st− τg1/β(s)

) g1/β(s)

s
ds, γ, t, τ > 0,

where g(s) = g1(s) in case of problem (6.20) and g(s) = g2(s) in case of
problem (6.21). The function ϕ(t, τ) is a probability density function, i.e. it
satis�es the properties (2.26).

Moreover, if α < β, then there exists θ0 ∈ (0, π/2) such that ϕ(t, τ) admits
analytic extension to the sector | arg t| < θ0 and is bounded on each subsector
| arg t| ≤ θ, where 0 < θ < θ0.
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Proof. We have to prove only the last part - the analyticity property of the
subordination kernel ϕ(t, τ), since the rest follows from Theorem 2.4. Next, g(s)
stands for either g1(s) or g2(s). Applying property (P15) in Proposition 2.1
to the complete Bernstein functions g(s)1/α (see (6.26)) it follows

| arg g(s)| ≤ α| arg s|, s ∈ C\(−∞, 0].

This estimate can be also derived from the de�nitions g1(s) and g2(s) in (6.23)
by applying the rules | arg(sβ)| = β| arg s|, | arg(s1+s2)| ≤ max{| arg s1|, | arg s2|}
and arg(s−1) = arg s. Therefore

| arg g(s)1/β| ≤ γ| arg s|, s ∈ C\(−∞, 0],

where γ = α/β ∈ (0, 1).

De�ne

θ0 = min{(1/γ − 1)π/2, π/2} − ε, (6.28)

where ε > 0 is small enough, such that θ0 > 0. According to Theorem 1.3
it su�ces to prove that the function ϕ̂(s, τ) admits analytic extension to the
sector | arg s| < π/2+θ0 and the function sϕ̂(s, τ) is bounded on each subsector
| arg s| ≤ π/2 + θ, θ < θ0. The complete Bernstein function g(s)1/β can be
extended analytically to C\(−∞, 0], see (P15) in Proposition 2.1, thus this
holds also for the function

ϕ̂(s, τ) =
g1/β(s)

s
exp

(
−τg1/β(s)

)
.

Take s such that | arg s| ≤ π/2 + θ, θ < θ0, where θ0 is de�ned in (6.28). Then

| arg g(s)1/β| ≤ γ| arg s| < π/2− γε.

Therefore, g(s)1/β = ρeiφ, for some ρ > 0, |φ| < π/2− γε, and thus

|sϕ̂(s, τ)| = |g(s)e−τg(s)| ≤ ρe−τρ cosφ ≤ ρe−aρ ≤ (ea)−1,

where a = τ sin γε > 0. Here we have used that the function f(ρ) = ρe−aρ, ρ >
0, admits its maximum for ρ = 1/a. Therefore, we can apply Theorem 1.3 to
obtain the desired result.
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6.3.2 Relaxation functions

Setting A = −λ, λ > 0, in equations (6.20) and (6.21) leads to two forms
of multi-term relaxation equations. In this section we study the properties of
the relaxation functions, obtained as solutions of these equations.

By the use of Laplace transform we deduce that the solution of the relaxation
equation in the Caputo form

CDα
t u(t) +

m∑
j=1

bj
CD

αj
t u(t) + λu(t) = f(t), t > 0; u(0) = 1, (6.29)

is given by

u(t) = u1(t;λ) +

∫ t

0

v1(t− τ ;λ)f(τ) dτ, (6.30)

and the solution of the relaxation equation in the Riemann-Liouville form

u′(t) + λD1−α
t u(t) + λ

m∑
j=1

bjD
1−αj
t u(t) = f(t), t > 0; u(0) = 1, (6.31)

is represented as

u(t) = u2(t;λ) +

∫ t

0

u2(t− τ ;λ)f(τ) dτ, (6.32)

where the functions u1(t;λ), v1(t;λ), and u2(t;λ) satisfy the following Laplace
transform identities

ûi(s;λ) =
gi(s)

s(gi(s) + λ)
, i = 1, 2; v̂1(s;λ) =

1

g1(s) + λ
, (6.33)

with g1(s) and g2(s) de�ned in (6.23).
The functions u1(t;λ) and v1(t;λ) are the relaxation functions related to

problem (6.29) and u2(t;λ) is the relaxation function related to problem (6.31).
Laplace transform inversion in (6.33) by the use of (6.6) yields the following
explicit representations in terms of multinomial Mittag-Le�er functions

u1(t;λ) = 1− λE(α,α−α1,...,α−αm),α+1 (t;λ, b1, . . . , bm) , (6.34)

u2(t;λ) = E(α,α1,...,αm),1 (t;λ, λb1, . . . , λbm) , (6.35)

v1(t;λ) = E(α,α−α1,...,α−αm),α (t;λ, b1, . . . , bm) . (6.36)
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In the single term case the relaxation functions reduce to the classical
Mittag-Le�er functions

ui(t;λ) = Eα(−λtα), i = 1, 2, v1(t;λ) = tα−1Eα,α(−λtα).

Subordination identities for the relaxation functions ui(t;λ) can be de-
rived from the scalar version of Theorem 6.5, where S(t) = ui(t;λ), Sβ(t) =
Eβ(−λtβ). In particular, for β = 1 it follows

ui(t;λ) =

∫ ∞
0

ϕi(t, τ)e−λτ dτ, t > 0, i = 1, 2, (6.37)

where the functions ϕi(t, τ) are nonnegative and normalized. A subordination
result for the third relaxation function v1(t;λ) is given next.

Theorem 6.6. The relaxation function v1(t;λ) obeys the identity

v1(t;λ) =

∫ ∞
0

ψ(t, τ)e−λτ dτ, t > 0, (6.38)

where the kernel ψ(t, τ) is nonnegative and admits the representation

ψ(t, τ) = hα(t, τ) ∗ hα1
(t, b1τ) ∗ . . . ∗ hαm(t, bmτ). (6.39)

Here ∗ denotes the Laplace convolution and

hα(t, σ) = σ−1/αLα

(
tσ−1/α

)
, (6.40)

where Lα(·) is the L�evy extremal stable density, de�ned in (1.41).

Proof. Consider a subordination kernel ψ(t, τ), which Laplace transform with
respect to t satis�es

ψ̂(s, τ) =

∫ ∞
0

e−stψ(t, τ) dt = e−τg1(s). (6.41)

Then, the functions v1(t;λ) de�ned by identity (6.38) obeys∫ ∞
0

e−stv1(t;λ) dt =

∫ ∞
0

e−τg1(s)e−λτ dτ =
1

g1(s) + λ
.

Comparing this result to (6.23), it follows by the uniqueness of the Laplace
transform that v1(t;λ) de�ned by (6.38) is indeed the relaxation function (6.36).
In this way (6.38) is established.



128CHAPTER 6. MULTINOMIALMITTAG-LEFFLER TYPE FUNCTIONS

Since g1(s) ∈ CBF then by applying (P2) it follows e−τg1(s) ∈ CMF . The
nonnegativity of ψ(t, τ) then follows by the Bernstein's theorem. From (6.41)
and (6.23)

ψ̂(s, τ) = e−τg1(s) = e−τ(s
α+
∑m
j=1 bjs

αj) = e−τs
α

m∏
j=1

e−τbjs
αj
,

which, after Laplace transform inversion, yields representation (6.39).

By fractional integration of (6.38) and taking into account (6.36) and iden-
tity (6.10) we deduce the following representation for completely monotone
multinomial Mittag-Le�er functions, which is of independent interest.

Corollary 6.2. Let 0 < α ≤ β ≤ 1, 0 < αj < α, λ > 0, bj > 0, j = 1, . . . ,m.
Then

E(α,α−α1,...,α−αm),β (t;λ, b1, . . . , bm) =

∫ ∞
0

φ(t, τ)e−λτ dτ, t > 0, (6.42)

where the kernel φ(t, τ) is nonnegative and admits the representation

φ(t, τ) =
tβ−α−1

Γ(β − α)
∗ hα(t, τ) ∗ hα1

(t, b1τ) ∗ . . . ∗ hαm(t, bmτ)

if α < β and φ(t, τ) = ψ(t, τ), de�ned in (6.39), when α = β. The functions
hα(t, ·) are de�ned in (6.40).

Some properties of the relaxation functions, including useful estimates, are
collected in the next theorem. The proof is analogous to that of Theorem 5.8
and is omitted.

Theorem 6.7. For any λ > 0 the relaxation functions u1(t;λ), u2(t;λ), and
v1(t;λ), de�ned in (6.34)-(6.36), are positive, strictly decreasing, completely
monotone for t > 0, and admit analytic extensions to the half-plane C+. The
relation holds true

∂

∂t
u1(t;λ) = −λv1(t;λ).

The following uniform bounds are satis�ed

0 < ui(t;λ) < 1, t > 0, ui(0;λ) = 1, i = 1, 2,

ui(t;λ) ≤ 1

1 + λli(t)
, i = 1, 2,
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where

l1(t) = (1 ∗ k1) (t) = E(α−α1,...,α−αm),α+1(t; b1, . . . , bm), (6.43)

l2(t) = (1 ∗ k2) (t) =
tα

Γ(α + 1)
+

m∑
j=1

bj
tαj

Γ(αj + 1)
. (6.44)

For any λ ≥ λ0 > 0 and t > 0

ui(t;λ) ≤ ui(t;λ0), i = 1, 2, v1(t;λ) ≤ v1(t;λ0),

and there holds the estimate

C ≤ λ

∫ T

0

v1(t;λ) dt < 1, T > 0,

where the constant C = 1− u1(T ;λ0) > 0 is independent of λ.

6.3.3 Moments of the fundamental solution

As an application of the multinomial Prabhakar type functions (6.4), in
this section we derive expressions for the moments of the Green functions of
the multiterm time-fractional di�erential equations in terms of such functions.
Consider the Cauchy problem for the multi-term equations (6.20) and (6.21),

where A =
(
∂
∂x

)2
, x ∈ R (for the precise de�nition see (2.20)). The fundamental

solution G(x, t) is de�ned by assuming the initial and boundary conditions

G(x, 0) = δ(x); x ∈ R, lim
|x|→∞

G(x, t) = 0, t > 0,

where δ(·) is the Dirac delta function. Applying as usual Laplace transform
with respect to the temporal variable and Fourier transform with respect to
the spatial variable, we derive for the Green function G(x, t) in Fourier-Laplace
domain ̂̃G(ξ, s) =

g(s)/s

g(s) + ξ2
, ξ ∈ R, s > 0. (6.45)

Here g(s) = g1(s) in the case of equation (6.20) and g(s) = g2(s) in the case of
equation (6.21), and the de�nitions of these functions are given in (6.23). By
Fourier inversion in (6.45) the Laplace transform of the solution is obtained as
follows

Ĝ(x, s) =

√
g(s)

2s
exp

(
−|x|

√
g(s)

)
, x ∈ R. (6.46)
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Let γ > 0. Next we derive the moments of the fundamental solution

〈|x|γ(t)〉 =

∫
R
xγG(x, t) dx.

Representation (6.46) implies for the Laplace transforms of the moments 〈|x|γ(t)〉
of order γ∫

R
xγĜ(x, s) dx =

√
g(s)

s

∫ ∞
0

xγ exp
(
−x
√
g(s)

)
dx =

Γ(γ + 1)

s(g(s))γ/2
,

where the formula
∫∞

0 xb−1e−ax dx = Γ(b)a−b is used. Taking inverse Laplace
transform, we obtain by the use of (6.6)

〈|x|γ1(t)〉 = C1 Eγ/2(α−αm,α−αm−1,...,α−α1),αγ2 +1(t; bm, bm−1, ..., b1)

for the equation (6.20), where C1 = Γ(γ + 1), and

〈|x|γ2(t)〉 = C2 E−γ/2(α−αm,α1−αm,...,αm−1−αm),αmγ2 +1

(
t;

1

bm
,
b1

bm
, ...,

bm−1

bm

)
,

for the equation (6.21), where C2 = Γ(γ + 1)b
γ/2
m .

Let us note that the indices in the brackets of the above multinomial Prab-
hakar type functions are specially arranged, so that the �rst index, α − αm,
is the largest. The obtained representations for the moments, together with
the properties (6.10), (6.14), and (6.18), imply that the moments of the Green
functions of both equations are Bernstein functions (integrals of completely
monotone functions) provided αγ ≤ 2.

The corresponding mean squared displacements
〈
|x|2i (t)

〉
are derived by

setting γ = 2. This yields〈
|x|2i (t)

〉
= 2li(t), i = 1, 2,

where the functions l1(t) and l2(t) are de�ned in (6.43) and (6.44). As we see,
l2(t) is a �nite sum, and this is the case for all moments of even order for the
equation in the Riemann-Liouville form (6.21).

The asymptotic behavior of the derived moments can be deduced from the
asymptotic expansions (6.5) and (6.16) for the multinomial Prabhakar type
functions. In this way we obtain 〈|x|γ1(t)〉 ∼ ctαγ/2 as t → 0 and 〈|x|γ1(t)〉 ∼
ctαmγ/2 as t → ∞ for the equation (6.20), while for the equation (6.21) the
opposite behavior is observed: 〈|x|γ2(t)〉 ∼ ctαmγ/2 as t → 0 and 〈|x|γ2(t)〉 ∼
ctαγ/2 as t→∞. Here c denotes di�erent positive constants.



