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ON RELATIVE RANKS OF FINITE TRANSFORMATION SEMIGROUPS
WITH RESTRICTED RANGE

I. Dimitrova1,2 and J. Koppitz3 UDC 512.5

We determine the relative rank of the semigroup T (X,Y ) of all transformations on a finite chain X

with restricted range Y ✓ X modulo the set OP(X,Y ) of all orientation-preserving transformations
in T (X,Y ). Moreover, we determine the relative rank of the semigroup OP(X,Y ) modulo the set
O(X,Y ) of all order-preserving transformations in OP(X,Y ). In both cases, we characterize the min-
imal relative generating sets.

1. Introduction and Preliminaries

Let S be a semigroup. The rank of S (denoted by rankS ) is defined as the minimal number of elements of
the generating set of S. The ranks of various known semigroups have been calculated in [7, 8, 10, 11]. For a set
A ✓ S, the relative rank of S modulo A, denoted by rank(S : A), is the minimal cardinality of a set B ✓ S

such that A [B generates S. It immediately follows from the definition that

rank(S : ?) = rankS, rank(S : S) = 0, rank(S : A) = rank(S : hAi), and rank(S : A) = 0

if and only if A is a generating set for S. The relative rank of a semigroup modulo a suitable set was first introduced
by Ruškuc in [14] in order to describe the generating sets of semigroups with infinite rank. In [12], Howie,
Ruškuc, and Higgins considered the relative ranks of the monoid T (X) of all full transformations on X, where
X is an infinite set modulo some distinguished subsets of T (X). They showed that rank (T (X) : S(X)) = 2,

rank (T (X) : E(X)) = 2, and rank (T (X) : J) = 0, where S(X) is the symmetric group on X, E(X) is the
set of all idempotent transformations on X, and J is the top J -class of T (X), i.e.,

J = {↵ 2 T (X) : |X↵| = |X|}.

However, if, in addition, the rank is finite, then the relative rank gives information about the generating sets. In the
present paper, we determine the relative rank for a particular semigroup of transformations on a finite set.

Let X be a finite chain, say, X = {1 < 2 < . . . < n} for a natural number n. A transformation ↵ 2 T (X)

is called order-preserving if x  y implies that x↵  y↵ for all x, y 2 X. We denote by O(X) the submonoid
of T (X) of all order-preserving full transformations on X. The relative rank of T (X) modulo O(X) was con-
sidered by Higgins, Mitchell, and Ruškuc in [9]. They showed that rank (T (X) : O(X)) = 1, if X is an arbitrary
countable chain or an arbitrary well-ordered set, whereas rank (T (R) : O(R)) is uncountable if we consider the
usual order of the set R of real numbers. In [2], Dimitrova, Fernandes, and Koppitz studied the relative rank of
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the semigroup O(X) modulo J = {↵ 2 O(X) : |X↵| = |X|} for an infinite countable chain X. We say that
a transformation ↵ 2 T (X) is orientation-preserving if there are subsets X1, X2 ✓ X such that ? 6= X1 < X2

(i.e., x1 < x2 for x1 2 X1 and x2 2 X2 ), X = X1 [ X2, and x↵  y↵, whenever either (x, y) 2 X

2
1 [ X

2
2

with x  y or (x, y) 2 X2 ⇥X1. Note that X2 = ? implies ↵ 2 O(X). We denote by OP(X) the submonoid
of T (X) of all orientation-preserving full transformations on X. An equivalent notion of orientation-preserving
transformation was first introduced by McAlister in [13] and, independently, by Catarino and Higgins in [1]. It is
clear that O(X) is a submonoid of OP(X), i.e., O(X) ⇢ OP(X) ⇢ T (X). It is worth noting that the relative
rank of T (X) modulo OP(X), as well as the relative rank of OP(X) modulo O(X), is equal to one (see [1, 12])
but the situation changes if we consider transformations with restricted range.

Let Y = {a1 < a2 < . . . < am} be a nonempty subset of X for a natural number m  n. By T (X,Y ) we
denote the subsemigroup {↵ 2 T (X) : X↵ ✓ Y } of T (X) of all transformations with range (image) restricted
to Y. The set T (X,Y ) coincides with T (X), whenever Y = X (i.e., m = n). In 1975, Symons [15] introduced
and studied a semigroup T (X,Y ), which is called a semigroup of transformations with restricted range. Recently,
the rank of T (X,Y ) was computed by Fernandes and Sanwong [6]. They proved that the rank of T (X,Y ) is
the Sterling number S(n,m) of the second kind with |X| = n and |Y | = m. The rank of the order-preserving
counterpart O(X,Y ) of T (X,Y ) was studied in [4] by Fernandes, Honyam, Quinteiro, and Singha. The authors
found that

rankO(X,Y ) =

✓
n− 1

m− 1

◆
+

���Y #
��� ,

where Y

# denotes the set of all y 2 Y with one of the following properties:

(i) y has no successors in X;

(ii) y is not a successor of any element in X;

(iii) both the successor of Y and the element whose successor is y belong to Y.

