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Abstract The Orlov spectrum is a new invariant of a triangulated category. It
was introduced by D. Orlov, building on work of A. Bondal-M. Van den Bergh
and R. Rouquier. The supremum of the Orlov spectrum of a triangulated cate-
gory is called the ultimate dimension. In this work, we study Orlov spectra of
triangulated categories arising in mirror symmetry. We introduce the notion
of gaps and outline their geometric significance. We provide the first large
class of examples where the ultimate dimension is finite: categories of sin-
gularities associated to isolated hypersurface singularities. Similarly, given
any nonzero object in the bounded derived category of coherent sheaves on a
smooth Calabi-Yau hypersurface, we produce a generator, by closing the ob-
ject under a certain monodromy action, and uniformly bound this generator’s
generation time. In addition, we provide new upper bounds on the generation
times of exceptional collections and connect generation time to braid group
actions to provide a lower bound on the ultimate dimension of the derived
Fukaya category of a symplectic surface of genus greater than one.
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1 Introduction

The spectrum of a triangulated category was introduced by D. Orlov in [42],
building on work of A. Bondal, R. Rouquier, and M. Van den Bergh, [12, 47].
This categorical invariant, which we shall call the Orlov spectrum, is simply a
list of non-negative integers. Each integer is the generation time of an object
in the triangulated category. Roughly, the generation time of an object is the
necessary number of exact triangles it takes to build the category using this
object. If the triangulated category is of geometric origin, like the bounded de-
rived category of coherent sheaves on a scheme, the Orlov spectrum encodes
nontrivial geometric information. In this paper, we study how geometry in-
fluences the structure of Orlov spectra and we find geometric meaning in the
gaps arising in Orlov spectra.

Although the (pre-)history of Orlov spectra extends back further, notably
to work of A. Neeman, and Bondal-M. Kapranov, the fundamental back-
ground for this paper arose in [12]. In [12], Bondal and Van den Bergh lay out
the foundations, introducing all of the notions necessary to define generation
time. They apply their new notions to categories arising in algebraic geome-
try, proving a number of interesting and deep results that tie generators and
geometry together. Let us emphasize the following one:

Theorem 1.1 For a smooth scheme over a field, the bounded derived cate-
gory of coherent sheaves admits a strong generator (i.e. a generator of finite
generation time).

In [47], Rouquier expanded on the foundations of [12]. He studied the min-
imal generation time amongst all strong generators, i.e. the minimum of the
Orlov spectrum. This notion we shall call the Rouquier dimension of a trian-
gulated category. Rouquier proved many interesting results in [47] concerning
the Rouquier dimension. His results had deep applications in both geometry
and pure algebra. Let us emphasize the following theorems which appear in
loc. cit.:

Theorem 1.2 For a reduced separated scheme of finite type over a field, the
Rouquier dimension of derived category of coherent sheaves is bounded below
by the Krull dimension.

Theorem 1.3 For smooth quasi-projective schemes over a field, the Rouquier
dimension of the derived category of coherent sheaves is bounded above by
twice the Krull dimension.

The following generalizes the above-mentioned result of Bondal and Van
den Bergh:
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Theorem 1.4 For any separated scheme of finite type over a field (not nec-
essarily smooth), the derived category of coherent sheaves admits a strong
generator.

Rouquier also contends that the supremum amongst all generation times,
which we shall call the ultimate dimension, should be studied in its own right.

In [42], Orlov utilizes results on the semi-stability of vector bundles on
curves to prove the following interesting result:

Theorem 1.5 The Rouquier dimension of the derived category of coherent
sheaves on any smooth algebraic curve is one.

Having proven the one dimensional case, he proposes the following general
conjecture:

Conjecture 1 For a smooth algebraic variety, X, the Krull dimension of X

and the Rouquier dimension of Db(cohX) are equal.

This conjecture asserts that Rouquier’s notion of dimension of a triangu-
lated category is deeply geometric. Furthermore, Orlov contends that in order
to extract additional, more novel, geometric invariants from the category, one
should study all possible generation times—the Orlov spectrum. With this
in mind, he begins the analysis of the Orlov spectrum of a smooth algebraic
curve proving:

Theorem 1.6 The set, {1,2}, is a subset of Orlov spectrum of the bounded
derived category of coherent sheaves on a smooth proper algebraic curve,
with equality if and only if the curve is rational.

Orlov then poses the following questions:

– Is the Orlov spectrum of the bounded derived category of coherent sheaves
on a smooth quasi-projective scheme bounded above? Is it bounded above
for a non-smooth scheme?

– Does the Orlov spectrum of the bounded derived category of coherent
sheaves on a (smooth) quasi-projective scheme form an integer interval?

Orlov’s ideas were developed further by the first two authors in [5]. In
loc. cit., the authors prove that calculating the generation time of a tilting ob-
ject reduces to a very simple geometric computation. They use it to prove
Orlov’s conjecture in many new cases. Through examples, they illustrate
some subtleties encoded in generation time, including how it can vary in cer-
tain moduli and its relationship with positivity of the anti-canonical bundle.

In addition to the papers discussed above, there are other works we
should mention. Indeed, study of Orlov spectra, possibly proceeding under
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other names, seems a common endeavor across different algebraic fields.
Rouquier’s paper inspired further work in algebra by L.L. Avramov, P.A.
Bergh, R.-O. Buchweitz, S. Iyengar, H. Krause, D. Kussin, C. Miller, and
S. Oppermann, see [3, 9, 30, 37, 38]. Notably, [9] seems closely related to
Sect. 4 of this work. D. Benson, J. Carlson, S. Chebolu, J.D. Christensen,
M. Hovey, K. Lockridge, Y. Minác̆, and G. Puninski, see [8, 14, 15, 21, 22,
33], are inspired by analogs of Freyd’s Generating Hypothesis, which, in our
language, seeks to determine whether an object has generation time zero.

Even with the wealth of knowledge detailed above, precise descriptions of
Orlov spectra for, even simple, categories are still elusive. This paper builds
on the growing understanding of the structure of Orlov spectra of categories
of geometric origin, particularly categories of interest in mirror symmetry.
The novelty of our current work lies in its approach to geometric themes
encoded in the Orlov spectrum. Upper bounds on the ultimate dimension are
closely tied to the Hochschild homology of the category. Lower bounds on the
ultimate dimension are controlled by the complexity of braid groups actions.
We expect that these phenomena, properly understood and synthesized, are
universal.

We outline a new approach to decode the geometry found in the gaps
of Orlov spectra. Gaps are simply the missing numbers in an Orlov spec-
trum. Their existence is precisely the content of Orlov’s second question from
above. Despite their simplicity, the authors expect that gaps are a deep geo-
metric invariant related to monodromy and capturing motivic information in
the case of the derived category of coherent sheaves on a smooth proper vari-
ety.

Let us highlight our predictions by discussing some of the major themes of
this work:

(1) We provide the first large class of examples where the Orlov spectrum
is bounded above: the category of singularities of an isolated hypersurface
singularity. Our bound is expressed in terms of the embedding dimension and
the nilpotence of the Tjurina algebra.

Theorem 1.7 Let (S,mS) be an isolated hypersurface singularity. The Orlov
spectrum of Dsg(S) is bounded by 2(dimS + 2)LL(S/(∂w)) − 1, where LL
denotes the Loewy length of an algebra.

We also calculate the full Orlov spectrum when (S,mS) is an An singular-
ity.

Theorem 1.8 The Orlov spectrum of Dsg(An−1) is

{⌈�n/2�
s

⌉
− 1 : s ∈ N

}
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where �α� is the greatest integer less than α and �α� is the least integer
greater than α.

Let us note that the results of [53] can be applied to deduce that the level,
see Definition 2.2, of the residue field in Dsg(S) with respect to any nonzero
object of Dsg(S) is bounded. This is an important step in the proof of Theo-
rem 1.7.

(2) The most unexpected geometric consequence is the connection of the
theory of gaps of Orlov spectra to questions of rationality. Based on work of
Bondal, A. Kuznetsov and Orlov, rationality enters category theory by way
of semi-orthogonal decompositions. We demonstrate that, in many cases, the
maximal gap of the Orlov spectrum of a triangulated category is bounded
above by the maximal Rouquier dimension of its semi-orthogonal compo-
nents.

Theorem 1.9 Suppose 〈A1, . . . ,An〉 is a semi-orthogonal decomposition of
T and G := G1 ⊕ · · · ⊕ Gn is a generator of T with Gi ∈ Ai . By perform-
ing a series of mutations to dual decompositions, we get a set of generators.
These generators give a subset of the Orlov spectrum, in which there is no
gap greater than the maximum of the generation times of the Gi in Ai .

Remark 1.10 The generators obtained from the construction in the previous
theorem only provide an upper bound on the length of the gaps. In general, it
seems likely that the gaps are indeed smaller.

Now, in light of the above theorem, we propose the following conjectures:

Conjecture 2 Let X be a smooth algebraic variety and 〈A1, . . . ,An〉 be a
semi-orthogonal decomposition of Db(cohX). The length of any gap in the
spectrum of Db(cohX) is at most the minimum of the maximal Rouquier di-
mension amongst the Ai and the maximal gap amongst the Ai .

Conjecture 3 If A has a gap of length at least s, then so does Db(cohX).

These have the following nice corollaries:

Corollary 1.11 Suppose Conjectures 1 and 2 hold. If X is a smooth variety
then any gap of Db(cohX) has length at most the Krull dimension of X.

Corollary 1.12 Suppose Conjectures 1, 2, and 3 hold. Let X and Y be bira-
tional smooth proper varieties of dimension n. The category, Db(cohX), has
a gap of length n or n − 1 if and only if Db(cohY) has a gap of the same
length i.e. the gaps of length greater than n − 2 are a birational invariant.
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Corollary 1.13 Suppose Conjectures 1, 2, and 3 hold. If X is a rational va-
riety of dimension n, then any gap in Db(cohX) has length at most n − 2.

The above corollaries outline a new approach to dealing with questions of
rationality with enormous potential towards applications. In particular, based
on work of Kuznetsov, we believe this could lead to a proof of non-rationality
for a generic cubic fourfold. The mirror interpretation of this framework is
discussed in [24] and [25].

(3) The first two themes are related by work of Orlov (see [41]). For a
smooth Fano or Calabi-Yau hypersurface, the graded category of singularities
of its affine cone is a semi-orthogonal component of the derived category of
coherent sheaves. Therefore, the Orlov spectrum of this component is also
related to the Loewy length of the Tjurina algebra (which for a homogeneous
polynomial is equal to the Milnor algebra) of the defining function. In this
case, this Loewy length is just (d(n + 1) − 2n − 1) by Macaulay’s theorem.

Theorem 1.14 Let f ∈ k[x0, . . . , xn] be a homogeneous polynomial of de-
gree d and A := k[x0, . . . , xn]/(f ). Assume that A has an isolated singu-
larity. For any non-zero object, M , in Dgr

sg(A), the object, M ⊕ M(1) ⊕
· · · ⊕ M(d − 1), is a generator of Dgr

sg(A) with generation time at most
2(n + 1)(d(n + 1) − 2n − 1) − 1.

Orlov’s work then provides us with the following geometric version:

Corollary 1.15 Let X be a smooth hypersurface of degree n + 1 in P
n. Set

{1} := LO ◦ (−⊗O O(1)) where LO is the Seidel-Thomas twist by O . For any
nonzero E ∈ Db(cohX), E ⊕ E{1} ⊕ · · · ⊕ E{n} is a generator of Db(cohX)

with generation time bounded by 2n2(n + 1) − 1.

In light of the above discussion, we expect that gaps in the derived category
of coherent sheaves on a Fano or Calabi-Yau hypersurface in projective space
are related to the structure of the corresponding Milnor algebra.

(4) We give a new upper bound on the generation time of any (full, not nec-
essarily strong) exceptional collection. The upper bound comes from study-
ing A∞-enhancements of triangulated categories. It ties in quite nicely with
Koszul duality.

Theorem 1.16 Let A be a cohomologically-finite triangulated A∞-category
possessing a (full) exceptional collection A1, . . . ,An. The generation time of
the dual collection in H(A ) is bounded above by LL∞(A′) − 1 where A′ is
a minimal A∞-algebra quasi-isomorphic to the A∞-endomorphism algebra
of
⊕n

i=1 Ai . If the A∞-endomorphism algebra of
⊕n

i=1 Ai is formal (quasi-
isomorphic to its cohomology), then the generation time of the dual collection
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is equal to one less than the Loewy length of the cohomology of the A∞-
endomorphism algebra of

⊕n
i=1 Ai .

Here, LL∞ is an extension of the notion of Loewy length to minimal A∞-
algebras. In addition, we also provide examples to demonstrate how gener-
ation time can depend on “higher homotopy” information of the endomor-
phism algebra of an object, and we compute the Orlov spectra of the bounded
derived categories of finite-dimensional representations of An quivers.

Theorem 1.17 Let Q be a quiver such that the underlying graph is a Dynkin
diagram of type An. The Orlov spectrum of Db(mod kQ) is equal to the inte-
ger interval {0, . . . , n − 1}.

(5) From the symplectic perspective, one can consider the Orlov spectrum
as a new invariant of a Fukaya category. Here we see that the correlation with
monodromy theory is once again manifest by connecting generation time to
braid group actions. An upper bound, comes from a more well known con-
struction and occurs as follows:

Proposition 1.18 Let S1, . . . , Sn be spherical objects in the homotopy cate-
gory, T , of a triangulated cohomologically-finite A∞-category and assume
we have HH0(T ) = k. Suppose there exists a relation among the correspond-
ing spherical twists:

LSa1
· · ·LSar

∼= IdT

with 1 ≤ ai ≤ n. Then S1 ⊕ · · · ⊕ Sn strongly generates T with generation
time at most r − 1.

Using a combination of braid relations and geometry, it is also possible to
obtain lower bounds on generation time as in the following theorem:

Theorem 1.19 The ultimate dimension of the derived Fukaya category of a
symplectic surface of genus g is at least 4g.

For an elliptic curve we calculate the Orlov spectrum in its entirety. This
result was also attained independently by Orlov (unpublished).

Theorem 1.20 The Orlov spectrum of the bounded derived category of co-
herent sheaves on an elliptic curve is {1,2,3,4}.

We expect derived Fukaya categories of symplectic surfaces to have no
gaps, as is the case for a Riemann surface of genus one via homological
mirror symmetry. However, we suspect that there exist symplectic manifolds
of real dimension four whose derived Fukaya categories have Orlov spectra
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with large gaps. This indicates that gaps of the Orlov spectrum of the derived
Fukaya category is a nontrivial invariant of the symplectic motive.

The paper is organized as follows. In Sect. 2, we establish our notational
conventions and define all necessary mathematical notions revolving around
the Orlov spectrum. We proceed with a discussion of ghost maps, a the-
ory originating in [28], and used, implicitly and explicitly, by many subse-
quent authors in connection to this subject. We illustrate a number of ex-
amples occurring in geometry, notably, spherical twists and monodromy of
the quintic threefold. In Sect. 3, we remind the reader of the basics of semi-
orthogonal decompositions and demonstrate how semi-orthogonal decompo-
sitions whose components have small Rouquier dimension limit the size of
gaps. We then outline how gaps in the Orlov spectrum of the bounded derived
category of a variety can be used to answer questions about rationality. Fi-
nally, we develop a method, distinct from [5] and fully general, to bound the
generation time of exceptional collections using the Loewy length of the dual
collection. We provide a handful of examples to illustrate the utility of the
method. In Sect. 4, we discuss strong generators for categories of singular-
ities of isolated singularities. We provide new proofs, from our perspective,
and extensions of some of the known results in this area. We use these ideas to
bound the Orlov spectrum of an isolated hypersurface singularity. In Sect. 5,
we give a detailed recap of Orlov’s theorem relating graded categories of sin-
gularities to bounded derived categories of coherent sheaves. We use our ex-
amination of Orlov’s theorem and extensions of results from Sect. 4 to study
the Orlov spectrum for hypersurfaces in projective space. Section 6, though
connected to the other sections, can certainly be read independently. Here, we
illustrate the relationship between generation time and braid group actions, by
means of the derived Fukaya category of a symplectic surface. We compute
the full Orlov spectrum of the elliptic curve and provide a lower bound on the
ultimate dimension of the derived Fukaya category of a symplectic surface of
higher genus.

2 Preliminaries

Throughout this article, k denotes an algebraically-closed field of charac-
teristic zero. All categories will be k-linear. For a ring, R, ModR denotes
the category of right R-modules and D(ModR) denotes the unbounded de-
rived category of right R-modules. The bounded derived category of right R-
modules we denote by Db(ModR). For a Noetherian ring, R, modR denotes
the category of finitely-generated right R-modules and Db(modR) denotes its
bounded derived category. If X is a variety, Db(cohX) denotes the bounded
derived category of coherent sheaves on X.

Let T be a triangulated category. For a full subcategory, I , of T we
denote by 〈I 〉 the full subcategory of T whose objects are isomorphic to
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summands of finite coproducts of shifts of objects in I . In other words, 〈I 〉
is the smallest full subcategory containing I which is closed under isomor-
phisms, shifting, and taking finite coproducts and summands. For two full
subcategories, I1 and I2, we denote by I1 ∗ I2 the full subcategory of ob-
jects, B , such that there is a distinguished triangle, B1 → B → B2 → B1[1],
with Bi ∈ Ii . Set I1 �I2 := 〈I1 ∗I2〉, 〈I 〉0 := 〈I 〉, and inductively define

〈I 〉n := 〈I 〉n−1 � 〈I 〉.
Similarly we define

〈I 〉∞ :=
⋃
n≥0

〈I 〉n.

For an object, E ∈ T , we notationally identify E with the full subcategory
consisting of E in writing, 〈E〉n. The reader is warned that, in some of the pre-
vious literature, 〈I 〉0 := 0 and 〈I 〉1 := 〈I 〉. We follow the notation in [5].
With our convention, the index equals the number of cones allowed. The op-
erations, ∗ and �, were introduced in [12] where their associativity is proven.
From associativity, it follows that 〈I 〉n � 〈I 〉m = 〈I 〉n+m+1. We will use
this fact implicitly.

We will need small modifications for the statement and proof of Propo-
sition 4.4. Let Ī denote the smallest subcategory of T containing I and
closed under T -coproducts of objects of I . Let Ĩ denote the smallest sub-
category of T containing coproducts of the form,

⊕
a∈A I , for a single I ∈ I

whenever
⊕

a∈A I exists in T . We then set 〈Ī 〉0 = 〈Ī 〉 and

〈Ī 〉n := 〈Ī 〉n−1 � 〈Ī 〉.
We also set 〈Ĩ 〉0 = 〈Ĩ 〉 and

〈Ĩ 〉n := ˜〈Ĩ 〉n−1 � 〈Ĩ 〉.
Definition 2.1 Let E be an object of a triangulated category, T . If there is
an n with 〈E〉n = T , we set

�T (E) := min {n ≥ 0 | 〈E〉n = T }.
Otherwise, we set �T (E) := ∞. We call �T (E) the generation time of E.
When, T is clear from context, we omit it and simply write �(E). If 〈E〉∞
equals T , we say that E is a generator. If �(E) is finite, we say that E is a
strong generator. The Orlov spectrum of T , denoted OSpecT , is the set

{�(G) | G ∈ T , �(G) < ∞} ⊂ Z≥0.
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The Rouquier dimension of T , denoted rdim T , is the infimum of OSpecT ;
it is defined as ∞ when OSpecT is empty. The ultimate dimension of T ,
denoted udimT , is the supremum of OSpecT ; it is defined as ∞ when
OSpecT is empty.

We shall denote the Orlov spectrum, Rouquier dimension, and ultimate
dimension of Db(cohX) by OSpecX, rdimX, and udimX, respectively. It is
also convenient to recall the following definition which first appeared in [3].

Definition 2.2 Let E be an object of a triangulated category, T . If there is
an n with A ∈ 〈E〉n, we set

LvlET (A) := min {n ≥ 0 | A ∈ 〈E〉n}.
Otherwise, we set LvlET (A) = ∞. This number is called the level of A with
respect to E, or simply the level of A when E is implicit.