Chapter 7

Distributed-order
di�usion-wave equations

In the last two chapters we study the subordination principle for generalized
time-fractional di�usion-wave equations. Various linear generalizations of the
fractional di�usion-wave equation have been proposed in the literature. The
most studied examples are the distributed-order time-fractional di�usion-wave
equation and various equations governing wave propagation in viscoelastic me-
dia. The present chapter is devoted to the distributed-order time-fractional
di�usion-wave equation with discrete or continuous distribution of fractional
Caputo time derivatives over the interval (0, 2]. We �rst discuss an open
problem concerning the interpretation of the fundamental solution to the cor-
responding one-dimensional Cauchy problem as a spatial probability density.
Then the subordination principle for multi-term time-fractional di�usion-wave
equation is studied in detail.

7.1 Positivity of the fundamental solution

The time-fractional di�usion-wave equation

CD
α
t u(x, t) =

∂2

∂x2
u(x, t), α ∈ (1, 2), x ∈ R, t > 0, (7.1)

where CD
α
t denotes the Caputo fractional time derivative of order α ∈ (1, 2)

has been extensively studied as a model of evolution processes intermediate
between di�usion and wave propagation, see e.g. [6, 72, 75, 78, 80].

131
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Consider the equation derived by replacing the single fractional time deriva-
tive in (7.1) by a distribution of fractional Caputo time derivatives over the
interval (0, 2]:∫ 2

0

µ(β)CD
β
t u(x, t) dβ =

∂2

∂x2
u(x, t), x ∈ R, t > 0, (7.2)

where µ(β) is a nonnegative (generalized) weight function, such that

suppµ ∩ (1, 2] 6= ∅.

The Cauchy problem for equation (7.2) with initial conditions u(x, 0) = f(x)
and ut(x, 0) = 0 is studied in [46] with the main focus on the interpretation of
the fundamental solution G(x, t) (corresponding to f(x) = δ(x)) as a spatial
probability density function:

G(x, t) ≥ 0 for x ∈ R, t > 0;

∫ ∞
−∞
G(x, t) dx = 1 for t ≥ 0. (7.3)

The importance of properties (7.3) for the stochastic interpretation of the dis-
tributed order wave equation and for its physical meaning is explained by Goren-
�o in [44]. In addition, it appears to be essential for subordination of equation
(7.2) to second order Cauchy problem, as we will see next.

The Laplace transform of the fundamental solution with respect to the time
variable is given by the formula [46]

Ĝ(x, s) =

√
g(s)

2s
exp

(
−|x|

√
g(s)

)
, x ∈ R, s > 0, (7.4)

where

g(s) =

∫ 2

0

µ(β)sβ dβ. (7.5)

Therefore, the integral identity in (7.3) is easily established, see [46]. The
more di�cult part is the nonnegativity of G(x, t), that, according to Bernstein's
theorem, is equivalent to complete monotonicity of the Laplace transform (7.4).
Based on Bernstein functions technique, it is proven in [46] that the fundamental
solution G(x, t) of (7.2) is non-negative if the weight µ(β) vanishes identically
on the interval (0, 1). The question whether this assumption can be relaxed is
stated in [46] as an open problem. Here we discuss this problem together with
its relation to subordination principle.
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Consider the distributed-order di�usion-wave equation in abstract form∫ 2

0

µ(β)CD
β
t u(t) dβ = Au(t), t > 0; u(0) = a ∈ X, u′(0) = 0, (7.6)

where the operator A is a generator of a strongly continuous cosine family in a
Banach space X, that is, the second-order Cauchy problem (2.7) is well posed.
By applying Laplace transform, the Cauchy problem (7.6) is reformulated as
Volterra integral equation (2.10) with kernel k(t) with characteristic function

g(s) = 1/k̂(s) given by (7.5). According to the general subordination theo-
rem (Theorem 2.4) problem (7.6) is subordinated to the second-order Cauchy
problem (2.7) provided

g(s)1/2 ∈ CBF , s > 0. (7.7)

This condition ensures for any �xed τ > 0

ϕ̂(s, τ) =

√
g(s)

s
exp

(
−τ
√
g(s)

)
∈ CMF , s > 0, (7.8)

which is equivalent to ϕ(t, τ) ≥ 0 (ϕ(t, τ) is the corresponding subordination
kernel). A comparison to (7.4) shows that the problem of nonnegativity of the
fundamental solution G(x, t) is equivalent to the above problem of subordina-
tion. Both problems reduce to proving complete monotonicity of the expression
in (7.8). In this case the well-posedness of the second order Cauchy problem
implies well-posedness of the distributed-order Cauchy problem (7.6).

In this section we discuss conditions on the weight functions µ, implying
(7.7). In the next theorem we relax the condition suppµ ⊂ [1, 2], which was
considered in [46]. We prove that the support of the function µ(β) can be any
interval with length at most 1, not necessarily the interval [1, 2].

Proposition 7.1. Assume

suppµ ⊆ [α− 1, α], 1 < α ≤ 2. (7.9)

Then the function g(s), de�ned in (7.5), satis�es (7.7).

Proof. Under the assumption (7.9)

g(s) =

∫ α

α−1

µ(β)sβ dβ = sα−1

∫ α

α−1

µ(β)sβ−α+1 dβ.
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Since sβ−α+1 ∈ CBF for β ∈ [α − 1, α], α ∈ (1, 2], then also the integral of
sβ−α+1 with positive weight is a complete Bernstein function as a point-wise
limit of positive linear combinations of complete Bernstein functions, see (P2)
in Proposition 2.1. Moreover, sα−1 ∈ CBF for α ∈ (1, 2]. Therefore, g(s)
is a product of two complete Bernstein functions and property (2.2) implies
(7.7).

The next example of power-law weight function on an interval with ar-
bitrary length (≤ 2) shows that the assumption on the weight function in
Proposition 7.1 is not necessary for (7.7).

Proposition 7.2. Let a > 0 and 0 < α1 < α2 ≤ 2. Assume µ(β) = aβ for
β ∈ [α1, α2], and µ(β) = 0 for β ∈ (0, α1) ∪ (α2, 2]. Then the function g(s),
de�ned in (7.5), satis�es (7.7).

Proof. Taking into account sβ = eβ log s, we deduce

g(s) =

∫ α2

α1

(as)β dβ =
(as)α2 − (as)α1

log(as)

=
(

(as)α2/2 + (as)α1/2
) (as)α2/2 − (as)α1/2

log(as)

=
(

(as)α2/2 + (as)α1/2
)∫ α2/2

α1/2

(as)β dβ. (7.10)

Since αi/2 ∈ (0, 1], then (as)αi/2 ∈ CBF , i = 1, 2, and their sum is again in
CBF . The integral in (7.10) is a complete Bernstein function as a point-wise
limit of positive linear combinations of complete Bernstein functions (as)β,
β ∈ (0, 1]. Therefore, g(s) is a product of two complete Bernstein functions
and (2.2) implies (7.7).

The situation is di�erent in the case of discrete distribution, as we will see
in the next example..

Example 7.1. Let µ(β) = δ(β−α1)+δ(β−α2), where 0 < α1 < α2 ≤ 2. Then
g(s) = sα2 + sα1. If α2 − α1 > 1, then representation g(s) = sα1(sα2−α1 + 1)
implies that g(s) has a zero in C\(−∞, 0]. Therefore, the multivalued complex

function g(s)1/2 has a branch point in C\(−∞, 0] and, according to property

(P15) in Proposition 2.1, g(s)1/2 cannot be a complete Bernstein function.
This shows that, in order to have (7.7) for multi-term equations, the distance
between the largest and the smallest fractional orders should not exceed 1.
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In fact, also the weaker property
√
g(s) ∈ BF does not hold without a

restriction on the distance α − α1. Considering the above two-term example
with di�erent values of the parameters α and α1 such that α − α1 > 1 (e.g.
α = 1.9, α1 ∈ (0, 0.5]; α = 1.8, α1 ∈ (0, 0.3]) we obtain by direct computation
that the second derivative d2/ds2(

√
g(s)) admits positive values for some s > 0.

Therefore, the function
√
g(s) is not concave for all s > 0, which implies that√

g(s) /∈ BF .

7.2 Multi-term di�usion-wave equation

This section is devoted to a detailed study of the class of multi-term time-
fractional di�usion-wave equations

c CD
α
t u(t) +

m∑
j=1

cj
CD

αj
t u(t) = Au(t), u(0) = a ∈ X, u′(0) = 0, (7.11)

where A is a closed linear unbounded operator densely de�ned in a Banach
space X, which generates a strongly continuous cosine family. We suppose that
the parameters α, αj, c, cj, satisfy the following restrictions

α ∈ (1, 2], α > α1 > · · · > αm > 0, α− αm ≤ 1,

c > 0, cj > 0, j = 1, · · · ,m. (7.12)

7.2.1 Propagation function

Consider �rst the following problem for the spatially one-dimensional ver-
sion of the multi-term equation in (7.11)

c CD
α
t w(x, t) +

m∑
j=1

cj
CD

αj
t w(x, t) =

∂2

∂x2
w(x, t), x, t > 0, (7.13)

w(x, 0) = wt(x, 0) = 0, x > 0, (7.14)

w(0, t) = Θ(t), w → 0 as x→∞, t > 0, (7.15)

where the parameters α, αj, c, cj, j = 1, ...,m, satisfy conditions (7.12), and
Θ(t) is the Heaviside unit step function.

Problem (7.13)-(7.14)-(7.15) models the propagation in time of a distur-
bance at x = 0. That is why the solution w(x, t) is referred to as propagation
function.
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By applying Laplace transform with respect to the temporal variable in
(7.13) and (7.15) and taking into account initial conditions (7.14) we obtain
using (1.13) the following problem

g(s)ŵ(x, s) = ŵxx(x, s), ŵ(0, s) = 1/s, ŵ(x, s)→ 0 as x→∞, (7.16)

where

g(s) = csα +
m∑
j=1

cjs
αj , s > 0. (7.17)

Solving (7.16) as ODE of second order (with s considered as a parameter) we
deduce

ŵ(x, s) =
1

s
exp

(
−x
√
g(s)

)
. (7.18)

Properties

Problem (7.13)-(7.14)-(7.15) is physically meaningful when the propagation
function w(x, t) is nonnegative. By Bernstein's theorem this is equivalent to
ŵ(x, s) ∈ CMF , which is guaranteed if

√
g(s) is a Bernstein function. In fact,

conditions (7.12) imply a stronger property:
√
g(s) ∈ CBF ⊂ BF .

Proposition 7.3. Assume g(s) is de�ned by (7.17) with parameters α, αj, c, cj,

j = 1, · · · ,m, satisfying conditions (7.12). Then
√
g(s) ∈ CBF .

Proof. Consider �rst the case αm ≥ 1. Set f(s) = g(s)/s. Since 2 > α, αj ≥
1 the function f(s) = csα−1 +

∑m
j=1 cjs

αj−1 ∈ CBF as a sum of complete
Bernstein functions. Also, s ∈ CBF . Then, applying property (2.2) it follows
that

√
g(s) =

√
s
√
f(s) ∈ CBF .

In the case αm < 1 we set f(s) = g(s)/sαm. The assumption 0 < α−αm ≤ 1
implies again f(s) ∈ CBF . Since also sαm ∈ CBF , we obtain in the same way
as above

√
g(s) =

√
sαm
√
f(s) ∈ CBF .

Proposition 7.3 implies important properties of the propagation function.

Theorem 7.1. Under conditions (7.12) the propagation function w(x, t) sat-
is�es the properties

w(x, t) ≥ 0,
∂

∂t
w(x, t) ≥ 0, − ∂

∂x
w(x, t) ≥ 0, x, t > 0. (7.19)
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Proof. According to Bernstein's theorem it is su�cient to prove that the Laplace
transforms of the three functions in (7.19) are completely monotone. We have
from Proposition 7.3 that

√
g(s) ∈ CBF ⊂ BF . Then, by property (P5) in

Proposition 2.1, the function exp
(
−x
√
g(s)

)
∈ CMF as a composition of the

completely monotone exponential function and the Bernstein function
√
g(s).

Since 1/s ∈ CMF , applying (P1) in Proposition 2.1 and taking into ac-
count (7.18) it follows ŵ(x, s) ∈ CMF as a product of two completely mono-
tone functions. Further, since limt→0w(x, t) = lims→∞ sŵ(x, s) = 0, (7.18)
and (7.17) imply

L{wt}(x, s) = sŵ(x, s)− w(x, 0) = exp
(
−x
√
g(s)

)
∈ CMF .

For the third function we obtain

L{−wx}(x, s) = − ∂

∂x
ŵ(x, s) =

√
g(s)

s
exp

(
−x
√
g(s)

)
∈ CMF (7.20)

by applying (2.3).

Theorem 7.1 implies that w(x, t) is a nonincreasing function in x and non-
decreasing function in t with limiting value found by applying Finite value
theorem for Laplace transform

lim
t→+∞

w(x, t) = lim
s→0

sŵ(x, s) = 1. (7.21)

The fundamental solution G(x, t) of the Cauchy problem for equation (7.11)
with A = ∂2/∂x2 can be expressed in terms of the propagation function w(x, t)
as follows:

G(x, t) = −1

2
wx(|x|, t), x ∈ R, (7.22)

which is deduced by comparison of (7.4) and (7.20). Therefore Theorem 7.1
implies that G(x, t) is a nonnegative function, as it was expected.