Moreover, the regularity and rank of the semigroup OP(X,Y ) were studied by the same authors in [5]. They
showed that

rankOP(X,Y ) =

 
n

m

!
.

In [16], Tinpun and Koppitz investigated the relative rank of T (X,Y ) modulo O(X,Y ) and proved that

rank (T (X,Y ) : O(X,Y )) = S(n,m)−
 
n− 1

m− 1

!
+ a,

where a 2 {0, 1} depending on the set Y. In the present paper, we determine the relative rank of OP(X,Y )

modulo O(X,Y ), as well as the relative rank of T (X,Y ) modulo OP(X,Y ).

Let ↵ 2 T (X,Y ). The kernel of ↵ is the equivalence relation ker↵ with (x, y) 2 ker↵ if x↵ = y↵.

It uniquely corresponds to a partition on X. This enables us to treat ker↵ as a partition on X. A block of this par-
tition is called a ker↵-class. In particular, the sets x↵−1

= {y 2 X : y↵ = x} for x 2 X↵ are the ker↵-classes.
We say that a partition P is a subpartition of a partition Q of X if, for all p 2 P, there is q 2 Q with p ✓ q. A set
T ✓ X with

��
T \ x↵

−1
��
= 1 for all x 2 X↵ is called a transversal of ker↵. Let A ✓ X. Then ↵|A : A ! Y

denotes the restriction of ↵ to A. Moreover, A is called convex if x < y < z with x, z 2 A implies that y 2 A.
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Let l 2 {1, . . . ,m}. By Pl we denote the set of all partitions {A1, . . . , Al} of X such that A2 < A3 <

. . . < Al are convex sets (for l > 1) and A1 is the union of two convex sets with 1, n 2 A1. Further, let Ql be
the set of all partitions {A1, . . . , Al} of X such that A1 < A2 < . . . < Al are convex and let Rl be the set of
all partitions of X that do not belong to Ql [ Pl. We observe that kerβ 2 Ql [ Pl, whenever β 2 OP(X,Y )

with |Xβ| = l. In particular, kerβ 2 Ql, whenever β 2 O(X,Y ).

We consider the case l = m > 1. For P 2 Pm with the blocks A1, A2 < . . . < Am, let ↵P be the
transformation on X defined by

x↵P := ai, whenever x 2 Ai for 1  i  m,

in the case where 1 /2 Y or n /2 Y, and let

x↵P :=

8
<

:
ai+1, if x 2 Ai for 1  i < m,

a1, if x 2 Am,

in the case where 1, n 2 Y. Clearly, ker↵P = P. For X1 = {1, . . . ,maxAm} and X2 = {maxAm + 1, . . . , n}
in the case where 1 /2 Y or n /2 Y and X1 = {1, . . . ,maxAm−1} and X2 = {maxAm−1+1, . . . , n} in the case
where 1, n 2 Y [here, maxAm (maxAm−1 ) denotes the greatest element in the set Am (Am−1, respectively)],
we can easy verify that ↵P is orientation-preserving.

Further, let ⌘ 2 T (X,Y ) be defined by

x⌘ :=

8
>>>><

>>>>:

ai+1, if ai  x < ai+1, 1  i < m,

a1, if x = am,

aΓ, otherwise,

with

Γ :=

8
<

:
1, if 1 /2 Y,

2, otherwise,

in the case where 1 /2 Y or n /2 Y and

x⌘ :=

8
<

:
ai+1, if ai  x < ai+1, 1  i < m,

a1 = 1, if x = am = n,

in the case where 1, n 2 Y. Note that P0 := ker ⌘ 2 Pm if 1 /2 Y or n /2 Y and ker ⌘ 2 Qm if 1, n 2 Y. In fact,
⌘ 2 OP(X,Y ) with X1 = {1, 2, . . . , am − 1} and X2 = {am, am + 1, . . . , n}. Moreover, ⌘|Y is a permutation
on Y, namely,

⌘|Y =

 
a1 . . . am−1 am

a2 . . . am a1

!
.

