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Abstract: This paper deals with the monoid PFN of all partial transformations on N pre-

serving a zig-zag order on N. We determine the relative rank of PFN modulo a set containing

all idempotents and all surjections in PFN. Moreover, we show that all transformations in

PFN with finite rank can be generated by the idempotents with finite rank and the full trans-

formation γ0 with infinite rank, where γ0 maps each natural number n to n+ 2.
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1. Introduction

An order-preserving (or isotone) mapping (or transformation) is the most nat-
ural morphism in the class of all partially ordered sets. It plays a role of a fun-
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damental notion in some theories (e.g., the theory of fixed points). Hence, the
interest it causes seems to be not very strange. The set of all order-preserving
full (partial, respectively) transformations forms a monoid under the usual com-
position of mappings. One of the very natural questions arising in relation to
order-preserving transformations is: What are the minimal generating sets and
what is the rank (i.e. what is the minimal size of a generating set)? The rank of
the monoid of all order-preserving full transformations on an n-element chain
is n and the rank of the monoid of all order-preserving partial transformations
on an n-element chain is 2n− 1 [4].

In natural way, the interest focuses on sets which are ”next” to chains with
respect to a simplicity of their structure. Such posets are fences. Fences were
first studied by J. D. Currie, T. I. Visentin, and A. Rutkowski. The exact
numbers for such order-preserving full transformations on an n-element fence,
where n is even, have been calculated (with the help of generating functions)
in [1] and in [9], the author presented the exact formulas for even as well as for
odd n. A minimal generating set as well as the rank of the monoid of all order-
preserving transformations on an n-element fence was given in [3]. Moreover,
Dimitrova and Koppitz have investigated the monoid of all order-preserving
partial injections on an n-element fence. They determined the rank, whenever
n is even [2]. Note that the monoid of all order-preserving (full) transformations
on a fence is not regular. In [10], regular elements of this monoid are determined,
whenever the fence is finite.

Fences on the countable infinite set N of the natural numbers were consid-
ered in [7]. The authors studied regular subsemigroups of the monoid of all
order-preserving partial transformations on a fence on the set N. In particular,
they presented uncountable many maximal regular subsemigroups.

In [5], the authors studied rank properties of order-preserving transforma-
tions on infinite partially ordered sets. It is clear that the rank of a semigroup
S is not of interest in the case where S is infinite. For any semigroup S with an
order k > ℵ0, all one can say is that the rank of S is k. Even the order of the
monoid PFN of all order-preserving partial transformations on the fence on N

is 2ℵ0 . So its rank is also 2ℵ0 . There is, however, another notation, that yields
some interesting results. For a semigroup S and a subset A of S, the relative
rank of S modulo A is the minimal size of a subset B of S such that A ∪ B
generates S. The notion of relative rank was introduced by Ruškuc [8]. In [6],
Howie, Ruškuc and Higgins considered the relative ranks of the monoid of full
transformations on an infinite set modulo some distinguished subsets.

In the present paper, we determine the relative rank of PFN modulo a set
containing all idempotents, all surjective transformations, all transformations
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with defect {1}, and a particular set of transformations with both infinite rank
and infinite defect.

2. Preliminaries

Signs < and ≤ denote the natural orders in the set of integers. For a finite set
A ⊆ N by maxA (by minA, respectively), we mean the maximal (the minimal,
respectively) element in A with respect to <. We will write A < B (for subsets
A and B of N), whenever a < b for all a ∈ A and all b ∈ B. Signs ≺ and �
correspond to the order in a (countable infinite) fence, i.e. a partially ordered
set with a Hasse-diagram isomorphic to that presented in the figure below.

Elements of fences are always labeled as in that figure (i.e. ”from left to
right”). The definition of the partial order � is self-explanatory. As the
matter of fact, if no misunderstanding occurs, we consider the set N of all
natural numbers as underlying set of the countable infinite fence. Under these
conditions, we observe that any natural number n > 1 is comparable with
exactly two elements in N, namely with n − 1 and n + 1, that means either
n− 1 ≺ n ≻ n+ 1 or n− 1 ≻ n ≺ n+ 1. But 1 is only comparable with 2. We
will write A ‖ B (for subsets A and B of N) if no element in A is comparable
with any element in B.

