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Abstract A zig-zag (or fence) order is a special partial order on a (finite) set. In this
paper, we consider the semigroup TFn of all order-preserving transformations on an
n-element zig-zag-ordered set. We determine the rank of TFn and provide a minimal
generating set for TFn . Moreover, a formula for the number of idempotents in TFn is
given.
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1 Introduction

Let n ∈ N and denote byTn themonoid (under composition) of all full transformations
on the set n = {1, . . . , n} of the first n natural numbers. Let � be any partial order on
n. Let α ∈ Tn . We say that α is an order-preserving transformation (with respect to
�) if x � y implies xα � yα, for all x, y ∈ n. Clearly, the subset of Tn of all order-
preserving transformations (with respect to a fixed partial order) forms a submonoid
of Tn .

A very important particular and natural case occurs when a linear order (for instance
the one induced by the usual order on the natural numbers) is considered. The monoid
On of all order-preserving transformations on n, endowed with a linear order, has been
extensively studied since the early 1960s. In fact, in 1962, Aı̌zenštat [1,2] showed that
all non-trivial congruences ofOn areRees congruences and gave amonoid presentation
for On , in terms of 2n − 2 idempotent generators, from which it can be deduced
that, for n > 1, On only has one non-trivial automorphism. In 1971, Howie [13]
calculated the cardinal and the number of idempotents of On and later (1992), jointly
with Gomes [11], determined its rank and idempotent rank. More recently, Fernandes
et al. [9] described the endomorphisms of the semigroup On by showing that there
are three types of endomorphism: automorphisms, constants, and a certain type of
endomorphism with two idempotents in the image. The monoid On also played a
main role in several other papers [3,7,8,10,12,16,17,19], where the central topic
concerns the problem of the decidability of the pseudovariety generated by the family
{On | n ∈ N}. This questionwas posed by J.-E. Pin in 1987 in the “Szeged International
Semigroup Colloquium” and, as far as we know, is still open.

A nonlinear order (in some sense) close to a linear order is the so-called zig-zag
order. The pair (n,�) is called a zig-zag poset or fence if

1 ≺ 2 � 3 ≺ · · · ≺ n − 1 � n, if n is odd, and
1 ≺ 2 � 3 ≺ · · · � n − 1 ≺ n, if n is even, or dually
1 � 2 ≺ 3 � · · · � n − 1 ≺ n, if n is odd, and
1 � 2 ≺ 3 � · · · ≺ n − 1 � n, if n is even.

The definition of the partial order� is self-explanatory. For instance, for n = 5 and
n = 6, we have the following fences (given by Hasse diagrams):

1

2

3

4

5 1

2

3

4

5

6 1

2

3

4

5 1

2

3

4

5

6

Observe that, every element in a fence is either minimal or maximal.
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Order-preserving transformations of (finite) fences were first investigated by Currie
and Visentin [5] and by Rutkowski [18]. In [5], by using generating functions, the
authors calculate the number of order-preserving transformations of a fence with an
even number of elements. On the other hand, an exact formula for the number of such
transformations, for any natural number n, was given in [18].

Recently, several properties of monoids of order-preserving transformations of a
fence were studied. In [4] the authors discussed the regular elements in these monoids.
So-called coregular elements of this monoids were determined in [15]. On the other
hand, in [6] Dimitrova and Koppitz investigated the monoid of all partial permutations
preserving a zig-zag order on a set with n elements, by studying Green’s relations and
generating sets of this monoid.

Without loss of generality, we will assume that (n,�) is an up-fence, i.e.,

1 ≺ 2 � 3 ≺ · · · .

Let x, y ∈ n. We say that x and y are comparable if x ≺ y or x = y or y ≺ x .
Otherwise, x and y are said incomparable. Clearly, x and y are comparable if and only
if x ∈ {y − 1, y, y + 1}.

Denote by TFn the submonoid of Tn of all order-preserving transformations of the
fence (n,�).

In this paper, we determine the rank and count the number of idempotents of TFn .
Recall that the rank of a (finite) semigroup S is defined by

rank S = min{|A| | A ⊆ generates},

i.e., the rank of S is the minimal size of a generating set of S. For general background
on semigroup theory and standard notation, we refer the reader to Howie’s book [14].

We begin, in the next section, by giving a characterization of the elements of TFn .
Clearly, the identity mapping idn on n is order-preserving. Also, all the n constant
mappings are order-preserving. Moreover, for an even n, idn is the unique permutation
of n belonging to TFn and, on the other hand, if n is odd, then TFn has exactly two
permutations, namely the identity mapping and the reflection

γn =
(
1 2 · · · n
n n − 1 · · · 1

)
.

The rest of Sect. 2 is dedicated to counting the idempotents of TFn .Notice that it is easy
to show that an element α ∈ Tn is idempotent if and only if Im α = {x ∈ n | xα = x},
i.e., the image of α coincides with the set of its fix points. In the third section of
this paper, we determine the rank of TFn . In particular, we provide a minimal size
generating set for TFn .

Notice that TF1 coincides with T1 and TF2 coincides with the monoid O2 of all
order-preserving transformations on a two-element chain. Hence, from now on, we
always consider n ≥ 3.
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2194 V. H. Fernandes et al.

2 Idempotents

The aim of this section is to provide a formula for the number of idempotents of TFn .
In order to accomplish this, it is useful to know the form of the elements of TFn . We
have the following characterization of a transformation in TFn .

Theorem 2.1 Let α ∈ Tn. Then α ∈ TFn if and only if

(i) |xα − (x + 1)α| ≤ 1, for all x ∈ {1, . . . , n − 1};
(ii) x and xα have the same parity or (x − 1)α = xα = (x + 1)α, for all x ∈

{2, . . . , n − 1}.
Proof First, suppose that α ∈ TFn . Let x ∈ {1, . . . , n − 1}. Then, x and x + 1
are comparable, which implies that xα and (x + 1)α are also comparable and so
|xα − (x + 1)α| ≤ 1. This shows (i). Now let x ∈ {2, . . . , n − 1}. Assume that x is
even. Then, x − 1 ≺ x � x + 1 and so (x − 1)α � xα 	 (x + 1)α. If (x − 1)α 
= xα
or xα 
= (x + 1)α, then (x − 1)α ≺ xα or xα � (x + 1)α, which implies in both
cases that xα is even. Similarly, if x is odd, we may deduce that xα is also odd or
(x − 1)α = xα = (x + 1)α. This shows (ii).

Conversely, suppose that (i) and (ii) are satisfied. Let x, y ∈ n be such that x ≺ y.
Then, x is odd and y is even. Moreover, y ∈ {x − 1, x + 1}. Admit that xα 
= yα.
If y = x − 1, then 2 ≤ y ≤ n − 1 and so |yα − xα| = |yα − (y + 1)α| = 1
and y and yα have the same parity. If y = x + 1, then 1 ≤ x ≤ n − 1 and so
|xα − yα| = |xα − (x + 1)α| = 1. Furthermore, in this last case, if x > 1, then x and
xα have the same parity; otherwise y = 2 < n and so y and yα have the same parity
(since (y − 1)α = xα 
= yα). Therefore, we have yα ∈ {xα − 1, xα + 1} and, on the
other hand, yα is even or xα is odd. Thus, in all cases, xα ≺ yα, as required. ��

As a consequence of Theorem 2.1, we have that the image of a transformation in
TFn is an interval of n (with the usual order).

Corollary 2.2 Let α ∈ TFn. Then Im α = {k, k+1, . . . , �}, for some 1 ≤ k < � ≤ n.

Proof Let k = min Im α and � = max Im α (with respect to the usual order of N).
Assume that there exists p ∈ {k, k + 1, . . . , �} such that p /∈ Im α. Let x = max{i ∈
n | iα < p}. If x < n, then (x+1)α > p and so |xα − (x + 1)α| > 1, a contradiction.
Then, y = max{i ∈ n | iα > p} < n and (y+1)α < p, whence |yα − (y + 1)α| > 1,
which again is a contradiction. Thus, Im α = {k, k + 1, . . . , �}, as required. ��

Next we will give a formula for the number of idempotents in TFn . Let m ∈ n and
0 ≤ p ≤ n − m. For r ∈ {0, . . . ,m − 1}, let

P(p, r) = {(p0, . . . , pt ) | t ∈ N ∪ {0}; p1, . . . , pt ∈ N; p0 = 0;

0 ≤
s∑

i=1

(−1)i+1 pi ≤ p, for 1 ≤ s ≤ t;
t∑

i=1

pi = r}

and

K (m, r) = {(k0, . . . , kr ) | k0 + r + 2
r∑

i=1

ki = m − 1, k0, . . . , kr ∈ N ∪ {0}}.
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Further, define

A(m, p) =
m−1∑
r=0

|P(p, r)| · |K (m, r)| .