Next we distinguish two cases α < 2 and α = 2. For α < 2 the propagation
function w(x, t) admits an analytic extension to a sector in the complex plane
t ∈ C\0, | arg t| < θ0 (the proof is essentially the same as that of Theorem
7.6). Therefore, for any x > 0 the set of zeros of w(x, t) on t > 0 can be only
discrete. This together with (7.19) and (7.21) implies that w(x, t) > 0 for all
x, t > 0, which means that a disturbance spreads in�nitely fast.

Theorem 7.2. If 1 < α < 2 then w(x, t) > 0 for all x, t > 0.
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On the other hand, in the case α = 2, a disturbance spreads with �nite
speed as in the case of classical wave equation (m = 0, α = 2) and classical
telegraph equation (m = 1, α = 2, α1 = 1). However, in contrast to the classical
equations, in the case when there is at least one fractional time-derivative in
equation (7.13) a phenomenon of coexistence of �nite propagation speed and
absence of wave front is established. This is a memory e�ect, not observed in
linear integer-order di�erential equations.

We will prove that for α = 2 a disturbance spreads with a �nite propagation
speed 1/

√
c. Let us de�ne the function

h(s) =
√
g(s)−

√
cs.

Then (7.18) implies

w(x, t) = L−1

{
1

s
exp (−xh(s)) exp

(
−x
√
cs
)}

(7.23)

= w0(x, t−
√
cx)Θ(t−

√
cx),

where

w0(x, t) = L−1

{
1

s
exp (−xh(s))

}
and Θ(t) is the Heaviside unit-step function. Here we have used the property
L{f(t − a)Θ(t − a)}(s) = exp(−as)L{f}(s). Since h(s), h′(s) ≥ 0 for s > 0

and
√
g(s) ∈ BF , it follows that h(s) ∈ BF . Therefore, w0(x, t) ≥ 0 by the

same argument as in the proof of Theorem 7.1. Formula (7.23) implies that the
propagation function w(x, t) vanishes for x > t/

√
c, i.e. the propagation speed

is 1/
√
c.

Theorem 7.3. If α = 2 then w(x, t) ≡ 0 for x > t/
√
c.

Except in the two classical cases (wave equation and classical telegraph
equation) there holds lims→∞ h(s) = ∞, which implies that there is no wave
front (jump discontinuity) at x = t/

√
c (cf. [93], Chapter 5).

The behaviour of the propagation function w(x, t) is illustrated in Fig-
ures 7.1 and 7.2. Three di�erent cases for the equation (7.13) with two time-
derivatives are considered: the classical telegraph equation (Fig. 7.1) which
exhibits �nite propagation speed and wave front, an equation with α = 2 and
α1 ∈ (1, 2) (Fig. 7.2(a)) exhibiting �nite propagation speed and no wave front,
and an equation with α < 2 (Fig. 7.2(b)) exhibiting in�nite propagation speed.
The �gures are from [18]. The plots are obtained by numerical computation
based on the explicit integral representation for w(x, t) derived next.



7.2. MULTI-TERM DIFFUSION-WAVE EQUATION 139

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w

α=2;      α
1
=1

c=0.1;    c
1
=1

0.3

0.1
0.2

0.25
0.15

t=0.05

Figure 7.1: Propagation function w(x, t) for the classical telegraph equation as
a function of x for di�erent values of t: �nite propagation speed and wave front.

Explicit representation

To derive an explicit representation for the propagation function we apply
the complex Laplace inversion formula to (7.18), which yields

w(x, t) =
1

2πi

∫ γ+i∞

γ−i∞
estŵ(x, s) ds

=
1

2πi

∫ γ+i∞

γ−i∞
exp

(
st− x

√
g(s)

) ds

s
, γ > 0. (7.24)

Since
√
g(s) ∈ CBF it can be analytically extended to C\(−∞, 0]. There-

fore, this holds also for the function under the integral sign in (7.24). By the
Cauchy's theorem, the integration on the contour {s = γ+ir, r ∈ (−∞,+∞)}
can be replaced by integration on the contour D−R ∪D ∪D0 ∪D+

R, where (with
appropriate orientation)

D = {s = ir, r ∈ (−∞,−ε) ∪ (ε,∞)}, Dε = {s = εeiθ, θ ∈ [−π/2, π/2]},

D+
R = {|s| = R, <s ∈ [0, γ], =s > 0}, D−R = {|s| = R, <s ∈ [0, γ], =s < 0}.

To prove that the integrals on the arcs D−R and D+
R vanish for R→∞ it is

su�cient to show that for any x > 0 the function ŵ(x, s) is uniformly bounded
on D+

Rn
and D−Rn, where Rn → ∞, and that ŵ(x, s) → 0 for s ∈ D±R and

R → ∞, see e.g. [35], Chapter 2, Lemma 2. This follows from the fact that
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Figure 7.2: Propagation function w(x, t) for a two-term equation as a function
of x for di�erent values of t; (a) α = 2, α1 = 1.5: �nite propagation speed, no
wave front; (b) α = 1.5, α1 = 1: in�nite propagation speed.

<
√
g(s) ≥ 0 for <s ≥ 0 and therefore∣∣∣∣1s exp

(
−x
√
g(s)

)∣∣∣∣ ≤ 1

R
exp

(
−x<

√
g(s)

)
≤ 1

R
, s ∈ D±R. (7.25)

The integral on the semi-circular contour Dε equals 1/2 when ε→ 0. This can
be obtained by direct check using that

lim
s→0

s

(
1

s
exp

(
st− x

√
g(s)

))
= 1.

Integration on the contour D yields after letting ε→ 0 and R→∞:

1

2πi

∫
D

1

s
exp

(
st− x

√
g(s)

)
ds =

1

π

∫ ∞
0

1

r
= exp

(
irt− x

√
g(ir)

)
dr.

Here we have used the fact that
√
g(s∗) =

(√
g(s)

)∗
, where ∗ denotes the com-

plex conjugate, see property (P15) in Proposition 2.1. Applying the formula
(4.17) for real and imaginary parts of the square root of a complex number we
obtain the following result.

Theorem 7.4. The propagation function w(x, t) admits the integral represen-
tation:

w(x, t) =
1

2
+

1

π

∫ ∞
0

exp(−xK+(r)) sin(rt− xK−(r))
dr

r
, x, t > 0, (7.26)
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where

K±(r) =
1√
2

((
A2(r) +B2(r)

)1/2 ± A(r)
)1/2

(7.27)

with

A(r) = <g(ir) = crα cos(απ/2) +
m∑
j=1

cjr
αj cos(αjπ/2),

B(r) = =g(ir) = crα sin(απ/2) +
m∑
j=1

cjr
αj sin(αjπ/2).

To check that the obtained integral in (7.26) is convergent we note that
K±(r) > 0, K±(r) ∼ rαm/2 as r → 0 and K±(r) ∼ rα/2 as r →∞. Therefore,
the function under the integral sign in (7.26) has an integrable singularity at
r = 0, while at r →∞ the term exp(−xK+(r)) ensures integrability not only
of this function, but also of all derivatives with respect to t. Therefore, w(x, t)
is well de�ned function, which is in�nitely di�erentiable in t.

Corollary 7.1. In the single-term case m = 0 and c = 1 the propagation
function w(x, t) admits the integral representation for x, t > 0:

w(x, t) =
1

2
+

1

π

∫ ∞
0

exp
(
−xrα/2 cos(απ/4)

)
sin
(
rt− xrα/2 sin(απ/4)

) dr

r
.

7.2.2 Subordination results

We suppose �rst that A generates a cosine family. This means that the
second-order Cauchy problem (2.7) is well posed with solution operator S2(t).

We establish subordination results for the Cauchy problem (7.11) for the
multi-term di�usion-wave equation with parameters satisfying (7.12). Applying
Laplace transform we rewrite problem (7.11) as the abstract Volterra integral
equation

u(t) = a+

∫ t

0

k(t− τ)Au(τ) dτ. (7.28)

The scalar kernel k(t) is de�ned by its Laplace transform

k̂(s) = 1/g(s), (7.29)

where the function g(s) is de�ned in (7.17).
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Problem (7.11) is well posed i� the corresponding Volterra integral equa-
tion (7.28) is well posed. In this case the solution operator of problem (7.28)
coincides with the solution operator of problem (7.11). Denote by S(t) this
solution operator.

Since
√
g(s) ∈ CBF (see Proposition 7.3), applying Theorem 2.4 we obtain

that problem (7.11) is subordinated to the second order Cauchy problem.

Theorem 7.5. If A is a generator of a bounded cosine family S2(t) in X then
problem (7.11) admits a bounded solution operator S(t). It is related to S2(t)
via the subordination identity

S(t) =

∫ ∞
0

ϕ(t, τ)S2(τ) dτ, t > 0. (7.30)

The function ϕ(t, τ) is a PDF in τ (i.e. satis�es conditions (2.26)) and admits
the following integral representation

ϕ(t, τ) =
1

π

∫ ∞
0

exp
(
−τK+(r)

) (
K+(r) sin

(
rt− τK−(r)

)
+ K−(r) cos

(
rt− τK−(r)

)) dr

r
, t, τ > 0, (7.31)

where K±(r) are the functions de�ned in (7.27).

Proof. We have to prove only integral representation (7.31). Indeed, the sub-
ordination kernel ϕ(t, τ) is related to the propagation function w(x, t) via the
identity

ϕ(t, τ) = −wx(x, t)|x=τ , t, τ > 0, (7.32)

which can be deduced by comparing their Laplace transforms. Then the inte-
gral representation (7.31) follows after easily justi�ed di�erentiation under the
integral sign in (7.26).

Plots of the subordination kernel ϕ(t, τ) in (7.30) in the case of some two-
term equations are shown in Figure 7.3. The numerical computations are based
on the integral representation (7.31). The �gure is from [18].

In the case α = 2 identity (7.32) and Theorem 7.3 imply that ϕ(t, τ) ≡ 0
for τ > t/

√
c. Therefore in this case the integral in (7.30) is �nite.

Corollary 7.2. Let α = 2. Under the hypotheses of Theorem 7.5 the subordi-
nation relation (7.30) has the form

S(t) =

∫ t/
√
c

0

ϕ(t, τ)S2(τ) dτ, t > 0. (7.33)
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Figure 7.3: Subordination function ϕ(t, τ) for a two-term equation as a function
of τ ; (a) α = 1.9, α1 = 1.5, and di�erent values of t; (b) α = 1.9, t = 2 and
di�erent values of α1.

Taking into account the asymptotic expansions of the functions K±(r), it
is clear that the function under the integral sign in (7.31) can be in�nitely
di�erentiated in t. Therefore, this should hold also for the function ϕ(t, τ). In
the next theorem we prove a stronger regularity property in the case α < 2.

Theorem 7.6. Assume 1 < α < 2 and let

θ0 =
(2− α)π

2α
− ε, (7.34)

where ε > 0 is arbitrarily small. For any τ > 0 the function ϕ(t, τ) as a
function of t admits analytic extension to the sector Σ(θ0) and is bounded on

each sector Σ(θ), 0 < θ < θ0.

Proof. First note that α > 1 implies θ0 < π/2. It su�ces to prove that
for any τ > 0 the Laplace transform ϕ̂(s, τ) of the function ϕ(t, τ) admits
analytic extension for s ∈ Σ(π/2 + θ0), such that sϕ̂(s, τ) is bounded for

s ∈ Σ(π/2 + θ), 0 < θ < θ0, see Theorem 1.3.

Indeed, since
√
g(s) ∈ CBF , it can be extended analytically to C\(−∞, 0].

Therefore this holds also for the function

ϕ̂(s, τ) =

√
g(s)

s
exp(−τ

√
g(s)).
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For s ∈ Σ(π/2 + θ), θ < θ0, the de�nition (7.17) of g(s) together with the
property | arg(s1 + s2)| ≤ max{| arg s1|, | arg s2|} and (7.34) implies

| arg
√
g(s)| ≤ α

2
| arg s| < π/2− εα/2. (7.35)

Therefore,

|sϕ̂(s, τ)| =
∣∣∣√g(s) exp

(
−τ
√
g(s)

)∣∣∣
≤ ρ exp

(
−τρ cos

(
arg
√
g(s)

))
≤ ρe−aρ ≤ (ea)−1, (7.36)

where ρ =
∣∣∣√g(s)

∣∣∣ and a = τ sin(εα/2) > 0.

Theorem 7.7. Let 1 < α < 2. Under the hypotheses of Theorem 7.5 the
solution operator S(t) of problem (7.11) is a bounded analytic solution operator
of angle θ0, de�ned in (7.34).

Proof. Roughly speaking, since S2(t) is bounded, according to Theorem 7.6 the
function under the integral sign in (7.30) is analytic in t ∈ Σ(θ0) and the integral
is absolutely and uniformly convergent on compact subsets of Σ(θ0). Therefore,
S(t) given by (7.30) is analytic in Σ(θ0) and bounded in the subsectors.

Strictly, this result follows from Theorem 2.5 taking into account (7.35).

Theorem 7.7 is in agreement with Theorem 3.2. in [9], where the same
property is established for the solution operators Sα(t).

In fact, problem (7.11) is not only subordinate to the second order Cauchy
problem, but also to the fractional Cauchy problem (2.8) of order α, which is
a stronger result for α < 2. To deduce this fact, according to Theorem 2.4 we
only need to prove the following property of g(s).