The case where T is Db(modA), the bounded derived category of coher-
ent modules, and G = A is the free module, provides some insight into the
formalism above. The following theorem is taken from [30]. We refer the
reader to loc. cit. for the definition of coherent rings and modules. However,
let us note that, if A is right-Noetherian, then it is right-coherent, and a right
A-module is finitely-generated if and only if it is coherent. If A is finite-
dimensional over k or commutative and essentially of finite type, the result is
originally due to Rouquier, [47].

Theorem 2.3 Let A be a right-coherent k-algebra. The generation time of
A, as an object of Db(modA), the bounded derived category of coherent A-
modules, is equal to the global dimension of A.

Remark 2.4 Using ideas from [3], one can extend the notion of global di-
mension to dg-algebras in a natural manner and check that the analog of
Theorem 2.3 holds for dg-algebras. As noted in [47], for an enhanceable tri-
angulated category, T , each generator, G, allows one to construct an equiv-
alence of T with the derived category of perfect dg-modules over the dg-
endomorphisms of G. In this way, the Orlov spectrum can be viewed as a
list of global dimensions of dg-algebras within a derived Morita equivalence
class.

We have the following simple lemma, for a proof see Lemma 2.4 of [5]:

Lemma 2.5 Let F : T → R be an exact functor between triangulated cate-
gories. Let G be an object of T . If B ∈ 〈G〉n, then F(B) ∈ 〈F(G)〉n. More-
over, if F commutes with coproducts and B ∈ 〈G〉n, then F(B) ∈ 〈F(G)〉n.
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Let F : T → R be an exact functor between triangulated categories. If ev-
ery object in R is isomorphic to a direct summand of an object in the essential
image of F , we say that F is dense, or has dense image.

Lemma 2.6 If F : T → R has dense image and G is a strong generator,
then �(G) ≥ �(F (G)). In particular, dim T ≥ dim R.

For a proof, see Lemma 2.5 of [5].

Example 2.7 Let V be a vector bundle in Db(cohX). Then the functor (−⊗O

V ) : Db(cohX) → Db(cohX) is dense, as any object, F , is a summand of
(F ⊗O V ∨) ⊗O V .

Example 2.8 Consider a finite group Γ acting on an algebraic variety, X,
and consider the derived category of coherent sheaves on X, Db(cohX), and
the derived category of Γ -equivariant coherent sheaves on X, Db

Γ (cohX).
We have two exact functors: the forgetful functor, For : Db

Γ (cohX) →
Db(cohX), and the inflation functor, Inf : Db(cohX) → Db

Γ (cohX), where,
by definition, Inf(A) =⊕

g∈Γ g∗A, with the natural Γ action.

Notice that any A ∈ Db(cohX) is a summand of For(Inf(A)), hence
the forgetful functor is dense. On the other hand, for any B ∈ Db

Γ (cohX)

and each g ∈ Γ , we have an isomorphism, φg : g∗For(B) → For(B), in
Db(cohX) coming from the equivariant structure on B . For is the left adjoint
to Inf with adjunction morphism in Db

Γ (cohX) defined by:

∑
g∈Γ

φg : Inf(For(B)) → B.

The map,

1

|Γ |
⊕
g∈Γ

φ−1
g : B → Inf(For(B)),

provides a splitting of the map above. Therefore, B is a summand of
Inf(For(B)), and the functor Inf is also dense.

Hence, for any generator, G, of Db(cohX), we have:

�(For(Inf(G)) ≤ �(Inf(G)) ≤ �(G).

It follows that Db(cohX) and Db
Γ (cohX) have the same Rouquier dimension.

Furthermore, for any generator, G, of Db(cohX) which is equivariant under
the action of Γ , we have 〈G〉0 = 〈For(Inf(G))〉0 hence �(For(Inf(G))) =
�(G) and thus �(G) = �(Inf(G)).
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Lemma 2.9 If T is a triangulated category with finite Rouquier dimension,
then any generator is a strong generator.

For a proof, see Lemma 2.6 of [5].
The generation time of an object can be reinterpreted in terms of so called

“ghost maps”; this reinterpretation turns out to be quite useful both for intu-
ition about generation time and as a means of calculation.

Definition 2.10 Let T be a triangulated category, f : X → Y be a mor-
phism, and I be a full subcategory. We say that f : X → Y is I ghost if,
for all I ∈ I , the induced map, HomT (I,X) → HomT (I, Y ), is zero. We
say that f is I co-ghost if, for all I ∈ I , the induced map, HomT (Y, I ) →
HomT (X, I), is zero. If G is an object of T , we will say that f is G ghost
if f is 〈G〉0 ghost and f is G co-ghost if f is 〈G〉0 co-ghost.

Remark 2.11 Recall that an ideal, J , in an additive category, C , is a subset,

J (X,Y ) ⊂ HomC (X,Y ),

for each X,Y ∈ C such that: for any g : Y → Z, h : W → X, and any f,f ′ :
X → Y in J (X,Y ), h ◦ f ∈ J (X,Z), f ◦ g ∈ J (W,Y ), and f + f ′ ∈
J (X,Y ). Note that I ghosts and I co-ghosts both form ideals in T .

The following lemmas relate generation time to ghost maps and are a cru-
cial ingredient in our study of Orlov spectra. Lemma 2.12 first appeared in
[28] and later appeared in many places, for example see [16, 47].

Lemma 2.12 Let T be a triangulated category and let G be an object of
T . If there exists a sequence of morphisms, fi : Xi−1 → Xi , 1 ≤ i ≤ t , in T
where each fi is G ghost and ft ◦ · · · ◦ f1 �= 0, then X0 �∈ 〈G〉t−1.

Proof Let us show that ft ◦ · · · ◦ f1 is ghost for 〈G〉t−1. For simplicity, set
f t := ft ◦ · · · ◦ f1. We proceed by induction with the case, t = 1, clear. As-
sume we know f t is 〈G〉t−1 ghost for t ≤ n − 1, and let us consider the case
t = n. From the induction hypothesis, f n−1 is 〈G〉n−2 ghost. Let Y be an
object of T lying in a triangle

Z
α→ Y

β→ YG → Z[1]
with Z ∈ 〈G〉n−2 and YG ∈ 〈G〉0. Take any map g : Y → X0. As f n−1 is
〈G〉n−2 ghost, the composition f n−1 ◦ g ◦ α vanishes. Thus, we have a map
h : YG → Xn−1 with f n−1 ◦g = h◦β . As fn is 〈G〉0 ghost, fn◦h◦β = f n◦g

vanishes. Thus, f n is 〈G〉n−2 ∗ 〈G〉0 ghost. It is clear this implies that f n is
〈G〉n−1 ghost.
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To finish the proof the lemma, note that, if X0 lies in 〈G〉t−1, then f t ◦
idX0 = f t vanishes. �

We also have the dual statement whose proof is the same.

Lemma 2.13 Let T be a triangulated category and let G be an object of
T . If there exists a sequence of morphisms, fi : Xi−1 → Xi , 1 ≤ i ≤ t , in T
where each fi is G co-ghost and ft ◦ · · · ◦ f1 �= 0, then Xt �∈ 〈G〉t−1.

The following partial converse seems well-known, see [7].

Lemma 2.14 Let T be a triangulated category and let G be an object of T .
Assume that for any object, X, of T there exists a morphism, νX : XG → X,
with XG ∈ 〈G〉0 and satisfying the following condition: for any morphism,
g : Y → X, with Y ∈ 〈G〉0, there exists a morphism, h : Y → XG, with g =
νX ◦h. If X �∈ 〈G〉t−1, then there exists a sequence of morphisms, fi : Xi−1 →
Xi , 1 ≤ i ≤ t , in T where each fi is G ghost, X0 = X and ft ◦ · · · ◦ f1 �= 0.

Proof Complete νX : XG → X to a distinguished triangle

XG
νX→ X

f1→ X1 → XG[1].
f1 is G ghost. Now iterate to get triangles

(Xi)G
νXi→ Xi

fi+1→ Xi+1 → (Xi)G[1].
Let f t := ft ◦ · · · ◦ f1. If the composition, f n, vanishes, then X0[1] ⊕ Xn

∼=
C(f n), where C(f t ) denotes the cone over f t . Once we know that C(f n)

lies in 〈G〉n−1, then we can conclude the proof.
Let us show that C(f t ) lies in 〈G〉t−1 by induction on t . The case t = 1 is

clear. Assume the statement holds for t ≤ m − 1 and consider the case t = m.
We use the octrahedral axiom for the composition, f m = fm ◦ f m−1, to get a
triangle

C(f m−1) → C(f m) → C(fm) → C(f m−1)[1].
C(fm) ∈ 〈G〉0, by construction, and C(f m−1) ∈ 〈G〉m−2, from the induction
hypothesis, so C(f m) ∈ 〈G〉m−1. �

We also have the dual statement whose proof is the same.

Lemma 2.15 Let T be a triangulated category and let G be an object of T .
Assume that for any object of X of T there exists a morphism, νX : X → XG,
with XG ∈ 〈G〉0 and satisfying the following condition: for any morphism,
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g : X → Y , with Y ∈ 〈G〉0, there exists a morphism, h : XG → Y , with g =
h◦νX . If X �∈ 〈G〉t−1, then there exists a sequence of morphisms, fi : Xi−1 →
Xi , 1 ≤ i ≤ t , in T where each fi is G co-ghost and Xt = X.

Remark 2.16 We can replace G by a general subcategory, I , in each of these
statements. However, we should note that it is necessary to assume the exis-
tence of an “I -approximation” similar to the hypotheses of Lemmas 2.14
and 2.15. If X is a projective variety, then there are no PerfX ghosts in
Db(cohX), see [4], and PerfX is not dense in Db(cohX), for a general X.

Recall that a triangulated category, T , is Ext-finite, if for any pair of ob-
jects, A and B , of T , we have

dimk

(⊕
l∈Z

HomT (A,B[l])
)

< ∞.

Combining the previous observations, we get the following corollary, which
cannot be called anything other than a lemma:

Lemma 2.17 (Ghost/Co-ghost Lemma and Converse) Let T be a k-linear
Ext-finite triangulated category and let G and X0 be objects in T . The fol-
lowing are equivalent:

(i) X0 ∈ 〈G〉n and X0 /∈ 〈G〉n−1;
(ii) there exists a sequence,

X0
f1−−−→ X1

f2−−−→ · · · fn−1−−−→ Xn−1
fn−−−→ Xn,

of maps in T such that all the fi are ghost for G and fn ◦ · · · ◦ f1 �= 0.
Furthermore there is no such sequence for n + 1.

(iii) there exists a sequence,

Xn
fn−−−→ Xn−1

fn−1−−−→ · · · f2−−−→ Xn−1
f1−−−→ X0,

of maps in T such that all the fi are co-ghost for G and f1 ◦· · ·◦fn �= 0.
Furthermore there is no such sequence for n + 1.

(iv) there exists a sequence,

X0
f1−−−→ X1

f2−−−→ · · · fn−1−−−→ Xn−1
fn−−−→ Xn,

of maps in T with indecomposable objects, Xi ∈ T , such that all the
fi are ghost for G and fn ◦ · · · ◦ f1 �= 0. Furthermore, there is no such
sequence for n + 1.
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(v) there exists a sequence,

Xn
fn−−−→ Xn−1

fn−1−−−→ · · · f2−−−→ Xn−1
f1−−−→ X0,

of maps in T with indecomposable objects, Xi ∈ T , such that all the fi

are co-ghost for G and f1 ◦ · · · ◦ fn �= 0. Furthermore, there is no such
sequence for n + 1.

Proof T satisfies the hypothesis of Lemma 2.14. Let X be an object of T .
We set XG =⊕

l∈Z
HomT (G,X[l]) ⊗k G[−l] and let νX : XG → X be the

evaluation map. Similarly, T satisfies the hypothesis of Lemma 2.15. The
equivalence of (i), (ii), (iii) is a combination of Lemmas 2.12, 2.13, 2.14,
and 2.15. The only difference between (ii) and (iv) is that the objects are
assumed to be indecomposable; their equivalence is clear. The same goes
for (iii) and (v). �

We have an important special case. Recall that a hereditary abelian cate-
gory is one where Ext2(A,B) = 0 for any two objects, A and B .

Lemma 2.18 Let C be a hereditary abelian category with finite dimensional
morphism spaces and let G be an object of Db(C ) and X0 be an object of C .
The following are equivalent:

(i) X0 ∈ 〈G〉n and X0 /∈ 〈G〉n−1;
(ii) n is the largest integer such that there exists a sequence,

X0
g1−−−→ · · · gs−−−→ Xs

h1−−−→ Y1[1] h2−−−→ · · · ht−−−→ Yt [1],
of maps in Db(C ) with Xi and Yi indecomposable objects of C , s + t =
n, and such that all the fi and gi are ghost for G and ht ◦ · · · ◦ g1 �= 0.

(iii) n is the largest integer such that there exists a sequence,

Yt [−1] ht−−−→ · · · h2−−−→ Y0
gs−−−→ Xs

gs−1−−−→ · · · g1−−−→ X0,

of maps in Db(C ) with Xi and Yi indecomposable objects of C , s + t =
n, and such that all the fi and gi are co-ghost for G and g1 ◦ · · ·◦ht �= 0.
Furthermore, there is no such sequence for n + 1.

Recall that for a finite dimensional algebra, A, with nilradical, N , the
Loewy length, denoted LL(A), is smallest n such that Nn = 0.

Corollary 2.19 Suppose C is a k-linear hereditary abelian category with
finite dimensional morphism spaces and finitely many isomorphism classes of
indecomposable objects. Let Mi be chosen representatives of the isomorphism
classes. Then, udimT ≤ LL(REnd(⊕Mi)) − 1.
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There is an important relationship between ghost maps and Serre functors.
Let us recall the definition of a Serre functor, due to Bondal and M. Kapranov,
[10]:

Definition 2.20 A k-linear exact autoequivalence, S, of T , is called a Serre
functor if for any pair of objects, X and Y , of T , there exists an isomorphism
of vector spaces,

HomT (Y,X)∨ ∼= HomT (X,S(Y )),

which is natural in X and Y .

A Serre functor, if it exists, is determined uniquely up to natural isomor-
phism. If F : T → S is an exact equivalence of triangulated categories pos-
sessing Serre functors, then F commutes with those Serre functors, loc. cit.
Now, recall that a category is called Karoubi closed if all idempotents split.
Suppose T is a k-linear Karoubi closed triangulated category with finite
dimensional morphism spaces which admits a Serre functor, S. Let X be
an indecomposable object of T . In this situation, there is a natural map,
εX : X → S(X), corresponding to,

HomT (X,X) → HomT (X,X)/RadT (X,X) ∼= k,

where the isomorphism with the base field identifies the image of the identity
with 1. By definition of a Serre functor, there is also a nondegenerate pairing,

HomT (A,B) ⊗k HomT (B,S(A)) → k.

Hence any nonzero morphism, X → A, can be extended to a nonzero mor-
phism, X → A → S(X); the total morphism in this situation can be taken to
be the natural map described above, see [46].

Proposition 2.21 Let T be a k-linear triangulated Karoubi closed category
with finite-dimensional morphism spaces. Assume T possesses a Serre func-
tor, S. Let X be an indecomposable object in T and f : X → Y a morphism.
There exists a morphism, g : Y → S(X), so that g ◦ f = εX .

Given any nonzero ghost sequence, X
f1→ ·· · fn→ Xn with fn ◦ · · · ◦ f1 �= 0,

we can extend it to a new sequence, X
f1→ ·· · fn→ Xn

g→ S(X), with g ◦ fn ◦
· · · ◦ f1 = εX and where only g is possibly non-ghost. Concatenating fn with
g, we get a ghost sequence of equal length beginning at X and terminating at
S(X).



Orlov spectra: bounds and gaps 375

Now, for any map, G → X, consider the following commutative diagram:

Hom(X,S(X)) −−−→ Hom(G,S(X))⏐⏐
∼=
⏐⏐
∼=

Hom(X,X)∨ −−−→ Hom(X,G)∨.

By duality, requiring that the image of εX is nonzero in Hom(X,G)∨ is equiv-
alent to requiring that Hom(X,G) → Hom(X,X) does not lie in Rad(X,X).

Hence, G → X has a section. Meaning that if G → X
εX→ S(X) is nonzero

than X is a summand of G. One can similarly show that, for any map,
S(X) → G, if the composition, X → S(X) → G, is nonzero, then G is a sum-
mand of S(X). Therefore, εX composed with any map besides a sequence of
split epimorphisms and/or monomorphisms is zero. In other words, the natu-
ral map, εX , is G ghost and G co-ghost for any object, G, of which X is not a
summand. Hence, given a ghost sequence whose total map is εX , it can not be
extended any further (although it could be perhaps factored into more maps).

Ghost maps often have geometric origins. We collect some examples here.

Example 2.22 (Central actions as ghosts) Let T be a triangulated category.
The center of T , denoted Z(T ), is the space of natural transformations from
IdT to IdT . Let x be an element of Z(T ). If G is an object of T with
x(G) = 0, then we say that x annihilates G. For any object, A ∈ T , and any
morphism, α : G → A[i], we have the following commutative diagram:

G
x(G)−−−→ G

α

⏐⏐
 α

⏐⏐

A[i] x(A)−−−→ A[i].

If x(G) = 0, then x(A) ◦ α = 0 for all α ∈ HomT (G,A[i]). In other words,
x(A) is G ghost for any object A ∈ T . Similarly, x(A) is G co-ghost.
If T = Db(cohX) for a quasi-projective variety, X, then Z(Db(cohX)) ∼=
Γ (X,OX), [48].

Example 2.23 (Divisors and ghosts) The choice of a divisor, i : D → X, and a
section, s, of O(D), gives a natural transformation, α : IdDb(cohX) → (− ⊗O

O(D)). Let H be in the essential image of the functor i∗ : Db(cohD) →
Db(cohX). Then, for any object, A ∈ Db(cohX), α(A) is H ghost by adjunc-
tion.

Example 2.24 (Tangent vectors as ghosts) Let X be a variety of dimension n.
Let G be any object of Db(cohX) and consider a smooth point, p, at which
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the cohomology sheaves of G are locally free. It is easily verified that any
tangent vector, ζ ∈ Hom(Op,Op[1]) ∼= TpX, is G ghost. Now take a basis for
the tangent space, ζ1, . . . , ζn. The composition is a nonzero ghost sequence:

Op
ζ1→ Op[1] → · · · → Op[n − 1] ζn[n−1]→ Op[n].

It follows from the Ghost Lemma, Lemma 2.17, that n ≤ �(G). Hence, n ≤
rdimX. This proof is due to Rouquier and can be found in [47].

Example 2.25 (Cycles and levels) We can extend the previous example a bit
more. Let i : V → X be a smooth subvariety of X. By adjunction, the push-
forward of any Li∗G ghost is G ghost. For any point, p ∈ V , take any Li∗G
ghost sequence, Op → A1 → ·· · → An. By nondegeneracy of the Serre pair-
ing (as mentioned above) we may assume An = Op[dimV ]. Consider the
total composition, f : Op → Op[dimV ]. The pushforward i∗f is a nonzero
element of the top exterior power of TpV under the isomorphism,

HomX(Op,Op[dimV ]) ∼= ΛdimV TpX.

Now take a collection of smooth subvarieties, V1, . . . , Vs , intersecting
transversally at a point, p ∈ X. Denote the inclusion maps by ij : Vj → X.
Let G be a generator of Db(cohX). By the Ghost Lemma, Lemma 2.17,
for each Vj we can construct a ghost sequence for Op whose length is the
level of Op with respect to Li∗j G. As noted above, we may assume this
ghost sequence terminates at Op[dimVj ]. Denote the total composition by
fj : Op → Op[dimVj ]. The pushforward, ij ∗fj , is a nonzero element of
ΛdimVj TpVj ⊂ ΛdimVj TpX. We may then construct a ghost sequence:

Op
i1∗f1→ Op[dimV1] → · · · → Op[n − dimVs] is∗fs [n−dimVs ]→ Op[n].

