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1. INTRODUCTION

We consider q-ary block codes of length n with only two distances, d and n. Codes with two
distances are a classical object in algebraic coding theory for more than 55 years. A comprehensive
survey of such codes can be found in [1]. The construction of new families of such codes, as well
as the description of some existing classes of such codes, remain to be important open problems
in algebraic coding theory (see, e.g., [2] and references therein). In spite of many known infinite
classes of two-weight codes, a complete classification of linear two-weight codes is far from being
completed. Even in the case of codes with distances d and n, we could not say before this paper
that all such codes are known.

In two previous papers [3,4], we classified such codes for the special case where the two distances
are d and d + 1 and showed that all such codes come from equidistant codes in two ways: by
either adding one arbitrary coordinate position (so that to preserve the linearity of the code) to
all codewords or deleting one arbitrary position from all codewords. Then in [5, 6] we considered
arbitrary linear and nonlinear codes with two weights d and d + δ and strengthened the known
results of Delsarte [7,8] on necessary conditions for the existence of such projective codes. We should
also refer to [9], where by characterizing arcs in projective geometry PG(r, q) with multiplicities of
hyperplanes w, w + 1, and w + 2, all q-ary linear codes with distances d, d + 1, and d + 2 were
classified.

The main goal in this paper is to enumerate additive and nonadditive (including distance in-
variant) block codes of length n with exactly two distances for a very special case where these
distances are d and n. It is interesting that linear such codes have generator matrices related to
generator matrices of equidistant linear codes (they are obtained from the latter by adding the
all-zero column and then the all-one row). This phenomenon was described in [10] in terms of com-
pletely regular codes with covering radius ρ = 2. We give necessary and sufficient conditions for
the existence of such codes and obtain simple descriptions of these codes. Some new upper bounds
on the cardinality of arbitrary (unrestricted) such codes with exactly two distances d and n are
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also obtained. One of them is a linear programming bound, and another one comes from spherical
codes with exactly two Euclidean distances.

2. PRELIMINARY RESULTS

Let q ≥ 2 be a positive integer, and for the rest of the paper let Q = {0, 1, . . . , q − 1} be
an additive abelian group with a neutral element 0. Any subset C ⊆ Qn is a code of length n,
cardinality N = |C|, and minimum (Hamming) distance d (i.e., d = min{d(x, y) : x, y ∈ C, x �= y}),
where

d(x, y) = |{i} : xi �= yi, i = 1, . . . , n}|, for x = (x1, . . . , xn) and y = (y1, . . . , yn);

such a code is denoted by (n,N, d)q. If q is a prime power, then Q is the set of elements of the Galois
field Fq, which we also denote by 0, 1, . . . , q − 1 though perform operations in Fq. If an (n,N, d)q
code C is a k-dimensional subspace of the linear space Qn, then we use for C the standard notation
[n, k, d]q , where N = qk. For the binary case, i.e., when q = 2, we omit q and use the notation
(n,N, d) and [n, k, d], respectively. Here by an additive code we mean a code which is an abelian
subgroup in the abelian group Qn under the additive componentwise operation in Q (thus, these
codes include also linear codes).

Denote by (n,N, {d, n})q and (n,N, d)q a code C ⊂ Qn with the following property: for any
two distinct codewords x and y of C, the Hamming distance d(x, y) equals either d or n. Unless
otherwise stated, we always assume that both distances d and n are realized in such a code.

We are interested in existence, construction, and classification results and also in upper bounds
on the maximum possible size of an arbitrary such code.

We do not consider trivial cases like, for example, repetitions of two (or more) (n1, N, {d1, n1})q
and (n2, N, {d2, n2})q codes with the same or different parameters, equidistant codes, codes with
trivial (i.e., constant) positions, etc.

Definition 1. Let G be an abelian group of order q written additively. A square matrix D
of order qμ with elements from G is called a difference matrix and is denoted by D(q, μ) if the
componentwise difference of any two different rows of D contains every element of G exactly μ
times.

Clearly, the matrix D is invariant under adding a constant vector (a, a, . . . , a), where a ∈ G,
to any row or column of D. By performing such operations, we can always obtain a normalized
difference matrix which has the zero first row and zero first column. Furthermore, unless otherwise
stated, we always assume without loss of generality that a difference matrix is represented in
normalized form.

From [11] (see also [12]) we have the following result.

Lemma 1. For any prime power q and any positive integers � and h there exists a difference
matrix D(q�, qh).

We briefly describe the construction of all such difference matrices D(q�, qh) from [12]. For any
integer m ≥ 1, fix a one-to-one correspondence between the elements of Fpm and of the vector
space F

m
p . For any positive integers � and h, denote u = � + h. For the Galois field Fqu with

elements {f0 = 0, f1 = 1, f2, . . . , fpu−1}, denote by F = [fi,j] the matrix of size qu × qu whose
rows and columns are indexed by the elements of Fqu , where fi,j = fifj; i.e., F is the multiplication
table for the elements of Fqu. Define the operator Φ = Φu→� which maps elements x = (x1, . . . , xu)
of Fu

q to elements x(�) = (x1, . . . , x�) of F
�
q by cutting the last (rightmost) u− � positions of vectors

from F
u
q :

Φu→�(x1, . . . , x�, . . . , xu) = (x1, . . . , x�).
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Denote by F [�] the matrix obtained from F by applying the operator Φ to all elements of F :

F [�] =
[
f
[�]
i,j

]
: f

[�]
i,j = Φu→�(fi,j).

Now we obtain the following fact [11] (see also [12]).

Lemma 2. For any prime power q and any positive integers � and h, the matrix F [�] is an
additive difference matrix D = D(q�, qh). If � divides h, i.e., N = qh/�+1, then F [�] is a vector
space, implying that the difference matrix D is linear.

Let us explain the construction of the (n,N, {d, n})q code based on the difference matrix D(q, μ)
over G. In the case at hand we have G = Fq. Assume that the first row of D consists of zeros.
Denote by D(g) the matrix obtained from D by adding the element g ∈ G to all elements of D;
i.e., if D = [di,j ], then D(g) = [di,j + g] for all i and j (recall that the addition is in G). By the
definition of D, the matrix D(g) is a difference matrix D(q, μ). It follows also that for any two rows,
r from D and r(g) from D(g), the following property is valid [12]:

d(r, r(g)) =

{
qμ if r(g) = r + (g, g, . . . , g),

(q − 1)μ if r(g) �= r + (g, g, . . . , g).
(1)

Clearly, the matrix D(q, μ) induces an equidistant (qμ−1, qμ, μ(q−1))q code which is optimal with
respect to the Plotkin upper bound

N ≤ qd

qd− (q − 1)n
(2)

provided that the denominator is positive. To see this, firstly, we have to transform D to the form
which has the zero first column and, secondly, delete this trivial column. From (1) we obtain the
following result.