We denote by S(Y ) the set of all permutations on Y. Note that β 2 O(X,Y ) implies that either β|Y is the
identity mapping on Y or β|Y /2 S(Y ).
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2. Relative Rank of OP(X,Y ) Modulo O(X,Y )

In this section, we determine the relative rank of OP(X,Y ) modulo O(X,Y ). Some of these results were
presented at the 47th Spring Conference of the Union of Bulgarian Mathematicians in March 2018 and published
in the proceedings of this conference [3].

If m = 1, then OP(X,Y ) is the set of all constant mappings, which coincides with O(X,Y ), i.e.,

rank (OP(X,Y ) : O(X,Y )) = 0.

Hence, we admit that m > 1.

First, we show that

A := {↵P : P 2 Pm} [ {⌘}

is a relative generating set of OP(X,Y ) modulo O(X,Y ). Note that ⌘ = ↵P0 if 1 /2 Y or n /2 Y.

Lemma 1. For each ↵ 2 OP(X,Y ) with rank↵ = m, there is b↵ 2 {↵P : P 2 Pm} [ O(X,Y )

with ker↵ = ker b↵.

Proof. Let ↵ 2 OP(X,Y ) and let X1, X2 ✓ X as in the definition of orientation-preserving transfor-
mation. If X2 = ?, then ↵ 2 O(X,Y ). Suppose that X2 6= ?. Let X1↵ = {x1 < . . . < xr} and let
X2↵ = {y1 < . . . < ys} for suitable natural numbers r and s. We observe that X1↵ and X2↵ have at most one
common element (only x1 = ys could be possible). If x1 6= ys, then

ker↵ =

�
x1↵

−1
< . . . < xr↵

−1
< y1↵

−1
< . . . < ys↵

−1
 
= ker b↵

with

b↵ =

 
x1↵

−1
. . . xr↵

−1
y1↵

−1
. . . ys↵

−1

a1 . . . ar ar+1 . . . ar+s

!
2 O(X,Y ).

If x1 = ys, then 1, n 2 x1↵
−1

= ys↵
−1 and ker↵ = ker↵P with

P =

�
x1↵

−1
, x2↵

−1
< . . . < xr↵

−1
< y1↵

−1
< . . . < ys−1↵

−1
 2 Pm.

Lemma 1 is proved.

Proposition 1. OP(X,Y ) = hO(X,Y ),Ai .
Proof. Let β 2 OP(X,Y ) with rankβ = m. Then there is ✓ 2 {↵P : P 2 Pm} [ O(X,Y ) with

kerβ = ker ✓ by Lemma 1. In particular, there exists r 2 {0, . . . ,m− 1} with a1✓
−1

= ar+1β
−1

. Then it is easy
to verify that β = ✓⌘

r
, where ⌘

0
= ⌘

m
.

Assume now that i = rankβ < m. Suppose that kerβ 2 Pi, say, kerβ = {A1, A2 < . . . < Ai}
with 1, n 2 A1. Then there is a subpartition P

0 2 Pm of kerβ. We set

✓ = ↵P 0 and a = minXβ.

Let T be a transversal of ker ✓. In particular, we have

Y = {x(✓|T )⌘k : x 2 T} for all k 2 {1, . . . ,m}.
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Since both mappings ✓|T : T ! Y and ⌘|Y : Y ! Y are bijections, there is k 2 {1, . . . ,m} with

a1((✓|T )⌘k)−1
β = a and a1((✓|T )⌘k+1

)

−1
β 6= a.

Moreover, since (✓|T )⌘k is a bijection from T to Y and both transformations ✓⌘

k and β are orientation-preserv-
ing, it is easy to verify that f⇤

=

�
(✓|T )⌘k

�−1
β can be extended to an orientation-preserving transformation f

defined by

xf =

8
>>>><

>>>>:

a1f
⇤
, if x < a1,

aif
⇤
, if ai  x < ai+1, 1  i < m,

amf

⇤
, if am  x,

i.e., f and f

⇤ coincide on Y. Moreover,

a1f = a1f
⇤
= a1

�
(✓|T )⌘k

�−1
β = a.

In order to show that f is order-preserving, it remains to verify that nf 6= a. Assume that nf = a, where n ≥ am.

