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Abstract

In this paper, we study partial automorphisms and, more generally, injective partial
endomorphisms of a finite undirected path from Semigroup Theory perspective. Our
main objective is to give formulas for the ranks of the monoids IEnd(P,,) and PAut(P,)
of all injective partial endomorphisms and of all partial automorphisms of the undi-
rected path P, with n vertices. We also describe Green’s relations of PAut(/P,) and
IEnd(P,) and calculate their cardinals.
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Introduction and preliminaries

As well as automorphisms of graphs allow one to establish natural connections between
Graph Theory and Group Theory, endomorphisms of graphs allow similar connections
between Graph Theory and Semigroup Theory. Likewise, in particular, partial auto-
morphisms of graphs relate Graph Theory with Inverse Semigroup Theory. This has
led, over the last decades, many authors to become interested in the study of com-
binatorial and algebraic properties of monoids of endomorphisms of graphs. One of
the most studied algebraic notions is regularity, in the sense of Semigroup Theory. A
general solution to the problem, posed in 1987 by Knauer and Wilkeit, see [29], of
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which graphs have a regular monoid of endomorphisms has proved to be very diffi-
cult to obtain. Despite that, various authors studied and solved this question for some
special classes of graphs (see, for instance, [7-9,16-18,20,21,25-28,31,32]).

The rank of a monoid S, denoted by rank S, is the least number of generators of S.
In this paper, we focus our attention on this important notion of Semigroup Theory,
which has been, in recent years, the subject of intensive research.

Let €2 be a finite set with at least 3 elements. It is well known that the symmetric
group . (£2) of Q has rank 2 (as a semigroup, a monoid or a group). Furthermore,
the monoid of all transformations .7 (2) of €2, the monoid of all partial transforma-
tions .7 (2) of Q and the symmetric inverse monoid .# (2) of Q have ranks 3, 4,
and 3, respectively. The survey [10] presents these results and similar ones for other
classes of transformation monoids, in particular, for monoids of order-preserving trans-
formations and for some of their extensions. More recently, for instance, the papers
[1,2,5,11-15,23,33,34] are dedicated to the computation of the ranks of certain (classes
of transformation) semigroups or monoids.

Now, let G = (V, E) be asimple graph (i.e. an undirected graph without loops and
without multiple edges). Let « be a partial transformation of V. Denote by Dom « the
domain of @ and by Im « the image of «. We say that « is:

— A partial endomorphism of G if {u, v} € E implies {ua, va} € E, forall u, v €
Dom «;

— Apartial automorphism of G if « is an injective mapping (i.e. a partial permutation)
and « and ! are both partial endomorphisms.

If « is a full mapping (i.e. « € 7 (V)) then a partial endomorphism (respectively,

partial automorphism) is just called endomorphism (respectively, automorphism).
Notice that, for finite graphs, any bijective endomorphism is an automorphism.
Denote by:

PEnd(G) the set of all partial endomorphisms of G;

End(G) the set of all endomorphisms of G;

— IEnd(G) the set of all injective partial endomorphisms of G;
PAut(G) the set of all partial automorphisms of G;

— Aut(G) the set of all automorphisms of G.

Clearly, PEnd(G), End(G), IEnd(G), PAut(G), and Aut(G) are monoids under
composition of maps with the identity mapping id as the identity element. Moreover,
Aut(G) is also a group and PAut(G) is an inverse semigroup: Aut(G) € .(V) and
PAut(G) C Z (V). Itis also clear that

Aut(G) € End(G) <€ PEnd(G)
and
Aut(G) € PAut(G) € IEnd(G) < PEnd(G)
(these inclusions may not be strict).
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Let N be the set of all positive integers and let n € N. Let P, be the undirected path
with n vertices. Notice that we may take

Po=({l,....onp{li,i+1}li=1,....n—1}.

The number of endomorphisms of P, has been determined by Arworn [3] (see also
the paper [30] by Michels and Knauer). In addition, several other combinatorial and
algebraic properties of P, were also studied in these two papers and also, for instance,
in [4,19]. The authors in [6] studied several properties of the monoid End(P,). In
particular, they characterized regular elements and determined the rank of End(P,).

The main objective of the present paper is to determine the ranks of the monoids
PAut(P,) and IEnd(P,). We will show that

2 forn = 2 forn =1
2 forn =2 2 forn =2
rank PAut(P,) = 3 forn = 3 and rank IEnd(P,) = 4 forn =3
n—1forn >4 n+[%'|—2fornz4.

We also aim to describe Green’s relations of PAut( P, ) and IEnd ( P,) and to calculate
the cardinals of both monoids.

Observe that PAut(P,) and IEnd(P,) are submonoids of the symmetric inverse
monoid ., = ({1, ...,n}).

Recall that the Green’s relations ., %, and # of a monoid S are defined as
following: for «, g € S,

— a.%p if and only if there exist y, § € S such that @« = y8 and B = d«;
— aZB if and only if there exist ', 8’ € S such that e = By’ and B = ad’;
— «a_¢ B if and only if there exist y, y’, 8,8’ € S such thata = yBy’ and B = Sad’.

The relations .Z and % commute (i.e. £ o # = % o ) and Green’s relation & is
definedby 9 = L o Z = X o L (i.e. P if and only if there exists o € § such
that «. Zo %P, for a, B € S). Notice that for a finite monoid the relations _# and &
coincide. Finally, we have Green’s relation ¢ defined by .77 = £ N %.

If S is an inverse semigroup of injective partial transformations on a given set, then
the relations ., Z, and ¢ can be described as following: for «, 8 € S,

— aZp if and only if Ima = Im g;
— aZp if and only if Dom o = Dom §;
— a7 if and only if Imo = Im B and Dom o« = Dom 8.

Since PAut(P,) is an inverse semigroup, it remains to obtain a description of its
Green’srelation _# . On the other hand, that is not the situation of IEnd(P,), forn > 3,
since I[End(P,) is not an inverse semigroup (for instance, ( } ; € IEnd(P,) is not
a regular element of IEnd(P,)). Notice that IEnd(P,) = PAut(P,), forn =1, 2.