Lemma 3 [12]. Rows of the N×n matrix
[
D(0) | . . . |D(q−1)

]t
form a two-weight (n,N, {d, n})q

code with parameters
n = qμ, N = q2μ, d = μ(q − 1). (3)

The code C based on a difference matrixD (as described above) is called a difference matrix code,
or, for short, a DM code. Any (n,N, {d, n})q code whose parameters satisfy (3) is called a pseudo
difference matrix code, or, for short, a PDM code. Below we will see that an additive PDM code is
a DM code. These codes are optimal with respect to a q-ary analog of the Gray–Rankin bound [13],
which they meet with exact equality. Any q-ary (n,N, {d, n})q code which can be partitioned into
trivial (n, q, n)q subcodes (referred to as simplexes) satisfies this bound [13]

N

q
≤ q(qd− (q − 2)n)(n − d)

n− ((q − 1)n− qd)2
(4)

provided that n− ((q − 1)n− qd)2 > 0.

We also recall the linear programming bound on the cardinality N of a code C in which the
maximum distance between codewords is bounded, say by D; see [14] for the first case D = n of
this bound and [15] for the general case. For D = n this bound looks as follows:

N ≤ q2d

dq − (q − 1)(n − 1)
, (5)

provided that the denominator is positive. Note that an (n,N, {d, n})q PDM code also meets this
bound with equality.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 58 No. 4 2022



ON CODES WITH DISTANCES d AND n 355

As we have already mentioned, we consider not only additive but also nonadditive codes, in
particular, distance invariant codes, i.e., codes whose weight spectrum does not depend on the
choice of a zero codeword.

Recall that a q-ary N ×n matrix M is called an orthogonal array of strength t, index λ = N/qt,
and n constraints and is denoted by OA(N,n, q, t) if every its N × t submatrix contains every q-ary
vector of length t as a row exactly λ times [16].

We say that an (n+ 1, N, d+ 1)q code C∗ is obtained by extension of an (n,N, d)q code C if to
all codewords of C we add the overall parity-checking position, i.e.,

C∗ = {(c1, . . . , cn, cn+1) : (c1, . . . , cn) ∈ C}, where cn+1 =
n+1∑
i=1

ci.

The following result is well known and can be found, e.g., in [17]. For a given q and a positive
integer m, we use the notation nm = (qm − 1)/(q − 1).

Lemma 4. Let Hm be an [nm, k, 3]q Hamming code. Then the extended code H∗
m has minimum

distance 4 if and only if

(i) q = 2 and m ≥ 2, or
(ii) q = 2r ≥ 4 and m = 2, i.e., nm + 1 = q + 2 and k = q − 1.

For an arbitrary (n,N, d)q code C, define its covering radius ρ = ρC to be the smallest integer
such that all spheres of radius ρ drawn around all codewords of C (centered at these codewords)
cover the whole space Qn.

3. NECESSARY CONDITIONS

A natural question on the existence of a q-ary two-weight (n,N, {d, d+δ})q code is the question of
under which conditions such a code exists. Here we answer this question for the case where d+δ = n
and the code satisfies some regularity properties. We need some known facts on projective two-
weight codes; see [1, 7, 8] and references therein. Let PG(n, q) denote the n-dimensional projective
space over the field Fq. An m-arc of points in PG(n, q), where m ≥ n + 1 and n ≥ 2, is a set M
of m points such that no n + 1 points of M belong to a hyperplane in PG(n, q). A (q + 1)-arc
in PG(2, q) is called an oval, and a (q + 2)-arc in PG(2, q), q even, is called a complete oval or
a hyperoval (see, e.g., [18–20]).

A linear code C is said to be projective if its dual code C⊥ has minimum distance d⊥ ≥ 3
(i.e., any generator matrix of C does not contain two columns that are scalar multiples of each
other). For projective [n, k, d]q codes C, one can introduce the notion of its complementary code Cc

(see, e.g., [1, 7]). Let [C] denote the matrix formed by all codewords of C (i.e., the rows of [C]
are the codewords of C). A code Cc is called the complementary of C if the matrix

[
[C] | [Cc]

]
is a linear equidistant code and Cc has the minimum possible length giving this property. For
a given [n, k, d]q code C with parity-check matrix H, its complementary [nn−k − n, k, dc] code Cc

has parity-check matrix Hc obtained from Hn−k by removing all columns of H and multiples of
them. Recall an important property of a complementary code: to any codeword of weight w in
an [n, k, d]q code C there corresponds a codeword of weight wc = qk−1 − w in the complementary
code Cc. As a consequence of this simple fact, we have the following lemma.

Lemma 5 [7]. A linear [n, k, d]q code C with covering radius ρ = 2 which is not the dual
of a DM code exists simultaneously with its complementary projective code Cc having the same
covering radius ρc = 2.

An extension of this well-known concept to arbitrary linear two-weight [n, k, {d, d + δ}]q codes
was obtained in [5, 6]. Here we give a variant of this result for the case of [n, k, {d, n}]q codes.
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For any code C with parity-check matrix H, denote by s the maximum number of occurrences of
any column in H counted with its multiples, i.e, columns obtained by multiplying it by a nonzero
element of Fq.

Lemma 6 [5, 6]. Let C be a q-ary linear nontrivial two-weight [n, k, {d, n}]q code which is
not the dual of an s-times repetition of a DM code, and let μ1 and μ2 denote the number of
codewords of weights d and n, respectively. Then there exists a complementary linear two-weight
[nc, kc, {dc, dc + δ}]q code Cc with

n+ nc = s
qk − 1

q − 1
, d+ dc + δ = sqk−1, n = d+ δ, s = 1, 2, . . . ,

such that Cc contains μ1 codewords of weight dc + δ and μ2 codewords of weight dc and, more-
over, Cc is of the minimum possible length nc such that the matrix

[
[C] | [Cc]

]
is an equidistant

[s(qk − 1)/(q − 1), k, sqk−1]q code.

Note that the integer s in Lemma 6 is the maximal size of a collection of columns in the generator
matrix of C which are scalar multiples of one column. For projective two-weight [n, k, {d, n}]q codes
(i.e., for the case of s = 1), the following results are known.

Lemma 7 [8]. Let C be a two-weight projective [n, k, {w,n}]q code over Fq, where q = pm and
p is a prime. Then there exist two integers u ≥ 0 and h ≥ 1 such that

w = hpu, n = (h+ 1)pu.

For the case of projective codes, we recall the following result (which directly follows from the
MacWilliams identities taking into account that the dual code C⊥ has minimum distance d⊥ ≥ 3);
see [8].

