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ABSTRACT. This paper deals with semihypergroups of order two from the point of view of the model
theory. We use basic knowledge to show that there are exactly 17 non-isomorphic semihypergroups of
order two. Each of them corresponds in a canonical way to a semigroup of order three. We classify
all of them by generalized identities a concept introduced by Lyapin. In particular, we classify all
non-group semigroups of order three by one generalized identity.
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1. Introduction

The concept of algebraic hyperstructures was introduced in 1934 by the French mathematician
F. Marty [15]. He introduced the concept of hypergroups. This has been studied in the following
decades by many mathematicians. For example, M. M. Zahedi et al. consider categories of several
hyperstructures [19]. Algebraic hyperstructures are generalized classical algebraic structures. In a
classical algebraic structure, the composition of two elements is an element of the universe of that
structure, while in an algebraic hyperstructure, the composition of two elements is a non-empty
subset of the universe, i.e., if H is the universe of a hyperstructure then the composition of two
elements is an element of the set P∗(H) := {X ⊆ H : X 6= ∅}. A semihypergroup (also called
hypersemigroup or multisemigroup) was first investigated by P. Bonansinga and P. Corsini [2, 4]
and later studied by many authors, for example by B. Davvaz (see e.g. [3, 5]), De Salvo et al.
[17], D. Freni [7], K. Hila et al. [10], and V. Leoreanu [13]. For a semihypergroup with a universe
H, we have two operations. One of them is the operation between the elements of H and the
other one is between the elements in P∗(H). If we show these both operations with the same
symbol, as several authors do, a confusion can arise. We will show these both operations by two
symbols, namely ◦ as the operation between the elements of H and ∗ as the operation between
the elements of P∗(H). The operation ∗ is determined by the operation ◦ in the following sense:
∗ : P∗(H)× P∗(H)→ P∗(H) with

A ∗B :=
⋃

(a,b)∈A×B

a ◦ b.

We can easily see that the operation ∗ is well defined (see also [11]). A hyperstructure (H, ◦) is
said to be a semihypergroup if ◦ : H ×H → P∗(H) with (a ◦ b) ∗ {c} = {a} ∗ (b ◦ c) or alternatively,⋃
x∈(a◦b)

x◦c =
⋃

x∈b◦c
a◦x, for all a, b, c ∈ H. For convenience, we write also x instead of {x}, whenever
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{x} is a singleton subset of H. So the “associative law” has the form (a ◦ b) ∗ c = a ∗ (b ◦ c). In [8],
M. Golmohamadian and M. M. Zahedi show that each deterministic finite automaton induces
an associative hyperoperation ◦ on the set S of states. In particular (S, ◦, 0), where 0 is the
start state, is a so-called hyper K-algebra, a generalization of the concept of a BCK-algebra.
Two semihypergroups (H1, ◦1) and (H2, ◦2) are called isomorphic if there is a bijection f : H1 →
H2 with f(a ◦1 b) = f(a) ◦2 f(b) for all a, b ∈ H1, where f(a ◦1 b) := {f(x) : x ∈ a ◦1 b}.
Note that ∗ is an associative operation on P ∗(H) [11], i.e., (P∗(H), ∗) is a semigroup. In this
sense, each semihypergroup can be regarded as a semigroup. But not conversely, i.e., not each
semigroup with universe in P∗(H), for a suitable set H, corresponds to a semihypergroup in the
previous mentioned sense. For example, let us consider the four-element group with the universe
{{1}, {2}, {3}, {1, 2}}, where {1} is the identity element and {3} the element of order 2. Assume
that the operation in this group is the operation ∗, which corresponds to the operation ◦ belonging
to a semihypergroup. Then we have {1} = {2}∗{1, 2} = 2◦1∪2◦2 = {2}∗{1}∪{2}∗{2} = {2, 3},
a contradiction. So the question arrises, for a given set H, which semigroups with universe in
P∗(H), containing all singleton sets, correspond to a semihypergroup in the previous mentioned
sense. More generally, which semigroups correspond to semihypergroups, i.e., given a semigroup S,
is there a semihypergroup (H, ◦) such that S is isomorphic to P∗(H) (in symbols: S ∼= P∗(H)).
Note that the existence of such a semihypergroup has not be unique, i.e., for a given semigroup S,
different semihypergroups (H, ◦) with S ∼= P∗(H) can exist. Take for example, the constant
semigroup. The cardinality of the universe of a semihypergroup is denoted by the order of the
semihypergroup. For more background about semihypergroups see [11–13].