Proposition 7.4. If g(s) is de�ned as in (7.17) with parameters α, αj, c, cj, j =
1, ...,m, satisfying (7.12), then g(s)1/α ∈ CBF .

Proof. According to property (P7) in Proposition 2.1 it is su�cient to prove
that

f(s) =
g(s)1/α

s
∈ SF . (7.37)
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Since 0 < α− αm ≤ 1 the function

fα(s) =
g(s)

sα
= c+

m∑
j=1

cjs
αj−α

is a Stieltjes function. Moreover, s1/α ∈ CBF for α > 1. This together with
property (P12) in Proposition 2.1 gives (7.37).

As discussed earlier, the property g(s)1/α ∈ CBF is stronger than the prop-
erty g(s)1/2 ∈ CBF proven in Proposition 7.3. This follows from the repre-
sentation g(s)1/2 = (g(s)1/α)α/2 as a composition of two complete Bernstein
functions, which by property (P11) in Proposition 2.1 is again a complete
Bernstein function.

Theorem 7.8. Assume problem (2.8) has a bounded solution operator Sα(t).
Then problem (7.11) admits a bounded solution operator S(t), which is related
to Sα(t) by the subordination identity

S(t) =

∫ ∞
0

ψ(t, τ)Sα(τ) dτ, t > 0, (7.38)

where the function ψ(t, τ) is a unilateral PDF in τ , de�ned as the inverse
Laplace transform

ψ(t, τ) =
1

2πi

∫ γ+i∞

γ−i∞

g(s)1/α

s
exp

(
st− τg(s)1/α

)
ds, γ, t, τ > 0.

Theorem 7.8 implies that the solution operator S(t) has (at least) the same
regularity as Sα(t). This result is in agreement with Theorem 3.4 in [65].

Let us note that the subordination results of this section can be generalized
to the case of continuous distribution, depending on the support of the weight
function µ(β) in (7.5). For instance, if condition (7.9) is satis�ed then the
distributed-order equation (7.6) is subordinated to the single-term equation
(2.8) of order α. To prove this, it su�ces to check that g(s)1/α ∈ CBF for
g(s) =

∫ α
α−1 µ(β)sβdβ. If we de�ne f(s) = g(s)1/α/s then

(f(s))α =
g(s)

sα
=

∫ α

α−1

µ(β)sβ−αdβ ∈ SF .

Since s1/α ∈ CBF for α > 1 the composition rule (P12) in Proposition 2.1
yields f(s) ∈ SF , which implies g(s)1/α ∈ CBF .
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7.2.3 Applications

Simple examples of application of the subordination theorems are given in
this section.

Example 7.2. Let X = Lp(R), 1 ≤ p <∞. De�ne the operator A by means of
(Au)(x) = u′′(x), with domain D(A) = {u ∈ X : u′′ ∈ X}. Then A generates
a bounded cosine family given by the d'Alembert formula

(S2(t)v)(x) =
1

2
(v(x+ t) + v(x− t)) . (7.39)

Inserting (7.39) in the subordination formula (7.30) we obtain for the solution
of problem (7.11)

u(x, t) = (S(t)v)(x) =

∫ ∞
0

ϕ(t, τ)(S2(τ)v)(x) dτ

=
1

2

∫ ∞
−∞

ϕ(t, |ξ|)v(x− ξ) dξ.
(7.40)

In this way the relation between the fundamental solution of the spatially one-
dimensional Cauchy problem and the subordination kernel G(x, t) = 1

2ϕ(t, |x|)
is reestablished. It is remarkable that, due to the speci�c form of the d'Alembert
formula (7.39), the convolution in time in subordination relation is transformed
to a convolution relation for the space variable in (7.40).

Example 7.3. Assume Ω ⊂ Rn is an open set and let X = L2(Ω). Let A
be the Laplace operator with Dirichlet boundary conditions: A = ∆, D(A) =
H1

0(Ω) ∩ H2(Ω) (see also Section 5.4.3). It is known that the operator A
generates a bounded cosine family, see e.g [2], Section 7.2.

If {−λn, ϕn}∞n=1 is the eigensystem of the operator A, then 0 < λ1 ≤ λ2 ≤
..., λn → ∞ as n → ∞, and {ϕn}∞n=1 form an orthonormal basis of L2(Ω).
The cosine family S2(t) admits the following eigenfunction decomposition

S2(t)v =
∞∑
n=1

vn cos(
√
λnt)ϕn, (7.41)

with vn = (v, ϕn), where (., .) is the inner product in L2(Ω).
Therefore, applying Theorem 7.5 we obtain the solution of problem (7.11)

in the form:

S(t)v =
∞∑
n=1

vnun(t)ϕn, (7.42)
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where the eigenmodes un(t) admit the integral representation

un(t) =

∫ ∞
0

ϕ(t, τ) cos(
√
λnτ) dτ. (7.43)

The eigenmodes un(t) can be numerically computed by the use of (7.43) and
(7.31).

In particular, in the one-dimensional case, Ω = (0, 1), the eigensystem is
λn = n2π2, ϕn =

√
2 sin(nπx), n = 1, 2, ....

The following example illustrates the application of the stronger subordina-
tion result in Theorem 7.8.

Example 7.4. Consider the neutral-fractional telegraph equation [30]

CD
α
t v(x, t) + b CD

α/2
t v(x, t) = Rα

xv(x, t), v(x, 0) = δ(x), vt(x, 0) = 0, (7.44)

where x ∈ R, t > 0, α ∈ (1, 2), b > 0, and Rα
x denotes the spatial Riesz

fractional pseudo-di�erential operator (see Section 3.4). It is known that the
solution to the Cauchy problem for the neutral fractional wave equation (ob-
tained from (7.44) for b = 0)

CD
α
t u(x, t) = Rα

xu(x, t), u(x, 0) = δ(x), ut(x, 0) = 0, x ∈ R, t > 0, (7.45)

is a spatial probability density function [44, 76]. Since (sα + bsα/2)1/α ∈ CBF
(see Proposition 7.4), Theorem 7.8 implies that the solutions of equations (7.44)
and (7.45) are related by the identity

v(x, t) =

∫ ∞
0

ψ(t, τ)u(x, t) dτ, (7.46)

where ψ(t, τ) is a unilateral probability density in τ , de�ned in Laplace domain
by

ψ̂(s, τ) =
(sα + bsα/2)1/α

s
exp

(
−τ(sα + bsα/2)1/α

)
.

Representation (7.46) of the solution v(x, t) to the neutral-fractional telegraph
equation (7.44) in particular implies that it is as well a spatial PDF.
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Chapter 8

Wave propagation in linear
viscoelastic media

In this chapter subordination principle is established for equations modelling
the propagation of waves in linear viscoelastic media. Various constitutive
models are considered, which are fractional-order generalizations of the classical
ones. All of them have completely monotone relaxation moduli. In particular,
equations modelling unidirectional �ows of fractional Je�reys' �uids are studied
in detail. Applications of the subordination relation, as well as its physical
interpretation are discussed. The chapter is closed with a short comment on
the de�nition of the class of generalized fractional di�usion-wave equations.

8.1 Evolution equation and subordination

Phenomena intermediate between di�usion and wave propagation, and there-
fore intrinsically related to some kind of attenuated waves, are known to occur in
viscoelastic media that combine the characteristics of elastic solids exhibiting
wave propagation and viscous �uids that support di�usion processes. Rheo-
logical constitutive equations involving fractional derivatives in time play an
important role in linear viscoelasticity and have a long history [55, 75, 95]. It
appears that using fractional derivatives in time, the damping behaviour of vis-
coelastic media can be modelled with much less parameters, compared to the
integer-order models [75, 95]. For a review of the main aspects of wave prop-
agation in linear homogeneous viscoelastic media and the simplest and most
used fractional constitutive models we refer to [75].

In linear viscoelasticity the rheological properties of a viscoelastic medium

149
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are described through a linear constitutive relation between stress σ and strain
ε. Following [75], we restrict our considerations to the uniaxial case, in which
σ = σ(x, t) and ε = ε(x, t), and consider systems quiescent for all times prior
to some starting time, t = 0. The constitutive equation in this case admits the
form [75]

σ(x, t) =

∫ t

0

G(t− τ)ε̇(x, τ) dτ, t > 0, (8.1)

where G(t) is the so-called relaxation modulus and the over-dot denotes the
�rst derivative in time.

In a physically meaningful model the relaxation modulus G(t) should be a
non-negative and non-increasing function for t > 0. This is related to the phys-
ical phenomenon of stress relaxation, an inherent property of real materials. If
G(+∞) = 0 (full relaxation), the model governs �uid-like behaviour, otherwise
the behaviour is solid-like [75].

Based on the stress-strain relation (8.1), the equation of motion, and the
kinematic equation, the uniaxial wave equations in di�erent viscoelastic media
can be written in a uni�ed manner in terms of the relaxation modulus G(t)
[92, 93]

u(t) =

∫ t

0

k(t− τ)Au(τ) dτ + f(t), t > 0, (8.2)

where the kernel k(t) is de�ned by the identity

k(t) =

∫ t

0

G(τ) dτ. (8.3)

Then the characteristic function g(s) = (k̂(s))−1 is expressed in terms of the

Laplace transform of the relaxation modulus Ĝ(s) as follows

g(s) =
s

Ĝ(s)
, s > 0. (8.4)

Let us note that the function u in (8.2) is either particle displacement or velocity,
depending whether the model exhibits solid-like or �uid-like behaviour.

All constitutive equations considered in this chapter have completely mono-
tone relaxation moduli, more exactly they satisfy G(t) ∈ CMF0, where the
class CMF0 is de�ned in (2.4). This property follows from the thermody-
namic restrictions on their parameters. For the simplest models this is related
to the complete monotonicity of the Mittag-Le�er function. Let us also note
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that G(t) ∈ CMF0 implies that the kernel k(t) of the corresponding Volterra
equation, de�ned in (8.3), is a Bernstein function. Next we establish a prop-
erty of the characteristic function g(s), necessary to apply the subordination
Theorem 2.4.

Proposition 8.1. If G(t) ∈ CMF0 then g(s)1/2 ∈ CBF .

Proof. Under the assumption of the proposition Ĝ(s) ∈ SF which, by property

(P8) in Proposition 2.1, is equivalent to 1/Ĝ(s) ∈ CBF . Then the function

g(s) = s/Ĝ(s) is a product of two complete Bernstein functions (s and 1/Ĝ(s))
and property (2.2) implies g(s)1/2 ∈ CBF .

Applying Theorem 2.4 we formulate the following result.

Theorem 8.1. Let A be a generator of a strongly continuous bounded cosine
family S2(t) in a Banach space X. Assume G(t) ∈ CMF0. Then the abstract
Volterra equation (8.2) with kernel k(t) de�ned in (8.3) is well posed with
bounded solution operator S(t), which satis�es the subordination relation

S(t) =

∫ ∞
0

ϕ(t, τ)S2(τ) dτ, t > 0. (8.5)

The subordination kernel ϕ(t, τ) is a unilateral probability density function, i.e.
it obeys (2.26), and its Laplace transform is given by

ϕ̂(s, τ) =
g(s)1/2

s
exp

(
−τg(s)1/2

)
, (8.6)

where g(s) is de�ned in (8.4).

As in the previous chapter, the integral in the subordination relation (8.5)
is �nite in the case of �nite propagation speed of a disturbance. From general
theory, see e.g. [75, Chapter 4], [93, Chapter 5], the velocity of propagation of
a disturbance c is

c = lim
s→∞

s

g(s)1/2
. (8.7)

In the case of �nite propagation speed, a jump discontinuity at the planar
surface x = ct exists if and only if

η = lim
s→∞

(
g(s)1/2 − s/c

)
<∞. (8.8)
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The relations (8.4), (8.7), (8.8), and the initial and �nal value theorems for
Laplace transform yield

c = G(0)1/2, η = − G′(0)

2G(0)3/2
, (8.9)

where G(t) is the relaxation modulus.
In the case of �nite propagation speed (c < ∞) and absence of wave front

(η =∞) the subordination to cosine families (8.5) is given by a �nite integral
relation:

S(t) =

∫ ct

0

ϕ(t, τ)S2(τ) dτ, t > 0, (8.10)

since in this case the subordination kernel ϕ(t, τ) vanishes for τ > ct (the proof
is the same as that of Corollary 7.2.

8.2 Analysis of fractional viscoelastic models

Application of Laplace transform with respect to time variable in (8.1) leads
to a stress-strain relation in Laplace domain [75]

σ̂(·, s) = sĜ(s)ε̂(·, s). (8.11)

The representations of the relaxation moduli for the speci�c constitutive re-
lations below are derived by applying Laplace transform to the constitutive
equation and comparing the result to (8.11). Some properties of the relaxation
moduli can be directly derived on the basis of their representation in Laplace
domain.

To characterize a viscoelastic medium whose mechanical properties are in-
termediate between those of pure elastic solid (Hooke model: σ = bε) and of
pure viscous �uid (Newton model: σ = bε̇), the fractional Scott-Blair stress-
strain law was introduced [75]

σ(x, t) = bDα
t ε(x, t), 0 < α < 1. (8.12)

Here b is a positive constant and Dα
t denotes fractional time derivative in

the Riemann-Liouville sense. This fractional-order model has led to various
fractional-order generalizations of the classical integer-order constitutive mod-
els.