Then nf = amf

⇤
= amf, i.e., (n, am) 2 ker f and n⌘ = am⌘ = a1. Hence, there is x

⇤ 2 T such that
x

⇤�
(✓|T )⌘k

�
= am, i.e., x⇤ = am

�
(✓|T )⌘k

�−1
. Thus, we get

a = nf = amf

⇤
= am

�
(✓|T )⌘k

�−1
β

= am(⌘

k|Y )−1
(✓|T )−1

β

= a1(⌘|Y )−1
(⌘

k|Y )−1
(✓|T )−1

β = a1((✓|T )⌘k+1
)

−1
β 6= a;

a contradiction.
Finally, we show that β = ✓⌘

k
f 2 hO(X,Y ),Ai . To do this, we assume that x 2 X. Then there is ex 2 T

such that (x, ex) 2 kerβ. Hence, we get

x✓⌘

k
f = x✓⌘

k
f

⇤
= ex✓⌘k

�
(✓|T )⌘k

�−1
β = exβ = xβ.

Further, suppose that kerβ /2 Pi and, thus, kerβ 2 Qi. Let Xβ = {b1, . . . , bi} be such that

b1β
−1

< . . . < biβ
−1

.

Then we define a transformation ' by x' = aj for all x 2 bj−1β
−1 and 2  j  i+ 1. Clearly, ' 2 O(X,Y ) .

Further, we define a transformation ⌫ 2 T (X,Y ) by

x⌫ =

8
<

:
bj−1, if aj  x < aj+1, 2  j  i,

bi, otherwise.

Since β is orientation-preserving, there is k 2 {1, . . . , i} such that k = i or b1 < . . . < bk−1 < bk < . . . < bi.
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Then X1 = {a1, . . . , ak+1 − 1} and X2 = {ak+1, . . . , n} gives a partition of X provided that ⌫ is orientation-
preserving. Clearly, rank ⌫ = i and 1⌫ = n⌫ = bi. Thus, it is easy to verify that ker ⌫ 2 Pi. Hence, ⌫ 2
hO(X,Y ),Ai by the previous case and it remains to show that β = '⌫ 2 hO(X,Y ),Ai . To do this, we assume
that x 2 X. Then x 2 bjβ

−1 for some j 2 {1, . . . , i}, i.e., x'⌫ = aj+1⌫ = bj = xβ.

Proposition 1 is proved.

This proposition shows that A is a relative generating set for OP(X,Y ) modulo O(X,Y ). It remains to
show that A has the minimal size.

Lemma 2. Let B ✓ OP(X,Y ) be a relative generating set of OP(X,Y ) modulo O(X,Y ). Then

Pm ✓ {ker↵ : ↵ 2 B}.

Proof. Let P 2 Pm. Since

↵P 2 OP(X,Y ) = hO(X,Y ), Bi ,

there are ✓1 2 O(X,Y ) [ B and ✓2 2 OP(X,Y ) with ↵P = ✓1✓2. In view of the fact that rank↵P = m,

we obtain ker↵P = ker ✓1. Since 1↵P = n↵P , we conclude that ✓1 /2 O(X,Y ), i.e., ✓1 2 B with ker ✓1 =

ker↵P = P.

Lemma 2 is proved.

In order to deduce a formula for the number of elements in Pm, it is necessary to compute the number of

possible partitions of X into m+ 1 convex sets. This number is equal to
✓
n− 1

m

◆
.

Remark 1. |Pm| =
✓
n− 1

m

◆
.

We are now able to formulate the main result of the section. The relative rank of OP(X,Y ) modulo O(X,Y )

depends of the fact whether both 1 and n belong to Y or not.

Theorem 1. For each 1 < m < n 2 N,

(i) rank(OP(X,Y ) : O(X,Y )) =

✓
n− 1

m

◆
if 1 /2 Y or n /2 Y ;

(ii) rank(OP(X,Y ) : O(X,Y )) = 1 +

✓
n− 1

m

◆
if {1, n} ✓ Y.

Proof. 1. Note that ker ⌘ 2 Pm and ⌘ = ↵P0 . Hence, the set A = {↵P : P 2 Pm} is a generating
set of OP(X,Y ) modulo O(X,Y ) by Proposition 1, i.e., the relative rank of OP(X,Y ) modulo O(X,Y ) is

bounded by the cardinality of Pm, which is equal to
✓
n− 1

m

◆
by Remark 1. However, this number cannot be

reduced by Lemma 2.

