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I

Homological Mirror Symmetry is a new direction in Modern mathematics. The main pur-

pose of this disseration is developing Homological Mirror Symmetry for the benefit of classical

birational geometry - showing that generic four dimensional cubic and other Fano manifolds

are not rational.

In fact the main idea in this dissertaion is to use ideas of theoretical physics in order to

solve classical problems in Algebraic G‘qeometry.

Our considerations are based on two major parts of Theoretical Physics

1) Conformal Field Theory - a quantum field theory that is invariant under conformal

transformations.

2) Mirror Symmetry - in the Hori Vafa interpretation and its categorical upgrade made by

Kontsevich.

The development of Conformal Field Theory begins with the two-dimensional case. It is

consolidted within the 1983 article by Belavin, Polyakov and Zamolodchikov.

In the two-dimensional quantum theory we have the Witt algebra of infinitesimal conformal

transformations which is centrally extended, with a central charge and other renormalization

charges - spectra of dimensions. Alexander Zamolodchikov has proven the Zamolodchikov

C-theorem which in particular tells us that renormalization group flow in two dimensions is

irreversible.

Computing the charges of Conformal Field theories is a chanlenging exercise in general.

In the case of massive theories one can use geometry in order to compute them. The theory

of spectra of singularities was developed in a parallel way to the theory of central charges. In

fact it was developed in the same city - in Moscow - by Arnold and Varchenko. The spectra

of singularities corresponds to the charges of conformal field theories and the Zamolodchikov

C-theorem is the semicontinuity theorem in the theory of spectra of singularities. The full

corresponcence between charges of Conformal Field theories spectra of singularity and as-

symptotics of solutions of ODE was indicated by Vafa and Cecotti in the nineties.

In this disseration we connect the above correspondence with the Homological Mirror Sym-

metry - the second building block of theoretical physics we use. The main body of the disser-

taion is developing the Homological Mirror Symmetry. Mirror Symmetry started as a theory

allowing counting curves - done by physicists. For us that counting of curves - Gromov-Witten

theory - is a tool which leads to higher structures and as a result higher order applications.

The point we take is that from the non-commutative geometry perspective Birational Geom-

etry (derived categories) is mirror to theory of singularities (the category of vanishing cycles).

We start with the very simple case - rational surfaces where birational geometry is rather

easy. First we develop the categorical foundations of Homological Mirror Symmetry. We

establish the fact that the birational transfornmations lead to creation of new singularities on

Introduction.



ii

the mirror site. We extend this correspondence in general - this is the main content of the first

part of the disseratation.

In the second part we develop the theory of Noncommutative Hodge Structures. We also

show that the quantum differential equation and its assymptotics corresponds to the spectrum

of singularities of the Landau-Ginzburg model.

The above developments lead to combining both sides of Homological Mirror Symmetry

and creates new birational invariants. Several spectacular applications are discussed at the end.



Part I

Constructions of mirrors

1
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Mirror symmetry for weighted projective
planes and their noncommutative deforma-
tions.

1 Homological mirror symmetry

The phenomenon of Mirror Symmetry, in its “classical” version, was first observed for

Calabi-Yau manifolds, and mathematicians were introduced to it through a series of remarkable

papers [98, 45, 244, 253, 71, 173], . . . . Some very strong conjectures have been made about its

topological interpretation – e.g. the Strominger-Yau-Zaslow conjecture. In a different direction,

the framework of mirror symmetry was extended by Batyrev, Givental, Hori, Vafa, etc. to the

case of Fano manifolds.

In this chapter, we approach mirror symmetry for Fano manifolds from the point of view

suggested by the work of Kontsevich and his remarkable Homological Mirror Symmetry (HMS)

conjecture [151]. We extend the previous investigations in the following two directions:

• Building on recent works by Seidel [214], Hori and Vafa [122] (see also an earlier paper

by Witten [254]), we prove HMS for some Fano manifolds, namely weighted projective

lines and planes, and Hirzebruch surfaces. This extends, at a greater level of generality,

a result of Seidel [215] concerning the case of the usual CP2.

• We obtain the first explicit description of the extension of HMS to noncommutative de-

formations of Fano algebraic varieties.

In the long run, the goal is to explore in greater depth the fascinating ties brought forth by

HMS between complex algebraic geometry and symplectic geometry, hoping that the currently
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more developed algebro-geometric methods will open a fine opportunity for obtaining new

interesting results in symplectic geometry. We first describe the results of this chapter in some

more detail.

Most of the classical works on string theory deal with the case of N = 2 superconformal

sigma models with a Calabi-Yau target space. In this situation the corresponding field theory

has two topologically twisted versions, the A- and B-models, with D-branes of types A and B

respectively. Mirror symmetry interchanges these two classes of D-branes. In mathematical

terms, the category of B-branes on a Calabi-Yau manifold X is the derived category of coher-

ent sheaves on X , Db(coh(X)). The so-called (derived) Fukaya category DF(Y ) has been

proposed as a candidate for the category of A-branes on a Calabi-Yau manifold Y ; in short this

is a category whose objects are Lagrangian submanifolds equipped with flat vector bundles.

The HMS Conjecture claims that if two Calabi Yau manifolds X and Y are mirrors to each

other then Db(coh(X)) is equivalent to DF(Y ).
Physicists also consider more general N = 2 supersymmetric field theories and the corre-

sponding D-branes; among these, two families of theories are of particular interest to us: on

one hand, sigma models with a Fano variety as target space, and on the other hand, N = 2
Landau-Ginzburg models. Mirror symmetry relates the former with a certain subclass of the

latter. In particular, B-branes on a Fano variety are described by the derived category of coher-

ent sheaves, and under mirror symmetry they correspond to the A-branes of a mirror Landau-

Ginzburg model. These A-branes are described by a suitable analogue of the Fukaya category,

namely the derived category of Lagrangian vanishing cycles.

In order to demonstrate this feature of mirror symmetry, we use a procedure introduced by

Batyrev [25], Givental [92], Hori and Vafa [122], which we will call the toric mirror ansatz.

Starting from a complete intersection Y in a toric variety, this procedure yields a description of

an affine subset of its mirror Landau-Ginzburg model (to obtain a full description of the mirror

it is usually necessary to consider a partial (fiberwise) compactification) – an open symplectic

manifold (X,ω) and a symplectic fibration W : X → C (see e.g. [134]).

Following ideas of Kontsevich [152] and Hori-Iqbal-Vafa [120], Seidel rigorously defined

(in the case of non-degenerate critical points) a derived category of Lagrangian vanishing cycles

D(Lagvc(W )) [214], whose objects represent A-branes on W : X → C.

In the case of Fano manifolds the statement of the HMS conjecture is the following:

Conjecture 1.1 The category of A-branes D(Lagvc(W )) is equivalent to the derived category

of coherent sheaves (B-branes) on Y .

We will prove this conjecture for various examples.

There is also a parallel statement of HMS relating the derived category of B-branes on

W : X → C, whose definition was suggested by Kontsevich and carried out algebraically in

[194], and the derived Fukaya category of Y . Since very little is known about these Fukaya

categories, we will not discuss the details of this statement in the present chapter. Our hope

in this direction is that algebro-geometric methods will allow us to look at Fukaya categories



MIRROR SYMMETRY FOR WEIGHTED PROJECTIVE PLANES 5

from a different perspective.

The case we will be mainly concerned with in this chapter is that of the weighted pro-

jective plane CP2(a, b, c) (where a, b, c are coprime positive integers). Its mirror is the affine

hypersurface X = {xaybzc = 1} ⊂ (C∗)3, equipped with an exact symplectic form ω and the

superpotential W = x+ y + z. Our main theorem is:

Theorem 1.2 HMS holds for CP2(a, b, c) and its noncommutative deformations.

Namely, we show that the derived category of coherent sheaves (B-branes) on the weighted

projective plane CP2(a, b, c) is equivalent to the derived category of vanishing cycles (A-

branes) on the affine hypersurface X ⊂ (C∗)3. Moreover, we also show that this mirror

correspondence between derived categories can be extended to toric noncommutative deforma-

tions of CP2(a, b, c) where B-branes are concerned, and their mirror counterparts, non-exact

deformations of the symplectic structure of X where A-branes are concerned.

Observe that weighted projective planes are rigid in terms of commutative deformations,

but have a one-dimesional moduli space of toric noncommutative deformations (CP2 also has

some other noncommutative deformations, see §6.2). We expect a similar phenomenon to hold

in many cases where the toric mirror ansatz applies. An interesting question will be to extend

this correspondence to the case of general noncommutative toric vareties.

We will also consider some other examples besides weighted projective planes, in order to

demonstrate the ubiquity of HMS:

• as a warm-up example, we give a proof of HMS for weighted projective lines (a result

also announced by D. van Straten in [245]).

• we also discuss HMS for Hirzebruch surfaces Fn. For n ≥ 3, the canonical class is no

longer negative (Fn is not Fano), and HMS does not hold directly, because some mod-

ifications of the toric mirror ansatz are needed, as already noticed in [120]. The direct

application of the ansatz produces a Landau-Ginzburg model whose derived category

of vanishing cycles is identical to that on the mirror of the weighted projective plane

CP2(1, 1, n). In order to make the HMS conjecture work we need to restrict ourselves to

an open subset in the target space X of this Landau-Ginzburg model.

• we will also outline an idea of the proof of HMS (missing only some Floer-theoretic

arguments about certain moduli spaces of pseudo-holomorphic discs) for some higher-

dimensional Fano manifolds, e.g. CP3.

A word of warning is in order here. We do not describe completely and do not make use

of the full potential of the toric mirror ansatz in this chapter. Indeed we do not compactify

and desingularize the open manifold X . Compactification and desingularization procedures

will be addressed in full detail in future papers [17, 18] dealing with the cases of more general

Fano manifolds and manifolds of general type, where these extra steps are needed in order

to exhibit the whole category of D-branes of the Landau-Ginzburg model. In this chapter we
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work with specific examples for which compactification and desingularization are not needed

(conjecturally this is the case for all toric varieties). However there are two principles which

are readily apparent from these specific examples:

• noncommutative deformations of Fano manifolds are related to variations of the coho-

mology class of the symplectic form on the mirror Landau-Ginzburg models;

• even in the toric case, a fiberwise compactification of the Landau-Ginzburg model is

required in order to obtain general noncommutative deformations. The noncompact case

then arises as a limit where the symplectic form on the compactified fiber acquires poles

along the compactification divisor.

Moreover there are two features of HMS for toric varieties, which become apparent in this

chapter and which we would like to emphasize:

• it is important to think of singular toric varieties as smooth quotient stacks. As a conse-

quence of the work of Cox [64] this characterization is possible in many cases;

• as suggested by our specific examples, we would like to conjecture that the derived cat-

egory of coherent sheaves over a smooth toric quotient stack is always generated by an

exceptional collection of line bundles.

The chapter is organized as follows. In Section 2 we give a detailed description of derived

categories of coherent sheaves over weighted projective spaces and some of their noncom-

mutative deformations. After recalling the definition of the weighted projective space P(a)
as a quotient stack, we describe the category of coherent sheaves over P(a) and its noncom-

mutative deformations Pθ(a), and describe explicitly generating exceptional collections for

Db(coh(Pθ(a))) (Theorem 2.12 and Corollary 2.27). This is a novel result, and we believe that

it suggests a procedure that applies to many other examples of noncommutative toric varieties.

We also discuss derived categories of coherent sheaves over Hirzebruch surfaces.

In Section 3 we introduce the category of Lagrangian vanishing cycles associated to a

Lefschetz fibration, and outline the main steps involved in its determination; to illustrate the

definitions, we treat the case of the mirror of a weighted projective line. After this warm-

up, in Section 4 we turn to our main examples, namely the Landau-Ginzburg models mirror

to weighted projective planes and their non-exact symplectic deformations. More precisely

we start by studying the vanishing cycles and their intersection properties, which allows us to

determine all the morphisms in Lagvc (Lemma 4.3). Next we study moduli spaces of pseudo-

holomorphic discs in the fiber in order to determine Floer products (Lemmas 4.4–4.5); this

gives formulas for compositions of morphisms and higher products in Lagvc (the latter turn out

to be identically zero). Finally, after a discussion of Maslov index and grading, we establish

an explicit correspondence between deformation parameters on both sides (noncommutative

deformation of the weighted projective plane, and complexified Kähler class on the mirror)

and complete the proof of Theorem 1.2.
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Section 5 deals with the case of mirrors to Hirzebruch surfaces, showing how their cate-

gories of Lagrangian vanishing cycles relate to those of mirrors to weighted projective planes

CP2(n, 1, 1). In particular we prove HMS for Fn when n ∈ {0, 1, 2}, and show how for n ≥ 3 a

certain degenerate limit of the Landau-Ginzburg model singles out a full subcategory of Lagvc
whose derived category is equivalent to that of coherent sheaves on the Hirzebruch surface.

Finally, in Section 6 we make various observations and concluding remarks, related to the

following directions for future research:

• HMS for Del Pezzo surfaces, and for higher-dimensional weighted projective spaces (cf.

§6.1 for a discussion of the case of CP3);

• HMS for general (non toric) noncommutative deformations (cf. §6.2 for a discussion of

the case of CP2);

• the “other side” of HMS – relating derived Fukaya categories to derived categories of

B-branes on the mirror Landau-Ginzburg model.

Another topic that will be investigated in a forthcoming paper [18] is HMS for products:

our considerations for F0 = CP1 × CP1 suggest a certain product formula on both sides of

HMS – if we consider two manifolds Y1, Y2 with mirror Landau-Ginzburg models (X1,W1)
and (X2,W2), then the mirror of Y1 × Y2 is simply (X1 × X2,W1 + W2), and we have the

following general conjecture:

Conjecture 1.3 D(Lagvc(W1+W2)) is equivalent to the productD(Lagvc(W1)⊗Lagvc(W2)).

More precisely, the vanishing cycles of W1 +W2 are in one-to-one correspondence with

pairs of vanishing cycles of W1 and W2, and it can be checked (cf. §6.3) that

HomLagvc(W1+W2)((A1, A2), (B1, B2)) ≃ HomLagvc(W1)(A1, B1)⊗HomLagvc(W2)(A2, B2).

The conjecture asserts that Floer products behave in the expected manner with respect to these

isomorphisms.

2 Weighted projective spaces

2.1 Weighted projective spaces as stacks

We start by reviewing definitions from the theory of weighted projective spaces.

Let C be a base field. Let a0, . . . , an be positive integers. Define the graded algebra S =
S(a0, . . . , an) to be the polynomial algebra C[x0, . . . , xn] graded by deg xi = ai. Classically
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the projective variety ProjS is called the weighted projective space with weights a0, . . . , an
and is denoted by P(a0, . . . , an). Consider the action of the algebraic group Gm = C∗ on the

affine space An+1 given in some affine coordinates x0, . . . , xn by the formula

(2.1) λ(x0, . . . , xn) = (λa0x0, . . . , λ
anxn).

In geometric terms, the weighted projective space P(a0, . . . , an) is the quotient variety (An+1\0)
/
Gm

under the induced action of the group Gm.
The variety P(a0, . . . , an) is a rational n-dimensional projective variety, singular in general,

whose affine charts xi 6= 0 are isomorphic to An
/
Zai . For example, the variety P(1, 1, n) is

the projective cone over a twisted rational curve of degree n in Pn.
Denote by a the vector (a0, . . . , an) and write P(a) instead P(a0, . . . , an) for brevity.

There is also another way to define the quotient of the action above: in the category of

stacks. The quotient stack [
(An+1\0)

/
Gm

]

will be denoted by P(a) and will also be called the weighted projective space. The stack P(a)
is smooth, and from many points of view it is a more natural object than P(a).

We now review the notion of an algebraic stack as needed to understand our main example

– weighted projective spaces. A detailed treatment of algebraic stacks can be found in [164]

and [88].

There are two ways of thinking about an algebraic stack:

a) as a category X , with additional properties;

b) as a presentation R ⇒ U, with R and U schemes, R determining an equivalence relation

on U.

From the categorical point of view a stack is a category X fibered in groupoids p : X →
Sch over the category Sch of C-schemes, satisfying two descent (sheafy) properties in the étale

topology. An algebraic stack has to satisfy some additional representability conditions. For

the precise definition see [164, 88].

Any schemeX ∈ Sch defines a category Sch /X: its objects are pairs (S, φ) with {S φ→ X}
a map in Sch, and a morphism from (S, φ) to (T, ψ) is a morphism f : T → S such that

φf = ψ. The category Sch /X comes with a natural functor to Sch. Thus, any scheme is an

algebraic stack.

Another example, the most important one for us, comes from an action of an algebraic

groupG on a schemeX. The quotient stack [X/G] is defined to be the category whose objects

are those G-torsors (principal homogeneous right G-schemes) G → S which are locally trivial

in the étale topology, together with a G-equivariant map from G to X.
In order to work with coherent sheaves on a stack it is convenient to use an atlas for the

stack. We describe very briefly groupoid presentations (or atlases) of algebraic stacks. A pair of

schemesR and U with morphisms s, t, e,m, i, satisfying certain group-like properties, is called
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a groupoid in Sch or an algebraic groupoid. For any scheme S the morphisms s, t : R → U
(“source” and “target”) determine two maps from the set Hom(S,R) to the set Hom(S, U). A

quick way to state all relations between s, t, e,m, i is to say that the induced morphisms make

the “objects” Hom(S, U) and “morphisms” Hom(S,R) into a category in which all arrows are

invertible. We will denote an algebraic groupoid by R ⇒ U (the two arrows being the source

and target maps), omitting the notations for e,m, and i.
Any scheme X determines a groupoid X ⇒ X, whose morphisms are identity maps. The

main example for us is the transformation groupoid associated to an algebraic group action

X × G → X , which provides an atlas for the quotient stack [X/G] . The transformation

groupoid X ×G⇒ X is defined by

s(x, g) = x, t(x, g) = x·g, m((x, g), (x·g, h)) = (x, g·h), e(x) = (x, eG), i(x, g) = (x·g, g−1).

If R ⇒ U is a presentation for a stack X , giving a coherent sheaf on X is equivalent to

giving a coherent sheaf F on U, together with an isomorphism s∗F ∼→ t∗F on R satisfying a

cocycle condition onR ×
t,U,s

R. In particular, for a quotient stack [X/G] the category of coherent

sheaves is equivalent to the category of G-equivariant sheaves on X due to effective descent

for strictly flat morphisms of algebraic stacks (see, e.g., [164], Thm. 13.5.5). Applying this

fact to weighted projective spaces, we obtain that

(2.2) coh(P(a)) ∼= cohGm
a

(An+1\0),

where cohGm
a

(An+1\0) is the category of Gm-equivariant coherent sheaves on (An+1\0) with

respect to the action given by rule (2.1).

2.2 Coherent sheaves on weighted projective spaces

Let A =
⊕
i≥0

Ai be a finitely generated graded algebra. Denote by mod(A) the category

of finitely generated right A-modules and by gr(A) the category of finitely generated graded

rightA-modules in which morphisms are the homomorphisms of degree zero. Both are abelian

categories.

Denote by tors(A) the full subcategory of gr(A) which consists of those gradedA-modules

which have finite dimension over C.

Definition 2.1 Define the category qgr(A) to be the quotient category gr(A)/ tors(A). The

objects of qgr(A) are the objects of the category gr(A) (we denote by M̃ the object in qgr(A)
which corresponds to a module M). The morphisms in qgr(A) are defined to be

Homqgr(M̃, Ñ) = lim
−→

M ′

Homgr(M
′, N),

where M ′ runs over all submodules of M such that M/M ′ is finite dimensional over C.
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The category qgr(A) is an abelian category and there is a shift functor on it: for a given

graded module M =
⊕
i≥0

Mi the shifted module M(p) is defined by M(p)i = Mp+i, and the

induced shift functor on the quotient category qgr(A) sends M̃ to M̃(p) = M̃(p).
Similarly, we can consider the category Gr(A) of all graded right A-modules. It contains

the subcategory Tors(A) of torsion modules. Recall that a module M is called torsion if for

any element x ∈M one has xA≥s = 0 for some s, whereA≥s =
⊕
i≥s

Ai.We denote by QGr(A)

the quotient category Gr(A)/Tors(A). It is clear that the intersection of the categories gr(A)
and Tors(A) in the category Gr(A) coincides with tors(A). In particular, the category QGr(A)
contains qgr(A) as a full subcategory. Sometimes it is convenient to work with QGr(A) instead

of qgr(A).
In the case when the algebra A =

⊕
i≥0

Ai is a commutative graded algebra generated over

C by its degree one component (which is assumed to be finite dimensional) J.-P. Serre [220]

proved that the category of coherent sheaves coh(X) on the projective variety X = ProjA is

equivalent to the category qgr(A). Such an equivalence also holds for the category of quasico-

herent sheaves on X and the category QGr(A) = Gr(A)/Tors(A).
This theorem can be extended to general finitely generated commutative algebras if we

work at the level of quotient stacks.

Let S =
∞⊕
p=0

Sp be a commutative graded C-algebra which is connected, i.e. S0 = C. The

grading on S induces an action of the group Gm on the affine scheme SpecS. Let 0 be the

closed point of SpecS that corresponds to the ideal S+ = S≥1 ⊂ S. This point is invariant

under the action.

Definition 2.2 Denote by ProjS the quotient stack
[
(SpecS\0)

/
Gm

]
.

There is a natural map ProjS → ProjS, which is an isomorphism when the algebra S is

generated by its degree one component S1.

Proposition 2.3 Let S = ⊕
i≥0

Si be a graded finitely generated algebra. Then the category of

(quasi)coherent sheaves on the quotient stack Proj (S) is equivalent to the quotient category

qgr(S) (resp. QGr(S)).

Proof. Let 0 be the closed point on the affine scheme SpecS which corresponds to

the maximal ideal S+ ⊂ S. Denote by U the scheme (SpecS\0). We know that the cat-

egory of (quasi)coherent sheaves on the stack ProjS is equivalent to the category of Gm-

equivariant (quasi)coherent sheaves on U. The category of (quasi)coherent sheaves on U is

equivalent to the quotient of the category of (quasi)coherent sheaves on SpecS by the sub-

category of (quasi)coherent sheaves with support on 0. This is also true for the categories

of Gm-equivariant sheaves. But the category of (quasi)coherent Gm-equivariant sheaves on
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SpecS is just the category gr(S) (resp. Gr(S)) of graded modules over S, and the subcat-

egory of (quasi)coherent sheaves with support on 0 coincides with the subcategory tors(S)
(resp. Tors(S)). Thus, we obtain that coh(ProjS) is equivalent to the quotient category

qgr(S) = gr(S)/ tors(S) (and Qcoh(ProjS) is equivalent to QGr(S) = Gr(S)/Tors(S)).
�

Corollary 2.4 The category of (quasi)coherent sheaves on the weighted projective space P(a)
is equivalent to the category qgr(S(a0, . . . , an)) (resp. QGr(S(a0, . . . , an))).