Let us remember that a (partial) transformation α : N → N is order-
preserving if it satisfies x ≺ y ⇒ xα � yα for each x and y in the domain
of α. As already mentioned, the set PFN of all these order-preserving partial
transformations on N forms a monoid with the identical mapping idN on N as
identity. We denote by dom α, im α, and d(α) := N \ im α the domain of α,
the image (or range) of α, and the defect of α, respectively. The kernel of α
is the equivalence relation kerα := {(x, y) : x, y ∈ dom α, xα = yα}. For any
set A, we denote by |A| the size (or cardinality) of A. In particular, we put
rank α := |im α| and D(α) := |d(α)|, where rank α is said to be the rank of α.
For a set A ⊆ PFN, we mean by 〈A〉 the subsemigroup of PFN generated by A.
Using these notions,

rank (PFN : A) := min{|B| : 〈A ∪B〉 = PFN}
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is the relative rank of PFN modulo A.

A transformation α ∈ PFN is called idempotent if αα = α and let us
denote by E the family of all idempotents in PFN. It is well known that any
transformation is idempotent if and only if its restriction to its image is the
identity (on its image). By Sur∗(PFN), we denote the set

Sur∗(PFN) := {α ∈ PFN : N \ {1} ⊆ im α}.

Thus Sur∗(PFN) contains all surjective partial transformations in PFN as well
as all partial transformations in PFN with defect {1}.

Recall, a subset Σ of N is said to be convex if a, b ∈ Σ and a < c < b implie
c ∈ Σ. For a set ∆ ⊆ N, let f∗(∆) be the set of all convex subsets of N \ ∆
and let f(∆) be the set of all maximal elements in f∗(∆) with respect to the
set inclusion. Then we put:

Definition 1. Let

1. f3(∆) := {Σ ∈ f(∆) : |Σ| ≥ 3};

2. F := {α ∈ PFN : D(α) = rank α = |{|Σ| : Σ ∈ f(im α)}| = ℵ0};

3. F< := {α ∈ F : |f3(dom α)| < ℵ0 and {1, 2} ∩ im α 6= ∅}.

The set F< is a particular set of transformations with infinite rank as well
as with infinite defect. From now on, whenever the capital letter A is used, it
denotes the set

A := E ∪ Sur∗(PFN) ∪ F<.

It is easy to verify that

γ0 :=

(

1 2 3 · · ·
3 4 5 · · ·

)

(i.e. xγ0 := x+ 2 for all x ∈ N) belongs to PFN.

We will determine the relative rank of PFN modulo A, in the next section.

3. Relative Rank of PFN

First, we will show that all transformations in PFN with finite rank can be
generated by the idempotents with finite rank and one full transformation with
infinite rank, namely γ0.
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We observe that γ0 is injective and that both γ0 and γ−1
0 belong to PFN.

This provides (γ−1
0 )k ∈ PFN (for any k ∈ N), where (γ−1

0 )k = (γk0 )
−1. Let

Ef := {α ∈ E : rank α ∈ N}

be the set of all idempotents in PFN with finite rank.

Lemma 2. 〈Ef , γ0〉 = {α ∈ PFN : rank α ∈ N} ∪ {γk0 : k ∈ N}.

Proof. Let α ∈ PFN with rank α = l ∈ N, say im α = {a1 < a2 < · · · <
al} ⊆ N. Let m := al. We define a partial transformation γ by

xγ :=

{

x(γm0 )−1α if x ∈ (dom α)γm0
x if x ∈ im α.