Semihypergroups of order two are at the center of interest in this paper. In the next section,
we will give a complete list of all semihypergroups of order two (up to isomorphism). In the third
section, we classify all semigroups which are isomorphic to P∗(H) for a suitable semihypergroup
(H, ◦) of order two, i.e., we will classify semigroups of order three (recall, the order of a semigroup
means the cardinality of its universe).

Algebraic structures can be classified by varieties in the sense of Birkhoff. It is known that
neither the class of all semigroups of order three nor any of its subclasses forms a variety, except
of the trivial variety. Therefore, we will use a concept, introduced by E. S. Lyapin [14] and
A. E. Evseev [6], respectively.

Let X := {x1, x2, x3, . . .} be a countable set of variables and let X+ be the set of all words over
the set X. An expression u ≈ v (with u, v ∈ X+) will be called equation and let Eq(X) be the set
of all possible equations. A subset σ ⊆ Eq(X) is called disjunction of identities (for short: DI)
(see e.g. [18]). An DI σ ⊆ Eq(X) is satisfied by a semigroup S (in symbols: S |= σ) if for all
mappings h : X → S, there is an equation u ≈ v ∈ σ such that h(u) = h(v), where h : X+ → S
denotes the unique determined homomorphic extension of h to the free word semigroup X+. Let
Σ be a set of DI ′s, i.e., Σ ⊆ P(Eq(X)) is a subset of the power set of Eq(X). Then we put ModΣ
as the class of all semigroups S with S |= σ for all σ ∈ Σ. We will call such a class ModΣ an
alternative variety. An alternative variety is a generalization of the classical concept of a variety
due to Birkhoff, namely taking Σ being a set of singleton sets. In particular, ModΣ is closed
under isomorphic images. For more background about alternative varieties, we refer the reader
to [18]. Recently, alternative varieties were used to describe particular classes of completely regular
semigroups [1, 16].

We will show that there are five alternative varieties such that exactly the elements of these
classes correspond to semihypergroups in the previous explained sense. In this way, we obtain a
classification of a class of semigroups of order three by DI ′s.

In the last section, we classify all non-group semigroups of order three. All of them and exactly
these have at least one two-element subsemigroup. But a two-element semigroup can be regarded
as a semihypergroup of order two, where any composition of two elements is a singleton set. Such
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a semihypergroup will be called non-proper and proper otherwise. With other words, we classify
semigroups S of order three such that there is a semihypergroup (H, ◦) and a subsemigroup T of
S (as usually, we write T ≤ S for a subsemigroup T of S) with T ∼= S∗(H), where S∗(H) is the
subsemigroup of P∗(H) generated by {{x} : x ∈ H}. This is stronger as simply saying that S has
a subsemigroup of order two.

2. All semihypergroups of order two

The aim of this section is a complete list of all semihypergroups of order two (up to isomorphism).
As already mentioned, each semigroup of order two can be regarded as a semihypergroup of order
two, namely as a non-proper one. It is well-known that there are exactly five non-isomorphic
semigroups of order two (see also [9]).

· a b
a a a
b a a

· a b
a a b
b b a

· a b
a a b
b b b

· a b
a a a
b b b

· a b
a a b
b a b

Table S-1 Table S-2 Table S-3 Table S-4 Table S-5

It remains to determine all proper semihypergroups of order two. An element a ∈ H of the
universe of a semihypergroup (H, ◦) will be called idempotent if a ◦ a = a.

Lemma 2.1. Let (H, ◦) be a proper semihypergroup with an idempotent element. Then (H, ◦) is
isomorphic to one of the following semihypergroups:

◦ a b
a a a
b H b

· a b
a a b
b H b

· a b
a a H
b H b

· a b
a a a
b a H

· a b
a a a
b H H

Table A1 Table A2 Table A3 Table A4 Table A5

◦ a b
a a b
b b H

· a b
a a b
b H H

· a b
a a H
b a H

· a b
a a H
b b H

· a b
a a H
b aH H

Table A6 Table A7 Table A8 Table A9 Table A10

P r o o f. Let H = {a, b} be the universe of the semihypergroup and let a be the idempotent element.
If a ◦ b = H then H = (a ◦ b) ∗ b = a ∗ (b ◦ b). This implies that b ◦ b 6= a, i.e., (H, ◦) is isomorphic
to one of the semigroups A∗1, A

∗
2, A3, A8, A9, and A10, where

◦ a b
a a H
b b b

◦ a b
a a H
b a b

Table A∗
1 Table A∗

2

If b ◦ a = H then we obtain again b ◦ b 6= a and (H, ◦) is isomorphic to one of the semigroups
A1, A2, A3, A7, and A10. It is easy to verify that A2 and A∗2 are isomorphic. Likewise, A1 and A∗1
are isomorphic. The remaining semigroups are pairwise non-isomorphic.