In this section we give a short analysis of some basic constitutive models
with time fractional derivatives, derive the corresponding relaxation moduli,
and study their complete monotonicity.
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8.2.1 Fractional Kelvin-Voigt model

As a �rst example we consider the fractional Kelvin-Voigt model [75]

σ(x, t) = (1 + bDα
t )ε(x, t), 0 < α < 1, b > 0. (8.13)

Applying Laplace transform and using (1.19) we obtain σ̂ = (1 + bsα)ε̂, which,

compared to (8.11) yields Ĝ(s) = s−1 + bsα−1. By the use of (1.4) we obtain
the corresponding relaxation modulus

G(t) = 1 + bω1−α(t).

It is completely monotone under the assumptions on the parameters 0 < α <
1, b > 0. Moreover, G(+∞) = 1 and G(0) = +∞ indicate that the fractional
Kelvin-Voigt model governs solid-like behaviour with in�nite propagation speed
of a disturbance.

A distributed-order generalization of constitutive laws (8.12) and (8.13) is
proposed in [32] in the form

σ(x, t) =

∫ 1

0

pε(β)Dβ
t ε(x, t) dβ, (8.14)

where pε(·) is a weight function. The corresponding relaxation modulus

G(t) =

∫ 1

0

pε(β)ω1−α(t) dβ (8.15)

is again a completely monotone function, which follows by the use of property
(P1) in Proposition 2.1. The limiting behaviour of the functions of the form
(8.15) is studied in Theorem 5.1. In the case of continuous weight function
G(+∞) = 0, i.e. constitutive equation (8.14) models �uid-like behaviour.
Since G(0) = +∞, the propagation speed of a disturbance is in�nite.

8.2.2 Fractional Maxwell model

Consider the fractional Maxwell constitutive equation [55, Chapter 7]

(1 + aDα
t )σ(x, t) = bDβ

t ε(x, t), 0 < α ≤ β ≤ 1, a, b > 0. (8.16)

Applying Laplace transform to (8.16) we obtain by the use of (1.19) and (8.11)

Ĝ(s) =
bsβ−1

1 + asα
.
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Therefore, applying (1.27) we obtain

G(t) =
b

a
tα−βEα,α−β+1 (−tα/a) , (8.17)

In the next proposition we prove that under the constraints on the parameters in
(8.16) the relaxation modulus G(t) is completely monotone. In fact, it appears
that the assumption on the fractional parameters α ≤ β is also necessary for
thermodynamic compatibility of the fractional Maxwell model.

Proposition 8.2. Assume 0 < α, β ≤ 1, a, b > 0, t > 0. The following
assertions are equivalent:
(a) 0 < α ≤ β ≤ 1;
(b) G(t) is monotonically non-increasing;
(c) G(t) is a completely monotone function.

Proof. Using representation (8.17) for the function G(t), we prove that con-
dition (a) is equivalent to any of the conditions (b) and (c). First we show
that if 1 ≥ α > β > 0 then (b) and (c) are not satis�ed. The de�nition of
Mittag-Le�er function (1.21) implies G(t) ∼ Ctα−β for t → 0. Therefore, if
α > β, G(t) is increasing function for t near 0, i.e., (b) and (c) are violated.
Therefore, any of the conditions (b) and (c) implies (a). It remains to prove
that (a) implies (b) and (c). Indeed, if 0 < α ≤ β ≤ 1 then tα−β ∈ CMF
and Eα,α−β+1 (−tα/a) ∈ CMF as a composition of the completely monotone
Mittag-Le�er function of negative argument (see (1.26)) and the Bernstein
function tα. Therefore, G(t) ∈ CMF as a product of two completely mono-
tone functions. The proof is completed.

Representation (8.17) together with the asymptotic expansion (1.22) yields
G(+∞) = 0. Therefore, the fractional Maxwell constitutive equation models
�uid-like behavior. More precisely, (1.33) implies for t → +∞ that G(t) ∼
Ct−α if β < 1 and G(t) ∼ Ct−α−1 if β = 1. This means that for β = 1 the
relaxation function G(t) is integrable at in�nity and the integral over (0,∞) is
�nite.

The asymptotic expansion for t → 0+ is G(t) ∼ Ctα−β. Therefore, if
α < β then G(0+) = +∞, while if α = β di�erent behavior is observed:
G(0+) = b/a <∞. This means that the fractional Maxwell viscoelastic model
supports �nite propagation speed if and only if α = β.
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8.2.3 Distributed order fractional Zener model

The fractional Zener constitutive equation [75]

(1 + aDα
t )σ(x, t) = (1 + bDα

t )ε(x, t), 0 < α ≤ 1, 0 < a < b, (8.18)

is extensively studied as a model of solid-like viscoelastic behaviour [6, 7, 55].
The constraints on the parameters imply the complete monotonicity of the
corresponding relaxation modulus, which admits the representation in terms of
Mittag-Le�er function [75],

G(t) = 1 + (b/a− 1)Eα (−tα/a) , 0 < α ≤ 1, 0 < a < b. (8.19)

Consider the multi-term stress-strain relation [5]

N∑
n=0

anD
αn
t σ(x, t) =

N∑
n=0

bnD
αn
t ε(x, t), (8.20)

where 0 ≤ α0 < α1 < · · · < αN < 1, an, bn > 0, n = 0, 1, ..., N. This multi-
term viscoelastic model a generalization of (8.18). It is consistent with the
second law of thermodynamics if the following restrictions on the parameters
are satis�ed [5]

a0

b0
≥ a1

b1
≥ · · · ≥ aN

bN
. (8.21)

Note that if an = aαn, bn = bαn, and 0 < a < b, then conditions (8.21) are
automatically satis�ed.

A more general distributed-order stress-strain relation is proposed in [4]∫ 1

0

pσ(α)Dα
t σ(x, t) dα =

∫ 1

0

pε(α)Dα
t ε(x, t) dα, (8.22)

where pσ(α) and pε(α) are non-negative (generalized) weight functions. The
distributed-order constitutive equation (8.22) and the related mechanical mod-
els are studied in [6], Chapter 3.

The power type distributed-order model (8.22) is obtained when the weight
functions are power functions

pσ(α) = aα, pε(α) = bα, a, b > 0. (8.23)

It is found in [5] that rheological model (8.22) with weight functions (8.23)
is thermodynamically compatible under the constraint

a < b. (8.24)
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Next we study the distributed-order fractional Zener model in the cases of
discrete distribution (8.20) and continuous distribution with power-law weight
functions (8.22)-(8.23). We prove the complete monotonicity of the relaxation
moduli provided the thermodynamic restrictions on the parameters (8.21) and
(8.24), respectively, are satis�ed. We discuss the asymptotic behaviour of the
relaxation moduli. In addition, we show that for model (8.20) with N ≤ 2
and for the power type model (8.22)-(8.23) conditions (8.21), resp. (8.24), are
also necessary for physical acceptability. In the course of the proof of complete
monotonicity we derive integral representations for the relaxation moduli.

Relaxation modulus in the case of discrete distribution

Applying Laplace transform to constitutive law (8.20) we obtain by the use
of (1.19):

N∑
n=0

ans
αnσ̂(x, s) =

N∑
n=0

bns
αn ε̂(x, s).

Comparing this result to (8.11), the following representation in Laplace domain
for the relaxation modulus is deduced

Ĝ(s) =

∑N
n=0 bns

αn

s
(∑N

n=0 ans
αn

) . (8.25)

Let us �rst discuss the small- and large-time behaviour of this function.
Initial and �nal value theorems for Laplace transform yield

lim
t→0

G(t) = lim
s→+∞

sĜ(s) = lim
s→+∞

∑N
n=0 bns

αn∑N
n=0 ans

αn
=
bN
aN
,

lim
t→+∞

G(t) = lim
s→+0

sĜ(s) =
b0

a0
.

(8.26)

As expected, the initial value is greater than the �nal value, due to (8.21).
Since G(t) has a �nite value at t = 0, waves in a viscoelastic medium with
constitutive model (8.20) propagate with �nite speed c =

√
G(0) =

√
bN/aN .

The second limit in (8.26) shows that there is no full relaxation (G(+∞) > 0).
This means that the constitutive equation indeed models solid-like behaviour.

More precise asymptotic expressions for the relaxation modulus follow by
taking into account the dominant terms in (8.25). For small s, neglecting all
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sα with α > α1 in (8.25), we deduce using the expansion (1 + z)−1 ∼ 1− z for
z → 0,

Ĝ(s) ∼ b0s
α0 + b1s

α1

s(a0sα0 + a1sα1)
∼ b0

a0s
+
b0

a0

(
b1

b0
− a1

a0

)
sα1−α0−1, s→ 0.

This implies by the use of (1.4) the following large-time asymptotic expression
for the relaxation modulus

G(t) ∼ b0

a0
+
b0

a0

(
b1

b0
− a1

a0

)
tα0−α1

Γ(1 + α0 − α1)
, t→ +∞. (8.27)

Note that the second term in the expansion (8.27) is positive due to constraints
(8.21). On the other hand, for large s, neglecting sα for all α < αN−1 in (8.25),
we obtain in a similar way

Ĝ(s) ∼ bN−1s
αN−1 + bNs

αN

s(aN−1sαN−1 + aNsαN )

∼ bN
aNs

+
bN
aN

(
bN−1

bN
− aN−1

aN

)
sαN−1−αN−1, s→ +∞,

which implies by the use of (1.4) the following small-time asymptotic expansion
for the relaxation modulus

G(t) ∼ bN
aN

+
bN
aN

(
bN−1

bN
− aN−1

aN

)
tαN−αN−1

Γ(1 + αN − αN−1)
, t→ 0. (8.28)

Let us note that the second term in the expansion (8.28) has a negative sign
due to the thermodynamic restrictions (8.21).

The behaviour of G′(t) for small times indicates whether there is a jump
discontinuity at the wave front: such a discontinuity appears when G′(0) is
�nite, see (8.9). In our case

lim
t→+0

G′(t) = lim
s→+∞

sL{G′(t)}(s) = lim
s→+∞

s
(
sĜ(s)−G(0)

)
= lim

s→+∞
s

(∑N
n=0 bns

αn∑N
n=0 ans

αn
− bN
aN

)
= −∞,

because the dominant term in the expression (up to positive multiplicative con-
stant) is (aNbN−1− bNaN−1)s

1+αN−1−αN and taking into account (8.21). There-
fore, waves in this medium propagate with �nite wave speed, and the wave front
is smooth.
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Consider the particular case of (8.20) with N = 2 and α0 = 0, a0 = b0 = 1:

(1 + a1D
α1
t + a2D

α2
t )σ(x, t) = (1 + b1D

α1
t + b2D

α2
t ) ε(x, t). (8.29)

We prove next that in this simpler case of constitutive equation thermodynamic
constraints (8.21) are also necessary for physical admissibility of the model.
Assume that (8.29) is thermodynamically compatible, that is,

G(t) ≥ 0 and G′(t) ≤ 0 for all t > 0. (8.30)

We will prove that
1 ≥ a1/b1 ≥ a2/b2. (8.31)

First, condition G′(t) ≤ 0 for all t > 0, implies L{G′(t)}(s) ≤ 0 for all s > 0.
Since

L{G′(t)}(s) = sĜ(s)−G(0) =
1 + b1s

α1 + b2s
α2

1 + a1sα1 + a2sα2
− b2

a2

=
(a2 − b2) + (a2b1 − b2a1)s

α1

a2(1 + a1sα1 + a2sα2)

and it should be non-positive for small as well for large s, then a2 − b2 ≤ 0
and a2b1 − b2a1 ≤ 0, i.e. a1/b1 ≥ a2/b2. To prove that b1 ≥ a1 we use the
asymptotic expansion (8.27) for large t, which in this particular case implies

G(t) ∼ 1 + (b1 − a1)
t−α1

Γ(1− α1)
, t→ +∞

and take into account that G(t) ≥ 1 for any t > 0 (since G(+∞) = 1 and G(t)
is non-increasing). In this way we deduced the thermodynamic constraints
(8.31) from the conditions (8.30).

It remains to prove the main result in this subsection: the complete mono-
tonicity of the relaxation modulus.

Theorem 8.2. Assume that constraints (8.21) are satis�ed. Then the relax-
ation modulus G(t) of the constitutive equation (8.20) is completely monotone.

Proof. We will prove that the relaxation modulus G(t) is a completely mono-
tone function by establishing the following integral representation:

G(t) =
b0

a0
+

∫ ∞
0

e−rtK(r) dr, (8.32)
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where the function K(r) ≥ 0.
To establish (8.32) we apply the inverse Laplace integral in (8.25) and obtain

G(t) =
1

2πi

∫ γ+i∞

γ−i∞
est

∑N
n=0 bns

αn

s
(∑N

n=0 ans
αn

) ds, (8.33)

where γ > 0. For the multivalued complex function sα we take the principal
branch. The function under the integral sign in (8.33) has no poles in the

complex plane cut along the negative real axis, since =
{∑N

n=0 ans
αn
}
6= 0 for

s ∈ C\(−∞, 0]. This is due to the fact that for an > 0 and αn ∈ (0, 1) the
imaginary part of any term in this sum (an sin (αn arg s)) has the same sign. Let
us bend the contour in (8.33) into the Hankel path Ha(ρ), which starts from
−∞ along the lower side of the negative real axis, encircles the disc |s| = ρ
counterclockwise and ends at −∞ along the upper side of the negative real
axis. The integral on the circular contour |s| = ρ equals b0/a0 when ρ → 0.
This can be obtained by direct check, taking into account that

lim
s→0

s

∑N
n=0 bns

αn

s
(∑N

n=0 ans
αn

) =
b0

a0
.