Since im α < (dom α)γm0 , the mapping γ is well defined. We show that γ ∈
PFN. For this let x, y ∈ dom γ = im α ∪ (dom α)γm0 with x ≺ y. Since
min[(dom α)γm0 ] ≥ 2m + 1 = 2al + 1 = 2(max im α) + 1, we obtain that
either x, y ∈ im α or x, y ∈ (dom α)γm0 . If x, y ∈ im α, then xγ = x ≺
y = yγ. If x, y ∈ (dom α)γm0 , then x(γm0 )−1α ≺ y(γm0 )−1α since α, (γm0 )−1 ∈
PFN, i.e. xγ ≺ yγ. Altogether, we have shown that γ ∈ PFN. Clearly, γ
is idempotent and has finite rank. Therefore, γ ∈ Ef . We show now that
α = γm0 γ. For this let x ∈ dom α. Then xγm0 γ = xγm0 (γm0 )−1α = xα.
Since dom γ = im α ∪ (dom α)γm0 , we have dom γm0 γ = (dom γ)(γm0 )−1 =
(im α ∪ (dom α)γm0 )(γm0 )−1 = (dom α)γm0 (γm0 )−1 = dom α. This shows that
α = γm0 γ ∈ 〈Ef , γ0〉. Clearly, {γk0 : k ∈ N} = 〈γ0〉 ⊆ 〈Ef , γ0〉. This shows that
{α ∈ PFN : rank α ∈ N} ∪ {γk0 : k ∈ N} ⊆ 〈Ef , γ0〉. The converse inclusion
follows form the fact that the product of two order-preserving transformations
is an order-preserving transformation with finite rank, whenever one of the both
transformations has a finite rank.

Corollary 3. The relative rank of the semigroup {α ∈ PFN : rank α ∈
N} ∪ {γk0 : k ∈ N} modulo Ef is 1.

The only surjective transformation generated by γ0 and elements of E is
the identity idN. In fact, take a surjective α ∈ PFN \ {idN}. Then there are
α1, α2, . . . , αn ∈ {γ0} ∪ (E \ {idN}) such that α = α1α2 · · ·αn. This implies
im αn = N, i.e. αn ∈ E. But the only idempotent surjective transformation is
idN, a contradiction.

Now, we will show that all transformations in PFN with finite defect as well
as all α ∈ F with |f3(dom α)| = ℵ0 can be generated by the full transformation
γ0, by elements of the set E of all idempotents, and by elements of the set

Sur(PFN) := {α ∈ PFN : im α = N}.
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For this let
Df := {α ∈ PFN : D(f) is finite}

and
Fℵ0

:= {α ∈ F : |f3(dom α)| = ℵ0}.

Lemma 4. Fℵ0
∪Df ⊆ 〈Sur(PFN), E, γ0〉.

Proof. First, let α ∈ Df . Then there is n ∈ N with max(d(α)) = n. Let

B : = {x ∈ im α : x < n} and

B : = {x ∈ N : x > n}.

It is easy to see that im α = B ∪B. We define a partial transformation γ by

xγ :=

{

x(γn0 )
−1α if x ∈ Bα−1γn0

x if x ∈ B ∪Bα−1γn0 .

Clearly, dom γ = B ∪ (dom α)γn0 . Since B < Bα−1γn0 < Bα−1γn0 , the par-
tial transformation γ is well defined. Let x ∈ Bα−1γn0 . Then x(γn0 )

−1 ∈
Bα−1γn0 (γ

n
0 )

−1 = Bα−1 and x(γn0 )
−1α ∈ Bα−1α = B. Hence, xγ = x(γn0 )

−1α ∈
B. This shows that im α = B ∪Bα−1γn0 , i.e. α is idempotent.
Now we show that γ ∈ PFN. For this let x, y ∈ dom γ = B ∪ (dom α)γn0
with x ≺ y. Since 1γn0 = 2n + 1, we calculate that either x, y ∈ B or
x, y ∈ (dom α)γn0 = Bα−1γn0 ∪ Bα−1γn0 . Since B < {n} < B, we have
Bα−1 ‖ Bα−1 and thus Bα−1γn0 ‖ Bα−1γn0 since (γn0 )

−1, α ∈ PFN. This pro-
vides x, y ∈ B or x, y ∈ Bα−1γn0 or x, y ∈ Bα−1γn0 . If x, y ∈ B or x, y ∈ Bα−1γn0
then xγ = x ≺ y = yγ. Suppose now that x, y ∈ Bα−1γn0 . Note, x ≺ y and
α, (γn0 )

−1 ∈ PFN implies x(γn0 )
−1α ≺ y(γn0 )

−1α, i.e. xγ ≺ yγ. Altogether, we
have shown that γ ∈ E.
Now we define a partial transformation δ by

xδ :=

{

x if x ∈ {1, . . . , n}
x(γn0 )

−1α if x ∈ Bα−1γn0 .