Suppose that a ◦ b 6= H and b ◦ a 6= H. Then b ◦ b = H and (b ◦ a) ∗ b = b ∗ (a ◦ b) implies
a ◦ b = b ◦ a, i.e., (H, ◦) is isomorphic to A4 or A6.

We leave the reader to verify that all the listed structures are semihypergroups. �

Lemma 2.2. Let (H, ◦) be a proper semihypergroup with the universe H = {a, b} such that a◦a = b.
Then (H, ◦) is isomorphic to the semihypergroup.
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◦ a b
a b H
b H H

Table A11

P r o o f. We have a ∗ b = a ∗ (a ◦ a) = (a ◦ a) ∗ a = b ∗ a and b ∗ b = (a ◦ a) ∗ b = a ∗ (a ◦ b). This
shows that b ◦ b 6= H if and only if a ∗ b = b ∗ a 6= H. Hence, (H, ◦) is isomorphic to A11, which is
obviously a semihypergroup. �

Lemma 2.3. Let (H, ◦) be a proper semihypergroup with the universe H = {a, b} such that a ◦ a =
b ◦ b = H. Then (H, ◦) is isomorphic to the semihypergroup

◦ a b
a H H
b H H
Table A12

P r o o f. We have H = H ∗ b = (a ◦ a) ∗ b = a ∗ (a ◦ b). This implies a ◦ b 6= b. Likely, H = a ∗H =
(a ◦ b) ∗ b implies a ◦ b 6= a, i.e., a ◦ b = H. Dually, we can show b ◦ a = H and hence, (H, ◦) is
isomorphic to A12, which is obviously a semihypergroup. �

Summarizing the previous lemmas, we obtain the complete list of semihypergroups of order two.

Proposition 2.1. There are exactly 17 semihypergroups of order two up to isomorphism.

P r o o f. There are five semihypergroups which are non-proper. By Lemma 2.1, there are 10
pairwise non-isomorphic proper semihypergroups with at least one idempotent element. Let (H, ◦)
be a proper semihypergroup without an idempotent element and with the universe H = {a, b}.
Then a ◦ a = b or b ◦ b = a or a ◦ a = b ◦ b = H. Thus, Lemma 2.2 and Lemma 2.3 show that there
are exactly two non-isomorphic semihypergroups without idempotent elements. �

3. Classification by DI ′s

In this section, we consider the class SH of all all semigroups S such that there is a semihyper-
group (H, ◦) with S ∼= P∗(H). Of course, the class SH is neither a variety nor a finite union of
varieties. But we can show that SH is the union of five alternative varieties. All the semigroups in
SH have order at most three, i.e., less than four elements. This can be realized by following DI:

σ1 := {xi ≈ xj : 1 ≤ i < j ≤ 4}.

Lemma 3.1. Let S be a semigroup satisfying σ1. Then S has at most three elements.

P r o o f. Assume that |S| ≥ 4. Then let a1, a2, a3, and a4 be pairwise different elements in S.
Further, let h : X → S be a mapping with h(xi) = ai for i ∈ {1, 2, 3, 4} and h(x) = a1 otherwise.
Since S |= σ1, we have h(xi) = h(xj) for some i, j ∈ {1, 2, 3, 4} with i < j. This gives ai = aj , a
contradiction. �

In the same matter, one can prove that a semigroup S has at most n elements (for a natural
number n) if S |= {xi ≈ xj : 1 ≤ i < j ≤ n + 1}. So, Mod {{xi ≈ xj : 1 ≤ i < j ≤ n + 1}} is the
class of all semigroups with order n or less.

We need the following nine DI´s in this section:

σ2 := {x1x2 ≈ x3x4};
σ3 := {x1x2 ≈ x2x1};
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σ4 := {x1x2 ≈ x1, x1x2 ≈ x2};
σ5 := {x1x2 ≈ x1};
σ6 := {x1x2 ≈ x2};
σ7 := {xixj ≈ xk : i, j, k ∈ {1, 2, 3}, i 6= k, j 6= k} ∪ {x1 ≈ x2, x1 ≈ x3, x2 ≈ x3};
σ8 := σ4 ∪ {x21 ≈ x1, x21 ≈ x2, x21x2 ≈ x1x2, x1 ≈ x2};
σ9 := {x31 ≈ x21, x22x1 ≈ x22, x21 ≈ x1, x21 ≈ x2};
σ10 := σ4 ∪ {x1x2 ≈ x21, x21x2 ≈ x1x2}.