Lemma 2.3 Let α ∈ TFn with Im α = {k, . . . , k + p}, for some k ∈ n and some
p ∈ {0, . . . , n − k}. Let a0 ∈ {k, k + p} and r ∈ {0, . . . , k − 1}. Then, there exists a
bijection between the set P(p, r) and the set of all sequences a0, a1, . . . , ar ∈ Im α

such that |ai−1 − ai | = 1, for all i ∈ {1, . . . , r}, and there exists a partition A0 >

A1 > · · · > Ar of {1, . . . , k}, if a0 = k, or a partition A0 < A1 < · · · < Ar of
{k + p, . . . , n}, if a0 = k + p, verifying Aiα = {ai }, for i ∈ {0, . . . , r}.
Proof Fix a sequence a0, a1, . . . , ar ∈ Im α verifying the conditions of the lemma.
Notice that, if r = 0 then P(p, 0) = {(0)} and a0 is the only possible sequence. Then,
we may admit that r > 0. Let j = 1, if a0 = k, or j = 2, if a0 = k + p. Put p0 = 0
(by technical reasons).

Then, there exists p1 ∈ {1, . . . , r} such that (−1)1+1 p1 ∈ {0, . . . , p}, ai = a0 +
(−1) j+1i , for 1 ≤ i ≤ p1, and either r = p1 or ap1+1 = a0 + (−1) j+1 p1 + (−1) j+2.

If r > p1, then there exists p2 ∈ {1, . . . , r − p1} such that (−1)1+1 p1 +
(−1)2+1 p2 ∈ {0, . . . , p}, ap1+i = a0 + (−1) j+1 p1 + (−1) j+2i , for 1 ≤ i ≤ p2, and
either r = p1 + p2 or ap1+p2+1 = a0 + (−1) j+1 p1 + (−1) j+2 p2 + (−1) j+3.

Continuing in this way, we obtain t, p1 . . . , pt ∈ N such that

t∑
i=1

pi = r,
s∑

i=1

(−1)i+1 pi ∈ {0, . . . , p}, for 1 ≤ s ≤ t,

and

a
i+

q−1∑
�=1

p�

= a0 +
q−1∑
�=1

(−1) j+� p� + (−1) j+q i, for 1 ≤ i ≤ pq and 1 ≤ q ≤ t.

Hence, the sequence a0, a1, . . . , ar is uniquely determined by the t-uple (p0, . . . , pt ).
��

Let us denote by Em the set of all idempotents of TFm , for all m ≥ 1. It is clear

that E1 = TF1 = T1 =
{(1

1

)}
and E2 = TF2 = T2\

{(12
21

)} =
{(12

12

)
,
(12
11

)
,
(12
22

)}
.

Theorem 2.4 We have

|En| =
n∑

k=1

n−k∑
p=0

A(k, p) · A(n + 1 − (k + p), p).

Proof Let α ∈ En . Then, by Corollary 2.2, there exist k ∈ n and p ∈ {0, . . . , n − k}
such that
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2196 V. H. Fernandes et al.

Im α = {k, k + 1, . . . , k + p}.

Since α is idempotent, we have (k + i)α = k + i , for i ∈ {0, . . . , p}. Let

A− = {1, . . . , k} and A+ = {k + p, . . . , n}.

First, we consider the set A−. By Theorem 2.1, we have |xα − (x + 1)α| ≤ 1 for
all x ∈ {1, . . . , k − 1}. Hence, there exist r ∈ {0, . . . , k − 1}, a sequence a0, . . . , ar ∈
Im α and a partition A0 > A1 > · · · > Ar of A− such that |ai−1 − ai | = 1, for
1 ≤ i < r , and Aiα = {ai }, for 0 ≤ i ≤ r . Moreover, xα and x have the same
parity or (x − 1)α = xα = (x + 1)α, for all x ∈ A−\{1, n}. It follows that there exist
k0, k1, . . . , kr ∈ N∪{0} such that |Ai | = 1+2ki , for 0 ≤ i ≤ r−1, and |Ar | = kr +1.
Then kr +r+2

∑r−1
i=0 ki = k−1 and so the sequence A0 > A1 > · · · > Ar is uniquely

determined by an element of K (k, r).
If r = 0, then A− = A0 and P(p, 0) = {(0)}. On the other hand, admit that r > 0.

Then, by Lemma 2.3 (with a0 = k), we have that the sequence a0, . . . , ar is uniquely
determined by an element of the set P(p, r). Hence, α|A− is uniquely determined by
an element of the set

B−(k, p) =
k−1⋃
r=0

K (k, r) × P(p, r) × {r}.

Dually, there exist s ∈ {0, . . . , n − (k + p)}, a sequence a0, . . . , as ∈ Im α and
a partition A0 < A1 < · · · < As of A+ such that |ai−1 − ai | = 1, for 1 ≤ i < s,
and Aiα = {ai }, for 0 ≤ i ≤ s. Also, there exist �0, �1, . . . , �s ∈ N ∪ {0} such that

|Ai | = 1 + 2�i , for 0 ≤ i ≤ s − 1, and |As | = �s + 1. Then, �r + r + 2
s−1∑
i=0

�i =
n − (k + p) = (n + 1) − (k + p) − 1, whence the sequence A0 < A1 < · · · < As is
uniquely determined by an element of K (n + 1 − (k + p), s).

If s = 0, then A+ = A0 and P(p, 0) = {(0)}. So, admit that s > 0.Then, byLemma
2.3 (with a0 = k + p), we have that the sequence a0, . . . , as is uniquely determined
by an element of the set P(p, s). Consequently, α|A+ is uniquely determined by an
element of the set

B+(k, p) =
n−(k+p)⋃

s=0

K (n + 1 − (k + p), s) × P(p, s) × {s}.

Notice that it is easy to verify that
∣∣B−(k, p)

∣∣ = A(k, p) and
∣∣B+(k, p)

∣∣ = A(n+
1−(k+ p), p). Moreover, α|Im α is the identity mapping on Im α and Im α is uniquely
determined by an element k of the set n and an element p of the set {0, . . . , n − k}.
Thus, the transformation α ∈ En is uniquely determined by an element of the set

n⋃
k=1

n−k⋃
p=0

B−(k, p) × B+(k, p) × {(k, p)}.
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Conversely, as the construction of this set clearly justifies that each of its elements
determines uniquely an idempotent in TFn , we have

|En| =
∣∣∣∣∣

n⋃
k=1

n−k⋃
p=0

B−(k, p) × B+(k, p) × {(k, p)}
∣∣∣∣∣

=
n∑

k=1

n−k∑
p=0

∣∣B−(k, p) × B+(k, p) × {(k, p)}∣∣

=
n∑

k=1

n−k∑
p=0

∣∣B−(k, p)
∣∣ · ∣∣B+(k, p)}∣∣ · |{(k, p)}|

=
n∑

k=1

n−k∑
p=0

A(k, p) · A(n + 1 − (k + p), p),

as required. ��
The table below gives us an idea of the size of themonoids TFm and of their number

of idempotents.

m |Em | |TFm |
1 1 1
2 3 3
3 8 11
4 19 31
5 44 99
6 98 275
7 218 811
8 474 2199

m |Em | |TFm |
9 1039 6187
10 2243 16,459
11 4901 44,931
12 10,591 117,831
13 23,190 315,067
14 50,335 817,323
15 110,651 2,152,915
16 241,457 5,537,839

These numbers were calculated by the formula of Theorem 2.4 and by the formulas
given by Rutkowski [18].

3 The Rank of TFn

This section is devoted to determine the rank of TFn . In the process, we give an explicit
minimal size set of generators of TFn . The cases n odd and n even will be treated
separately.