For general background on Semigroup Theory and standard notation, we refer the

reader to Howie’s book [22]. Regarding Algebraic Graph Theory, our main reference
is Knauer’s book [24].
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1 Green’s relations

Let n € N. We now describe Green’s relations ., %, ¢, and # of the monoid
IEnd(P,) as well as Green’s relation _# of the inverse monoid PAut(P,).

In this section, for a set X € N, we need the following concept. A set [ C X is
called a maximal interval of X if I satisfies the following properties:

— I is aninterval of X (i.e. x,y € I and z € Nwithx < z < y implies z € I);
— If J € X is an interval of X then I C J implies [ = J.

Recall that a partial transformation « of {1, ...,n} is said to be order-preserving
(respectively, order-reversing) if x < y implies xa < yo (respectively, if x < y
implies xa > ya), for all x, y € Dom «.

Let o € .#,. The following observations are easy to show:

a € IEnd(P,) if and only if for each interval I of Dom « the image [« is an

interval of Im «;

— If @ € IEnd(P,) then « is order-preserving or order-reversing in / (i.e. the restric-
tion «|; of o to I is an order-preserving or order-reversing transformation), for
each interval I of Dom «;

— If for each maximal interval I of Dom « the image /« is an interval of Im « and
« is order-preserving or order-reversing in / then o € IEnd(P,);

— If « € PAut(P,) and / is a maximal interval of Dom « then the image /« is a
maximal interval of Im «;

— If for each maximal interval I of Dom « the image I« is a maximal interval of

Im o and « is order-preserving or order-reversing in / then o € PAut(P,).

Let o € Z,. Let {X1, ..., Xi} be a partition of Dom «. We will use the notation
o = (Xl Xk) to express that ¥; = (X;)a, fori € {1, ..., k}.
Y) - Y

Let o, B € IEnd(P,). Since IEnd(P,) is a submonoid of the inverse monoid .%,, if
aZ B (respectively, «Z ) in IEnd(P,) then «.Z 8 (respectively, «.Z ) in .#,,, whence
Imao = Im g (respectively, Domo = Dom ). Moreover, we have the following
descriptions of the relations . and % in IEnd(P,):

Proposition 1 Let o, § € IEnd(P,)and let {I, I, ..., It} and {I], I, ..., I/} be the
(partitions into) maximal intervals of Dom « and in Dom B, respectively. Then, the
following three conditions are equivalent:

1. a.ZB;
2' {Ila5 12a7 s Ika} = {I]/ﬂ’ Izlﬂa LI I[/IB}y
3. Ima =ImB and af~" € PAut(P,).

Proof [1 = 2] Suppose that «.Z 8. Then, by the definition of Green’s relation .Z,
there exist y, § € IEnd(P,) such thate = yf and B = Sw. Leti € {1, ..., k}. Since
Dom«a € Dom y, I; is also an interval of Dom y, whence /; y is an interval of Dom 8
and so I;y C I;, for some j € {1,...,1}. It follows that [« = I;y8 C I/’.,B, for
some j € {1, ...,[}. Similarly, we may show that, for all j € {1, ..., [}, there exists
i €{l,...,k} such that I]/.,B C . Now, since Ima = Im 8, we may deduce that

{ha, ba, ..., o} = {]1’/3, 12//3, R I[,B}.
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Partial automorphisms and injective partial... 91

[2 = 3] From {1, b, ..., ka} = {I|B, I}B, ..., I/ B} it follows immediately
that k = [ and Im o = Im B. Let o be the permutation of {1, ..., k} such that ;o =
L -1
I,-/gﬂ, forall i € {1,...,k}. Then ¢f~! = (I’l 1,2 I’k ) and so af~! maps
lo 120 " 1k
maximal intervals of its domain into maximal interva(fs of its oimage. Hence, in order
to prove that «f~! € PAut(P,), it suffices to show that af~! is order-preserving or
order-reversing in /;, fori € {1, ..., k}. Leti € {1, ..., k}. Then, we have aﬁ’l l1, =
I . . .
a|1,ﬂ’1|1,.a = a|1iﬂ’]|1_/ B and ,3’1|1_/ g = ( ’I‘fﬂ) As I; is an interval, «|j, is
order-preserving or order-reversing. On the other hand, as I/ is an interval, B[,/ is
order-preserving or order-reversing and so its inverse mapping |/ p 1s also order-

preserving or order-reversing. Thus, ! is order-preserving or order-reversing in 1;,
as required.

[3 = 1] From Imao = Im 8 and a,B_l € PAut(P,), it follows that Olﬁ_l and
pa~! = (@p™") ' liein [End(P,), (@f™ B = a(B~'f) = aid lmp = aid e =
aand (@f~) e = (BaHa = Bla™'a) = Bid|me = Bid|mps = B, whence
aZB. O

Proposition 2 Let o, 8 € IEnd(Py,). Then aZp if and only if Dom @ = Dom B and
a~ !B e PAut(P,).

Proof Suppose that «Zf. Then Dom o« = Dom 8. Moreover, there exist transfor-
mations y, 8 € IEnd(P,) such that 8 = oy and o = B6. Then, we have « '8 =
alay =id|mey = ylme and (@ 'B)"" = B la = 7' B8 = id [in g8 = Slim p-
Since, clearly, any restriction of a transformation of IEnd(P,) is still a transformation

of IEnd(P,), we have « '8, ' € IEnd(P,) and so ' B € PAut(P,).
Conversely, admit that Doma = Dom g and «~!8 € PAut(P,). Then o~ !B,
B~'a = (a')"! € IEnd(P,), B= id Ipom B = id [pomaB =(@a™)B = a(a™'B)
and o = id |pom @ = id |pom g = (/3,3’1)05 = ,3(,3’101), whence a.Z B, as required.
O

Since 77 = % N £, it follows immediately that:

Corollary 1 Let o, B € IEnd(Py,). Then a7 B if and only if Dom &« = Dom B, Ima =
ImpB and a=' B, af~! € PAut(P,).

Before presenting our descriptions of Green’s relation ¢ on IEnd(P,) and on
PAut(P,), we need to introduce some notions and notations.

