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For n € N, let X, = {a1,a2,...,an} be an n-element set and let F = (Xn;<y) be
a fence, also called a zigzag poset. As usual, we denote by I,, the symmetric inverse
semigroup on X,. We say that a transformation o € I, is fence-preserving if v <; y
implies that za <; ya, for all x,y in the domain of c. In this paper, we study the
semigroup PF'I, of all partial fence-preserving injections of X, and its subsemigroup
I1F, ={a € PFI, : alte PFI,}. Clearly, I Fy, is an inverse semigroup and contains all
regular elements of PF'I,,. We characterize the Green’s relations for the semigroup I F,.
Further, we prove that the semigroup I F}, is generated by its elements with rank > n—2.
Moreover, for n € 2N, we find the least generating set and calculate the rank of I F,,.
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1. Introduction and Preliminaries

For n € N, let X,, = {a1,a2,...,a,} be an n-element set. As usual, we denote by I,
the symmetric inverse semigroup on X, i.e. the partial one-to-one transformation
semigroup on X, under composition of mappings. The importance of I,, to inverse
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semigroup theory may be likened to that of the symmetric group S,, to group theory.
Every finite inverse semigroup S is embeddable in I,,, the analogue of Cayley’s
theorem for finite groups, and to the regular representation of finite semigroups.
Thus, just as the study of symmetric, alternating and dihedral groups has made a
significant contribution to group theory, so has the study of various subsemigroups
of I, see for example [1, 3, 5, 6, 13].

Let F = (X,; <yf) be a fence, also called a zigzag poset, i.e. a partially ordered
set in which the order relation forms a path with alternating orientations:

ay <faz >yaz <jf---an
or
ap >y a2 <f a3z >f...0n.

Every element of F is either maximal or minimal. A fence F is called an up-fence
(respectively a down-fence) if a1 <j aa (respectively a1 >f a2). In this paper,
without loss of generality, we consider an up-fence.

a, da, d,

a, a, ds

Several authors have investigated the number of order-preserving maps from
fences to themselves, or to fences of other sizes, see for example [2, 4, 10, 11].
Recently, regular semigroups of transformations preserving a fence were character-
ized in [8, 12].

We begin by recalling some notations and definitions that will be used in the
paper. For standard concepts in semigroup and symmetric inverse semigroup theory,
see for example [7] and [9]. We denote by dom « and im « the domain and the image
(range) of « € I,,, respectively. The natural number rank « := |im «] is called the
rank of . The inverse element of « is denoted by a~'. For a subset Y C X,,, we
denote by id|y the identity mapping on Y. Clearly, if Y = X, then id|x, =: idis the
identity mapping on X,,. For a subset A C I,,, we denote by (A) the subsemigroup
of I,, generated by A. We say that a transformation a € I, is fence-preserving
if # <y y implies that za <; ya, for all z,y € dom a. We denote by PFI, the
subsemigroup of I,, of all partial fence-preserving injections of X,. Note that the
semigroup PF'I, is not inverse. For example,

1245 6 (23456
o= € PFIg, buta ' = ¢ PFIs.
3 2 6 5 4 2 1 6 5 4

Let IF, be the set of all & € PFI, such that a~! € PFI,. Clearly, IF, is the
set of all « € PFI, with z <y y if and only if za <; ya, for all z,y € dom a.

1750223-2



On the semigroup of all partial fence-preserving injections on a finite set

Hence, IF,, is an inverse subsemigroup of PF'I, and contains all regular elements
of PF1I,. In Sec. 2, we characterize the Green’s relations for the inverse semigroup
IF,,. Further, we prove that the semigroup [F,, is generated by its elements with
rank > n — 2. Moreover, for n € 2N we find the least generating set and calculate
the rank of IF,,.

2. Green’s Relations

In this section, we characterize the Green’s relations R, £, H and J on IF,,. Since
IF, is an inverse subsemigroup of I,,, for o, 3 € I F},, it holds:

(1) aLp if and only if im o = im S.
(2) aRp if and only if dom a = dom 3.
(3) aHp if and only if dom o = dom § and im o = im S.