Since {1, . . . , n} < (dom α)γn0 , the partial transformation δ is well defined. We
show that δ ∈ PFN. For this let x, y ∈ dom δ = {1, . . . , n} ∪ Bα−1γn0 with
x ≺ y. We observe that n + 1 /∈ dom δ. Thus, either x, y ∈ {1, . . . , n} or
x, y ∈ Bα−1γn0 . If x, y ∈ {1, . . . , n} then xδ = x ≺ y = yδ. If x, y ∈ Bα−1γn0
then xδ = x(γn0 )

−1α ≺ y(γn0 )
−1α = yδ since α, (γn0 )

−1 ∈ PFN.
Now we show that δ is surjective. We have
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im δ = {1, . . . , n}δ ∪ (Bα−1γn0 )δ = {1, . . . , n}δ ∪ Bα−1γn0 (γ
n
0 )

−1α

= {1, . . . , n} ∪ Bidim α = {1, . . . , n} ∪B = N,

since B ⊆ im α. Thus, δ ∈ Sur(PFN).
It remains to show that α = γn0 γδ. Let x ∈ dom α = Bα−1 ∪ Bα−1. If
x ∈ Bα−1 then xγn0 γδ = xγn0 (γ

n
0 )

−1αδ = xαδ = xα since xα ∈ Bα−1α =
B ⊆ {1, . . . , n}. If x ∈ Bα−1 then xγn0 γδ = xγn0 δ = xγn0 (γ

n
0 )

−1α = xα. From
dom γ = (dom α)γn0 ∪B, we obtain dom γn0 γδ ⊆ dom γn0 γ = (dom γ)(γn0 )

−1 =
((dom α)γn0 ∪B)(γn0 )

−1 = dom α.
Altogether, we have shown that α = γn0 γδ ∈ 〈Sur(PFN), E, γ0〉.

Let now α ∈ Fℵ0
. Then D(α) = |f3(dom α)| = ℵ0 and there is a bijection

g : d(α) → f3(dom α).

Since |Σ| ≥ 3 for all Σ ∈ f3(dom α), there is an injection

h : f3(dom α) → N \ dom α

with h(Σ) + 1, h(Σ), h(Σ) − 1 ∈ Σ for all Σ ∈ f3(dom α). We define a partial
transformation β by

xβ :=

{

xα if x ∈ dom α
g−1(h−1(x)) if x ∈ h(g(d(α))).

Clearly, β is well defined. We show that β ∈ PFN. For this let x, y ∈ dom β =
dom α∪h(g(d(α))) with x ≺ y. We observe that z+1, z−1 /∈ dom α∪h(g(d(α)))
for any z ∈ h(g(d(α))). Hence, x, y ∈ dom α and we have xβ = xα ≺ yα = yβ
since α ∈ PFN. Moreover, we have im β = (dom α∪h(g(d(α))))β = (dom α)β∪
(h(g(d(α))))β = (dom α)α ∪ g−1(h−1(h(g(d(α))))) = im α ∪ d(α) = N. This
shows that β ∈ Sur(PFN).
Finally, we note that the identity idim α on im α is idempotent and order-
preserving. It is easy to verify
α = βidim α ∈ 〈Sur(PFN), E〉 ⊆ 〈Sur(PFN), E, γ0〉.

We have to note that F< ∩ 〈Sur∗(PFN), E, γ0〉 6= ∅, but not all elements in
F< can be generated by elements of the set Sur∗(PFN)∪E∪{γ0}. For example,
let us take the partial transformation η with dom η = 2N and (2i)η := i2

for i ∈ N. In order to check that η can not be generated by elements of
Sur∗(PFN) ∪ E ∪ {γ0}, we note that if {ai : i ∈ N} is a subset of N such that
{|ai − ai+1| : i ∈ N} is finite then {|aiα− ai+1α| : i ∈ N} is finite, whenever
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α ∈ Sur∗(PFN) ∪ E ∪ {γ0}. On the other hand, we have {|2i− 2(i + 1)| :
i ∈ N} is a singleton set but {|(2i)η − (2(i+ 1))η| : i ∈ N} is infinite. We
will show that the remaining elements in PFN can be generated by elements in
F< ∪ Sur∗(PFN) ∪ E ∪ {γ0} = A ∪ {γ0}.

Lemma 5. F ⊆ 〈A, γ0〉.

Proof. Let α ∈ F . If |f3(dom α)| = ℵ0 then α ∈ Fℵ0
, i.e.