For A, B C N,denoteby A < Bifa <bforalla € Aandb € B.

Leta = (a1, ..., ap) be a sequence of elements of N. We define the reverse of a

as being the sequence a® = (ap,...,a).
Let o € IEnd(P,) and let J be a maximal interval of Im «. Define the type of J to
be the sequence 7, (J) = (|11], |2, ..., [Ip]), where {I, I», ..., I,} are the maximal

intervals of Jo—! such that ;o < liyia,forl <i < p.

Now, let o, B € IEnd(P,). We say that o« and § have similar type if there exists a
bijection o from the set of maximal intervals of Im « into the set of maximal intervals
of Im B such that 7, (J) € {rg(Jo), t,g(Ja)R}, for any maximal interval J of Im «.
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Observe that two elements o and § of IEnd(P,) have similar type if and only if
they have maximal intervals of their images with the same type up to reversion and
the same number of occurrences.

Lemma1 Let o, B € IEnd(P,;) be such that o« and f have similar type. Then, there
exist y, 8 € PAut(P,) such that 8 = yad anda = y~' 8871

Proof Let {Ji, J2, ..., Ji}and {J], J;, ..., J} be the maximal intervals of Im « and
Im B, respectively. Then there exist a permutation o of {1, ..., k} such that tg(J)) €
(ta(Jro), Ta(Jro) R}, forr =1, ... k.

For1 <r <k, let {Ir/’l, Ir/,2’ e Ir/,p,} and {l,5.1, Iy5,2, - . . Irs, p, } be the max-
imal intervals of J/8~! and J,;a !, respectively, such that I/ ;8 < I 1B and
Ligio < Igiqp1a, forall 1 <i < p.. Moreover, let J , = I' B and J,5; = I,
forr =1,....,kandi = 1,..., p,. Clearly, J| = Jr”l U Jr/,2 u..--u Jr/,pr and
Jro = Jrcr,l U Jr0,2 u---u Jr(r,p,.-

Letr =1, ..., k. We define partial transformations y; and 4, as following:

= Domy, =U{l] |, I/ 5, ... 0, } =J/p~ "
— Dom§, = U{J}’O',ls N T Jra,pr} = Jro;
Iy = Lo, if fﬂ(Jr/) = 174 (Jro)
T Lo, p—it1 if T8(J)) = T (Jro) ¥,
fori =1,..., pr;
Y S J,/’,' if Tﬁ(lr/) = 7o (Jro)
T ‘Ir/,pr—i-i-l if Tﬁ(Jr/) = Ta(Jro)Ry
fori =1,..., ps;
. | order-preserving if (a) or (b) is satisfied
- vrly i order-reversin i
ri - g otherwise,
where

(@) 18(J)) = 1o (Jrs) and | I,o; and B[~ are both order-preserving or both
order-reversing, and "
(b) 8(J)) = Ta(Jr)® and |},
reversing or vice versa,

_;41 1s order-preserving and f| 1,1 order-

a.pr

fori =1,..., pr;
sl s {order—preserving if 75(J)) = 1o (Jro)
1o order-reversing if 74(J)) = 1o (Jyo) K.
It is easy to verify that both y, and &, are well defined. Then, we define partial
transformations y and § as follows:

— Domy = U{I{,l’ ""I{,p|’ ""Ilé,l""’llé,pk} = Dom B;
— Domé =U{Ji51,.--, J]U’pl,..., N/ P Jka,pk} =Ima;

- vly, =vyly forr=1...  kands=1,...,p;
= 8ltgy = Olpg, forr=1,...,kands =1,..., p,.
Clearly, both transformations y and § are partial automorphisms. Letr =1, ...,k
ands =1,..., p,. Then

Lo 508 = Jrosd =0 =1 Bif 15 (J]) = To (Jrs)

I yad = .
rs¥ { Iro,prferlO‘S = Jro,p,fH»la = Jr/,s = I;’Sﬂlf B (J,f) = Ty (JVO‘)R .
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Taking into account properties (a) and (b), we can deduce that yad|; —is order-
preserving if B|;; is order-preserving and y 8|y,  is order-reversing if B| Ir/ , is order-
reversing, which allows us to conclude that 8 = ya8. On the other hand, since
Im y = Dom « and Im « = Dom §, we obtain y_lyoaSB_l = id |pom @ id |ime = @
and so we also have o = y 187!, as required. m|

Now, we can describe Green’s relation _¢# for the monoid IEnd(P,).

Proposition3 Let oo, B € IEnd(P,). Then o 7 B if and only if a and B have similar
Iype.

Proof Leta, B € IEnd(P,) be such that @ _# B. Then, there exists y € IEnd(P,) such
that .2y %8 and so, by Propositions 1 and 2 , we have Dom y = Dom g and Im y =
Ima and ay~', y~'f € PAut(P,). In addition, o 'ay~! = y~! = p~lgg~1.
Moreover, Dom(y ~!8) = Im« and Im(y~'8) = Im B. Hence, y~'8 € PAut(P,)
maps each maximal interval J of Im « into a maximal interval Jy ~!8 of Im g, thus
defining a bijection o (J > Jo = Jy ! B) from the set of maximal intervals of Im &
into the set of maximal intervals of Im . Let J be a maximal interval of Im «. Then
o)V =Jy 1887 = Ty~ = Ja"lay™! = (Ja Hay~!. Since ay~! €
PAut(P,), we may deduce that 7, (J) € {15(Jo), rﬁ(Ja)R}. Therefore o and § have
similar type.

Conversely, let o, 8 € IEnd(P,) be such that « and B have similar type. Then, by
Lemma 1, we have directly «_# $, as required. O

We finish this section with the description of Green’s relation _# of PAut(P,), which
follows immediately from Lemma 1 and Proposition 3.

Corollary 2 Leta, € PAut(P,). Thena 7 B if and only if « and B have similar type.

Observe that the type of a maximal interval of the image of an element of PAut(/P,)
is always a unitary sequence which we can identify with the size of the interval taken.
Therefore, two elements « and 8 of PAut(P,) have similar type if and only if they
have maximal intervals of their images with the same size and with the same number
of occurrences.