A semigroup S which is isomorphic to P∗(H) for a non-proper semihypergroup (H, ◦) of order
two has rank less than and equals 2 or rank 3, where the rank of S (in symbols: rankS) is the least
size of a generating set for S.

Lemma 3.2. Let S be a semigroup with rank 3, isomorphic to a subsemigroup of P∗(H), for a
semihypergroup (H, ◦) of order two. Then S ∈ Mod {σ1, σ2} or S ∈ Mod {σ1, σ3, σ4} or S ∈
Mod {σ1, σ5} or S ∈ Mod {σ1, σ6}.

P r o o f. Let H = {a, b}. Since rankS = 3, the set H ∈ P∗(H) is not a composition of elements
from P∗(H), i.e., (H, ◦) is a non-proper semihypergroup. Thus, (H, ◦) is a left-zero or right-zero
semigroup or (H, ◦) is the constant semigroup or it is the two-element band with zero-element. But,
(H, ◦) cannot be the two-element group since otherwise the non-identity element and H generates
P∗(H), i.e., rankP∗(H) ≤ 2 and thus rankS ≤ 2, a contradiction.

If (H, ◦) is a left-zero or right-zero semigroup then P∗(H) is also a left-zero semigroup and a
right-zero semigroup, respectively. Since x ∗H = x ◦ a ∪ x ◦ b = x for all x ∈ H, whenever (H, ◦)
is a left-zero semigroup, we can calculate that P∗(H) |= σ5, i.e., S ∈ Mod {σ1, σ5}. Dually, we can
conclude that S ∈ Mod {σ1, σ6}, whenever (H, ◦) is a right-zero semigroup. By similar reasons, we
can verify that S ∈ Mod {σ1, σ2}, whenever (H, ◦) is the constant semigroup.

If (H, ◦) is the two-element band with zero 0 then 0 ∗H = 0 ◦ a ∪ 0 ◦ b = 0 and H = H ∗H =
x ∗H = H ∗ x for the non-zero element x in H. This shows that P∗(H) satisfies both σ3 and σ4,
i.e., S ∈ Mod {σ1, σ3, σ4}. �

Lemma 3.3. Let S be a semigroup with rank ≤ 2 such that S is isomorphic to a subsemigroup
of P∗(H) for some semihypergroup (H, ◦) of order two. Then S ∈ Mod {σ1, σ7, σ8, σ9} or S ∈
Mod {σ1, σ3, σ4}.

P r o o f. First, we suppose that (H, ◦) is a proper semihypergroup and we want to show that σ7,
σ8, and σ9 are satisfied in P∗(H). We have to replace both the variables x1 and x2 by elements in
P∗(H), where H = {a, b} is assumed.

We start with σ8. If we replace both variables x1 and x2 by the same element, say x, then the
equation x1 ≈ x2 provides the equality x = x. Let us replace x1 and x2 by different elements
but not by H, say x1 by a and x2 by b. If we suppose that x1x2 ≈ x1, x1x2 ≈ x2, x21 ≈ x1, and
x21 ≈ x2 do not provide an equality then we can conclude that a ◦ b = H and a ◦ a = H. This gives
(a ◦ a) ∗ b = H ∗ b = a ◦ b ∪ b ◦ b = H = a ◦ b, i.e., we have the equality (a ◦ a) ∗ b = a ◦ b, which
is given by the equation x21x2 ≈ x1x2. Let us replace x1 by a and x2 by H and let us assume that
x1x2 ≈ x1, x1x2 ≈ x2, x21 ≈ x1, and x21 ≈ x2 do not provide an equality. Then we have a ∗H = b
and a ◦a = b. From a ∗H, we conclude that a ◦a = a ◦ b = b. Thus, a ∗ (a ∗H) = a ◦ b = b = a ∗H,
i.e., we have the equality (a ◦ a) ∗ H = a ∗ H = b, which is given by the equation x21x2 ≈ x1x2.
Dually, the equation x21x2 ≈ x1x2 provides an equality if we replace x1 by b (instead by a). Finally,
let us replace x1 by H. Note that H ∗ H = H because at least one of the compositions of the
elements in H gives H (since (H, ◦) is a proper semihypergroup), i.e., the equation x21 ≈ x1 gives
the equality H ∗H = H. Next, we verify that S |= σ9. If we replace both variables x1 and x2 by
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the same element x of P∗(H) then the equation x1x2 ≈ x21 provides the equality x2 = x2. Let us
replace x1 and x2 by different elements, but different from H, say x1 by a and x2 by b. Suppose
that x1x2 ≈ x21, x1x2 ≈ x22, x21 ≈ x1, and x21 ≈ x2 do not provide an equality. Then we have
a◦ b = H2 and a◦a = H which leads us to (a◦a)∗a = H ∗a = a◦a∪ b◦a = H ∪ b◦a = H = a◦a.
So, we have the equality (a ◦ a) ∗ a = a ◦ a, which is given by the equation x31 ≈ x21. Let us replace
x1 by a and x2 by H. Admit that x21 ≈ x1, and x21 ≈ x2 does not provide an equality. Then we get
a◦a = b, i.e., b2 = a∗H = a◦a ∪ a◦b 6= a. If a∗H = b, then we conclude that a◦b = b and obtain
the equality a◦a◦a = a◦a given by the equation x31 ≈ x21. If a∗H = H then we consider two cases.
Admit that b◦a ∈ {a,H}. Using H2 = H, we can conclude H2∗a = H ∗a = a◦a∪b◦a = H = H2.
Admit now that b ◦ a = b. Then H ∗ a = b and thus H ∗ (H ∗ a) = H ∗ b = a ◦ a∪ b ◦ b = H = H2.
Thus, we have the equality H2 ∗ a = H2, given by the equation x22x1 ≈ x22. Dually, we can argue,
whenever we replace x1 by b instead by a. Finally, we replace x1 by H. Since H2 = H (since
(H, ◦) is a proper semihypergroup), the equation x31 ≈ x21 provides the equality H3 = H2.