We conclude this section by giving the definition of noncommutative weighted projective

spaces and the categories of coherent sheaves on them. Consider a matrix θ = (θij) of di-

mension (n + 1) × (n + 1) with entries θij ∈ C∗ for all i, j. The set of all such matrices will

be denoted by M(n+ 1,C∗). Consider the graded algebra Sθ = Sθ(a0, . . . , an) generated by

elements xi, i = 0, . . . , n of degree ai and with relations

θijxixj = θjixjxi

for all i and j. This algebra is a noncommutative deformation of the algebra S(a0, . . . , an). It

can be easily checked that the algebra Sθ depends only on the matrix θan, with entries

(2.3) θanij := θijθ
−1
ji for all 0 ≤ i, j ≤ n.

Thus, if (θ′)an = θan for two matrices θ′ and θ, then Sθ′ ∼= Sθ.
As before, denote by qgr(Sθ) the quotient category gr(Sθ)/ tors(Sθ), where gr(Sθ) is the

category of finitely generated graded right Sθ-modules and tors(A) is the full subcategory of

gr(Sθ) consisting of graded modules of finite dimension over C.

Corollary 2.4 suggests that the category qgr(Sθ) should be considered as the category of

coherent sheaves on a noncommutative weighted projective space. We will denote this space

by Pθ(a) and will write coh(Pθ) instead qgr(Sθ). Similarly, the category of quasi-coherent

sheaves Qcoh(Pθ) is defined as the quotient QGr(Sθ) = Gr(Sθ)/Tors(Sθ).

2.3 Cohomological properties of coherent sheaves on Pθ(a)
In this section we discuss properties of categories of coherent sheaves on the noncommu-

tative weighted projective spaces Pθ(a). Note that the usual commutative weighted projective

space is a particular case of the noncommutative one, when θ is the matrix with all entries equal

to 1.

All algebras Sθ(a0, . . . , an) are noetherian. This follows from the fact that they are Ore

extensions of commutative polynomial algebras (see for example [178]). For the same reason

the algebras Sθ(a0, . . . , an) have finite right (and left) global dimension, which is equal to

(n+1) (see [178], p. 273). Recall that the global dimension of a ring A is the minimal number

d (if it exists) such that for any two modules M and N we have Extd+1
A (M,N) = 0.

The notion of a regular algebra was introduced in [9]. As we will see below, regular alge-

bras have many good properties. More details can be found in [11].
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Definition 2.5 A graded algebra A is called regular of dimension d if it satisfies the following

conditions:
(1) A has global dimension d,
(2) A has polynomial growth, i.e. dimAp ≤ cpδ for some c, δ ∈ R,
(3) A is Gorenstein, meaning that ExtiA(C, A) = 0 if i 6= d, and ExtdA(C, A) = C(l)

for some l. The number l is called the Gorenstein parameter.

Here ExtA stands for the Ext functor in the category of right modules mod(A).

Proposition 2.6 The algebra Sθ(a0, . . . , an) is a noetherian regular algebra of global dimen-

sion n+ 1. The Gorenstein parameter l of this algebra is equal to the sum
n∑
i=0

ai.

Proof. Property (1) holds, as for all Ore extensions of commutative polynomial algebras.

Property (2) holds because our algebras have the same growth as ordinary polynomial algebras.

Property (3) follows from the following Koszul resolution of the right module CSθ

(2.4) 0→ Sθ(−
n∑

i=0

ai)→
⊕

i0<...<in−1

Sθ(−
n−1∑

j=0

aij )→ · · ·

· · · →
⊕

i0<i1

Sθ(−ai0 − ai1)→
n⊕

i=0

Sθ(−ai)→ Sθ → CSθ
→ 0,

and the fact that the transposed complex is a resolution of the left module Sθ
C, shifted to the

degree l =
∑
ai. The explicit formula for the differentials in the complex (2.4) will be given

later (see (2.8)). �

Denote byO(i) the object S̃θ(i) in the category coh(Pθ) = qgr(Sθ). Consider the sequence

{O(i)}i∈Z. It can be checked that the following properties hold true:

(a) For any coherent sheaf F there are integers k1, . . . , ks and an epimorphism

s
⊕
i=1
O(−ki)→ F .

(b) For every epimorphism F → G the induced map Hom(O(−n),F)→ Hom(O(−n),G)
is surjective for n≫ 0.

A sequence which satisfies such conditions will be called ample. It is proved in [11] that

the sequence {O(i)} is ample in qgr(A) for any graded right noetherian C-algebra A if it

satisfies the extra condition:

(χ1) : dimC Ext
1
A(C,M) <∞

for any finitely generated graded A-module M.
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This condition can be verified for all noetherian regular algebras (see [11], Theorem 8.1).

In particular, the sequence {O(i)}i∈Z in the category coh(Pθ) is ample.

For any sheaf F ∈ qgr(A) we can define a graded module Γ(F) by the rule:

Γ(F) := ⊕
i≥0

Hom(O(−i),F)

It is proved in [11] that for any noetherian algebra A that satisfies the condition (χ1) the cor-

respondence Γ is a functor from qgr(A) to gr(A) and the composition of Γ with the natural

projection π : gr(A) −→ qgr(A) is isomorphic to the identity functor (see [11], § 3,4).

We formulate next a result about the cohomology of sheaves on noncommutative weighted

projective spaces. This result is proved in [11] (Theorem 8.1) for a general regular algebra and

parallels the commutative case.

Proposition 2.7 Let Sθ = Sθ(a0, . . . , an) be the algebra of the noncommutative weighted pro-

jective space Pθ = Pθ(a). Then

1) The cohomological dimension of the category coh(Pθ(a)) is equal to n, i.e. for any two

coherent sheaves F ,G ∈ coh(Pθ) the space Exti(F ,G) vanishes if i > n.

2) There are isomorphisms

(2.5) Hp(Pθ,O(k)) =





(Sθ)k for p = 0, k ≥ 0

(Sθ)
∗
−k−l for p = n, k ≤ −l

0 otherwise

This proposition and the ampleness of the sequence {O(i)} imply the following corollary.

Corollary 2.8 For any sheaf F ∈ coh(Pθ) and for all sufficiently large i ≫ 0 we have

Hk(Pθ,F(i)) = 0 for all k > 0.

Proof. The group Hk(Pθ,F(i)) coincides with Extk(O(−i),F). Let k be the maximal

integer (it exists because the global dimension is finite) such that for some F there exists ar-

bitrarily large i such that Extk(O(−i),F) 6= 0. Assume that k ≥ 1. Choose an epimorphism
s
⊕
j=1
O(−kj)→ F .LetF1 denote its kernel. Then for i > max{kj}we have Ext>0(O(−i),

s
⊕
j=1
O(−kj)) =

0, hence Extk(O(−i),F) 6= 0 implies Extk+1(O(−i),F1) 6= 0. This contradicts the assump-

tion of the maximality of k. �

One of the useful properties of commutative smooth projective varieties is the existence of

the dualizing sheaf. Recall that a sheaf ωX is called dualizing if for any F ∈ coh(X) there are

natural isomorphisms of C-vector spaces

H i(X,F) ∼= Extn−i(F , ωX)∗,
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where ∗ denotes the C–dual space. The Serre duality theorem asserts the existence of a dual-

izing sheaf for smooth projective varieties. In this case the dualizing sheaf is a line bundle and

coincides with the sheaf of differential forms ΩnX of top degree.

Since the definition of ωX is given in abstract categorical terms, it can be extended to the

noncommutative case as well. More precisely, we will say that qgr(A) satisfies classical Serre

duality if there is an object ω ∈ qgr(A) together with natural isomorphisms

Exti(O,−) ∼= Extn−i(−, ω)∗.

Our noncommutative varieties Pθ(a) satisfy classical Serre duality, with dualizing sheaves

being O(−l), where l =
∑
ai is the Gorenstein parameter for Sθ(a0, . . . , an). This follows

from the paper [255], where the existence of a dualizing sheaf in qgr(A) has been proved for

a class of algebras which includes all noetherian regular algebras. In addition, the authors of

[255] showed that the dualizing sheaf coincides with Ã(−l), where l is the Gorenstein param-

eter for A.
There is a reformulation of Serre duality in terms of bounded derived categories [35]. A

Serre functor in the bounded derived category Db(coh(Pθ)) is by definition an exact autoequi-

valence S of Db(coh(Pθ)) such that for any objectsX, Y ∈Db(coh(Pθ)) there is a bifunctorial

isomorphism

Hom(X, Y )
∼−→ Hom(Y, SX)∗.

Serre duality can be reinterpreted as the existence of a Serre functor in the bounded derived

category.

2.4 Exceptional collection on Pθ(a)
For many reasons it is more natural to work not with the abelian category of coherent

sheaves but with its bounded derived category Db(coh(Pθ)). The purpose of this section is to

describe the bounded derived category of coherent sheaves on the noncommutative weighted

projective spaces in the terms of exceptional collections.

First, we briefly recall the definition of the bounded derived category for an abelian category

A. We start with the category Cb(A) of bounded differential complexes

M
•
= (0 −→ · · · −→ Mp dp−→Mp+1 dp+1

−→Mp+2 −→ · · · −→ 0), Mp ∈ A, p ∈ Z, d2 = 0.

A morphism of complexes f : M • −→ N • is called null-homotopic if f p = dNh
p + hp+1dM

for all p ∈ Z and some family of morphisms hp : Mp −→ Np−1. Now the homotopy category

Hb(A) is defined as a category with the same objects as Cb(A), whereas morphisms in Hb(A)
are equivalence classes f of morphisms of complexes modulo null-homotopic morphisms. A

morphism of complexes s : N • →M • is called a quasi-isomorphism if the induced morphisms

Hps : Hp(N •)→ Hp(M •) are isomorphisms for all p ∈ Z. Denote by Σ the class of all quasi-

isomorphisms. The bounded derived category Db(A) is now defined as the localization of

Hb(A) with respect to the class Σ of all quasi-isomorphisms. This means that the derived
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category has the same objects as the homotopy category Hb(A), and that morphisms in the

derived category are given by left fractions s−1 ◦ f with s ∈ Σ.

Remark 2.9 For any full subcategory E ⊂ A one can construct the homotopy category Hb(E)
and a functor Hb(E) → Db(A). In some cases, for example when A is the abelian category

of modules over an algebra A of finite global dimension and E is the subcategory of projective

modules, this functor Hb(E)→ Db(A) is an equivalence of triangulated categories.

Second, we recall the notion of an exceptional collection.

Definition 2.10 An object E of a C-linear triangulated category D is said to be exceptional

if Hom(E,E[k]) = 0 for all k 6= 0, and Hom(E,E) = C.
An ordered set of exceptional objects σ = (E0, . . . En) is called an exceptional collection

if Hom(Ej , Ei[k]) = 0 for j > i and all k. The exceptional collection σ is called strong if it

satisfies the additional condition Hom(Ej , Ei[k]) = 0 for all i, j and for k 6= 0.

Definition 2.11 An exceptional collection (E0, . . . , En) in a category D is called full if it gen-

erates the category D, i.e. the minimal triangulated subcategory of D containing all objects

Ei coincides with D. We write in this case

D = 〈E0, . . . , En〉 .

Consider the bounded derived category of coherent sheaves Db(coh(Pθ)). We prove that

this category has an exceptional collection which is strong and full. In this case we will say

that the noncommutative weighted projective space Pθ possesses a full strong exceptional col-

lection.

Theorem 2.12 For any noncommutative weighted projective space Pθ(a) and for any k ∈ Z
the ordered set σ(k) = (O(k), . . . , O(k + l − 1)) , where l =

∑
ai is the Gorenstein parame-

ter of Sθ, forms a full strong exceptional collection in the category Db(coh(Pθ)).

Proof. It follows directly from Proposition 2.7 that the collection σ(k) is exceptional and

strong. To prove that the collection is full let us consider the triangulated subcategory D ⊂
Db(coh(Pθ)) generated by the collection σ(k). The exact sequence (2.4) induces the exact

sequence

(2.6) 0→ O(−
n∑

i=0

ai)→
⊕

i0<...<in−1

O(−
n−1∑

j=0

aij )→ · · ·

· · · →
⊕

i0<i1

O(−ai0 − ai1)→
n⊕

i=0

O(−ai)→ O → 0.
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Shifting it by k + l one obtains that the object O(k + l) also belongs to D and repeat-

ing this procedure deduce that O(i) for all i belongs to D. Assume that D does not coin-

cide with Db(coh(Pθ)) and take an object U which does not belong to D. It is proved in

[34] (Theorem 3.2) that the subcategory D is admissible, i.e. the natural embedding functor

D →֒ Db(coh(Pθ)) has right and left adjoint functors. Denote by j the right adjoint and

complete the canonical map jU −→ U to a distinguished triangle

jU −→ U −→ C −→ jU [1].

It follows from adjointness that for any object V ∈ D the space Hom(V, C) vanishes. The

object C is a bounded complex of coherent sheaves. Denote by Hk(C) the leftmost non-

trivial cohomology of the complex C. The ampleness of the sequence {O(i)}i∈Z guarantees

that for sufficiently large i the space Hom(O(−i), Hk(C)) is nontrivial. This implies that

Hom(O(−i)[−k], C) is nontrivial, which contradicts to the fact that the object O(−i)[−k]
belongs to D. �

The strong exceptional collection on the ordinary projective space Pn was constructed by

Beilinson in [27]. This question for the weighted projective spaces was considered in [19].

Definition 2.13 The algebra of the strong exceptional collection (E0, . . . , En) is the alge-

bra of endomorphisms of the object
n
⊕
i=0

Ei.Denote by E the sheaf
l−1
⊕
i=0
O(i) and byB the algebra

of the collection (O, . . . ,O(l − 1)) on the noncommutative weighted projective space Pθ, i.e.

B = End(E).
The algebraB is a finite dimensional algebra over C.Denote by mod–B the category of finitely

generated right modules overB. For any coherent sheafF ∈ coh(Pθ) the space Hom(E ,F) has

a structure of right B-module. Denote by Pi the modules Hom(E ,O(i)) for i = 0, . . . , (l− 1).

All these are projectiveB-modules and B =
l−1
⊕
i=0

Pi. The algebra B has l primitive idempotents

ei, i = 0, . . . , l − 1 such that 1B = e0 + · · ·+ el−1 and eiej = 0 if i 6= j. The right projective

modules Pi coincide with eiB. The morphisms between them can be easily described since

Hom(Pi, Pj) = Hom(eiB, ejB) ∼= ejBei ∼= Hom(O(i),O(j)) = (Sθ)j−i.

Moreover, the algebra B has finite global dimension. This follows from the fact that any

right (and left) moduleM has a finite projective resolution consisting of the projective modules

Pi. Indeed the map
l−1⊕

i=0

Hom(Pi,M)⊗ Pi −→M

is surjective and there are no non-trivial homomorphisms from Pl−1 to the kernel of this map.

Iterating this procedure we get a finite resolution of M.
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Sometimes it is useful to represent the algebra B as a category B which has l objects, say

v0, . . . , vl−1, and morphisms defined by

Hom(vi, vj) ∼= Hom(O(i),O(j)) ∼= (Sθ)j−i

with the natural composition law. Thus B =
⊕

0≤i,j≤l−1

Hom(vi, vj).

The algebra B is a basis algebra. This means that the quotient of B by the radical rad(B)
is isomorphic to the direct sum of l copies of the field C. The category mod–B has l irreducible

modules which will be denoted Qi, i = 0, . . . , l− 1, and
l−1
⊕
i=0

Qi = B/ rad(B). The modules Qi

are chosen so that Hom(Pi, Qj) ∼= δi,j C.

Our next topic is the notion of mutation in an exceptional collection. Let σ = (E0, . . . , En)
be an exceptional collection in a triangulated category D. Consider a pair (Ei, Ei+1) and the

canonical maps

Hom
•
(Ei, Ei+1)⊗ Ei −→ Ei+1 and Ei −→ Hom

•
(Ei, Ei+1)

∗ ⊗Ei+1,

where by definition

Hom
•
(Ei, Ei+1)⊗ Ei =

⊕

k∈Z

Homk(Ei, Ei+1)⊗ Ei[−k],

Hom
•
(Ei, Ei+1)

∗ ⊗Ei+1 =
⊕

k∈Z

Hom−k(Ei, Ei+1)⊗Ei+1[−k]

(recall that the tensor product of a vector space V with an object X may be considered as the

direct sum of dimV copies of the object X).

We define objects LEi+1 and REi as the objects obtained from the distinguished triangles

LEi+1 −→ Hom
•
(Ei, Ei+1)⊗Ei −→ Ei+1,

Ei −→ Hom
•
(Ei, Ei+1)

∗ ⊗ Ei+1 −→ REi.

The object LEi+1 (resp. REi) is called by left (right) mutation of Ei+1 (resp. Ei) in the col-

lection σ. It can be checked that the objects LEi+1 and REi are exceptional and, moreover, the

two collections

Liσ = (E0, . . . , Ei−1, LEi+1, Ei, Ei+2, . . . , En)

Riσ = (E0, . . . , Ei−1, Ei+1, REi, Ei+2, . . . , En)

are exceptional as well. These collections are called left and right mutations of the collection σ
in the pair (Ei, Ei+1). ConsiderRi and Li as operations on the set of all exceptional collections

in the category D. It is easy to see that they are mutually inverse, i.e. RiLi = 1. Moreover, Li
(resp. Ri) satisfy the Artin braid group relations:

LiLi+1Li = Li+1LiLi+1, RiRi+1Ri = Ri+1RiRi+1
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(see [34, 95]).

Denote by L(k)Ei with k ≤ i the result of k left mutations of the object Ei in the collection

σ. Analogously for right mutations.

Definition 2.14 The exceptional collection (L(n)En, L
(n−1)En−1, . . . E0) is called the left dual

collection for the collection (E0, . . . , En). Analogously, the right dual collection is defined as

(En, REn−1, . . . , R
(n)E0).

Example 2.15 For example, let us consider the full exceptional collection (P0, . . . , Pl−1) in

the category Db(mod−B), consisting of the projective B-modules Pi. It can be shown (e.g.

[34], Lemma 5.6) that the irreducible modules Qi, 0 ≤ i < l can be expressed as

Qi
∼= L(i)Pi[i].

Thus, the left dual for the exceptional collection (P0, . . . , Pl−1) coincides with the collection

(Ql−1[1− l], . . . , Q0).

2.5 A description of the derived categories of coherent sheaves on Pθ(a)
The natural isomorphisms Hom(Pi, Pj) ∼= Hom(O(i),O(j)), which are direct conse-

quences of the construction of the algebra B, allow us to construct a functor F̄ : Hb(P) −→
Db(coh(Pθ)), where P is the full subcategory of the category of right modules mod–B con-

sisting of finite direct sums of the projective modules Pi, i = 0, . . . , l− 1. The functor F̄ sends

Pi to O(i) and any bounded complex of projective modules to the corresponding complex of

O(i), i = 0, . . . , l − 1. It follows from Remark 2.9 that the functor F̄ induces a functor

F : Db(mod–B) −→Db(coh(Pθ)).

Theorem 2.16 The functor F : Db(mod–B) −→ Db(coh(Pθ)) is an equivalence of the de-

rived categories.

Since the exceptional collection (O, . . . ,O(l − 1)) generates the category Db(coh(Pθ)) it is

sufficient to check that the functor F is fully faithful. We know that for any 0 ≤ i, j ≤ l − 1
and any k there are isomorphisms

Hom(Pi, Pj[k])
∼−→ Hom(FPi, FPj[k]) = Hom(O(i),O(j)[k]).

Since Pi, i = 0, . . . , l − 1 generate Db(mod–B), the proof of the theorem is a consequence of

the following lemma.

Lemma 2.17 Let A be abelian category andD be a triangulated category. Let F : Db(A) −→
D be an exact functor and let {Ei}i∈I be a set of objects of Db(A) which generates Db(A) (i.e.
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the minimal full triangulated subcategory of Db(A) containing all Ei coincides with Db(A)).
Assume that the maps

Hom(Ei, Ej[k]) −→ Hom(FEi, FEj [k])

are isomorphisms for all i, j ∈ I and any k ∈ Z. Then the functor F is fully faithful.

Proof. This lemma is known and results from dévissage (e.g. [112],10.10, [147]4.2). We first

consider the full subcategory C ∈Db(A) which consists of all objects X such that the maps

Hom(X,Ei[k])
∼−→ Hom(FX, FEi[k])

are isomorphisms for all i ∈ I and all k ∈ Z. The category C is a triangulated subcategory,

because it is closed with respect to the translation functor and, for any distinguished triangle

X −→ Y −→ Z −→ X [1],

if X and Y belong to C, then Z belongs too. The last statement is a consequence of the five

lemma, i.e., since the morphisms f1, f2, f4, f5 in the diagram

Hom(Y [1], Ei) −−−→ Hom(X [1], Ei) −−−→ Hom(Z,Ei) −−−→
f1

y f2

y
yf3

Hom(FY [1], FEi) −−−→ Hom(FX [1], FEi) −−−→ Hom(FZ, FEi) −−−→
−−−→ Hom(Y,Ei) −−−→ Hom(X,Ei)yf4

yf5
−−−→ Hom(FY, FEi) −−−→ Hom(FX, FEi)

are isomorphisms, the morphism f3 is an isomorphism too. The subcategory C contains the

objects Ei and, hence, coincides with Db(A). Now consider the full subcategory B ⊂ Db(A)
consisting of all objects X such that the map

Hom(Y,X [k])
∼−→ Hom(FY, FX [k])

is an isomorphism for every object Y ∈Db(A) and all k ∈ Z. By the same argument as above

the subcategory B is triangulated and contains all Ei. Therefore, it coincides with Db(A). This

proves the lemma and completes the proof of the Theorem. �

There is also a right adjoint to F, namely a functor G : Db(coh(Pθ)) −→ Db(mod−B).
To construct it we have to consider the functor

Hom(E ,−) : Qcoh(Pθ) −→ Mod−B
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where Mod−B is the category of all right modules over B. Since Qcoh(Pθ) has enough injec-

tives and has finite global dimension there is a right derived functor

RHom(E ,−) : Db(Qcoh(Pθ)) −→Db(Mod−B).

Db(coh(Pθ)) is equivalent to the full subcategory Db
coh(Qcoh(Pθ)) of Db(Qcoh(Pθ)) whose

objects are complexes with cohomologies in coh(Pθ). Moreover, the functor RHom(E ,−)
sends an object of Db

coh(Qcoh(Pθ)) to an object of the subcategory Db
mod(Mod−B), which is

also equivalent to Db(mod−B). This gives us a functor

G = RHom(E ,−) : Db(coh(Pθ)) −→Db(mod−B).

The functor G is right adjoint to F, and it is an equivalence of categories as well.

In the end of this paragraph we describe an equivalence relation θ ∼ θ′ on the space of

all matrices θ with θij ∈ C∗ for all i, j under which the noncommutative weighted projective

spaces Pθ and Pθ′ have equivalent abelian categories of coherent sheaves. It was mentioned

above that the graded algebras Sθ depend only on the matrix θan defined by the rule (2.3).