2. Let B ✓ OP(X,Y ) be a relative generating set of OP(X,Y ) modulo O(X,Y ). By Lemma 2, we know
that Pm ✓ {ker↵ : ↵ 2 B}. Assume that the equality holds. Note that ker ⌘ 2 Qm and ⌘ is not order-
preserving. Hence, there are ✓1, . . . , ✓l 2 O(X,Y ) [ B for a suitable natural number l such that ⌘ = ✓1 . . . ✓l.
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From rank ⌘ = m, we obtain ker ✓1 = ker ⌘ and rank ✓i = m for i 2 {1, . . . , l}. Therefore, {1, n} ✓ Y implies
that (1, n) /2 ker ✓i for i 2 {2, . . . , l}. This implies that ✓2, . . . , ✓l 2 O(X,Y ). Since ker ✓1 = ker ⌘ /2 Pm,

we get ✓1 2 O(X,Y ) and, consequently, ⌘ = ✓1✓2 . . . ✓l 2 O(X,Y ); a contradiction. Hence, we have verified

that |Pm| < |B| , i.e., the relative rank of OP(X,Y ) modulo O(X,Y ) is greater than
✓
n− 1

m

◆
. However, it is

bounded by 1 +

✓
n− 1

m

◆
by virtue of Proposition 1. This proves the assertion.

Theorem 1 is proved.

We complete this section by the characterization of the minimal relative generating sets of OP(X,Y ) mod-
ulo O(X,Y ). We recognize that, among these sets, there are sets whose sizes are greater than

rank

�OP(X,Y ) : O(X,Y )

�
.

Theorem 2. Let B ✓ OP(X,Y ). Then B is a minimal relative generating set of OP(X,Y ) modulo
O(X,Y ) if and only if the following three statements are satisfied for the set eB = {β 2 B : kerβ 2 Qm} ✓ B :

(i) Pm ✓ � kerβ : β 2 B \ eB ,
(ii) |B \ eB| = |Pm|,
(iii) ⌘|Y 2 hβ|Y : β 2 Bi but ⌘|Y /2 ⌦β|Y : β 2 B \ {γ}↵ for any γ 2 e

B.

Proof. Suppose that conditions (i)–(iii) are satisfied for eB = {β 2 B : kerβ 2 Qm}. We now show that

A ✓ hO(X,Y ), Bi .

Let ↵ 2 A \ {⌘}. Then there is a partition

P = {A1, A2 < . . . < Am} 2 Pm

such that

↵ = ↵P =

 
A1 A2 . . . Am

a1 a2 . . . am

!
, if 1 /2 Y or n /2 Y,

or

↵ = ↵P =

 
A1 A2 . . . Am−1 Am

a2 a3 . . . am a1

!
, if 1, n 2 Y.

Note that, in the last case, a1 = 1 and am = n.

Further, it follows from (i) that there is β 2 B with kerβ = ker↵P , i.e.,

β = ↵P or β =

 
A1 A2 . . . Am−i+1 Am−i+2 . . . Am

ai ai+1 . . . am a1 . . . ai−1

!
for some i 2 {3, . . . ,m}.

It is easy to see that ↵P = β

k 2 hBi for a suitable natural number k. Hence,

{↵P : P 2 Pm} ✓ hO(X,Y ), Bi .
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Further, ker ⌘ 2 Pm, whenever 1 /2 Y or n /2 Y and ker ⌘ 2 Qm, otherwise. Thus, there is δ 2 hO(X,Y ), Bi
with ker δ = ker ⌘. Therefore, as above, we conclude that ⌘ = δ

l 2 hO(X,Y ), Bi for a suitable natural number l.
Consequently, hO(X,Y ),Ai ✓ hO(X,Y ), Bi . By Proposition 1, we obtain

OP(X,Y ) = hO(X,Y ), Bi .

The generating set B is minimal by properties (i) and (ii) together with Lemma 2 and by the property (iii) of eB.

Conversely, let B be a minimal relative generating set of OP(X,Y ) modulo O(X,Y ). By Lemma 2, there
is a set B ✓ B such that

Pm = {kerβ : β 2 B} and
��
B

��
= |Pm| .

Since OP(X,Y ) = hO(X,Y ), Bi , there are β1, . . . ,βk 2 O(X,Y ) [ B such that ⌘ = β1 . . .βk. Without
loss of generality, we can assume that there is no γ 2 �βi : 1  i  k, kerβi 2 Qm

 
=:

b
B such that ⌘ is the

product of transformations in B[(

b
B \{γ}). In the first part of the proof, it has been shown that B[ bB is a relative

generating set of OP(X,Y ) modulo O(X,Y ). Due to the minimality of B, we obtain B = B [ bB, where

�
kerβ : β 2 B \ bB ◆ Pm, |B \ bB| = |B| = |Pm|, and ⌘|Y 2 hβ|Y : β 2 Bi

but

⌘|Y /2 ⌦β|Y : β 2 B \ {γ}↵ for any γ 2 b
B.