The following general observation will be frequently used without reference.

Lemma 3.1 Let α, α′ ∈ TFn be such that Ker α = Ker α′ and rank α > 1. Then, xα
and xα′ have the same parity, for all x ∈ n.

Proof Let x ∈ n. Since rank α > 1, there exists y ∈ xαα−1 such that y+1 ∈ n\yαα−1

or y − 1 ∈ n\yαα−1. Therefore we may consider four cases. For instance, if y + 1 ∈
n\yαα−1 and y ≺ y + 1 then xα = yα ≺ (y + 1)α and xα′ = yα′ ≺ (y + 1)α′,
whence xα and xα′ have the same parity. The other three cases are similar. ��
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2198 V. H. Fernandes et al.

Next, we define a series of transformations of TFn . Let (for any n)

α1,2 =
(
1, 2 3 4 · · · n
2 3 4 · · · n

)
,

αk,k+2 =
(
1 · · · k − 1 k, k + 2 k + 1, k + 3 k + 4 · · · n
1 · · · k − 1 k k + 1 k + 2 · · · n − 2

)
, for 2 ≤ k ≤ n − 4,

αn−2,n =
(
1 · · · n − 3 n − 2, n n − 1
1 · · · n − 3 n − 2 n − 1

)
, for n ≥ 4,

αk,k+1,k+2 =
(
1 · · · k − 1 k, k + 1, k + 2 k + 3 · · · n
1 · · · k − 1 k k + 1 · · · n − 2

)
, for 1 ≤ k ≤ n − 2,

α1,2k+1 =
(
k + 1 k, k + 2 · · · 2, 2k 1, 2k + 1 2k + 2 · · · n
k + 1 k + 2 · · · 2k 2k + 1 2k + 2 · · · n

)
, for 1 ≤ k ≤

⌊
n − 1

2

⌋
, and

βk,m =
(
1 · · · k − 1 k, k + 2m k + 1, k + 2m − 1, k + 2m + 1 · · ·
1 · · · k − 1 k k + 1 · · ·

· · · k + (m − 1), k + 2m − (m − 1), k + 2m + (m − 1) k + m, k + 3m k + 3m + 1 · · · n
· · · k + (m − 1) k + m k + m + 1 · · · n − 2m

)
,

for 2 ≤ k,m ≤ n such that k + 3m ≤ n − 1.

Moreover, for an odd n, recall that

γn =
(
1 2 · · · n − 1 n
n n − 1 · · · 2 1

)
,

and, for an even n, let

αe
1,2 =

(
1, 2 3 4 · · · n
n n − 1 n − 2 · · · 2

)
,

αn−1,n =
(

1 2 · · · n − 2 n − 1, n
n − 1 n − 2 · · · 2 1

)
,

α2k,n =
(
1 · · · 2k − 1 n

2 + k n
2 + k − 1, n

2 + k + 1 n
2 + k − 2, n

2 + k + 2 · · · 2k, n
1 · · · 2k − 1 n

2 + k n
2 + k − 1 n

2 + k − 2 · · · 2k

)
,

for 1 ≤ k ≤ n − 4

2
, and

αe
1,2k+1 =

(
k + 1 k, k + 2 · · · 2, 2k 1, 2k + 1 2k + 2 · · · n
k − 1 k · · · 2k − 2 2k − 1 2k · · · n − 2

)
, for 2 ≤ k ≤ n − 2

2
.

Now, for an odd n, define

Gn = {γn, α1,2} ∪ {αk,k+2 | 2 ≤ k ≤ n−3
2 } ∪ {αk,k+1,k+2 | 1 ≤ k ≤ n−1

2 } ∪

{α1,2k+1 | 1 ≤ k ≤ n−1
2 } ∪ {βk,m | 2 ≤ k,m ≤ n−1

2 and 2k + 3m ≤ n + 1}

and, for an even n, define

Gn = {idn, αe
1,2, α1,3, αn−1,n, αn−2,n} ∪ {αk,k+2 | 2 ≤ k ≤ n − 4}

∪{αk,k+1,k+2 | 2 ≤ k ≤ n − 3} ∪

123
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{αe
1,2k+1 | 2 ≤ k ≤ n

2
− 1} ∪ {α2k,n | 1 ≤ k ≤ n − 4

2
}

∪{βk,m | 2 ≤ k,m ≤ n and k + 3m ≤ n − 1}.

From now on, our main aim is to prove that Gn is a generating set for TFn of
minimal size.

The following lemma shows that all the transformations above defined belong to
the subsemigroup 〈Gn〉 of TFn generated by Gn . Frequently, we will use it without
reference.

Lemma 3.2 We have:

(i) {αk,k+1,k+2 | 1 ≤ k ≤ n − 2} ⊆ 〈Gn〉;
(ii) {α1,2k+1 | 2 ≤ k ≤ ⌊ n−1

2

⌋} ⊆ 〈Gn〉;
(iii) {αk,k+2 | 2 ≤ k ≤ n − 4} ⊆ 〈Gn〉;
(iv) {βk,m | 2 ≤ k,m ≤ n and k + 3m ≤ n − 1} ⊆ 〈Gn〉;
(v) α2k,n =

(
1 · · · 2k 2k + 1, n · · · n−1

2 + k, n+3
2 + k n+1

2 + k
1 · · · 2k 2k + 1 · · · n−1

2 + k n+1
2 + k

)
∈ 〈Gn〉, for n

odd and 1 ≤ k ≤ n−5
2 ;

(vi) αn−2,n ∈ 〈Gn〉.
Proof (i) For n odd and n−1

2 < k ≤ n−2,we haveαk,k+1,k+2 = γnαn−k−1,n−k,n−k+1
γnα1,2,3. On the other hand, for n even, we have α1,2,3 = αe

1,2αn−1,n and
αn−2,n−1,n = αn−1,nα

e
1,2α1,2,3.

(ii) For n even and 2 ≤ k ≤ n−2
2 , we have α1,2k+1 = αe

1,2k+1α
e
1,2α1,2,3α

e
1,2.

(iii) For n odd and n−1
2 ≤ k ≤ n − 4, we have αk,k+2 = γnαn−k−2.n−kγnα1,2,3.

(iv) Let n be an odd number and let k,m ∈ n be such that k + 3m ≤ n − 1 and
2k + 3m > n + 1. Then 2(n − (k + 3m) + 1) ≤ n + 1 and we have βk,m =
γnβn−(k+3m)+1,mγn(α1,2,3)

m .
(v) For 1 ≤ k ≤ n−5

2 , we have α2k,n = γnα1,2(k+1)+1γn .
(vi) Finally, we have αn−2,n = γnα1,3γn , whenever n is odd.

��
In order to prove that the set Gn generates TFn , our first step is to show that, for

any transformation in TFn , there exists a transformation in 〈Gn〉with the same kernel.
For any set A ⊆ n, define

Rel(A) = {x ∈ n\A | x and a are comparable, for some a ∈ A}.

Lemma 3.3 For any α ∈ TFn, there exists α′ ∈ 〈Gn〉 such that Ker α′ = Ker α.

Proof Let α ∈ TFn . We make the proof by induction on the rank of α.
If rank α = n, then Ker α = Ker idn and we have idn ∈ Gn , for n even, and

idn = γ 2
n ∈ 〈Gn〉, for n odd.

Assume that rank α = n − 1. Then, there exists i ∈ Im α such that
∣∣iα−1

∣∣ = 2 and∣∣ jα−1
∣∣ = 1, for all j ∈ Im α\{i}. This implies

∣∣Rel(iα−1)
∣∣ ≤ 2, i.e., iα−1 = {1, 2}

or iα−1 = {1, 3} or iα−1 = {n − 2, n} or iα−1 = {n − 1, n}. By noticing that, for an
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odd n, we have αn−1,n = γnα1,2 and αn−2,n = γnα1,3γn , it follows that there exists
α′ ∈ 〈Gn〉 such that Ker α′ = Ker α.

Admit now that rank α = n−2. Then, for some i ∈ Im α, we have 2 ≤ ∣∣iα−1
∣∣ ≤ 3.