The sum of the integrals along the lower and the upper sides of the negative
real axis yields the integral in (8.32) where

K(r) = −1

π
=


∑N

n=0 bns
αn

s
(∑N

n=0 ans
αn

)
∣∣∣∣∣∣
s=reiπ

 ,

which implies

K(r) =
1

πr

∑
0≤i<j≤N(aibj − ajbi)rαi+αj sin (αj − αi)π(∑N

n=0 anr
αn cosαnπ

)2

+
(∑N

n=0 anr
αn sinαnπ

)2 . (8.34)

Thermodynamic constraints (8.21) imply that all terms in the sum in the nu-
merator in (8.34) are non-negative. Therefore, K(r) ≥ 0, and representation
(8.32) implies that the function G(t) is completely monotone (by applying the
Bernstein theorem or by direct check).
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An alternative way to prove the complete monotonicity property of the
relaxation modulus is directly from the properties of Ĝ(s) by applying property

(P6) in Proposition 2.1. For this we will need to prove that Ĝ(s) ∈ SF
for s > 0. An advantage of Theorem 8.2 is that it also provides an integral
representation for G(t).

On the other hand, Theorem 8.2 implies by the use of property (P6) in

Proposition 2.1 that under the conditions (8.21) the function Ĝ(s) de�ned in
(8.25) is a Stieltjes function.

Relaxation modulus of the power type distributed order model

Consider the distributed order constitutive equation (8.22) with weight func-
tions de�ned in (8.23). Applying Laplace transform to the constitutive equa-
tion and comparing the result to (8.11) results in the following representation
in Laplace domain

Ĝ(s) =

∫ 1

0 (bs)α dα

s
∫ 1

0 (as)α dα
=

(bs− 1) ln as

s(as− 1) ln bs
, (8.35)

where the integration is performed taking into account that zα = eα ln z. The
initial and �nal value theorems for Laplace transform pairs imply

lim
t→+0

G(t) = lim
s→+∞

sĜ(s) = lim
s→+∞

(bs− 1) ln as

(as− 1) ln bs
=
b

a
,

lim
t→+∞

G(t) = lim
s→+0

sĜ(s) = 1.

First, from the two limits we see that constraint (8.24), i.e. b > a, is not only
su�cient, but also a necessary condition for physical acceptability of this model,
taking into account that in a physically meaningful model G(t) is monotonically
decreasing function, i.e. G(0) > G(+∞). Moreover, the two limits show again
that this is a model for solid-like behaviour and the propagation speed of a
disturbance is �nite c =

√
b/a. In addition,

lim
t→+0

G′(t) = lim
s→+∞

sL{G′(t)}(s) = lim
s→+∞

s
(
sĜ(s)−G(0)

)
= lim

s→+∞

bs2(ln a− ln b)

(as− 1) ln bs
= −∞,

since ln a < ln b. This implies again that also in this medium there is no
discontinuity at the wave front, see (8.9).
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More precise asymptotic expansion of the relaxation modulus for t→ +∞
can be obtained by the use of the Karamata-Feller Tauberian theorem, see
Theorem 1.2. Taking f(s) = (ln a+ln s)/(s(ln b+ln s)) and the slowly varying
function L(x) = (ln a− lnx)/(ln b− lnx) we deduce

G(t) ∼ 1− ln b− ln a

ln b− ln t
− ln b− ln a

(ln b− ln t)2
∼ 1 +

ln(b/a)

ln t
as t→∞, (8.36)

i.e. the relaxation modulus exhibits a very slow logarithmic decay to its �nal
value.

Theorem 8.3. If a < b then the relaxation modulus G(t) de�ned in (8.35) is
completely monotone.

Proof. To prove that the relaxation modulus G(t) is a completely monotone
function we apply the same technique as in the proof of Theorem 8.2. We will
�nd representation of the form

G(t) = 1 +

∫ ∞
0

e−rtK(r) dr (8.37)

with appropriate function K(r), such that K(r) ≥ 0. Taking the inverse
Laplace integral in (8.35) we obtain

G(t) =
1

2πi

∫ γ+i∞

γ−i∞
est

(bs− 1) ln(as)

s(as− 1) ln(bs)
ds, (8.38)

where γ > 0. For the multivalued complex logarithmic function we take the
principal branch. The function under the integral sign in (8.33) has no poles
in the complex plane cut along the negative real axis. This is implied by the

fact that the imaginary part of the denominator, =
{∫ 1

0 (as)α dα
}
6= 0 for

s ∈ C\(−∞, 0] (since a > 0, α ∈ (0, 1)). Let us also note that the integrand
in (8.35) has �nite limits when s → 1/a and s → 1/b. Bending the contour
Br into the Hankel path Ha(ρ), we obtain for the integral on the circle |s| = ρ
when taking ρ→ 0

lim
s→0

s
(bs− 1) ln(as)

s(as− 1) ln(bs)
= 1.

The sum of the two complex integrals along the lower and the upper sides of
the negative real axis gives the real integral in (8.37) with

K(r) = −1

π
=
{

(bs− 1) ln(as)

s(as− 1) ln(bs)

∣∣∣∣
s=reiπ

}
=

(br + 1)(ln b− ln a)

r(ar + 1)
(
ln2(br) + π2

) . (8.39)
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Representation (8.39) implies K(r) ≥ 0 when the thermodynamic constraint
a < b is satis�ed. Therefore, under this condition, G(t) is a completely mono-
tone function.

Compared to other methods of proof of complete monotonicity of the re-
laxation modulus, an advantage of Theorem 8.3 is that at the same time it
provides an integral representation for G(t).

Theorem 8.3 and property (P6) in Proposition 2.1 also imply that if a < b

then the function Ĝ(s) de�ned in (8.35) is a Stieltjes function.

8.2.4 Binomial Mittag-Le�er type relaxation

Next we propose a constitutive model with relaxation modulus in the form
of a binomial Mittag-Le�er type function, which appears to generalize known
relaxation laws.

Let 0 < α0 < α ≤ 1, 0 < δ ≤ 1, and λ, λ0 > 0, and 0 < C < λδ. Consider
the relaxation modulus

G(t) = 1− CtαδEδ
(α,α0),αδ+1 (−λtα,−λ0t

α0) , (8.40)

where Eδ
(α,α0),αδ+1 is the binomial Prabhakar function, see (6.1). The relaxation

function (8.40) is completely monotone, which follows from Theorem 6.4.
The asymptotic expansions of G(t) for t → 0 and t → +∞ are obtained

from (8.40) by applying (6.5) and (6.16), respectively:

G(t) ∼ 1− C tαδ

Γ(αδ + 1)
+ Cδλ0

tαδ+α0

Γ(αδ + α0 + 1)
, t→ 0,

G(t) ∼ 1− C

λδ
+ Cδλ−δ−1λ0

t−α+α0−1

Γ(−α + α0)
, t→ +∞.

In particular, G(0) = 1, G(+∞) = 1 − C/λδ, i.e. the function G(t) is mono-
tonically decreasing in (0,+∞) from G(0) = 1 to G(+∞) ∈ (0, 1). Therefore,
this is a model for solid-like behaviour.

Applying (6.6) we obtain the Laplace transform of the relaxation modulus

Ĝ(s) =
1

s

(
1− d

(asα + a1sα−α0 + 1)δ

)
, (8.41)

where a = λ−1, a1 = λ0λ
−1, and d = C/λδ < 1. From (8.41) we recognize some

known viscoelastic models as particular cases. For instance, if δ = 1 then (8.41)
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is a particular case of the two-term fractional Zener model (8.29). For λ0 = 0
(a1 = 0) we recognize from (8.41) the Havriliak-Negami relaxation model (see
e.g. [53]). For δ = 1 and λ0 = 0 the fractional Zener relaxation modulus (8.19)
(up to a multiplicative constant) is recovered from (8.40):

G(t) = 1− CtαEα,α+1(−λtα) =

(
1− C

λ

)
+
C

λ
Eα(−λtα).

For the viscoelastic model with relaxation modulus (8.40) the propagation
speed of a disturbance is �nite, c = 1. The model with δ = 1, α = 1 and α0 < 1
provides a (nonclassical) example, for which there is a jump discontinuity at
the wave front, since in this case η = C/2 < ∞, where η is de�ned in (8.8).
Except this special case, in all other cases the wave front is smooth.

8.2.5 Fractional Je�reys' model

The fractional Je�reys' constitutive equation

(1 + aDα
t )σ(x, t) = (1 + bDβ

t )ε̇(x, t), (8.42)

where a, b > 0 and 0 < α, β ≤ 1, is introduced in the experimental work [102]
as a model for viscoelastic �uid-like behaviour.

In the next theorem we formulate conditions, which are necessary and su�-
cient for thermodynamic compatibility of model (8.42). In particular, we derive
the following thermodynamic restrictions on the parameters

α = β and a ≥ b. (8.43)

from the monotonicity properties of the relaxation function.

Theorem 8.4. Assume α, β ∈ (0, 1), a, b > 0, t > 0. The following assertions
are equivalent:
(a) α = β and a ≥ b;
(b) G(t) is non-negative;
(c) G(t) is non-increasing;
(d) G(t) ∈ CMF0.
If any of the above conditions is satis�ed then G(t) admits the representation

G(t) = µδ(t) + (1− µ)
tα−1

a
Eα,α (−tα/a) , µ = b/a, (8.44)

where δ(t) is the Dirac delta function.
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Proof. Applying Laplace transform to (8.42) we obtain by the use of (1.19)
and (8.11) the following identity for the relaxation function of the fractional
Je�reys' model

Ĝ(s) =
1 + bsβ

1 + asα
. (8.45)

Taking inverse Laplace transform in (8.45) the following explicit expression for
G(t) is derived by the use of (1.27):

G(t) =
1

a
tα−1Eα,α

(
−1

a
tα
)

+
b

a
tα−β−1Eα,α−β

(
−1

a
tα
)
. (8.46)

We will prove that (a) is equivalent to any of the conditions (b)-(d).
First we prove that any of conditions (b) and (c) implies α = β. Indeed,

if we assume that α < β, then taking the �rst terms of the expansions of the
Mittag-Le�er functions in (8.46) we obtain

G(t) ∼ b

a

tα−β−1

Γ(α− β)
, t→ 0. (8.47)

Since in this case −1 < α − β < 0 and thus Γ(α − β) < 0 it follows from
(8.47) that any of conditions (b) and (c) is violated. On the other hand, if we
suppose α > β then the asymptotic expansion of the Mittag-Le�er function
(1.22) implies

G(t) ∼ b
t−β−1

Γ(−β)
, t→ +∞,

which indicates violation of conditions (c) and (d) for large t. Therefore α = β.
To prove that a ≥ b we deduce representation (8.44) �rst. To this end we

take α = β in (8.45) and obtain

Ĝ(s) =
1 + bsα

1 + asα
=
b

a
+

1

a

(
1− b

a

)
1

sα + 1/a
. (8.48)

Applying inverse Laplace transform to (8.48) and using the identities (1.27)
we deduce representation (8.44). Further, since tα−1Eα,α(−tα/a) is completely
monotone for t > 0 (see (1.26)), representation (8.44) shows that any of (b)
and (c) implies a ≥ b. In this way we �nished the nontrivial part of the proof:
that any of the conditions (b) and (c) implies (a). In addition, representation
(8.44) shows that (a) implies (d). To �nish the proof, we note that (d) implies
both (b) and (c) by de�nition.
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Representation (8.44) and the asymptotic expansion (1.33) give

G(t) = O(t−α−1), t→ +∞,

i.e. limt→+∞G(t) = 0 and G(t) is integrable on (0,∞). In fact∫ ∞
0

G(t) dt = 1,

which follows from (8.44) by applying the identity (1.25).
This behavior of the relaxation modulus con�rms that the fractional Jef-

freys' constitutive equation indeed models �uid-like behavior.
Let us note that, in general, thermodynamic compatibility of a constitutive

equation does not necessarily imply complete monotonicity of the relaxation
modulus.

8.3 Unidirectional �ows of fractional Je�reys'

�uids

This section is devoted to a detailed study of evolution equations with the
fractional Je�reys' constitutive model.

8.3.1 Stokes' �rst problem

Consider a plane Couette �ow of an incompressible viscoelastic �uid with
the thermodynamically compatible fractional Je�reys' constitutive equation

(1 + aDα
t )σ(x, t) = (1 + bDα

t )ε̇(x, t), 0 < α < 1, a ≥ b > 0. (8.49)

Assume the �uid �lls a half-space x > 0 and is set into motion by a sudden
movement of the bounding plane x = 0. Denote by u(x, t) the induced velocity
�eld. Noting that ε̇ = ∂u/∂x and eliminating σ between Eq. (8.49) and
Cauchy's �rst law ∂u/∂t = ∂σ/∂x we obtain the following problem

(1 + aDα
t )

∂

∂t
u(x, t) = (1 + bDα

t )
∂2

∂x2
u(x, t), x, t > 0, (8.50)

u(x, 0) = 0, lim
t→0+

∂

∂t
u(x, t) = 0, x > 0, (8.51)

u(0, t) = Θ(t), u→ 0 as x→∞, t > 0, (8.52)
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where Θ(t) is the Heaviside unit step function.
Problem (8.50)-(8.51)-(8.52) is referred to as Stokes' �rst problem. Let

us note that the solution to this problem is exactly the propagation function,
considered in Section 7.2.1.