Theorem 2 is proved.

In particular, for the relative generating sets of the minimal size, we have the following remark.

Remark 2. B ✓ OP(X,Y ) is a relative generating set of OP(X,Y ) modulo O(X,Y ) of the minimal size
if and only if | eB| = 1 for 1, n 2 Y and eB = ?, otherwise.

3. Relative Rank of T (X,Y ) Modulo OP(X,Y )

In this section, we determine the relative rank of T (X,Y ) modulo OP(X,Y ) and characterize all minimal
relative generating sets of T (X,Y ) modulo OP(X,Y ). Since

O(X,Y )  OP(X,Y ),

we immediately conclude that

rank(T (X,Y ) : OP(X,Y ))  S(n,m)−
✓
n− 1

m− 1

◆
+ 1.

First, we formulate a sufficient condition for a set B ✓ T (X,Y ) to be a relative generating set of T (X,Y )

modulo OP(X,Y ).

Lemma 3. Let B ✓ T (X,Y ). If Rm ✓ {kerβ : β 2 B} and S(Y ) ✓ ⌦{β|Y : β 2 B}, ⌘|Y
↵
, then

hOP(X,Y ), Bi = T (X,Y ).
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Proof. Let γ 2 T (X,Y ) with rank γ = k  m. We consider two cases.

Case 1. Suppose that ker γ 2 Rk. Then ker γ contains a nonconvex set that cannot be decomposed into
two convex sets containing 1 and n, respectively. Since k  m, we can split the partition ker γ into a partition
P 2Rm such that P contains a nonconvex set that cannot be decomposed into two convex sets containing 1 and n,

respectively (if k = m, then we set P = ker γ ). Since Rm ✓ {kerβ : β 2 B}, there is λ 2 B with kerλ = P.

It is clear that Xλ = Y.

Further, let Xγ = {y1 < y2 < . . . < yk}. We define the sets

Ai =
�
x 2 Y : xλ−1 ✓ yiγ

−1
 

for i = 1, . . . , k. It is clear that {A1, A2, . . . , Ak} is a partition of Y. Moreover, let {C1 < C2 < . . . < Ck} 2 Qk

be a partition of X such that |Ci \ Y | = |Ai| for all i = 1, . . . , k. Let Ai = {ai1 < ai2 < . . . < aiti
} and

let Ci \ Y = {ci1 < ci2 < . . . < citi
} with ti 2 {1, . . . ,m} for i 2 {1, . . . , k}. We define a bijection

σ :
k[

i=1

Ai = Y −!
k[

i=1

(Ci \ Y ) = Y

on Y with ailσ = cil for l = 1, . . . , ti and i = 1, . . . , k. Since σ 2 S(Y ) and S(Y ) ✓ ⌦{β|Y : β 2 B}, ⌘|Y
↵
,

there exists µ 2 hB, ⌘i with µ|Y = σ.

Finally, we define a transformation ⌫ 2 O(X,Y ) ✓ OP(X,Y ) with ker ⌫ = {C1 < C2 < . . . < Ck} and
x⌫ = yi for all x 2 Ci and i = 1, . . . , k.

Therefore, we have λ, µ, ⌫2hOP(X,Y ), Bi and it remains to show that γ = λµ⌫, i.e., γ 2 hOP(X,Y ), Bi.
Let x 2 X. Then xγ = yi for some i 2 {1, . . . , k} and we get

xγ = yi ) xλ = z 2 Ai ) zµ = u 2 Ci \ Y ) u⌫ = yi.

Hence, xγ = yi = x(λµ⌫) and we conclude that γ = λµ⌫.

Case 2. Suppose that ker γ /2 Rk, i.e., ker γ 2 Qk [ Pk and there is ⇢1 2 OP(X,Y ) with ker ⇢1 = ker γ.

Further, there is a partition P = {Dy : y 2 X⇢1} 2 Rk such that y 2 Dy for all y 2 X⇢1. Then we define
a transformation ⇢2 : X ! Xγ with ker ⇢2 = P and {x⇢2} = y⇢

−1
1 γ for all x 2 Dy and y 2 X⇢1. Since

ker ⇢1 = ker γ, the transformation ⇢2 is well defined, and we have γ = ⇢1⇢2. Moreover, ⇢2 2 hOP(X,Y ), Bi
by Case 1 (since ker ⇢2 2 Rk ) and, thus, γ = ⇢1⇢2 2 hOP(X,Y ), Bi .

Lemma 3 is proved.