If
∣∣iα−1

∣∣ = 3, then there exists k ∈ {1, . . . , n−2} such that iα−1 = {k, k+1, k+2}
and

∣∣ jα−1
∣∣ = 1, for all j ∈ Im α\{i}, i.e., Ker α = Ker αk,k+1,k+2, with αk,k+1,k+2 ∈

〈Gn〉.
Now, suppose that

∣∣iα−1
∣∣ = 2. Then,

∣∣ jα−1
∣∣ = 2, for some j ∈ Im α\{i}.

Admit that
∣∣Rel(iα−1)

∣∣ ≤ 2. Then, iα−1 = {1, 2} or iα−1 = {1, 3} or iα−1 = {n−
2, n} or iα−1 = {n − 1, n}. Since rank α = n − 2, we conclude that

∣∣Rel( jα−1)
∣∣ ≤ 2

or iα−1 ⊆ Rel( jα−1). So, we have jα−1 = {n−2, n} or jα−1 = {n−1, n}, if iα−1 =
{1, 2} or iα−1 = {1, 3}, or jα−1 = {2, 4}, if iα−1 = {1, 3}, or jα−1 = {n−3, n−1},
if iα−1 = {n − 2, n}. Hence, we get Ker α′ = Ker α, with α′ = α1,2αn−1,n (and
α′ = (α1,2γn)

2, whenever n is odd) or α′ = α1,2αn−2,n or α′ = α1,3αn−1,n (and
α′ = α1,3γnα1,2γn , whenever n is odd) or α′ = α1,3αn−2,n or α′ = α1,3α1,5 or
α′ = αn−2,nαn−4,n . Observe αn−4,n = γnα1,5γn ∈ 〈Gn〉, whenever n is odd (since
α1,5 ∈ 〈Gn〉 by Lemma 3.2), and α1,2 = αe

1,2α
e
1,2, whenever n is even. Since all the

other transformations used belong to 〈Gn〉, we have α′ ∈ 〈Gn〉. Dually, in the case∣∣Rel( jα−1)
∣∣ ≤ 2, we can show that there exists α′ ∈ 〈Gn〉, with Ker α′ = Ker α.

Notice that the case
∣∣Rel(iα−1)

∣∣ ≥ 4 or
∣∣Rel( jα−1)

∣∣ ≥ 4 is not possible since
rank α = n−2. So, it remains the case

∣∣Rel(iα−1)
∣∣ = ∣∣Rel( jα−1)

∣∣ = 3. This provides
iα−1 = {1, k}, for some k ∈ 2N + 3, or iα−1 = {n − k, n}, for some k ∈ 2N + 2,
or iα−1 = {k, k + 2} for some k ∈ {2, . . . , n − 3}. Then, there are two elements in
Rel( jα−1) with the same image, which is i since rank α = n − 2. This shows that
iα−1 ⊆ Rel( jα−1). By the same argumentation, we obtain jα−1 ⊆ Rel(iα−1).

Suppose that iα−1 = {1, k}, for some k ∈ 2N+3.Assume that k ≥ 7.Then, jα−1 ⊆
Rel(iα−1) = {2, k − 1, k + 1} and iα−1 ⊆ Rel( jα−1) implies

∣∣Rel( jα−1)
∣∣ = 4, a

contradiction. Hence, we have iα−1 = {1, 5}. Then, once again iα−1 ⊆ Rel( jα−1)

and
∣∣Rel( jα−1)

∣∣ = 3 implies jα−1 = {2, 4}. Thus, Ker α = Ker α1,5 and α1,5 ∈
〈Gn〉. Dually, we can show the existence of α′ ∈ 〈Gn〉 with Ker α′ = Ker α, if
iα−1 = {n − k, n}, for some k ∈ 2N + 2. Similarly, we obtain α′ ∈ 〈Gn〉 with
Ker α′ = Ker α, if jα−1 = {1, k}, for some k ∈ 2N + 3, or jα−1 = {n − k, n}, for
some k ∈ 2N + 2.

Finally, we consider the case iα−1 = {k, k + 2} and jα−1 = {�, � + 2}, for some
k, � ∈ {2, . . . , n−3}. Notice that {k, k+2} = iα−1 ⊆ Rel( jα−1) = {�−1, �+1, �+3}
and so k = �− 1 or k = �+ 1. Therefore, we have Ker α = Ker αm,m+2, with m = k,
if k = �−1, orm = �, if k = �+1. Hence, Ker α = Ker αm,m+2 and αm,m+2 ∈ 〈Gn〉.

Next, we suppose that p = rank α < n − 2 and assume that for all β ∈ TFn with
rank β > p, there exists β ′ ∈ 〈Gn〉 such that Ker β ′ = Ker β. Further, there exist
a unique m ∈ n, a sequence a1, . . . , am ∈ Im α and a partition A1 < · · · < Am of
n with |ai − ai+1| = 1, for 1 ≤ i < m, and Aiα = {ai }, for 1 ≤ i ≤ m. Notice
that the elements in the sequence a1, . . . , am have not to be pairwise distinct and
Im α = {a1, . . . , am}. Put χ(α) = m. Observe that this construction can be applied to
any element of TFn and so we have a well-defined mapping χ : TFn → n.
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Let

a0 =
{
0 if a1 is odd
1 if a1 is even

and define

β =
(

A1 A2 · · · Am

1 + a0 2 + a0 · · · m + a0

)
.

It is clear that β ∈ TFn .
First, consider the case m = p (i.e., Ker α = Ker β). Take i ∈ {1, . . . , p} such that

|Ai | ≥ 3 and Ai = {k, k+1, . . . , k+s}, with k ∈ {1, . . . , n−2} and s ∈ {2, . . . , n−k}.
Define

α1 =
(

A1 · · · Ai−1 k k + 1 k + 2 · · · k + s Ai+1 · · · Ap

1 + a0 · · · i − 1 + a0 i + a0 i + 1 + a0 i + 2 + a0 i + 3 + a0 · · · p + 2 + a0

)
,

for i > 1, and

α1 =
(
1 · · · k − 2 + s k − 1 + s k + s A2 · · · Ap

1 + a0 2 + a0 3 + a0 4 + a0 · · · p + 2 + a0

)
,

if i = 1. Since p < n−2, we have p+2+a0 ∈ n. By using Theorem 2.1, we can verify
that α1 ∈ TFn . Since rank α1 > p, there is α∗

1 ∈ 〈Gn〉with Ker α∗
1 = Ker α1. Suppose

that Im α∗
1 = {a∗

1 , . . . , a
∗
p+2} such thata∗

j (α
∗
1)

−1 = ( j+a0)α
−1
1 for j ∈ {1, . . . , p+2}.

Let

α2 =
{

αa∗
i ,a∗

i+1,a
∗
i+2

if a∗
i < a∗

i+1
αa∗

i+2,a
∗
i+1,a

∗
i

if a∗
i+1 < a∗

i .

It is a routine matter to verify that Ker α1α2 = Ker β and so there exists α′ ∈ 〈Gn〉
such that Ker α′ = Ker β = Ker α.

Now, admit thatm > p. Then, there exist i ∈ {1, . . . ,m−1} and s ∈ {i, . . . ,m− i}
such that the elements of {ai , . . . , ai+s} are pairwise distinct, ai+2s = ai and one of
the following five conditions is satisfied:

(a) i + a0 = 1;
(b) i + a0 ≥ 2, i + 2s = m and a0 + i + 2s = n;
(c) i + a0 ≥ 2, i + 2s = m, a0 + i + 2s < n and n − m < i ;
(d) i + a0 ≥ 2, i + 2s = m, a0 + i + 2s < n and n − m ≥ i ;
(e) ai+3s = ai+s and i + 3s < n.

Wewill define in each of these five cases transformations ρ1 andω1. Let ρ1 = α1,2s+1,
in the case (a); let ρ1 = α

2
⌊
n−2s
2

⌋
,n
, in the case (b); let ρ1 = α

2
⌊
2(i+s)−n

2

⌋
,n
, in the case

(c), where 2(i + s) − n = i + m − n > i − i = 0; let ρ∗
1 be defined by

xρ∗
1 =

{
2(i + s + a0) − x if 1 ≤ x ≤ i + s + a0
x otherwise,
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in the case (d); and let ρ1 = βi,s , in the case (e). It is easy to verify that ρ1 ∈ 〈Gn〉 in
the cases (a), (b), (c) and (e). In the case (d), we observe that q = rank ρ∗

1 = n − (i +
s+a0)+1 > p. Then, there exists ρ1 ∈ 〈Gn〉 such that Ker ρ1 = Ker ρ∗

1 . Suppose that
Im ρ1 = {d1, . . . , dq} such that j (ρ∗

1 )
−1 = d j−(s+i+a0)+1ρ

−1
1 for i + s+a0 ≤ j ≤ n.