Each of the G ghosts, ij ∗fj , factors into Lvl
Lij

∗G
Vj

(Op) additional G

ghosts. Hence we have:

s∑
j=1

Lvl
Lij

∗G
Vj

(Op) ≤ LvlGX(Op).

Let us use this example to give a simple proof that the ultimate dimension
of P

n is at least 2n.

Proposition 2.26 udim P
n ≥ 2n.

Proof We work by induction. Let Gn = O ⊕OH1 ⊕ · · ·⊕OHn−1 ⊕Op where
Hi is a linear subspace of P

n of codimension i. The induction hypothesis is
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that, for any point, q ∈ P
n, not lying in any Hi , the level of Oq is at least

2n. Let us tackle the case of P
1 first. Let q be a point distinct from p. The

sequence

Oq → O(−1)[1] → Oq[1]
is a ghost sequence for O ⊕ Op . Hence, Oq /∈ 〈O ⊕ Op〉1 implying that,

LvlO⊕Op
(Oq) ≥ 2.

Now assume we know the result for P
j when j ≤ n − 1, and let us work

on the case j = n. Take any point, q , not lying on each Hi so that Gn is
free near q . Take a hyperplane, H , passing through q and intersecting each
Hi transversally and a line, L, passing through q and intersecting each Hi

and H transversally. Restricting Gn to H gives an element of 〈Gn−1〉0 and
restricting to L gives an element of 〈G1〉0. By Example 2.25, the level of Oq

is at least 2n. �

Remark 2.27 A more careful analysis reveals that

{n,n + 1, . . . ,2n − 1,2n} ⊂ OSpec P
n.

We suspect this is in fact an equality. However, this is only known in the case
n = 1.

When T is Ext-finite, we have a (weakly) universal G ghost from any
object, A ∈ T : we take the cone over the natural evaluation map

⊕
i∈Z

HomT (G[−i],A) ⊗k G[−i] evA→ A.

Denote, for the moment, the cone by LG(A). For a general T and G, the
assignment, A → LG(A), cannot necessarily be promoted to an endofunctor.
To guarantee good behavior of LG, we can assume that T is the homotopy
category of a triangulated A∞-category, A , see Chap. 1, Sect. 3 of [50]. In
this case, we have a cone construction on A which enhances the assignment,
LG, and guarantees functoriality. We record the definition of LG and RG for
subsequent use.

Definition 2.28 Let T be an Ext-finite triangulated category that is the ho-
motopy category of a triangulated A∞-category, A . For any pairs of objects,
G and A, of A , we have a natural evaluation map

HomA (G,A) ⊗k G
evA→ A.
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Define LG : A → A as the A∞-endofunctor which takes A to the cone over
evA. We also use the notation, LG : T → T , for the induced exact functor on
T , called the left twist by G. There is an natural transformation, λ : IdA →
LG, which descends to a natural transformation, λ : IdT → LG. We have an
exact triangle in T , where the slashed arrow denotes a degree one morphism:

A LG(A)

⊕
i∈Z

HomT (G,A[i]) ⊗k G[−i]

λ(A)

|evA

Definition 2.29 Let T be an Ext-finite triangulated category that is the ho-
motopy category of a triangulated A∞-category, A . For any pairs of objects,
G and A, of A , we have a natural co-evaluation map

A
coevA→ HomA (A,G)∨ ⊗k G.

Define RG : A → A as the A∞-endofunctor which takes A to the cone over
coevA[−1]. We also use the notation, RG : T → T , for the induced exact
functor on T , called the right twist by G. There is an natural transformation,
ρ : RG → IdA , which descends to a natural transformation, ρ : RG → IdT .
We have an exact triangle in T :

RG(A) A

HomT (A,G[i])∨ ⊗k G[−i]

ρ(A)

coevA
|

Example 2.30 In [52], Seidel and Thomas show that for a spherical object
(see Definition 6.1) the associated left twist functor is an autoequivalence. For
the derived Fukaya category of a symplectic manifold, the left twist functor
along a Lagrangian sphere is precisely the autoequivalence given by taking
a Dehn twist along this sphere. Seidel and Thomas also show that certain
configurations of spherical objects induce the action of a braid group on the
category. While one twist along a Lagrangian sphere provides a single ghost
map, we will see in Sect. 6 that words in the braid group induce ghost se-
quences.

Example 2.31 (Global monodromy of the quintic as a ghost map) Let X be
a quintic hypersurface in P

4, Y be the family of Calabi Yau manifolds that is
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mirror to X according to Batyrev’s construction. A loop around infinity, in the
base P

1\{0,1,∞}, induces a categorical monodromy, {1}. This monodromy
is a composition of autoequivalences, {1} = LO ◦ (− ⊗O O(1)).

If we choose a hyperplane section, H , we get a natural transformation,
ζH : IdDb(cohX) → {1}. For any object, A, the map, ζH (A), is ghost for O

and for the essential image of Db(cohH) under inclusion. If we take any
generator, N , of Db(cohH), then O ⊕ N generates Db(cohX) and ζH (A) is
O ⊕ N ghost (see Examples 2.30 and 2.23).

In Sect. 5, we will see that {1} is precisely the autoequivalence correspond-
ing to twisting the grading in the associated category of graded singularities.

3 Semi-orthogonal decompositions, exceptional collections and
birational geometry

3.1 Semi-orthogonal decompositions

Let T be a triangulated category and I a full subcategory. Recall that the left
orthogonal, ⊥I , is the full subcategory T consisting of all objects, T ∈ T ,
with HomT (T , I ) = 0 for any I ∈ I . The right orthogonal, I ⊥, is defined
similarly.

Definition 3.1 A semi-orthogonal decomposition of a triangulated category,
T , is a sequence of full triangulated subcategories, A1, . . . ,Am, in T such
that Ai ⊂ A ⊥

j for i < j and, for every object T ∈ T , there exists a diagram:

0 Tm−1 · · · T2 T1 T

Am A2 A1

|||

where all triangles are distinguished and Ak ∈ Ak . We shall denote a semi-
orthogonal decomposition by 〈A1, . . . ,Am〉.

A case of particular importance is if each Ai is equivalent to Db(modk)

as a triangulated category. Let Ai denote the object in T corresponding to k

in Ai . In this case, we call A1, . . . ,Am an exceptional collection. If, in addi-
tion, HomT (Ai,Aj [l]) = 0 for l �= 0, we say that the exceptional collection,
A1, . . . ,An, is strong.

As a warning to the reader. The notion of exceptional collection which
appears here is often called a full exceptional collection in the literature. The
distinction is that our exceptional collections always generate the triangulated
category in question.
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Remark 3.2 While not required in the definition, it is easy to see that T

uniquely determines the diagram appearing in Definition 3.1.

The following lemma is clear from the definition of a semi-orthogonal de-
composition:

Lemma 3.3 Suppose 〈A1, . . . ,Am〉 is a semi-orthogonal decomposition of
T and, for each i, Gi is a strong generator of Ai . Then,

⊕m
i=1 Gi is a strong

generator of T .

In this section we will analyze how the generation time behaves when we
have generators coming from semi-orthogonal decompositions.

Due to work of Bondal, Kuznetsov, and Orlov, it is widely believed that
semi-orthogonal decompositions could play an important role in birational
geometry. We have the following result due to Orlov, see [39]:

Theorem 3.4 Let π : X̂ → X be the blow up of a smooth variety, X, along a
smooth subvariety, Y , of codimension c. Let E denote the exceptional divisor
on X̂ and OE(1) denote the relative twisting sheaf of π |E : E → Y . Denote
the inclusion as j : E → X̂. There is a semi-orthogonal decomposition of
Db(coh X̂) given by

〈
Db(cohY), . . . ,Db(cohY),Db(cohX)

〉
.

In this decomposition, the category Db(cohY) occurs c − 1 times under the
following equivalences for −c + 1 ≤ l ≤ −1:

Db(cohY) ∼= j∗((π |E)∗Db(cohY) ⊗O OE(l)),

and the category Db(cohX) is equivalent to Lπ∗Db(cohX).

Based on the above theorem, and further work of his own, Kuznetsov has
proposed the existence of a categorical analogue to the Clemens-Griffiths
component of the intermediate Jacobian, [32]. Roughly, this is the component
of a semi-orthogonal decomposition which is not equivalent to a component
of the derived category of a variety of smaller dimension. In what follows,
we hope to suggest that the Orlov spectrum can detect, in some cases, when
Kuznetsov’s Clemens-Griffiths component is nontrivial.

Definition 3.5 Let α : A → T be the inclusion of a full triangulated subcat-
egory of T . The subcategory, A , is called right admissible if the inclusion
functor, α, has a right adjoint, α!, and left admissible if it has a left adjoint, α∗.
A full triangulated subcategory is called admissible if it is both right and left
admissible.
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The proofs of the following lemmas can be found in [10]:

Lemma 3.6 Let A be a full triangulated subcategory of a triangulated cat-
egory, T , with Serre functor. Then, the following are equivalent:

(i) A is left admissible
(ii) A is right admissible

(iii) A is admissible

Lemma 3.7 If 〈A1, . . . ,Am〉 is a semi-orthogonal decomposition of a tri-
angulated category, T , with Serre functor, then Ai is admissible for all
i. Furthermore, if T = 〈A ,B〉 is a semi-orthogonal decomposition, then
B = ⊥A .

Let 〈A1, . . . ,Am〉 = T be a semi-orthogonal decomposition of a trian-
gulated category, T , with Serre functor. Denote each inclusion functor by
αi : Ai → T . Let λi : ⊥Ai → T denote the inclusion of the left orthogo-
nal and ρi : A ⊥

i → T denote the inclusion of the right orthogonal. For any
X ∈ T we have the following exact triangles,

αiα
!
iX → X → ρiρ

∗
i X, (3.1)

and

λiλ
!
iX → X → αiα

∗
i X. (3.2)

There is an action of the braid group on m strands on the set of all m-
term semi-orthogonal decompositions of T , [10]. The standard generators
are given by either taking right mutations, Ri , or left mutations, Li . Let us
recall now the definition,

Ri (A•)j =

⎧⎪⎨
⎪⎩

Aj if j �= i − 1, i

Ai if j = i − 1
⊥〈A1, . . . ,Ai−2,Ai〉 ∩ 〈Ai+1, . . . ,Am〉⊥ if j = i

Li (A•)j =

⎧⎪⎨
⎪⎩

Aj if j �= i, i + 1
⊥〈A1, . . . ,Ai−1〉 ∩ 〈Ai ,Ai+2 . . . ,Am〉⊥ if j = i

Ai if j = i + 1.

Given a generator, G := G1 ⊕ · · · ⊕ Gm, with each Gi ∈ Ai , we can define
new generators,

LiG := G1 ⊕ · · · ⊕ Gi−1 ⊕ ρiρ
∗
i (Gi+1) ⊕ Gi ⊕ · · · ⊕ Gm,

and

RiG := G1 ⊕ · · · ⊕ Gi ⊕ λiλ
!
i (Gi−1) ⊕ Gi+1 ⊕ · · · ⊕ Gm.
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Further, let us define: Li := Lm · · ·Li and Ri := Rm · · ·Ri so that,

LiG = G1 ⊕ · · · ⊕ Gi−1 ⊕ ρiρ
∗
i (Gi+1) ⊕ · · · ⊕ ρiρ

∗
i (Gm) ⊕ Gi

and

RiG = Gi ⊕ λiλ
!
i (G1) ⊕ · · · ⊕ λiλ

!
i (Gi−1) ⊕ Gi+1 ⊕ · · · ⊕ Gm.

Finally, set LD := L1 · · ·Ln−1 and RD := Rn · · ·R2.

Definition 3.8 Given a semi-orthogonal decomposition, 〈A1, . . . ,An〉, of a
triangulated category, T , with Serre functor, we define the left dual semi-
orthogonal decomposition by,

〈A ∨
1 , . . . ,A ∨

n 〉 := LD〈A1, . . . ,An〉,
and the right dual semi-orthogonal decomposition by,

〈∨A1, . . . ,
∨An〉 := RD〈A1, . . . ,An〉.

The following proposition is clear from the definition of mutation:

Proposition 3.9 We have the following equalities:

A ∨
i = 〈A1, . . . ,Ai ,Ai+1, . . . ,An〉⊥

∨Ai = ⊥〈A1, . . . ,Ai ,Ai+1, . . . ,An〉.

Lemma 3.10 Let T be a triangulated category possessing a Serre functor,
S, and suppose that T has a semi-orthogonal decomposition, 〈A1, . . . ,An〉.
We have isomorphisms for any X ∈ Ai :

S(X) ∼= L
2
D(SAi

X) ∼= SA ∨∨
i

L
2
D(X)

and

S−1(X) ∼= R
2
D(S−1

Ai
X) ∼= S−1

∨∨Ai
R

2
D(X),

where SS , respectively S−1
S , denotes the Serre functor, respectively the in-

verse to the Serre functor, for a subcategory, S , of T .

Proof Note that the effect of the application of L2
D is to project Ai to A ⊥⊥

i .
Similarly, R2

D is the projection from Ai to ⊥⊥Ai . Proposition 3.7 of [10]
states that L2

D commutes with Serre functors. Similarly, R2
D commutes with

inverses to the Serre functors. �
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Definition 3.11 Let [a, b] denote the integer interval with endpoints a and
b in Z. Despite the usual notation, we do not distinguish between a ≤ b and
a ≥ b i.e. [a, b] = [b, a]. Furthermore, our intervals only contain integers.
Let I be a subset of Z. We say that I has a gap of length s if, for some a,
[a, a + s + 1] ∩ I = {a, a + s + 1}. We say that a triangulated category, T ,
has a gap of length s if OSpecT has a gap of length s.

Theorem 3.12 Suppose 〈A1, . . . ,An〉 is a semi-orthogonal decomposition
of T and G := G1 ⊕ · · · ⊕ Gn is a generator of T with Gi ∈ Ai . Let
M := maxi{�Ai

(Gi)}. Any gap inside [�T (G ),�T (LD(G ))] ∩ OSpecT
has length at most M . In particular, if �Ai

(Gi) equals the Rouquier dimen-
sion of Ai for each i, then any gap inside [�T (G ),�T (LD(G ))]∩OSpecT
has length at most maxi rdimAi . The same statement is true passing to the
right dual.

Proof Let us state the following claim: let 〈C1, . . . ,Cm〉 be any semi-
orthogonal decomposition of T and let H = H1 ⊕ · · · ⊕ Hm be a gener-
ator with Hi ∈ Ci . The generation time of LiH is at most maxi{�Ci

(Hi)} +
�T (H ) + 1. Additionally, the generation time of RiH is at most
maxi{�Ci

(Hi)} +�T (H ) + 1.
For the moment, we assume this claim. As a consequence, the generation

time of Li · · ·Ln−1G is at most M + �T (Li+1 · · ·Ln−1G ) + 1. The genera-
tion times of the mutations G ,Ln−1G , . . . ,L2 · · ·Ln−1G ,LDG form a list of
numbers which can increase in increments of at most M +1 (although there is
no control over increments of decrease.) By Lemma 3.10, R2

DL2
DG is isomor-

phic to G . The generation times of the set of full mutations, i.e. those coming
from applications of Li or Ri , from G to R2

DL2
DG provide a (possibly) larger

subset, V , of OSpecT which start and end at �T (G ) and can increase by
at most M + 1. Consequently, for any a, b ∈ V , [a, b] ∩ V ⊂ OSpecT has
gaps of size at most M . Taking a = �T (G ) and b = �T (LDG ) provides the
statement of the theorem.

To finish the proof, let us verify the claim. Let C = 〈C1, . . . ,Cm〉 be any
semi-orthogonal decomposition of T and let H = H1 ⊕ · · · ⊕ Hm be a gen-
erator with Hi ∈ Ci . Since ρ∗

i : T → C ⊥
i is essentially surjective we have,

�C ⊥
i

(ρ∗
i H ) ≤ �T (H ).

Now by definition,

LiH = H1 ⊕ · · · ⊕ Hi−1 ⊕ ρiρ
∗
i (Hi+1) ⊕ · · · ⊕ ρiρ

∗
i (Hn) ⊕ Hi

and

ρ∗
i (H ) = H1 ⊕ · · · ⊕ Hi−1 ⊕ ρ∗

i (Hi+1) ⊕ · · · ⊕ ρ∗
i (Hn).
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Hence LiH = ρiρ
∗
i (H ) ⊕ Hi . Therefore, LiH generates the left orthog-

onal of Ci in at most �T (H )-steps. Furthermore, as Hi is a summand of
LiH , LiH generates Ci in at most �Ci

(Hi)-steps. Now triangle (3.1) tells
us that �T (LiH ) ≤ �T (H )+�Ci

(Hi)+1 ≤ �(H )+maxi{�Ci
(Hi)}+1.

We have learned that the generation time increases in increments of at most
maxi{�Ci

(Hi)}+1 after application of a single Li . A similar argument shows
that, after applying the mutation Ri , the generation time does not increase by
more than maxi{�Ci

(Hi)} + 1. �

3.2 A conjectural aside

The “results” in this subsection are all purely conjectural. However, nothing
from this section will be used for further argument.

Recall from the introduction that the following conjecture appears in [42],
where it is proven for curves.

Conjecture 1 For a smooth algebraic variety, X, the Krull dimension of X

and the Rouquier dimension of Db(cohX) are equal.

Now, in light of Theorem 3.12, let us propose our own conjecture.

Conjecture 2 Let X be a smooth algebraic variety and Db(cohX) =
〈A1, . . . ,An〉 be a semi-orthogonal decomposition. The length of any gap
in Db(cohX) is bounded above by the maximal Rouquier dimension amongst
the Ai and the maximal gap size amongst the Ai .

Corollary 3.13 Suppose Conjectures 1 and 2 hold. If X is a smooth variety,
then any gap of Db(cohX) has length at most the Krull dimension of X.

Let us propose another conjecture:

Conjecture 3 If A has a gap of length at least s, then so does Db(cohX).

Corollary 3.14 Suppose Conjectures 2 and 3 hold. Let X be a smooth alge-
braic variety such that there exists a semiorthogonal decomposition,

Db(cohX) = 〈A1, . . . ,An〉.
The maximal length of any gap of Db(cohX) is equal to the largest gap length
amongst the Ai .

Corollary 3.15 Suppose Conjectures 1, 2, and 3 hold. Let X and Y be bira-
tional smooth proper varieties of dimension n. The category, Db(cohX), has
a gap of length n or n − 1 if and only if Db(cohY) has a gap of the same
length i.e. the gaps of length greater than n − 2 are a birational invariant.
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Proof We may suppose that Y is the blow-up of X along Z. By Theorem 3.4,
we have a semi-orthogonal decomposition,

Db(cohY) = 〈Db(cohX),Db(cohZ), . . . ,Db(cohZ)〉.
By Corollary 3.13, the length of any gap in Db(cohZ) is at most n−2. Hence
by Corollary 3.14, Db(cohY) has a gap of length greater than n−2 if and only
if Db(cohX) has a gap of length greater than n − 2. �

Corollary 3.16 Suppose Conjectures 1, 2, and 3 hold. If X is a rational va-
riety of dimension n, then any gap in Db(cohX) has length at most n − 2.

Proof It is well known that P
n has an exceptional collection. In particular, it

has a semi-orthogonal decomposition into categories of Rouquier dimension
zero. By Conjecture 2, Db(coh P

n) has no gaps. The statement follows from
Corollary 3.15. �

In Sect. 4 we will see that the category of singularities of an An-singularity
in even dimension has gaps. In Sect. 5, we will explore semi-orthogonal de-
compositions for hypersurfaces in P

n and their Orlov spectra.

3.3 Bounds on generation time for exceptional collections

The following proposition is an immediate consequence of the main theorem
of [5].

Proposition 3.17 Let A1, . . . ,An be a strong exceptional collection in an
Ext-finite triangulated category, T , that possesses an enhancement. The gen-
eration time of GA = A1 ⊕ · · · ⊕ An is bounded above by

max {i | HomT (GA,S−1(GA)[i]) �= 0}.
In this subsection, we establish a new bound for a general exceptional col-

lection. We require the machinery of triangulated A∞-categories. We will
recall the bare necessities and refer the reader to [50] for a deeper discus-
sion. We also follow the (slightly nonstandard) sign, ordering, and notational
conventions found in loc. cit.