Lemma 4. h⌘|Y i =
⌦�

β|Y : β 2 OP(X,Y )

 ↵ \ S(Y ).

Proof. The inclusion h⌘|Y i ✓ ⌦�
β|Y : β 2 OP(X,Y )

 ↵ \ S(Y ) is obvious. Now let β 2 OP(X,Y )

with β|Y 2 S(Y ). Then there is k 2 {1, . . . ,m} such that

β =

 
A1 . . . Am−k+1 Am−k . . . Am

ak . . . am a1 . . . ak−1

!

with

{A1, A2 < . . . < Am} 2 Pm [Qm
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and ai 2 Ai for i 2 {1, . . . ,m} because Y is a transversal of kerβ. Thus,

β|Y =

 
a1 . . . am−k+1 am−k . . . am

ak . . . am a1 . . . ak−1

!
= (⌘|Y )m−k+1 2 h⌘|Y i .

This means that
⌦�

β|Y : β 2 OP(X,Y )

 ↵ \ S(Y ) ✓ �(⌘|Y )p : p 2 N
 
= h⌘|Y i .

Lemma 4 is proved.

The following lemmas give us necessary conditions for a set B ✓ T (X,Y ) to be a relative generating set of
T (X,Y ) modulo OP(X,Y ).

Lemma 5. Let B ✓ T (X,Y ) \ OP(X,Y ) with hOP(X,Y ), Bi = T (X,Y ). Then

S(Y ) ✓ ⌦{β|Y : β 2 B}, ⌘|Y
↵
.

Proof. Let σ 2 S(Y ). We extend σ to a transformation γ : X ! Y, i.e., γ|Y = σ. Hence, there are
γ1, . . . , γk 2 OP(X,Y ) [ B (for a suitable natural number k ) such that γ = γ1 . . . γk. Since the image of any
transformation in T (X,Y ) belongs to Y, we have

σ = γ|Y = γ1|Y . . . γk|Y .

Moreover, from σ 2 S(Y ), we conclude that γi|Y 2 S(Y ) for 1  i  k. Let γi 2 OP(X,Y ) for some i 2
{1, . . . , k}. Then, by Lemma 4,

γi|Y =

 
a1 . . . at at+1 . . . am

am−t+1 . . . am a1 . . . am−t

!
2 h⌘|Y i

for a suitable natural number t. This gives σ 2 ⌦{β|Y : β 2 B}, ⌘|Y
↵
.

Lemma 5 is proved.

Lemma 6. Let B ✓ T (X,Y ) \ OP(X,Y ) with hOP(X,Y ), Bi = T (X,Y ). Then

Rm ✓ {kerβ : β 2 B}.

Proof. Assume that there is P 2 Rm with P 62 {kerβ : β 2 B}. Let γ 2 T (X,Y ) with ker γ = P.

Then there are ✓1 2 OP(X,Y ) [ B and ✓2 2 T (X,Y ) such that γ = ✓1✓2. Since rank γ = m, we obtain
ker γ = ker ✓1 = P. Thus, ✓1 62 B, i.e., ✓1 2 OP(X,Y ) and ker ✓1 2 Qm [ Pm, contradicts the fact that
ker ✓1 = P 2 Rm.

Lemma 6 is proved.

Lemma 6 shows that rank (T (X,Y ) : OP(X,Y )) ≥ |Rm| . We now check the equality.

Lemma 7. |Rm| = S(m,n)−
✓
n

m

◆
.
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Proof. The cardinality of the set Dm := Rm [ Pm was determined in [16]. The authors showed that

|Dm| = S(m,n)−
✓
n− 1

m− 1

◆
.

In view of Rm\Pm = ?, we obtain Rm = Dm \Pm. Since |Pm| =
✓
n− 1

m

◆
(see Remark 1), we conclude that

|Rm| = |Dm|− |Pm| = S(m,n)−
 
n− 1

m− 1

!
−
 
n− 1

m

!
= S(m,n)−

 
n

m

!
.

Lemma 7 is proved.

Finally, we can find the relative rank of T (X,Y ) modulo OP(X,Y ).

Theorem 3. rank(T (X,Y ) : OP(X,Y )) = S(m,n)−
✓
n

m

◆
.

Proof. If m = 1 then T (X,Y ) = OP(X,Y ), i.e.,

rank(T (X,Y ) : OP(X,Y )) = 0.

On the other hand, we have

S(1, n) = n =

✓
n

1

◆
.

Further, suppose that n ≥ 2. By Lemmas 6 and 7, we obtain

rank(T (X,Y ) : OP(X,Y )) ≥ |Rm| = S(m,n)−
✓
n

m

◆
.