2 Cardinality

Letn €e Nandn = {1, ..., n}. We will determine the cardinality of PAut(P,) as well
as of IEnd(P,). For this, we need some technical notations.
Let A € {0, 1}" and let A(p) denotes the element on the position p in A. Further,
let AO)=A(n+1) =0.
LetRy={pen|A(p—1)=0and A(p) = 1}andrg = |R4].
n
Letsa = Y A(p).

p=1
Letz(1) =1,z(2) =r4 and

(n —5A +Z(’)) if A(p) # 0, for some p € 1
qai = rA

1 otherwise,
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94 . Dimitrova et al.

fori € {1, 2}.
Let A = (I’A!)qA’,',fOI‘i e{l,2}andlet T4 = |{p eRs|A(p + 1) =1}.

Theorem 1 One has

IPAut (P)| = > 2™ia1 and [IEnd(P)|= > 2"1a2.
Ae{0,1}" Ael0, 1}

Proof The domain of an injective endomorphism on P, is a subset of 7. For each
A € {0, 1}, let A* be the subset of 7 with x € A* if and only if A(x) = 1. In
particular, by A — A*, a bijection between {0, 1} and the powerset of 7, i.e.
between {0, 1}" and the possible domains of injective endomorphisms on P,, is given.
Let A € {0, 1}".

First, we suppose that A # (0,0, ..., 0). Then A* consists of r4 maximal intervals
Al <Ay < -+ < A of A*. Fori € {1,...,ra}, let p; be the minimal element
in the set A;. So, we have A(p; — 1) = 0and A(p;) = 1,fori € {1,...,ra}. This
provides R4 = {p; | i € {1,...,ra}}. Moreover, we have s4 = |A*|.

An injective endomorphism on P, with domain A* has the form

(A] Ay - ArA)

By By --- By, )’

where Bi,..., B,, are intervals. We observe that for each permutation o on

{1,...,7a}, there is a possible image sequence By, ..., B, such that Bi, < By <
- < B,,s, 1.e. there are ru! possibilities in which the intervals By, ..., B,, are

ordered. If the image sequence By, ..., B, is ordered by Bi; < Byy < -+ < B0,

for some permutation o on {1, ..., r4}, then there are still n — s 4 elements being not in

the image of an injective endomorphism. If we restricted us to partial automorphisms

then there are by, ...,b,,—1 € nsuchthat Bi; < by < Byy <bp <--- <br,_1 <

B, o and so there are stilln — s4 —r4 + 1 elements being not in the image of a partial

automorphism. These remaining elements can be distributed before or after the B;’s,
i.e. at r4 + 1 places. The number of all these possibilities is

ra+D)+m—sa)—1\ (rat+n—sa\ _[(ra+tn—sa\ __
n—sa - n—sa - raA =442

for injective endomorphism and

((rA+1)+(n—SA—rA+1)—1>_< n—sa+1 )_(n—sA+1>_
= = =dqA1

n—sa—raqa+1 n—sa—ra+1 rA

if we only consider partial automorphisms. In other words, we have g4 2(ra!) =142
and g4, 1(ra!) = ta,1 possibilities for the intervals By, ..., B,,, whenever A* (with
the partition A; < --- < A,,) is the domain of an injective endomorphism and of a
partial automorphism, respectively. Fori € {1,...,ra}, if |A;| > 2 then we have to

. Aj . . .
consider two cases, namely < Bl is order-preserving or order-reversing. In order to
i
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Partial automorphisms and injective partial... 95

realize it, we consider the cardinality 74 of theset D4 = {i € {1, ...,ra} | |Ai| = 2},
i.e. Ty = |D4l. So, we have still to consider 274 possibilities, whenever the intervals
By, ..., B, are already fixed. Observe that Dy = {p € Ra | A(p + 1) = 1}.

Thus, there are 274 ¢ A2 injective endomorphisms and 27Tag A,1 partial automorphisms
on P, with domain A*.

Next, suppose that A = (0,0, ...,0). Then, there exists exactly one injective
endomorphism on P, with the domain A* = {J, namely the empty transformation.
In this case, we have ga,1 = ga2 = landry = T4 = 0. Hence, 14,1 = ta2 =
qa1(ra) =100 = 1,27 =20 = 1and 27414 | = 274140 = 1.

We conclude that [PAut(P,)| ZZAG{O,I}" 274t 1 and [IEnd(P,)] =ZA€{071},1 2741, 5,
as required. O
3 Generators and rank
In this section we present the main results of this paper. We are referring to the
calculation of the ranks of PAut(P,) and IEnd(P,). In both cases, we proceed by
determining a generating set of minimal size.

Itis clear that PAut(Py) = {id, @} is a generating set of minimal size of PAut(P;) =
IEnd(Py), where ¢ is the empty transformation. Moreover, it is easy to verify that

=1G1)-0)]

is a generating set of minimal size of

o =i = fo. (12, (). (). (2). (2) o)

This shows that
rank PAut(P;) = rank IEnd(P;) = rank PAut(P;) = rank IEnd(P;) = 2.
Next, let n > 3 and define
1 2 ---n—1n
T =
nn—1--- 2 1
and

o 12---i—=1i+1i+2---n—1 n
Y=\12i—1 on on—1--i42i+1)

fori=1,2,...,n.
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Let

o — {r, a1, o} ifn=3
Tt} U{e |i=1,2,...,n—2}ifn > 4.

First, we will show that <7 is a generating set of PAut(P,). To accomplish this aim
we start by proving a series of lemmas.

Lemma2 Onehas{o; |i =n—1,n} C ().