It remains to describe the relation 7, since this relation is different for the
semigroups I,, and IF,,. For example, let

1 4 5 6 1 2 5 6
a:<2 6 5 4)’ ﬂz(s 6 1 2>€IF6'

Then rank « = rank 3, but « and 3 are not J related.
Definition 2.1. For Y C X, let Yg be the set of all subsets

{ai,ai41,. . aipr} (,r € {1,...,n})
of Y such that a;—1 ¢ Y (ori =1) and a;4r41 ¢ Y (or i +r =n).
Definition 2.2. Let o € I'F,, and let k € N. Then we put

a(k) = {A € (dom a)s : |A| = K},
a’(2k+1) := {{as,...,ai4or} € a2k + 1) : i € 2N — 1}.

Note that a®(2k + 1) C «(2k + 1).
For a set M of natural numbers, let max M (let min M) be the greatest (the
least) natural number in M with respect to the natural order in N.

Proposition 2.3. Let o, 3 € IF,,. Then the following statements are equivalent:

(i) aJp.
(ii) |a(k)| = |B(k)| and |a®(2k +1)| = |3°(2k + 1)| for all k € N.

Proof. Suppose that (3. Then there are v,d,v1,d1, € I[F, such that g = yad
and a = y1001. We have rank o = rank 3 since I'F,, < I,,. Then from o = v, 36,
and 3 = yad, we obtain |(dom «)g| = |(dom 3)g/|, and in particular, |« (k)| = |5(k)|
for all k& € N. Moreover, if & € N and B € (k), then we observe By € (dom «)g
and thus By € a(k).
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Let £k € 2N+ 1 and B := {ai,...,a;+5-1} € [°(k) (for some i € 2N — 1).
We have By € a(k) and we will show that By € a°(k). Since i is odd, we have
a; <f Qg1 >f - <f Qiyk—2 >f Qipk—1. This implies a;y <p ajp1y >p - <y
Qiyk—27 >f Girp—17y and thereis [ € {1,...,n} with either a;7 = a; and a; 4,17y =
Ai4k—1 OF a;y = A4p—1 and a;yx—1y = a;. This gives a; <f aj41 and [ € 2N — 1,
and consequently, By € a°(k). This shows |3°(k)| < |a®(k)|. Dually, we can verify
the converse inequation. Thus, |a°(k)| = |3°(k)|.

Conversely, let |a(k)| = |3(k)| and |a®(2k+1)| = |3°(2k+1)| for all £ € N. Then
for all k € N, there is a bijection fj : B(k) — a(k) such that for41(B) € a®(2k+1)
for all B € 3°(2k 4+ 1). We define now a mapping v : dom 8 — dom «. For k € N,
B ={as,...,ai4x-1} € B(k) and fx(B) = {as,...,aiyp—1} (with i,71 € {1,...,n})
let

Al tr if k =1 or ¢ and [ have the same parity,
Qjgry 1=

apyk—(r+1), otherwise

for 0 <7 <k — 1. The mapping 7 is well defined since dom 8 = [JI_, 3(j), where
p:=max{k € N: (k) # 0}.

We have to show that v € IF),. For this let again B = {a;,...,a;1p-1} € 8(k)
and {aj,...,a14p-1} = fu(B) for some ¢,1,k € {1,...,n}.

We consider here the case i € 2N—1, the case ¢ € 2N can be handled in the same
matter. Suppose that k € 2N+1. Then B € 5°(k) and fx(B) € a°(k),i.e.l € 2N—1.
Since ¢ and [ are odd, we have a; <f a1 >¢ -+ <f Giyk—2 >f Qitk—1 and
ap <g app1 >p 0 <p Qyk—2 >f Qpk—1, L€ @y <p Qg1 >f 0 <f Qirk—27Y >
At k—17-

Now, suppose that & € 2N. Since 7 is odd, we have a; <j ajy1 >y -+ >y
Qitk—2 <f Qitk—1- If [ is odd, then a; <f Q41 >f 0 >F Qpk—2 <f Qi4+k—1, i.e.
iy <fp GQip1Y >f 0 >f Givk—27Y <f Gi+k—17. 1f 1 is even then a; >; aip1 <y
o <f QUpk—2 >f Qpk—1, 1€ Qipk—17Y >f Qitk—2Y <f -+ <f Qit17Y >f U7

This shows that v € PFI,. Let » € {1,...,n — 1} with a,,a,41 € A for
some A € (im 7)s. We observe that {By : B € (dom f)s} = (dom «)g. Thus,
there is B € (dom f8)s such that By = A and there is s € {1,...,n} with a, =
a,y~'. Then a,+17~ 1 € {ast1,as-1}. If r is odd then a, <f a,11. Assume that
ay ! > ar+17~ ! Then s is even, i.e. asy >¢ asp1y (if arga v~ ! = a4y ) and
as—17y <5 asy (if ar1 v~ =as_1). This gives a, > ar41, a contradiction. If 7 is
even then a, > a,4+1 and we obtain ay ! > an_l by the same arguments.
This provides y~! € PFI,, i.e. v € IF,.