Note that S |= σ7. In fact, there are x, y ∈ H with x ◦ y = H since (H, ◦) is a proper
semihypergroup. If we replace the variables x1, x2, and x3 by different elements then there are
i, j, k ∈ {1, 2, 3} with i 6= k and j 6= k such that xi is mapped to x, xj is mapped to y, and xk is
mapped to H. The equation xixj ≈ xk provides the equality x ◦ y = H. But if we replace two
variables of x1, x2, and x3 by the same element x then one of the equations x1 ≈ x2, x1 ≈ x3 and
x2 ≈ x3 provides the equality x = x.

It remains to consider the case that (H, ◦) is a non-proper semihypergroup. In this case, (H, ◦)
cannot be a band because rankP∗(H) = 2. Thus, (H, ◦) is the two-element group and we get x ∗
H = H∗x = H for all x ∈ H. This shows that P∗(H) ∈ Mod {σ1, σ3, σ4}, i.e., S ∈ Mod {σ1, σ3, σ4}.

�

Lemma 3.4. Let S be a semigroup such that S ∼= P∗(H) for some semihypergroup (H, ◦) of order
two. Then S |= σ10.

P r o o f. Let H = {a, b}. If we replace both variables x1 and x2 by the same element, say x ∈
P∗(H), then we get the equality x2 = x2 by the equation x1x2 ≈ x21. Let us replace x1 by a and
x2 by b (if we replace x1 by b and x2 by a the we will have the same argumentation). Suppose
that x1x2 ≈ x1 and x1x2 ≈ x2 give no equality. Then a ◦ b = H and a ∗H = a ◦ a ∪ a ◦ b = H,
i.e., a ∗ (a ◦ b) = a ∗ H = H = a ◦ b. Thus, the equation x21x2 ≈ x1x2 provides the equality
a ∗ (a ◦ b) = a ◦ b. Let us replace x1 by a and x2 by H (if we replace x1 by b then we can follow the
same argumentation). If we admit that x1x2 ≈ x1 and x1x2 ≈ x2 give no equality then we obtain
a∗H = b, i.e., a◦b = a◦a = b. This shows that a∗H = a◦a, i.e., the equation x1x2 ≈ x21 provides
equality. Finally, we replace x1 by H and x2 by a (if we replace x2 by b then we can follow the
same argumentation). Admit that x1x2 ≈ x21, x1x2 ≈ x1, and x1x2 ≈ x2 give no equality. Then we
conclude that H ∗ a = b and either H2 = H or H2 = a. The latter case is not possible. Otherwise
we have a ◦ a = a. This gives a ∈ a ◦ a ∪ b ◦ a = H ∗ a = b, a contradiction. Hence, H2 = H, i.e.,
H2 ∗ a = H ∗ a, which is given by the equation x21x2 ≈ x1x2.

Altogether, we have shown that S |= σ10, i.e., S ∈ Mod {σ10}. �

Remark 1. It is easy to verify that the three-element group does not satisfy σ10. In order to see
this, we replace x1 and x2 by the both non-identity elements in the group. Since the composition
of the both non-identity elements gives the identity element, we can easy verify that non of the
four equations in σ10 will give an equality in the group.