However, it can also happen that two different algebras Sθ and Sθ′ produce isomorphic algebras

Bθ and Bθ′.

Proposition 2.18 Let (m0, . . . , mn) ∈ (C∗)(n+1) be any vector with non-zero entries. Suppose

that two matrices θ, θ′ ∈ M(n + 1,C∗) are related by the formula

(2.7) θ′ij = θij ·maj
i .

Then the algebras Bθ′ and Bθ are isomorphic.

Proof. Consider the category Bθ′ and its autoequivalence τ which acts by identity on the

objects and acts on the spaces Hom(vi, vj) as the multiplication by (mi)
(j−i). There is a natural

basis of the spaces Hom(vi, vj) which is induced by the monomial basis xi0 · · ·xik , 0 ≤ i0 ≤
· · · ≤ ik ≤ n of Sθ′. The transformation of this basis under the equivalence τ gives us a new

basis in which the category Bθ′ coincides with the category Bθ equipped with its natural basis

coming from the monomial basis of Sθ. The equivalence of the categories Bθ′ and Bθ implies

an isomorphism of the algebras Bθ′ and Bθ. �

If now the algebras Bθ′ and Bθ are isomorphic, then the composition of the functors

Db(coh(Pθ′))
Gθ′−→ Db(mod−Bθ′) ∼= Db(mod−Bθ)

Fθ−→ Db(coh(Pθ))

is an equivalence of derived categories. This equivalence evidently takes a sheaf O(i), 0 ≤
i ≤ l − 1 on Pθ′ to the sheaf O(i) on Pθ. Using the resolution (2.6) it can be easily checked

that this functor takesO(i) toO(i) for all i ∈ Z. Now, it follows from the ampleness condition

on {O(i)} and Corollary 2.8 that the functor sends the subcategory coh(Pθ′) to coh(Pθ) and

induces an equivalence coh(Pθ′) ∼= coh(Pθ). We just proved:
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Corollary 2.19 If the matrices θ′ and θ are connected by the relation (2.7) then the noncom-

mutative weighted projective spaces Pθ′(a) and Pθ(a) have equivalent abelian categories of

coherent sheaves coh(Pθ′) and coh(Pθ).

In the case n = 1, it follows immediately that for any θ, θ′ ∈ M(2,C∗) the categories

coh(Pθ(a0, a1)) and coh(Pθ′(a0, a1)) are equivalent.

Next consider the case n = 2. For any matrix θ ∈M(3,C∗) denote the expression

(θan01 )
a2(θan12 )

a0(θan20 )
a1 = (θ01)

a2(θ12)
a0(θ20)

a1(θ10)
−a2(θ21)

−a0(θ02)
−a1

by q(θ). Now, the result of Proposition 2.18 can be written in the following form.

Corollary 2.20 Let n = 2 and let θ′ and θ be two matrices from M(3,C∗). If q(θ′) = q(θ) then

the abelian categories coh(Pθ′(a0, a1, a2)) and coh(Pθ(a0, a1, a2)) are equivalent.

2.6 DG algebras and Koszul duality. The aim of this section is to give another description

of the derived category Db(coh(Pθ)). It was shown above that this category is equivalent to

the derived category Db(mod−B). We introduce a finite dimensional differential Z-graded

algebra (DG algebra) C•

θ and prove that the category Db(coh(Pθ)) is equivalent to the derived

category of C•

θ .
This new description of the derived category in terms of the DG-algebra C•

θ naturally yields

an exceptional collection (Corollary 2.27), which is essentially the (left) dual of the collection

described in Theorem 2.12, cf. the discussion at the end of §2.4.

We recall here that a DG algebra over C is a graded associative C–algebra

R =
⊕

p∈Z

Rp

with a differential d of degree +1 such that

d(rs) = (dr)s+ (−1)pr(ds)

for all r ∈ Rp, s ∈ R. We will suppose that R is noetherian as a graded algebra.

A right DG module over a DG algebra is a graded right R–module M =
⊕

p∈ZM
p with a

differential∇ of degree 1 such that

∇(mr) = (∇m)r + (−1)pmdr

for all m ∈Mp and r ∈ R.
A morphism of DG R-modules f :M −→ N is called null-homotopic if f = dNh+ hdM ,

where h :M −→ N is a morphism of the underlying gradedR-modules which is homogeneous

of degree −1. The homotopy category Hb(R) is defined as a category which has all finitely

generated DG R-modules as objects, and whose morphisms are the equivalence classes f of
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morphisms of DG R-modules modulo null-homotopic morphisms. A morphism of DG R-

modules s :M → N is called a quasi-isomorphism if the induced morphismH∗s : H∗(M)→
H∗(N) is an isomorphism of graded vector spaces. Now, by definition, the derived category

Db(R) is the localization

Db(R) := Hb(R)
[
Σ−1

]
,

where Σ is the class of all quasi-isomorphisms. It can be checked that there are canonical

isomorphisms

HomDb(R)(R,M)
∼−→ HomHb(R)(R,M)

∼−→ H0M

for each DG R-module M.
Any ordinary C-algebra A can be considered as the DG algebra A• with A0 = A and Ap =

0 for all p 6= 0. In this case the derived category of the DG algebra Db(A•) identifies with the

bounded derived category of finitely generated rightA-modules, i.e. Db(A•) ∼= Db(mod−A).
For a detailed exposition of the facts about derived categories of DG algebras, see [147, 148].

Now denote by Bs the algebra B/ rad(B) and consider it as a right B-module, isomorphic

to the sum
l−1
⊕
i=0

Qi of all irreducibles. Introduce the finite dimensional DG algebra

Ext
•

B(Bs, Bs) = ⊕
p∈Z

ExtpB(Bs, Bs)

with the natural composition law and trivial differential. In what follows we give a precise

description of this DG algebra and prove the existence of an equivalence

Db(coh(Pθ)) ∼= Db(Ext
•

B(Bs, Bs)),

which gives the promised description of the category Db(coh(Pθ)).
Let us introduce a graded DG algebra Λ• = Λ•(a0, . . . , an). As a DG algebra it is the skew-

symmetric algebra with trivial differential which is generated by skew-commutative elements

yi, i = 0, . . . , l − 1 of degree 1, i.e.

Λ• =
n+1⊕

p=0

Λp,

where yi ∈ Λ1 with the relations yiyj = −yjyi for all 0 ≤ i, j ≤ n.
The additional grading on the DG algebra Λ•(a0, . . . , an) is defined by putting yi ∈ Λ•

−ai
.

Thus Λ•(a0, . . . , an) is just a bigraded skew-symmetric algebra

Λ•(a0, . . . , an) =
⊕

p,i∈Z

Λpi

with generators yi ∈ Λ1
−ai
. For any (n+1)× (n+1)-matrix θ we also can define a graded DG

algebra Λ•

θ(a0, . . . , an) as the DG algebra with trivial differential and generated by elements

yi ∈ (Λθ)
1
−ai
, i = 0, . . . , n with the relations

θijyiyj + θjiyjyi = 0
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for all 0 ≤ i, j ≤ n.
Consider the following complex Com

•
of right Sθ-modules

(2.8) Com
•
:= 0→ Sθ(−

n∑

i=0

ai)→
⊕

i0<...<in−1

Sθ(−
n−1∑

j=0

aij )→ · · ·

· · · →
⊕

i0<i1

Sθ(−ai0 − ai1)→
n⊕

i=0

Sθ(−ai)→ Sθ → 0,

in which the differentials are defined componentwise as follows: for any set I = {i0, . . . ik}
the differential sends the generator of Sθ(−

∑
i∈I

ai) to the sum of the elements

(−1)s
(
∏

i∈I

θiis

)
xis

of Sθ
(
− ∑

i∈(I\is)

ai
)
, for 0 ≤ s ≤ k. With this we see that the complex Com

•
is a free resolution

of the right Sθ-module CSθ
.

Now we define a structure of left DG module over the DG algebraΛ•

θ on the complex Com
•
,

such that the element yj takes the generator of Sθ(−
∑
i∈I

ai) to the generator of Sθ(−
∑

i∈(I\is)

ai)

with coefficient

(−1)s
∏

i∈I

θisi

if j = is ∈ I = {i0, . . . , ik}, and takes it to zero if j 6∈ I. It can be checked that this action is

well defined and makes the complex Com
•

a DG Λ•

θ-Sθ-bimodule.

Remark 2.21 It is not difficult to see that the complex Com
•

as a graded Λ•

θ-Sθ-bimodule (i.e.

without differential) is isomorphic to (Λ•

θ)
∗⊗

C
Sθ, where (Λ•

θ)
∗ is HomC(Λ

•

θ,C).

Definition 2.22 Define a DG category Cθ (actually graded category, because all differentials

are trivial) as a DG category with l objects, say w0, . . . , wl−1, and the spaces of morphisms

between which are the complexes

Hom
•
(wj, wi) ∼= (Λ•

θ)i−j

with the natural composition law induced by that of the DG algebra Λ•

θ.

It follows from the definition of the DG algebra Λ•

θ that

Hom
•
(wj, wi) = 0 when j < i.
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Definition 2.23 Define the DG algebra C•

θ as the DG algebra of the DG category Cθ, i.e.

C•

θ :=
⊕

0≤i,j≤l−1

Hom
•
(wj, wi).

The quotient of this DG algebra by its radical is isomorphic to C⊕l. In particular the DG algebra

C•

θ , similarly to the algebra B, has l irreducible DG modules in degree 0. Moreover, as a right

DG C•

θ -module the algebra C•

θ is a direct sum

C•

θ =
l−1⊕

i=0

Hi, where Hi =
⊕

0≤j≤l−1

Hom
•
(wj , wi),

and the direct summands Hi are homotopically projective right DG C•

θ -modules. Recall that a

DG moduleH is called homotopically projective if, for any acyclic DG moduleN , Hom(H,N) =
0 in the homotopy category (see e.g. [147, 148]).

Let us construct a DG C•

θ -B-bimodule X•, obtained from the DG Λ•

θ-Sθ-bimodule Com
•

by the formula

X
•
=

⊕

0≤i,j≤l−1

X
•
(i, j), with X

•
(i, j) ∼= Com

•

j−i

where Com
•

j−i is the degree (j − i) component of the graded complex Com
•
. In particu-

lar, X•(i, j) = 0 when i > j and X•(i, i) ∼= C for all i. The structure of DG C•

θ -B-

bimodule on X• comes from the structure of DG Λ•

θ-Sθ-bimodule on Com
•
. The bimodule

X• is quasi-isomorphic to C⊕l, and it is quasi-isomorphic to B/ rad(B) as a right B-module

and to C•

θ/ rad(C
•

θ) as a left DG C•

θ -module. This fact allows us to say that the DG algebra C•

θ

is the Koszul dual to the algebra B.

Remark 2.24 It follows from Remark 2.21 that X•
as a graded C•

θ -B-bimodule (i.e. without

differential) is isomorphic to
l−1⊕

i=0

H∗
i ⊗ Pi,

where H∗
i are the left DG C•

θ -modules HomC(Hi,C). In other words, as a graded C•

θ -B-

bimodule X• is isomorphic to C•

θ
∗ ⊗C⊕l B.

For any right DG C•

θ -moduleN , the tensor productN⊗CX
• is naturally a complex of right

B-modules, in which the module structure is given by the action of B on X•, and the grading

and differential are given by

(N ⊗C X
•)k =

⊕
p+q=k

Np ⊗C X
q, d(n⊗ x) = (dn)⊗ x+ (−1)pn⊗ dx
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for all n ∈ Np, x ∈ X•. The C-submodule generated by all differences nc ⊗ x − m ⊗ cx is

closed under the differential and under multiplication by any element of B. So the quotient by

this submodule, which we denote by N⊗C•
θ
X•, is a well-defined complex of rightB-modules.

For any complex M of right B-modules we define a right DG C•

θ -module

HomB(X
•,M)k =

∏
p−q=k

HomB(X
q,Mp), (df)(x) = d(f(x))− (−1)nf(dx).

In this way we get a pair of adjoint functors (−)⊗C•
θ
X• andHomB(X

•,−) between homotopy

categories, which induce a pair of adjoint functors on the level of derived categories as well:

L

⊗C•
θ
X• : Db(C•

θ) −→Db(mod -B), RHomB(X
•,−) : Db(mod -B) −→Db(C•

θ).

Moreover, sinceX• is a projective finitely generated rightB-module and a flat left C•

θ -module,

both functors (−)⊗C•
θ
X• andHomB(X

•,−) between homotopy categories preserve acyclicity.

Hence, the derived functors in this case are defined by the same formulas. For more information

about derived functors see e.g. [147].

Theorem 2.25 The functors
L

⊗C•
θ
X• and RHomB(X

•,−) are equivalences of triangulated

categories.

Proof. It is evident that the first functor
L

⊗C•
θ
X• takes C•

θ as a right DG C•

θ -module to X•

as a right B-module which is isomorphic to Bs =
l−1
⊕
i=0

Qi in the derived category Db(mod -B).

On the other hand, it follows from Remark 2.24 and the equalities HomB(Pi, Qj) = δijC that

the latter functor, RHomB(X
•,−), takes the module Bs =

l−1
⊕
i=0

Qi to the free DG module

C•

θ =
⊕l−1

i=0Hi and takes Qi to Hi for any 0 ≤ i ≤ l − 1. Thus, the composition functor

RHomB(X
•,−)

L

⊗C•
θ
X• sends Bs to itself and it also sends all direct summands Qi to Qi.

The adjunction maps

RHomB(X
•
, Qi)

L

⊗C•
θ
X

• −→ Qi

cannot be trivial, hence they are isomorphisms for all i. Therefore, we obtain isomorphisms

HomB(Qi, Qj [k])
∼−→ HomC•

θ
(RHomB(X

•, Qi),RHomB(X
•, Qj)[k]) ∼= Hom(Hi, Hj[k])

for any 0 ≤ i, j ≤ l − 1 and all k ∈ Z.
Since Qi, i = 0, . . . , l−1 generate the derived category Db(mod -B), Lemma 2.17 implies

that the functor

RHomB(X
•,−) : Db(mod -B) −→Db(C•

θ)

is fully faithful.
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Consider the triangulated subcategory D of Db(C•

θ) generated by Hi, i = 0, . . . , l − 1. By

Remark 2.24 X• as a graded C•

θ -B-bimodule is isomorphic to
⊕l−1

i=0H
∗
i ⊗ Pi, and hence, the

dual toX• over C gives a resolution of C•

θ/ rad(C
•

θ) in terms ofHi. Therefore, the subcategory

D contains all irreducible DG modules and coincides with the whole Db(C•

θ). Thus, Hi, i =
0, . . . , l − 1 generate the category Db(C•

θ), and the functor RHomB(X
•,−) is an equivalence

of the derived categories. �

Corollary 2.26 There is an isomorphism of DG algebras

C
•

θ
∼=

⊕

0≤i,j≤l−1

Ext
•
(Qi, Qj).

The assertion of the Corollary is clear now, because the functor
L

⊗, which is an equivalence,

sends C•

θ to Bs =
l−1
⊕
i=0

Qi.

Corollary 2.27 The derived category of coherent sheaves Db(coh(Pθ)) on the noncommuta-

tive weighted space Pθ is equivalent to the derived category Db(C•

θ).

2.7 Hirzebruch surfaces Fn The surfaces Fn are minimal rational surfaces defined as the

projectivizations Proj (O⊕O(−n)) of the vector bundlesO⊕O(−n) over P1. The surface Fn
has a (−n)-section that will be denoted by s. There is a simple connection between Fn and the

weighted projective plane P(1, 1, n), namely the latter can be obtained from Fn by contracting

the (−n)section s. In this way Fn is a resolution of the singularity of P(1, 1, n). Thus, we have

two different resolutions of the singularity of P(1, 1, n):

Fn

$$■
■■

■■
■■

■■
■ P(1, 1, n)

xxqqq
qq
qq
qq
qq

P(1, 1, n)

For this reason the derived categories of coherent sheaves on Fn and on P(1, 1, n) are closely

related to each other. We will show that for n ≥ 2 there is a fully faithful functor

MKn : Db(coh(Fn)) −→Db(coh(P(1, 1, n)))

and will give its description.

Denote by f the class of the fiber of Fn in the Picard group. Since Fn is a P1-bundle over

P1 the derived category of coherent sheaves on Fn has an exceptional collection of length 4

(see [193]). More precisely, we have
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Proposition 2.28 The collection σ = (O,O(f),O(s+ nf),O(s+ (n + 1)f)) is a full strong

exceptional collection on Fn. The derived category Db(coh(Fn)) is equivalent to the derived

category Db(mod -F (n)), where F (n) is the algebra of the exceptional collection σ.

Denote by U the two dimensional vector space H0(Fn,O(f)). From the exact sequence

0 −→ O −→ O(s + nf) −→ Os −→ 0

we find that H0(Fn,O(s + nf)) is the direct sum of the space SnU and a one-dimensional

space. Analogously, we can check that H0(Fn,O(s+ (n+ 1)f)) is isomorphic to SnU ⊕ U.
On the other hand, we know that the weighted projective plane P(1, 1, n) has an exceptional

collection

(O,O(1), . . . ,O(n),O(n+ 1)) .

Denote the algebra of this exceptional collection by B(1, 1, n). It follows from Proposition 2.7

that the space H0(P(1, 1, n),O(1)) is isomorphic to U, H0(P(1, 1, n),O(n)) is isomorphic to

the direct sum of SnU and a one-dimensional space, andH0(P(1, 1, n),O(n+1)) is isomorphic

to SnU⊕U. This implies that the algebra of the exceptional collection (O,O(f),O(s+ nf),O(s+ (n+ 1)f))
on Fn is isomorphic to the algebra of the exceptional collection (O,O(1),O(n),O(n+ 1)) on

P(1, 1, n).
Thus, the algebra of endomorphisms of the projective B(1, 1, n)-module

M = P0 ⊕ P1 ⊕ Pn ⊕ Pn+1

coincides with F (n), which makes M a F (n)-B(1, 1, n)-bimodule. The natural functor

(−)
L

⊗F (n) M : Db(mod -F (n)) −→Db(mod -B(1, 1, n))

takes the free module F (n) to M, and there are isomorphisms

HomF (n)(F (n), F (n)[k])
∼−→ HomB(1,1,n)(M,M [k]).

Since the direct summands of F (n) generate the derived category Db(mod -F (n)), Lemma

2.17 guarantees that the functor (−)
L

⊗F (n) M is fully faithful. Using the descriptions of

the derived categories of coherent sheaves on Fn and P(1, 1, n) in terms of the exceptional

collections, we obtain the following theorem.

Theorem 2.29 The functor

MKn : Db(coh(Fn)) −→Db(coh(P(1, 1, n)))

induced by (−)
L

⊗F (n) M is fully faithful.
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3 Categories of Lagrangian vanishing cycles

3.1 The category of vanishing cycles of an affine Lefschetz fibration We begin this sec-

tion by briefly reviewing Seidel’s construction of a Fukaya-type A∞-category associated to a

symplectic Lefschetz fibration [214, 215, 217], following a proposal of Kontsevich [152]. For

an account of the underlying physics, the reader is referred to the work of Hori et al [120].

Let (X,ω) be an open symplectic manifold, and let f : X → C be a symplectic Lef-

schetz fibration, i.e. aC∞ complex-valued function with isolated non-degenerate critical points

p1, . . . , pr near which f is given in local complex coordinates by f(z1, . . . , zn) = f(pi) + z21 +
· · ·+ z2n, and whose fibers are symplectic submanifolds of X . Fix a regular value λ0 of f , and

consider an arc γ ⊂ C joining λ0 to a critical value λi = f(pi). Using the horizontal distri-

bution given by the symplectic orthogonal to the fibers of f , we can transport the Lagrangian

vanishing cycle at pi along the arc γ to obtain a Lagrangian disc Dγ ⊂ X fibered above γ,

whose boundary is an embedded Lagrangian sphere Lγ in the fiber Σ0 = f−1(λ0). When the

fibers of f are non-compact, parallel transport along the horizontal distribution is not always

well-defined; we will always assume that the symplectic form ω satisfies the conditions re-

quired to make the construction valid. The Lagrangian disc Dγ is called the Lefschetz thimble

over γ, and its boundary Lγ is the vanishing cycle associated to the critical point pi and to the

arc γ.

Let γ1, . . . , γr be a collection of arcs in C joining the reference point λ0 to the various

critical values of f , intersecting each other only at λ0, and ordered in the clockwise direction

around p0. Each arc γi gives rise to a Lefschetz thimble Di ⊂ X , whose boundary is a La-

grangian sphere Li ⊂ Σ0. After a small perturbation we can always assume that these spheres

intersect each other transversely inside Σ0.

Definition 3.1 (Seidel) The directed category of vanishing cycles Lagvc(f, {γi}) is an A∞-

category (over a coefficient ring R) with r objects L1, . . . , Lr corresponding to the vanishing

cycles (or more accurately to the thimbles); the morphisms between the objects are given by

Hom(Li, Lj) =





CF ∗(Li, Lj ;R) = R|Li∩Lj | if i < j

R · id if i = j

0 if i > j;

and the differential m1, composition m2 and higher order products mk are defined in terms of

Lagrangian Floer homology inside Σ0. More precisely,

mk : Hom(Li0 , Li1)⊗ · · · ⊗Hom(Lik−1
, Lik)→ Hom(Li0 , Lik)[2− k]

is trivial when the inequality i0 < i1 < · · · < ik fails to hold (i.e. it is always zero in this case,

except for m2 where composition with an identity morphism is given by the obvious formula).
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When i0 < · · · < ik, mk is defined by fixing a generic ω-compatible almost-complex struc-

ture on Σ0 and counting pseudo-holomorphic maps from a disc with k + 1 cyclically ordered

marked points on its boundary to Σ0, mapping the marked points to the given intersection

points between vanishing cycles, and the portions of boundary between them to Li0 , . . . , Lik
respectively.

While the general definition of Lagrangian Floer homology is a very delicate task [81],

we will only consider cases where most of the technical considerations can be skipped. For

example, Seidel considers the case where the symplectic form ω is exact (ω = dθ for some

1-form θ) and the Li are exact Lagrangian submanifolds in Σ0 (i.e. θ|Li
= dgi is also exact).

Here, we assume instead that the restricted symplectic form ω|Σ0
is exact and that the homotopy

groups π2(Σ0) and π2(Σ0, Li) are trivial. The first condition prevents the bubbling of pseudo-

holomorphic spheres, while the second one prevents the bubbling of pseudo-holomorphic discs

in the definition of Lagrangian Floer homology. Therefore, the moduli spaces of pseudo-

holomorphic maps involved in the definition of Lagvc(f, {γi}) have well-defined fundamental

classes.

Another assumption that we will make concerns the Maslov class, which we will assume

to vanish over Li. In fact, we will restrict ourselves to the case where X and Σ0 are affine

Calabi-Yau manifolds, and the spheres Li can be lifted to graded Lagrangian submanifolds

of Σ0, e.g. by fixing a holomorphic volume form on Σ0 and choosing a real lift of the phase

exp(iφ) = Ω|Li
/volLi

: Li → S1. This makes it possible to define a Z-grading (by Maslov

index) on the Floer complexes CF ∗(Li, Lj ;R), as will be discussed later (see also [214]).