Proof The proof follows immediately from the relations o; = taﬁ_i T, fori =
n—1,n. |
Let
« 1 2 - i=2i—-1i+1---n—1n
ai:(i—li—2~~ 2 1i+4-~n—1n)’
fori=1,2,...,n.
Lemma3 One has o € (&), fori =1,2,...,n.
Proof We have o] = ajTar, 170, whence of € (&), fori =1,2,...,n. O
Let
gi’j=<i§...,:_1,:+1...J:_1]:_|_1...n>’
covi—li+1l--j—1j4+1---n
forl <i<i+1l<j<n.
Lemma4 One has s; j € (), forl <i <i+1<j<n.
Proof We have ¢; ; = 051-2015, whence ¢; ; € (&), forl <i<i+1<j<n. O

Let

g (12 it lid2 j=2j—1j4+1n
LT \12-i—=1j—-1j—-2--i+2i+1j+1---n)°

forl <i<i+1l<j<n.
Lemma 5 Onehass;je(ﬂ),for1§i<i+1<j§n.

Proof We have 8;"]. = ei,jozj?ajf_iajf, which implies sf/. e(),forl <i<i+1<
Jj<n. o
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Define ag = 1, @y = id, 88,n+1 = T, 88,/‘ = ozjf, for j = 2,...,n, and
* — . s _
€ a1 =q;,fori=1,...,n—1.

Let

v (12-i—1i42-- j j42---n
Pij=\12-i—1li4l-j—1j+2-n)"

forO0<i<i+2<j<n.

Lemma 6 Onehasp;’“j e(d), for0<i<i+2<j<n.

Proof Wehavep;'j = a?ainr]a?Jrls;“jHai*j,whence,ol.‘"j e (), for0<i <i+2 <
J=n m]
Let
- f12-vi=2 i ---j=2j4+1---n
Pij=\12ii—2i4+1--j—1j+1---n)°

forl <i<i+2<j<n+1.
Lemma7 Onehasp;je(%),forlfi<i+2<j§n+l.

2 2

- _ 2 * * . . . — .
Proof We have Pp =0 Qe € s which implies pij € (o), forl <i <

i+2<j<n+1. O
Now, we are prepared to prove that .o/ is a generating set of the monoid PAut(P,).
Proposition 4 One has PAut(P,) = (7).

Proof We will perform this proof by using a recurring construction. First, for an
arbitrary element o of PAut(P,), we set some notations. Denote by I{*, IF, ..., Ilf‘
the maximal intervals of Dom « such that

nI'<Iy<---<If.

Let J* = IFa,forr =1,..., k. Then J7*, J¥, ..., J{ are the maximal intervals of
Im «. Denote by o, the permutation of {1, 2, ..., k} such that
Jl"‘aa < Jf‘aa << J,f‘aa.

Now, fix & € PAut(P,). Let I = i\ Dom « and define 8 = [[;; & (observe that
al.z , i €m,is an idempotent and idempotents commute). Clearly, Dom 8 = Dom «.
Let s be the least number r € {1, ..., k} such thatro, # rog. Let t be the minimal

element in the set Js’?,ﬁ and ¢ be the maximal element of .Iﬁ,aaﬂ. Then, we put
B = :3'9:*71,%1
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(i.e. we define a new B as being ,Be;*_L g41> below we will made similar variables’s
redefinitions). Then either ro, = rog, for all r € {1, ..., k}, or the least number
r € {1,..., k} such that ro, # rog is greater than s.

We repeat the procedure until ro, = rog forallr € {1, ..., k}.

Further, we put y = B and let u be the least number p € {1, ..., k} such that

v, # ol -
If Im y| I, = Im o] I, then we put

*
Yy = yemb’

where a and b are the greatest and respectively the least number with a < JJ/(,V <b.
If Im y|1l%y * Ima|13oy then there exist x, y € n such that Imal%y ={x,...,z}
andeitherlmyhgay ={x—-y,....2—y} 0rImV|1{foy ={x+y,...,z2+y}, where
z=x+|L; | -1
First, suppose that Im y|130y ={x —y,...,z— y}. Then, there exists j € n with

Jj > J,j’gy such that j, j + 1 ¢ Im y. In this case, we put
Y=Yy it

On the other hand, admit that Im y | I, = {x +vy,...,z+ y}. Then, there exists

j < Juygy, with j > Jl),/(,y, for all p < u such that j — 1, j ¢ Im y. In this case, we
put

_ ot
Y =VPj 1zt
After y such steps, we obtain a transformation y such that Im y | 18, = Im o] g, - It
vlig, # «lig, then we put
Y =Versp

where a and b are the greatest and the least number, respectively, such thata < J,fay <
b.

We repeat the procedure until y = «. Therefore, by Lemmas 2-7, we may deduce
that ¢ € (o/) and so <7 is a generating set of PAut(P,), as required. O

Next, we will show that .o is a generating set of PAut(P,) of minimal size.

Let G be a generating set of PAut(P,).

First, notice that Dom t = n. Moreover, for « € PAut(P,), clearly, we have
Doma =nifandonlyife =tora =id = 72. Thus, it follows immediately that:

Lemma8 One hast € G.

Let

A; = {a € PAut(P,) | Doma =n\{i} or Doma =n\{n —i + 1}},
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fori=1,...,[5].
Lemma9 One has |G N A;| > 1, foralli € {1,...,[5]}.

Proof Leti € {1,..., {%]} and consider the transformation «; defined previously.
Notice that Domo; = n\{i} and so o; € A;. Let B1,..., Br € G\{id} be such
that oy = By --- B and {B;, Bj+1} # {r}, for j = 1,...,k — 1. Since Doma; =
Dom(pB; --- Br) € Dom By, rank o; = n— 1 and B1 # id, we have Dom 8; = Dom ¢;
or B1 = .

If Dom 1 = Dom «; then 81 € A; and so 81 € G N A;.

On the other hand, suppose that §; = t. In that case, since Domeu; =
Dom(B;---Br) € Dom(zhy), ranke; = n — 1 and By € G\{id, t}, we have
Dom «; = Dom(tf>), whence Dom 8, =n\{n —i + 1} and so B> € G N A;.

Thus, in both cases, we have shown that |G N A;| # @, as required. O

Lemma 10 Letn > 6. Then |G N A;| = 2, foralli € {3, ..., 5]}

Proof First, observe that it is a routine matter to check that |A;| = 16, for all i €
{3,...,15]}. Recall also that T € G, by Lemma 8.
Now, assume by contradiction that |G N A;| < 2, for some i € {3,..., L%J}.