Let ω1 be defined by

xω1 =
⎧⎨
⎩
a1+s if 1 ≤ x ≤ 1 + s
ax if 1 + s < x < m
am otherwise,

in the case (a); let ω1 be defined by

xω1 =
⎧⎨
⎩
ax−a0 if 1 + a0 ≤ x < i + s + a0
ai+s if i + s + a0 ≤ x ≤ n
a1 otherwise,

in the cases (b) and (c). Since � and a�−a0 have the same parity for all 1 + a0 ≤ � ≤
m + a0, we conclude that ω1 ∈ TFn . Let ω1 be defined by

xω1 =
⎧⎨
⎩
ai+s if 1 ≤ x ≤ d1 < d2 or d2 < d1 ≤ x ≤ n
ai+s−�+1 if x = d� and 1 ≤ � ≤ i + s
a1 otherwise

in the case (d). Let l ∈ {1, . . . , i + s}. Then, there exists j ∈ {i + s + a0, . . . , n}
such that � = j − (i + a + a0) − 1. From j (ρ∗

1 )
−1 = d�ρ

−1
1 , d�ω1 = ai+s−�+1 and

the fact that j and a j+a0 have the same parity, we conclude that d� and d�ω1 have
the same parity. This shows that ω1 ∈ T Fn . Moreover, rank ω1 = rank α = p and
χ(α) = χ(ω1) + s. Consider now the case (e) and define ω1 by

xω1 =

⎧⎪⎪⎨
⎪⎪⎩

ax−a0 if 1 + a0 ≤ x ≤ i + s + a0
a2s+x−a0 if i + s + a0 + 1 ≤ x ≤ m − 2s + a0
am ifm − 2s + a0 < x ≤ n
a1 if x = 1.

It is easy to verify that rank α = rank ω1 and χ(α) = χ(ω1) + 2s. Moreover, it is a
routine matter to show that ω1 ∈ TFn and α = βρ1ω1.

Next, we can focus on ω1 and end up getting a sequence ρ1, . . . , ρt ∈ 〈Gn〉 (for a
suitable t ∈ N) and an element ω ∈ TFn such that rank α = rank ω, χ(ω) = p and
α = βρ1 · · · ρtω.

By the case m = p, there exists ω′ ∈ 〈Gn〉 such that Ker ω′ = Ker ω, whence
Ker βρ1 · · · ρtω′ = Ker α.

On the other hand, since m > p, there exists μ ∈ 〈Gn〉 such that Kerμ =
{A1, . . . , Am}, say

μ =
(
A1 A2 · · · Am

c1 c2 · · · cm

)
,

by our inductive assumption. Clearly, by Theorem 2.1, either c1 > · · · > cm or
c1 < · · · < cm . If c1 > · · · > cm then we take ε1 = αe

1,2, if n is even, and we
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take ε1 = γn , if n is odd. Since ε1 ∈ Gn , whence με1 ∈ 〈Gn〉, we can assume that
c1 < · · · < cm . If 1 + a0 < c1, then there exists s ∈ n such that 1 + a0 = c1 − 2s. It
follows that β = μ(α1,2,3)

s and so β ∈ 〈Gn〉.
Altogether, we have shown thatβρ1 · · · ρtw′ ∈ 〈Gn〉 andKer βρ1 · · · ρtw′ = Ker α,

as required. ��
Now, we are able to prove that Gn is a generating set for TFn .

Proposition 3.4 We have 〈Gn〉 = TFn.

Proof Let α ∈ TFn .
Admit that rank α = n. If n is even, then α = idn ∈ Gn . If n is odd, then α = idn

or α = γn ∈ Gn , with γnγn = idn . Thus, α ∈ 〈Gn〉.
Suppose now that 2 ≤ m = rank α < n. By Lemma 3.3, there exists α′ ∈ 〈Gn〉

such that Ker α = Ker α′. Take

Im α = {a1, . . . , am} and Im α′ = {a′
1, . . . , a

′
m},

with a1 < a2 < · · · < am and a′
1 < a′

2 < · · · < a′
m , and define Ai = aiα−1, for

1 ≤ i ≤ m. Observe that Ai = a′
iα

′−1
, for 1 ≤ i ≤ m, or Ai = a′

m−i+1α
′−1

, for
1 ≤ i ≤ m.

Let m = n − 1. Then, n /∈ Im α or 1 /∈ Im α as well as n /∈ Im α′ or 1 /∈ Im α′.
If Ai = a′

iα
′−1, for 1 ≤ i ≤ n − 1, then a1 = a′

1, since a1 and a′
1 have the same

parity, by Lemma 3.1. Hence, ai = a′
i , for 1 ≤ i ≤ n − 1, and so α = α′.

Next consider the case Ai = a′
m−i+1α

′−1, for 1 ≤ i ≤ n − 1. Let

k =
{
0 if a1 = 1
1 if a1 = 2.

Then, ai = i + k and

a′
m−i+1 =

{
n − k − i + 1 if n is odd
n + k − i if n is even,

for i = 1, . . . , n − 1. If n is odd, then we have

ai (α
′γn)−1=(i + k)γ −1

n α′−1=(n − (i + k) + 1)α′−1=a′
m−i+1α

′−1= Ai = aiα
−1,

for 1 ≤ i ≤ n − 1. Since Ker α = Ker α′ = Ker α′γn , this shows that α = α′γn ∈
〈Gn〉. If n is even then put ρ0 = αn−1,n ∈ 〈Gn〉 and ρ1 = αe

1,2 ∈ 〈Gn〉. Observe that
ρk restricted to Im α′ is an injection. Hence, we have Ker α = Ker α′ = Ker α′ρk and

ai (α
′ρk)−1 = (i + k)ρ−1

k α′−1 = (n − i + k)α′−1 = Ai = aiα
−1,

for 1 ≤ i ≤ n − 1. Thus α = α′ρk ∈ 〈Gn〉.
Admit now that 2 ≤ m ≤ n − 2 and suppose that β ∈ 〈Gn〉, for all β ∈ TFn such

that rank β > m.
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Suppose that Ai = a′
m−i+1α

′−1, for 1 ≤ i ≤ m. Take

ρ =
⎧⎨
⎩

γn if n is odd
αe
1,2 if n is even and 1 /∈ Im α

αn−1,n if n is even and 1 ∈ Im α.

Then, we have Ker α = Ker α′ = Ker α′ρ and

Ai = a′
m−i+1α

′−1 = (a′
m−i+1ρ)ρ−1α′−1 = (a′

m−i+1ρ)(α′ρ)−1,

for 1 ≤ i ≤ m, with α′ρ ∈ 〈Gn〉 and a′
m−i+1ρ < a′

m− j+1ρ, for 1 ≤ i < j ≤ m. Thus,

we can assume that Ai = a′
iα

′−1, for 1 ≤ i ≤ m.
If a1 = a′

1 = 1, then we immediately obtain that ai = a′
i , for 1 ≤ i ≤ m, i.e.,

α = α′ ∈ 〈Gn〉.
Consider a1 = 1, a′

1 > 1 and a′
m 
= n. This implies a′

m, am < n and so we put

β0 =
(
1 · · · a′

1 a′
2 · · · a′

m a′
m + 1 · · · n

a1 a2 · · · am am + 1

)
.