If T is a two-element semigroup then T can be regarded as a non-proper semihypergroup (T, ◦)
of order two and T is isomorphic to a proper subsemigroup of P∗(T ). So, we are interested in
semigroups S which are isomorphic to P∗(H) for a suitable semihypergroup (H, ◦) of order two.
A classification of these semigroups will provide the following theorem, the main result of this
section.
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Theorem 3.1. Let S be a non-trivial semigroup. Then the following statements are equivalent:

(i) There is a semihypergroup (H, ◦) of order two such that S is isomorphic to a subsemigroup
of P∗(H).

(ii) S ∈ Mod {σ1, σ2} or S ∈ Mod {σ1, σ3, σ4} or S ∈ Mod {σ1, σ5} or S ∈ Mod {σ1, σ6} or
S ∈ Mod {σ1, σ7, σ8, σ9, σ10}.

P r o o f. If S is a semigroup of order two then S satisfies both conditions (i) and (ii). In fact,
we have already mentioned that (i) is satisfied. In order to see (ii), we have to mention that a
two-element semigroup satisfies σ1. Moreover, we can observe that S satisfies both DI ′s σ3 and
σ4 or one of the DI ′s σ2, σ5, and σ6.

Let us now admit that S has exactly three elements. The direction (i) ⇒ (ii) is given by
Lemma 3.2 until Lemma 3.4. We consider the converse direction and will show that for any
semigroup S in the list below of all three-element semigroups, there is a semihypergroup (H, ◦) of
order two such that S is isomorphic to a subsemigroup of P∗(H), whenever S satisfies (ii).

· x y z
x x y z
y y z x
z x x y

· x y z
x y z y
y z y z
z y z y

· x y z
x z z z
y z z z
z z z z

· x y z
x z z z
y z y z
z z z z

Table T1 Table T2 Table T3 Table T4

· x y z
x x x z
y y y z
z z z z

· x y z
x y z y
y z y z
z y z y

· x y z
x x x x
y y y y
z x y z

· x y z
x x y x
y x y y
z x y z

Table T5 Table T6 Table T7 Table T8

· x y z
x y z z
y z z z
z z z z

· x y z
x z y x
y y y y
z x y z

· x y z
x z z z
y z z z
z z z z

· x y z
x z z z
y z y z
z z z z

Table S1 Table S2 Table S3 Table S4

· x y z
x z y z
y y y y
z z y z

· x y z
x z x z
y x y z
z z z z

· x y z
x z z z
y y y y
z z z z

· x y z
x z y z
y z y z
z z y z

Table S5 Table S6 Table S7 Table S8

· x y z
x z z z
y x y z
z z z z

· x y z
x z x z
y z y z
z z z z

· x y z
x x y z
y y y z
z z z z

· x y z
x x z z
y z y z
z z z z

Table S9 Table S10 Table S11 Table S12

· x y z
x x x x
y y y y
z x x z

· x y z
x x y x
y x y x
z x y z

· x y z
x x x x
y y y y
z z z z

· x y z
x x y z
y x y z
z x y z

Table S13 Table S14 Table S15 Table S16
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First, we show that T1, T2, T3, T4, T5, T6, T7, and T8 do not satisfy (ii). Clearly, non of them is
a constant semigroup or a left-zero semigroup or a right-zero semigroup. All the four semigroups
T5, T6, T7, and T8 are not commutative. If T is a semigroup isomorphic to T1 or T2 or T3 or T4
then there are a, b ∈ T such that a ◦ b /∈ {a, b}. This shows that T 6|= σ4. It remains to show that
all the eight semigroups do not belong to Mod {σ1, σ7, σ8, σ9, σ10}. By Remark 1, we know that
T1 6|= σ10. Assume that T2 |= σ8. Then replacing x1 by x and x2 by z, we obtain xz = x or xz = z
or x2 = x or x2 = z or x2z = xz. But it holds xz = y, x2 = y, and yz = z in T2, a contradiction.
Assume that T3 |= σ9. Then replacing x1 by x and x2 by y, we obtain xy = x2 or xy = y2 or
x3 = x2 or y2x = y2 or x2 = x or x2 = y. But we have xy = x, x2 = z, y2 = y, x3 = zx = x, and
y2x = yx = z in T3, a contradiction. Assume that T4 |= σ9. Then replacing x1 by x and x2 by y,
we obtain again xy = x2 or xy = y2 or x3 = x2 or y2x = y2 or x2 = x or x2 = y. But in T4, it
holds x2 = y2 = z, xy = x, and zx = x, a contradiction. The semigroups T5, T6, T7, and T8 do not
satisfy the DI σ7. We will show it for T5. The argumentation for the remaining ones is similarly.
Assume that T5 |= σ7. Replacing x1 by x, x2 by y, and x3 by z, we obtain xy = z or or yx = z or
yz = x or zy = x or xz = y or zy = x or x2 ∈ {y, z} or y2 ∈ {x, z} or z2 ∈ {x, y}, i.e., rankT5 ≤ 2,
a contradiction.