For simplicity, Seidel uses R = Z/2 as coefficient ring in his definition; however the

moduli spaces considered below are orientable, so it is possible to assign a sign ±1 to each

pseudo-holomorphic curve and hence define Floer homology over Z. We will further extend

the coefficient ring to R = C, and count the contribution of each pseudo-holomorphic disc u :
(D2, ∂D2)→ (Σ0,

⋃
Li) in the moduli space with a coefficient of the form± exp(−2π

∫
D2 u

∗ω).
Weighting by area is irrelevant in the case of exact Lagrangian vanishing cycles considered by

Seidel, where it does not affect at all the structure of the category: indeed, the symplectic areas

can then be expressed in terms of the primitives gi of θ over Li, and can be eliminated from the

description simply by a rescaling of the chosen bases of the Floer complexes (considering the

basis {exp (gi(p)− gj(p)) p, p ∈ Li ∩ Lj} of CF ∗(Li, Lj)). On the contrary, in the non-exact

case it is important to incorporate this weighting by area into the definition.

Hence, given two intersection points p ∈ Li ∩ Lj , q ∈ Lj ∩ Lk (i < j < k), we have by

definition

m2(p, q) =
∑

r∈Li∩Lk
deg r=deg p+deg q

(
∑

[u]∈M(p,q,r)

± exp(−2π
∫

D2

u∗ω)

)
r

whereM(p, q, r) is the moduli space of pseudo-holomorphic maps u from the unit disc to M
(equipped with a generic ω-compatible almost-complex structure) such that u(1) = p, u(j) = q,

u(j2) = r (where j = exp(2iπ
3
)), and mapping the portions of unit circle [1, j], [j, j2], [j2, 1] to
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Li, Lj and Lk respectively. The other products are defined similarly.

It is worth mentioning that this definition of Floer homology over the complex numbers is

in fact essentially equivalent to the use of coefficients in a Novikov ring, since in both cases

the main goal is to keep track of (relative) homology classes.

Although the category Lagvc(f, {γi}) depends on the chosen ordered collection of arcs

{γi}, Seidel has obtained the following result [214]:

Theorem 3.2 (Seidel) If the ordered collection {γi} is replaced by another one {γ′i}, then the

categories Lagvc(f, {γi}) and Lagvc(f, {γ′i}) differ by a sequence of mutations.

Hence, the category naturally associated to the Lefschetz fibration f is not the finite directed

category defined above, but rather a (bounded) derived category, obtained from Lagvc(f, {γi})
by considering twisted complexes of formal direct sums of Lagrangian vanishing cycles, and

adding idempotent splittings and formal inverses of quasi-isomorphisms. It is a classical result

that, if two categories are related by mutations, then their derived categories are equivalent;

hence the derived category D(Lagvc(f)) only depends on the Lefschetz fibration f rather than

on the choice of an ordered system of arcs [214].

We finish this overview with a couple of remarks. In “usual” Fukaya categories, objects are

pairs consisting of a compact Lagrangian submanifold and a flat connection on some complex

vector bundle defined over it. In the case of the category associated to a Lefschetz fibration, the

objects are vanishing cycles, or perhaps more accurately, the Lefschetz thimbles bounded by

the vanishing cycles. Since the thimbles are contractible, all flat vector bundles over them are

trivial, which eliminates the need to consider Floer homology with twisted coefficients. This

ceases to be true in presence of a non-trivial B-field, but even then the equivalence class of the

connection is entirely determined by the thimble. Another related issue is the choice of a spin

structure on the vanishing cycles in order to fix the orientation on the moduli spaces: in the

one-dimensional case that will be of interest to us, each vanishing cycle admits two distinct

spin structures (H1(S1,Z/2) = Z/2). However we must always consider the spin structure

which extends to the thimble, i.e. the non-trivial one.

The reader is referred to Seidel’s papers [214, 215] for various examples – we will focus

specifically on the Landau-Ginzburg models mirror to weighted projective spaces and Hirze-

bruch surfaces.

3.2 Structure of the proof of Theorem 1.2 Derived categories of coherent sheaves on

the weighted projective planes P2(a, b, c) and their noncommutative deformations P2
θ(a, b, c)

have been described in Section 2. Hence, to prove Theorem 1.2, we need to find a similar

description of the derived categories of Lagrangian vanishing cycles on the mirror Landau-

Ginzburg models.

Recall that the mirror to P2
θ(a, b, c) is (X,W ), whereX is the affine hypersurface {xaybzc =

1} ⊂ (C∗)3, equipped with an exact (for the commutative case) or non-exact (for the noncom-

mutative case) symplectic form, and the superpotential W = x+ y + z.
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By construction, categories of Lagrangian vanishing cycles for Lefschetz fibrations al-

ways admit full exceptional collections. Indeed, for any choice of arcs {γi} the objects Li
of Lagvc(W, {γi}) form a generating exceptional collection of the derived category. Hence, in

view of Theorem 2.12 and Corollary 2.27, all we need to do is exhibit a set of arcs {γi} for

which Lagvc(W, {γi}) is equivalent to one of the categories B or Cθ introduced in §2 (it turns

out that the latter choice is slightly easier to achieve).

Recall from Corollary 2.27 that Db(coh(P2
θ(a, b, c))) is equivalent to the derived category

of the DG-algebra C•

θ associated to the finite DG-category Cθ which has l = a + b+ c objects

w0, . . . , wl−1, with morphisms between them given by the complexes

Hom
•
(wj, wi) ∼= (Λ•

θ)i−j

with the natural composition law induced by that of the deformed exterior algebra Λ•

θ on

three generators of degrees −a,−b,−c, with relations of the form θijyiyj + θjiyjyi where

θ ∈ M(3,C∗) (see §2.6). Moreover, by Corollary 2.20, this category depends only on the

quantity

q(θ) = (θ01)
c(θ12)

a(θ20)
b(θ10)

−c(θ21)
−a(θ02)

−b.

From a practical viewpoint, the cyclic group Z/(a+ b+ c) acts by diagonal multiplication

on X , and the superpotential W = x + y + z is equivariant with respect to this action. The

(a + b + c) critical values of W form a single orbit under this action (see §4.2). In order to

exploit this symmetry, it is therefore natural to choose the smooth fiber Σ0 = W−1(0) as our

reference fiber, and an ordered system of arcs γi ⊂ C (i = 0, . . . , a + b + c− 1) consisting of

straight line segments from the origin to the various critical values λi.
With this understood, Theorem 1.2 follows immediately from Corollary 2.27 and the fol-

lowing statement:

Theorem 3.3 Lagvc(W, {γi}) is a DG category, and it is equivalent to Cθ for any θ ∈ M(3,C∗)
such that q(θ) = exp(2πi[B+iω] · [T ]), where [B+iω] ∈ H2(X,C) is the complexified Kähler

class, and [T ] is the generator of H2(X,Z).

The proof of Theorem 3.3 consists of several steps, carried out in the various subsections of

§4. First, as a prerequisite to the determination of the vanishing cycles, one needs a convenient

description of the reference fiber Σ0. This is done by considering the projection to the first

coordinate axis, πx : Σ0 → C∗, which makes Σ0 a (b + c)-fold covering of C∗ branched in

(a + b + c) points (Lemma 4.1). With this understood, it becomes fairly easy to identify the

vanishing cycles associated to the arcs γj , at least in the special case where the symplectic

form is anti-invariant under complex conjugation (which implies its exactness). Indeed, this

assumption implies that the vanishing cyclesLj are Hamiltonian isotopic (and hence equivalent

from the point of view of Floer theory) to the double lifts via πx of certain arcs δj ⊂ C∗ (Lemma

4.2) which can be described explicitly (Figure 5).

With an explicit description of the vanishing cycles at hand, it becomes possible to under-

stand the Floer complexes CF ∗(Li, Lj), by studying the intersections between Li and Lj for
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all 0 ≤ i < j < a + b + c. Using the projection to the first coordinate, these correspond to

certain specific intersections between the arcs δi and δj in C∗, as dictated by the combinatorics

of the branched covering πx. Such a description is given by Lemma 4.3, from which it follows

readily that CF ∗(Li, Lj) ≃ (Λ•

θ)i−j for all i, j.
The next step is to study the Floer differentials and products in Lagvc(W, {γi}) by count-

ing pseudo-holomorphic maps from (D2, ∂D2) to (Σ0,
⋃
Li). This is done by searching for

immersed polygonal regions in Σ0 with boundary contained in
⋃
Li, or equivalently, images

of such regions under the projection πx (see §4.4). In our case, it turns out that the only possi-

ble contributions come from triangular regions in Σ0; hence, the Floer differential m1 and the

higher compositions (mk)k≥3 are identically zero (Lemmas 4.3 and 4.4) for purely topologi-

cal reasons, while the Floer product m2 has a particularly simple structure (Lemma 4.5). In

particular, the A∞-category Lagvc(W, {γi}) is actually a DG category with trivial differential.

The grading in Lagvc(W, {γi}) is determined by the Maslov indices of intersection points.

Since the Maslov class vanishes, each Li can be lifted to a graded Lagrangian submanifold of

Σ0 by choosing a real lift of its phase function (see §4.5). The degree of a given intersection

point p ∈ Li ∩ Lj is then determined by the difference between the phases of Li and Lj at

p. Although the determination of phases is the most technical part of the argument, it actu-

ally presents little conceptual difficulty, and after some calculations one readily checks that

the grading of morphisms in Lagvc(W, {γi}) is the expected one. Namely, the “generating”

morphisms corresponding to the generators of the deformed exterior algebra Λ•

θ have degree 1,

and their pairwise products have degree 2 (cf. Lemma 4.7).

The argument is then completed by determining more precisely the structure coefficients for

the Floer productm2, which depend on the symplectic areas of the various pseudo-holomorphic

discs and on the choice of consistent orientations of the moduli spaces (see §4.6). In the

case where the symplectic form is anti-invariant under complex conjugation, the argument is

greatly simplified by symmetry considerations, and the Floer products obey the anticommuta-

tion rules of an (undeformed) exterior algebra (Lemma 4.8) – recall that complex conjugation

anti-invariance implies exactness of the symplectic form. In the non-exact case or in presence

of a non-zero B-field, there is no simple method for determining the symplectic areas of the

various pseudo-holomorphic discs involved in the definition of m2. However the deformation

of the category Lagvc(W, {γi}) is governed by a single parameter (analogous to the quantity

q(θ) introduced in Corollary 2.20), for which a simple topological interpretation can be found,

involving only the evaluation of [B+ iω] on the generator ofH2(X,Z) (Lemmas 4.9 and 4.10).

This provides the desired characterization of the category of Lagrangian vanishing cycles,

and Theorem 3.3 becomes an easy corollary of Lemmas 4.3–4.10. The only subtle point

is that the objects of the category Cθ are numbered “backwards” (because the generators of

Λ•

θ are assigned negative degrees), so the equivalence of categories actually takes the objects

L0, . . . , La+b+c−1 of Lagvc(W, {γi}) to the objects wa+b+c−1, . . . , w0 of Cθ.

3.3 Mirrors of weighted projective lines As a warm-up example, we prove HMS for the
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λ = 0

✲

✻

q
q
q

q

q
q
q

Rex

Imx

λ = λ0

✲

✻

q q
q qq qq

λ→ +∞

✲

✻

q q
q q q qq

Figure 1: The fiber of W for λ ∈ R+ ((a, b) = (4, 3))

weighted projective lines CP1(a, b), where a, b are mutually prime positive integers (see also

[215] and [245]). The argument is an extremely simplified version of that outlined in §3.2.

Indeed, the mirror Landau-Ginzburg model is the curve X = {xayb = 1} ⊂ (C∗)2 equipped

with the superpotential W = x + y, whose generic fiber is just a finite set of a + b points;

so most of the considerations that arise in the case of weighted projective planes are irrelevant

here (in particular the symplectic structure on X plays no role whatsoever, which is consistent

with the fact that the category coh(Pθ(a, b)) does not depend on θ).

More precisely, the fiber of W above a point λ ∈ C is

W−1(λ) = {(x, λ− x) ∈ (C∗)2, xa(λ− x)b = 1},

which consists of a+ b distinct points, unless P (x) = xa(λ− x)b− 1 has a double root. Since

P ′(x) =
(a
x
− b

λ− x
)
(P (x) + 1),

a root of P is a double root if and only if x = a
a+b

λ; hence a double root exists if and only if

P ( a
a+b

λ) = 0, i.e.

(3.1) λa+b =
(a+ b)a+b

aabb
.

Let λ0 be the positive real root of this equation, and let λj = λ0ζ
−j where ζ = exp( 2πi

a+b
):

then the critical values of W are exactly λ0, . . . , λa+b−1. We choose Σ0 = W−1(0) as our

reference fiber, and consider the ordered system of arcs γ0, . . . , γa+b−1, where γj ⊂ C is a

straight line segment joining the origin to λj . With this understood, we have the following

result, which implies that HMS holds for CP1(a, b):

Theorem 3.4 Lagvc(W, {γi}) is a DG category, equivalent to Cθ for any θ ∈ M(2,C∗).

In order to prove Theorem 3.4, we study the vanishing cycles of the superpotential W and

their intersection properties. To start with, observe that W is equivariant with respect to the

diagonal action of the cyclic group Z/(a+ b). Therefore, the vanishing cycles Lj ⊂ Σ0 (which

are Lagrangian 0-spheres, i.e. pairs of points) form a single Z/(a+ b)-orbit, and Lj = ζ−j ·L0.
In order to determine L0, we study how the fiber W−1(λ) varies as λ increases along the

positive real axis (see Figure 1). For λ = 0, the fiber Σ0 consists of a + b points whose first
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coordinates are the roots of the equation xa+b = (−1)b (these form a Z/(a + b)-orbit, hence

the points of Σ0 can naturally be identified with the elements of Z/(a+ b) up to a translation).

As λ increases towards λ0, two complex conjugate points of the fiber converge towards each

other, and become real points for λ > λ0. By considering the situation for λ→ +∞, where the

solutions of xa(λ−x)b = 1 split into two groups, one consisting of a roots near the origin, and

the other consisting of b roots near λ, one easily checks that the vanishing cycle L0 consists of

the two points of Σ0 with first coordinate x = exp(± iπ b
a+b

).
Hence, for a suitable identification of the fiber Σ0 with Z/(a + b), the vanishing cycle

associated to the arc γ0 = [0, λ0] is L0 = {0, b}. It follows immediately that Lj = ζ−j · L0 =
{−j, b− j} for all j = 0, 1, . . . , a+ b− 1.

Given 0 ≤ i < j < a+ b, the vanishing cycles Li and Lj intersect if and only if the subsets

{−i, b − i} and {−j, b − j} of Z/(a + b) have non-empty intersection, i.e. if j = i + a or

j = i+ b. Therefore, we have:

Lemma 3.5 The direct sum
⊕

i<j CF
∗(Li, Lj) is a free module of total rank (a + b) over the

coefficient ring, generated by the intersection points

xi ∈ CF ∗(Li, Li+a) (0 ≤ i < b) and yi ∈ CF ∗(Li, Li+b) (0 ≤ i < a).

Because Σ0 is a discrete set, all pseudo-holomorphic curves in Σ0 must be constant maps.

However, each point of Σ0 occurs exactly once as an intersection between two vanishing cycles

(there are no triple intersections), which implies that the Floer differentials and products are

trivial. Therefore, we have:

Lemma 3.6 The differentials and productsmk, k ≥ 1 in the A∞-category Lagvc(W, {γi}) are

all identically zero, with the exception of the obvious ones m2(·, id) and m2(id, ·).
This of course greatly simplifies the argument, eliminating the need for many of the argu-

ments required in the case of higher-dimensional weighted projective spaces. At this point,

our only remaining task is to determine the Maslov indices of the various intersection points,

by choosing graded Lagrangian lifts of the vanishing cycles. A word of warning is in order

here: because we are actually dealing with graded Lagrangian submanifolds in a Calabi-Yau

0-fold, the argument is very specific (see §2 of [215] for a discussion of graded Lagrangian

submanifolds of 0-dimensional symplectic manifolds) and does not give a good intuition of the

higher-dimensional case.

Lemma 3.7 There exists a natural choice of gradings for which deg(xi) = deg(yi) = 1.

Proof. View the curve X = {xayb = 1} ⊂ (C∗)2 as a complex manifold. The holomorphic

volume form d log x ∧ d log y on (C∗)2 induces a (1, 0)-form Ω on X, characterized by the

property that it is the restriction toX of a 1-form (which we also call Ω) such that Ω∧d(xayb) =
d log x ∧ d log y, i.e., using the fact that xayb = 1 along X ,

Ω ∧
(a
x
dx+

b

y
dy
)
=
dx ∧ dy
xy

.
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Outside of the branch points of W , the 1-form Ω can be expressed as Θ dW , for some mero-

morphic function Θ with simple poles at the branch points. The above equation becomes

Θ( b
y
− a

x
) = 1

xy
, i.e. Θ = (bx−ay)−1 = ((a+ b)x−aW )−1. In particular, near Σ0 =W−1(0),

we have argΘ = − arg x.

The complex-valued function Θ is (up to scaling by a positive real factor) the natural holo-

morphic volume form induced by Ω on the 0-dimensional manifold Σ0 = W−1(0). Let

L0 = {p−, p+}, where the x-coordinate of p± is x± = exp(± iπb
a+b

). The phase of L0 is the

function φL0 : L0 → R/πZ defined by

φL0(p±) = argΘ(p±) = ∓
πb

a + b
.

Note that an orientation on L0 determines a lift of φL0 to a R/2πZ-valued function; in order

to define the Maslov index, we need to view L0 as a graded Lagrangian submanifold, i.e. to

choose a real lift φ̃L0 : L0 → R of the phase function. Although there is a priori a Z2-space

of such choices, one has to restrict oneself to only those lifts which are compatible with a

graded Lagrangian lift of the Lefschetz thimbleD0 (which reduces the space of choices to Z, as

expected since vanishing cycles are only defined up to shifts). If we orient D0 from p− towards

p+, then the phase of D0 (the function φD0 : D0 → R/2πZ defined by φD0(p) = arg Ω(v) for

any p ∈ D0 and v ∈ TpD0 − {0} compatible with the orientation) has the property that

φD0(p−) =
πb

a + b
and φD0(p+) =

πa

a + b
.

Moreover, it is easy to check that φD0(p) ∈ (0, π) for all p ∈ D0 (because Ω = 1
b
d log x,

and arg x is monotonically increasing along D0). Hence, there exists a graded Lagrangian lift

of D0 for which the phase function takes values in (0, π), which means that we can choose a

graded lift of L0 by setting

φ̃L0(p−) =
πb

a + b
and φ̃L0(p+) =

πa

a + b
.

Arguing similarly for the other vanishing cycles (or using the Z/(a+ b)-equivariance), we can

choose graded lifts of Lj = {pj,−, pj,+} (where arg xj,± = 1
a+b

(±πb− 2πj)) by setting

φ̃Lj
(pj,−) =

π(b+ 2j)

a + b
and φ̃Lj

(pj,+) =
π(a + 2j)

a+ b
.

Now, the degree of the morphism xj , corresponding to pj,+ = pj+a,− ∈ Lj ∩ Lj+a, is given by

the difference of phases:

deg xj =
1

π
(φ̃Lj+a

(pj+a,−)− φ̃Lj
(pj,+)) =

b+ 2(j + a)

a + b
− a + 2j

a+ b
= 1.
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Similarly for yj:

deg yj =
1

π
(φ̃Lj+b

(pj+b,+)− φ̃Lj
(pj,−)) =

a+ 2(j + b)

a + b
− b+ 2j

a+ b
= 1.

�

Theorem 3.4 now follows immediately from Lemmas 3.5–3.7; as in the case of weighted

projective planes, the only difference between the DG-categories Lagvc(W, {γi}) and Cθ is that

the objects of Cθ are numbered “backwards”, so the equivalence of categories takes the objects

L0, . . . , La+b−1 of Lagvc(W, {γi}) to the objects wa+b−1, . . . , w0 of Cθ.

4 Mirrors of weighted projective planes

4.1 The mirror Landau-Ginzburg model and its fiber Σ0 The mirror to the weighted

projective plane CP2(a, b, c) is the affine hypersurface X = {xaybzc = 1} ⊂ (C∗)3, equipped

with the superpotentialW = x+y+z, and a symplectic form ω that we leave unspecified for the

moment. During most of the argument, we will assume ω to be anti-invariant under complex

conjugation (which implies exactness) and invariant under the diagonal action of the cyclic

group Z/(a+ b+ c), but these assumptions will be weakened at the end. Of course, since X is

non-compact, we also need to choose ω in such a way as to ensure that the Lefschetz thimbles

and vanishing cycles considered below are well-defined. It is easy to check that, among many

other possibilities, a symplectic form such as

ω = i

3∑

i,j=1

aij
dzi
zi
∧ dz̄j
z̄j

(where (aij) is a positive definite Hermitian matrix, with real coefficients if we require complex

conjugation anti-invariance) generates a horizontal distribution for which parallel transport is

well-defined, because, with respect to the induced Kähler metric, X is complete and the gradi-

ent vector of W has norm bounded from below outside of a compact set.

Topologically, X is just a complex torus (C∗)2, at least if δ = gcd(a, b, c) = 1; otherwise

X is disconnected, and each of its δ components is a complex torus.

For each λ ∈ C, the fiber Σλ = W−1(λ) ⊂ X is an affine curve given by the equation

xayb(λ − x − y)c = 1; this curve is smooth unless λ is one of the a + b + c critical values

of W . We will view Σλ as a branched covering of C∗, by projecting to the x axis (this choice

is arbitrary, and we will occasionally use the symmetry between the variables x, y, z in the

argument). For a generic value of x ∈ C∗, the polynomial xayb(λ−x− y)c− 1 of degree b+ c
in the variable y admits b+ c distinct simple roots; therefore, the projection πx : Σλ → C∗ is a
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Σ0
✲

(b + c) : 1

πx ❜
C∗
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Figure 2: The projection πx : Σ0 → C∗ (of degree b+ c, with a+ b+ c branch points)

(b+ c)-fold covering. The branch points of πx are those values of x for which there is a double

root, i.e. a value of y such that P (y) = xayb(λ− x− y)c = 1 and P ′(y) = 0. Since

P ′(y)

P (y)
=
b

y
− c

λ− x− y ,

the condition P ′(y) = 0 implies that cy = b(λ− x− y), i.e. y = b
b+c

(λ− x). Substituting into

the equation of Σλ, we obtain the equation

(4.1) xa(λ− x)b+c = (b+ c)b+c

bb cc

for the branch points of πx. Since this is a polynomial equation of degree a + b + c, for a

generic value of λ there are a + b + c distinct branch points, all of which are simple (i.e.

isolated non-degenerate critical points of πx).