Lemma 8. Let C be a two-weight projective [n, k, {w,n}]q code C over Fq, where q = pm and
p is a prime. Denote by μ1 and μ2 the number of codewords of C of weights w and n, respectively.
Then {

wμ1 + nμ2 = n(q − 1)qk−1,

w2μ1 + n2μ2 = n(q − 1)(n(q − 1) + 1)qk−2.
(6)

In [5, 6] (see also [4] for the special case n − d = 1), we derived integrality conditions similar
to the conditions obtained by Delsarte in [8] (see also [1]) for projective two-weight codes using
simple combinatorial arguments that are not related to eigenvalues of strongly regular graphs. For
the case of arbitrary two-weight (n,N, {d, n})q codes with distances d and n, those conditions
reduce to the following result. As in [8] and [1], we consider here only two-weight (n,N, {d, n})q
codes with cardinality N ≥ q2. There are many trivial and nontrivial examples of such codes with
N ≤ q2; below we mention some of them. We regard such codes as being of little interest, since
their cardinality is not always optimal, i.e., does not meet upper bounds. Recall that by trivial
codes we also mean two-weight codes that can be represented as a direct sum (or repetition) of two
or more (ni, N, {di, ni})q codes.

Theorem 1. Let Q be any alphabet of size q, and let C be an arbitrary nontrivial q-ary two-
weight (n,N, {d, n})q code, where N ≥ q2. Then

(i) The cardinality N of the code C lies in the range

(q − 1)n+ 1 ≤ N ≤ q2d

qd− (q − 1)(n − 1)
(7)

provided that qd− (q − 1)(n− 1) > 0;
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(ii) The right-hand inequality in (7) turns into equality if and only if the matrix [C] formed by
all codewords of C is an orthogonal array of strength t ≥ 2;

(iii) If the right-hand inequality in (7) is an equality, then the length n and distance d of C are as
follows:

n =
N(q(d+ 1)− 1)− q2d

N(q − 1)
(8)

and

d = (n− 1)
(q − 1)N

q(N − q)
; (9)

(iv) The left-hand inequality in (7) turns into equality if and only if C is an equidistant (n,N, d)q
code;

(v) If the right-hand inequality in (7) is an equality, then N divides q2d and q−1 divides (N−1)d.

Proof. (i) For the case where C is an arbitrary q-ary two-weight (n,N, {d, n})q code, this
directly follows from the linear programming bound for such codes, which we present in Section 5.1.
For the case where C is an orthogonal array of strength t ≥ 2, this result comes from arguments
similar to those used in [6]. Here we provide a simple proof for the general case where C is an
arbitrary distance-invariant (n,N, {d, n})q code of cardinality N ≥ q2; we will also need these
arguments below.

Assume that C contains the all-zero codeword and μ codewords of weight d. Let C∗ consist of
codewords of weight d only, and let [C∗] be a μ× n matrix whose rows are codewords of C∗.

First we compute the total number of zeros (which we denote by Σ0) in the matrix [C∗] in two
different (though obvious) ways. Indeed, by the definition we have

Σ0 = μ(n− d) = (N/q − 1)n.

Next, since C is distance invariant and therefore each column contains the same number of zeros,
namely N/q = μ(n− d)/n + 1, we obtain that

μ =
n(N − q)

q(n− d)
. (10)

Now we compute the total number Σ(0,0) of pairs of coordinate positions containing zero elements
(0, 0) which occur in all the n(n− 1)/2 pairs of positions in the rows of [C∗]. Denote by s(i, j) the
number of such zero pairs (0, 0) occurring in the ith and jth columns of [C∗]. We obviously obtain

(
N

q2
− 1

)
n(n− 1) ≤ Σ(0,0) =

∑
1≤i<j=n

s(i, j) = μ(n− d)(n − d− 1). (11)

Using the expression for μ from (10) in (11), we obtain the following inequality:

N (qd− (q − 1)(n − 1)) ≤ q2d. (12)

This gives the right-hand inequality in (7), since we have the condition

qd− (q − 1)(n − 1) > 0.

Now consider the left-hand inequality in (7). The right-hand inequality in (7) (which holds for
an arbitrary two-weight (n,N, {d, n})q code) implies the following upper bound on d:

d ≤ (n− 1)
N(q − 1)

q(N − q)
.
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But the values of d for an (n,N, {d, n})q code cannot be greater than the quantity (which we denote
by d(p)) guaranteed by the Plotkin upper bound (2), which is tight for an equidistant code (indeed,
the average estimate over all distances is always greater than the minimum distance of a code with
several distances). Hence, from the inequality

d ≤ (n− 1)
N(q − 1)

q(N − q)
≤ d(p) = n

(q − 1)N

q(N − 1)

we obtain that
(n − 1)(N − 1) ≤ n(N − q),

which implies the left-hand inequality for N in (7).

(ii) The right-hand inequality in (7) turns into equality if and only if (11) is an equality. This
happens when the code C satisfies the following condition: the quantity s0(i, j) = s(i, j) is constant
for any chosen code positions i and j. We claim that this is possible only if the matrix [C] is an
orthogonal array of strength t ≥ 2. Assume the contrary: let for some a ∈ Q the quantity sa(i, j)
be not the same for all i and j. Then define a new code C(a) obtained from C by interchanging the
elements 0 and a of the alphabet in all codewords of C. Making the same computations for the new
code, we arrive at a contradiction. Since sa(i, j) is not constant in (7), we obtain a strict inequality,
contradicting the condition of the claim. Hence, we conclude that [C] is an orthogonal array. But
if [C] is an orthogonal array, then s0(i, j) = s(i, j) is constant for all i and j, equation (11) is an
equality, and therefore the right-hand inequality in (7) is an equality.

(iii) If the right-hand inequality (7) is an equality, this means that (11) is also an equality, which
can be rewritten as follows:

(N − q2)n(n− 1) = qn(N − q)(n− d− 1). (13)

Therefore, we can rewrite the expression for n as a function of q, d, and N , thus obtaining (8), and
the expression for d as a function of q, n, and N , obtaining (9).

(iv) The condition N = (q − 1)n + 1 corresponds to the case of equidistant codes, which was
considered in [21] in detail (in this case the matrix [C] is also an orthogonal array of strength t = 2).

(v) Since n is a natural number, we deduce from (13) that d must be a multiple of N/q2. From
the same equality, taking into account that

N(q(d+ 1)− 1)− q2d = (q − 1) (N(d+ 1)− d(q + 1)) + d(N − 1),

we conclude that d(N − 1) is a multiple of q − 1. �
The next result shows that the existence of an additive two-weight (n,N, {d, n})q code C over

an alphabet Q which is an abelian group, imposes a very strong condition on this group. The
order q and the structure of the group Q are by far not arbitrary. Recall that for an additive
abelian group Q, the order of an element x, denoted by ord(x), is the smallest number t such that
tx = x+ x+ . . .+ x︸ ︷︷ ︸

t times

= 0.

Theorem 2. Let Q be an abelian group of order q, and let C be an additive nontrivial q-ary
two-weight (n,N, {d, n})q code C over the alphabet Q containing the all-zero codeword. Then we
have the following :

(i) All elements of Q have the same order, i.e., ord(x) = ord(y) for any pair of nonzero elements
x, y ∈ Q∗;

(ii) The group Q is a direct sum of m cyclic groups Zp:

Q = Zp ⊕ Zp ⊕ . . .⊕ Zp;
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(iii) The number q is of the form q = pm, where p is a prime and m a positive integer ;

(iv) The code C contains at least q − 1 words of weight n.