Recall that for an A∞-category, A , the morphism spaces are graded vec-
tor spaces and we have multi-compositions. For any sequence of objects,
X0, . . . ,Xn, n > 0, there is a k-linear map

mn : HomA (X0,X1) ⊗k · · · ⊗k HomA (Xn−1,Xn) → HomA (X0,Xn)

of degree 2 − n. The ordering of the morphism spaces is as in loc. cit. These
maps satisfy a hierarchy of quadratic relations. The first two of which state
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that m1 is a differential on each HomA (X0,X1) and m2 is a map of com-
plexes. The A∞-category, A , is called minimal if m1 = 0.

The homotopy category, H(A ), of A is defined by taking the same objects
as A but taking morphisms between X0 and X1 to be H 0(HomA (X0,X1),

m1). We also have the graded category where we take the same objects
but we take morphisms to be H ∗(HomA (X0,X1),m1). This is denoted by
H ∗(A ). If H ∗(A ) has finite dimensional morphisms spaces, i.e. if one has
dimk HomH ∗(A )(X,Y ) < ∞ for any pair of objects, X,Y ∈ A , then A is
called cohomologically-finite.

We shall always assume that A is strictly unital meaning, for each A ∈ A ,
there is an element, idA ∈ HomA (A,A), that passes to the identity on H(A )

and satisfies the following: for any φ : B → A and ψ : A → B , we have
m2(φ, idA) = φ, m2(idA,ψ) = ψ and any multi-composition mn(φ1,⊗· · · ⊗
idA ⊗· · · ⊗ φn−1) = 0 for n ≥ 3.

A right module over A is an A∞-functor from A op to the dg-category of
chain complexes of k-modules. Right modules over A form an A∞-category.
An A∞ category, A , is called triangulated, or often pretriangulated [11], if
its essential image, under the Yoneda embedding, in H(Mod-A ) is a trian-
gulated category.

Given a generator, G, of H(A ), twisted complexes concretely express how
any object in A is built from G using cones, shifts, and summands. They are
a useful tool in analyzing generation time. We recall the definition now, so
that it may be used in what follows.

First, we additively enlarge to create a new A∞-category. Let B be an
A∞-category. Its additive enlargement is the A∞-category, ΣB, whose are
objects are denoted by ⊕

i∈I

Vi ⊗k Yi,

with I a finite set, Vi finite-dimensional graded vector spaces, and Yi objects
of B. The morphism space in ΣB between C := ⊕

i Vi ⊗k Yi and D :=⊕
i Wi ⊗k Yi is

HomTw-B(C,D) :=
⊕
i,j

Homk(Vi,Wj ) ⊗k HomB(Yi, Yj )

with the natural associated grading. The multi-compositions in ΣB are nat-
ural linear extensions of those in B.

A twisted complex over B is a pair, (C, δC), where C is an object of ΣB
and where δC is an endomorphism of C in ΣB of degree one. We require that
δC satisfies the following conditions: one, there is a finite decreasing filtration
of the Vi’s that is preserved under the action of δC and so that the map induced



Orlov spectra: bounds and gaps 387

by δC on the associated graded pieces is zero, and, two, the sum

∞∑
i=1

mr(δ
⊗r
C ) = 0 (3.3)

where mr is the r-th composition in ΣB . Note that finiteness of the sum
in (3.3) is a consequence of the first condition on δC . We will often suppress
the δC from the notation of a twisted complex. Such a twisted complex was
called a one-sided twisted complex in [11].

Twisted complexes over B form an A∞-category, denoted by Tw-B. The
graded vector space of morphisms between two twisted complexes (C, δC)

and (D, δD) with C =⊕
i Vi ⊗k Yi and D =⊕

i Wi ⊗k Yi is

HomTw-B(C,D) :=
⊕
i,j

Homk(Vi,Wj ) ⊗k HomB(Yi, Yj )

with the natural associated grading.
If we have n twisted complexes, (Ci, δCi

), 0 ≤ i ≤ n, then the n-order
multi-composition on Tw-B is given by

φ1 ⊗ · · · ⊗ φn �→
∑

i0,...,in≥0

mn+i0+···+in(δ
⊗i0
C0

⊗ φ1 ⊗ δ
⊗i1
C1

⊗ · · ·

⊗ δ
⊗in−1
Cn−1

⊗ φn ⊗ δ
⊗in
Cn

). (3.4)

The multi-compositions in Tw-B satisfy the A∞-relations as a result of (3.3).
We say that A1, . . . ,An is an exceptional collection in A if A1, . . . ,An is

an exceptional collection in H(A ). Similarly, A1, . . . ,An is strong in A if
A1, . . . ,An is strong in H(A ). We will say that A1, . . . ,An is minimal when
the A∞-endomorphism algebra, HomA (

⊕n
i=1 Ai,

⊕n
i=1 Ai), of the Ai ’s is

minimal. When A has an exceptional collection, we can provide a normalized
form for objects of A .

Definition 3.18 Let A denote the full subcategory of A consisting of
A1, . . . ,An and Tw-A denote the category of twisted complexes over A. Let
(C, δC) be a twisted complex over A and let

C =
n⊕

i=0

Vi ⊗k Ai.

Consider the filtration F lC =⊕n
i=l Vi ⊗k Ai . We say that (C, δC) is normal-

ized if δC respects the filtration and vanishes on the associated graded pieces,
F lC/F l+1C.
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Lemma 3.19 Let A be a cohomologically-finite triangulated A∞-category
with A1, . . . ,An an exceptional collection. Every object of A is isomorphic
to a normalized twisted complex over A in H(A ).

Proof This is essentially Lemma 5.13 of [50]. For any object, Y of A , we
set Yn = Y and Yi−1 = LAi

Yi . As Y0 lies in the left orthogonal to each of
the Ai in H(A ), it follows that it lies in the left orthogonal to the category
generated by A1 ⊕ · · · ⊕ An, which by assumption is all of H(A ). Hence, Y0
is acyclic. Choose a basis for HomH ∗(A )(Ai, Yi) and lifts of this basis to cy-
cles in HomA (Ai, Yi). Denote by Vi the span of these cycles. This provides a
splitting Vi ↪→ HomA (Ai, Yi) � Vi . Now, we work backwards to get a nor-
malized twisted complex quasi-isomorphic to Y . Since Y0 is trivial in H(A ),
Y1 is quasi-isomorphic to V1 ⊗k A1. Now, Y2 is quasi-isomorphic to the cone
over the composition of morphisms,

V1 ⊗k A1 → HomA (A1, Y1) ⊗k A1 → Y1 → HomA (A2, Y2) ⊗k A2[1]
→ V2 ⊗k A1[1],

which we denote by X2. As a cone, X2 is a normalized twisted complex with

X2 = V1 ⊗k A1[1] ⊕ V2 ⊗k A2[1].
Applying induction, we see that Xi is the cone over a map from a normalized
twisted complex, Xi−1 of the form

Xi−1 =
i−1⊕
l=1

Vl ⊗k Al[i − 1],

to Vi ⊗k Ai[i]. Thus, Xi is a normalized twisted complex quasi-isomorphic
to Yi . Setting C = Xn gives the desired twisted complex. �

Remark 3.20 As noted in [50], the Yi constructed in Lemma 3.19 fit into a
Postnikov tower:

Yn Yn−1 · · · Y2 Y1 Y0

Vn ⊗k An V2 ⊗k A2 V1 ⊗k A1

|||

One can also prove Lemma 3.19 by realizing the diagonal bi-module as a
normalized twisted complex over the category of bi-modules consisting of
Ai � Bj and then convolving. See Proposition 3.8 of [31] for a particular
example. We thank Kuznetsov for pointing this out.
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As in the case of a triangulated category, there is a left dual collection to
A1, . . . ,An in A . We set

Bn+1−k := LA1LA2 · · ·LAk−1(Ak).

It is straightforward to check that B1, . . . ,Bn descends to the left dual collec-
tion of A1, . . . ,An in H(A ) as defined in Definition 3.8.

Lemma 3.21 Let φ : X → Y be a morphism in H(A ). Denote the following
induced morphisms by:

φt
i : HomH(A )(Ai,LAn · · ·LAi+1(X)[t])
→ HomH(A )(Ai,LAn · · ·LAi+1(Y )[t]).

The morphism, φ, is co-ghost for GB =⊕n
i=1 Bi if and only if φt

i vanishes
for 1 ≤ i ≤ n and any t ∈ Z.

Proof Take any Bn+1−i . From Proposition 3.9, HomH(A )(Al,Bn+1−i[t]) is
zero for l �= i for any t . Note that, because of this orthogonality,

HomH(A )(X,Bn+1−i[t]) ∼= HomH(A )(Xi,Bn+1−i[t]),
where Xi = LAi+1 · · ·LAn(X). Similarly, the evaluation map

⊕
j

HomH(A )(Ai[j ],Xi) ⊗k Ai[j ] → Xi

induces an isomorphism,

HomH(A )(Xi,Bn+1−i[t])
∼= HomH(A )

(⊕
j

HomH(A )(Ai[j ],Xi) ⊗k Ai[j ],Bn+1−i[t]
)

∼= (HomH(A )(Ai[t],Xi))
∨.

The same statement is true for Y . We see that the map,

HomH(A )(φ,Bn+1−i[t]) : HomH(A )(Y,Bn+1−i[t])
→ HomH(A )(X,Bn+1−i[t]),

coincides with the map,

(φ−t
i )∨ : HomH(A )(Ai[t],LAn · · ·LAi+1(Y ))∨

→ HomH(A )(Ai[t],LAn · · ·LAi+1(X))∨,

under the isomorphisms above. This implies the claim. �
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We have the following corollary:

Corollary 3.22 Assume we have a minimal exceptional collection, A1, . . . ,An,
in A . Let X =⊕

Vi ⊗k Ai and Y =⊕
Wi ⊗k Ai be twisted complexes. A

cocycle, φ ∈ HomTw-A(X,Y ), is co-ghost for Bn+1−i if and only if the com-
ponent φii : Vi ⊗k Ai → Wi ⊗k Ai is zero in H(A ).

Proof Note that, by minimality, φii must be some matrix in Homk(Vi,Wi)

tensored with the identity on Ai . In particular, it is a cocycle.
Let φ : X → Y be a map of normalized twisted complexes over A. We say

that X has length l if X =⊕l
i=1 Vi ⊗k Ai . We proceed by induction on the

length of the twisted complexes X and Y . The case n = 1 is clear.
Let us assume we know the claim is true when the lengths of X and Y

are less than n and assume we have an exceptional collection of length n.
For notation, let X = ⊕n

i=1 Vi ⊗k Ai and Y = ⊕n
i=1 Wi ⊗k Ai . Note that

the inclusion, Vn ⊗k An ↪→ X, is a cocycle in HomA (Vn ⊗k An,X). Let
Xn−1 = ⊕n−1

i=1 Vi ⊗k Ai with δ
ij
Xn−1

= δ
ij
X for 0 ≤ i, j ≤ n − 1. The cone

over Vn ⊗k An ↪→ X is the twisted complex, X ⊕ Vn ⊗k An[1], with twist-
ing cochain,

(
δX idVn⊗kAn

0 0

)
. The projection, X ⊕ Vn ⊗k An[1] → Xn−1, is a

cocycle and induces a quasi-isomorphism of Xn−1 with LAn(X). The map,
φ : X → Y , induces a commutative diagram,

X ⊕ Vn ⊗k An[1] Y ⊕ Wn ⊗k An[1]

Xn−1 Yn−1

(φ 0
0 φnn[1]

)

φn−1

where φ
ij

n−1 = φij for 1 ≤ i, j ≤ n − 1. For 1 ≤ i ≤ n − 1, φ is Bn+1−i co-
ghost if and only if φn−1 is Bn+1−i co-ghost. Also, φii vanishes if and only
φii

n−1 vanishes. So, to verify the claim in the case that 1 ≤ i ≤ n − 1, we can
pass to φn−1 : Xn−1 → Yn−1 and apply the induction hypothesis. When i = n,
we have the commutative diagram

Vn ⊗k An X

Wn ⊗k An Y

φnn φ

The inclusions induce isomorphisms,

HomH(A )(An,Vn ⊗k An[t]) ∼= HomH(A )(An,X[t])
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and

HomH(A )(An,Wn ⊗k An[t]) ∼= HomH(A )(An,Y [t]).
Hence, HomH(A )(An,φ[t]) = 0 if and only if HomH(A )(An,φ

nn[t]) is triv-
ial. Precomposing with the identity on Vn ⊗k An shows that HomH(A )(An,

φnn[t]) vanishes for all t if and only if φnn vanishes. �

Let A1, . . . ,An be a minimal exceptional collection and let B1, . . . ,Bn be
the left dual collection. To compress notation, set End(A) = HomA (

⊕n
i=1 Ai,⊕n

i=1 Ai). Let I be the subspace of End(A) consisting of φ ∈ End(A) for
which HomH(A )(φ,Bi) is zero for each i. Let us set I 1 = I and define In as
the following vector space:

〈
mt(i1, . . . , it ) : ij ∈ I sj with 1 ≤ sj ≤ n − 1, s1 + · · · + st − t ≥ n − 1,

and t ≥ 2
〉
.

Definition 3.23 We set LL∞(A) := min{n | In = 0}. We call LL∞(A) the
Loewy length of A.

In the case that mi = 0 for i �= 2, End(A) is an algebra and In is the stan-
dard nth power of I as an ideal of A. So, LL∞(A) equals the minimal n for
which any product of elements of I of length n is zero.

Proposition 3.24 Let A be a cohomologically-finite triangulated A∞-
category possessing an exceptional collection, A1, . . . ,An, and let B1, . . . ,Bn

be the (left) dual collection. Set GB =⊕n
i=1 Bi . The generation time of GB in

H(A ) is bounded above by LL∞(A′)−1 where A′ is a minimal A∞-algebra
quasi-isomorphic to End(A).

Proof Let φi : Xi−1 → Xi , for 1 ≤ i ≤ s, be a chain of GB co-ghosts. By
Lemma 3.19, we can assume each δXi

has components lying in I . By Corol-
lary 3.22, the components of φi must lie in I . From the formula in (3.4),
we see that all components of φs ◦ · · · ◦ φ1 lie in I s . If s ≥ LL∞(A′), then
φs ◦ · · · ◦ φ1 is zero. �

Proposition 3.25 Let T be a triangulated category possessing an excep-
tional collection, A1, . . . ,An, with B1, . . . ,Bn being the (left) dual collection.
Set GB =⊕n

i=1 Bi . The generation time of GB is bounded below by

LL∞
( ⊕

l∈Z,1≤i≤n

HomT (Ai,Aj [l])
)

− 1.
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Proof For
⊕

l∈Z,i HomT (Ai,Aj [l]), the ideal I consists of all maps between
distinct objects in the exceptional collection. By the orthogonality properties
of the right and left dual, any element of I is ghost for the right dual and
co-ghost for the left dual. The Ghost Lemma, Lemma 2.17, gives the lower
bound. �

Corollary 3.26 Let A1, . . . ,An be an exceptional collection in A . Assume
that A is formal, i.e. A is quasi-isomorphic to H(A), with mi = 0 for i �= 2.
The generation time of GB is equal to the Loewy length of H(A).

Proof Note that we can apply Proposition 3.24 using H(A) as A′, and the up-
per bound from Proposition 3.24 and the lower bound from Proposition 3.25
coincide. �

Example 3.27 Let us consider the quiver

• • · · · · · · • •a1 a2 an−1 an

with the relation an · · ·a1 = 0. Let A denote the path algebra modulo this
relation. The right dual collection to the exceptional collection formed by the
projective summands of A is the collection of the simple modules, S0, . . . , Sn

(up to shifting the objects). Let S := S0 ⊕· · ·⊕Sn. From [26] A! = R EndA(S)

can be represented by the graded quiver

• • · · · · · · • •b1 b2 bn−1 bn

z

with each bi of degree one and z of degree two subject to the relations
bi+1bi = 0 with the single multi-composition mn(bn, . . . , b1) = z. We have
LL∞(A!) = 3. As the right dual differs from the left dual by an application
of the Serre functor, we have �(A) ≤ 2 by Proposition 3.24. Consider the
twisted complex over A!

(C, δC) =

⎛
⎜⎜⎜⎜⎜⎝

S1 ⊕ · · · ⊕ Sn−1,

⎛
⎜⎜⎜⎜⎜⎝

0 b2 0 · · · 0
0 0 b3 · · · 0

...
...

0 · · · 0 0 bn−1
0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

Then the maps, b1 : S0 → C[1] and bn : C → Sn[1], are A ghost and their
composition is nonzero. So �(A) ≥ 2 and hence �(A) = 2. This demon-
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strates that one can have a strict inequality in Proposition 3.25. One can also
construct examples where the upper bound of Proposition 3.24 is strict. Fur-
thermore, one can apply Corollary 3.26 to see that �(A!) = n − 1.

Example 3.28 In this example, we demonstrate that the supremum of the ul-
timate dimension over a given birational class is infinite. We first demon-
strate the method on P

2 as we get a slightly sharper statement than in the
general case. Let X1 be the blow-up of P

2 at a point, p, E1 denote the
exceptional curve, and O(H) the pullback of O(1) on P

2. Let X2 denote
the blow-up of X1 at a point on E1. Let E2 be the exceptional curve of
this blow-up and, abusing notation, let E1 be the total transform of E1, i.e.
the union of the strict transform of E1 and E2. Also, set O(H) equal to
the pullback of O(H) on X1. We define Xn inductively as the blow-up of
Xn−1 at a point on the exceptional curve of the blow-up, Xn−1 → Xn−2.
We denote by En the exceptional curve of the blow-up, Xn → Xn−1 and
by Ei , for 1 ≤ i ≤ n − 1, the total transforms of the Ei on Xn−1. We con-
tinue to write O(H) for the pullback of O(H) to Xn. Consider the object,
Gn = O(−2H) ⊕ O(−H) ⊕ O ⊕ OE1 ⊕ · · · ⊕ OEn . From Theorem 3.4, Gn

is a generator, and it is simple to check that O(−2H), . . . ,OEn is an excep-
tional collection. Note that there is a nonzero composition of length n + 2 in
EndXn(Gn) which corresponds to taking two sections, s1, s2, of O(1) on P

2

not vanishing at p, pulling them back to Xn, and restricting down the chain

O(−2H)
π∗s1→ O(−H)

π∗s2→ O → OE1 → OE2 → ·· · → OEn.

By Proposition 3.25, the generation time of the dual collection is bounded be-
low by n + 2. In fact, this is an equality as the exceptional collection consists
of n + 3 objects. Thus, n + 2 ∈ OSpecXn and udim(Xn) ≥ n + 2.

On any variety of dimension at least two, by blowing-up points itera-
tively, one can construct an exceptional collection with arbitrarily high Loewy
length. In doing so, one obtains a generator of an admissible subcategory of
some blowup with arbitrarily large generation time. Extending this genera-
tor by the pullback of a generator from the base, gives a generator of some
blowup with arbitrarily large generation time.

Proposition 3.29 Suppose A1, . . . ,An is a strong exceptional collection in a
triangulated category, T , which is the homotopy category of a triangulated
A∞-category. Let r be the projective dimension of EndT (GA) and s be the
Loewy length. Then [r, s] is contained in the Orlov spectrum of T .

Proof The generation time of GA is r by Theorem 2.3. Hence, r is in the
Orlov spectrum. The generator GB corresponding to the dual collection,
B1, . . . ,Bn, has generation time equal to the Loewy length of EndT (GA)
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by Corollary 3.26. Hence, s is also in the Orlov spectrum. As 〈A1, . . . ,An〉 is
a semi-orthogonal orthogonal decomposition consisting of subcategories of
Rouquier dimension zero, the result follows from Theorem 3.12. �

Lemma 3.30 Let Q be a quiver such that the underlying graph is a Dynkin
diagram of type An. For each isomorphism class of indecomposable objects
in Db(modkQ) choose a representative, Mi . The Loewy length of the graded
algebra REndkQ(⊕Mi) is n.