Then, by Lemma 9, we have G N A; = {«}, for some o € PAut(P,). Without loss of
generality, we may suppose that Dom o = 7\ {i}. Hence, we have two cases:
Case 1. Ima = n\{i}. Then, as a3 = « and rank et = n — 2, we have

(G)NA; ={a, ocz, oT, T, ozzr, raz, TaT, ra2r} # A;,

which is a contradiction (since G is a generating set of PAut(P,)).
Case 2. Ima = n1\{n — i + 1}. In this case, as («7)? = id |poma, (T@)? = id |Im«
and rank o2 = n — 2, we obtain

(G) N Aj = {a, at, ta, ata, Tat, (1), (ta)?, T(at)?} # A;,

which again is a contradiction, as required. O

Now, as a consequence of Proposition 4 and Lemmas 8—10, we may prove the first
of our main results:

Theorem 2 The rank of PAut(P3) is equal to 3 and, for n > 4, the rank of PAut(P,)
is equal ton — 1.

Proof By Proposition 4, the set <7 generates PAut(P,). Thus,

3 ifn=3

rank PAut(P,) < |.</| = {n lifn >4
Let G be any generating set of PAut(P,). By Lemmas 8 and 9, the transformation t
and [ 4 | pairwise different transformations of rank n—1 arein G. Thus, |G| > 1+[5].
In particular, we have |G| > 3,ifn = 3,4, and |G| > 4, if n = 5. If n > 6 then,
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by Lemma 10, there exist L%J — 2 additional pairwise different transformations with
rank n — 1 in G. This shows that

3 ifn=3
rank PAut(P,) > {n —1lifn >4,

as required. O

Next, we calculate the rank of the monoid IEnd(P,).
Define

b = 12---i—-1i+1i+4+2---n—1 n
PT\12-vi—=1 i i4+1---n—=-2n-1

fori =2,...,n—1,and let Z = o/ U {B; |i=2,~',|_%-|}-
Lemma1l One has {fi |i =2,...,n— 1} C (A).

Proof For i = 2,...,[5], we have B; € %.Leti = [5]+1,...,n — 1 then
ﬂ,’ = 'C,Bn—i+1a:,<~ O

Proposition5 Ler 8 € IEnd(P,)\PAut(P,). Then
B e (PAut(P)HU{B |i=2,...,n—1}).

Proof Let 8 € IEnd(P,)\PAut(P,). Then, it is easy to show that there exists a trans-
formation § € PAut(P,) withDomé =ImBandImé C {1, 2, ..., |Im B|+mg—1},
where myg is the number of the maximal intervals of Im 8.

Define g = B4. It is clear that Dom § = Dom S.

Further, let I be the set of all x € Dom  such that x4 + 1 € Imf and x + 1 ¢
{(x = DB, (x + 1)B). Clearly, I # ¢ since B ¢ PAut(P,). Welet I = {i1, ..., i} be
such that i1 < irB < --- < ixB.

Let X1, X2, ..., Xz be the partition of Dom f such that

X, = {)C € DOIIIE | ir—lB < XB = l.r,é}y

forr € {1,2,...,k+ 1}, where iof = 0 and i 418 = n.

Let B* be the transformation defined by x8* = xf 4+ r — 1, for all x € X, and
r=1,2,..., k4 1.Ttis clear that Dom 8* = Dom = Dom g and * € IEnd(P,).

First, we show * € PAut(P,). Letu € nbesuchthatu, u+1 € Im B8*. Then there
exista € X,, and b € X,, such thataf +r — 1 =uand b +ry — 1 = u + 1, for
some r1, 1 € {l,...,k+ 1}. In order to obtain a contradiction, assume that r; # r;.

Suppose thatr1 < rp.Then X,I,B < X,zﬂ and so aﬂ < bﬂ Thisimpliesri+1 < r
anda,B—}—l < bB, whenceb,B+r2 >a[3+1+r1+1—a,3+r1 —143=u+3=
bB4+r—14+2=>bB+ry+ 1. Thus bB > b + 1, which is a contradiction.

On the other hand, suppose that 7| > r;. Then Xrl,B > Xr2,6 and so af > bB. This
implies 71 > rp + 1 anda,B > b,B—I—l Thus, Wehaveaﬁ—i—r] > b,3+ l4+m+1=
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bB+r—1+3=u+1+3=aB+r +3, whence af > af + 3, which is a
contradiction.

Therefore, we have r; = rp. Thenu = af+ri — LLu+1 = b8 +r — 1
and so a,b € X,,. This implies b8 +r = bf+r —1+1 =u+1+1 =
a,3_+r1—1+2 _a,3+r1+1 i.e. bB _a,é+1 Thus af + 1 € Im B, since
be Domﬂ Assume af + 1 ¢ {(a — l),B (a + l),B} Thena € I and soa =i, and

bB < aﬂ since a, b € X,,. Hence, aB +1 = bB < ap, which is a contradiction.
Thus, b =aB + 1 € {(a — 1)B, (a+ 1)B} and so we obtain b € {a — 1,a + 1}.
This shows that 8* € PAut(P,).
Finally, we show that 8 = ﬂ*'Bi1/§+lﬂi2/§+l e IBikBH‘S_l’ from which follows that

B e (PAUt(P)UB |i=2,....,n—1}).

Since 67! = B8s~! = Bid|poms = Bid|mp = B, it suffices to show that § =
'B*ﬂilﬁﬂﬂizﬁﬂ o Bipr
We proceed by showing that

XIB*IBilBJr]:BizEJrl B
_[xB, ifxeX U---UX;
T \xB+r—1—s, ifxeX,, forsomere{s+1,...,k+1},

by inductionon 1 < s < k.
Lets = 1. Then

xﬁ*ﬁi.EJrl = f+r-— 1):31‘|E+1
(x,B_)IBi15+1 ZX,B_ ifx e Xl’ )
. ) since xf <i1f+1
xp+r—1—-1=xp+r—1-sifx € X, forsomer > 1,
sincexf > i18+ 1.

Assume that the above expression is true for some s < k. We will prove it for s + 1.