Finally, we define § : im o — im /3 by

§:=a ly1p.

Since o, 8,y € IF,,, we have § = o~ 'y~ 13 € IF,.
There holds 8 = yad. In fact, for a € dom 3, we obtain ayad = ayaa ™ 'y™13 =
af since dom o = im v and dom v = dom f. |
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3. Generating Sets

For convenience, we arrange such that X, is the set of the first positive integers n
for some n € N, i.e. X,, ={1,...,n} with

1<p2>p3<p---n.
Clearly, the minimal elements of the fence F = (X,,,<;) are odd and maximal
elements are even. For a,b € X,,, we will write a = b (mod 2) or shorter a =3 b if
a and b have the same parity. Further, we denote by ¢; the identity mapping on
Xo\{i} fori=1,...,n, ie g =id|x\(;}-
Notation 3.1. Let us put
J:={a € IF, :rank o > n — 2}.
The aim of this section is to show that .J is a generating set for the semigroup

IFn.Note,f;“;l:aileorlgign.

Lemma 3.2. Let m,p € N with m+p <n and m =, m + p. Then

1 - m-=2 m - m+p m+p+2 - on
a= eJ
1 -+ m—2 m+p - m m+p+2 -+ n
and o=t € J.

Proof. By simple calculations, one can see that o € I'F,,. Since rank a = n — 2
and a~! = «, we obtain o, ! € J. O

Lemma 3.3. Let m,p € N such that m+p+2 < n. Then

1 -+ m-2 m m-+p m+p+4 - n
a= e (J)
1 - m-2 m+2 -+ m+p+2 m+p+4 -+ n
and o=t € (J).

Proof. We have to consider two cases.
(1) Suppose that p is even. Then m =5 m + p and we consider the following
transformations with rank > n — 2:

1 -« m—=2 m o mA4p+2 m4p+4 - n
61:(1 e m—2 m4+p+2 - m m+p+4 .- n)
and
1 - m m+2 e o m4+p+2 m4+p+4 - n
62:(1 om o mA4p+2 - m+2  mAp+4 - n)

Clearly, 31,82 € J by Lemma 3.2 and it is easy to verify that
o = P12y and a~ ' = £, 5231,

where ¢, € J. Thus, we obtain o, a™% € (J).
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(2) Now suppose that p is odd. Then m #Z5 m + p and we consider the following
transformations with rank > n — 2:

1 - m-=2 m o om4+p+1 m+p+3 - n
63:(1 e m—2 m+p+1 .- m m+p+3 - n)
and
1 - m-1 m+1 o m+p+2 m+p+4 - n
ﬂ4:<1 o m—=1 m+p+2 -+ m4+1  m4p+4d .- n)

Clearly, 33,84 € J by Lemma 3.2 and it is easy to verify that

o= B30 and o' = B4fs.
Thus, a,a™! € (J). O

Corollary 3.4. Let m,p,k € N such that m 4+ p + 2k < n. Then
1 - m-=2 m m+p m+p+2k+2 -+ n

o= e (J)
1 - m-=-2 m+2k -+ m+4+p+2k m+p+2k+2 - n

and o=t € (J).

Proof. For 0 <7 < k we define the transformations
<l-~m+2i—2 m+2 - m4p+2i m+p+2i+4-~-n>

Bi =
1---m+2i-2m+20+2 - m4+p+2i+2m+p+2i+4---n

Note that 3;, 8" € (J) (0 < i < k) by Lemma 3.3. Tt is easy to verify that

a=LFy B €(J)yand ot =61 - Byt € (). O
Lemma 3.5. Let m,p € N such that p is odd and m +p+1 < n. Then
1 e m_2 m e m+p m+p+3 e n
o= e (J)
1 - m-2 m+p+1 --- m+1 m+p+3 -+ n
and o=t € (J).
Proof. We define a transformation
5 1 - m-=2 m - m+p+1 m+p+3 - n
1= .
1 - m-2 m+p+1 - m m+p+3 -+ n