Proof All such quivers are derived Morita equivalent so we may assume all
the arrows point to the right. Let us denote the right module generated by the
ith vertex by Pi . Then one can label the indecomposable objects by Mij :=
Pi/Pj+1, 1 ≤ i, j ≤ n where Min = Pi . If one prefers, this object can be
identified with a string of 1-dimensional vector spaces beginning at the ith

vertex and ending at the j th vertex with chosen isomorphisms in between. For
j < n, the Serre functor S acts on objects which are not projective (j < n) by
S(Mij ) ∼= M(i+1)(j+1)[1] (this is merely a computation of Auslander-Reiten
translation, see [2, 46]).

The morphism,

Pn → ·· · → P1,

is a nontrivial composition of n − 1 nilpotent elements in REndkQ(⊕Mi).
This gives the lower bound.

Now for any nonzero morphism from Mij to Mst one has s ≤ i ≤ t ≤ j , in
order for it to not be an isomorphism, either s < i or t < j . Now, consider a
nonzero sequence of morphisms in the nilradical of REndkQ(⊕Mi):

Mi1j1 → ·· · → Miaja .

We have i1 ≤ im ≤ j1 ≤ jm for all m and either im or jm decreases. Thus, the
total length of such a sequence is at most j1 − ja + i1 − ia . Now, let’s add a
morphism of degree one. By Proposition 2.21, we can assume a sequence of
maximal length looks like:

Mi1j1 → ·· · → Miaja → Mst [1] → · · · → M(i1+1)(j1+1)[1].
Hence the total length is at most,

j1 − ja + i1 − ia + s − (i1 + 1) + t − (j1 + 1) + 1

≤ i1 + 1 − ja + t − ia − 1 ≤ −ja + t < n.

This is the desired upper bound. �
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Theorem 3.31 Let Q be a quiver such that the underlying graph is a Dynkin
diagram of type An. The Orlov spectrum of Db(mod kQ) is equal to the inte-
ger interval {0, . . . , n − 1}.
Proof The upper bound is from Corollary 2.19 and Lemma 3.30. The set
{1, . . . , n−1} is contained in the Orlov spectrum from Proposition 3.29. Zero
is in the Orlov spectrum since the category has finitely isomorphism classes
of many indecomposable objects. �

4 Isolated singularities: the ungraded case

One can extract a fair bit of information about the structure of the Orlov spec-
trum for isolated singularities in both the graded and ungraded cases. In this
section, we tackle the ungraded case leaving the graded case to the next sec-
tion. Let us recall the necessary ideas.

Let S be a commutative Noetherian k-algebra.

Definition 4.1 The category of singularities, or stable derived category, of
S is the Verdier quotient of Db(modS) by the subcategory consisting of all
bounded complexes of finitely-generated projective modules. This is denoted
by Dsg(S).

Now let us assume that (S,mS) is a local Noetherian k-algebra. We say that
(S,mS) is an isolated singularity if Sp is a regular ring for any prime ideal,
p �= mS , of S. The following proposition characterizes an isolated singularity
purely in terms of its categories of singularities:

Proposition 4.2 Let (S,mS) be a local commutative Noetherian k-algebra.
The following are equivalent:

(i) (S,mS) is an isolated singularity
(ii) The residue field, k, is a generator of Dsg(S).

This is the content of Proposition A.2 of [27]. The implication (i) ⇒ (ii)
also follows immediately from the work in [49] or the work in [43]. A special
case of this implication is contained in [17].

Let us now provide a criterion for when k strongly generates.

Proposition 4.3 Let (S,mS) be a local commutative Noetherian k-algebra.
The following are equivalent:

(i) k is a strong generator of Dsg(S).
(ii) The natural homomorphism S → Z(Dsg(S)) factors through S/ml

S for
some l.
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Proof Let us assume that k is a strong generator of Dsg(S). From Exam-
ple 2.22, we see that s(M) is k ghost and k co-ghost for any M ∈ Dsg(S)

and s ∈ mS . Therefore any element of the form s1 · · · sl ∈ ml
S gives a ghost se-

quence for k of length l. Since k strongly generates, Dsg(S) = 〈k〉l−1 for some
l − 1, it follows from the Ghost Lemma, Lemma 2.17, that s1 · · · sl(M) =
s1(M) ◦ · · · ◦ sl(M) = 0. Therefore, ml

S lies in the kernel of the map S →
Z(Dsg(S)).

Now, assume that ml
S lies in the kernel of the map S → Z(Dsg(S)). For

an element s ∈ S, let K(s) denote the complex S
s→ S. Given a collection

of elements s1, . . . , sm ∈ S, consider the Koszul complex associated to this
collection,

K(s1, . . . , sm) =
m⊗

i=1

K(si).

Choose generators, x1, . . . , xm, of the maximal ideal, mS . For some l, the
cohomology of K(xl

1, . . . , x
l
n) is annihilated by mnl

S as every element of
mnl

S is divisible by xl
i for some i. Therefore, the cohomology modules of

K(x1
1 , . . . , xl

n) ⊗S M are annihilated by mnl
S for any M from Db(modS).

This implies that K(x1
1 , . . . , xl

n) ⊗S M lies in 〈k〉(n+1)(ln+1)−1, here taken in
Db(modS). In Dsg(S), M is a summand of K(x1

1 , . . . , xl
n) ⊗S M and, hence,

lies in 〈k〉(n+1)(ln+1)−1. �

For a general ring (not necessarily of finite-type over k), it is unclear
whether or not k is always a strong generator of Dsg(S). However, the follow-
ing proposition covers many examples originating from algebraic geometry.
Recall that S is said to be essentially of finite type if it is the localization of a
finitely-generated k-algebra.

Proposition 4.4 Let S be a commutative k-algebra that is essentially of finite
type. There exists a finitely-generated S-module, E, and an l ∈ Z≥0 so that

D(ModS) = 〈Ē〉l , Db(ModS) = 〈Ẽ〉l , and Db(modS) = 〈E〉l .

Proof Let us recall the generation notions appearing in the statement of the-
orem, as they have laid dormant since Sect. 2. Given a subcategory, S , of
triangulated category, T , the subcategory, 〈S 〉, is the smallest full subcate-
gory of T , containing S and closed under isomorphisms, sums, shifts, and
set-indexed T -coproducts (that exist). Given an object, X, of T and a set,
A, the A-multiple of X is

⊕
a∈A X, if it exists in T . 〈S̃ 〉 is the smallest

full subcategory of T containing S and closed under isomorphisms, sums,
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shifts, and multiples. One then defines 〈S 〉n and 〈S̃ 〉n inductively with

〈S 〉0 := 〈S 〉, 〈S 〉n := 〈S 〉n−1 � 〈S 〉
and

〈S̃ 〉0 := 〈S̃ 〉, 〈S̃ 〉n := ˜〈S̃ 〉n−1 � 〈S̃ 〉.
Recall that Theorem 7.39 of [47] states that such an E exists for the derived

categories associated to any finitely-generated k-algebra. We will follow and
use the proof of Theorem 7.39 in loc. cit. The proofs are very similar for
D(ModS) and Db(ModS), so we will only provide the proof of the latter and
leave the proof for D(ModS) as an exercise to the reader. The statement for
Db(modS) is an immediate consequence of Corollary 6.16 and Corollary 3.13
of loc. cit.

Let R be a finitely-generated k-algebra and I a multiplicative subset of R

so that S = RI . Let U be a smooth open subset of SpecR with complement
determined by the ideal J . Let us proceed by induction on the Krull dimension
of R. When R has Krull dimension zero, the statement is a consequence of
Theorem 7.39 of loc. cit. as RI is finitely-generated over k.

From the proof of Theorem 7.39 of loc. cit., one has the following exact
triangle in Db(modRe),

C → R ⊕ R[1] → D,

where C is a perfect Re-module and D is a R/Jn ⊗k R-module. If we localize
C and D on the left and right by I , we get a triangle,

CI → RI ⊕ RI [1] → DI , (4.1)

where CI is a perfect Re
I -module and DI is a RI/J

nRI ⊗k RI -module.

Let M be any object of Db(Mod-RI ) and apply − L⊗RI
M to (4.1):

CI

L⊗RI
M → M ⊕ M[1] → DI

L⊗RI
M.

As CI is perfect, CI

L⊗RI
M has bounded cohomology. From the long ex-

act sequence of cohomology modules, we see that DI

L⊗RI
M has bounded

cohomology.
From the induction hypothesis, there exists a finitely-generated RI/JRI =

(R/J )I -module, E′, for which Db(ModRI/JRI ) = 〈Ẽ′〉l for some l ∈ Z≥0.

Furthermore, DI

L⊗RI
M lies in,

Db(ModRI/J
nRI ) = 〈Ẽ′〉(n+1)(l+1)−1.
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As CI lies in 〈RI ⊗k RI 〉t for some t , CI

L⊗RI
M lies in 〈R̃I 〉t . This implies

that M ∈ 〈R̃I ⊕ E′〉(t+1)(n+1)(l+1)−1. We can take E = RI ⊕ E′. �

Proposition 4.5 Let (S,mS) be a local commutative k-algebra that is essen-
tially of finite type over k. There exists a finitely-generated Ŝ-module, E, and
an l ∈ Z≥0 so that

D(Mod Ŝ) = 〈Ē〉l , Db(Mod Ŝ) = 〈Ẽ〉l , and Db(mod Ŝ) = 〈E〉l ,
where Ŝ is the completion of S at mS .

Proof The argument is the same as in the proof of Proposition 4.4 above. �

Corollary 4.6 If (S,mS) is a local commutative k-algebra essentially of finite
type over k, then Dsg(S) has finite Rouquier dimension. The same is true for
Dsg(Ŝ).

Combining the results above, we get the following characterization of an
isolated singularity when the ring is essentially of finite type:

Theorem 4.7 Let (S,mS) be a local commutative k-algebra essentially of
finite type over k. The following are equivalent:

(i) (S,mS) is an isolated singularity.
(ii) k is a strong generator for Dsg(S).

(iii) The natural map S → Z(Dsg(S)) factors through S/md
S for some d ∈ N.

Proof We know that (ii) and (iii) are equivalent by Proposition 4.3. Since S

is essentially of finite type, Proposition 4.4 says we have a strong generator.
Thus, if k is a generator, k must be a strong generator. �

While Theorem 4.7 is an interesting characterization of an isolated singu-
larity, it provides no control over the generation time of k or over the Orlov
spectrum of Dsg(S). To get such information, we restrict to the case of an
isolated hypersurface singularity.

A local Noetherian k-algebra, (S,mS), is called a hypersurface singular-
ity if S is isomorphic to R/(w) with (R,mR) a Noetherian, regular local
k-algebra and w lies in mR . The multiplicity of w will be the minimal l so
that w ∈ ml

R . If (S,mS) is a hypersurface singularity, it is Gorenstein, and in
particular, Cohen-Macaulay.

There are two additional constructions of Dsg(S) which are useful to con-
sider. Recall that a module, M , over S is called a maximal Cohen-Macaulay
module, or a MCM module for short, if the depth of M is equal to the Krull
dimension of S.
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For the first construction, let MCM(S) be the full subcategory of modS

consisting of MCM modules. MCM(S) is a category with the same objects as
MCM(S) but with

HomMCM(S)(M,N) = HomS(M,N)/ ∼
where f ∼ g if there exists maps p : M → P and q : P → N with f −g = qp

and P projective.
In the second construction, the objects are sequences of R-modules,

P0
A→ P1

B→ P0,

with Pi finitely-generated projective R-modules, AB = w idP1 , and BA =
w idP0 . Such sequences were introduced by D. Eisenbud, [19], who named
them matrix factorizations. For simplicity, we denote a matrix factorization
(P0,P1,A,B) by P and let AP and BP denote the maps in the matrix fac-
torization. A morphism between two matrix factorizations, P and Q, consists
of R-module maps, f0 : P0 → Q0 and f1 : P1 → Q1, making the following
diagram commutative:

P0 P1 P0

Q0 Q1 Q0

AP

f0

BP

f1 f0

AQ BQ

A homotopy between two morphisms, f,g : P → Q, is a pair of maps h0 :
P0 → Q1 and h1 : P1 → Q0 so that f0 − g0 = BQh0 + h1AP and f1 − g1 =
AQh1 +h0BP . The category of matrix factorization of w, MF(w), has matrix
factorizations as objects and has homotopy classes of morphisms between P

and Q as morphism sets.
In both of these descriptions, the resulting category is naturally triangu-

lated. We have the following result, see [13] or [40]:

Theorem 4.8 For an isolated hypersurface singularity, S, the categories
Dsg(S), MCM(S), and MF(w) are all equivalent as triangulated categories.

We draw from this two useful corollaries.

Corollary 4.9 Every object in Dsg(S) is isomorphic to a MCM module.

Proof The equivalence of Dsg(S) and MCM(S) is induced by the inclusion,

MCM(S) ↪→ Ch(modS),
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which sends an MCM module, M , to the complex

· · · → 0 → M → 0 → ·· ·
with M in degree zero. �

For a choice of basis of ΩR/k , e1, . . . , en, we can write dw = ∂1we1 +
· · · + ∂nwen for ∂iw ∈ R. Let (∂w) = (∂1w, . . . , ∂nw). Note that the ideal is
independent of the choice of basis for ΩR/k .

Corollary 4.10 The natural map S → Z(Dsg(S)) factors through the projec-
tion S → S/(∂w).

Proof We consider the category MF(w). If P is a matrix factorization, then,
taking the i-th derivatives of AB = w idP1 and BA = w idP0 , we get ∂iAB +
A∂iB = ∂iw idP1 and ∂iBA + B∂iA = ∂iw idP0 . This means that (∂iA, ∂iB)

is a homotopy between ∂iw and 0. �

Recall the Loewy length of a local Artinian ring, R, is the minimal l for
which ml

R = 0. Denote this as LL(R). For an isolated hypersurface singu-
larity, the Tjurina algebra, S/(∂w), is Artinian. We can apply the ideas of
Proposition 4.3 to prove the following:

Proposition 4.11 Let (S,m) be an isolated hypersurface singularity. The
generation time of k in Dsg(S) is bounded above by 2 LL(S/(∂w)) − 1. In
particular, Dsg(S) has finite Rouquier dimension.

Proof Let M be any MCM module over S and consider the Koszul complex,

K(∂w) := K(∂1w, . . . , ∂nw).

As the Krull dimension of S/(∂w) is zero and M is MCM-module, there is an
M-sequence of length n− 1 in (∂w). By [35] Theorem 16.8, the cohomology
of,

K(∂w) ⊗S M =: K(M,∂w),

vanishes except for degrees zero and one. Furthermore, Hi(K(M,∂w)) is a
module over S/(∂w). For any S/(∂w)-module, L, we have a filtration:

0 = m
LL(S/(∂w))

S/(∂w) L ⊆ · · · ⊆ mS/(∂w)L ⊆ L.

The quotients of this filtration are direct sums of the residue field. Therefore,
we have

Hi(K(M,∂w)) ∈ 〈k〉LL(S/(∂w))−1 and K(M,∂w) ∈ 〈k〉2 LL(S/(∂w))−1
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in Db(modS). In Dsg(S), by Corollary 4.10, the partial derivatives of w van-
ish. Hence, M is a summand of K(M,∂w). Thus, Dsg(S) = 〈k〉2 LL(S/(∂w))−1.

�

Remark 4.12 Strong generation of k also follows from work in [17].

Our next goal is to study the Orlov spectrum of Dsg(S). Before we wade
into the case of a general hypersurface, let us fully analyze the stable derived
category of the ring An−1 = k[u]/(un). See also [40]. From the classification
of modules over a PID, we know the only indecomposable modules are

k[u]/(un), k[u]/(un−1), . . . , k[u]/(u),0.

Any morphism in modAn−1 from k[u]/(ui) to k[u]/(uj ) is a linear combi-
nation of the maps

αl
i,j : k[u]/(ui) → k[u]/(uj )

1 �→ ul

for max(0, j − i) ≤ l < j . The map, αl
i,j , factors through k[u]/(un) if and

only if l ≥ n − i. In Dsg(An−1), we let Vi stand for the image of k[u]/(ui).
The morphism space between Vi and Vj is spanned by the images of αl

i,j
with max(0, j − i) ≤ l < min(j, n − i). Let us compute the cones. We have
an exact sequence:

0 → k[u]/(umax(0,i−j+l)) → k[u]/(ui)
αl

i,j→ k[u]/(uj ) → k[u]/(ul) → 0.

(4.2)

Lemma 4.13 The extension in (4.2) is trivial.

Proof We can assume that i − j + l is non-negative. Let us take a free reso-
lution of k[u]/(ul) and choose a homotopy class of chain maps between the
free resolution and the exact sequence (4.2).

k[u]/(un) k[u]/(un) k[u]/(un) k[u]/(ul) 0

k[u]/(ui−j+l) k[u]/(ui) k[u]/(uj ) k[u]/(ul) 0

αn−l
n,n

λ

αl
n,n

α0
n,i

α0
n,l

α0
n,j α0

l,l

α
j−l
i−j+l,i

αl
i,j

α0
j,l

Since l < n − i, α0
n,i ◦ αn−l

n,n = αn−l
n,i is zero. We can take λ to be zero which

proves the claim. �
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In Dsg(An−1), we get triangles

Vi Vj

Vmax(0,i−j+l)[1] ⊕ Vl

αl
i,j

|

We also have isomorphisms, k[u]/(ui) ∼= k[u]/(un−i)[1], coming from the
short exact sequences,

0 → k[u]/(un−i )
αi

n−i,n→ k[u]/(un) → k[u]/(ui) → 0.

Theorem 4.14 The Orlov spectrum of Dsg(An−1) is

{
0,1, . . . ,

⌈�n/2�
s

⌉
− 1, . . . ,

⌈�n/2�
2

⌉
− 1, �n/2� − 1

}
,

where �α� is the greatest integer less than α and �α� is the least integer
greater than α.

Proof Let G be a generator for Dsg(An−1). Without loss of generality, we can
assume that

G =
⊕

i∈I⊂{1,...,�n/2�}
Vi.

Let

δ(t) = max{j |Vj ∈ 〈G〉t ,0 ≤ j ≤ �n/2�}.
We first show that

�(G) ≤
{

max{��n/2�
δ(0)

� − 1,1} 〈G〉0 �= Dsg(An−1)

0 〈G〉0 = Dsg(An−1).

Assume that Vj , j ≤ �n/2�, lies in 〈G〉t . Without loss of generality we can
assume that j ≥ δ(0). To make new indecomposables, the possible cones we
could take involve the pairs (i, j), (i, n− j), (n− i, j), (n− i, n− j) with i ∈
I . If we use the pair (i, j), we get indecomposable objects Vt with max(0, j −
i) ≤ t < j and max(0, i − j) ≤ t < i in the next step. If we use the pair
(i, n−j), we get the indecomposable objects Vt with n−j − i ≤ t < min(n−
j, n − i) and 0 ≤ t < min(i, j).
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We see that V0, . . . , Vi+j lies in 〈G〉t+1. Therefore,

δ(t + 1) ≥ min(δ(t) + δ(0), �n/2�),
and after the zeroth step, if 〈G〉t contains Vj for j ≤ �n/2�, then it contains
Vs for 1 ≤ s ≤ j . This gives the claimed upper bound.

To demonstrate that the lower bound holds, we note that xl annihi-
lates G when l ≥ δ(0). By Example 2.22, xl(V�n/2�) is G ghost. Further-

more, (xl)�
�n/2�

l
�−1(V�n/2�) is nonzero. Therefore, by the Ghost Lemma,

Lemma 2.17, ��n/2�
l

� − 1 is a lower bound for the generation time of G.
Consequently,

�(G) =
{

max{��n/2�
δ(0)

� − 1,1} 〈G〉0 �= Dsg(An−1)

0 〈G〉0 = Dsg(An−1). �

Let us return to the case of a general isolated hypersurface singularity, see
also [53] Sect. 5.