It is easy to show that β0 ∈ TFn , with rank β0 = rank α + 1, whence β0 ∈ 〈Gn〉. For
1 ≤ i ≤ m, we have

ai (α
′β0)

−1 = aiβ
−1
0 α′−1 = a′

iα
′−1 = Ai = aiα

−1,

as ai is the unique element in Im α′ ∩ aiβ
−1
0 . Since the restriction of β0 to Im α′ is

injective, we also have Ker α = Ker α′ = Ker α′β0. Thus, α = α′β0 ∈ 〈Gn〉.
Next, consider a1 = 1, a′

1 > 1 and a′
m = n. Then, a′

1 ≥ 3, since a1 and a′
1 have the

same parity. Further, we have ai = i , for1 ≤ i ≤ m. So, we obtain

β1 =
(
1, 3 2, 4 5 · · · n
1 2 3 · · · n − 2

)
=

{
α1,3α

e
1,5 ∈ 〈Gn〉 if n is even

α1,3α1,5α1,2,3 ∈ 〈Gn〉 if n is odd.

Moreover, let

β2 =
(
1 2 · · · a′

1 − 1 a′
1 · · · a′

m−1 a′
m · · · n

1 2 3 · · · m + 1 m + 2

)
.

It is easy to verify that β2 ∈ TFn , with rank β2 = rank α+2 > m, whence β2 ∈ 〈Gn〉.
Hence,

a1(α
′β2β1)

−1 = a1β
−1
1 β−1

2 α′−1 = 1β−1
1 β−1

2 α′−1 = {1, 3}β−1
2 α′−1

= {1, a′
1}α′−1 = a′

1α
′−1 = A1 = a1α

−1,

a2(α
′β2β1)

−1 = 2β−1
1 β−1

2 α′−1 = {2, 4}β−1
2 α′−1 = {2, . . . , a′

1 − 1, a′
2}α′−1

= a′
2α

′−1 = A2 = a2α
−1
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and, for 3 ≤ i ≤ m,

ai (α
′β2β1)

−1 = iβ−1
1 β−1

2 α′−1 = (i + 2)β−1
2 α′−1 = a′

iα
′−1 = Ai = aiα

−1.

Notice that β2 restricted to Im α′ and β1 restricted to Im α′β2 = {3, . . . ,m + 2} are
injective. It follows that Ker α = Ker α′β2β1 and so α = α′β2β1 ∈ 〈Gn〉.

Now, consider a1 > 1. Suppose that a′
1 = 1. Then, a′

m < n − 1, since rank α′ ≤
n − 2. Take

β3 =
(
1 2 · · · n − 3 n − 2, n − 1, n
3 4 · · · n − 1 n

)
.

If n is even, then β3 = αn−1,nα
e
1,2, whence β3 ∈ 〈Gn〉. On the other hand, if n is odd,

then β3 = γnα1,2,3γn ∈ 〈Gn〉. Thus, we have α′β3 ∈ 〈Gn〉. Clearly, 1 /∈ Im β3 and so
1 /∈ Im α′β3. Since n, n − 1 /∈ Im α′, we have that β3 restricted to Im α′ is injective.
Hence, Ker α′ = Ker α′β3. Therefore, we can assume that a′

1 > 1. Take

β4 =
(
1 · · · a′

1 − 1 a′
1 · · · a′

m−1 a′
m · · · n

a1 − 1 a1 · · · am−1 am

)
.

It is easy to verify that β4 ∈ TFn , with rank β4 = rank α + 1 > m, whence β4 ∈
〈Gn〉. Since β4 restricted to Im α′ is injective, we obtain Ker α = Ker α′ = Ker α′β4
and, for i ∈ {1, . . . ,m}, we have

ai (α
′β4)

−1 = aiβ
−1
4 α′−1 = a′

iα
′−1 = Ai = aiα

−1.

Thus, α = α′β4 ∈ 〈Gn〉.
Finally, let m = 1, i.e., there exists a ∈ n such that iα = a, for all i ∈ n. Without

loss of generality, suppose that a > 1. Clearly, β5 =
(
1 2 · · · n
1 2

)
∈ 〈Gn〉 and either

β6 =
(
1, 2 3 · · · n
a a − 1

)
∈ 〈Gn〉 (if a is even) or β6 =

(
1, 2 3 · · · n
a − 1 a

)
∈ 〈Gn〉 (if a

is odd). Then β5β6 is the constant mapping with image {a}, i.e., α = β5β6 ∈ 〈Gn〉, as
required. ��

It remains to show that Gn is a generating set for TFn of minimal size. With this
goal in mind, in the next two lemmas, we determine a lower bound for the minimal
size of a generating set for TFn (for n odd as well as for n even) and find it coincides
with the cardinality of Gn (which gives us an upper bound).

First, we consider an odd n.

Lemma 3.5 Let n beanoddnumber. Then, rank(TFn)≥ 3
2 (n−1)+

n−5
2∑

k=2

(⌊ n+1−2k
3

⌋−1
)

= |Gn|.
Proof Let A be a generating set of TFn .

Since {α ∈ TFn | rank α = n} = {γn, idn}, we have γn ∈ A. Let A(0) = {γn}.
Then,

∣∣A(0)
∣∣ = 1.

123



2206 V. H. Fernandes et al.

Let α ∈ TFn be such that rank α ≤ n − 1. Then, for some natural number p,
there exist α1, . . . , αp ∈ A\{idn}, with α1 
= γn , such that α = α1 · · · αp or α =
γnα1 · · · αp. Take

α∗
1 =

{
α1 ifα = α1 · · · αp

γnα1 ifα = γnα1 · · · αp.

Clearly, Ker α∗
1 ⊆ Ker α and rank α∗

1 ≤ n − 1.
If α = α1,2 then Ker α∗

1 = Ker α1,2 or Ker α∗
1 = Ker γnα1,2, i.e., there exists

ρ1,2 ∈ AwithKer ρ1,2 = Ker α1,2 or Ker ρ1,2 = Ker γnα1,2 (namely ρ1,2 = α1). Take
A(1) = A(0) ∪ {ρ1,2}. Then,

∣∣A(1)
∣∣ = ∣∣A(0)

∣∣ + ∣∣{ρ1,2}∣∣ = 2. Analogously, there exists
ρ1,3 ∈ A with Ker ρ1,3 = Ker α1,3 or Ker ρ1,3 = Ker γnα1,3. Clearly, ρ1,3 /∈ A(1) and
we take A(2) = A(1) ∪ {ρ1,3}. Then

∣∣A(2)
∣∣ = ∣∣A(1)

∣∣ + ∣∣{ρ1,3}∣∣ = 2 + 1 = 3.
Let α = αk,k+2, for some k ∈ {2, . . . , n−3

2 }. Then (k, k+2) ∈ Ker α∗
1 or (k+1, k+

3) ∈ Ker α∗
1 . From 2 ≤ k ≤ n−3

2 , it follows that k+3 < n. Hence, |Rel({k, k + 2})| =
|Rel({k + 1, k + 3})| = 3 and there exist a, b ∈ n\{k, k+2} or a, b ∈ n\{k+1, k+3}
such that (a, b) ∈ Ker α∗

1 . But Ker α
∗
1 ⊆ Ker αk,k+2 implies that (a, b) ∈ Ker αk,k+2.

Since rank αk,k+2 = n−2, we haveKer α∗
1 = Ker αk,k+2. Hence, there exists ρk,k+2 ∈

A with Ker ρk,k+2 = Ker αk,k+2 or Ker ρk,k+2 = Ker γnαk,k+2. Moreover, we have
ρk,k+2 /∈ A(2). On the other hand, assume there exist 2 ≤ k < � ≤ n−3

2 such that
Ker αk,k+2 = Ker γnα�,�+2. Then k = n − (� + 3) + 1 and so n = k + � + 3 − 1 <
n−3
2 + n−3

2 + 2 = n − 3 + 2 = n − 1, a contradiction. Hence ρk,k+2 
= ρ�,�+2, for
2 ≤ k < � ≤ n−3

2 . Take

B(3) = {ρk,k+2 | k ∈ {2, . . . , n−3
2 }}

and A(3) = A(2) ∪ B(3). Since A(2) ∩ B(3) = ∅, we obtain ∣∣A(3)
∣∣ = ∣∣A(2)

∣∣ + ∣∣B(3)
∣∣ =

3 + n−5
2 = n+1

2 .
Let α = αk,k+1,k+2, for some k ∈ {2, . . . , n−1

2 }. Then, k + 2 < n and, by
Theorem 2.1, there exists no β ∈ TFn with rank β = n − 1 such that Ker β ⊆
Ker αk,k+1,k+2. Hence, Ker α∗

1 = Ker αk,k+1,k+2 and so there exists ρk,k+1,k+2 ∈ A
withKer ρk,k+1,k+2 = Ker αk,k+1,k+2 or Ker ρk,k+1,k+2 = Ker γnαk,k+1,k+2. Clearly,
ρk,k+1,k+2 /∈ A(3).