Letx € X U---UXsy1. If x ¢ X541 then xB* :811;3+1 “Bi 1 = xf3, by the
induction hypothesis and (x,B)ﬂl ifrl = = xB,since xB < iz 1B+ 1.

Ifx € X;41 thenxB* ,31”3“ B, f1 = = xB+s+1—1—s = xf3, by the induction

hypothesis and (xﬂ),B, fl = = xf,since xB < iz 1B+ 1.
Now, let x € X, forsomere{s+2 .,k + 1}. Then

B Bisjar - Bipr)Bi s = CB+r —=1=9)8; s =0B+r—1-5 -1
=xB+r—1—(s+1),

since x > is;. 1B + 1, which completes the proof. O
From Proposition 4, Lemma 11 and Proposition 5, we obtain immediately:

Corollary 3 One has IEnd(P,) = (A).
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Now, we will prove that Z is a generating set of IEnd(P,) of minimal size. We
start by presenting a series of five lemmas.
Let G’ be a generating set of IEnd(P,,).

Lemma 12 One has |G’ N (IEnd(P,)\PAut(P,))| > [41 — 1.

Proof let2 < j <n— 1. Then B; = y1---yx, forsome k > 1l and y1, ..., e G
Asrank8; = n — 1 thenranky; > n—1,foralli = 1,...,k, and there exists
i € {l,...,k} such that y; ¢ PAut(P,). Let i be the least r € {l, ..., k} such as
vr ¢ PAut(P,). Lety = yy---yi—1 € PAut(P,) (with y =idifi = 1). Thus, ; =
y¥i-- v implies y 7 '8; =y lyyi - vk = vi - vk Gsince y 'y = id |pom ;).

We have ranky = n — 1 orranky = n. If ranky = n — 1 then Imy~! =
Dom g8; = {1, ...,n}\{j}. Thus Dom y = {1, ..., n}\{j}, whence Im y = Dom B;
orImy = Dom B,_;11, and so Domy; = Imy = Dom 8; or Domy; = Imy =
Dom B,_ ;41 (since tanky; = n — 1). If ranky = ntheny =idory = 7. If
y = id then Dom y; = Dom ;. If y = 7 then Dom y; = Dom g, ;1. Note that
n—j+1=T151.

Therefore, we must have in G’ at least f%] = [5] — 1 distinct elements of
IEnd(P,)\PAut(P,). O

Lemma 13 For a € IEnd(P,) such that Doma € {{1,...,n — 1},{2,...,n}}, we
have a € PAut(Py).

Proof 1t is a routine matter to verify that
a € {ay, Tay, Q1T, TAIT, Oy, Ty, AT, T, T} S PAUt(F,),

as required. O

Lemma 14 [f« € IEnd(P,)\PAut(P,) has rankn — 1, then Ima € {{1,...,n — 1},
{2,...,n}}L

Proof Asrank o = n—1,weconcludethata € {B;, t8;, Bit, tBit |i =2,...,n—1}.
Leti =2,...,.n—1.SinceImpB; = {l,...,n — 1} and Domt = Imt = &, we
obtain

Im g;, Im(zB;), Im(B;t), Im(zB;t) € {{1,...,n —1},{2,...,n}},
whence Ima € {{1,...,n — 1}, {2, ..., n}}, as required. m|

Lemma 15 One has (G’ N PAut(P,)) = PAut(P,).

Proof First, notice that it is clear that T € G’.
On the other hand, let « be any transformation of PAut(P,) with ranke =n — 1.
Then, thereexist y, ..., yx € G'suchthata = y; - - -y (k > 1). Assume that there
existsi € {1, ..., k} such that y; ¢ PAut(P,). Leti be the leastindex r € {1, ..., k}
such that y,, ¢ PAut(P,) and let y = y;---yi—1 € PAut(P,) (with y = id if
i=1).Thena =yy; -y implies y; -y = ¥y 'yyi -+ vk = y "' € PAut(P,)
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(since y~ly = id IDom y;)- Hence, we have i < k. We have y;y1-- -y ¢ {id, 7}
(otherwise y; = )/*101()/1'+1 e J/k)*1 € PAut(P,), which is a contradiction). Hence,
rank(Yj11 -+ ) =n— L. Let A = yj41 - Y. ThenDom A =Imy; € {{1,...,n —
1}, {2, ..., n}}, by Lemma 14. Therefore, we obtain A € PAut(P,), by Lemma 13.
Thus, y ~'a = y; A implies that y; = y “'aA™! € PAut(P,), which is a contradiction.
Thus, y1, ..., Y € PAut(P,).

Therefore, in particular, we showed that & C (G’ N PAut(P,)), and therefore,
(G’ N PAut(P,)) = PAut(P,), by Proposition 4. O

Now, as an immediate consequence of Lemma 15 and Theorem 2, we have:

3 ifn=3
/
Lemma 16 One has |G’ N PAut(P,)| > {n Clifn>4

Finally, we conclude with the presentation of our second main result.

Theorem 3 The rank of IEnd(P3) is equal to 4 and, for n > 4, the rank of IEnd(Py)
is equal ton + [5] — 2.

Proof By Corollary 3, we have

341=4 ifn=3
rankIEnd(P”)S|‘@|={n—l+(ﬂq—1—n+(ﬂ1—2ifn>4
2 = 2 z

On the other hand, by Lemmas 12 and 16 , we have

3+1=4 ifn=3

rank IEnd(P,) > {n—l—i— M= 1=n+ 8] —2ifn >4

as required. O

Acknowledgements This work was produced, in part, during the visit of the first and third authors to CMA,
FCT NOVA, Lisbon, in July 2019. The first author was supported by CMA through a visiting researcher
fellowship.