Lemma 4.15 Let (S,mS) be a hypersurface singularity, S = R/(w) with R

regular, and let M be a MCM module over S. For a generic choice of a
regular system of parameters on R, y1, . . . , yn, the first n − 1 parameters,
y1, . . . , yn−1, form both a S-regular and a M-regular sequence and the quo-
tient S/(y1, . . . , yn−1)S is isomorphic to a zero dimensional hypersurface sin-
gularity. Moreover, the multiplicity of w in R is the same as the multiplicity
of w̄ in R/(y1, . . . , yn−1).

Proof Recall that a sequence of elements, s1, . . . , si , is M-regular if sj has
zero annihilator in M/(s1, . . . , sj−1)M . Now, x1, . . . , xn is a regular system
of parameters for R if (x1, . . . , xn) = mR with n equal to the Krull dimension
of R. Recall that x1, . . . , xn is a regular system of parameters for R if and only
if the images of x1, . . . , xn form a basis for mR/m2

R , see [35] Theorem 14.2.
We prove the results involving S and then note that the same choices work

to establish the result about M . We proceed by induction on n. The case n = 1
is clear.

Assume we know the result below n − 1 and consider the case of n. w has
a unique factorization (in R) into irreducible elements. Let us denote them
by w1, . . . ,wt . Let x be an element of R that projects to a nonzero vector in
mR/m2

R . It is clear that x is irreducible and is a zero divisor in S if and only
if it equals some wi . The associated graded ring, grmR

(R), is isomorphic to
a polynomial ring over k in n variables, [35] Theorem 17.10. Let d be the
multiplicity of w and denote the image of w in grmR

(R) by wd .
If n is greater than one, we can choose an element u of R with nonzero im-

age in mR/m2
R so u is a not a zero-divisor in S and the image of u in grmR

(R)
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does not divide wd . Now, complete u to a regular system of parameters for R,
u,u2, . . . , un. We find that S/uS is another hypersurface singularity to which
we can apply the induction hypothesis.

Let p be an associated prime for M . The depth of M is bounded above by
the dimension of A/p, Theorem 17.2 [35]. If M is a MCM module, then the
height of p cannot be more than zero. By Krull’s theorem, p cannot contain a
non-zerodivisor. Thus, p is in the ideal generated by the w1, . . . ,wt . Since our
choices of a regular system of parameters avoids each wi , they also provide
an M-sequence. �

Lemma 4.16 Let (S,mS) be an isolated hypersurface singularity and M be
a module of infinite projective dimension over S. If x ∈ S is a nonunit and S

and M-regular, then M/xM is a module of infinite projective dimension over
S/(x).

Proof Note that S/(x) vanishes in Dsg(S) as it is quasi-isomorphic to the
cone of x(S) : S → S and hence perfect. Also note that the morphism, x(M) :
M → M , in Dsg(S) is nilpotent by Proposition 4.3.

Assume that M/xM has finite projective dimension as an S/(x) module.
Then, M/xM vanishes in Dsg(S). As M/xM is quasi-isomorphic to the cone
of x(M), we see that x(M) is an isomorphism in Dsg(S) and cannot be nilpo-
tent. �

Lemma 4.17 Any zero dimensional hypersurface singularity, S = R/(w), is
isomorphic to Ad−1, where d is the multiplicity of w.

Proof As S is zero dimensional, completion does not change the ring. Thus,
S is isomorphic to R̂/(w). Any complete, regular, local, Noetherian ring of
dimension one is isomorphic to the formal power series ring in one variable
k[[u]] with the uniformizing parameter of R̂ getting sent to u, [35] Theo-
rem 29.7. A simple change of variables takes w to ud . �

We now use these lemmas to facilitate a reduction from a general isolated
hypersurface singularity to an An-singularity.

Lemma 4.18 Let (S,mS) be an isolated hypersurface singularity and let M

be any non-zero object of Dsg(S). The level of the residue field of (S,mS)

with respect to M is at most dimS + 1, i.e. k ∈ 〈M〉n with n ≤ dimS + 1. In
particular, M is a strong generator of Dsg(S).

Proof Let S be isomorphic to R/(w). From Lemmas 4.15 and 4.17, we know
we can choose a regular system of parameters, x1, . . . , xn, with x1, . . . , xn−1
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a S-regular and a M-regular sequence and so that S/(x1, . . . , xn−1) is iso-
morphic to Ad−1 = k[u]/(ud) where d is multiplicity of w. Note that
M/(x1, . . . , xn−1)M cannot be free by Lemma 4.16.

Let K(x) = K(x1, . . . , xn) and K(M,x) = K(x) ⊗S M . Notice that
K(M,x) is quasi-isomorphic to the complex M/(x1, . . . , xn−1)M

xn→ M/

(x1, . . . , xn−1)M . Writing xn as α1u + · · · + αmud−1, one sees that M/

(x1, . . . , xn−1)M
xn→ M/(x1, . . . , xn−1)M is the composition of M/(x1, . . . ,

xn−1)M
u→ M/(x1, . . . , xn−1)M and an automorphism of M/(x1, . . . ,

xn−1)M . The octahedral axiom tells us that the cone of,

M/(x1, . . . , xn−1)M
u→ M/(x1, . . . , xn−1)M,

is isomorphic to the cone of,

M/(x1, . . . , xn−1)M
xn→ M/(x1, . . . , xn−1)M.

As M/(x1, . . . , xn−1)M is nonfree, Lemma 4.13 implies that the cone of,

M/(x1, . . . , xn−1)M
u→ M/(x1, . . . , xn−1)M

is quasi-isomorphic to a sum of shifts of k. Hence k is a summand of K(M,x)

which manifestly lies in 〈M〉n.
The above tells us that M generates k, and, by Theorem 4.7, k generates

Dsg(S). It follows that M is a strong generator. �

Remark 4.19 Lemma 4.18 is not true for complete intersections. For example,
consider the ring S = k[x, y]/(x2, y2). The module k[x]/(x2) is nonzero in
Dsg(S) but k[y]/(y2) is orthogonal to it.

Remark 4.20 Let M be a MCM module. The arguments in the proof of
Lemma 4.18 give the following statement: M is a generator of Dsg(S) if and

only M
L⊗R k ∈ 〈k〉0 in Db(modS). Does this statement hold for complete

intersections? The authors know of no counterexample.

Combining Proposition 4.11 and Lemma 4.18 gives us the following theo-
rem:

Theorem 4.21 Let (S,mS) be an isolated hypersurface singularity. The ulti-
mate dimension of Dsg(S) is bounded by 2(dimS + 2)LL(S/(∂w)) − 1.

Remark 4.22 The upper bound in the theorem above is a rough estimate.
For example, it is not achieved for example for the An singularity, see The-
orem 4.14. In addition, the map from S/(∂w) to natural transformations of
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the identity is rarely injective, and the bound can easily be improved to de-
pend only on the nilpotence of this image. Consequently, we would be very
surprised if this bound is saturated in any example.

For an example, let us consider the ring,

Sg = k[x, y, z]/(x2g+1 + y2g+1 + z2g+1 − xyz)

for g > 1. Let wg = x2g+1 + y2g+1 + z2g+1 − xyz. We can take x − z, y − z

as a regular sequence and Sg/(x − z, y − z) is isomorphic to A2. The level of
residue field is at most two for any generator of Dsg(Sg). The Jacobian ideal
of Sg is ((2g + 1)x2g − yz, (2g + 1)y2g − xz, (2g + 1)z2g − xy). The Loewy
length of Sg/(∂wg) is 2g + 1.

There is a Z/(2g + 1)Z action on Sg with which it is proven in [51],
for g = 2, and in [18], for g ≥ 2, that the idempotent-completion of the
Z/(2g + 1)Z-equivariant singularity category, DZ/(2g+1)Z

sg (Sg), is equivalent
to the idempotent-completion of the derived Fukaya category of a genus g

Riemann surface, Dπ Fuk(Σg). In light of Example 2.8, we can use our re-
sults to control the generation time of certain generators of Dπ Fuk(Σg) (the
notation in the following proof can be found in this example). More precisely,
recall that symplectically, the surface, Σg , admits a Z/(2g + 1)Z-branched
cover over an orbifold P

1. Let ψ : Σg → Σg be a generator of the covering
group. We now have the following result:

Proposition 4.23 Let M be any nonzero object of Dπ Fuk(Σg). Then,⊕2g

i=0 ψi(M) is a generator of Dπ Fuk(Σg) and its generation time is
bounded by 12g + 5.

Proof By Lemma 4.18, For(M) generates Dsg(Sg). By Example 2.8, the

functor, Inf, is dense and hence
⊕2g

i=0 ψi(M) ∼= Inf(For(M)) generates with,

�

( 2g⊕
i=0

ψi(M)

)
= �

(
For

( 2g⊕
i=0

ψi(M)

))
.

The level of k with respect to any object of Dsg(Sg) is at most two and

the generation time of k is at most 4g + 1. Thus, �(For(
⊕2g

i=0 ψi(M))) ≤
12g + 5. �

5 Isolated singularities: the graded case

Most of the results in Sect. 4 can be adapted to the graded case in a straight-
forward manner. When we combine these results with Orlov’s results relating
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derived categories of coherent sheaves to graded categories of singularities,
many interesting and nontrivial statements emerge. So, let us begin by re-
calling Orlov’s results from [41]. We let A =⊕

n≥0 An be a graded Noethe-
rian k-algebra with A0 = k. Recall that such a graded algebra is called con-
nected. We write, grA, for the abelian category of finitely-generated graded
A-modules. The morphisms in this category are taken to be degree zero A-
module homomorphisms. The category has an internal Hom denoted Hom.
For any graded module, M , we can form a new graded module, M(1), with
M(1)l = Ml+1. Recall that A is AS-Gorenstein, or often just Gorenstein,
if A has finite injective dimension, n, and ExtigrA(k,A) = 0 for i �= 0 and
ExtngrA(k,A) = k(a). We call, a, the Gorenstein parameter of A. We have the
maximal ideal, mA =⊕

l>0 Al .
Sitting inside of grA, we have the full subcategory of finite-dimensional

modules (over k), torsA. Inside of Db(grA), we have two thick triangulated
subcategories: perfA, the full subcategory consisting of all bounded com-
plexes of finite rank free A-modules, and, Db(torsA), the full subcategory
consisting of all complexes quasi-isomorphic to a bounded complex of tor-
sion modules.

Definition 5.1 Let Db(qgrA) denote the Verdier quotient of Db(grA) by
Db(torsA). Let Dgr

sg(A) denote the Verdier quotient of Db(grA) by perfA.
We call, Dgr

sg(A), the graded category of singularities of A.

In [41], Orlov proves the following useful theorem relating Db(qgrA) and
Dgr

sg(A):

Theorem 5.2 Let A be a connected graded, Noetherian k-algebra and as-
sume that A is AS-Gorenstein with Gorenstein parameter a. For any i ∈ Z,
we have the following statements:

(i) If a > 0, there is a fully-faithful functor, Ψi : Dgr
sg(A) → Db(qgrA), and

a semi-orthogonal decomposition,

Db(qgrA) ∼= 〈
A(−i − a + 1), . . . ,A(−i),Ψi(D

gr
sg(A))

〉
.

(ii) If a = 0, there is an equivalence of triangulated categories,

Φi : Db(qgrA) → Dgr
sg(A).

(iii) If a < 0, there is a fully-faithful functor, Φi : Db(qgrA) → Dgr
sg(A), and

a semi-orthogonal decomposition,

Dgr
sg(A) ∼= 〈

k(−i), . . . , k(−i + a + 1),Φi(D
b(qgrA))

〉
.
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Recall that, in the case A = k[x0, . . . , xn]/I , a well-known theorem of
Serre states that Db(qgrA) ∼= Db(cohX) where X = Proj(A). If I is gen-
erated by an k[x0, . . . , xn]-regular sequence, f1, . . . , fc, then the algebra, A,
is AS-Gorenstein with Gorenstein parameter equal to

∑c
i=1 degfi − (n + 1).

So, if we can control the Orlov spectra of Dgr
sg(A), we can also control the

Orlov spectra of Db(cohX) where X is a complete intersection. To trans-
late statements about the category of singularities into statements about the
derived category of coherent sheaves, we first need to understand what the
grading shifts corresponds to on either side. We have the following lemma:

Lemma 5.3 Let T be a triangulated category with I a thick subcategory. If
we have an endofunctor, F : T → T , so that, for any I ∈ I , F(I) is isomor-
phic to an object in I , then F descends to an endofunctor, F̄ , of T /I . Up to
natural isomorphism, F̄ is the unique functor making the following diagram
commute:

T T

�

T /I T /I

F

p

F̄

p

Moreover, if F is an autoequivalence, then F̄ is also.

Proof This is a direct application of the universal property of the Verdier
quotient, [36] Theorem 2.1.8. �

The autoequivalence, (1) : Db(grA) → Db(grA), preserves both Db(torsA)

and perfA and, therefore, descends uniquely to an autoequivalence of both
Db(qgrA) and Dgr

sg(A), both of which shall be denoted by (1). However, under
the semi-orthogonal decompositions of Theorem 5.2, the two distinct versions
of (1) do not agree. Our first goal is to identify what operation on Db(qgrA)

corresponds to (1) on Dgr
sg(A). To do this, we need to delve a bit deeper into

the proof of Theorem 5.2. Let us now recollect the details of Orlov’s work.
Let π : Db(grA) → Db(qgrA) and q : Db(grA) → Dgr

sg(A) denote the pro-
jections coming from Verdier localization. While π admits a right adjoint,
usually denoted by Rω, q admits neither a right nor a left adjoint. To fix
this, Orlov passes to a subcategory of grA. Namely he considers, grA≥i , the
full subcategory of objects, M , of gr-A with Mj = 0 for j < i. Note that the
(stupid) truncation functor, σ≥i : gr-A → grA≥i , is right adjoint to the natural
inclusion, grA≥i ↪→ grA.

Denote the composition of the natural inclusion, Db(grA≥i ) ↪→ Db(grA),
and the projection, π : Db(grA) → Db(qgrA), by πi : Db(grA≥i ) →
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Db(qgrA). The functor, πi , admits a right adjoint, σ≥i ◦ Rω =: ωi . For any
graded module, M , we have an exact sequence,

0 → M≥i → M → M/M≥i → 0.

For any object, X, of Db(grA), this induces an exact triangle,

σ≥iX → X → CX,

with CX lying in Db(torsA). Thus, the images of X and σ≥iX are isomorphic
in Db(qgrA).

Denote the composition of the natural inclusion, Db(grA≥i ) ↪→ Db(grA),
and the projection, q : Db(grA) → Dgr

sg(A), by qi : Db(grA≥i ) → Dgr
sg(A).

For any object, X, of Db(grA), we can take a minimal graded free resolu-
tion P → X. Recall that minimal in this context means that dP (P ) ⊂ mAP .
As P is minimal and A0 = k, Pl must be generated by a free basis ei

l with
mini deg(ei

l ) ≥ 1 + mini deg(ei
l−1). Thus, Pl must be concentrated in degrees

above i for large enough l. We have an exact sequence of complexes,

0 → P<i → P → P≥i → 0,

corresponding to splitting the free bases for each Pl into those of degree less
than i and those of degree at least i. Since P<i ∈ perfA it follows that, in
Dgr

sg(A), we have isomorphisms, P≥i
∼= P ∼= X.

From this, Orlov deduces that the left orthogonal to Db(grA≥i ), in
Db(grA), is the full subcategory of torsion complexes concentrated in de-
grees less than i, denoted by S<i , while the right orthogonal to Db(grA≥i )

consists of bounded complexes of free modules concentrated in degrees less
than i, denoted by P<i . As ωi is right adjoint to πi , we see that the right
orthogonal to the image of ωi is the full subcategory of torsion complexes
concentrated in degrees at least i, S≥i . The image of ωi , denoted by Di , is
equivalent to Db(qgrA). The functor, ωi , is a quasi-inverse to the functor,
πi |Di

.
Now, the kernel of qi consists of bounded complexes of graded free mod-

ules concentrated in degree at least i, denoted by P≥i . We now also have a
nontrivial right orthogonal to the kernel of qi , denote it by Ti . The restriction
of qi to Ti is an equivalence with Dgr

sg(A). The quasi-inverse is the left adjoint
to qi .

From here, Orlov analyzes how the left and right orthogonals to Di and
Ti compare for different values of a to prove Theorem 5.2. He finds that for
a ≥ 0, Ti ⊂ Di and, for a ≤ 0, Di ⊂ Ti . In the case, a ≥ 0, the left orthogonal
to Ti in Di is generated by objects isomorphic to A(−i − a + 1), . . . ,A(−i)

in Db(qgrA). In the case, a ≤ 0, the left orthogonal to Di in Ti is generated
by objects isomorphic to k(−i), . . . , k(−i + a + 1) in Dgr

sg(A).
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We now begin listing a few observations about the constructions above.
The autoequivalence, (1) : Dgr

sg(A) → Dgr
sg(A), admits a nice description as an

autoequivalence of Di .

Lemma 5.4 LA(−i+1) descends to the identity functor on Dgr
sg(A).

Proof It is clear that LA(−i+1) preserves perfA and descends to a functor on
Dgr

sg(A). The cone of the natural transformation, η : IdDb(grA) → LA(−i+1),
lies in perfA. Thus, η̄ : IdDgr

sg(A) → L̄A(−i+1) is an isomorphism. �

Lemma 5.5 πi ◦ LA(−i+1) ◦ (1) ◦ ωi is isomorphic to LπA(−i+1) ◦ (1) on
Db(qgrA).

Proof As ωi is right adjoint to πi , if we apply πi to the morphism,

⊕
j∈Z

HomDb(grA)(A(−i + 1),ωiF (1)[j ]) ⊗k A(−i + 1)[j ] evωiF (1)→ ωiF (1),

we get the morphism,

⊕
j∈Z

HomDb(qgrA)(πA(−i + 1),F (1)[j ]) ⊗k πA(−i + 1)[j ] evF(1)→ F (1).

Thus, LπA(−i+1)(F (1)) is isomorphic to πi ◦LA(−i+1) ◦ (1) ◦ωi(F ) for each
F . We can take the dg-enhancements of Db(grA) and Db(qgrA) given by
bounded complexes of injectives. On the level of the dg-enhancements, the
adjunctions, π � ω and πi � σ≥iω, on the abelian categories give a natural
quasi-isomorphism of LπA(−i+1)(F (1)) and πi ◦ LA(−i+1) ◦ (1) ◦ ωi(F ). �

Remark 5.6 This lemma was first noted in [27] as Lemma 5.2.1.

Consider the functors,

{1}i := (−i + 1) ◦ LπA ◦ (1) ◦ (i − 1) : Db(qgrA) → Db(qgrA).

Let {1} := {1}1.

Lemma 5.7 For any X ∈ Di , one has LA(−i+1)(X(1)) ∈ Di .

Proof There is a triangle in Db(grA),

RHomA(A(−i + 1),X(1)) ⊗k A(−i + 1)
ev→ X(1) → LA(−i+1)(X(1)).
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We know that X lies in the intersection of ⊥P≥i and P⊥
<i so X(1) lies in the

intersection of ⊥P≥i−1 and P⊥
<i−1. As ⊥P≥i ⊂ ⊥P≥i−1 and A(−i + 1) ∈

⊥P≥i , we see that LA(−i+1)(X(1)) lies in ⊥P≥i . As A(−i + 1) is an excep-
tional object in Db(grA), LA(−i+1)(X(1)) lies in 〈A(−i + 1)⊥,P⊥

<i−1〉 =
P⊥

<i . �

We saw above that ωi : Db(qgrA) → Db(grA≥i ) is full and faithful onto
Di . Let us denote a quasi-inverse to qi : Ti → Dgr

sg(A) by νi : Dgr
sg(A) → Ti .

Proposition 5.8 If a ≥ 0, then qi ◦ ωi ◦ {1}i ◦ πi ◦ νi is isomorphic to

(1) : Dgr
sg(A) → Dgr

sg(A).

If a ≤ 0, then πi ◦ νi ◦ (1) ◦ qi ◦ ωi is isomorphic to

{1}i : Db(qgrA) → Db(qgrA).