In the remaining part of this proof, we will verify that for the other three-element semigroups
S, there is a semihypergroup (H, ◦) of order two such that S ∼= P∗(H). Let us consider the
semihypergroup A11. Then a ◦ b = b ◦ a = H, i.e., all compositions of elements from P∗(H) are
H, except of a ◦ a = b. This shows that P∗(H) ∼= S1. If (H, ◦) is the semihypergroup A10 then we
obtain by almost the same arguments that P∗(H) ∼= S4 and if (H, ◦) is the semihypergroup A3 then
P∗(H) ∼= S12. If (H, ◦) is the two-element group S−2 then a◦a∪b◦a = a◦b∪b◦b = a◦a∪a◦b =
b ◦ a ∪ b ◦ b = H = H2. This shows that P∗(H) ∼= S2, where {x, z} is the subgroup of S2. S3 is
the constant semigroup. It is isomorphic to P∗(H), where (H, ◦) is the semihypergroup A12 since
all compositions give H. If (H, ◦) is the semihypergroup A4 then a is the zero-element in P∗(H)
and the remaining compositions give H since b ◦ b = H. Hence, P∗(H) ∼= S5, where y is the zero-
element. If (H, ◦) is the semihypergroup A6 then b◦b = H and a◦a∪a◦b = a◦a∪b◦a = H implies
that any compositions of H with any other element from P∗(H) gives H. Thus, P∗(H) ∼= S6. If
(H, ◦) is the semihypergroup A5 then a is a left-zero from P∗(H) and the remaining compositions
of elements in P∗(H) give H. This shows that P∗(H) ∼= S7, where y is the left-zero element
in S7. Dually, we obtain P∗(H) ∼= S8, where (H, ◦) is the semihypergroup A8. If (H, ◦) is the
semihypergroup A7 then a ∗H = a ◦ a∪ a ◦ b = H and all the remaining compositions of elements
from P∗(H) give also H. Hence, P∗(H) ∼= S9. Dually, we have P∗(H) ∼= S10, where (H, ◦) is
the semihypergroup A9. If (H, ◦) is the semihypergroup S4 than a is the zero-element in P∗(H)
and the remaining three compositions b ∗ H, H ∗ b, and H ∗ H give H since b ◦ b = b. Hence,
P∗(H) ∼= S11, where z is the zero-element. If (H, ◦) is the semihypergroup A2 then b is a right-zero
in P∗(H) and since a ∗ H = a ◦ a ∪ a ◦ b = H as well as b ◦ a = H, we can calculate that the
remaining compositions of elements from P∗(H) give H. Thus, P∗(H) ∼= S13. Dually, we obtain
P∗(H) ∼= S14, where (H, ◦) is the semihypergroup A1.

It is easy to verify that P∗(H) is a left-zero semigroup, whenever (H, ◦) is left-zero semigroup,
i.e., P∗(H) ∼= S15. Dually, P∗(H) ∼= S16, whenever P∗(H) is a right-zero semigroup. �

The proof of Theorem 3.1 shows which semigroups of order three corresponds to semihypergroups
of order two explicitly. A description of semihypergroups of order 3 and more in the setting of
Theorem 3.1 is a still open problem. Its solution requires another but more complex approach as
in the proof of Theorem 3.1, as initial attempts have already shown.

Corollary 3.1.1. Let S be a semigroup of order three. There is a semihypergroup (H, ◦) of order
two such that P∗(H) ∼= S if and only if S ∼= Si for some i ∈ {1, 2, . . . , 16}.
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4. All (non-group) semigroups of order three

In this section, we consider the subsemigroup P̂ ∗(H) of P∗(H) generated by the elements

{x}, x ∈ H. Note that P̂ ∗(H) is a proper subsemigroup of P∗(H), whenever (H, ◦) is a non-
proper semihypergroup. All semigroups of order three, except of the group, have a two-element
subsemigroup. So in the following theorem, all (non-group) semigroups of order 3 are classified by
an alternative variety, determined by the following DI:

σ := σ4 ∪ {x1x2 ≈ x21, x1x2 ≈ x21x2, x1x2 ≈ x1x22, x22 ≈ x3, x1 ≈ x3, x2 ≈ x3}.