Let α = α1,2,3. If rank α∗
1 = n − 2 then Ker α∗

1 = Ker α1,2,3 or Ker α∗
1 =

Ker γnα1,2,3. Now, admit that rank α∗
1 = n−1. Then, there exists j ∈ {2, . . . , p} such

that rank α∗
1α2 . . . α j−1 = n − 1 and rank α∗

1α2 . . . α j = n − 2. Observe that either
Im α∗

1α2 . . . α j−1 = {1, . . . , n − 1}, with {1, 2, 3}α∗
1α2 . . . α j−1 = {n − 2, n − 1},

or Im α∗
1α2 . . . α j−1 = {2, . . . , n}, with {1, 2, 3}α∗

1α2 . . . α j−1 = {2, 3}. Suppose
that Im α∗

1α2 . . . α j−1 = {2, . . . , n}. Then {1, 2, 3}α∗
1α2 . . . α j−1 = {2, 3} and

we conclude that (2, 3) ∈ Ker α j . By Theorem 2.1, this implies that (1, 2) ∈
Ker α j or (3, 4) ∈ Ker α j . The case (3, 4) ∈ Ker α j is not possible since oth-
erwise rank α∗

1α2 . . . α j ≤ n − 3, a contradiction. Thus (1, 2) ∈ Ker α j and so
Ker α j = Ker α1,2,3. If Im α∗

1α2 . . . α j−1 = {1, . . . , n − 1} then, similarly, we obtain
Ker α j = Ker αn−2,n−1,n = Ker γnα1,2,3. Therefore, there exists ρ1,2,3 ∈ A with
Ker ρ1,2,3 = Ker α1,2,3 or Ker ρ1,2,3 = Ker γnα1,2,3. Clearly, ρ1,2,3 /∈ A(3). Assume
there exist 1 ≤ k < � ≤ n−1

2 such that Ker αk,k+1,k+2 = Ker γnα�,�+1,�+2. Then
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k = n − (� + 2) + 1 and so n = � + k + 1 < n−1
2 + n−1

2 + 1 = n − 1 + 1 = n, a
contradiction. Hence ρk,k+1,k+2 
= ρ�,�+1,�+2, for 1 ≤ k < � ≤ n−1

2 . Take

B(4) = {ρk,k+1,k+2 | k ∈ {1, . . . , n−1
2 }}

and A(4) = A(3) ∪ B(4). Since, A(3) ∩ B(4) = ∅, we obtain ∣∣A(4)
∣∣ = ∣∣A(3)

∣∣+ ∣∣B(4)
∣∣ =

n+1
2 + n−1

2 = n.
Let α = α1,2k+1, for some k ∈ {2, . . . , n−1

2 }. Then

Ker α1,2k+1 = {(1 + i, 2k + 1 − i) | 0 ≤ i ≤ k − 1} ∪ {(x, x) | x ∈ n}.

Given i ∈ {1, . . . , k − 2} such that (1 + i, 2k + 1 − i) ∈ Ker α∗
1 , we have

Rel({1 + i, 2k + 1 − i}) = {1 + i − 1, 2k + 1 − i − 1, 1 + i + 1, 2k + 1 − i + 1}.

Since Ker α∗
1 ⊆ Ker α1,2k+1, we have (1 + (i + 1), 2k + 1 − (i + 1)), (1 + (i −

1), 2k + 1 − (i − 1)) ∈ Ker α∗
1 . If (k, k + 2) ∈ Ker α∗

1 then Rel({k, k + 2}) =
{k − 1, k + 1, k + 3} and so we have (k − 1, k + 3) ∈ Ker α∗

1 . Now, assume that (1+
i, 2k+1− i) /∈ Ker α∗

1 , for all i ∈ {1, . . . , k−1}. Then, Ker α∗
1 ⊆ Ker α1,2k+1 implies

(1, 2k + 1) ∈ Ker α∗
1 and rank α∗

1 = n − 1, which is not possible by Theorem 2.1.
Therefore, Ker α∗

1 = Ker α1,2k+1 and so there exists ρ1,2k+1 ∈ A with Ker ρ1,2k+1 =
Ker α1,2k+1 or Ker ρ1,2k+1 = Ker γnα1,2k+1. Since (1, 2k + 1) ∈ Ker ρ1,2k+1 or
(n, n − 2k) ∈ Ker ρ1,2k+1, we have ρ1,2k+1 /∈ A(4). For k, l ∈ {2, . . . , n−1

2 }, we have
(1, 2k+1) ∈ Ker α1,2k+1 and (1, 2k+1) /∈ Ker γnα1,2�+1. Hence, ρ1,2k+1 
= ρ1,2�+1,
for 2 ≤ k < � ≤ n−1

2 . Take

B(5) = {ρ1,2k+1 | k ∈ {2, . . . , n−1
2 }}

and A(5) = A(4) ∪ B(5). Since A(4) ∩ B(5) = ∅, we obtain ∣∣A(5)
∣∣ = ∣∣A(4)

∣∣ + ∣∣B(5)
∣∣ =

n + n−3
2 = 3n−3

2 = 3
2 (n − 1).

Finally, let α = βk,m , for some k,m ∈ {2, . . . , n−1
2 } such that 2k + 3m ≤ n + 1.

It is easy to verify that {k + i, k + 2m − i, k + 2m + i}, for 0 ≤ i ≤ m, are all
the non-singleton Ker βk,m-classes. If i ∈ {1, . . . ,m − 1} is such that (k + i)α∗

1 =
(k + 2m − i)α∗

1 = (k + 2m + i)α∗
1 then

Rel({k + i, k + 2m − i, k + 2m + i}) = {k + i − 1, k + 2m − i − 1,

k + 2m + i − 1, k + i + 1, k + 2m − i + 1, k + 2m + i + 1}

implies

(k + (i − 1))α∗
1 = (k + 2m − (i − 1))α∗

1 = (k + 2m + (i − 1))α∗
1

and

(k + (i + 1))α∗
1 = (k + 2m − (i + 1))α∗

1 = (k + 2m + (i + 1))α∗
1 ,
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since Ker α∗
1 ⊆ Ker βk,m . If (k, k + 2m) ∈ Ker α∗

1 then, similarly, we have

(k + 1)α∗
1 = (k + 2m − 1)α∗

1 = (k + 2m + 1)α∗
1 .

Moreover, we obtain

(k + m − 1)α∗
1 = (k + 2m − (m − 1))α∗

1 = (k + 2m + (m − 1))α∗
1 ,

whenever (k+m, k+3m) ∈ Ker α∗
1 . Therefore Ker α

∗
1 = Ker βk,m and so there exists

δk,m ∈ A with Ker δk,m = Ker βk,m or Ker δk,m = Ker γnβk,m . Moreover, it is easy to
verify that δk,m /∈ A(5). Take

B(6) = {δk,m | k,m ∈ {2, . . . , n−1
2 } and 2k + 3m ≤ n + 1}.

Assume there exist k,m, p, q ∈ {2, . . . , n−1
2 } such that βk,m = γnβp,q , with 2k +

3m, 2p+3q ≤ n+1 and k 
= p orm 
= q. Then, k = n− (p+3q)+1. If k < p then
n = k+ p+3q−1 < 2p+3q−1 ≤ n+1−1 = n, a contradiction. Admit that p < k.
From βk,m = γnβp,q , it follows that βp,q = γnβk,m and so p = n−(k+3m)+1. This
provides again n < n, as in the previous case. Suppose now that p = k. Then, q 
= m
andwe have p = n−(p+3m)+1 
= n−(p+3q)+1 = k, i.e., p 
= k, a contradiction.
This allows us to conclude that δk,m 
= δp,q , whenever k,m, p, q ∈ {2, . . . , n−1

2 }, with

2k+3m, 2p+3q ≤ n+1 and k 
= p orm 
= q. Thus,
∣∣B(6)

∣∣ =
n−5
2∑

k=2

(⌊ n+1−2k
3

⌋ − 1
)
.