Proof It is easy to see that {1}i is isomorphic to LπA(−i+1) ◦ (1). Let us com-
mence the manipulation proper. Assume that a ≥ 0.

qi ◦ ωi ◦ {1}i ◦ πi ◦ νi
∼= qi ◦ ωi ◦ πi ◦ LA(−i+1) ◦ (1) ◦ νi

by Lemma 5.5. By Lemma 5.7, the image of LA(−i+1) ◦ (1) ◦ νi lies in Ti ⊂
Di . So

qi ◦ ωi ◦ πi ◦ LA(−i+1) ◦ (1) ◦ νi
∼= qi ◦ LA(−i+1) ◦ (1) ◦ νi,

as ωi ◦ πi is isomorphic to the identity on Di .

qi ◦ LA(−i+1) ◦ (1) ◦ νi
∼= (1)

by Lemma 5.4.
Assume that a ≤ 0.

πi ◦ νi ◦ (1) ◦ qi ◦ ωi
∼= πi ◦ νi ◦ qi ◦ LA(−i+1) ◦ (1) ◦ ωi

by Lemma 5.4. As the image of LA(−i+1) ◦ (1) ◦ ωi lies in Ti , by Lemma 5.7
and νi ◦ qi is isomorphic to the identity on Ti , we have

πi ◦ νi ◦ qi ◦ LA(−i+1) ◦ (1) ◦ ωi
∼= πi ◦ LA(−i+1) ◦ (1) ◦ ωi

∼= {1}i
where the last isomorphism comes from Lemma 5.5. �

Remark 5.9 Note that πi ◦ νi is Φi and qi ◦ ωi is Ψi from Theorem 5.2.
Thus, Proposition 5.8 roughly states that (1) on Dgr

sg(A) and {1}i on Db(qgrA)

correspond under the semi-orthogonal decompositions of Theorem 5.2.
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The previous lemma becomes even more useful in the hypersurface case.
To see why, we must recall the notion of a graded matrix factorization, see
[41]. The definition is a repetition of that of the category of matrix factor-
ization while taking care of the grading. Let A = k[x0, . . . , xn]/(f ) with f

homogeneous of degree d . A graded matrix factorization is pair of graded
free A-modules is a diagram,

P0
p0→ P1

p1→ P0(d),

of morphisms in grA so that p0p1 = f and p1p0 = f . We such just denote
the collection as P . Morphisms from P to Q are pairs of maps, f0 : P0 → Q1
and f1 : P1 → Q1, so that squares in the diagram

P0 P1 P0(d)

Q0 Q1 Q0(d)

p0

f0

p1

f1 f0(d)

q0 q1

commute. A homotopy between f : P → Q and g : P → Q is a pair of maps
h0 : P0 → P1(−d) and h1 : P1 → Q0 so that f0 − g0 = q1h0 + h1p0 and
f1 − g1 = q0h1 + h0p1. We also have a shift, [1], which takes P to matrix
factorization,

P1
p1→ P0(d)

p0(d)→ P1(d).

Let GrMF(f ) denote the homotopy category of the category of graded
matrix factorizations. In [41], Orlov proves the following:

Theorem 5.10 There is an equivalence of triangulated categories between
GrMF(f ) and Dgr

sg(A).

We record the following elementary observations about GrMF(f ):

Lemma 5.11 Let A be the homogeneous coordinate ring of a hypersurface
of degree d . Then, [2] ∼= (d).

Remark 5.12 Combining the above lemma with Proposition 5.8 and Theo-
rem 5.2, we see that for any smooth hypersurface of degree n + 1 in P

n, one
has:

(LO ◦ (− ⊗O O(1)))n+1 ∼= [2].
This isomorphism was first noticed by M. Kontsevich, [29], based on the
relationship with the symplectic monodromy of the mirror Calabi-Yau family,



Orlov spectra: bounds and gaps 413

see Example 2.31. The isomorphism can also be verified without reference to
matrix factorizations, see [1].

Lemma 5.13 Let A be the homogeneous coordinate ring of a hypersur-
face. The natural map from A to the ring of natural transformations,⊕

i∈Z
Nat(IdDgr

sg(A), (i)), factors through A/(∂f ).

Proof This is entirely analogous to the proof of Corollary 4.10. �

Remark 5.14 A natural question in light of Lemma 5.13 is the following: is
the Jacobian ring, A/(∂f ), isomorphic as a graded ring to the ring of derived
natural transformations from the identity to the twists, {i}. This is almost
the case. Once one accounts for the twisted sectors associated to the Z/dZ-
symmetry of f , there is an isomorphism, see [6] for a complete description.

We can translate these into more geometric statements. Let 〈t〉 := π1 ◦
(LA ◦ (1))t ◦ ω1.

Proposition 5.15 Let X be a hypersurface of degree d in P
n determined by a

homogeneous polynomial, f , of degree d with A = k[x0, . . . , xn]/(f ). If d ≥
n+ 1, then the natural map, A →⊕

i∈Z
Nat(IdDb(cohX), {i}), factors through

A/(∂f ). If d < n + 1, then the natural map, A →⊕
i∈Z

Nat(IdDb(cohX), {i}),
factors through A/(∂f · ma

A) where a = n + 1 − d .

Proof Assume that d ≥ n + 1. Choose an αi ∈ A1 for 1 ≤ i ≤ t . Denote the
associated natural transformation in Dgr

sg(A) from IdDgr
sg(A) to (1) by ηαi

and

the natural transformation from IdDb(qgrA) to {1} in Db(qgrA) by η̄αi
. Note

that q1 ◦ ω1 has π1 ◦ ν1 as its left adjoint. To simplify notation, let us set Ψ =
q1 ◦ ω1 and Ψ ∗ = πi ◦ νi . Let Q = Ψ ◦ Ψ ∗ and denote the unit of adjunction
by e : IdDgr

sg(A) → Q. The composition

η̄αt ◦ · · · ◦ η̄α1 : IdDb(cohX) → Ψ ∗ ◦ (1) ◦ Q ◦ · · · ◦ Q ◦ (1) ◦ Ψ = {t}
factors

〈t〉
IdDb(cohX)

{t}

Ψ ∗ ◦ ηαt ◦ · · · ◦ ηα1 ◦ Ψ

η̄αt ◦ · · · ◦ η̄α1

where the map, 〈t〉 → {t}, comes from insertions of e. If ηαt ◦ · · · ◦ ηα1 van-
ishes, then so does η̄αt ◦ · · · ◦ η̄α1 . The claim now follows from Lemma 5.13.



414 M. Ballard et al.

When d < n + 1, we have the semi-orthogonal decompositions,

Db(cohX) ∼= 〈O(−a), . . . ,O(−1),Dgr
sg(A)〉.

Note that, for 1 ≤ j ≤ a,

O(−j){1} =
{

0 j = 1

O(−j + 1) otherwise.

Let F be an object of Db(cohX). We can decompose F via the exact triangle,

Fs → F → Fe

using the semiorthogonal decomposition above. Now let α be a polynomial of
degree i ≥ a and β be a polynomial of degree j in ∂f . We have the following
commutative diagram:

Fs

α

F

α

Fe

0

Fs{i}
0

F {i}
β

Fe{i}
β

Fs{i + j} F {i + j} Fe{i + j}

Let us justify the diagram above. When i ≥ a, the functor, {i}, kills all objects
in 〈O(−a), . . . ,O(−1)〉. Hence, Fe{i} is zero, which gives us the right hand
zero. This tells us that F

α→ F {i} factors through Fs{i}, represented by the

dotted arrow. Now, Fs{i} β→ Fs{i + j} vanishes by Lemma 5.13, which gives
us the left hand zero.

Now from the diagram, we see that F
αβ→ F {i +j} factors through zero and

thus vanishes on the arbitrary object, F . Therefore, αβ lies in the kernel of the
natural map, A →⊕

i∈Z
Nat(IdDb(cohX), {i}). The product ideal, (∂f · ma

A),
is generated by elements of this type. �

Theorem 5.16 Let f ∈ k[x0, . . . , xn] be a homogeneous polynomial of de-
gree d and A := k[x0, . . . , xn]/(f ). Assume that A has an isolated singular-
ity. For any non-zero object, M , in Dgr

sg(A), the object, M ⊕ M(1) ⊕ · · · ⊕
M(d − 1), is a generator of Dgr

sg(A) and

�(M ⊕ M(1) ⊕ · · · ⊕ M(d − 1)) ≤ 2(n + 1)(d(n + 1) − 2n − 1) − 1.
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Proof After a change of basis, we can assume that A/(x0, . . . , xn−1) is iso-
morphic to k[u]/(ud) as a graded ring. Replacing M with grsyzn(M), if
necessary, we can assume that M is a MCM module over A, in modA.
Here, grsyzn(M) is a choice of nth graded syzygy. Lemma 4.15 says that
M/(x0, . . . , xn−1) is nonzero in Dsg(Ad−1). Thus, it must be nonzero in
Dgr

sg(Ad−1). The proof of Theorem 5.16 is concluded by Lemma 5.17 and
Lemma 5.18. �

Lemma 5.17 Let N be any nonzero object of Dgr
sg(Ad−1). The level of k(0)⊕

· · · ⊕ k(d − 1) with respect to N ⊕ N(1) ⊕ · · · ⊕ N(d − 1) is at most one.

Proof Since (d) ∼= [2], we can assume that we have N(i) for any i ∈ Z. For
some l and for all i, we have k[u]/(ul)(i) in 〈{N(j)}j∈Z〉0. The short exact
sequences,

0 → k[u]/(ul−1)(i) → k[u]/(ul)(i)
u→ k[u]/(ul)(i + 1) → k(i + 1) → 0,

split by Lemma 4.13. More precisely, one can choose gradings for all the
modules in the proof of Lemma 4.13 so that the maps are degree zero. �

Lemma 5.18 The generation time of k(0) ⊕ · · · ⊕ k(d − 1) in Dgr
sg(A) is

bounded above by 2(d(n + 1) − 2n − 1) − 1.

Proof The proof is completely analogous to the proof of Proposition 4.11.
Furthermore, by Macaulay’s theorem, the nilpotence of A/(∂f ) is d(n+1)−
2n − 1. �

Remark 5.19 Theorem 5.16 does not hold in the case of a general complete
intersection, even if we allow all grading shifts, as we have already seen in
Remark 4.19.

We can translate this into a more geometric statement.

Corollary 5.20 Let X be a smooth hypersurface of degree d in P
n.

(i) Assume 1 < d < n + 1. Let F ∈ ⊥〈O(d − n − 1), . . . ,O(−1)〉 be
nonzero. The object,

O(d − n − 1) ⊕ · · · ⊕ O(−1) ⊕ F ⊕ · · · ⊕ F {n + 1},
is a generator of Db(cohX) with generation time bounded by 2(n +
1)(d(n + 1) − 2n − 1) + n − d .

(ii) Assume d = n + 1. Let F be a nonzero object of Db(cohX). The object,

F ⊕ · · · ⊕ F {n},
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is a generator of Db(cohX) with generation time bounded by 2(n +
1)((n + 1)2 − 2n − 1) − 1.

(iii) Assume d > n + 1. Let F be a nonzero object of Db(cohX). The object,

F ⊕ F 〈1〉 ⊕ · · · ⊕ F 〈d − 1〉,
is a generator of Db(cohX) with generation time bounded by 2(n +
1)(d(n + 1) − 2n − 1) − 1.

Proof Both (1) and (2) are straightforward consequences of Theorem 5.2
and Theorem 5.16 so let us assume that d ≥ n + 1 and take F ∈ Db(cohX)

nonzero. From Theorem 5.16, we know that ω1(F ) ⊕ ω1(F )(1) ⊕ · · ·
ω1(F )(d − 1) is a generator of Dgr

sg(A) of generation time at most 2(n +
1)(d(n + 1) − 2n − 1). Since LA ◦ (1) is isomorphic to (1) on Dgr

sg(A), we
have

π1(ω1(F ) ⊕ ω1(F )(1) ⊕ · · · ⊕ ω1(F )(d − 1)) ∼= F ⊕ F 〈1〉 ⊕ · · · ⊕ F 〈d − 1〉.
�

Remark 5.21 We will get a comparison point for the bound in part (2) of
Corollary 5.20 in Sect. 6.1 where we find that the ultimate dimension of a
smooth degree three hypersurface in P

2 is 4. Our bound above is 23.

The only obstacle to bounding the Orlov spectrum of Db(cohX) is control-
ling the ultimate dimension under semi-orthogonal decompositions. We state
the following hope:

Conjecture 4 Let T be a triangulated category with a semi-orthogonal de-
composition, T = 〈A ,B〉. If the ultimate dimensions of A and B are finite,
then the ultimate dimension of T is finite.

Proposition 5.22 If Conjecture 4 is true, then the ultimate dimension of
Db(cohX) is bounded for any smooth hypersurface, X.

Proof From Conjecture 4 and Theorem 5.2, we only have to bound the
ultimate dimension of Dgr

sg(A) where A = k[x0, . . . , xn]/(f ) is the homo-
geneous coordinate ring of X. Let d be the degree of f . Since X is
smooth, A is an isolated singularity. By the graded version of Proposi-
tion 4.3, we know that the natural map, A → ⊕

i∈Z
Nat(IdDgr

sg(A), (i)), fac-

tors through ms
A for some s. Let l be divisible by d and larger than s. We

can change coordinates so that x0, . . . , xn−1 is an A-regular sequence. Then,
xl

0, . . . , x
l
n−1 is also an A-regular sequence and A/(xl

0, . . . , x
l
n−1) is graded
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Artinian complete intersection singularity. Let M be any object of Dgr
sg(A).

M/(xl
0, . . . , x

l
n−1)M in Dgr

sg(A) lies in 〈M〉0. Hence, if M is a generator, then
so is M/(xl

0, . . . , x
l
n−1)M . Using Theorem 5.2 for A/(xl

0, . . . , x
l
n−1), we see

that the category, Dgr
sg(A/(xl

0, . . . , x
l
n−1)), has a full exceptional collection and

thus, by Conjecture 4, has bounded Orlov spectrum. So LvlM(k(i)) is uni-
formly bounded for all i ∈ Z. Since A is isolated, the category consisting of
the k(i) generates. This bounds the Orlov spectrum. �

Remark 5.23 Note that we only need Conjecture 4 to hold for case where A
is equivalent to Db(mod k).

6 Spherical collections

In this section we explore the generation time of collections of spherical ob-
jects in triangulated categories, specifically the bounded derived category of
an elliptic curve and the derived Fukaya category of a genus g surface. By
homological mirror symmetry for higher genus curves (see [18, 51]), we can
compare this to our results from Sect. 4. However, the method of approach
is fairly different from that in Sect. 4. Here we use the observation of Exam-
ple 2.30, that spherical twists induce ghost maps, to produce ghost sequences
from certain words in a braid group. For the reader’s convenience we now
recall some definitions.

Definition 6.1 Let T be the homotopy category of a triangulated A∞-
category. Assume that T possesses a Serre functor, S. An object, E ∈ T ,
is called spherical if,

– S(E ) ∼= E [n]
– HomT (E ,E [i]) ∼=

{
k i = 0, n

0 otherwise.

Definition 6.2 Let T be the homotopy category of a triangulated A∞-
category. A collection of m spherical objects, E1, . . . ,Em, is called an Am-
configuration if,

dim

(⊕
l∈Z

HomT (Ei ,Ej [l])
)

=
{

1 |i − j | = 1

0 |i − j | ≥ 2.

In Definitions 2.28, 2.29, we already discussed the notions of a left and
right twist functors. When we take the left twist functor with respect to a
spherical object, we shall call this a spherical twist. The following result can
be found in [52]:
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Theorem 6.3 A spherical twist is an exact autoequivalence. Moreover, if
E1, . . . ,Em is an Am-configuration, then the spherical twists, LEi

, satisfy the
braid relations:

LEi
LEi+1LEi

∼= LEi+1LEi
LEi+1 i = 1, . . . ,m − 1,

LEi
LEj

∼= LEj
LEi

|i − j | ≥ 2.

The following proposition will allow us to control the generation times of
spherical collections:

Proposition 6.4 Let S1, . . . , Sn be spherical objects in the homotopy cate-
gory, T , of a triangulated cohomologically-finite A∞-category and assume
we have HH0(T ) = k. Suppose there exists a relation,

LSa1
· · ·LSar

∼= IdT

with 1 ≤ ai ≤ n. Then S1 ⊕ · · · ⊕ Sn strongly generates T with generation
time at most r − 1. Furthermore, if we partition the relation into intervals
containing mutually orthogonal spherical objects, then the generation time is
at most the number of intervals minus one.

Proof For any object, X, in T , the left twist by X comes equipped with a nat-
ural transformation, IdT → LX , which descends from a morphism of A∞-
bimodules. Composing these natural transformations yields a natural transfor-
mation, ζ : IdT → LSa1

· · ·LSar
= IdT . As this descends from a morphism

of A∞-bimodules, we have ζ ∈ HH0(T ). By assumption, ζ must be a scalar
multiple of the identity natural transformation. Since ζ vanishes on Sa1 it must
be zero. Hence, for any object, X ∈ T we get a sequence of r morphisms,

X → LSa1
(X) → ·· · → LSa2

· · ·LSar
(X) → X.

The total map must be zero and the cones of each map lie in 〈S1 ⊕· · ·⊕Sn〉0.
Repeated application of the octahedral axiom, as in the proof of Lemma 2.14,
reveals that X is constructed in at most r − 1 steps.

Now if S1, . . . , Sl are mutually orthogonal, then LS1 · · ·LSl
= LS1⊕···⊕Sl

.
Thus the sequence of l cones can be replaced by a single cone. The result
follows. �

Remark 6.5 The analogous statement, with the assumption that A is a Z/2Z-
graded A∞ category, is also true. The proof remains the same.

In addition, one can assume that the relation is of the form,

LSa1
· · ·LSar

∼= [s],
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and that any nonzero element of HHs(T ) does not vanish on Si for some i

(in particular one can take HHs(T ) = 0).

6.1 The Orlov spectrum of an elliptic curve

In this section, we study the Orlov spectrum of a smooth proper curve of
genus one over an algebraically closed field of characteristic zero. Although
this is a slight abuse of terminology, we refer to such a curve simply as an
elliptic curve. Our goal will be to prove the following theorem in a series of
lemmas:

Theorem 6.6 The Orlov spectrum of the bounded derived category of coher-
ent sheaves on an elliptic curve is {1,2,3,4}.
Proof This follows from Lemma 6.9 and Lemma 6.11 proven below. �

Lemma 6.7 Let E be an elliptic curve and G be a generator of Db(cohE).
Then up to shifting summands, G is either a vector bundle which is not semi-
stable or a vector bundle plus a torsion sheaf.

Proof Since CohE is hereditary, all complexes are isomorphic to their co-
homology, (see for example [23]). Hence, after shifting the summands, any
generator, G, is a sheaf. From Atiyah’s classification of vector bundles on an
elliptic curve, we may assume G = V1 ⊕· · ·⊕Vn, where the Vi are indecom-
posable sheaves of slope μi . Here we follow the convention that a torsion
sheaf has infinite slope. If μ1 = · · · = μn �= ∞, then G is a vector bundle and
by a well-known result of Faltings, [20], there exists a vector bundle which
is orthogonal to G in Db(cohE). If μ1 = · · · = μn = ∞, then clearly they
cannot generate Db(cohE) as all the objects generated by this object must
be torsion sheaves. Therefore, we may assume μ1 �= μ2. As there exists an
autoequivalence, F , of Db(cohE) such that the slope of F(V2) has infinite
slope, we may assume that V2 is a torsion sheaf. Let D be the support of V2.
From V2 and a the vector bundle V1 we can get V1(nD) for all n. Since the
full subcategory consisting of the objects {O(nD)}|n∈Z generates Db(cohE)

and −⊗O V1 is dense (see Example 2.7), it follows that V1 ⊕V2 generates. �

Lemma 6.8 Let E be a smooth curve of genus one. Let V be a vector bundle
on E and T be a torsion sheaf. Then the generation time of V ⊕T is bounded
above by the generation time of O ⊕ T .