Proof. It is obvious that any permutation π of elements of Q such that π(0) = 0, being applied
to any position of the code C, preserves the property of a code to be a two-weight (n,N, {d, n})q
code with the all-zero codeword. Denote by π a permutation preserving the additivity property
of C, so that

x− y = π(x)− π(y) = π(x− y).

(i) For a given pair of alphabet elements x, y ∈ Q∗ = Q \ {0} and for a codeword c =
(x1, x2, . . . , xn) ∈ C of weight n, choose some permutations π1, . . . , πn of elements of Q satisfy-
ing the condition πi(0) = 0 and such that by applying them to all coordinate positions of c we
obtain a codeword c′ = (x, y, . . . , y) of an additive code (indeed, applying such permutations πi to
all coordinates preserves the additivity property of the code). Assume that t = ord(x) �= ord(y).
Then the sum c′ + . . .+ c′ of t copies of c′ is a codeword (0, ty, . . . , ty) of weight n− 1, since by the
assumption we have ty �= 0. Thus, we arrive at a contradiction, and therefore all nonzero elements
of the alphabet are of the same order.

(ii) This directly follows from (i). Indeed, it is well known that any abelian group is a direct
sum (direct product) of cyclic groups. On the other hand, any cyclic group Zp1p2 has elements of
orders p1, p2, and p1p2, which contradicts (i) and proves the claim.

(iii) From (ii) it follows that all pi are the same, whence we obtain the claim.

(iv) Since the code is additive, we conclude that N ≥ qn. Fix a coordinate position, say the first
one. Partition all codewords into cosets according to their elements in the first positions. Every
coset is an equidistant code of cardinality at least n [21] (whence the above inequality follows).
Since the code is a group, it is clear that we can translate the coset with zero at the first position
to any other coset. This also implies that every element of the alphabet occurs in a column the
same number of times.

Let μ1 and μ2 denote the number of codeword of C of weights d and n, respectively. First
consider the case of N = qn. Let μ = n − d. Then we can compute the total number of nonzero
positions in C. We have the following two expressions:

⎧⎨
⎩
μ1 + μ2 = N − 1,

dμ1 + nμ2 = nN
(
1− 1

q

)
.

(14)

Using the expression for μ1 from the first equation in the second one and taking into account that
N = nq, we reduce it to the form

d(N − 1− μ2) + nμ2 = nN

(
1− 1

q

)
= n2(q − 1).

Taking into account that μ = n− d, we obtain

d(qn− 1− μ2) + nμ2 = d(qn− 1) + (n− d)μ2 = (n − μ)(qn − 1) + μμ2 = n2(q − 1).

Thus, we arrive at the equation

μμ2 = n(qμ− n) + n− μ. (15)

Since each of its two sides is a positive integer, we conclude that qμ − n ≥ 0. Therefore, we may
put

qμ = n+ λ,
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where λ ≥ 0 is an integer. Equation (15) can be rewritten in the following form (with μ carried to
the left-hand side): {

qμ = n+ λ,

μ(μ2 + 1) = (λ+ 1)n.
(16)

Since (λ+ 1)n ≥ n+ λ, this implies
μ(μ2 + 1) ≥ qμ,

or equivalently μ2 + 1 ≥ q. Hence, we obtain that μ2 ≥ q − 1. For the case of N > qn, the proof is
the same. �

In the next statement we formulate a variant of Theorem 2 from [6] for the case of nontrivial
[n, k, {d, n}]q codes, so this statement does not need a proof. Here we assume that q = pm, where
m ≥ 1 and p is a prime. For a given q = pm and an arbitrary natural number a, denote by γa ≥ 0
the largest integer such that pγa is a divisor of a, i.e., a = pγah with h and p coprime. Define the
numbers γd, γδ, and γc in a similar way for d, δ, and dc, respectively. Recall that (a, b) denotes the
greatest common divisor of integers a and b.

Theorem 3. Let q = pm, where m ≥ 1 and p is a prime number. Let C be a q-ary linear
(two-weight) [n, k, {d, n}]q code of dimension k ≥ 2, and let Cc be its complementary two-weight
[nc, k, {dc, dc + δ}]q code, where

d+ δ = n and d+ dc + δ = sqk−1, s ≥ 1.

(i) If s = 1 and k ≥ 4, i.e., C and therefore Cc are projective codes, then the following two
equalities hold :

(q, d) = (q, δ) and (q, dc) = (q, δ); (17)

(ii) If s = 1 and k = 3, then both equalities in (17) hold if one of the following two conditions is
satisfied :

(d, q)2 ≤ q(n(n− 1), q) or (d+ δ, q)2 > q(nc(nc − 1), q);

(iii) If s = 1 and k ≥ 2, then at least one of the following two equalities is satisfied :

γd = γδ or γc = γδ; (18)

(iv) If s ≥ 1 and k ≥ 3, then at least one of the two equalities in (18) (respectively, in (17)) is
valid.

4. KNOWN (n,N, {d, n})q CODES

Here, we enumerate all known nontrivial additive (n,N, {d, n})q codes. Most of these two-weight
codes can be found in a comprehensive survey of such codes in [1].

We start with a statement which is a reformulation of the corresponding result from [10], where
all known completely regular linear codes with covering radius 2 whose dual codes are antipodal
(i.e., contain words of weight n) were presented. In [10] this theorem was stated and proved for the
case of linear codes. We formulate a similar result for arbitrary additive codes.

Theorem 4. Let C be a nontrivial additive (n,N, {d, n})q code of cardinality N ≥ q2 over Q.
The code C can be reduced by equivalent transformations to a code C∗ such that the following
conditions hold :

(i) For every nonzero codeword v ∈ C∗ of weight d, every element a ∈ Q that occurs in a
coordinate position of this word v occurs in this word exactly n− d times;

(ii) Every nonzero codeword v ∈ C∗ of weight n either satisfies property (i) or is of the form
v = (a, a, . . . , a), where a ∈ Q;

(iii) The length n of the code C∗ (and therefore of C) is a multiple of n− d.
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Recall that in Section 2, following [13], we called a trivial (n, q, n)q code a simplex. Recall
also that a q-ary distance invariant code of length n is a simplex code if it contains as a subcode
a simplex, i.e., an (n, q, n)q code. Clearly, an additive (n,N, {d, n})q code containing a simplex is
a distance invariant simplex code. The following result can be found in [13].

Proposition 1. Assume that a q-ary code C of length n with minimum distance d =
(q − 1)n

q
has cardinality N = qn. Then C can be represented as a union of disjoint simplexes.

A natural question arises: What are the conditions for a simplex code given in Proposition 1 to
be a PDM or DM code? The following theorem gives a partial answer to this question.