Clearly, 51 € J by Lemma 3.2. Then we can verify that « = (1, € (J) and

al= emb1 € (J). O

Corollary 3.6. Let m,p,k € N such that p is odd and m +p+ 2k —1 <n. Then
1 - m-=2 m -+ m4+p m4+p+2k+1---n

a= e (J)
1--m-2m+p+2k—1--- m+2k—1 m+p+2k+1 - ---n

and o=t € (J).
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Proof. Let
1 - m-2 m m+p m+p+2k -+ n
ﬁl:(l v m—2 m+2k—-2 -+ m+4p+2k—2 m+p+2k --- n)
and
B2 =
1---m+2k—4 m+2k—-2 - m+p+2k—2m+p+2k+1---n
<1~-m—|—2k—4m—|—p—|—2k’—1-~- m+2k—1 m—|—p—|—2kz—|—1-~-n>'

Note that 81 € (J) (by Corollary 3.4) and (2 € (J) (by Lemma 3.5). It is easy to
verify that a = 313, and o~ = 8517}, and thus a, o~ € (J). O

Lemma 3.7. Let m,p,k € N such that p is even and m + p + 2k < n. Then

1 - m-—2 m o m4+p m4p+2k+2 - n
o (1 cooom—2 m+p+2k -+ m4+2k m+p+2k+2 >6<J>
and a1 € (J).
Proof. Let

1 -+ m-—2 m m4+p m+p+2k+2 - n
51:<1 oo o m—2 m+2k -+ m+p+2k m+p+2k+2 .- n)
and

1 m+2k—-2 m+2k - m+p+2k m+p+2k+2 - n
ﬁ2:<1"~m+2k3—2m+p+2k-~- m + 2k m+p+2k+2...n>'

Note that 81 € (J) (by Corollary 3.4) and f2 € J (by Lemma 3.2). It is easy to
verify that a = 3,8, and a~' = 337!, and thus a,a~! € (J). O

Lemma 3.8. Let Y C X,,. Then id|x, \y € (J).

Proof. IfY =0,i.e. X,,\Y = X,,, thenid|x, =ide€ J. Let 0 #Y := {i1,...,ix} C
X, with k€ {1,...,n}. Then it is easy to verify that id|x \y =&, -~ -, € (J).
O

Proposition 3.9. Let o« € IF,. Then there are transformations ny,..., Nk,
Net1s---,Mm € J (k<1 €N) such that 7]1_17~-~,77/:177lk_i1a-~-,7h_1 € J,dom o C
im (ny---ng), im « C dom (Ng1---m) and x(ny ... QxaMgs1 ... Mm) =2 x for all
x € dom (M1 ... QkQNKt1 - "0)-

Proof. If a =5 a« for all a € dom « then id|qom o id|im o« = «. This shows the
assertion, since id|dom a,id|im o € (J) by Lemma 3.8.
Let a € dom « such that a #Z5 ac. Then it is clear that a — 1,a + 1 ¢ dom a.
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If @ is even then we put
13 - a a+2 - n
n= € J.
a 1l -+ a—=2 a+2 -+ n
We observe that =1 € (J). Moreover, it is easy to see that im o = im (na),

ra~t =5 z(na)~! for all z € im o\{aa} and aca™! = a #3 1 = an~! = aa(na)~!.
This shows that

Hz €im a:x %y 2(na) '} = {z €im a:z % za™ '} - 1.

If @ is odd, then ac« is even and we put

1 -+ a—2 aax ac+2 -+ n
n= eJ
3 - aq 1 aax+2 -+ n

with =1 € (J). By dual arguments, we obtain
{z € dom « : x #5 z(an)}| = |[{z € dom a: z #2 za}| — 1.

Continuing in this way, starting with the even cases, we obtain transformations
Myeeos s Mht1s---,M € J (B <1 €N) such that nf17...,n,;1, nkjl,...,nfl eJ
and z(n1 ... ka4 ... m) =2 x for all x € dom (1 ... ka1 ... m0). O

Notation 3.10. Let a« € PFI, and let A,B € (dom a)g (or A,B € (im a)g).
Then we write A < B if all elements in A are less than any element in B with
respect to the natural order of N. Further, we write

A<B

if A < B and for each C' € (dom a)g (for each C € (im «)g, respectively) the
following implication holds: A< C < B=A=Cor B=C.