Theorem 4.1. Let S be a semigroup with three elements. Then the following statements are
equivalent:

(i) There is a semihypergroup (H, ◦) of order two such that P̂ ∗(H) is isomorphic to a subsemi-
group of S.

(ii) S ∈ Mod {σ}.

P r o o f. (i) ⇒ (ii): Let (H, ◦) be the semihypergroup with H = {a, b} and let T ≤ S be such that

T ∼= P̂ ∗(H). Then there is an isomorphism f : P̂ ∗(H)→ T . Let us put α := f(a), β := f(b), and
let γ be the remaining element in S. Note that γ = f(H), whenever S = T . Let us now replace
the variables x1, x2, and x3 by elements of S. If we replace both variables x1 and x2 by the same
element x then the equation x1x2 ≈ x21 provides the equality x2 = x2.

Let us replace x1 by α and x2 by β. Admit that x1x2 ≈ x1, x1x2 ≈ x2, and x1x2 ≈ x21 give
no equality, i.e., αβ 6= α, αβ 6= β, and αβ 6= α2. Then αβ = γ, i.e., γ ∈ T . We observe that
f(a ◦ b) = f(a)f(b) = αβ 6= α2 = f(a)f(a) = f(a ◦ a), i.e., a ◦ b 6= a ◦ a and thus a ∗ H =
{a ◦ b, a ◦ a} = H. Therefore, we have α2β = α(αβ) = αγ = f(a)f(H) = f(a ∗H) = f(H) = γ =
αβ, i.e., x21x2 ≈ x1x2 gives the equality α2β = αβ.

Let us replace x1 by α and x2 by γ and admit that x1x2 ≈ x1, x1x2 ≈ x2, and x1x2 ≈ x21
give no equality, i.e., αγ 6= α, αγ 6= γ, and αγ 6= α2. Then we have αγ = β. Suppose that
γ /∈ T , i.e., α2 = α or α2 = β. The latter is not possible because of β = αγ 6= α2. Hence,
α2 = α, i.e., we have the equality α2γ = αγ, given by the equation x21x2 ≈ x1x2. Suppose that
γ ∈ T . Then αγ = β implies f(a)f(H) = f(b), i.e., a ∗H = b and thus a ◦ b = b. This provides
αβ = f(a)f(b) = f(a ◦ b) = f(b) = β and hence α2γ = α(αγ) = αβ = β = αγ, i.e., the equation
x21x2 ≈ x1x2 gives the equality α2γ = αγ.

Finally, let us replace x1 by γ and x2 by α. Admit that x1x2 ≈ x1, x1x2 ≈ x2, and x1x2 ≈ x21 give
no equality, i.e., γα 6= γ, γα 6= α, and γα 6= γ2. This provides γα = β. But β = γα 6= γ2 implies
γ2 = γ or γ2 = α. If we have γ2 = γ, then the equation x21x2 ≈ x1x2 gives the equality γ2α = γα.
Suppose now that γ2 = α. Then γ /∈ T . Otherwise α = γ2 = f(H)2 = f(H ∗ H) = f(H) = γ
(since at least one composition of the elements in H gives H), a contradiction. Note that x3 is
replaced by an element x of S. If x ∈ {α, γ} then x1 ≈ x3 or x2 ≈ x3 provides the equality x = x.
Admit now that x = β and that x22 ≈ x3 gives no equality, i.e., α2 6= β. Then α2 = α since γ /∈ T
and the equation x1x

2
2 ≈ x1x2 gives the equality γα2 = γα.

Note that if we replace the variables by β instead by α and conversely, then there is again an
equation in σ which gives an equality in S. Altogether, we have shown that S |= σ.

(ii) ⇒ (i): Assume that S has non two-element subsemigroup. This means that S is a group,
say with the elements e (the identity in S), a, and b. In S, it holds ab = e, a2 = b, and b2 = a.
Hence, ab 6= a, ab 6= b, ab 6= a2, ab 6= a2b, ab 6= ab2, and b2 6= e. This contradicts S |= σ by the
replacement x1 → a, x2 → b, and x3 → e. Hence there is a two-element subsemigroup T ≤ S. We
can regard T as a non-proper semihypergroup (H, ◦) of order two with the universe H = T and

x ◦ y = {xy} for all x, y ∈ H. Then, P̂ ∗(H) is isomorphic to T ≤ S. �
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