Theorem 5. Let C be a distance invariant simplex code with parameters (n,N, {d, n})q . Then
we have the following :

(i) The code C can be partitioned into disjoint subcodes as follows:

C =

N/q⋃
i=1

Ci,

where Ci for every i is a simplex and the cardinality N is a multiple of q;

(ii) For any codeword c ∈ C other than words of the form (a, a, . . . , a), a ∈ Q, every symbol
α ∈ Q that occurs in a coordinate position of c occurs in this position exactly μ times, where
μ = n− d and n is a multiple of μ;

(iii) The distance d of C satisfies the inequality

d ≤ n
q − 1

q
; (19)

(iv) If (19) turns into equality and N = qn, then C is a PDM code with parameters

n = μq, N = μq2, d = μ(q − 1), μ = n− d;

(v) If the code C in (iv) is additive, then it is a DM code.

Proof. (i) Since C contains as a subcode a simplex code with the zero codeword 0, we can
choose q − 1 codewords of weight n of the form a = (a, a, . . . , a), where a ∈ {1, . . . , q − 1}, if there
are such codewords in C. Otherwise, we can obtain such codewords from codewords of weight n
by permuting alphabet elements. Since C is distance invariant, this is valid for any choice of a zero
codeword. For any such choice we obtain as a subcode a simplex containing q − 1 codewords of
weight n. In this way we obtain a partition of C into subcodes where every subcode is a simplex.
Clearly, any codeword of C will belong to some simplex. It remains to show that any two distinct
simplexes cannot have a common codeword. Indeed, we can translate one of such simplexes to
a simplex containing codewords of the form a = (a, a, . . . , a); none of such words can belong to
another simplex, since all codewords from other simplexes are at distance d from this simplex.
We conclude that C is partitioned into disjoint subcodes of cardinality q; therefore, N must be
a multiple of q.

(ii) Denote by C0 the simplex code which contains the zero codeword and q − 1 codewords of
the form a = (a, a, . . . , a). Consider any codeword c which does not belong to C0. Clearly, every
element a which occurs in a coordinate position of c must occur (in order to be at distance exactly d
from q codewords of C0) exactly n− d times. This implies, first, that every element that occurs in
positions of c occurs exactly μ = n− d times, and second, that n must be a multiple of n− d.

(iii) Since there are at most q different elements at positions of any codeword c, the following
obvious inequality must be valid: n ≤ q(n− d). This implies (19).
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(iv) The equality in (19) implies that n can be expressed as n = qμ, where μ = n− d, and hence
d = μ(q − 1). For these values of n and d we obtain from (4) that N ≤ q2μ. If N = qn, then
N = q2μ, and according to [13] C is a PDM code, which proves (iv).

(v) From (iv) we have that C is a PDM code. Now we show that an additive PDM code is
a DM code. Since C is additive, a sum of any two rows, say r1 and r2, belongs to C and contains
every element of the alphabet in the coordinate positions μ times (Theorem 4). From the code C,
we construct a qμ × qμ matrix D containing all codewords with zero in the first position, where
μ = n− d. This is clearly possible, since C is an additive code.

Now any nonzero row of D contains any element of Q exactly μ times (Theorem 4), and for any
two distinct rows c1 and c2 of D their componentwise difference c1 − c2 also belongs to D (by the
definition, words of D have 0 at the first position). Any codeword c ∈ C with the first nonzero
position a ∈ Q is obtained from D by adding the vector (a, a, . . . , a), which exists in C, since C is
a simplex code. We conclude that D is a difference matrix D(q, n− d), and C is an (n, qn, {d, n})q
DM code. �

Remark 1. The conditions n = q(n − d) and N = qn in (iv) and (v) cannot be removed, as
is shown by the following example. Consider the matrix [C] = [D(0) | · · · |D(q−1)]t formed by
translates D(i) of a difference matrix D = D(q, μ), where C is an (n,N, {d, n})q DM code. If we
remove one or more such matrices D(i) from the matrix [C], we obtain a distance invariant simplex
code of some cardinality N∗ < qn, i.e., a nonlinear two-weight (n,N∗, {d, n})q code satisfying the
conditions of the theorem. Similarly, we cannot remove the condition N = qn in (iv) and (v).
For example, a linear Bose–Bush code (see below) has length n < q(n − d). Similarly, an additive
(n,N, {d, n})q code need not necessarily be of cardinality qk. For example, the difference matrix
D(4, 2) induces an optimal additive (8, 32, {6, 8})4 code of cardinality N �= 4k.

Remark 2. The case of codes of cardinality N = q2 is also quite specific. A well-known result
guarantees that r−2 mutually orthogonal Latin squares of order q induce a (r, q2, {r−1, r})q code.
For the case where q is a prime power, there exist q−1 mutually orthogonal Latin squares inducing
a linear equidistant [q+1, 2, q]q code (the converse is also valid for any length r and is well known).
Using these codes with corresponding values of r, we can construct as a direct sum (using partitions
into simplexes) an (n, 2, {d, n})q code for any natural d = n−s and n = r1+ . . .+ rs by considering
the direct sum of s initial (ri, q

2, {ri − 1, ri})q Latin square codes. Therefore, we have excluded
(as in [1,8]) all these trivial codes except for (r, q2, {r−1, r})q codes of length r ≤ q induced by r−2
mutually orthogonal Latin squares of order q. Besides, of course, there are also [q+2, 2, {q+1, q+2}]q
codes obtained from equidistant [q + 1, 2, q]q codes by adding one position (see [4]).

Now we can present all known families of nontrivial additive (n,N, {d, n})q codes, which were
given in the survey [1] (and also in [10] for the linear case). If we exclude codes induced by
Latin squares, then all known (n,N, {d, n})q codes are divided into two large classes of codes:
(n = qμ,N = qn, {(q − 1)μ, qμ})q difference matrix codes, whose length n is a multiple of q, and
[n, k, {d, n}]q Denniston codes of length n such that n− 1 is a multiple of (qk−1 − 1)/(q − 1).

Difference matrix codes (DM codes). These are (qμ, q2μ, {(q − 1)μ, qμ})q codes [12] induced by
difference matrices. Lemma 1 describes the construction of such codes for q = ph and μ = p�, where
p is a prime and h and � are arbitrary natural numbers.

It should be noted that these codes include (binary) (4m, 8m, {2m, 4m}) Hadamard codes.
Indeed, a binary (i.e., consisting of elements 0 and 1) Hadamard matrix is a difference matrix
D(2, 2m).