Any transformation o € I'F,, with a =5 a« for all @ € dom « can be written in
the following form:

Notation 3.11. Let

A << A R4 <=4
o= e lF,
Al << A < B B,

with i <p e {1,...,n}, and a =3 a« for all a € dom « such that i =1 or

(i) aa =aforallae Ay U---UA;_1 and
(ii) A;—1 < B forallle{i,...,p}.

Further, let
rj:=minA;, s;:=maxA;, t;:=minB;, u;:=maxDB;
for1 <j<p.
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Proposition 3.12. Let a be as in Notation 3.11. Then there exist wy,ws € (J)
with wfl,wgl € (J), dom « C im wy, im a C dom wy such that wyaws has the
form

Ay <= Ay <AL <AL, <= A
wi1we = e lF,
A << Ay < B; < B/»+1 B;)

7

with a =9 a(wiaws) for all a € dom (wiaws), and B, < Bj for alll € {i+1,...,p}
such that i = 1 or a(wyaws) = a for alla € Ay U---UA;_;.

Proof. We will define the transformations w; and ws with dom o C im w; and
im a € dom wy such that wjaws is the required mapping of our assertion. The
concrete calculations we leave to the reader.

Let k € {i,...,p} such that A,y < By if i > 1, and B < B; for all
le{l,...,p}\{k} if i = 1, respectively. Note that if £ =i then w1 = wy =id € J.
Thus, let k& > i. Then we consider the following seven cases. Note that the cases are
not mutually exclusive (i.e. the transformation «a can satisfy more than one case),
but cover all the possibilities.

(1) If r; =2 s, then we put we = id and

1 ce. Ti_2 i - Sk Sk‘+2 . n
w1 = .
1 e fri_2 sk P T’L‘ Sk?+2 . n
(2) If r; Z9 s, and 7, — 2 ¢ dom « (or ; — 1 = 1), then we put wy = id and
r - =3 -1 - Sk Sp+2 -+ n
w1 = .
r - =3 Sk oo —=1 sp+2 ---0n
(3) If r; #o s and s, + 2 ¢ dom « (or sx + 1 = n), then we put we = id and
1 - rp=2 T oo S+l s +3 - n
wy = .
' 1 - =2 s+1 --- T Sp,+3 - n
(4) If u; =2 ty, then we put wy = id and
1 - =2 t - u ui+2 - n
Wwo = .
1 - =2 u -ty u+2 - n
(5) If u; #o ty and ¢, —2 ¢ im « (or t, — 1 = 1), then we put wy = id and
1 - =3 tp—-1 - U; u+2 - n
W2 = .
(6) If u; #o ty, and u; + 2 ¢ im « (or w; + 1 = n), then we put wy = id and
1 - =2 tr eoui+1 o +3 - n
Wo = .
1 - tp—2 u;+1 --- tr u; +3 - n
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Clearly, dom o C im wy, im o € dom we, and wy,wy € J (by Lemma 3.2) for
all cases 1-6.

(7) It remains the case r; #2 sk and u; #2 tr and r; — 2,5, + 2 € dom « and
tp —2,u; +2 € im «, where 1 = r; € dom « and 1 = t; € im « in the case
i =1.

(7.1) Let k = i + 1. First, we will show that r; = t;41. In the case i = 1, it
is clear. For the case i > 1, we have that ¢;41 = u;—1 + 2 (since 4;_1 < B}
and t;41 —2 € im a), r; = s,-1 + 2 (since A;_1 < A; and r; — 2 € dom «) and
Uji—1 +2 = s;-1 + 2 (since aa = a for all a € 43 U---U A;_1). Altogether, we
obtain r; = t;41. Since r; #Zo s;11, we have r; = t;41 = rjy10 =9 1341. Thus, we
get 711 Z2 Si+1 and we put w; = 72 and we = id, where

1 - r;—2 T e Sip1—1 S+l o-on
m =
1 .- 7‘1'—2 3i+1_1 T Si+1+1 crn
1 --- Ti+1—3 ’/‘H_l—l 3i+1_1 Si+1+2 e n
2 = .
1 e Ti+1_3 5i+1 e ri—‘rl S’L+1+2 e n

Clearly, 1 € J by Lemma 3.2 and 72 € (J) by Lemma 3.5. Note that r;11 — 2 ¢
dom «, since otherwise s; = r;41 — 2 =2 1,41 =2 r; implies u; =2 r; = t;41 which is
a contradiction. Thus, it is easy to verify that dom o C im wy.