Proof The functor, − ⊗O V , is dense (see Example 2.7). By Lemma 2.6, for
any generator, G, one has

�(G ⊗O V ) ≤ �(G).
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Letting G = O ⊕ T , we obtain

�((O ⊕ T ) ⊗O V ) = �(V ⊕ T ⊕ rk(V )) = �(V ⊕ T ) ≤ �(O ⊕ T )

as desired. �

Lemma 6.9 Let E be an elliptic curve with identity element e. Let G be a
generator of Db(cohE). Then the generation time of G is bounded above by
the generation time of O ⊕ Oe.

Proof Write G = V1 ⊕ · · · ⊕ Vn where the Vi are indecomposable sheaves
of slope μi . By Lemma 6.7 at least two of these objects have different slope
and by reordering, we may assume μ1 �= μ2. Notice then that V1 ⊕ V2 also
generates and we have

�(G) ≤ �(V1 ⊕ V2).

As there exists an autoequivalence, F , of Db(cohE) such that the slope of
F(V2) is infinite, we may also assume that V2 is a torsion sheaf.

Let P be the Poincaré line bundle on E × E. Now we have the following
inequalities,

�(G) ≤ �(V1 ⊕ V2) ≤ �(OE ⊕ V2) = �(ΦP(V2) ⊕ Oe) ≤ �(OE ⊕ Oe).

The first inequality is above. The second is from Lemma 6.8. The equality
in the middle comes from applying the autoequivalence ΦP given by the
Fourier-Mukai transform through the Poincaré line bundle. The last inequality
is achieved by applying Lemma 6.8 once again. �

In order to calculate the generation time of objects on an elliptic curve,
we appeal to Proposition 4.3 of [38]. Let cohI E denote the subcategory of
cohX consisting of sheaves of slope, μ ∈ I ⊂ R. Following Oppermann, for
an indecomposable vector bundle, V , on an elliptic curve, we define,

δ(V ) = q(V )

(rk (V ))2
,

where q(V ) is the number of terms in the Jordan-Holder filtration of V .

Proposition 6.10 Let V1 and V2 be semi-stable vector bundles of slope, μ1
and μ2 respectively. Suppose μ1 < μ2 and Δ = μ2 − δ(V2)− (μ1 + δ(V1)) >

0. Then, any coherent sheaf in

(i) coh≤μ1−δ(V1)− δ(V1)

Δ

E, or

(ii) coh
>μ2+δ(V2)+ δ(V2)

Δ

E, or
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(iii) coh>μ1+δ(V1) E ∩ coh≤μ2−δ(V2) E,

is a summand of the cone over a map from an object of 〈V1〉0 to an object of
〈V2〉0.

It is proven in [42], that {1,2} � Db(cohC) for a smooth proper curve of
genus at least one. However, for completeness, let us give explicit generators
of Db(cohE) achieving the set, {1,2,3,4}.
Lemma 6.11 We have the following:

(i) �(O(−3e) ⊕ O ⊕ O(3e)) = 1,
(ii) �(O ⊕ O(3e)) = 2,

(iii) �(O ⊕ O2e) = 3, and
(iv) �(O ⊕ Oe) = 4.

Proof The fact that �(O(−3e) ⊕ O ⊕ O(3e)) = 1 follows directly from
Proposition 6.10 and the fact that all torsion sheaves are obtained from O
and O(3e) (see also [38] Example 4.6 and [42] Lemma 7).

To show �(O ⊕ O(3e)) = 2, first note that O(−3e) ∈ 〈O ⊕ O(3e)〉1. As
we have already shown that �(O(−3e) ⊕ O ⊕ O(3e)) = 1, we obtain �(O ⊕
O(3e)) ≤ 2. For the lower bound, note that, if p �= q , O(p − q) is both left
and right orthogonal to O . Hence, O(p − q) can not be obtained in one step
as it can not be obtained from O(3e) alone (this is the argument from [42]).

To prove �(O ⊕ O2e) = 3, begin by noting that O(−2e),O(2e) ∈ 〈O ⊕
O2e〉1 and O(−4e),O(4e) ∈ 〈O ⊕O2e〉2. Applying Proposition 6.10 part (iii)
with V1 = O(−2e) and V2 = O(2e), we obtain all semi-stable bundles of
slope −1 < μ ≤ 1 in three steps. Using V1 = O and V2 = O(4e), from part
(iii), we get all semi-stable bundles of slope 1 < μ ≤ 3 and from part (i) we
get all semi-stable bundles with slope μ ≤ 2. Now as the generator is self dual,
we see that we get all possible slopes are achieved in three steps. The torsion
sheaves are obtained in one step using O and O(4e). Hence, �(O ⊕O2e) ≤ 3.
For the lower bound, let q be a point of order two and consider the following
sequence:

Oq → O(−q)[1] → O(2e − q)[1] → Oq[1].
One easily verifies that all these maps are ghost for O ⊕ O2e, hence by
Lemma 2.17 we obtain the lower bound.

Finally, to show �(O ⊕ Oe) = 4, we use the same methods. Note that
O(−e) ∈ 〈O ⊕Oe〉1 and O(2e) ∈ 〈O ⊕Oe〉2. Therefore, by Proposition 6.10
part (iii) with V1 = O(−e) and V2 = O(2e), all semi-stable bundles of slope
μ with 0 < μ ≤ 1 are obtained in four steps. As above, all torsion sheaves
are also achieved using these two objects. Since the generator is self dual we
see that all objects of slope, −1 ≤ μ < 0, are achieved in four steps as well.
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Furthermore, as the generator is fixed under the autoequivalence given by the
Poincaré line bundle which inverts the slopes, we see that all objects of slope
μ = 0 or |μ| ≥ 1 are obtained in four steps as well. This covers all possible
slopes. For the lower bound, let q be a point of order two and consider the
following sequence:

Oq → O(−q)[1] → O(e − q)[1] → O(2e − q)[1] → Oq[1].
One easily verifies that all these maps are ghost for O ⊕ Oe (see also Propo-
sition 6.16 below), hence by Lemma 2.17 we obtain the lower bound. �

6.2 The Orlov spectrum of the Fukaya category of a Riemann surface of
higher genus

In the previous section, we showed that the Orlov spectrum of the bounded
derived category of coherent sheaves on an elliptic curve is {1,2,3,4}. Via
homological mirror symmetry, we could equally well view this category as
the derived Fukaya category of an elliptic curve, see [45]. In this case, the
generator with maximal generation time can be described by two loops on a
torus which generate the fundamental group.

Let us outline the construction of the Fukaya category of a higher genus
surface appearing in [51]. Let Σg be a closed, connected smooth surface
of genus g. Let ω be a symplectic form on Σg and consider the circle tan-
gent bundle, π : S(T Σg) → Σg . To avoid the use of a metric, one can define
S(T Σg) as the bundle of oriented real lines in T Σg . The pullback of ω van-
ishes in de Rham cohomology so we can choose a one-form, θ , on S(T Σg)

with dθ = π∗ω.
Given a connected Lagrangian submanifold, L, we get a section, σ : L →

S(T M)|L, from a choice of orientation on L. We say that L is balanced if∫
L

σ ∗θ = 0. As σ and −σ are fiber-wise homotopic in S(T M)|L, the choice
of orientation does not affect balance. As noted in loc. cit., each isotopy class
of curves, with no contractible member, has a unique balanced representative
up to Hamiltonian isotopy.

The Fukaya category, Fuk(Σg), of Σg is a Z/2Z-graded A∞-category lin-
ear over C with balanced Lagrangians equipped with orientations and Spin
structures as objects. The morphism complexes and multi-compositions are
Morse-Bott variants of the usual Lagrangian Floer complexes and multi-
compositions. We refer the reader to Sect. 7 of loc. cit. for full details. The
dependence on ω and θ vanishes up to quasi-equivalence, see Sect. 6 of
loc. cit. Thus, if we define the derived Fukaya category, Dπ Fuk(Σg), as the
idempotent competition of the homotopy category of the category of perfect
Fuk(Σg)-modules, H0(Perf(Fuk(Σg))), then Dπ Fuk(Σg) does not depend
on the choice of ω or θ . As a consequence, the mapping class group of Σg

acts on Dπ Fuk(Σg).
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Fig. 1 A choice of the Si and X0 from the proof of Proposition 6.16

Remark 6.12 The previous discussion is slightly inaccurate as the A∞-
category also depends on a countable choice of balanced Lagrangian sub-
manifolds, equipped with orientations and Spin structures, satisfying a small
list of technical conditions. However, different countable sets lead to quasi-
equivalent Fukaya categories so the distinctions disappear at the level of
Dπ Fuk(Σg), again see loc. cit.

There is a particular geometric picture relevant to the study of Dπ Fuk(Σg).
The Riemann surface, Σg , admits a double branched over P

1. Let τ : Σg →
Σg denote the corresponding hyperelliptic involution. Let S1, . . . , S2g be a
choice of an A2g-configuration of Lagrangian spheres, generating H1(Σg,Z)

and anti-invariant under τ , up to a Hamiltonian isotopy, i.e. τ(Si) is Si with
orientation reversed up to Hamiltonian isotopy. Figure 1 describes the situa-
tion.

To fix notation, we denote the morphism space from X to Y in Dπ Fuk(Σg)

by HomΣg(X,Y ). We can shift the gradings of the Si so that HomΣg(Si, Sj [1])
= 0 for i < j . Let Li = LSi

and let si denote the symplectic Dehn twist about
Si . As mentioned in Example 2.30, the endofunctor on Dπ Fuk(Σg) induced
by si is Li .

In order to proceed, we will need to use the following relation in the map-
ping class group due to M. Matsumoto (see [34] Theorem 1.5):

Theorem 6.13 In the mapping class group of Σg , we have the equality,

(s1 · · · s2g)
2g+1 = τ.

This gives the following corollary:

Corollary 6.14 We have an isomorphism of endofunctors, (L1 · · ·L2g+1)
2g+1

∼= τ , of Dπ Fuk(Σg).

We shall also need to know the zeroth, Z/2Z-graded Hochschild cohomol-
ogy group, HH0(Dπ Fuk(Σg)).
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Lemma 6.15 HHi (Dπ Fuk(Σg)) =
{

k i = 0

k⊕2g i = 1.

Proof By Homological Mirror Symmetry, as proven in [18, 51], Dπ Fuk(Σg)

is equivalent to the idempotent completion of DZ/(2g+1)Z
sg (Sg). As Hochschild

cohomology is invariant under idempotent completion, it is sufficient to com-
pute the Hochschild cohomology of DZ/(2g+1)Z

sg (Sg) itself.

The Serre functor on DZ/(2g+1)Z
sg (Sg) is [1]. This can be seen by dualizing

the explicit diagonal factorization of [44] and noting it is quasi-isomorphic to
itself shifted by the parity of the dimension of the ambient ring, as in Lemma
6.8 of [17].

Consequently, the Hochschild cohomology and homology of
DZ/(2g+1)Z

sg (Sg) differ by a shift, and a computation of the Hochschild ho-

mology of DZ/(2g+1)Z
sg (Sg) suffices. This computation can be done using the

formula in Theorem 2.5.4 of [44]. The computation is straightforward. We
leave the details to the reader. �

Proposition 6.16 Let G = S1 ⊕ · · · ⊕ S2g . Then, 4g ≤ �(G) ≤ 8g + 3.

Proof To prove the lower bound, we construct a ghost sequence for G of
length 4g. Namely, consider a simple loop, X0 ∈ Dπ Fuk(Σg), which is or-
thogonal to S2, . . . , S2g and is anti-invariant under the hyperelliptic involu-
tion, see Fig. 1. For 0 < i ≤ 2g, define Xi inductively by Xi = Li(Xi−1) and
for 2g < i ≤ 4g by Xi = L4g+1−i (Xi−1). We also have a map, fi : Xi →
Xi+1, given by the exact triangle,

HomΣg(Sj [1],Xi) ⊗k Sj [1] ⊕ HomΣg(Sj ,Xi) ⊗k Sj → Xi → Xi+1

with j = i + 1 for 0 < i ≤ 2g and j = 4g + 1 − i for 2g < i ≤ 4g.
Our ghost sequence for G will be the following:

X0
f0→ X1

f1→ ·· · f4g−1→ X4g.

In order to apply Lemma 2.17, we will need to show that the total map is
non-zero and fi is ghost for G for all i.

We begin our proof by showing that for all i, the map fi is G ghost. Equiv-
alently, we must show that fi is ghost for Sj for all j and all i. For notational
simplicity, we will consider the case where 0 < i ≤ 2g, though the proof is
the same for 2g < i ≤ 4g.

The first step is to consider the triangle,

HomΣg(Si+1[1],Xi)⊗k Si+1[1]⊕HomΣg(Si+1,Xi)⊗k Si+1 → Xi → Xi+1.
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Since any map from Si+1 to Xi factors through,

HomΣg(Si+1[1],Xi) ⊗k Si+1[1] ⊕ HomΣg(Si+1,Xi) ⊗k Si+1,

it follows that fi is ghost for Si+1.
To show that fi is ghost for Sj with j �= i + 1 we will show that

Sj ∈ ⊥〈Xi〉 unless j = i or j = i + 1. (6.1)

From this equation, it follows that fi is ghost for Sj for j �= i + 1 because, in
this case, either HomΣg(Sj ,Xi) = 0 or HomΣg(Sj ,Xi+1) = 0.

Hence, in order to finish showing that all the fi are ghost for G, we must
prove the orthogonality conditions of (6.1). To achieve this, we proceed by
induction on i. Assume (6.1) holds for i − 1. Now consider the triangle,

HomΣg(Si,Xi−1) ⊗k Si ⊕ HomΣg(Si,Xi−1[1]) ⊗k Si[1] → Xi−1 → Xi.

Let

H1 := HomΣg(Si,Xi−1) ⊗k HomΣg(Sj , Si) ⊕ HomΣg(Si,Xi−1[1])
⊗k HomΣg(Sj , Si[1]),

H2 := HomΣg(Si,Xi−1) ⊗k HomΣg(Sj , Si[1]) ⊕ HomΣg(Si,Xi−1[1])
⊗k HomΣg(Sj , Si).

Applying the functor, HomΣg(Sj ,−), one obtains a long exact sequence,

· · · H1 HomΣg(Sj ,Xi−1) HomΣg(Sj ,Xi)

H2 HomΣg(Sj ,Xi−1[1]) HomΣg(Sj ,Xi[1])

H1 HomΣg(Sj ,Xi−1) HomΣg(Sj ,Xi) · · ·

For j �= i − 1, i, or i + 1, Sj is orthogonal to Si hence H1 = H2 = 0. By the
induction hypothesis, Sj is orthogonal to Xi−1, hence the terms in the middle
in the long exact sequence above vanish as well. Therefore, Sj is orthogonal
to Xi .

The only case which remains to show is when j = i − 1. In this case,

HomΣg(Si−1, Si[1]) = 0.
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Hence,

H1 = HomΣg(Si,Xi−1) ⊗ HomΣg(Si−1, Si)

and

H2 = HomΣg(Si,Xi−1[1]) ⊗k HomΣg(Si−1, Si).

Therefore, applying the long exact sequence, one must show that the maps,

α : HomΣg(Si,Xi−1) ⊗k HomΣg(Si−1, Si) → HomΣg(Si−1,Xi−1)

and

β : HomΣg(Si,Xi−1[1]) ⊗k HomΣg(Si−1, Si) → HomΣg(Si−1,Xi−1[1]),
are isomorphisms. To this end, consider the following exact triangle:

Si−1 → Si → Li−1(Si).

Notice that

HomΣg(Li−1(Si),Xi−1[k]) = HomΣg(Li−1(Si),Li−1(Xi−2)[k])
= HomΣg(Si,Xi−2[k]).

Hence, this morphism space vanishes by the induction hypothesis. Therefore,
when we apply the functor HomΣg(−,Xi−1), we get two isomorphisms,

HomΣg(Si,Xi−1) → HomΣg(Si−1,Xi−1)

and

HomΣg(Si,Xi−1[1]) → HomΣg(Si−1,Xi−1[1]).
Since HomΣg(Si−1, Si) is one dimensional, these two isomorphisms can be
identified with α and β .

In summary, we have proven the validity of (6.1) and from this we were
able to deduce that all maps in this sequence are ghost for G.

Next, we would like to show that the total map, X0 → X4g , is non-zero.
To get this result for the map from X0 to X4g−1, we proceed once again by
induction. To establish the base case, notice that as X0 is not a summand of
S1, the map, X0 → X1, is non-zero. Now, consider the triangle,

HomΣg(Sj ,Xi) ⊗k Sj ⊕ HomΣg(Sj ,Xi[1]) ⊗k Sj [1] → Xi → Xi+1.

Applying the functor HomΣg(X0,−) to the above triangle and using the fact
that Sj is orthogonal to X0 for j ≥ 2, we obtain that this map in non-zero
until i = 4g − 1 i.e. X0 → X4g−1 is non-zero.
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Now we have,

X4g = L1 · · ·L2gL2g · · ·L1(X0) ∼= (L1 · · ·L2g)
2g+1(X0) ∼= τ(X0) ∼= X0[1].

The second equality follows from (6.1), the third equality comes from the
relation in Corollary 6.14 and the last equality comes from the fact that X0
was chosen to be τ -anti-invariant. From the above equation, it follows that
X4g−1 = L−1

1 (X0)[1]. This allows us to easily calculate morphisms from S1
to X4g−1. Namely,

HomΣg(S1,L
−1
1 (X0)) = HomΣg(S1,X0)

is one dimensional and HomΣg(S1,L
−1
1 (X0)[1]) = HomΣg(S1,X0[1]) = 0.

Hence the map from X4g−1 to X4g fits into the following triangle:

S1 → X4g−1[1] → X4g[1].

Applying the functor HomΣg(X0,−), one obtains a long exact sequence,

· · · HomΣg
(X0,X4g[1]) HomΣg

(X0, S1[1])

HomΣg
(X0,X4g−1) HomΣg

(X0,X4g) HomΣg
(X0, S1)

Since X4g = X0[1], we deduce that HomΣg(X0,X4g[1]) = HomΣg(X0,X0).
Thus, the first map in the above sequence is nonzero because the iden-
tity cannot lie in the kernel. Furthermore, as HomΣg(X0, S1[1]) is one di-
mensional, the first map must be a surjection. We conclude that the map,
HomΣg(X0,X4g−1) → HomΣg(X0,X4g), is an inclusion. As we have al-
ready deduced that our map, X0 → X4g−1, is nonzero, it follows that the
total map, X0 → X4g , is nonzero.

Ultimately, we have produced a nonzero map which factors as 4g ghost
maps for G. By Lemma 2.17 we get 4g ≤ �(G).

For the upper bound one notes that,

(L1L3 · · ·L2g−1L2L4 · · ·L2g)
4g+2 ∼= (L1 · · ·L2g)

4g+2 ∼= IdDπ Fuk(Σg) .

The first equality is just a formal relation in the braid group, and the second
comes from squaring the relation in Corollary 6.14. By Lemma 6.15, we can
apply Proposition 6.4, see also Remark 6.5, which yields the upper bound,
�(G) ≤ 8g + 3. �



428 M. Ballard et al.

Remark 6.17 The beginning of the proof above works in the abstract setting.
That is, if S0, . . . , Sn is an An+1-configuration of spherical objects in T such
that the An-configuration, S1 ⊕ · · · ⊕ Sn, generates, then 2n − 1 ≤ �(S1 ⊕
· · · ⊕ Sn).

Remark 6.18 The lower bound of 4 for the generator O ⊕ Oe on an elliptic
curve is a special case of the proposition above when Db(cohE) is viewed
as a derived Fukaya category via mirror symmetry. In this case, using var-
ious algebraic techniques, we were able to achieve an upper bound of 4 as
well (see Sect. 6.1). The authors believe that for curves of higher genus, the
above lower bound is in fact an equality, i.e. this generator has generation
time 4g. Furthermore, we suspect that 4g is the ultimate dimension of the
derived Fukaya category of a genus g symplectic surface, like in the genus
one case.
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