References

1. Al-Kharousi, F., Kehinde, R., Umar, A.: On the semigroup of partial isometries of a finite chain.
Commun. Algebra 44, 639-647 (2016)

2. Aratjo, J., Bentz, W., Mitchell, J.D., Schneider, C.: The rank of the semigroup of transformations
stabilising a partition of a finite set. Math. Proc. Camb. Philos. Soc. 159, 339-353 (2015)

3. Arworn, S.: An algorithm for the numbers of endomorphisms on paths. Discrete Math. 309, 94-103
(2009)

4. Arworn, S., Knauer, U., Leeratanavalee, S.: Locally strong endomorphisms of paths. Discrete Math.
308, 2525-2532 (2008)

5. Cicald, S., Fernandes, V.H., Schneider, C.: Partial transformation monoids preserving a uniform par-
tition. Semigroup Forum 90, 532-544 (2015)

6. Dimitrova, 1., Fernandes, V.H., Koppitz, J., Quinteiro, T.M.: Ranks of monoids of endomorphisms of
a finite undirected path. Bull. Malays. Math. Sci. Soc. 43, 1623-1645 (2015)

@ Springer



104

|. Dimitrova et al.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
33.

34.

. Fan, S.: On end-regular bipartite graphs. In: Combinatorics and Graph Theory. Proceedings of the

Spring School and International Conference on Combinatorics, pp. 117-130. World Scientific, Singa-
pore (1993)

. Fan, S.: The regularity of the endomorphism monoid of a split graph. Acta Math. Sin. 40, 419-422

(1997)

. Fan, S.: Retractions of split graphs and End-orthodox split graphs. Discrete Math. 257, 161-164 (2002)
. Fernandes, V.H.: Presentations for some monoids of partial transformations on a finite chain: a survey.

In: Semigroups. Algorithms, Automata and Languages (Coimbra, 2001), pp. 363-378. World Scientific,
River Edge, NJ (2002)

. Fernandes, V.H., Honyam, P., Quinteiro, T.M., Singha, B.: On semigroups of endomorphisms of a

chain with restricted range. Semigroup Forum 89, 77-104 (2014)

. Fernandes, V.H., Honyam, P., Quinteiro, T.M., Singha, B.: On semigroups of orientation-preserving

transformations with restricted range. Commun. Algebra 44, 253-264 (2016)

Fernandes, V.H., Koppitz, J., Musunthia, T.: The rank of the semigroup of all order-preserving trans-
formations on a finite fence. Bull. Malays. Math. Sci. Soc. 42, 2191-2211 (2019)

Fernandes, V.H., Quinteiro, T.M.: On the ranks of certain monoids of transformations that preserve a
uniform partition. Commun. Algebra 42, 615-636 (2014)

Fernandes, V.H., Sanwong, J.: On the rank of semigroups of transformations on a finite set with
restricted range. Algebra Collog. 21, 497-510 (2014)

Hou, H., Gu, R.: Split graphs whose completely regular endomorphisms form a monoid. Ars Comb.
127, 79-88 (2016)

Hou, H., Gu, R., Shang, Y.: The join of split graphs whose regular endomorphisms form a monoid.
Commun. Algebra 42, 795-802 (2014)

Hou, H., Gu, R., Shang, Y.: The join of split graphs whose quasi-strong endomorphisms form a monoid.
Bull. Austral. Math. Soc. 91, 1-10 (2015)

Hou, H., Luo, Y., Cheng, Z.: The endomorphism monoid of P,,. Eur. J. Comb. 29, 1173—1185 (2008)
Hou, H., Luo, Y., Fan, S.: End-regular and end-orthodox joins of split graphs. Ars Comb. 105, 305-318
(2012)

Hou, H., Song, Y., Gu, R.: The join of split graphs whose completely regular endomorphisms form a
monoid. De Gruyter Open Math. 15, 833-839 (2017)

Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995)

Huisheng, P.: On the rank of the semigroup 7}, (X). Semigroup Forum 70, 107-117 (2005)

Knauer, U.: Algebraic Graph Theory: Morphisms, Monoids, and Matrices. De Gruyter, Berlin (2011)
Knauer, U., Wanichsombat, A.: Completely regular endomorphisms of split graphs. Ars Comb. 115,
357-366 (2014)

Li, W.: Split graphs with completely regular endomorphism monoids. J. Math. Res. Expos. 26, 253-263
(2006)

Li, W., Chen, J.: Endomorphism-regularity of split graphs. Eur. J. Comb. 22, 207-216 (2001)

Lu, D., Wu, T.: Endomorphism monoids of generalized split graphs. Ars Comb. 11, 357-373 (2013)
Marki, L.: Problems raised at the problem session of the colloquium on semigroups in Szeged, August
1987. Semigroup Forum 37, 367-373 (1988)

Michels, M.A., Knauer, U.: The congruence classes of paths and cycles. Discrete Math. 309, 5352-5359
(2009)

Pipattanajinda, N., Knauer, U., Gyurov, B., Panma, S.: The endomorphism monoids of (n — 3)-regular
graphs of order n. Algebra Discrete Math. 22-2, 284-300 (2016)

Wilkeit, E.: Graphs with a regular endomorphism monoid. Arch. Math. 66, 344-352 (1996)

Zhao, P.: On the ranks of certain semigroups of orientation preserving transformations. Commun.
Algebra 39, 4195-4205 (2011)

Zhao, P., Fernandes, V.H.: The ranks of ideals in various transformation monoids. Commun. Algebra
43, 674-692 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



Partial automorphisms and injective partial... 105

Authors and Affiliations

I. Dimitrova? - V. H. Fernandes3 - J. Koppitz' - T. M. Quinteiro*>

B J. Koppitz
koppitz@math.bas.bg

1. Dimitrova
ilinka_dimitrova@swu.bg

V. H. Fernandes
vhf@fct.unl.pt

T. M. Quinteiro
teresa.melo@isel.pt

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

2 Department of Mathematics, Faculty of Mathematics and Natural Science, South-West
University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria

3 cMA& Departamento de Matematica, Nova School of Science and Technology, Universidade
Nova de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal

4 Instituto Superior de Engenharia de Lisboa, 1950-062, Lisboa, Portugal

5

Present Address: CMA, Nova School of Science and Technology, Universidade Nova de Lisboa,
Monte da Caparica, 2829-516 Caparica, Portugal

@ Springer



	Partial automorphisms and injective partial endomorphisms of a finite undirected path
	Abstract
	Introduction and preliminaries
	1 Green's relations
	2 Cardinality
	3 Generators and rank
	Acknowledgements
	References