(7.2) Let k > i+ 1. We define a transformation 7 as following:

(a) If ;41 =2 s, then we put

(1 =2 ma e s sE+2 e m
(b) If ;11 #o Sk, 1.€. r; =2 rip1, then we put
1 - g1 =3 rg—1 - Sk Sp,+2 - n
7—:<1 e Tipl — 3 Sk e g1 —1 s 42 - n)

By Lemma 3.2, we have 7,771 € J. We have to verify that r;»1 — 2 ¢ dom a.
Assume the opposite that r;11 — 2 € dom a. Then s; = r;41 — 2 and thus s; =
Tit1 — 2 =9 141 =2 ;. Therefore, we have r; =5 s; =2 t; =2 u;. Moreover, we
have r; = t;, = 1 in the case i = 1. If 4 > 1 then u;_1 = s;_1 = r; — 2 =5 7; and
Ui—1 =9 Uj—1 + 2 =t implies r; =5 tr. Thus, we obtain u; =5 t;, a contradiction.
Hence, dom « C im 7.

Now, we consider the transformation

Ay o Ay A A A A A
ra="" ' - ook ") e IF,

Ay - Ay By B, - Bf Bia - B,
with 4,1 < B} " 1. For this transformation, we have the case 7.1. with corresponding
le
(J), dom o C im w; and im o C dom ws. O

transformations 71,72 € (J). Then we put wy = 71727 and we = id with wfl,w;
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Proposition 3.13. Let a be as in Notation 3.11 with A;_1 < B;. Then there exist

w1, ws € (J) such that wfl,wgl € (J), dom a Cim wy, im a C dom wa, and

Ay == A <AL <AL, <= A
wW1Qwo = clF,
A << Ay < A; < B£+1 B;)

with a(wiaws) = a for alla € (A3 U---UA;_1 UAL).

Proof. If aa = a for all a € A;, then wy = wy = id. Let aa # a for some a € A;.
Then we put

r - -2 rna -+ s 5 +2 - on
m = , ifry >t
1 e tl_2 T . S; S’L+2 - n
and
1 - r=2 rnoa - s up+2 n
N2 = , it <t
1 e fri_2 ri . si ul+2 . n

Clearly, n1,m2,m7 %, m5 0 € (J) by Corollary 3.4 (if r;a = t;) or Corollary 3.6 (if
rio = u; and r; Zo 8;) or Lemma 3.7 (if ;a0 = w; and r; =5 s;). If v, > t; then
dom o C im 7; and we put w; = 1 and we = id. If r; < ¢; then im a C dom 7,
and we put wy; = id and wy = 79. O

From Propositions 3.9, 3.12 and 3.13 (frequently used), we obtain

Corollary 3.14. Let o € IF,,. Then there exist wy,ws € (J) such that wy ', wy ' €
(J), dom a C im wy, im a € dom wsy, and a(wiaws) = a for all a € dom (wyaws).

Theorem 3.15. IF,, = (J).

Proof. Let « € IF,,. Then by Corollary 3.14, there exist wi,ws € (J) such that
wfl,agl € (J), dom @ C im wy, im o € dom ws, and a(wjaws) = a for all a €

dom (wjaws). Therefore, we have
wiawy = &4, -+ €5, € (J)

(by Lemma 3.8), where {iy,...,ix} = X, \dom (wiawq), k € {1,...,n}.
Finally, we obtain a € (J), since a = w; 'wjawswy ' |

4. Rank of the Semigroup IF,, for Even n

Let n € 2N+1. Using the GAP software, we have observed that I F;, is not generated
by the set {a € IF,, : rank a > n—1}. Moreover, there is no least generating set for
IF,,. But, in the case n is even the situation is different. There is a least generating
set and all its elements have rank > n — 1.
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Throughout this section, let n € 2N and let X,, be again the up-fence 1 <y
2 > .-+ <y n. We describe the least generating set and calculate the rank of the
semigroup [ F,,.

Notation 4.1. We put

= 1 -+ n=-2 n
oy : = ;
3 ... n 1

1 - 4—=1 441 -+ n
Yi = for i € 2N, 4 < i < m;
i—1 - 1 i1+1 -+ n
1 - =1 ¢4+1 -~ n
0; = forie2N—-1,1<i<n-—3;
1 -+ i—=1 n e i+ 1

G :={id}U{o1,00} U{y:1€2N,4<i<n}U{§:i€2N-1,1<i<n-—3}
Note that oy ' =01, 7, ' =7, and §; ' =4;.