In order to prove the equality, it is necessary to find a relative generating set B of T (X,Y ) modulo OP(X,Y )

with |B| = |Rm|. We observe that, for each P 2 Rm, there is βP 2 T (X,Y ) with kerβP = P, which will be
fixed. Let B := {βP : P 2 Rm}. If m = 2 then Rm = ? and, clearly,

S(Y ) = {⌘|Y , (⌘|Y )2} = h⌘|Y i.

If m ≥ 3, then, without loss of generality, we can assume that there is P

0 2 Rm such that Y is a transversal
of kerβP 0 and

βP 0 |Y =

✓
a1 a2 a3 . . . am

a2 a1 a3 . . . am

◆
.

It is known that S(Y ) = hβP 0 |Y , ⌘|Y i . Hence, B is a relative generating set of T (X,Y ) modulo OP(X,Y )

by Lemma 3. Since |B| = |Rm|, we obtain the required result.
Theorem 3 is proved.



ON RELATIVE RANKS OF FINITE TRANSFORMATION SEMIGROUPS WITH RESTRICTED RANGE 729

We now characterize the minimal relative generating sets of T (X,Y ) modulo OP(X,Y ). The minimal
relative generating sets do not coincide with the relative generating sets rank (T (X,Y ) : OP(X,Y )) in size.

Theorem 4. Let B ✓ T (X,Y ). Then B is a minimal relative generating set of T (X,Y ) modulo OP(X,Y )

if and only if there is a set eB ✓ B such that the following three statements are satisfied:

(i) Rm ✓ � kerβ : β 2 B \ eB ,
(ii)

��
B \ eB�� = |Rm|,

(iii) S(Y ) ✓ ⌦{β|Y : β 2 B}, ⌘|Y
↵
but S(Y ) *

⌦{β|Y : β 2 B \ {γ}}, ⌘|Y
↵
for any γ 2 B with

ker γ 2 {kerβ : β 2 e
B}.

Proof. Suppose that conditions (i)–(iii) are satisfied. Then, by Lemma 3, we get

hOP(X,Y ), Bi = T (X,Y ).

It remains to show that B is minimal. Assume that there is γ 2 B such that

hOP(X,Y ), B \ {γ}i = T (X,Y ).

Note that ↵β|Y = ↵|Y β|Y for all ↵,β 2 T (X,Y ). Hence, we can conclude that

S(Y ) ✓ ⌦�β|Y : β 2 T (X,Y )

 ↵

✓ ⌦�β|Y : β 2 OP(X,Y ) [ (B \ {γ}) ↵

=

⌦�
β|Y : β 2 B \ {γ} , ⌘|Y

↵

by Lemma 4. Thus, ker γ /2{kerβ : β2 eB} by (iii). This implies that γ2B\ eB and |(B\ eB)\{γ}|< |Rm| by (ii),
i.e.,

Rm " {kerβ : β 2 (B \ eB) \ {γ}}.

Since ker γ /2 {kerβ : β 2 e
B}, we have Rm " {kerβ : β 2 (B \ {γ})}. Therefore, by Lemma 6, we conclude

that hOP(X,Y ), B \ {γ}i 6= T (X,Y ); a contradiction. This shows that B is a minimal relative generating set
of T (X,Y ) modulo OP(X,Y ).

Conversely, let B be a minimal relative generating set of T (X,Y ) modulo OP(X,Y ). By Lemmas 5 and 6,
we have

Rm ✓ {kerβ : β 2 B} and S(Y ) ✓ h{β|Y : β 2 B}, ⌘|Y i ,

respectively. Then there exists a set eB ✓ B with

|B \ eB| = |Rm| and Rm ✓ {kerβ : β 2 (B \ eB)}.

For the set eB, conditions (i) and (ii) are satisfied. Assume now that there is γ 2 B with ker γ 2 {kerβ : β 2 e
B}

such that

S(Y ) ✓ h{β|Y : β 2 B \ {γ}}, ⌘|Y i .
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Then, in view of the fact that Rm ✓ {kerβ : β 2 (B \ {γ})}, the set B \ {γ) is a relative generating set of
T (X,Y ) modulo OP(X,Y ) by Lemma 3. This contradicts the minimality of B. Hence, (iii) is satisfied.

Theorem 4 is proved.

In particular, for the relative generating sets of the minimal size, we have the following remark:

Remark 3. B ✓ T (X,Y ) is a relative generating set of T (X,Y ) modulo OP(X,Y ) of the minimal size if
and only if eB = ?.
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