In the remainder of this section, we set λ = 0, and describe the curve Σ0 in detail, by

computing the monodromy of the (b + c)-fold branched covering πx : Σ0 → C∗ around the

origin and around its a + b+ c branch points.

Lemma 4.1 The fiber of πx : Σ0 → C∗ can be identified with Z/(b+ c) in such a way that the

monodromy of πx around the origin in C∗ is given by q 7→ q− a, and the monodromies around

the a + b + c branch points are given by the transpositions (j, j + b), 0 ≤ j < a + b + c (see

Figure 2).

To understand this statement, first observe that, when x = ǫeiθ is close to 0, the b+ c roots

of the equation

(4.2) xayb(−x− y)c = 1

lie close to those of the equation

(−1)cyb+c = ǫ−ae−iaθ.

Hence, we can choose an identification of the fiber of πx above a small real positive value x = ǫ
(or any other ǫeiθ fixed in advance) with the cyclic group Z/(b + c) in a manner compatible
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with the cyclic ordering of the points. Moreover, varying θ from 0 to 2π, we obtain that the

monodromy of πx around the origin is given by the translation q 7→ q− a in Z/(b+ c) (i.e., the

permutation sending the root yq of xayb(−x− y)c = 1 to yq−a).
Next, consider a critical value of πx, i.e. a root x0 of (4.1) for λ = 0, and the radial half-line

ℓ through x0, i.e. the set of all x ∈ C∗ with argument equal to θ0 = arg x0. Moving x along ℓ
starting from a point x∗ = ǫeiθ0 close to the origin, two of the b+ c roots of (4.2) become equal

to each other as x approaches x0; this determines the monodromy of πx around x0, namely a

transposition in the symmetric group Sb+c acting on a fiber of πx. We claim that, identifying

the fiber π−1
x (x∗) with Z/(b + c) as above, this transposition exchanges two elements q0 and

q0 + b. This can be seen as follows.

Assume for simplicity that b + c is even and that x0 is the positive real root of (4.1) for

λ = 0; the general case is handled similarly, inserting factors eiθ0 where needed. For x → 0,

as explained above, the b+ c roots of (4.2) are close to those of

yb+c = (−1)cx−a,

i.e. b+c evenly spaced points on a circle (Figure 3, left). As x increases, two complex conjugate

roots y, ȳ approach the real axis and eventually become equal for x = x0 (Figure 3, center), so

that there are two additional real roots for x > x0. As x→ +∞, the roots of (4.2) are divided

into two groups, b roots close to the origin, approximated by those of

yb = (−1)cx−(a+c),

and c roots close to −x, corresponding to values of z = −x − y close to the origin and

approximated by the roots of

zc = (−1)bx−(a+b)

(Figure 3, right). Hence, identifying the fiber of πx for x small with Z/(b + c) in a manner

compatible with the cyclic ordering, the two points which merge for x = x0 (the vanishing

cycle of πx at x0) differ from each other by exactly b (this can also be checked by numerical

experimentation).

The above argument gives us that the monodromy around one of the branch points x0 of πx,

e.g. the branch point located on the positive real axis or immediately above it, is a transposition

x→ 0

✲

✻

q
q

q

q

q

q
q
q

Rey
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✲

✻

qq q
q qq qq

x→ +∞

✲

✻

qq qq q q qq

Figure 3: The roots of xayb(−x− y)c = 1 for x ∈ R+ ((a, b, c) = (1, 3, 5))
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(q0, q0 + b); changing the identification between the reference fiber of πx above x∗ and the

cyclic group Z/(b+ c) if necessary, we can assume that q0 = 0.

We now find the monodromy around the other branch points of πx. For this purpose,

observe that the group G = Z/(a + b + c) acts on X by (x, y, z) 7→ (xζj, yζj, zζj), where

ζ = exp( 2πi
a+b+c

), and that this action preserves Σ0, mapping the fiber of πx above x to the

fiber above xζj . Hence, denoting by y′, y′′ the two points of the fiber above x∗ = ǫeiθ0 which

converge to each other as x moves radially outwards to x0 (those labelled 0 and b), we know

that the two points of the fiber above x∗ζ
j which converge to each other as x moves radially

outwards to x0ζ
j are y′ζj and y′′ζj . We now transport these two values of y from the fiber

π−1
x (x∗ζ

j) to π−1
x (x∗) along the arc x(t) = x∗e

2πit for t ∈ [0, j
a+b+c

]. Approximating the

b+ c points of π−1
x (ǫeiθ) by the roots of (−1)cyb+c = ǫ−ae−iaθ, the parallel transport along the

considered arc induces a multiplication by exp(2πi a
b+c

j
a+b+c

). Observing that

ζj exp(2πi j a
(b+c)(a+b+c)

) = exp(2πi j
b+c

),

we obtain that the two points of π−1
x (x∗) which become equal as x is moved first counterclock-

wise around the origin and then radially outwards to x0ζ
j are those which correspond to the

elements j and b+j of Z/(b+c). Hence, the monodromy of πx around x0ζ
j (joining x∗ to x0ζ

j

in the prescribed way) is the transposition (j, b+ j), which completes the proof of Lemma 4.1.

By the way, note that the comparison between the values j = 0 and j = a+ b+ c is consistent

with our determination of the monodromy around x = 0.

4.2 The vanishing cycles Now that the fiber Σ0 is well-understood, we compute the van-

ishing cycles of the Lefschetz fibration W : X → C by studying the degeneration of Σλ as λ
approaches a critical value of W .

The curve Σλ becomes singular when two branch points of the projection πx : Σλ → C∗

merge with each other, giving rise to a nodal point. This occurs whenever (4.1) admits a

double root. Considering the logarithmic derivative of the left-hand side, we obtain the relation
a
x
− b+c

λ−x
= 0, which leads to x = a

a+b+c
λ for a double root of (4.1), and substituting we obtain

the equation

(4.3) λa+b+c =
(a+ b+ c)a+b+c

aa bb cc

for the a+ b+ c critical values of W (this equation can also be obtained directly).

For symmetry and for simplicity, we will choose the smooth curve Σ0 = W−1(0) as our

reference fiber of the Lefschetz fibration W : X → C, and we will choose straight line

segments for the arcs γj joining the origin to the various critical values λj = λ0ζ
−j of W

(0 ≤ j < a + b + c), where λ0 is the real positive root of (4.3) and ζ = exp( 2πi
a+b+c

). Hence,

in order to construct the category of Lagrangian vanishing cycles of W , we need to understand

how the smooth fiber Σ0 above the reference point 0 degenerates to the nodal curve Σλj when

λ moves radially from 0 to λj .
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We first consider the motion of the branch points of πx as λ increases along the positive

real axis from 0 to the critical value λ0. For each value of λ, the a + b + c branch points are

given by the roots of (4.1). When λ = 0, they all lie on a circle centered at the origin, as

represented in Figure 2. As λ → λ0, two complex conjugate branch points converge to each

other, so that for λ = λ0 the equation (4.1) has a double root x = a
a+b+c

λ0 on the positive real

axis (Figure 4, center). Finally, for λ → +∞, the roots of (4.1) split into two groups, one of

a points close to the origin that can be approximated by the roots of xa = Kb,cλ
−(b+c) (where

Kb,c = b−bc−c(b + c)b+c), and one of b + c points close to λ for which ξ = λ − x can be

approximated by the roots of ξb+c = Kb,cλ
−a (Figure 4, right). Hence, it can be checked that

the two branch points of πx : Σ0 → C∗ which merge for λ → λ0 are those with argument

arg x = ± b+c
a+b+c

π, and that the projection to C∗ of the corresponding vanishing cycle is an arc

δ0 which is symmetric with respect to the real axis, intersects it only once in its positive part,

and remains everywhere inside the circle containing the critical values of πx (Figure 4, left).

More precisely, the above discussion gives us a topological description of the vanishing

cycle L0 ⊂ Σ0, up to homotopy. Namely, two of the b + c lifts to Σ0 of the arc δ0 ⊂ C∗ have

common end points (the ramification points of πx lying above the end points of δ0), and their

union forms a closed loop L′
0 in Σ0. This loop is a topological vanishing cycle, i.e. it shrinks to

a point in Σλ when λ→ λ0, but a priori it is only homotopic to the symplectic vanishing cycle

L0 (obtained by parallel transport using the symplectic connection).

The actual position of the vanishing cycle L0 inside Σ0 depends on the choice of the sym-

plectic form ω on X; for a given ω it can be calculated numerically (and it can be checked

that for “reasonable” choices of ω, L0 and L′
0 intersect all other vanishing cycles in the same

manner). However, this calculation is unnecessary for our purposes. Indeed, if we endow X
with a symplectic form that is anti-invariant by complex conjugation, then the vanishing cy-

cle L0 is invariant by complex conjugation, i.e. complex conjugation maps L0 to itself in an

orientation-preserving manner, and the same is true of L′
0. Since L0 and L′

0 are homotopic to

each other in Σ0, their (oriented) invariance under complex conjugation is sufficient to imply

that they are Hamiltonian isotopic, which means that for the purpose of determining categories

of vanishing cycles, L0 and L′
0 are interchangeable.

If we deform ω to a non-exact form, complex conjugation invariance is lost. The inter-

section patterns between vanishing cycles remain the same for small deformations (and can

be forced to remain the same even for large deformations by performing suitable Hamiltonian

λ = 0

✲

✻

q
q
q

q

q
q
q

Rex

Imx

δ0

❛
λ = λ0

✲

✻

q q
q qq qq

λ→ +∞

✲

✻

q q
q q q qq

Figure 4: The branch points of πx for λ ∈ R+ ((a, b, c) = (4, 2, 1))
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Figure 5: The vanishing cycles Lj ⊂ Σ0

isotopies), but the calculation of the coefficient assigned to a given pseudo-holomorphic curve

involves its symplectic area and hence requires one to work with the actual vanishing cycles

rather than their topological approximations. Hence, we may obtain non-trivial deformations

of the category of vanishing cycles; however, these deformations only amount to modifica-

tions of the structure constants of the products mk, rather than changes in the Floer complexes

themselves or in the types of pseudo-holomorphic curves that may arise.

In any case, except at the very end of the argument, we will always be considering symplec-

tic forms that are anti-invariant under complex conjugation, in which case the approximation

of L0 by L′
0 is legitimate.

We now consider the other vanishing cycles Lj of the Lefschetz fibrationW . Recall that the

groupG = Z/(a+b+c) acts onX , in a manner that preserves Σ0; moreover,W : X → C isG-

equivariant. If we assume the symplectic form ω to be G-invariant, the symplectic connection

and the associated parallel transport will also beG-equivariant. Therefore, since the arc γj ⊂ C
joining the origin to λj = λ0ζ

−j is the image of γ0 by the action of ζ−j (where ζ = exp( 2πi
a+b+c

)),
the same is true of the corresponding Lefschetz thimbles, and hence of the vanishing cycles in

Σ0. This gives us a description of Lj for all values of j. As in the case of L0, we will consider,

rather than Lj itself, a loop L′
j ⊂ Σ0 which is homotopic to Lj and can be obtained as a double

lift via πx : Σ0 → C∗ of an embedded arc δj ⊂ C∗. The loop L′
j is defined to be the image of

L′
0 by the action of ζ ′j , which means that δj is the image of δ0 by a rotation of angle− 2π j

a+b+c
. If,

in addition to its G-invariance, ω is assumed to be anti-invariant under complex conjugation,

then L′
j is Hamiltonian isotopic to Lj , so we can work with L′

j instead of Lj .
Hence, to summarize the above discussion, we have the following lemma:

Lemma 4.2 The vanishing cycles Lj ⊂ Σ0 (0 ≤ j < a + b + c) are homotopic (and, if

ω is invariant under the action of Z/(a + b + c) and anti-invariant under complex conjuga-

tion, Hamiltonian isotopic) to closed loops L′
j ⊂ Σ0 which project by πx to arcs δj ⊂ C∗ as

represented in Figure 5 (the end points of δj are the branch points of πx for which arg x =
−2π j

a+b+c
± π b+c

a+b+c
).

In the following sections, we assume that ω is Z/(a + b + c)-invariant and anti-invariant

under complex conjugation, and we implicitly identify Lj with L′
j .
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4.3 The Floer complexes The objects of the category Lagvc(W, {γj}) are described by

Lemma 4.2; we now determine its morphisms by studying the intersections between the closed

loops Lj ⊂ Σ0. This simply involves looking carefully at Figures 2 and 5 in order to determine,

among the intersections between δi and δj , which ones lift to intersections between Li and Lj .

Lemma 4.3 The direct sum
⊕

i<j CF
∗(Li, Lj) is a free module of total rank 3(a+ b+ c) over

the coefficient ring, generated by the following intersection points:

xi ∈ CF ∗(Li, Li+a) (0 ≤ i < b+ c), x̄i ∈ CF ∗(Li, Li+b+c) (0 ≤ i < a),
yi ∈ CF ∗(Li, Li+b) (0 ≤ i < a + c), ȳi ∈ CF ∗(Li, Li+a+c) (0 ≤ i < b),
zi ∈ CF ∗(Li, Li+c) (0 ≤ i < a + b), z̄i ∈ CF ∗(Li, Li+a+b) (0 ≤ i < c).

Moreover, the Floer differential is trivial, i.e. m1 = 0.

To determine CF ∗(Li, Lj) for given 0 ≤ i < j < a+ b+ c, one must look for intersection

points between the projected arcs δi and δj . The arcs δi and δj intersect only if j − i ≤ b + c
or j − i ≥ a; in all other cases, δi ∩ δj = ∅ and hence CF ∗(Li, Lj) = 0. More precisely,

δi ∩ δj contains one point if j − i ≤ b + c, and one point if j − i ≥ a; if both conditions hold

simultaneously, then |δi ∩ δj | = 2 (see Lemma 4.2 and Figure 5). Moreover, if equality holds

(j − i = b + c or j − i = a), then the corresponding intersection occurs at an end point of

δi and δj , i.e. a branch point of πx. In this case, the intersection of δi and δj always lifts to a

transverse intersection of Li and Lj , at the corresponding critical point of πx; this accounts for

the generators xi and x̄i mentioned in the statement of Lemma 4.3.

When j− i < b+ c or j− i > a, we need to consider the structure of the branched covering

πx in order to determine whether intersections between δi and δj lift to intersections between

Li and Lj . Call pi the branch point of πx with argument arg x = −2π j
a+b+c

− π b+c
a+b+c

, which

is an end point of δi, and define similarly pj . When j − i < b+ c, consider the corresponding

intersection point q ∈ δi ∩ δj , and use the arcs joining pj to q in δj and q to pi in δi to define

an arc η ⊂ C∗ joining pj to pi, with a rotation angle of 2π j−i
a+b+c

around the origin. It follows

from Lemma 4.1 (cf. also Figure 2) that, over a neighborhood of η, we can consistently label

the sheets of the covering πx by elements of Z/(b + c), in such a way that the monodromies

around the branch points pi and pj are transpositions of the form (ki, ki + b) and (kj , kj + b),
with ki−kj = j− i. Hence, near the point q, the vanishing cycle Li lies in the two sheets of πx
labelled ki and ki + b, and similarly for Lj; the intersections of Li with Lj above q correspond

to the elements of {ki, ki+b}∩{kj, kj+b}. Since 0 < ki−kj = j− i < b+c, this intersection

is empty unless ki = kj + bmod b + c, i.e. j − i = b, which corresponds to the generator yi
of the Floer complex, or kj = ki + bmod b + c, i.e. j − i = c, which corresponds to the

generator zi. When j − i > a, one proceeds similarly, introducing an arc in C∗ joining pj to pi
through the relevant intersection point q′ of δi with δj , with a rotation angle of 2π( j−i

a+b+c
− 1)

around the origin. The sheets of πx containing Li and Lj above the intersection point q′ are

now labelled k′i, k
′
i + b and k′j, k

′
j + b, with k′i and k′j two constants in Z/(b + c) such that

k′i− k′j = j− i− (a+ b+ c) = j− i− amod b+ c. Therefore, the two cases where Li and Lj



MIRROR SYMMETRY FOR WEIGHTED PROJECTIVE PLANES 43

intersect above q′ are when i + j = a + b, which corresponds to the generator z′i of the Floer

complex, and when i+ j = a+ c, which corresponds to y′i.
At this point it is worth observing that, for generic values of (a, b, c), each Floer complex

CF ∗(Li, Lj) has total rank at most one, so that the Floer differential is necessarily zero. How-

ever, for specific values of (a, b, c) we may have numerical coincidences leading to more than

one intersection between two vanishing cycles; the most striking example is that of the usual

projective plane, (a, b, c) = (1, 1, 1), for which |Li ∩ Lj | = 3 ∀i < j (cf. Figure 5). Nonethe-

less, even in these cases, the Floer differential vanishes, because Li and Lj always realize the

minimal geometric intersection number between closed loops in their homotopy classes, as can

be checked by enumerating the various posible cases. This minimality of intersection implies

that Σ0 contains no non-constant immersed disc with boundary in Li ∪ Lj , and hence that the

Floer differential vanishes.

Another way to prove the vanishing of the Floer differential is to endow Σ0 and C∗ with

almost-complex structures which make the projection πx holomorphic, and to observe that the

projection to C∗ of a pseudo-holomorphic disc in Σ0 with boundary in Li ∪ Lj is a pseudo-

holomorphic disc in C∗ with boundary in δi∪δj . If |δi∩δj | = 1, the maximum principle implies

that the projected pseudo-holomorphic disc is a constant map, and hence that the disc in Σ0 is

contained in a fiber of πx, which implies that it is also constant. If |δi ∩ δj| = 2, one reaches

the same conclusion by observing the respective positions of the two intersection points in C∗

(a non-constant disc would have to pass through the origin). As before, one concludes that the

absence of non-trivial pseudo-holomorphic discs makes the Floer differential identically zero,

which completes the proof of Lemma 4.3.

4.4 The product structures The aim of this section is to prove the following results con-

cerning the category Lagvc(W, {γj}):

Lemma 4.4 The higher products mk (k ≥ 3) are all identically zero.

Lemma 4.5 There exist non-zero constants αuv,i such that

m2(xi, yi+a) = αxy,i z̄i, m2(xi, zi+a) = αxz,i ȳi,
m2(yi, zi+b) = αyz,i x̄i, m2(yi, xi+b) = αyx,i z̄i,
m2(zi, xi+c) = αzx,i ȳi, m2(zi, yi+c) = αzy,i x̄i.

All other compositions (except those involving identity morphisms) vanish.

These results follow from a careful observation of the boundary structure of a pseudo-

holomorphic disc in Σ0 with boundary in
⋃
Lj . Endow Σ0 with any almost-complex structure,

and let u : D2 → Σ0 be a pseudo-holomorphic map from the disc with k + 1 ≥ 3 marked

points on its boundary to Σ0, mapping each segment on the boundary to an arc in one of the

Lagrangian submanifolds Lj . Each “corner” of the image of u corresponds to an intersection

point between two of the vanishing cycles, and as such it corresponds to a generator of the

Floer complex.
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Figure 6: The intersections of Li with the other vanishing cycles

According to Lemma 4.3, we can classify the generators of the Floer complex into three

families, those of type x (corresponding to generators xi, x̄i), those of type y (generators yi, ȳi),
and those of type z (generators zi, z̄i). Moreover, observe that the total intersection of each Li
with all other vanishing cycles consists of 6 points, two of each type: depending on the value

of i, Li is either the source of the morphism xi or the target of x̄i−b−c, and it is either the source

of x̄i or the target of xi−a; similarly for types y and z.

The manner in which these points are arranged along the loop Li can be seen easily by

looking at Figure 5 and recalling the discussion in the previous section. Recall that Li passes

through two branch points of πx, which split it into two halves (lifts of δi lying in different

sheets of πx). One of these branch points corresponds to xi or x̄i−b−c, while the other corre-

sponds to x̄i or xi−a. In between them, we have, on one half of Li, one intersection of type

y (either yi or ȳi−a−c) and one of type z (either z̄i or zi−c); on the other half of Li, we have

similarly one intersection of type y (either ȳi or yi−b) and one of type z (either zi or z̄i−a−b).
This structure is summarized in Figure 6.

An important property is that, for every one of the six portions of Li delimited by these

intersection points, one of the two immediately adjacent components of Σ0 −
⋃
Lj (on either

side of Li) is unbounded (it is denoted by 0 or∞ on Figure 6 depending on whether its image

under πx contains the origin or the point at infinity in C∗). These unbounded components form

an alternating pattern around Li, changing side (left or right) every time one of the intersection

points is crossed.

On the other hand, the image of the pseudo-holomorphic map u cannot intersect any of the

unbounded components of Σ0−
⋃
Lj , because otherwise the maximum principle would imply

that the image of u is unbounded. This imposes very strong constraints on the behavior of u
along the boundary of the disc. Namely, consider two consecutive marked points (“corners”),

such that the portion of boundary (“edge”) in between them is mapped to an arc η (oriented

according to the boundary orientation of the unit disc) contained in the vanishing cycle Li.
Then, η is exactly one of the six portions of Li delimited by its intersections with the other

vanishing cycles, and its orientation is determined by the requirement that the component of

Σ0−
⋃
Lj immediately to the left of η be bounded (see Figure 6). Moreover, the local behavior

of u at an end point p of η is “convex”, i.e. u locally maps into only one of the four regions

delimited locally by the two vanishing cycles meeting at p. In other words, the boundary

of Im(u) is an oriented piecewise smooth curve θ ⊂ ⋃Lj which always turns left at every

intersection point it encounters. This boundary behavior has several important consequences.
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Lemma 4.6 Among any three consecutive corners of the image of u, there is always exactly

one of each type x, y, z.

Proof. Observe that two consecutive corners of the image of u are necessarily of different types

(because two adjacent intersections of Li with other vanishing cycles are always of different

types). Let p, q, r be three consecutive corners of the image of u, such that the edge from

p to q lies in a vanishing cycle Li and the edge from q to r lies in a vanishing cycle Lj .
The knowledge of the types of the points p and q completely determines them, which in turn

determines the type of r. For example, if p is of type y and q is of type z, then on the diagram

of Figure 6 the edge joining them is the lowermost portion of Li; in particular the edge from p
to q is adjacent to an unbounded component of Σ0 whose image under πx contains the origin.