By applying Laplace transform with respect to the temporal variable in
(8.50) and (8.52) and using (8.51) we obtain for the Laplace transform of u(x, t)
with respect to t

û(x, s) =
1

s
exp

(
−x
√
g(s)

)
, (8.53)

where

g(s) =
s(1 + asα)

1 + bsα
. (8.54)

Let us note that equations with the same characteristic function (8.54) are stud-
ied in Chapter 4 in the context of fractional Je�reys' heat conduction equation.
Therefore, we can use here some results already obtained in Chapter 4.

To �nd explicit integral expression for the solution u(x, t) we apply Bromwich
integral inversion formula to (8.53):

u(x, t) =
1

2πi

∫ γ+i∞

γ−i∞

1

s
exp

(
st− x

√
g(s)

)
ds, γ > 0.

By the Cauchy's theorem, the integration on the Bromwich path can be replaced
by integration on the contour D ∪D0, where

D = {s = ir, r ∈ (−∞,−ε) ∪ (ε,∞)}, D0 = {s = εeiθ, θ ∈ [−π/2, π/2]}.

This is possible since the integrals on the contours {s = σ ± iR, σ ∈ (0, γ)}
vanish for R→∞ due to the following asymptotic expression

<
√
g(s) ∼

√
a

b
|s| cos

arg s

2
∼
(a
b

(σ2 +R2)1/2
)1/2

cos(±π/4), R→∞.

Further, since

lim
s→0

s

(
1

s
exp

(
st− x

√
g(s)

))
= 1,

it follows that the integral on the semi-circular contour D0 equals 1/2. Inte-
gration on the contour D yields after letting ε→ 0 and R→∞:

1

2πi

∫
D

1

s
exp

(
st− x

√
g(s)

)
ds =

1

π

∫ ∞
0

= exp
(

irt− x
√
g(ir)

) dr

r
.
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Applying the formula (4.17) for the real and imaginary parts of the square root
of a complex number we obtain after some standard manipulations the following
result.

Theorem 8.5. The solution of the Stokes' �rst problem (8.50)-(8.51)-(8.52)
admits the integral representation:

u(x, t) =
1

2
+

1

π

∫ ∞
0

exp(−xK−(r)) sin(rt− xK+(r))
dr

r
, x, t > 0, (8.55)

where the functions K±(r) are de�ned in (4.19).

According to Proposition 4.1, the function
√
g(s) is a complete Bernstein

function, where g(s) is de�ned by (8.54). This implies the following

Theorem 8.6. The solution of the Stokes' �rst problem (8.50)-(8.51)-(8.52)
satis�es

u(x, t) ≥ 0,
∂

∂x
u(x, t) ≤ 0,

∂

∂t
u(x, t) ≥ 0 x, t > 0. (8.56)

The proof is the same as that of Theorem 7.1.
In fact, for 0 < α < 1, all inequalities in Theorem 8.6 are strict. To prove

this we will show that u(x, t) considered as a function of t admits an analytic
extension to some sector in the complex plane by applying Theorem 1.3. Set
γ = α+1

2 < 1. Let s ∈ C is such that | arg s| < π/2 + θ, 0 < θ < θ0, where
θ0 = (1/γ − 1)π/2− ε0. Then, by the use of (4.10)

| arg
√
g(s)| ≤ α + 1

2
| arg s| ≤ π/2− γε0.

Taking into account (8.53) we obtain

|sû(x, s)| ≤ exp
(
−x|g(s)|1/2 sin(γε0)

)
≤ 1.

Therefore, the conditions of Theorem 1.3 are satis�ed and u(x, t) is analytic
function in t in the sector Σ(θ0). Analyticity and monotonicity of the function
u(x, t) imply that u 6= 0.

Theorem 8.6 implies that the solution to the Stokes' �rst problem has a
physically acceptable behavior (positive, decreasing in x, and increasing in t),
see Figure 8.1. The �gure is from [16], where for the numerical computation
formula (8.55) is used.
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Figure 8.1: Solution (8.55) of Stokes' �rst problem as a function of x for di�erent
values of t, compared to the numerical solution by �nite di�erence method
(circles).

8.3.2 Subordination relation

Consider the abstract Cauchy problem

(1 + aDα
t )u′(t) = (1 + bDβ

t )Au(t) + (1 + aDα
t ) f(t), t > 0, (8.57)

u(0) = u′(0) = 0, (8.58)

where A is a linear operator densely de�ned in a suitably chosen Banach space
X and f is a continuous X-valued function, f ∈ C(R+;X). Problems for
the velocity distribution u of a unidirectional �ow of fractional Je�reys' �uid
usually can be written in abstract form as (8.57)-(8.58), where A is a one- or
two-dimensional realization of the Laplace operator, or a more general elliptic
operator, see e.g. [109].

We study the general problem (8.57)-(8.58) assuming that A is a generator
of a bounded strongly continuous cosine family. We consider only thermody-
namically compatible models, i.e. in equation (8.57) we assume

0 < α = β ≤ 1, a > b > 0,

which implies that the properties listed in Theorem 8.4 are satis�ed.
Applying Laplace transform to (8.57) we deduce by the use of (1.19) and

(8.58)

(1 + asα)sû(s) = (1 + bsα)Aû(s) + (1 + asα)f̂(s)
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and hence

û(s) =
g(s)

s
(g(s)− A)−1 f̂(s),

where g(s) is de�ned in (8.54). Therefore, taking into account (2.13), the
solution of (8.57)-(8.58) is given by

u(t) =

∫ t

0

S(t− τ)f(τ) dτ, (8.59)

where S(t) is the solution operator of the abstract Cauchy problem for the
homogeneous equation

(1 + aDα
t )u′(t) = (1 + bDα

t )Au(t), t > 0, (8.60)

u(0) = v ∈ X, u′(0) = 0. (8.61)

It is equivalent to the abstract Volterra equation u(t) = v+
∫ t

0 k(t−τ)Au(τ) dτ

with characteristic function g(s) = (k̂(s))−1 de�ned by (8.54). The kernel k(t)
admits the explicit representation

k(t) =

∫ t

0

G(τ) dτ = 1− (1− b/a)Eα(−tα/a),

where we have used (8.44) and (1.25). Since G(t) ∈ CMF0 (see Theorem 8.4),
we can apply subordination Theorem 8.1. The subordination kernel is pro-
portional to the fundamental solution of the corresponding one-dimensional
Cauchy problem (see their Laplace transforms (8.6) and (4.16)). Therefore, ex-
plicit representation of the subordination kernel can be found in Theorem 4.5.
In this way we establish the following subordination result.

Theorem 8.7. Let a ≥ b > 0 and 0 < α ≤ 1. Assume A is a generator
of a bounded cosine family S2(t) in X. Then problem (8.60)-(8.61) admits a
bounded solution operator S(t). It is related to S2(t) by the identity

S(t) =

∫ ∞
0

ϕ(t, τ)S2(τ) dτ, t > 0, (8.62)

where the function ϕ(t, τ) is a PDF in τ (i.e. conditions (2.26) hold) and
admits the integral representation

ϕ(t, τ) =
1

π

∫ ∞
0

exp
(
−τK−(r)

) (
K−(r) sin

(
rt− τK+(r)

)
+ K+(r) cos

(
rt− τK+(r)

)) dr

r
, t, τ > 0, (8.63)



170 CHAPTER 8. WAVE PROPAGATION IN VISCOELASTIC MEDIA

where K±(r) are de�ned in (4.19).

We note that the convergence of the integral in (8.63) is guaranteed by
the fact that K±(r) > 0 and the asymptotic properties K±(r) ∼ r(1−α)/2 as
r → +∞ and K±(r) ∼ r(1+α)/2 as r → 0. These properties imply as well that
in�nite di�erentiation under the integral sign with respect to t is allowed by
the use dominated convergence theorem.

Let us note that ϕ(t, τ) is also related to the solution u(x, t) of the Stokes'
�rst problem via the identity

ϕ(t, τ) = − ∂

∂x
u(x, t)

∣∣∣∣
x=τ

, t, τ > 0, (8.64)

which together with the expression (8.55) gives an alternative way to obtain the
explicit representation (8.63) for ϕ(t, τ). The di�erentiation under the integral
sign is allowed by dominated convergence theorem.

Let 0 < α < 1, that is, γ = α+1
2 < 1. Then for any τ > 0 the function

ϕ(t, τ) as a function of t admits analytic extension to the sector Σ(θ0) and is

bounded on each sector Σ(θ), 0 < θ < θ0, where θ0 = (1/γ − 1)π/2− ε0. This
can be proven in the same way as Theorem 7.6.

Let us note that the subordination identity (8.62) splits the solution of
problem (8.60)-(8.61) into two parts. The �rst part (the PDF) depends only on
the constitutive model (8.49) and the second part (the cosine family, which gives
the solution of a related wave equation) depends only on the �ow geometry.

In the limiting case a = b problem (8.60)-(8.61) reduces to the classical
�rst-order Cauchy problem and

ϕ(t, τ) =
1√
πt

exp
(
−τ 2/(4t)

)
.

In this case the subordination relation (8.62) reduces to the abstract Weierstrass
formula (0.4).

8.3.3 The scalar equation

Let us consider �rst the scalar variant of Cauchy problem (8.60)-(8.61),
where X = R and operator A is de�ned as multiplication by a scalar −λ,
v = 1. We denote by u(t;λ) the solution of the scalar equation. To
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For the solution we employ Laplace transform technique and obtain by the
use of (1.19)

(1 + asα)(sû(s;λ)− 1) = −λ(1 + bsα)v̂(s;λ).

Therefore, the functions u(t;λ) are de�ned by their Laplace transforms û(s;λ)
as follows

û(s;λ) =
1 + asα

s(1 + asα) + λn(1 + bsα)
=
g(s)

s
(g(s) + λn)

−1 , (8.65)

where g(s) is given in (8.54). Representation (8.65) implies

û(s;λ) =
1

s

(
1 +

λ(1 + bsα)

s(1 + asα)

)−1

. (8.66)

Using the same rearrangement as in (8.48) we rewrite expression (8.66) for large
|s| in a series form

û(s;λ) =
∞∑
k=0

k∑
m=0

(−λµ)k
(
k
m

)(
1− µ
aµ

)m
s−k−1

(sα + 1/a)m
, (8.67)

where µ = b/a. Taking the inverse Laplace transform in (8.67) and using the
identity (1.34) the representation is deduced

u(t;λ) = exp (−µλt) (8.68)

+
∞∑
k=1

k∑
m=1

(−λµ)k
(
k
m

)(
1− µ
aµ

)m
tαm+kEm

α,αm+k+1 (−tα/a)

where µ = b/a and Em
α,β(·) is the three-parameter Mittag-Le�er function (1.32).

Let us note that in the limiting case a = b (µ = 1) corresponding to a
Newtonian �uid Eq. (8.68) reduces to u(t;λ) = exp(−λt).

We deduce next the asymptotic behavior of the solution u(t;λ). First, (8.68)
implies

u(t;λ) ∼ 1− µλt, t→ 0.

Further, it follows from (8.66)

û(s;λ) ∼ 1 + asα

λ(1 + bsα)
=

1

λ

(
a

b
+
b− a
b

1

1 + bsα

)
, |s| → 0,
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and taking the inverse Laplace transform yields

u(t;λ) ∼ b− a
λb2

tα−1Eα,α

(
−1

b
tα
)
, t→ +∞,

which by the use of (1.33) gives the asymptotic behavior of the eigenmodes for
large t

u(t;λ) ∼ a− b
λΓ(−α)tα+1

, t→ +∞. (8.69)

Therefore, the functions u(t;λ) admit the following behavior: starting from 1
at t = 0, after some oscillations, they become permanently negative and vanish.

To �nd another representation of the solution u(t;λ) we can apply the
subordination formula (8.62). Since the cosine family in the scalar case is given
by the function S2(t) = cos(

√
λt), formula (8.62) implies

u(t;λ) =

∫ ∞
0

ϕ(t, τ) cos(
√
λτ) dτ, (8.70)

where the function ϕ(t, τ) is given in (8.63). The integral representation (8.70)
is appropriate for numerical computation.

8.3.4 Applications

Example 8.1. Consider a problem governing the velocity distribution of a
plane Poiseuille �ow between two parallel plates set in motion due to sudden
application of a constant pressure gradient (P = const). The corresponding
initial-boundary-value problem is

(1 + aDα
t )ut = (1 + bDα

t )uxx + (1 + aDα
t )P,

u(0, t) = u(1, t) = 0,

u(x, 0) = ut(x, 0) = 0.

(8.71)

Let us set now X = L2([0, 1]) and de�ne A by (Au)(x) = u′′(x), x ∈ [0, 1] with
domain D(A) = {u ∈ X : u′, u′′ ∈ X, u(0) = u(1) = 0}. The corresponding
cosine family S2(t) is de�ned by the solution of the following problem for the
wave equation

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) = v(x), ut(x, 0) = 0.