α ∈ 〈Sur(PFN), E, γ0〉 ⊆ 〈A, γ0〉

by Lemma 4. Suppose that |f3(dom α)| < ℵ0. If {1, 2} ∩ im α 6= ∅ then α ∈
F< ⊆ 〈A, γ0〉. Admit now that {1, 2}∩im α = ∅. Then n := min(im α) > 2 and
there is k ∈ N with 2k ∈ {n− 1, n− 2}. We consider the partial transformation

γ := α(γk0 )
−1.

We have dom γ = dom α since dom (γk0 )
−1 = {x ∈ N : x ≥ 2k + 1} ⊇ {x ∈ N :

x ≥ n} ⊇ im α. Further, we have xγ = xα − 2k for all x ∈ im α. Using this
fact, we can argue that D(α) = rank α = |{|Σ| : Σ ∈ f(im α)}| = χ0 provides
D(γ) = rank γ = |{|Σ| : Σ ∈ f(im γ)}| = χ0. Hence, γ ∈ F and it is easy to
verify that |f3(dom γ)| < ℵ0. Let y ∈ nα−1. Then yγ = yα − 2k = n − 2k ∈
{n − (n − 1), n − (n − 2)} = {1, 2}. Therefore, γ ∈ F< and we can conclude
α = α(γk0 )

−1γk0 = γγk0 ∈ 〈F<, γ0〉 ⊆ 〈A, γ0〉.

Finally, we will show that A together with γ0 generate the set

Inf(PFN) := {α ∈ PFN : rank α = D(α) = ℵ0}.

Lemma 6. Inf(PFN) ⊆ 〈A, γ0〉.

Proof. Let α ∈ Inf(PFN). If α ∈ F , then α ∈ 〈A, γ0〉 by Lemma 5.
Admit now that α 6∈ F . Then {|Σ| : Σ ∈ f(im α)} is finite and let m :=
max{|Σ| : Σ ∈ f(im α)}. Since rank α = D(α) = ℵ0, there is a partition

{Ai : i ∈ N}

of im α such that Ai is a finite convex set with Ai < Ai+1 and maxAi +
1,minAi − 1 /∈ im α for all i ∈ N. We put

ai := maxAi and bi := minAi

for all i ∈ N. Let β be the partial transformation defined recursively by

xβ := xα for x ∈ A1α
−1
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and
xβ := 4mmax(Ai−1α

−1β) + xα for x ∈ Aiα
−1, 2 ≤ i ∈ N.

We put
c0 := 0 and ci := max(Aiα

−1β)

for all i ∈ N. We observe that 0 < ci < ci+1 for i ∈ N.
First, we check that β ∈ PFN. For this let x, y ∈ dom β = dom α with x ≺ y.
Then there is i ∈ N such that x, y ∈ Aiα

−1 since Ak ‖ Al and thus Akα
−1 ‖

Alα
−1, whenever k < l ∈ N. From x ≺ y, α ∈ PFN, and 4mci−1 ∈ 2N ∪ {0}, it

follows that xα ≺ yα and 4mci−1 + xα ≺ 4mci−1 + yα, i.e. xβ ≺ yβ.
Now we show that β ∈ F . It is easy to verify that rank β = rank α = ℵ0. We
define sets

D0 : = {x ∈ N : x < b1} and

Di : = {x ∈ N : ci < x < 4mci + bi+1} for i ∈ N.

Clearly, f(im β) = {D0} ∪ {Di : i ∈ N} and we calculate

|Di| = |4mci + bi+1 − ci − 1| = |(4m− 1)ci + bi+1 − 1| <

< |(4m− 1)ci+1 + bi+2 − 1| = |4mci+1 + bi+2 − ci+1 − 1| = |Di+1|

since ci < ci+1 and bi+1 < bi+2, for all i ∈ N. This shows that {|Di| : i ∈ N} is
infinite and D(β) = ℵ0. Together with rank β = ℵ0, we obtain β ∈ F .
Let k ∈ N such that u := 2(k − 1) ∈ {b1 − 1, b1 − 2}. Note that f(im α)
is countable infinite and D0 ∈ f(im α), say f(im α) = {D0} ∪ {Bi : i ∈ N},
whenever D0 6= ∅ (and f(im α) = {Bi : i ∈ N} otherwise). For i ∈ N, let

Ci := {ci + 2p : 1 ≤ p ≤ |Bi|}.