Considering the intersection diagram for Lj (similar to Figure 6), the point q can be located

by comparison with the diagram for Li (in our example, q is the point to the upper left of the

diagram). Moreover, the direction from which θ reaches q can be determined by identifying

the unbounded component to which it is adjacent (in our example, the component whose image

under πx contains the origin, so θ reaches q from the innermost side of the diagram); since θ
turns left at q, this determines the edge from q to r and hence the type of r (in our example, r is

the left-most point on the intersection diagram, and hence of type x). It can be checked easily

that in all six cases, the type of r is different from those of p and q. �

Next, recall that by definition the successive edges of the image of u lie inside vanishing

cycles Li0 , Li1 , . . . , Lik with i0 < i1 < · · · < ik (see Definition 3.1), and observe that following

θ at a corner of u leads from a vanishing cycle Li to another vanishing cycle Lj , with i < j if

and only if the intersection point is xi, yi or zi, and i > j if and only if the intersection point

is x̄j , ȳj or z̄j (see Figure 6). Therefore, all corners of u but one correspond to generators of

the Floer complexes among {xi, yi, zi}, while the last corner (between the edge on Lik and the

edge on Li0) correspond to a generator among {x̄i, ȳi, z̄i}.
With this observation, Lemma 4.4 follows immediately from Lemma 4.6. Indeed, assume

that there exists a pseudo-holomorphic map u from a disc with k + 1 marked points to Σ0,

with edges lying in vanishing cycles Li0 , Li1 , . . . , Lik (0 ≤ i0 < i1 < · · · < ik < a + b + c),
contributing to the product mk, for some k ≥ 3. Among the first three corners of u, one

is among the generators xi, one is among the yi, and one is among the zi. Therefore, i3 =
i0 + a + b + c, which contradicts the inequality i3 < a + b + c. Hence the moduli spaces of

pseudo-holomorphic curves involved in the definition of mk are all empty for k ≥ 3, which

implies that mk = 0.

Lemma 4.5 also follows immediately at this point: in the case of a pseudo-holomorphic

map u from a disc with 3 marked points, the three corners p, q, r are all of different types (by

Lemma 4.6), and the first two corners p, q correspond to generators among {xi, yi, zi} while

the last one r corresponds to a generator among {x̄i, ȳi, z̄i}. Therefore, p and q completely

determine r, and moreover it is easy to check from the above discussion and from Figures 5

and 6 that the image of the pseudo-holomorphic map u is also uniquely determined by the pair

(p, q). For example, if p is of type x and q is of type y, then necessarily there exists i < c such
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that p = xi, q = yi+a, and r = z̄i; moreover, it is easy to check (see Lemma 4.2 and Figure

5) that the moduli space determining the coefficient of z̄i in m2(xi, yi+a) consists of a single

curve, regular, whose image Txy,i is the triangular region of Σ0 delimited by arcs joining p, q, r
in the vanishing cycles Li, Li+a, Li+a+b. Therefore, we have m2(xi, yi+a) = αxy,i z̄i, where

αxy,i = ± exp(−Area(Txy,i)). The situation is the same in all other cases.

Remark. The a + b + c triangles Txy,i (i < c), Tyz,i (i < a), Tzx,i (i < b) are all related

to each other via the action of the cyclic group Z/(a + b + c). Indeed, the diagonal multipli-

cation by a power of ζ = exp( 2πi
a+b+c

) induces a permutation of the vanishing cycles and of the

intersection points, preserving the cyclic ordering of the Li and the types of their intersection

points, and hence mapping every triangle in Σ0 with boundary in
⋃
Li to another such triangle.

A similar description holds for the triangles Tyx,i, Tzy,i, Txz,i.

4.5 Maslov index and grading The aim of this section is to define a Z-grading on the

Floer complexes CF ∗(Li, Lj), and to compute the degree of the various generators. Using

the triviality of the canonical bundles of Σ0 and X , it is easy to prove (by considering the

Lefschetz thimbles) that the Maslov class of Li is trivial, and hence that it is possible to lift

each vanishing cycle to a graded Lagrangian submanifold of Σ0, that we denote again by Li.
This lets us associate a degree to each generator of the Floer complex.

Lemma 4.7 There exists a natural choice of gradings, for which deg(xi) = deg(yi) = deg(zi) =
1 and deg(x̄i) = deg(ȳi) = deg(z̄i) = 2.

Assume for simplicity that the symplectic form ω is compatible with the standard complex

structure of Σ0 inherited from that of (C∗)3, which allows us to define explicitly a holomorphic

volume form Ω on Σ0 (i.e., a non-vanishing holomorphic 1-form). Then, given an oriented

Lagrangian submanifold L ⊂ Σ0, the phase of L is the function φL : L→ R/2πZ whose value

at every point is the argument of the (non-zero) complex number obtained by evaluating Ω on

an oriented volume element in L (in the 1-dimensional case, φL(x) = argΩ(v) for v a tangent

vector to L at x defining the orientation of L). The Maslov class is the 1-cocycle representing

the obstruction to lift φL to a real-valued function; if it vanishes, then L can be lifted to a graded

Lagrangian submanifold, i.e. we can choose a real-valued lift of the phase, φ̃L : L→ R. In the

1-dimensional case, the relationship between Maslov index and phase is very simple: given a

transverse intersection point p between two graded Lagrangians L, L′ ⊂ Σ0, the Maslov index

of p ∈ CF ∗(L, L′) is equal to the smallest integer greater than 1
π
(φL′(p)− φL(p)).

The holomorphic volume form Ω on Σ0 can be defined from the standard holomorphic

volume form Ω0 = d log x∧ d log y ∧ d log z on (C∗)3 by taking residues first along the hyper-

surface X of equation xaybzc = 1 and then along the level set W = 0. We can characterize

Ω as follows: Ω is the restriction to Σ0 of a 1-form (that we denote again by Ω) such that

Ω ∧ dW ∧ d(xaybzc) = Ω0, i.e. (using the fact that xaybzc = 1 along X)

Ω ∧ (dx+ dy + dz) ∧ (
a

x
dx+

b

y
dy +

c

z
dz) =

dx ∧ dy ∧ dz
xyz

.
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(In fact the 1-form Ω determined in this way may differ from the “usual” one by a real positive

factor, irrelevant for our purposes). At this point it is easy to see why the Maslov class of Li
is trivial: indeed, Ω ∧ dW extends to a non-vanishing (2, 0)-form on X , whose phase over the

Lefschetz thimble Di admits a real lift; because W maps Di to an embedded arc, the phase of

Ω ∧ dW over the boundary of Di and the phase of Ω over Li differ by a constant term, so that

the latter also admits a real lift.

At every point of Σ0 except for the branch points of πx, the 1-form Ω can be expressed as

Θ dx, for some meromorphic function Θ over Σ0 (with simple poles at the branch points of

πx). The above equation becomes: Θ( c
z
− b

y
) = 1

xyz
, which determines Θ. At this point, the

most direct method of determination of the phases of the vanishing cycles Li at their intersec-

tion points (and hence of the corresponding Maslov indices) involves computer calculations;

however we will attempt to give a sketch of a geometric argument.

If we restrict ourselves to the domain where x is very small, then we have y ≃ −z, so that

Θ ≃ 1
(b+c)xy

. Therefore, argΘ ≃ − arg x− arg y in this region of Σ0. Hence, the calculations

are simplified if we can deform the vanishing cycles Li in such a way that the intersection

points of a given type (y or z) occur close to the origin in C∗. Of course this process preserves

gradings and Maslov indices only if the intersection pattern between the relevant vanishing

cycles is not affected by the deformation. We consider a deformation where Li is replaced

by a loop L̃i ⊂ Σ0, obtained as a double lift of a piecewise smooth arc δ̃i ⊂ C∗ joining two

branch points of πx (a deformation of δi with fixed end points). The arc δ̃0 consists of three line

segments, two joining the end points p, p̄ ∈ crit(πx) to two complex conjugate points q, q̄ very

close to the origin, and such that 0 < Re q ≪ Im q ≪ 1. The other arcs δ̃i are obtained from

δ̃0 by the action of Z/(a+ b+ c) (see Figure 7).

Assuming that b < a + c, this deformation can be carried out for intersections of type y
without affecting the intersection pattern between Li and Li+b or Li+a+c, and in such a way

that the intersection occurs in the central portion of δ̃i (see Figure 7). The same is true for

intersections of type z when c < a + b. If we choose a ≥ b ≥ c then these two assumptions

hold, so we can use this method to determine the degrees of yi, zi, ȳi, z̄i.
We start by considering the portion of L̃0 lying above the central segment in δ̃0 (joining

q to q̄). Recall that, for x small, the b + c sheets of the covering πx (i.e. the b + c roots of

xayb(−x−y)c = 1) can be approximated by the roots of yb+c = (−1)cx−a. Hence, the possible

values for the argument of y are arg y ≃ − a
b+c

arg x+ π c
b+c

mod 2π
b+c

. It follows from Lemma

4.1 that the two sheets of πx containing L̃0 are those where arg y ≃ − a
b+c

arg x + ǫπ c
b+c

, for

q
q
q
❅
❅

�
�

✘✘✘◗◗

❇
❇❇

δ̃0

δ̃1

❜

Figure 7: The deformed cycles L̃j ((a, b, c) = (1, 1, 1))
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ǫ = ±1. Hence, we have arg Θ ≃ a−b−c
b+c

arg x − ǫπ c
b+c

. We choose to orient L̃0 in such

a way that its projection goes counterclockwise around the origin in the sheet corresponding

to ǫ = 1, and clockwise in the sheet corresponding to ǫ = −1. With this understood, since

the projection of oriented tangent vector to L̃0 is positively proportional to ǫi, we obtain the

following formula for the phase of the central portion of L̃0, modulo 2π:

(4.4) φ(L̃0) ≃
a− b− c
b+ c

arg x+ ǫ
(π
2
− π c

b+ c

)
.

We choose a lift of L̃0 (and hence also L0 via the isotopy between them) as a graded Lagrangian

by setting the (real-valued) phase of L̃0 to be given by (4.4), choosing the determination of

arg x with the smallest absolute value; checking that the choices made in the two portions of

L̃0 corresponding to ǫ = ±1 are consistent with each other is a tedious task, best left to a

computer program.

The phase of L̃j = ζ−j · L̃0 is easily deduced from the above calculations for L̃0. Indeed,

the above formula for Θ implies that the value of argΘ at the point ζ−j · p differs from that

at the point p by 4π j
a+b+c

. On the other hand, the argument of the x component of the tangent

vector to L̃j at ζ−j ·p differs from that of the tangent vector to L̃0 at p by−2π j
a+b+c

. Therefore,

(4.4) implies that

φ(L̃j) ≃
a− b− c
b+ c

(
arg x+

2πj

a+ b+ c

)
+ ǫ
(π
2
− π c

b+ c

)
+

2πj

a+ b+ c
,

or equivalently

(4.5) φ(L̃j) ≃
a− b− c
b+ c

arg x+ ǫ
(π
2
− π c

b+ c

)
+

2πj a

(a + b+ c)(b+ c)
.

This formula can also be obtained directly by observing that the two sheets of πx containing

L̃j are those where arg y ≃ − a
b+c

arg x− 2π j
b+c

+ ǫπ c
b+c

, for ǫ = ±1, by Lemmas 4.1 and 4.2.

As in the case of L̃0, we choose a lift of L̃j whose (real-valued) phase is given by (4.5), using

the determination of arg x closest to −2π j
a+b+c

.

We are now in a position to compare the phases of two vanishing cycles at one of their

intersection points. Consider an intersection point between L̃i and L̃i+b, corresponding to the

intersection yi between Li and Li+b. Comparing the values of arg y on both vanishing cycles,

it is easy to see that the intersection occurs in the ǫ = 1 part of Li and in the ǫ = −1 part of

Li+b. Therefore, (4.5) yields that, at the intersection point,

φ(L̃i+b)− φ(L̃i) ≃ −2
(π
2
− π c

b+ c

)
+

2π b a

(a+ b+ c)(b+ c)
= π − 2π b

a+ b+ c
,

which is between 0 and π since we have assumed that b < a+c. Therefore, we have deg yi = 1.

Similarly, the intersection between L̃i and L̃i+c corresponding to zi occurs in the ǫ = −1 part

of L̃i and the ǫ = 1 part of L̃i+c, so that (4.5) yields

φ(L̃i+c)− φ(L̃i) ≃ 2
(π
2
− π c

b+ c

)
+

2π c a

(a+ b+ c)(b+ c)
= π − 2π c

a + b+ c
,
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which is also between 0 and π since c < a + b. Therefore, deg zi = 1. In the case of ȳi,
things are similar, but with one new subtlety: in accordance with the above prescriptions, the

determinations of arg x at the intersection point to be used for L̃i and L̃i+a+c differ by 2π.

Therefore, from (4.5) we now get (taking ǫ = −1 for L̃i and +1 for L̃i+a+c)

φ(L̃i+a+c)−φ(L̃i) ≃ −2π
a− b− c
b+ c

+2
(π
2
− π c

b+ c

)
+

2π (a+ c) a

(a+ b+ c)(b+ c)
= π+

2π b

a+ b+ c
,

which is between π and 2π; therefore, deg ȳi = 2. Similarly, for z̄i one finds that

φ(L̃i+a+b)−φ(L̃i) ≃ −2π
a− b− c
b+ c

− 2
(π
2
− π c

b+ c

)
+

2π (a + b) a

(a + b+ c)(b+ c)
= π+

2π c

a+ b+ c
,

which is also between π and 2π, so that deg z̄i = 2.

Finally, the degrees of xi and x̄i can be deduced from those of the intersections of types y
and z by considering e.g. the triangles Txy,i, which gives that deg xi + deg yi+a = deg z̄i, and

hence deg xi = 1, and Tyz,i, which gives that deg yi+deg zi+b = deg x̄i, and hence deg x̄i = 2.

This completes the proof of Lemma 4.7.

4.6 The exterior algebra structure

The aim of this section is to determine the coefficients appearing in Lemma 4.5, by studying

the orientations of the moduli spaces of pseudo-holomorphic curves and the symplectic areas

of their images (Txy,i, . . . ).

Lemma 4.8 If the symplectic form ω is anti-invariant under complex conjugation and in-

variant under the action of Z/(a + b + c), then there exists a constant α ∈ C∗ such that

αxy,i = αyz,i = αzx,i = α and αyx,i = αzy,i = αxz,i = −α for all i. Therefore, m2(xi, yi+a) =
−m2(yi, xi+b), m2(yi, zi+b) = −m2(zi, yi+c), and m2(zi, xi+c) = −m2(xi, zi+a).

The coefficients αxy,i, . . . are determined up to sign by the symplectic areas of the triangular

regions Txy,i, . . . inside Σ0. To simplify notations, define

Ti =





Txy,i if 0 ≤ i < c,

Tzx,i−c if c ≤ i < b+ c,

Tyz,i−b−c if b+ c ≤ i < a+ b+ c,

and T ′
i =





Txz,i if 0 ≤ i < b,

Tyx,i−b if b ≤ i < b+ c,

Tzy,i−b−c if b+ c ≤ i < a+ b+ c,

so that Ti and T ′
i are the two triangles having either xi or x̄i−b−c as one of their vertices. We

similarly define αi and α′
i to be the coefficients associated to Ti and T ′

i in the formula giving

m2, namely αi = ± exp(−Area(Ti)) and α′
i = ± exp(−Area(T ′

i )). Then, as observed at the

end of §4.4, the invariance properties of ω imply that the a+b+c triangles Ti form a single orbit

under the action of Z/(a + b + c), with ζ−q · Ti = Ti+q, and similarly for the other triangles

T ′
i , with ζ−q · T ′

i = T ′
i+q. Moreover, complex conjugation exchanges these two families of
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triangular regions, by mapping Ti to T ′
b+c−i (see Figure 5). It follows that all of these triangles

have the same symplectic area, and therefore that the various constants αi and α′
i are all equal

up to sign.

In order to identify the signs, one needs to orient the relevant moduli spaces of pseudo-

holomorphic discs in some consistent way, which requires the choice of a spin structure over

each Lagrangian Li. As explained at the end of §3.1, we need to endow each Li with the spin

structure which extends to the corresponding thimble, i.e. the non-trivial one.

We now describe a convenient rule for determining the correct signs in the one-dimensional

case, due to Seidel [217]. We start with the case of trivial spin structures. Then to each

intersection point p ∈ Li∩Lj (i < j) one can associate an orientation lineOp. This orientation

line is canonically trivial when deg p is even, whereas in the odd degree case, a choice of

trivialization of Op is equivalent to a choice of orientation of the line TpLj . If one considers

a pseudo-holomorphic map u : D2 → Σ0 contributing to mk, whose image is a polygonal

region with k + 1 vertices p0, . . . , pk, then the corresponding sign factor is actually an element

of the tensor product Λ = Op0 ⊗ · · · ⊗ Opk . We can define a preferred trivialization of Λ by

choosing, at each vertex of odd degree, the orientation of the vanishing cycle which agrees

with the positive orientation on the boundary of the image of u. The sign factor associated to

u is then equal to +1 with respect to this trivialization of Λ (or −1 with respect to the other

trivialization). In the presence of non-trivial spin structures, this rule needs to be modified as

follows: fix a marked point on each Li carrying a non-trivial spin structure (distinct from its

intersection points with the other vanishing cycles); then the sign associated to u is affected by

a factor of −1 for each marked point that the boundary of u passes through [217].

It is worth mentioning that, while it is clear from the above construction that the individual

sign factors fail to be canonical and depend on some choices, the various possibilities yield

equivalent categories, since the coefficients of Floer homology and Floer products simply differ

by the conjugation action of some diagonal matrix with ±1 coefficients.

In our case, we choose trivializations of the orientation lines as follows: for every intersec-

tion point p ∈ Li ∩ Lj of degree 1 (i.e., one of xi, yi, zi), we orient TpLj consistently with the

boundary orientation of the single triangular region among T0, . . . , Ta+b+c−1 having p among

its vertices. If we consider trivial spin structures, then with this convention the sign factor as-

sociated to each triangle Ti is by definition equal to +1. In the case of T ′
i , at each of the two

vertices of degree 1 the chosen trivialization of TpLj disagrees with the boundary orientation

of the triangular region, so that for trivial spin structures we get a sign factor of (−1)2 = +1
again. Since we need to consider non-trivial spin structures, we must introduce a marked point

on each Li; for example, we choose this marked point in the portion of Li that corresponds

to the top-most edge on Figure 6. With this choice, the boundary of each T ′
i passes through

exactly one marked point (between the vertex of type z and that of type y), while the boundary

of Ti does not meet any marked point. Therefore, with these conventions, the sign factors are

+1 for all Ti and −1 for all T ′
i ; this completes the proof of Lemma 4.8.
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4.7 Non-exact symplectic forms and non-commutative deformations

The purpose of this section is to describe the effect on the category of Lagrangian van-

ishing cycles of W of relaxing the assumptions made above on the symplectic form, losing in

particular its exactness. In order to make the vanishing cycle construction well-defined, we will

keep assuming that ω induces a complete Kähler metric on X and that the gradient of W with

respect to this metric is bounded from below outside of a compact set. For example, choosing

a 3× 3 positive definite Hermitian matrix (aij), we can endow X with the symplectic form

ω = i

3∑

i,j=1

aij
dzi
zi
∧ dz̄j
z̄j
.

Observe thatH2(X,Z) ≃ Z is generated by the torus T = {(x, y, z) ∈ X, |x| = |y| = |z| = 1}
(for simplicity we assume gcd(a, b, c) = 1). An easy calculation shows that

(4.6) [ω] · [T ] = 4π2i (a (a23 − a32) + b (a31 − a13) + c (a12 − a21)).

Many other choices of symplectic form are equally acceptable, and it is important to mention

that the most sensible course of action in presence of a non-explicit symplectic form is to search

for a topological interpretation of the category of Lagrangian vanishing cycles, involving only

topological quantities such as the cohomology class of ω.

In comparison to the restrictive situation considered above, the vanishing cycles Lj remain

in the same smooth isotopy classes, because one can continuously deform from one symplectic

structure to the other. Hence, the vanishing cycles are smoothly isotopic to the loops L′
j ⊂ Σ0

introduced in §4.2, but not necessarily Hamiltonian isotopic to them. Nonetheless, because the

ends of the non-compact Riemann surface Σ0 all have infinite volume, we can easily deform L′
j

into loops L′′
j ⊂ Σ0 that are Hamiltonian isotopic to the vanishing cycles, without modifying

the pattern of the intersections between them. More precisely, recall from §4.2 that each L′
j is

the double lift via πx : Σ0 → C∗ of an arc joining two branch points of πx. Then, by “pulling” a

suitable portion of one of the two lifts towards an end of Σ0 (either towards infinity or towards

zero in the x-axis projection), we can make L′
j sweep through an arbitrarily large amount of

symplectic area to obtain the desired L′′
j , without affecting the intersection points with the other

vanishing cycles.

Since the vanishing cycles are Hamiltonian isotopic to the loops L′′
j , we may use L′′

j instead

of the actual vanishing cycles in order to determine the category D(Lagvc(W )). Hence, the

symplectic deformation does not affect in any way the generators of the Floer complexes and

the types of pseudo-holomorphic maps to be considered. The only significant change has to

do with the coefficients assigned to the various pseudo-holomorphic discs appearing in the

definition of m2, as the symplectic areas of the various triangular regions Ti and T ′
i (i =

0, . . . , a+ b+ c− 1) inside Σ0 may now take more or less arbitrary values instead of all being

equal to each other. Because the description of ω and of the vanishing cycles is not explicit,

it is hopeless (and useless) to calculate the individual coefficients αi and α′
i. However, we can

state the following result:
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Lemma 4.9 Lemmas 4.3–4.7 remain valid in the more general case of an arbitrary symplectic

form inducing a complete Kähler metric on X for which |∇W | is bounded from below at

infinity. Moreover, the structure constants for the composition m2 are related by the identity

∏a+b+c−1
i=0 αi∏a+b+c−1
i=0 α′

i

=

∏
αxy,i

∏
αyz,i

∏
αzx,i∏

αyx,i
∏
αzy,i

∏
αxz,i

= (−1)a+b+c exp(−2π[ω] · [T ]).

The assumption of completeness of the induced Kähler metric can be dropped if we have

some other way of ensuring that the vanishing cycles are well-defined and that the deforma-

tion from L′
j to L′′

j can be carried out without introducing new intersection points. In fact,

the invariance of Floer homology under Hamiltonian isotopies essentially implies that the in-

troduction of new intersection points in the deformation does not have any particular impact

on the derived category, so the only thing that matters is actually the well-definedness of the

vanishing cycles.

Although Lemma 4.9 seems to give only very partial information about the constants αi and

α′
i, it actually completely determines the category D(Lagvc(W )). Indeed, simply by rescaling

the generators of the Floer complexes we can modify the coefficients αi and α′
i almost at will:

for example, replacing xi with λ xi has the effect of simultaneously multiplying αi and α′
i

by λ−1; similarly, rescaling the generator yi simultaneously affects αi−a (or αi+b+c) and α′
i+b.

Still assuming gcd(a, b, c) = 1, it is not hard to check that the only quantity left invariant by all

rescalings of the generators is the ratio
∏
αi/
∏
α′
i, which is therefore sufficient to characterize

the derived category. This observation that the symplectic deformations of D(Lagvc(W )) are

governed by a single parameter is naturally related to the fact that the second Betti number of

X is equal to 1.