Theorem 4.2. IF,, = (G).

Proof. From Theorem 3.15, we have I'F,, = (J). It remains to show that J C (G).
For this, we have to show that all transformations ; for i € {1,...,n} as well as all
transformations which are used in Propositions 3.9, 3.12 and 3.13 belong to (G).
We observe that ¢; = ~;y; for i € 2N, 4 < i <n and ¢; = §;0; for i € 2N — 1,
1<i<n-—3aswell as eg = 0109 and &,,_1 = 0907.
For the transformations in Proposition 3.9, we have

1 3 .- i 1+2 - n 5 5 @)
= = 0; 010;— =
Tl it it g o
if i = a is even and i < n. If ¢ = n then n = ¢;. Further, we have
1 v 4=2 ¢ i+2 -+ n 5 5 @
— =0;—1020;41 €
T\ 1 is2 et

if i = aa is even.
For the transformations in Proposition 3.12, we put

1 - i—1 i+1 -+ j—1 j+1 -~ n »
Bij = . ) ) . = ﬂi,j
1 oo i=1 j—1 - i+1 j+1 - n

1750223-12



On the semigroup of all partial fence-preserving injections on a finite set

for 1 <i<j<mnandi=,j. Clearly, 3;; € (G) since
0i0n—j+i+10s, if ¢ and j are odd,;
" Yivi—iViy if i and j are even.

It is easy to verify that wi, wa, 7 and 7 are all of the form 3; ; for suitable ¢ and j.
Further, we have

1 o i—=1 i4+1 - j—2 j+1 - n
N2 =
1 o i—1 j—1 - i42 j+1 - n

for suitable ¢ and j, and i + 1 #5 j — 2. Clearly, 12 € (G) since 92 = ; jeit1.

For the transformations in Proposition 3.13, we have 11,12 € (J) by Corol-
lary 3.4 (if r;a = ¢;) or Corollary 3.6 (if r;o0 = u; and r; #Zo s;) or Lemma 3.7 (if
rio =u; and r; =9 8;).

For the transformation o in Corollary 3.4, we have

1 o i—1 i+1 el j—1-2k j+1 ... n
a:<1 U S I T S S| Jt1o. n)
with m =i+ 1 and m +p=j — 1 — 2k. Hence, we obtain « € (G) since
- Bij Bitok,j€i+1 - - - Eit2k—1, if i =5 7;
; {ﬂi,j15i+2k1,j6i+1 . Eipok—2, ifiFa .
For the transformation a in Corollary 3.6, we have
1 .. i—1 i4+1 ... j—2k j+1 ... n
az(l R T N TS IR ) R S n>

with m = i+ 1 and m + p = j — 2k. Then we can verify that a € (G) since
o = ﬁi,j€i+1 e Ei2k—1-
For the transformation a in Lemma 3.7, we have
1 ... =1 ¢+1 ... j—=2k—1 j54+1 ... n
o =
1 ... =1 j—-1 ... i+2k+1 741 ... n

withm =i+1and m+p = j—2k—1. We have o € (G) since a = §3; j€it1 - - . Ei+2k-
O

Proposition 4.3. The set G is the least generating set for I'F,,.

Proof. Theorem 4.2 shows that G is a generating set for I'F,,. Let «, 3 € G with
a # § and {a, 8} # {01,02}. Tt is easy to verify that rank o8 = n — 2. Moreover,
we observe rank o} = rank 05 =n — 2. Let a = a1 -+ aup, With aq, ..., € [F,,
2 < m € N, such that rank a = n — 1. Without loss of generality, we can assume
that «; # id for 1 < i < m. Then a1,...,ay,, € {8 € IF,, : rank 8 = n — 1}.
Since G is a generating set for {# € IF, : rank § = n — 1}, there is p € G
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such that aq,...,q, € {p? : j € N} or a1,...,qu, € {01,02} with a; # a;41 for

1 < i < m—1. This shows that any « € G cannot be generated by a set without this

«. Thus, each generating set of I'F,, has to contain G and the assertion is shown.
O

Since |G| = n+ 1 from Theorem 4.2 and Proposition 4.3, we obtain

Theorem 4.4. Let n € 2N. Then rank IF,, =n + 1.
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