Denniston codes. These are [n = 1 + (q + 1)(h − 1), 3, {q(h − 1), n}]q codes, where 1 < h < q
and h divides q, for q = 2r ≥ 4 (see the TF2 family in [1]). In Theorem 1 this case corre-
sponds to the distance d = n − h + 1 = (n − 1)q/(q + 1), implying that N = q3. For the case
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of h = 2, we obtain [n = q+2, 3, {q, n}]q Bose–Bush codes (see the TF1 family in [1]), constructed
in 1952 [11], which are induced by hyperovals in PG(3, q). To the value h = q/2 there correspond
[n = q(q − 1)/2, 3, {q(q − 2)/2, n}]q Delsarte codes [7] (see the TF1d family in [1]), independently
constructed in 1971, which are projectively dual to the Bose–Bush codes [1].

The Dennistion codes are induced by maximal arcs in projective plains [18] (see also [19, 20]).
Let us briefly explain how to construct such codes for an arbitrary q = 2m ≥ 4 and a natural h ≥ 2
dividing q, i.e., h = 2u ≤ q/2. For a given Fq, let H denote the subgroup of order h of the additive
group of Fq. Let ϕ(x, y) = ax2 + bxy + cy2 be an irreducible quadratic form over Fq. Then the
[n, 3, {d, n}]q Denniston code is generated by the following (3× n) matrix:

Gd =

⎡
⎢⎣
1 1 . . . 1
x1 x2 . . . xn
y1 y2 . . . yn

⎤
⎥⎦ , (20)

where n = (q+1)(h− 1) + 1, d = n−h, and (xi, yi) are all ordered pairs of elements of Fq that are
mapped to H, i.e., ϕ(xi, yi) ∈ H.

Let us also present generator matrices for Bose–Bush codes and for Delsarte codes, since they
can be given explicitly. Let G be a matrix of the form

G =

⎡
⎢⎣
1 1 1 1 1 . . . 1 . . . 1
0 1 0 x0 x1 . . . xi . . . xq−2

0 0 1 y0 y1 . . . yi . . . yq−2

⎤
⎥⎦ , (21)

where xi and yi run over all nonzero elements of Fq. Then, if yi = x2i , the matrix G generates
a Bose–Bush code. If xi and yi run over all pairs (xi, yi) of nonzero elements (the number of
different such pairs being, obviously, (q − 1)× q/2, i.e., the length of the Delsarte codes) such that
Tr(xiyi) = 1, where Tr(x) is the trace function from Fq to F2, i.e.,

Tr(x) = x+ x2 + x4 + . . .+ xq/2,

then the matrix G generates a Delsarte code.

Theorem 6. Let C be an additive nontrivial (n,N, {d, n})q code, where q = pm, p is an arbi-
trary prime, and m = 1, 2, . . . . Assume that N ≥ q2 and n > 2. Then the parameters of this code
coincide with the parameters of some code belonging to one of the code families described above.

Proof. Since C is a nontrivial additive code, it has cardinality N = q2μ ≥ q2.

We start with the case N = q2. For any natural q, the existence of r pairwise orthogonal Latin
squares implies the existence of an (r+2, q2, {r+1, r+2})q MDS code (see Remark 2). These codes
include the shortest nontrivial (q, q2, {q − 1, q})q PM codes, which exist for any prime power q and
coincide with the Latin square codes. We again emphasis that there exists many trivial additive
two-weight (n, q2, {d, n})q codes mentioned in the remarks above, which we do not consider. Recall
also that since C is additive, all PDM codes are DM codes by Theorem 5.

Now we have to prove that for the case N = q2μ, where 2 ≤ μ < q, a nontrivial additive
(n,N, {d, n})q code C is nothing else but a (qμ, q2μ, {(q−1)μ, n})q PDM or DM code. The following
argument was used in [13] (see also [21]), where q new codes Cj were defined, j = {0, 1, . . . , q− 1},
obtained from C by taking all codewords of C that have the element j at the first position and
then removing this first position. One can easily see [13] that every code Cj has only one distance,
namely d. Hence, Cj is an equidistant (n0, N0, d0)q = (n − 1, qμ, d)q code of cardinality N0 = qμ.
Moreover, the parameters of this code meet the Plotkin upper bound (2) with an exact integer
equality; hence, every symbol i of the alphabet {0, 1, . . . , q − 1} occurs at every position of all
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codewords of Cj the same number (namely μ) of times [21]. Now we apply Theorem 4, which
states that every codeword c of Cj contains all alphabet elements i �= j as coordinate elements
exactly μ times and contains the element j exactly μ− 1 times.

Since C is an additive code, its subcode C0 is also an additive code satisfying the following
property: any nonzero word of C0 contains every nonzero element of the alphabet exactly μ times.
We conclude therefore that by Theorem 5, C0 becomes a difference matrix if we append zero
positions to all codewords of C0. By additivity, any subcode Cj is a translate of C0. Thus, C is
a DM code.

Now consider the case N = q3. First we show that for Denniston codes h must divide q. From
Theorem 5 we conclude that n is a multiple of n− d. Hence, n can be represented as n = (n− d)�
for some natural number �. Therefore, d = n(�− 1)/�, and from (19) we obtain

d = n
�− 1

�
≤ n

q − 1

q
,

whence it follows that � ≤ q. But the case � = q gives a DM code. We conclude therefore that
� < q. Now assume that

n = 1 + (q + 1)(h − 1) and d = q(h− 1)

for some natural number h ≥ 2. This means that

n = q(h− 1) + h = d+ h.

Thus, combining the equalities

n = 1 + (q + 1)(h− 1) and d = q(h− 1) = n
�− 1

�
,

we obtain

q(h− 1) = (q(h− 1) + h)
�− 1

�
,

which implies that h(�−1) = q(h−1). Since h ≥ 2 and, hence, h and h−1 are coprime, we conclude
that h divides q, whence it follows that we obtain a code with the parameters of a Denniston code.

The case N > q3 can be excluded by similar arguments. First we consider the case N = q3μ,
where 2 ≤ μ < q. Recall that q = pm. We argue that in this case we can obtain DM codes only.
Indeed, for any value of μ = pr, where 0 < r < m, there exists a (q2μ, q3μ, {q(q−1)μ, n})q DM code.
In Section 2 we have described the construction of all such codes (see the text after Lemma 1),
which can be found in [12]. Let us see why these are the only possible cases. By dividing both sides
of (8) by q3μ, we obtain that d = n(q − 1)/q, so this must be a difference matrix. Hence, for the
case where d �= n(q− 1)/q, which (for the case of q3μ) is equivalent to the condition d = q(q− 1)μ,
we cannot have an integer equality in (8). Since a repetition of s copies of a DM code does not
change the equality d = n(q − 1)/q, we conclude that the above nontrivial DM code is the only
nontrivial code for these values of N .

Now consider the case N = q4, which gives linear difference-matrix codes [12]. Indeed, having got
such an [n, 4, {d, n}]q code C, we can construct (as we have done above, for example, in Theorem 5)
a code C0 which is a linear equidistant [n − 1, 3, d]q code of length n − 1 = (q4 − 1)/(q − 1) with
distance d = q3 whose dual is a q-ary perfect Hamming code.