Proof. [Proof of Lemma 4.9] The key observation to be made here is that the boundary of the

2-chain C =
∑
Ti −

∑
T ′
i ⊂ Σ0 is exactly ∂C = −∑Li (for a suitable choice of orientation

of the Li). Indeed, looking at Figure 6, each of the six portions of Li arises exactly once as an

edge of one of the triangular regions, and the boundary orientation of the triangular region is

the “clockwise” orientation of Li in the case of T0, . . . , Ta+b+c−1, and the “counterclockwise”

orientation in the case of T ′
0, . . . , T

′
a+b+c−1. Recalling that each vanishing cycle Li bounds a

Lefschetz thimble Di in X , we can build a 2-cycle C̃ ⊂ X by capping C with these a + b+ c
Lagrangian discs. Next, observe that the sign factors arising from the orientations of the moduli

spaces remain the same as in §4.6, and that
∫
Di
ω = 0, so that

∏
αi∏
α′
i

= (−1)a+b+c
∏

exp(−2π
∫
Ti
ω)

∏
exp(−2π

∫
T ′
i
ω)

= (−1)a+b+c exp(−2π
∫

C

ω) = (−1)a+b+c exp(−2π[ω]·[C̃]).

Hence, the last step in the proof is to show that [C̃] and [T ] are the same elements of

H2(X,Z) ≃ Z. A simple way to achieve this is to compute the intersection pairing of C̃ with

the relative cycle R = {(x, y, z) ∈ X, x, y, z ∈ R+}, which intersects T transversely once at

the point (1, 1, 1).
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To understand how R intersects C̃, we compare the values of W over R and over C̃. By

construction, C̃ is the union of the 2-chain C ⊂ Σ0, over which W vanishes identically, and

the various Lefschetz thimbles Dj , which W maps to straight line segments joining the origin

to the critical values λj . On the other hand, the restriction to R of W = x + y + z is a proper

function which takes real positive values. With respect to the standard complex structure, R is

totally real and W is holomorphic, so any critical point ofW|R is also a critical point ofW , and

in particular the minimum of W over R is a critical value of W . Indeed, a simple computation

shows that the minimum of W over R is exactly (a + b+ c)(aabbcc)−1/(a+b+c) = λ0, achieved

at the critical point p0 of W corresponding to the critical value λ0.

It follows that the only point where C̃ and R intersect is p0. Moreover, by considering the

local model near p0, it is easy to check that this intersection is transverse, since the Hessian of

W at p0 restricts to the tangent space Tp0D0 as a negative definite real quadratic form, and to

Tp0R as a positive definite real quadratic form. Therefore the intersection number between C̃
and R is equal to 1 (for a suitable choice of orientation that we will not discuss here), and it

follows that [C̃] = [T ] in H2(X,Z). �

4.8 B-fields and complexified deformations

So far we have identified a real one-parameter family of deformations of the category of

Lagrangian vanishing cycles of W . To extend this to a complex family of deformations, we

need to introduce a non-trivial B-field, i.e. a closed 2-form B ∈ Ω2(X,R). The presence of

a B-field affects Fukaya categories by modifying the nature of the objects to be considered:

namely, one should consider pairs consisting of a Lagrangian submanifold and a vector bundle

over it equipped with a projectively flat (rather than flat) connection with curvature equal to

−2πiB ⊗ Id (depending on conventions, the factor of 2π is sometimes omitted).

In our case, we are considering Lagrangian vanishing cycles Lj ≃ S1 arising as bound-

aries of the Lefschetz thimbles Dj . Since dimLj = 1, over Lj every bundle is trivial and

every connection is flat; moreover, we can safely restrict ourselves to the case of line bun-

dles. However, the presence of the B-field results in a nontrivial holonomy. By Stokes’

theorem, if a U(1)-connection ∇j = d + iαj is the restriction to Lj of a U(1)-connection

with curvature −2πiB over Dj , then the holonomy of ∇j around Lj is given by hol∇j
(Lj) =

exp(
∫
Lj
iαj) = exp(

∫
Dj
i dαj) = exp(−2πi

∫
Dj
B). Since this property characterizes the con-

nection ∇j uniquely up to gauge, we can drop the line bundle and the connection from the

notation when considering the objects (Lj , Ej,∇j) of Lagvc(W, {γj}).
However, we do need to take the holonomy of∇j into account when computing the twisted

Floer differential and compositionsmk, since the weight attributed to a given pseudo-holomorphic

disc u : (D2, ∂D2)→ (Σ0,
⋃
Lj) is modified by a factor corresponding to the holonomy along

its boundary, and becomes ± hol(u(∂D2)) exp(2πi
∫
D2 u

∗(B + iω)). More precisely, for each

intersection point p ∈ Li ∩ Lj we need to fix an isomorphism between the fibers (Ei)|p and

(Ej)|p; then it becomes possible to define the holonomy along the closed loop u(∂D2) using

the parallel transport induced by ∇j from one “corner” of u to the next one, and the chosen
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isomorphism at each corner.

In this context, we now have the following result characterizing D(Lagvc(W )):

Lemma 4.10 Lemmas 4.3–4.7 remain valid for an arbitrary symplectic form inducing a com-

plete Kähler metric on X for which |∇W | is bounded from below at infinity, and an arbitrary

B-field. Moreover, the structure constants for the composition m2 are related by the identity

∏a+b+c−1
i=0 αi∏a+b+c−1
i=0 α′

i

=

∏
αxy,i

∏
αyz,i

∏
αzx,i∏

αyx,i
∏
αzy,i

∏
αxz,i

= (−1)a+b+c exp(2πi[B + iω] · [T ]).

Proof. We again consider the 2-chain C =
∑
Ti−

∑
T ′
i ⊂ Σ0, with boundary ∂C = −∑Lj ,

and the 2-cycle C̃ ⊂ X obtained by capping C with the Lagrangian discs Dj . We now have:

∏
αi∏
α′
i

=
(−1)a+b+c∏
hol∇j

(Lj)

∏
exp(2πi

∫
Ti
B + iω)

∏
exp(2πi

∫
T ′
i
B + iω)

=
(−1)a+b+c∏

exp(
∫
Dj
−2πiB)

exp(2πi

∫

C

B + iω)

= (−1)a+b+c exp(2πi[B + iω] · [C̃]).

This completes the proof since [C̃] = [T ]. �

It is interesting to observe that this statement reinterpretes the quantity
∏
αi/
∏
α′
i in purely

topological terms, thus avoiding the pitfall of having to compute the individual coefficients

attached to the various pseudo-holomorphic discs in Σ0. This outcome is rather unsurprising

since, whereas the individual coefficients αi and α′
i are heavily dependent on a number of

arbitrary choices, the underlying derived category of Lagrangian vanishing cycles is expected

to depend only on the meaningful parameters – in our case, the cohomology class [B + iω].
We would like to suggest that this feature reflects a general principle. Namely, the various

structure coefficients of the Floer differentials and products involved in the definition of the

category Lagvc(W ) depend on many choices and have no precise meaning in general. However,

different sets of values of the structure coefficients may become equivalent after a suitable

rescaling of the generators of the Floer complexes or other similarly benign operations. Hence,

we can reduce to a much smaller set of parameters (certain combinations of the individual Floer

coefficients) that actually govern the structure of the category. Then, we expect the following

statement to hold in much greater generality than the examples studied here:

Property 4.11 The structure of the derived category of Lagrangian vanishing cycles is gov-

erned by deformation parameters which are all of the form exp(2πi[B+ iω] · [Cj]) for suitable

2-cycles Cj ⊂ X .

This is of course ultimately related to the fact that Floer homology and Floer products

can be defined over Novikov rings, counting pseudo-holomorphic discs with coefficients that

reflect relative homology classes rather than actual symplectic areas; the version with complex

coefficients that we used here is then recovered from the version with Novikov ring coefficients

by evaluation at the point [B + iω].
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Figure 8: The vanishing cycles for F0

5 Hirzebruch surfaces

We now consider the case of Hirzebruch surfaces Fn, for which the mirror Landau-Ginzburg

model consists of X = (C∗)2 equipped with a superpotential of the form

W = x+ y +
a

x
+

b

xny

for some non-zero constants a, b. For simplicity we will only consider the case of an exact

symplectic form. Since different values of the constants a, b lead to mutually isotopic exact

symplectic Lefschetz fibrations, the actual choices do not matter (we can e.g. assume a = b = 1
or any other convenient choice).

5.1 The case of F0 and F1

The first two Hirzebruch surfaces F0 = CP1×CP1 and F1 (i.e., CP2 blown up at one point)

need to be considered separately.

Proposition 5.1 When n = 0, there exists a system of arcs {γi} such that Lagvc(W, {γi})
is equivalent to the full subcategory of Db(coh(F0)) whose objects are O, O(1, 0), O(0, 1),
O(1, 1). Therefore, D(Lagvc(W )) ≃Db(coh(F0)).

Proof. The four critical values of W = x + y + a
x
+ b

y
are ±2a1/2 ± 2b1/2. Up to an exact

deformation which does not affect the category of Lagrangian vanishing cycles, we can choose

a > b > 0, and assume the symplectic form to be anti-invariant under reflection about the

imaginary axis (x, y) 7→ (−x̄,−ȳ). We choose Σ0 = W−1(0) as our reference fiber, and join

it to the singular fibers by considering arcs γi that pass below the real axis in C, so that the

clockwise ordering of the critical values agrees with their natural ordering −2a1/2 − 2b1/2 <
−2a1/2+2b1/2 < 2a1/2−2b1/2 < 2a1/2+2b1/2. The projection πx to the x variable realizes Σ0

as a double cover of C∗ branched at four points, and the vanishing cycles Li can be represented

as double lifts of the arcs δi ⊂ C∗ shown in Figure 8.

It follows that Hom(L1, L2) = 0, while Hom(L0, L1), Hom(L2, L3), Hom(L0, L2), and

Hom(L1, L3) are two-dimensional; label the corresponding intersection points L0 ∩ L1 =
{s, t}, L2∩L3 = {s′, t′}, L0∩L2 = {u, v}, L1∩L3 = {u′, v′}. Finally, Hom(L0, L3) has rank
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Figure 9: The vanishing cycles for F1

4. By considering the triangular regions delimited by the vanishing cycles in Σ0, and using

the symmetry of the configuration with respect to (x, y) 7→ (−x̄,−ȳ), we can easily show that

m2(s, u
′) = m2(s

′, u), m2(t, u
′) = m2(t

′, u), m2(s, v
′) = m2(s

′, v), andm2(t, v
′) = m2(t

′, v);
these four elements of Hom(L0, L3) are proportional to the generators. All other products van-

ish (mk = 0 for k 6= 2). Finally, gradings can be chosen so that all morphisms have degree 0
(the verification is left to the reader).

Therefore, the category Lagvc(W, {γi}) is indeed equivalent to the full subcategory of

Db(coh(F0)) whose objects are O, O(1, 0), O(0, 1), O(1, 1), as can be seen by thinking of

(s, t) and (u, v) as homogeneous coordinates on the two factors of F0 = CP1 × CP1. Since

these four line bundles form a full strong exceptional collection generating Db(coh(F0)), the

result follows. �

Alternatively, Proposition 5.1 can also be obtained as a direct corollary of a general product

formula for categories of Lagrangian vanishing cycles of Lefschetz fibrations of the form (X1×
X2,W1 +W2) ([18], cf. also §6.3).

Proposition 5.2 When n = 1, there exists a system of arcs {γi} such that Lagvc(W, {γi}) is

equivalent to the full subcategory ofDb(coh(F1)) whose objects areO, π∗(TP2(−1)), π∗(OP2(1)),
OE (where E is the exceptional curve and π : F1 → CP2 is the blow-up map). Therefore,

D(Lagvc(W )) ≃Db(coh(F1)).

Proof. We choose a = b = 1, and equip X with a symplectic form that is anti-invariant under

complex conjugation. Let (λi)0≤i≤3 be the four critical values of W = x+ y+ 1
x
+ 1

xy
, ordered

clockwise around the origin so that Im(λ0) > 0, λ1 ∈ R+, Im(λ2) < 0, and λ3 ∈ R−. We

choose Σ0 = W−1(0) as reference fiber, and choose the arcs γi joining 0 to λi to be straight

lines. The projection πx to the x variable realizes Σ0 as a double cover of C∗ branched at four

points, and the vanishing cycles Li can be represented as double lifts of the arcs δi ⊂ C∗ shown

in Figure 9.

The corresponding category of vanishing cycles can then be studied explicitly. In fact, much

of the work has already been carried out in §4, since the situation for L0, L1, L2 is rigorously

identical (including grading and orientation issues) to that previously considered for the three

vanishing cycles of the Lefschetz fibration mirror to CP2. While the choice of grading used in

§4 yields morphisms in degrees 1 and 2, a different choice of gradings (shifting L1 by 1 and L2

by 2) ensures that all morphisms between L0, L1, L2 have degree 0. This readily implies that

a category equivalent to the derived category of CP2 can be realized inside D(Lagvc(W )) as



MIRROR SYMMETRY FOR WEIGHTED PROJECTIVE PLANES 57

a full subcategory, with the exceptional collection L0, L1, L2 corresponding to the exceptional

collectionO, TP2(−1),O(1) dual to the standard one. (This claim can of course also be verified

“by hand” following the same outline of argument as in §4).

From Figure 9 it is clear that Hom(L0, L3) and Hom(L2, L3) are one-dimensional, (call

their generators p0 and p2), while Hom(L1, L3) has rank 2 (call its generators q and q′). To be

consistent with the notation of §4, call x0, y0, z0 (resp. x1, y1, z1; resp. x̄, ȳ, z̄) the generators of

Hom(L0, L1) (resp. Hom(L1, L2); resp. Hom(L0, L2)). Then, looking at the various pseudo-

holomorphic discs in Σ0 (including a constant one at the triple intersection of L0, L2, L3),

we have: m2(x0, q) = m2(x0, q
′) = 0, m2(y0, q) = α p0, m2(y0, q

′) = 0, m2(z0, q) = 0,
m2(z0, q

′) = α′ p0, m2(x1, p2) = 0, m2(y1, p2) = −α q′, m2(z1, p2) = α′ q, m2(x̄, p2) = p0,
m2(ȳ, p2) = m2(z̄, p2) = 0 (for some non-zero constants α, α′). Moreover, for a suitable

choice of grading of L3 it can be checked that all morphisms have degree 0.

It is then easy to check that these formulas correspond exactly to the composition formu-

las in the full subcategory of Db(coh(F1)) whose objects are the pull-backs O, π∗(TP2(−1)),
π∗(OP2(1)), and the structure sheaf OE of the exceptional curve (If one follows the analogy

suggested by the notation between the morphisms from L0 to L2 and the homogeneous coor-

dinates on CP2, then the blow-up point is located at (1 : 0 : 0)). The result follows. �

5.2 Other Hirzebruch surfaces

For larger values of n, the situation becomes different:

Lemma 5.3 If n ≥ 2, then the Lefschetz fibrations over (C∗)2 defined by W = x + y +
1
x
+ 1

xny
and W̃ = x + y + 1

xny
are isotopic. Therefore, D(Lagvc(W )) ≃ D(Lagvc(W̃ )) ≃

Db(coh(CP2(n, 1, 1))).

Proof. Consider the maps Wa = x + y + a
x
+ 1

xny
for a ∈ [0, 1]. The key observation is that

the n + 2 critical points of Wa remain distinct and stay in a compact subset of (C∗)2. Indeed,

the critical points of Wa are the solutions of

{
1− a

x2
− n

xn+1y
= 0

1− 1
xny2

= 0,

i.e.

y = nx1−n(x2 − a)−1, and xn−2(x2 − a)2 − n2 = 0.

It is easy to check that for |a| ≤ 1 the roots of this equation satisfy 1 ≤ |x| ≤
√
n+ 1.

It follows that |x2 − a| = n|x|1−n
2 is bounded between two positive constants, and hence

that y = nx1−n(x2 − a)−1 = (x2 − a)/nx is also bounded between two positive constants

independently of a. Hence the critical points of Wa remain inside a compact subset of (C∗)2.
Moreover, the polynomial P (x) = xn−2(x2 − a)2 − n2 always has simple roots when |a| ≤ 1,

since the roots of P ′(x) = xn−3(x2 − a)((n + 2)x2 − (n − 2)a) are 0, ±√a, and ±
√

n−2
n+2

a,
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where P never vanishes. In fact, even though this is not necessary for the argument, the critical

values of Wa also remain distinct throughout the deformation, since at a critical point we have

Wa =
n+2
n
x+ n−2

n
a
x

, which as a function of x is injective over {|x| ≥ 1}.
Therefore, Wa defines an exact symplectic Lefschetz fibration on (C∗)2 for all a ∈ [0, 1],

which allows us to match the vanishing cycles of W1 = W with those of W0 = W̃ . The result-

ing categories of vanishing cycles differ at most by a deformation of the structure coefficients

of the compositionsm2, but since the isotopy is through exact Lagrangian vanishing cycles, we

need not worry about those (see also the argument for Lemma 4.9).

We can therefore conclude that D(Lagvc(W )) ≃ D(Lagvc(W̃ )). Since ((C∗)2, W̃ ) is ex-

actly the mirror to CP2(n, 1, 1) studied at length in §4, our result for weighted projective planes

implies that this category is also equivalent to Db(coh(CP2(n, 1, 1))). �

For n = 2, it is well-known that Db(coh(F2)) ≃ Db(coh(CP2(2, 1, 1))), so we get the

expected result. However, for n ≥ 3 this is no longer true. Namely, the fully faithful functor

MKn constructed in §2.7 allows us to view the category Db(coh(Fn)) as a full subcategory of

Db(coh(CP2(n, 1, 1))), generated by the exceptional collection (O,O(1),O(n),O(n+1)). It

is therefore a natural question to ask whether this subcategory can be singled out on the mirror

side, by selecting 4 of the n + 2 critical points of W . It turns out that this is indeed the case.

Our first result in this direction is the following:

Lemma 5.4 For n ≥ 3, in the limit b → 0, n − 2 of the critical values of the superpotentials

Wb = x+ y+ 1
x
+ b

xny
go to infinity, while the remaining four critical points stay in a bounded

region.

Proof. The x coordinates of the critical points of Wb are the solutions of

xn−2(x2 − 1)2 − n2b = 0.

As b→ 0, four roots of this equation converge to±1, while the remaining n− 2 converge to 0.

Since at a critical point we also have y = nbx1−n(x2−1)−1 = 1
n
(x− 1

x
) andWb =

n+2
n
x+ n−2

n
1
x

,

we conclude that four critical points of Wb converge to (±1, 0), with the corresponding critical

values converging to ±2, while the others escape to infinity. �

This suggests that the deformation b → 0 singles out a subcategory of D(Lagvc(Wb)),
obtained by restricting oneself to the preimage of a disc containing only four critical values of

Wb. We start by describing the case n = 3.

For n = 3, we can study explicitly the deformation process as b changes from 1 to a

value close to 0. For b = 1 the five critical values of Wb form a pentagon roughly centered

at the origin (and can for all practical purposes be identified with the critical values of the

superpotential mirror to CP2(3, 1, 1)). As b decreases along the real axis, two things happen:

first, the two complex conjugate critical points with Re(Wb) > 0 merge and turn into two real

critical points; then, one of these two real critical points escapes to infinity as b → 0. The

process is easier to visualize if one avoids the two values of b in the interval (0, 1) for which

two critical values ofWb coincide, by considering e.g. a deformation from b = 1 to b = 0 where
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Figure 10: The deformation b→ 0 for n = 3

the imaginary part of b is kept positive. It is then easy to check that, as b → 0, two critical

values converge to 2 and two others converge to −2, while the fifth one escapes to infinity in

the manner represented on Figure 10.

Therefore, if we consider the category of Lagrangian vanishing cycles associated to the

system of arcs γ̃0, . . . , γ̃4 represented on Figure 10, the deformation b→ 0 singles out the full

subcategory generated by the four vanishing cycles L̃0, L̃1, L̃3, L̃4 (where L̃i is the vanishing

cycle associated to γ̃i). The collection of arcs {γ̃i} looks very different from the collection

{γi} considered in §4, but they are related to each other by a sequence of elementary sliding

transformations performed on consecutive arcs (see Figure 11).

It follows immediately from Definition 3.1 that every ordered collection of arcs yields a full

exceptional collection generatingD(Lagvc(W )); it was shown by Seidel that (left or right) slid-

ing operations on collections of arcs correspond to (left or right) mutations of the corresponding

exceptional collections [214]. With this is mind, and identifying implicitly the critical points of

W1 with those of the superpotential mirror to CP2(3, 1, 1), it is easy to check that the left dual

to the exceptional collection (L̃0, . . . , L̃4) associated to the arcs {γ̃i} is equivalent (up to some

shifts) to the exceptional collection associated to the arcs (γ2, γ3, γ4, γ0, γ1). Moreover, using

Z/5-equivariance for CP2(3, 1, 1), there exists an auto-equivalence of D(Lagvc(W1)) which

maps this exceptional collection to the one associated to the collection of arcs (γ0, . . . , γ4)
considered in §4.

Recall that the two exceptional collections for Db(coh(CP2(3, 1, 1))) presented in §2 are

mutually dual (cf. Example 2.15), and that Theorem 3.3 identifies the exceptional collection as-

sociated to the arcs (γ0, . . . , γ4) with that given by Corollary 2.27. Therefore, there is an equiv-

alence of categories which maps the exceptional collection (L̃0, . . . , L̃4) for D(Lagvc(W1)) to

the exceptional collection (O, . . . ,O(4)) for Db(coh(CP2(3, 1, 1))). The full subcategory of

D(Lagvc(W1)) singled out by the deformation b → 0 is that generated by the exceptional col-

q q
❇
❇
❇❇

✂
✂
✂✂γi γi+1 ✲✛

qq
❇
❇
❇❇

❏
❏❏
γiLγi+1

Figure 11: The (left) sliding operation (γi, γi+1)←→ (Lγi+1, γi)
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lection (L̃0, L̃1, L̃3, L̃4), which corresponds under the above identification to the full subcate-

gory of Db(coh(CP2(3, 1, 1))) generated by the exceptional collection (O,O(1),O(3),O(4)),
which is in turn known to be equivalent to the derived category of the Hirzebruch surface F3

(see §2.7).

A similar analysis of the deformation b→ 0 can be carried out for all values of n, and leads

to the following result:

Proposition 5.5 Given any n ≥ 3 and R ≫ 2, and assuming that b is sufficiently close to 0,

the full subcategory of D(Lagvc(Wb)) arising from restriction to the open domain {|Wb| < R}
is equivalent to Db(coh(Fn)).

In order to prove this proposition we need a lemma about mutations in the standard full

exceptional collection (O,O(1), . . . ,O(n+ 1)) on the weighted projective plane CP2(n, 1, 1).
Let us fix a pair (O(k),O(k + 1)) with 2 < k < n. Denote by Fk+2 the mutation of the object

O(k + 2) to the left through O(k),O(k + 1), i.e. Fk+2
∼= L(2)O(k + 2). Performing the

same mutations on O(k + 3), . . . ,O(n + 1) we obtain exceptional objects Fi = L(2)O(i) for

k + 2 ≤ i ≤ n+ 1 and a new exceptional collection

(O, . . . ,O(k − 1), Fk+2, . . . , Fn+1,O(k),O(k + 1)) .