Since ci+2 |Bi| ≤ ci+2m < 2mci+2mci+ bi+1 = 4mci+ bi+1, we can conclude
that Ci ⊆ Di and ci + 2 |Bi| + 1 /∈ im β. For x ∈ Bi, it holds u < b1 ≤ x, i.e.
x− u ∈ N. We put

Bi − u := {x− u : x ∈ Bi}.

Since |Ci| = |Bi| = |Bi − u|, there is a bijection

fi : Ci → Bi − u.

We define now a partial transformation γ by

xβγ := xα− u for x ∈ dom α = dom β;
xγ := fi(x) for x ∈ Ci, i ∈ N.
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Since im β∩Ci = ∅ for all i ∈ N, γ is well defined. We verify that γ ∈ PFN. For
this let x, y ∈ dom γ = im β ∪

⋃

{Ci : i ∈ N} with x ≺ y. Since z − 1, z + 1 /∈
im β ∪

⋃

{Ci : i ∈ N} for any z ∈
⋃

{Ci : i ∈ N}, we obtain that x, y ∈ im β.
Clearly, there is i ∈ N with x, y ∈ Aiα

−1β. Thus, there are x0, y0 ∈ Aiα
−1 with

x0β = x and y0β = y. From x ≺ y, it follows 4mci + x0α ≺ 4mci + y0α, i.e.
x0α ≺ y0α and x0α− u ≺ y0α− u since both 4mci and u are even. Therefore,
xγ = x0βγ = x0α− u ≺ y0α− u = y0βγ = yγ. This shows that γ ∈ PFN.
Now we show that γ ∈ Sur∗(PFN). For this let x ∈ N with x ≥ 2. If x+ u ∈
im α, then there is z ∈ dom α = dom β with zα = x+ u and zβγ = zα− u =
(x + u) − u = x. If x + u /∈ im α, then x + u ≥ 2 + u ≥ b1, i.e. x + u /∈ D0.
Hence, there is i ∈ N with x + u ∈ Bi, i.e. x = x + u − u ∈ Bi − u and
f−1
i (x)γ = fi(f

−1
i (x)) = x. Altogether, we have N \ {1} ⊆ im γ.

Finally, we show that α = βγ if k = 1 and α = βγγk−1
0 if k ≥ 2. Let x ∈

dom α = dom β. If k = 1 then u = 0, i.e. xβγ = xα. If k ≥ 2 then
xβγγk−1

0 = (xα−u)γk−1
0 = (xα−2(k−1))γk−1

0 = xα−2(k−1)+2(k−1) = xα.
Since dom βγ (dom βγγk−1

0 , respectively) is contained in dom β = dom α, we
have shown that α = βγ and α = βγγk−1

0 , respectively.

Now, we can prove the main result of the paper.

Theorem 7. PFN = 〈A, γ0〉.

Proof. Clearly, 〈A, γ0〉 ⊆ PFN. Conversely, let α ∈ PFN. If rank α is finite
then α ∈ 〈Ef , γ0〉 ⊆ 〈A, γ0〉 by Lemma 2. If rank α = ℵ0 and D(α) < ℵ0

then α ∈ Df ⊆ 〈A, γ0〉 by Lemma 4. If rank α = ℵ0 and D(α) = ℵ0 then
α ∈ Inf(PFN) ⊆ 〈A, γ0〉 by Lemma 6.

In fact, γ0 /∈ 〈A〉. Otherwise, there are α1, α2, . . . , αn ∈ A \ {idN} (for some
n ∈ N) such that γ0 = α1α2 · · ·αn. Clearly, the kernel of α1 is the diagonal,
i.e. xα1 6= yα1, whenever x 6= y and x, y ∈ dom α1 = N. Thus, α1 /∈ F<, i.e.
α1 ∈ Sur∗(PFN) ∪ E. But an idempotent with the diagonal on N as kernel is
the identity. Hence, α1 ∈ Sur∗(PFN), i.e. im α1 = N or im α1 = N \ {1}. But
this dives α1 = idN and 1α1 = 2α1, respectively, a contradiction. Because of
γ0 /∈ 〈A〉, Theorem 7 provides immediately:

Corollary 8. rank (PFN : A) = 1.
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