Now we show that for the case N = q4 there are no Denniston-type codes. By Theorem 4, the
length of a Denniston-type code must be of the form n = s(q3−1)/(q−1)+1. Since n is a multiple
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of n − d (see Theorem 4 again), this expression takes the form n = d�/(� − 1) for some natural
� ≤ q. Taking into account that d = sq2, we obtain

n = s
q3 − 1

q − 1
+ 1 = d

�

�− 1
= sq2

�

�− 1
. (22)

Now we need to consider the cases (s, q − 1) = 1 and (s, q − 1) ≥ 2 separately.

First, let (s, q − 1) = 1. Then we see that the expression for n on the left-hand side of (22) is
divisible by neither s nor q, while the right-hand side is divisible by both of these numbers. Hence,
we conclude that codes of this type do not exist.

Next, consider the case (s, q − 1) ≥ 2. For the case s = q − 1 we obtain that n = q3, and since
N = q4, i.e., N = qn, we conclude that C is a DM code.

Assume now that s = u(q − 1) with u ≥ 2. Using this s in (22), we arrive at the equality

u(q − 1)
q3 − 1

q − 1
+ 1 = u(q − 1)q2

�

�− 1
;

simplifying it and multiplying both sides by (�− 1), we obtain

(�− 1)(u(q3 − 1) + 1) = �u(q3 − q2).

By simple algebra and since 2 ≤ � ≤ q and u ≥ 2, we come to the inequality

0 ≤ uq2(q − �) = −u�+ (u+ �)− 1 ≤ −1,

which is impossible; this completes consideration of the case N = q4.

The case q4 < N < q5 can be considered similarly. Here, we have only additive DM codes for
the values n = q4μ, where μ runs over all powers of p and q = pm.

The case N = qk for k ≥ 5 can be considered similarly, and we omit it to avoid repeating the
same arguments.

Now we have to make some comments on the case where q is a power of an odd prime. In 1952,
Bush proved in [22] the nonexistence of [q + 2, 3, q]q codes for an odd q, which implies the nonex-
istence of [q(q − 1)/2, 3, {q(q − 2)/2, q(q − 1)/2}]q Delsarte codes. Then, in 1997, the nonexistence
of maximal arcs in Desarguesian planes of an odd order was proved in [23], which automatically
implies the nonexistence of all Denniston codes for odd values of q. �

5. UPPER BOUNDS

Here we consider upper bounds on the quantity

Aq(n; {d, n}) = max{N : ∃ an (n,N, {d, n}) code},

i.e., bounds on the maximum possible cardinality of a code in Qn
q with two distances d and n.

5.1. Linear Programming Bounds

We performed extensive investigation of the linear programming (LP) bound on Aq(n; {d, n})
using the Delsarte LP bound in the following form. Define Krawtchouk polynomials as

Q
(n,q)
i (t) =

1

ri
K

(n,q)
i (z), z =

n(1− t)

2
, ri = (q − 1)i

(
n

i

)
,
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where

K
(n,q)
i (z) =

i∑
j=0

(−1)j(q − 1)i−j

(
z

j

)(
n− z

i− j

)

are the (standard) Krawtchouk polynomials. For a real polynomial f(t) of degree at most n,
consider its expansion

f(t) =
n∑

i=0

fiQ
(n,q)
i (t) (23)

in Krawtchouk polynomials.

Theorem 7. Let n ≥ q ≥ 2, and let f(t) ∈ R[t] be a polynomial of degree at most n such that :

(A1) f(−1) ≤ 0 and f(1− 2d/n) ≤ 0;
(A2) The coefficients in expansion (23) satisfy the conditions f0 > 0 and fi ≥ 0 for every i ≥ 1.

Then Aq(n; {d, n}) ≤ f(1)/f0. If an (n,N, {d, n})q code C meets this bound with some f(t), then
f(1− 2d/n) = f(−1) = 0 and fiMi(C) = 0 for every i ≥ 1, where

Mi(C) =
∑

x,y∈C
Q

(n,q)
i (1− 2d(x, y)/n). (24)

The linear programming bound from our paper [6] (equation (40)), which was derived for δ =
n − d, gives in our case the bound (5) (which is precisely the upper bound in (7)). This yields
a simple proof of the necessary condition in part (ii) of Theorem 4.

The second proof of part (ii) of Theorem 1. The upper bound in (5) is obtained by
Theorem 1 with the use of the second-degree polynomial f(t) = (t− 1+2d/n)(t+1). If this bound
is attained by an (n,N, {d, n})q code C, then from the conditions of Theorem 7 it follows that
M1(C) = M2(C) = 0, since f1 > 0 and f2 > 0. This means that the code C is an orthogonal array
of strength 2. Then, clearly, we conclude that the cardinality N of the code C, i.e.,

N =
dq2

qd− (q − 1)(n − 1)
,

is divisible by q2 and that d is divisible by qd− (q − 1)(n− 1). �
Numerical results suggest several general LP bounds for special cases of families of parameters

q, n, and d. We present one of them here (the other seem to be weaker). This bound is a special
case of the bound recently obtained in [24] for values just outside the Plotkin bound range.

Theorem 8. For every positive integer m ≥ 2, we have the inequality

A2(4m+ 1, {2m, 4m + 1}) ≤ 4m+ 2. (25)

Proof. Apply Theorem 7 for the length n = 4m+ 1 and distance d = 2m with the polynomial

f(t) = 1 + 2mQ
(4m+1,2)
2 (t) + (2m+ 1)Q

(4m+1,2)
4m−1 (t). (26)

Condition (A2) is obviously satisfied. Let us prove that condition (A1) holds with equalities.

From Q
(n,2)
i (−1) = (−1) we have f(−1) = 0. Since 1− 2d/n = 1/(4m + 1), consider

f

(
1

4m+ 1

)
= 1 +

2m(
4m+ 1

2

)
2∑

j=0

(−1)j
(
2m

j

)(
2m+ 1

2− j

)

+
2m+ 1(
4m+ 1

4m− 1

)
4m−1∑
j=0

(−1)j
(
2m

j

)(
2m+ 1

4m− 1− j

)
.
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Table 1. Optimal polynomials with one nonzero coefficient, q = 3.

n d f3 sb3(n, d) n d f3 sb3(n, d)

4 1 8 9 4 2 8 9
5 2 8 9 9 4 28 29
10 5 32 33 12 6 44 45
16 8 80 81 20 10 152 153
22 11 224 225

The first sum can be computed directly, and it equals −2m/(4m + 1). For the second sum, we
notice that the only values of j for which both binomial coefficients in the sum are nonzero are
2m− 2 ≤ j ≤ 2m. This leads to f(1/(4m+ 1)) = 0.