Take A(6) = A(5) ∪ B(6). Since A(5) ∩ B(6) = ∅, we obtain

∣∣∣A(6)
∣∣∣ =

∣∣∣A(5)
∣∣∣ +

∣∣∣B(6)
∣∣∣ = 3

2
(n − 1) +

n−5
2∑

k=2

(⌊
n + 1 − 2k

3

⌋
− 1

)
= |Gn|.

Since A(6) ⊆ A, we have |A| ≥ ∣∣A(6)
∣∣ = 3

2 (n − 1) +
n−5
2∑

k=2

(⌊ n+1−2k
3

⌋ − 1
)
, which

allows us to deduce that rank(TFn) ≥ 3
2 (n − 1) +

n−5
2∑

k=2

(⌊ n+1−2k
3

⌋ − 1
) = |Gn|, as

required. ��
Next, we consider the even case.

Lemma 3.6 Let n be an even number. Then, rank(TFn) ≥ 3n−8+
n−7∑
k=2

(⌊ n−1−k
3

⌋ − 1
)

= |Gn|.
Proof Let A be a generating set of TFn .

Since {α ∈ TFn | rank α = n} = {idn}, we have idn ∈ A. Let A(0) = {idn}. Then,∣∣A(0)
∣∣ = 1.
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Let α ∈ TFn be such that rank α ≤ n − 1. Then, there exist α1, . . . , αp ∈ A\{idn}
such that α = α1 . . . αp, for some natural number p. Clearly, Ker α1 ⊆ Ker α and
rank α1 ≤ n − 1.

If α ∈ B(1) = {α1,2, α1,3, αn−1,n, αn−2,n}, then it is easy to verify that α = α1.
Hence, B(1) ⊆ A andwedefine A(1) = A(0)∪B(1).Wehave

∣∣A(1)
∣∣ = ∣∣A(0)

∣∣+∣∣B(1)
∣∣ =

1 + 4 = 5.
Letα = αk,k+2, for some 2 ≤ k ≤ n−4. Then (k, k+2) ∈ Ker α1 or (k+1, k+3) ∈

Ker α1. Since 2 ≤ k < n − 3, we have Rel({k, k + 2}) = {k − 1, k + 1, k + 3} ⊆ n or
Rel({k+1, k+3}) = {k, k+2, k+4} ⊆ n, respectively. Since Ker α1 ⊆ Ker αk,k+2,

weobtainKer α1 = Ker αk,k+2. Hence, there existsρk,k+2 ∈ A such thatKer ρk,k+2 =
Ker αk,k+2. Thus, being

B(2) = {ρk,k+2 | k ∈ {2, . . . , n − 4}},
we have

∣∣B(2)
∣∣ = n − 5. Take A(2) = A(1) ∪ B(2). Since rank ρk,k+2 = n − 2, it

follows that ρk,k+2 /∈ A(1). Then
∣∣A(2)

∣∣ = ∣∣A(1)
∣∣ + ∣∣B(2)

∣∣ = 5 + n − 5 = n.
Let α = αe

k,k+1,k+2, for some k ∈ {2, . . . , n − 3}. Then, there is no β ∈ TFn such
that rank β = n − 1 and Ker β ⊆ Ker αe

k,k+1,k+2. Thus, there exists ρk,k+1,k+2 ∈ A

with Ker ρk,k+1,k+2 = Ker αe
k,k+1,k+2. Clearly, ρk,k+1,k+2 /∈ A(2). Take

B(3) = {ρk,k+1,k+2 | k ∈ {2, . . . , n − 3}}.
Then,

∣∣B(3)
∣∣ = n − 4. Furthermore, being A(3) = A(2) ∪ B(3), we have

∣∣A(3)
∣∣ =∣∣A(2)

∣∣ + ∣∣B(3)
∣∣ = n + n − 4 = 2n − 4.

Let α = α1,2k+1, for some k ∈ {2, . . . , n
2 − 1}. It is clear that

Ker α1,2k+1 = {(1 + i, 2k + 1 − i) | 0 ≤ i ≤ k − 1} ∪ {(x, x) | x ∈ n}.
If i ∈ {1, . . . , k − 2} is such that (1 + i, 2k + 1 − i) ∈ Ker α1, then

Rel({1 + i, 2k + 1 − i}) = {1 + i − 1, 2k + 1 − i − 1, 1 + i + 1, 2k + 1 − i + 1}
and, as Ker α1 ⊆ Ker α1,2k+1, it follows (1+ (i + 1), 2k + 1− (i + 1)) ∈ Ker α1 and
(1+ (i −1), 2k+1− (i −1)) ∈ Ker α1. If (k, k+2) ∈ Ker α1 then Rel({k, k+2}) =
{k−1, k+1, k+3}, whence (k−1, k+3) ∈ Ker α1 (since Ker α1 ⊆ Ker α1,2k+1). If
(1, 2k+1) ∈ Ker α1, then Rel({1, 2k+1}) = {2, 2k, 2k+2} ⊆ n (note that k ≤ n

2 −1
implies 2k + 2 ≤ n) and, since Ker α1 ⊆ Ker α1,2k+1, we have (2, 2k) ∈ Ker α1.
Therefore, Ker α1 = Ker α1,2k+1 and there exists ρ1,2k+1 ∈ A with Ker ρ1,2k+1 =
Ker α1,2k+1. Clearly, ρ1,2k+1 /∈ A(3).

Let α = α2m,n , for somem ∈ {1, . . . , n−4
2 }. Analogously, we can show there exists

ρ2m,n ∈ AwithKer ρ2m,n = Ker α2m,n .Moreover, it is easy to verify thatρ2m,n /∈ A(3)

and ρ2m,n 
= ρ1,2k+1, since (2m, n) ∈ Ker ρ2m,n and (2m, n) /∈ Ker ρ1,2k+1, for
k ∈ {2, . . . , n

2 − 1}.
Take

B(4) = {ρ1,2k+1 | k ∈ {2, . . . , n
2 − 1}} ∪ {ρ2m,n | m ∈ {1, . . . , n−4

2 }}.
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Then,
∣∣B(4)

∣∣ = n−4
2 + n−4

2 = n − 4. Furthermore, define A(4) = A(3) ∪ B(4). Since
A(3) ∩ B(4) = ∅, it follows that ∣∣A(4)

∣∣ = ∣∣A(3)
∣∣ + ∣∣B(4)

∣∣ = 2n − 4+ n − 4 = 3n − 8.
Let α = βk,m , for some k,m ∈ {2, . . . , n} such that k + 3m ≤ n − 1. Similarly to

the proof of Lemma 3.5, we can prove the existence of an element δk,m ∈ A such that
Ker δk,m = Ker βk,m . Clearly, we also have δk,m /∈ A(4). Take

B(5) = {δk,m | k,m ∈ {2, . . . , n} and k + 3m ≤ n − 1}.

Then,
∣∣B(5)

∣∣ =
n−7∑
k=2

(⌊ n−1−k
3

⌋ − 1
)
. Moreover, being A(5) = A(4) ∪ B(5), since A(4) ∩

B(5) = ∅, we obtain
∣∣∣A(5)

∣∣∣ =
∣∣∣A(4)

∣∣∣ +
∣∣∣B(5)

∣∣∣ = 3n − 8 +
n−7∑
k=2

(⌊
n − 1 − k

3

⌋
− 1

)
= |Gn|.

Since A(5) ⊆ A, we have |A| ≥ ∣∣A(5)
∣∣ = 3n − 8+

n−7∑
k=2

(⌊ n−1−k
3

⌋ − 1
)
, which allows

us to conclude that rank(TFn) ≥ 3n − 8+
n−7∑
k=2

(⌊ n−1−k
3

⌋ − 1
) = |Gn|, as required. ��

As an immediate consequence of Proposition 3.4 and Lemmas 3.5 and 3.6, we can
state our main result.

Theorem 3.7 We have

rank(TFn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
2 (n − 1) +

n−5
2∑

k=2

(⌊ n+1−2k
3

⌋ − 1
)

if n is odd

3n − 8 +
n−7∑
k=2

(⌊ n−1−k
3

⌋ − 1
)

if n is even.
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