(8.72)
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Therefore, if v(x) has the eigenexpansion v(x) =
∑∞

n=1 vn sin(nπx) then

(S2(t)v)(x) =
∞∑
n=1

vn sin(nπx) cos(nπt). (8.73)

From the subordination identity (8.62) and the variation of parameters formula
(8.59) we have

u(x, t) =

∫ t

0

S(τ)Pdτ =

∫ t

0

∫ ∞
0

ϕ(τ, σ)S2(σ)P dσdτ. (8.74)

Here S2(t)P is the solution of problem (8.72) with v = P . Applying (8.73) it
follows

S2(t)P =
2P

π

∞∑
n=1

1− (−1)n

n
sin(nπx) cos(nπt). (8.75)

Inserting (8.75) in (8.74) and using (8.70) we derive the following explicit rep-
resentation of the solution of problem (8.71)

u(x, t) =
2P

π

∞∑
n=1

1− (−1)n

n
sin(nπx)

∫ t

0

∫ ∞
0

ϕ(τ, σ) cos(nπσ) dσdτ,

=
2P

π

∞∑
n=1

1− (−1)n

n
sin(nπx)

∫ t

0

u(τ ;n2π2) dτ,

where the function u(t;λ) is the solution of the scalar problem, see (8.68) and
(8.70).

In the next example we consider a two-dimensional variant of problem
(8.71), governing Poiseuille �ow in a channel.

Example 8.2. Poiseuille �ow of a fractional Je�reys' �uid in a rectangular
channel with cross-section Ω = (0, 1) × (0, 1) is governed by the equation for
the velocity �eld u(x, y, t) [17]

(1 + aDα
t )
∂u

∂t
= (1 + bDα

t )

(
∂2u

∂x2
+
∂2u

∂y2

)
+ f(t), (x, y) ∈ Ω, t > 0, (8.76)

subject to homogeneous Dirichlet boundary condition

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t > 0, (8.77)
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and initial conditions

u(x, y, 0) = ut(x, y, 0) = 0, (x, y) ∈ Ω. (8.78)

Here α ∈ (0, 1), a > b ≥ 0, are given constant parameters and

f(t) = 1 + aω1−α(t),

where the notation (1.3) is used.
Applying eigenfunction decomposition, the solution of problem (8.76)-(8.77)-

(8.78) admits the form

u(x, y, t) =
∞∑
m=1

∞∑
n=1

umn(t) sin(mπx) sin(nπy), (8.79)

where the time-dependent components umn(t) satisfy the following ordinary
di�erential equations

(1 + aDα
t )u′mn(t) = −µ2

mn(1 + bDα
t )umn(t) + fmn(t),

umn(0) = u′mn(0) = 0
(8.80)

with µmn = π
√
m2 + n2 and

fmn(t) = Bmnf(t), Bmn =
4

mnπ2
(1− (−1)m) (1− (−1)n) . (8.81)

By applying Laplace transform we solve problem (8.80) and obtain

umn(t) = BmnGmn(t),

where Bmn are given in (8.81) and the functions Gmn(t) are de�ned through
their Laplace transforms

Ĝmn(s) =
1 + asα

s[s(1 + asα) + µ2
mn(1 + bsα)]

. (8.82)

Therefore

Gmn(t) =

∫ t

0

u
(
σ;µ2

mn

)
dσ =

∫ t

0

∫ ∞
0

ϕ(σ, τ) cos(µmnτ) dτdσ, (8.83)
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where the function ϕ(t, τ) admits the integral representation (8.63). Inter-
changing the order of integration in (8.83) we obtain

Gmn(t) =

∫ ∞
0

ψ(t, τ) cos(µmnτ) dτ, (8.84)

where

ψ(t, τ) =
1

π

∫ ∞
0

exp
(
−τK−(r)

) [
K+(r)

(
sin
(
rt− τK+(r)

)
+ sin

(
τK+(r)

))
− K−(r)

(
cos
(
τK+(r)

)
+ cos

(
rt− τK+(r)

))] dr
r2
, t, τ > 0.

Here K±(r) are de�ned by (4.19).
In this way the following representation of the solution of problem (8.76)-

(8.77)-(8.78) is derived

u(x, y, t) =
4

π2

∞∑
m=1

∞∑
n=1

(1− (−1)m) (1− (−1)n)

mn
Gmn(t) sin(mπx) sin(nπy),

with functions Gmn(t) given in (8.84).

8.4 Generalized di�usion-wave equation

After the study in the last two chapters of various generalizations of the
fractional di�usion-wave equation, we conclude with a short discussion on the
de�nition of generalized di�usion-wave equation.

A generalization of the Caputo fractional derivative (1.7) of order α ∈ (0, 1)
in the form

(CD(κ)
t f)(t) =

∫ t

0

κ(t− τ)f ′(τ) dτ, t > 0, (8.85)

is discussed in Section 4.2. The kernel κ ∈ L1
loc(R+) is a nonnegative func-

tion, such that κ̂(s) ∈ SF for s > 0. The generalized relaxation/subdi�usion
equation with convolutional derivative (8.85) corresponds to a Volterra integral
equation with kernel k(t) such that

k̂(s)κ̂(s) = 1/s. (8.86)

Pairs of kernels satisfying relation (8.86) (Sonine kernels) have the property

that κ̂(s) ∈ SF if and only if k̂(s) ∈ SF . Moreover, assumption κ̂(s) ∈ SF
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is equivalent to g(s) = 1/k̂(s) = sκ̂(s) ∈ CBF (see properties (P7) and
(P10) in Proposition 2.1). Therefore, according to Theorem 2.4, the class of
generalized subdi�usion equations consists of equations which are subordinated
to the classical di�usion equation.

By analogy with the above considerations, the notion of generalized di�usion-
wave equation is introduced in [98] in the following one-dimensional form∫ t

0

η(t− τ)
∂2

∂τ 2
u(x, τ) dτ =

∂2

∂x2
u(x, t), (8.87)

where the integro-di�erential operator in time is supposed to generalize the
Caputo fractional derivative (1.7) of order α ∈ (1, 2). In the case of Caputo
derivative η(t) = t1−α/Γ(2− α), α ∈ (1, 2). Therefore, it is natural to assume
again for the kernel η(t), see [98],

η̂(s) ∈ SF . (8.88)

Denote by ξ(t) the corresponding Sonine kernel, i.e. ξ̂(s)η̂(s) = 1/s. Therefore,

(8.88) is equivalent to ξ̂(s) ∈ SF . By applying the operator (1 ∗ ξ)∗ to both
sides of (8.87), we deduce that the generalized di�usion-wave equation (8.87)
with initial conditions u(x, 0) = v(x) and ut(x, 0) = 0 is equivalent to the
Volterra integral equation

u(x, t) = v(x) +

∫ t

0

k(t− τ)
∂2

∂x2
u(x, τ) dτ

with kernel k(t) = (1 ∗ ξ)(t). Therefore, k̂(s) = ξ̂(s)/s and

k̂(s)η̂(s) = 1/s2. (8.89)

We �rst note that (8.88) and property (P10) in Proposition 2.1 imply

sη̂(s) ∈ CBF .

Relation (8.89) yields g(s) = 1/k̂(s) = s2η̂(s). Therefore, assumption (8.88)
implies that g(s) is a product of two complete Bernstein functions (s and sη̂(s))

and, thus, by (2.2), g(s)1/2 ∈ CBF . Hence, according to Theorem 2.4, equation
(8.87) is subordinated to the classical one-dimensional wave equation.

Wave equations in viscoelastic media with completely monotone relaxation
moduli G(t), considereed in this chapter, satisfy g(s) = s/Ĝ(s), see (8.4).
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Therefore, they are generalized di�usion-wave equations of the form (8.87),
where η(t) is the Sonine kernel of G(t). Vice versa, any generalized di�usion-
wave equation (8.87) can be interpreted as a wave equation in viscoelastic
medium with completely monotone relaxation modulus G(t) = ξ(t).

However, the class of equations, subordinated to the classical wave equa-
tion, is larger. Namely, there exists equations with characteristic function g(s),

satisfying g(s)1/2 ∈ CBF , which are not of the form (8.87)-(8.88). Next we give
two such examples.

Example 8.3. Consider a distributed-order di�usion-wave equation (7.2), such
that suppµ 6⊆ [1, 2]. For example, let us consider the two-term time-fractional
di�usion-wave equation

CD
α
t u(x, t) + CD

α1

t u(x, t) =
∂2

∂x2
u(x, t)

where α ∈ (1, 2), α1 ∈ (0, 1), α − α1 ≤ 1. According to Theorem 7.5, this
equation is subordinated to the classical wave equation. It is equivalent to
Volterra integral equation with g(s) = sα + sα1. If we rewrite it in the form

(8.87), then ξ̂(s) = s/g(s) = s1−α1/(sα−α1 + 1) and (1.27) yields

ξ(t) = tα−2Eα−α1,α−1(−tα−α1).

The asymptotic formula for Mittag-Le�er function (1.24) implies

ξ(t) ∼ tα1−2/Γ(α1 − 1) as t→∞,

which is negative for α1 ∈ (0, 1). Therefore ξ̂(s) /∈ SF , which is equivalent to
η̂(s) /∈ SF . Therefore, the considered two-term di�usion-wave equation is not
of the form (8.87)-(8.88).

Example 8.4. The second example is Je�reys' type equation (8.57) with f(t) =
0 and standard initial conditions u(0) = v, u′(0) = 0, where

0 < α, β ≤ 1, α 6= β, a > b > 0.

Even though it is not thermodynamically well behaved for α 6= β (see Theo-
rem 8.4), the corresponding equation (8.57) is actually well posed and subordi-
nated to wave equation. Indeed, for this equation condition g(s)1/2 ∈ CBF is
satis�ed for all 0 < α, β < 1. This follows from the representation

g(s) =
s(1 + asα)

1 + bsβ
, (8.90)
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which implies that g(s) is a product of two complete Bernstein functions: 1+asα

and s/(1+bsβ) (see property (P9)). Then property (2.2) yields g(s)1/2 ∈ CBF .
Therefore, the conditions of Theorem 2.4 are satis�ed with α = 2 and equation
(8.57) is subordinated to a wave equation. On the other hand, according to
Theorem 8.4, in the considered case ξ(t) = G(t) /∈ CMF , that is, η̂(s) /∈ SF ,
and equation (8.57) is not of the form (8.87)-(8.88).

The above observations suggest a revision of the de�nition of generalized
fractional di�usion-wave equations, which should include equations subordi-
nated to the classical wave equation.



Main scienti�c contributions

In this dissertation we developed a uni�ed methodology for establishing a
subordination relation between a linear evolution equation in a general form
and a linear fractional or integer-order evolution equation. The problem of
subordination is reduced to proving that a characteristic function belongs to
the class of complete Bernstein functions.

We establish subordination relations for a number of equations with frac-
tional derivatives, which have been recently proposed in the literature. The
subordination relations for generalized time-fractional evolution equations split
the solution into two parts: a probability density function, containing all in-
formation about the operators acting in time, and the solution of a simpler
(integer-order or single-term fractional-order) problem.

Subordination principle for space-time fractional evolution equations is stud-
ied. Various representations for the subordination kernel are derived and its
properties are studied. As an application, integral representations for the n-
dimensional fundamental solution are established for n = 1, 2, 3 (Chapter 3).

Evolution equations with the fractional Je�reys' constitutive law are stud-
ied in detail (it appears in heat conduction equations, as well as in equations
modelling wave propagation in viscoelastic �uids, see Chapter 4, Section 8.3,
and Section 5.1.2 for a particular case). Based on this model, the relationship
between the subordination principle and the physical character of an evolution
equation is illustrated.

Subordination relations are established for the generalized time-fractional
subdi�usion equations (Chapter 5). An explicit approximation formula for
the solution is obtained, which generalizes the exponential formula for C0-
semigroups. As an application of subordination principle, useful estimates for
the solution of the generalized relaxation equation are derived. They are applied
in the study of an inverse-source problem.

A multinomial function of Prabhakar type is introduced and studied (Chap-
ter 6). It is related to di�erential equations with multiple time-derivatives.
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Along with other properties, we formulate su�cient conditions for complete
monotonicity of this function. As an application of this function, we propose a
viscoelastic constitutive model, which generalizes some well-known relaxation
laws (Section 8.2.4).

An open problem concerning the interpretation of the fundamental solu-
tion to distributed-order time-fractional di�usion-wave equation as a probabil-
ity density is partly solved (Section 7.1). The class of allowed weight functions
is extended from functions with support contained in the interval [1, 2] to func-
tions with support contained in the interval [a, a+ 1], 0 < a ≤ 1. An example
shows that this condition can be further relaxed.

Subordination principle for the multi-term time-fractional di�usion-wave
equation is studied in detail (Section 7.2). Integral representation for the sub-
ordination kernel is derived. The cases of �nite and in�nite propagation speed
are considered.

The relaxation modulus of a number of generalized fractional viscoelas-
tic constitutive models is studied, such as fractional Maxwell, Je�reys' and
distributed-order Zener models. It is proven for these models that the thermo-
dynamic constraints imply complete monotonicity of the relaxation modulus
(Section 8.2). This property plays an important role in establishing a subordi-
nation principle for the corresponding wave equation.

Based on subordination principle, the considered in the dissertation gen-
eralized fractional evolution equations are divided into two main classes: sub-
di�usion equations (subordinated to the �rst order abstract Cauchy problem,
see Chapters 5 and 6) and di�usion-wave equations (subordinated to the sec-
ond order abstract Cauchy problem, which are not subdi�usion equations, see
Chapters 7 and 8). Thus, we propose a new way to de�ne those two classes of
equations, which allows to cover important physically meaningful models.
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