The computation of the corresponding momentsMi(C), which are defined in (24), givesM2(C) =
M4m−1(C) = 0 (since f2 > 0 and f2m+1 > 0) for any (4m+1, 4m+2, {2m, 4m+1}) code attaining
the bound. �

5.2. Numerical Computation of Linear Programming Upper Bounds

In this section, we present LP bounds for Aq(n, {d, n}) obtained through direct calculation of the
LP bound through the simplex method, implemented in Maple 19. We have applied the algorithm
for every q ≤ 5 and n ≤ 50. There are numerous cases in which the best bounds are obtained by
polynomials of degrees 1 and 2, which lead to already existing bounds, so we have omitted all such
cases, preferring to explore bounds obtained by polynomials of degree 3 or higher. Furthermore, we
have omitted bounds on all trivial codes with cardinality 4 or less, the bound obtained in (5), and
bounds whose values are not positive integers. Finally, we have also omitted the cases for which the
bound obtained through spherical codes (see Section 5.3 below) is better, as well as those falling
into the case of Theorem 8.

We normalize our LP by f0 = 1, so the bound given by an admissible polynomial f is therefore

Aq(n, {d, n}) ≤ 1 + f1 + f2 + . . .+ fn,

just as in the classical Delsarte LP setting. In all interesting cases, only one or two coefficients fi are
nonzero. Note that due to the nature of the LP bound, we do not expect many nonzero coefficients,
and in fact we have not observed a case with three or more.

We denote by sbq(n, d) the best numerical result for Aq(n, {d, n}) obtained in the aforementioned
way. Since all cases for q = 2 are covered by the above-mentioned exceptions and the results
from [24], we start our review of the interesting LP bound with q = 3.

Results for q = 3. Similarly to the binary case, for q = 3 we observe numerous parameter
sets where the only nonzero coefficient (apart from f0 = 1) in the Krawtchouk expansion of the

optimal polynomial is f3, i.e., the LP polynomial is f(t) = 1 + f3Q
(n,3)
3 (t). All but one of them

have d close to n/2. We systematize them in Table 1.

The rest of the cases that we have found have two nonzero coefficients apart from the obligatory
f0 = 1; they are presented in Table 2.

Finally, we report two cases with

f(t) = 1 + f5Q
(n,3)
5 (t),

for (n, d) = (46, 23) and (48, 24), giving

sb3(46, 23) = 2753 and sb3(48, 24) = 3009,

respectively.
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Table 2. Optimal polynomials with two nonzero coefficients, q = 3.

n d
Nonzero

sb3(n, d) n d
Nonzero

sb3(n, d)coefficients coefficients

7 4 f2 = 6, f3 = 20 27 10 6 f2 = 12, f3 = 20 45
24 12 f3 = 113, f4 = 210 324 28 14 f3 = 208, f4 = 400 609
30 15 f3 = 320, f4 = 624 945 7 2 f3 = 4, f5 = 16 21

Table 3. Optimal polynomials for q = 4.

n d
Nonzero

sb4(n, d) n d
Nonzero

sb4(n, d)coefficients coefficients

5 2 f1 = 3/4, f3 = 81/4 22 5 3 f3 = 27 28
6 3 f1 = 1/2, f3 = 45/2 24 9 6 f2 = 12, f3 = 63 76
10 5 f3 = 81 82 18 12 f2 = 33, f3 = 126 160
24 16 f2 = 57, f3 = 198 256 42 28 f3 = 615 616

Results for q = 4. For q = 4 we have found optimal polynomials almost entirely of the third
degree, in a total of eight cases, as shown in Table 3.

The only case other than those in Table 3 was the fifth-degree polynomial

f(t) = 1 + 75Q
(18,4)
4 (t) + 468Q

(18,4)
5 (t),

giving
sb4(18, 9) = 544.

Results for q = 5. For the case q = 5 we found optimal polynomials only of the third and
fourth degree, as shown in Table 4.

5.3. Upper Bounds via Spherical Codes

The relationship between two-distance codes in Qn
q and spherical two-distance codes on the

Euclidean sphere Sn−1 (described, for example, in [6, Section 4.3]) implies that every (n,N, {d, n})q
code C ⊂ Qn

q corresponds to a spherical two-distance code W ⊂ S
(q−1)n−1. The squared distances

between points of W are 2dq/(q − 1)n and 2q/(q − 1). Using the classical result of [25] and the
results of [6], we find that either

d =
(k − 1)n

k
(27)

for some positive integer k ∈
[
2, (

√
2(q − 1)n + 1)/2

]
(and n is obviously divisible by k), or the

cardinality N is bounded from above by N ≤ 2(q − 1)n+ 1.

For a general q ≥ 3, relation (27) with k > q implies that d > (q − 1)n/q; i.e., d is in the
range of the Plotkin bound. Plugging in the Plotkin bound, we obtain that it can be written as
N ≤ (k − 1)q/(k − q). These observations are summarized as follows.

Theorem 9. If C is an (n,N, {d, n})q code, then either

N ≤ 2(q − 1)n + 1

or
d = (k − 1)n/k,

where k ∈
[
2, (

√
2(q − 1)n + 1)/2

]
is a positive integer ; moreover,

N ≤ (k − 1)q

k − q

for q ≥ 3 and q < k ≤ (
√
2(q − 1)n + 1)/2.
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Table 4. Optimal polynomials for q = 5.

n d
Nonzero

sb5(n, d) n d
Nonzero

sb5(n, d)coefficients coefficients

6 3 f1 = 4/3, f3 = 128/3 45 6 4 f3 = 64 65
7 4 f1 = 1, f3 = 48 50 16 12 f2 = 40, f3 = 224 265
21 14 f3 = 304 305 27 18 f3 = 624, 625
32 24 f2 = 92, f3 = 432 525 33 22 f3 = 1984 1985
44 33 f2 = 152, f3 = 672 825 36 24 f3 = 32, f4 = 2272 2405
42 28 f3 = 1696, f4 = 6528 8225

Further set of bounds (to be applied in different regimes for d and n) can be extracted from the
results on spherical two-distance sets described and used in [26]. We note that the paper [26] deals
with binary codes only; however, specifically, Lemma 3.3 and Theorem 3.5 from that paper can be
applied for q ≥ 3 as well. Though we proceed with the case of distances d and n, other cases also
follow from these results. In what follows we assume that q ≥ 3.

At this point it is convenient to switch to inner products for points of spherical codes. It is easy
to see that the inner products α and β, −1 < α < β < 1, for points of W are

α = − 1

q − 1
, β =

n(q − 1)− dq

n(q − 1)
.

Now [26, Lemma 3.3] implies that if d > n(q − 2)/q (this is equivalent to α+ β < 0), then

Aq(n, {d, n}) ≤
(
n(q − 1)

2

)

except (possibly) in the cases n(q−1) = γ2−2 and n(q−1) = γ2−3, where γ := (n−d)q/n(q−1)
is an odd integer. Similarly, [26, Theorem 3.5] (originally obtained in [27]) gives the bound

Aq(n, {d, n}) ≤
n(q − 1) + 2

1− (n(q − 1)− 1)(q − 1)2/dq
,

which is valid when dq > (n(q − 1)− 1)(q − 1)2.
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