Denote by Gk, Gk+1 the left mutations of O(k),O(k + 1) respectively through all Fi. We get

an exceptional collection

(O, . . . ,O(k − 1), Gk, Gk+1, Fk+2, . . . , Fn+1) .

Denote byD the triangulated subcategory of the category Db(coh(CP2(n, 1, 1))) generated by

the collection (O,O(1), Gk, Gk+1)

Lemma 5.6 The triangulated subcategoryD coincides with the subcategory

〈O,O(1),O(n),O(n+ 1)〉.

Proof. This Lemma is equivalent to the statement that the subcategory 〈Gk, Gk+1〉 coincides

with the subcategory 〈O(n),O(n + 1)〉. First, let us show that O(n) and O(n + 1) belong to

〈Gk, Gk+1〉. Since Hom(O(l),O(s)) = 0 for l = n, n + 1 and 0 ≤ s < k, we can immedi-

ately conclude that O(n) and O(n+ 1) belong to 〈Gk, Gk+1, Fk+2, . . . , Fn+1〉. Therefore, it is

sufficient to check that

Hom
•
(Fi,O(n)) = 0, Hom

•
(Fi,O(n + 1)) = 0

for all k + 2 ≤ i ≤ n+ 1.
By definition of Fi there are distinguished triangles

Ti −→ Vi ⊗O(k + 1) −→ O(i),(5.1)

Fi −→ Wi ⊗O(k) −→ Ti,(5.2)
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with Vi = Hom(O(k + 1),O(i)) and Wi = Hom(O(k), Ti). It is clear that Vi ∼= Si−k−1U,
where U is the two dimensional vector space H0(CP2(n, 1, 1),O(1)). Considering the se-

quence of Hom’s from O(k) to the triangle (5.1), it is easy to check that Wi
∼= Si−k−2U

(we use an isomorphism Λ2U ∼= C).

We have isomorphisms

Hom(Vi ⊗O(k + 1),O(n+ 1)) = Si−k−1U∗ ⊗ Sn−kU ∼=
i−k−1⊕

j=0

Sn−i+1+2jU,

which implies that

Hom(Ti,O(n+ 1)) ∼=
i−k−1⊕

j=1

Sn−i+1+2jU.

On the other hand, there are isomorphisms

Hom(Wi ⊗O(k),O(n+ 1)) = Si−k−2U∗ ⊗ Sn−k+1U ∼=
i−k−1⊕

j=1

Sn−i+1+2jU,

and, moreover, it can be checked that the natural morphism Hom(Ti,O(n+1))→ Hom(Wi⊗
O(k),O(n+1)) is an isomorphism. Hence, Hom

•
(Fi,O(n+1)) = 0 for all k+2 ≤ i ≤ n+1.

By the same reasons Hom
•
(Fi,O(n)) = 0 for all k + 2 ≤ i ≤ n + 1. Thus the subcategory

〈O(n),O(n+ 1)〉 is contained in 〈Gk, Gk+1〉.
Since Hom(Gk, Gk+1) ∼= U ∼= Hom(O(n),O(n+1)), these two categories are both equiv-

alent to the derived category of representations of the quiver with two vertices and two arrows

•⇒ •, and, as consequence, it can be easily shown that they are equivalent. �

Proof. [Proof of Proposition 5.5] The argument is similar to the case n = 3: in the initial

configuration, for b = 1, the n + 2 critical values of Wb approximate a regular polygon, and

can essentially be identified with the critical values of the superpotential mirror to CP2(n, 1, 1).
We label these critical values by integers from 0 to n+ 1, with 0 corresponding to the positive

real critical value, and continuing counterclockwise. As the value of b is decreased towards 0,

pairs of complex conjugate critical values ofWb (those labelled k and n+2−k, for 1 ≤ k ≤ n
2
),

successively converge towards each other. For 2 ≤ k < n
2
, the corresponding vanishing cycles

are disjoint, and the two complex conjugate critical values essentially exchange their positions

before escaping to infinity (with complex arguments close to∓ k−1
n−2

2π) for b→ 0. On the other

hand, for k = 1 the two complex conjugate critical points labelled 1 and n + 1 merge and turn

into two real critical points, one of which escapes to infinity as b→ 0; similarly for k = n
2

if n
is even.

If instead of following the real axis we carry out the deformation b → 0 with Im(b) small

positive, then we can avoid all the values of b for which two critical values of Wb coincide,

which allows us to keep track of the manner in which n − 2 of the critical values escape to

infinity. This is represented on Figure 12 (left).
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Figure 12: The deformation b→ 0 (n = 8)

Observe that the vanishing cycles at the critical points corresponding to labels in the range

1 ≤ k < n
2

are disjoint from those at the critical points with labels in the range n
2
+2 ≤ k ≤ n.

Therefore, for the purposes of determining the remaining vanishing cycles as b→ 0, the family

of Lefschetz fibrations Wb is equivalent to one where the various critical values escape to

infinity in a slightly different manner, with the critical values coming from the ImW < 0 half-

plane staying “to the left” (towards the negative real axis) of those coming from the ImW > 0
half-plane, as pictured on Figure 12 (right).

Therefore, if we consider the category of Lagrangian vanishing cycles associated to a sys-

tem of arcs containing the four arcs γ̃0, γ̃1, γ
′, γ′′ represented on Figure 12 right, then the full

subcategory singled out by the deformation b→ 0 is that generated by the four vanishing cycles

L̃0, L̃1, L
′, L′′ associated to these arcs. A suitable collection of arcs can be built by a sequence

of sliding operations, starting from a collection {γ̃i, 0 ≤ i ≤ n+1} where γ̃0 and γ̃1 are as pic-

tured, and all the γ̃i remain outside of the unit disc. Identify implicitly the critical points of W1

with those of the superpotential mirror to CP2(n, 1, 1), and recall that sliding operations corre-

spond to mutations. Then the left dual to the exceptional collection (L̃0, . . . , L̃n+1) associated

to the arcs {γ̃i} is equivalent (up to some shifts) to the exceptional collection associated to the

arcs (γ2, γ3, . . . , γn+1, γ0, γ1) (using the notation of §4). Using Z/(n + 2)-equivariance, the

latter is equivalent to the exceptional collection associated to the system of arcs (γ0, . . . , γn+1)
considered in §4.

Recall that the two exceptional collections for Db(coh(CP2(n, 1, 1))) presented in §2 are

mutually dual (cf. Example 2.15), and that Theorem 3.3 identifies the exceptional collection

associated to the arcs (γ0, . . . , γn+1) with that given by Corollary 2.27. Therefore, there is an

equivalence of categories which maps the exceptional collection (L̃0, . . . , L̃n+1) forD(Lagvc(W1))
to the exceptional collection (O, . . . ,O(n+ 1)) for Db(coh(CP2(n, 1, 1))).

Next, let k = ⌊n+3
2
⌋, so that γ′ and γ′′ have the same endpoints as γ̃k and γ̃k+1 re-

spectively. First slide γ̃k+2, . . . , γ̃n+1 to the left of γ̃k and γ̃k+1 to obtain another system of

arcs (γ̃0, . . . , γ̃k−1, ηk+2, . . . , ηn+1, γ̃k, γ̃k+1). Then the arcs obtained by sliding γ̃k and γ̃k+1

to the left of ηk+2, . . . , ηn+1 are homotopic to γ′ and γ′′. This gives us a new system of

arcs (γ̃0, γ̃1, . . . , γ̃k−1, γ
′, γ′′, ηk+2, . . . , ηn+1), which determines a full exceptional collection
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(L̃0, L̃1, . . . , L̃k−1, L
′, L′′,Λk+2, . . . ,Λn+1) in D(Lagvc(W1)).

By construction, the full subcategory 〈L̃0, L̃1, L
′, L′′〉 of the category D(Lagvc(W1)) is

equivalent to the triangulated subcategory 〈O,O(1), Gk, Gk+1〉 of Db(coh(CP2(n, 1, 1))), which

by Lemma 5.6 coincides with 〈O,O(1),O(n),O(n + 1)〉. As seen in §2.7 this category is

equivalent to the derived category of the Hirzebruch surface Fn, which completes the proof. �

It is also possible to prove Proposition 5.5 by a direct calculation involving the monodromy

of W1, instead of using Lemma 5.6. Starting from the description of the vanishing cycles

associated to the arcs γi in §4, one can determine first the vanishing cycles L̃i associated to γ̃i
for all i, and then those associated to γ′ and γ′′. It is then possible to check that, although the

vanishing cycles associated to γ′ and γ′′ do not quite correspond to L̃n and L̃n+1, after sliding

γ′ and γ′′ around each other a certain number of times one obtains two vanishing cycles that

are Hamiltonian isotopic to L̃n and L̃n+1.

6 Further remarks

6.1 Higher-dimensional weighted projective spaces Many of the arguments in §4 extend

to higher-dimensional weighted projective spaces, working by induction on dimension in a

manner similar to the ideas in §5 of [12]. Indeed, the mirror to the weighted projective space

CPn(a0, . . . , an) is the affine hypersurface X = {xa00 . . . xann = 1} ⊂ (C∗)n+1, equipped with

the superpotential W = x0 + · · ·+ xn and an exact symplectic form ω that we can choose to

be invariant under the diagonal action of Z/(a0 + · · ·+ an) and anti-invariant under complex

conjugation for simplicity. It is easy to check that W has a0 + · · ·+ an critical points over X ,

all isolated and non-degenerate; the corresponding critical values are the roots λj of

λa0+···+an =
(a0 + · · ·+ an)

a0+···+an

aa00 . . . aann
.

As in the two-dimensional case we use Σ0 = W−1(0) as our reference fiber, and join it to the

singular fibers of W via straight line segments γj ⊂ C joining the origin to λj .
In order to understand the vanishing cycles Lj ⊂ Σ0, we consider as before the projection

to one of the coordinate axes, for example π0 : (x0, . . . , xn) 7→ x0. For generic values of λ, the

map π0 : Σλ → C∗ defines an affine Lefschetz fibration on Σλ = W−1(λ), with a0 + · · ·+ an
singular fibers. These singular fibers are the preimages of the critical values of π0 over Σλ,

which are the roots of

(6.1) xa00 (λ− x0)a1+···+an =
(a1 + · · ·+ an)

a1+···+an

aa11 . . . aann

(compare with (4.1)). This equation acquires a double root whenever λ is one of the λj; the

manner in which two of the roots approach each other as one moves from λ = 0 to λ = λj
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along the arc γj defines an arc δj ⊂ C∗, which is a matching path for the Lefschetz fibration

π0 : Σ0 → C∗. As in the two-dimensional case, the Lagrangian vanishing cycle Lj ⊂ Σ0 is

isotopic to a sphere L′
j which lies above the arc δj ; the generic fiber of π0|L′

j
: L′

j → δj ⊂ C∗ is

now a Lagrangian (n− 2)-sphere inside the fiber of π0.

Because of the similarity between equations (6.1) and (4.1), it is easy to check that Lemma

4.2 extends almost verbatim to the higher-dimensional case, substituting a0 for a and a1+ · · ·+
an for b+ c.

In order to determine the Floer complexes CF ∗(Li, Lj), or equivalently CF ∗(L′
i, L

′
j), we

need to understand, for each point of δi ∩ δj , how L′
i and L′

j intersect each other inside the

corresponding fiber of π0. Because L′
i and L′

j each arise from matching pairs of vanishing

cycles of the Lefschetz fibration π0, this can be done by studying in more detail the topology

of the fiber of π0 : Σ0 → C∗ and the manner in which it degenerates as one moves from a

generic value of x0 to one of the critical values. In fact, we can use the same approach to study

the vanishing cycles of π0 : Σ0 → C∗ as in the case of W : X → C, namely project the fiber

Fµ = π−1
0 (µ) to one of the coordinates, e.g. x1. This gives rise to a map π1 : Fµ → C∗, which

is again a Lefschetz fibration (whose fibers are now (n− 3)-dimensional), with a1 + · · ·+ an
singular fibers corresponding to values of x1 that solve the equation

µa0xa11 (−µ − x1)a2+···+an =
(a2 + · · ·+ an)

a2+···+an

aa22 . . . aann
,

which presents a double root precisely when µ is a solution of (6.1) (for λ = 0). The process

can go on similarly, considering successive restrictions to fibers and coordinate projections un-

til we reach the easily understood case of 0-dimensional fibers; once this process is completed,

it becomes possible to describe explicitly CF ∗(L′
i, L

′
j) in terms of the available combinatorial

data. The final result is the following:

Proposition 6.1 For i < j, the vanishing cycles L′
i and L′

j intersect transversely, and

|L′
i ∩ L′

j| = #{I ⊂ {0, . . . , n},
∑

k∈I

ak = j − i}.

Hence the Floer complex CF ∗(L′
i, L

′
j) is naturally isomorphic to the degree j − i part of the

exterior algebra on n + 1 generators of respective degrees a0, . . . , an. Moreover, the Floer

differential is trivial, i.e. m1 = 0.

Instead of providing a complete proof, we simply illustrate Proposition 6.1 by considering

the example of the projective space CP3. In that case, Σ0 is an affine K3 surface, and π0 :
Σ0 → C∗ is a fibration by affine elliptic curves, with four singular fibers. The four vanishing

cycles L′
j ⊂ Σ0 project to arcs δj ⊂ C∗ as shown on Figure 13 (left).

Using the projection π1 to the second coordinate, we can view each of the fibers of π0 :
Σ → C∗ as a double cover of C∗ branched in 3 points (Figure 13, right). To describe the

monodromy of the elliptic fibration π0, we choose a reference fiber Fµ0 = π−1
0 (µ0) for some
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µ0 ∈ C∗ close to 0 on the positive real axis. The monodromy of π0 around the origin is the

diffeomorphism of Fµ0 obtained by rotating the three branch points of π1 counterclockwise by

2π/3. To describe the four vanishing cycles of π0, we join the regular value µ0 of π0 to each

of the four critical values by considering arcs which start at µ0, rotate clockwise around the

origin from arg µ = 0 to argµ = −π
4
− j π

2
(0 ≤ j ≤ 3), and then go radially outwards to the

corresponding critical values of π0. The vanishing cycles β0, . . . , β3 obtained in this way are

isotopic to the double lifts via π1 : Fµ0 → C∗ of the arcs shown on Figure 13 (right).

Now that the monodromy of π0 is well-understood, it is not hard to visualize the Lagrangian

spheres L′
j ⊂ Σ0 lying above the arcs δj , and in particular their intersections. For example,

L′
0 ∩L′

1 consists of four points, one of which is the critical point of π0 with arg x0 =
3π
4

(lying

above the common end point of δ0 and δ1), while the three others lie in the fiber above the

other point p of δ0∩ δ1 (with arg x0 = −π
4
), and correspond (under a suitable parallel transport

operation) to the three intersections between β1 and β2 in Fµ0 . Similarly, L′
0 ∩L′

2 consists of 6

points (three above each point of δ0 ∩ δ2), and so on.

Finally, we observe that there cannot be any contributions to the Floer differential m1, for

purely topological reasons. Indeed, if we consider any two intersection points p, q ∈ L′
i ∩ L′

j

for some pair (i, j), and any two arcs γ ⊂ L′
i and γ′ ⊂ L′

j joining p to q, then γ and γ′ are never

homotopic inside Σ0, as easily seen by considering either π0(γ) and π0(γ
′) (if π0(p) 6= π0(q)),

or π1(γ) and π1(γ
′) (if π0(p) = π0(q)).

The proof of Proposition 6.1 is essentially a careful induction on successive slices and

coordinate projections, where one manages to understand the structure of the intersections

between vanishing cycles by starting with a 1-dimensional slice of Σ0 and then adding one

extra dimension at a time; the main difficulty resides in setting up the induction properly and

in choosing manageable notations for the many objects that appear in the proof, rather than in

the actual calculations which are essentially always the same.

The next step towards understanding the category of vanishing cycles of the Lefschetz

fibration W : X → C would be to study the moduli spaces of pseudo-holomorphic maps from

a disc with three or more marked points to Σ0 with boundary on
⋃
L′
j , something which falls

beyond the scope of this chapter. Nonetheless, a careful observation suggests that the main

features observed in the two-dimensional case, namely the vanishing of mk for k ≥ 3 and the

exterior algebra structure underlying m2, should extend to the higher-dimensional case.

For example, in the case of CP3, we can study m2 : Hom(L′
0, L

′
1) ⊗ Hom(L′

1, L
′
2) →

qq
qq
3

01

2

p

µ0♣
δ2

δ3

δ1

δ0

❜ q
q
q

π1(β0) = π1(β3)

π1(β1)

π1(β2) ❜

Figure 13: The case of CP3: images by π0 of the vanishing cycles L′
j ⊂ Σ0 of W (left), and

images by π1 of the vanishing cycles βj ⊂ Fµ0 of π0 (right)
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Hom(L′
0, L

′
2) by looking carefully at Figure 13. Let α0 (resp. β0) be the morphism from L′

0 to

L′
1 (resp. from L′

1 to L′
2) which corresponds to their intersection at a critical point of π0, and let

α1, α2, α3 (resp. β1, β2, β3) be the three other morphisms between these two vanishing cycles

(labelling them in a consistent way with respect to the other coordinate projections). Equip-

ping Σ0 with an almost-complex structure for which the projection π0 is holomorphic, pseudo-

holomorphic discs project to immersed triangular regions in C∗ with boundary on δ0 ∪ δ1 ∪ δ2;
there are three such regions (to the upper-left, to the upper-right, and to the bottom of Figure

13 left). To start with, it is immediate from an observation of Figure 13 that m2(α0, β0) = 0.

Next, by deforming the arcs δ0 and δ1 to make them lie very close to each other near their

common end point, we can shrink the upper-left region to a very thin triangular sector, in

which case exactly one pseudo-holomorphic map contributes to the composition of α0 with

each of β1, β2, β3. It is then easy to see that composition with α0 induces an isomorphism

from span(β1, β2, β3) ⊂ Hom(L′
1, L

′
2) to the subspace of Hom(L′

0, L
′
2) spanned by the three

intersections for which arg x0 = π
2
. Considering the upper-right triangular region delimited

by δ0, δ1, δ2 on Figure 13 left, we can conclude that the same is true for the compositions of

α1, α2, α3 with β0, and arguing by symmetry we can check that m2(α0, βi) = ±m2(αi, β0) for

i = 1, 2, 3 (and, hopefully, a careful study of orientations should allow one to conclude that the

signs are all negative).

By a similar argument, we can study m2(αi, βj) for 1 ≤ i, j ≤ 3 by shrinking the lower

triangular region of Figure 13 left to a single point, which allows us to localize all the relevant

intersection points and pseudo-holomorphic discs into a single fiber of π0. The intersection

pattern inside that fiber of π0 is then described by Figure 13 right, so that things become essen-

tially identical to the discussion carried out in the previous section for the Lefschetz fibration

mirror to CP2 (observe the similarity between Figures 13 right and 5 right). Hence, the same

argument as in the two-dimensional case shows in particular that m2(αi, βi) = 0 for 1 ≤ i ≤ 3
and m2(αi, βj) = ±m2(αj , βi) for 1 ≤ i 6= j ≤ 3.

6.2 Non-commutative deformations of CP2

As mentioned in the introduction, in the general case one expects the mirror to be obtained

by partial (fiberwise) compactification of the Landau-Ginzburg model given by the toric mirror

ansatz. While not required in the toric Fano case considered here, this fiberwise compactifi-

cation allows for more freedom of deformation, since it enlarges H2(X,C); this sometimes

makes it possible to recover more general (non-toric) noncommutative deformations of the

Fano manifold. We now illustrate this by briefly discussing the case of CP2 (see [17] for more

details and additional examples). We will show the following:

Proposition 6.2 Non-exact symplectic deformations of the fiberwise compactified Landau-

Ginzburg model (X̄, W̄ ) correspond to general noncommutative deformations of the projective

plane.

Moreover, we expect that there is a simple relation between the cohomology class of the
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symplectic form on X̄ and the noncommutative deformation parameters for CP2.

Recall that a general noncommutative projective plane is defined by a graded regular al-

gebra which is presented by 3 generators of degree one and 3 quadratic relations. All these

noncommutative planes were described in the papers [10, 9], and with another point of view in

[40]. It was proved in [10] that isomorphism classes of regular graded algebras of dimension 3

generated by 3 elements of degree 1 are in bijective correspondence with isomorphism classes

of regular triples T = (E, σ, L), where one of the following holds:

1) E = P2, σ is an automorphism of P2, and L = O(1);

2) E is a divisor of degree 3 in P2, L is the restriction of OP2(1), and σ is an automorphism

of E such that (σ∗L)2 ∼= L⊗ σ2∗L, σ∗L ≇ L.

The triples (and the algebras) of the first type are related to the ordinary commutative P2

in the sense that the category qgr of such an algebra is equivalent to the category coh(P2),
whereas the triples of the second type are related to the nontrivial noncommutative projective

planes. For example, the toric noncommutative deformations of P2, which were discussed

above, correspond to the triples with E isomorphic to a triangle (union of three lines).

Consider now the noncommutative projective planes which correspond to triples with E
isomorphic to a smooth elliptic curve. We know that sometimes the categories qgr of two

different graded algebras can be equivalent. In particular, with this point of view any triple

with smooth E is equivalent to a triple with the same E and such that σ is a translation by

a point of E (see sect. 8 of [40]). On the other hand, according to [9](10.14), the equations

defining a generic regular graded algebra, which corresponds to a triple (E, σ, L) with E a

smooth elliptic curve and σ a translation, can be put into the form

f1 = cx2 + byz + azy = 0

f2 = axz + cy2 + bzx = 0

f3 = bxy + ayx+ cz2 = 0.

This means that the DG category C for these noncommutative projective planes can be

described in the following way. It has three objects, say l0, l1, l2, and for i < j the spaces of

morphisms Hom(li, lj) are 3-dimensional, with all elements of degree (j − i). There are bases

x0, y0, z0 ∈ Hom(l0, l1), x1, y1, z1 ∈ Hom(l1, l2), x̄, ȳ, z̄ ∈ Hom(l0, l2) in which the nontrivial

compositions are given by the following formulas:

m2(x0, y1) = az̄, m2(x0, z1) = bȳ, m2(x0, x1) = cx̄,

m2(y0, z1) = ax̄, m2(y0, x1) = bz̄, m2(y0, y1) = cȳ,

m2(z0, x1) = aȳ, m2(z0, y1) = bx̄, m2(z0, z1) = cz̄.

All other compositions (except those involving identity morphisms) vanish.
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Figure 14: The vanishing cycles of the compactified mirror of CP2

Recall from §4 that the mirror of CP2 is an elliptic fibration with three singular fibers. In

the affine setting, the generic fibers of W = x + y + z on X = {xyz = 1} are tori with three

punctures, but it is possible to compactify X partially into an elliptic fibration W̄ : X̄ → C
whose fibers are closed curves; unlike what happens in more complicated (non-toric) examples,

this does not introduce any extra critical points.

The generic fiber of W̄ and the three vanishing cycles are as represented on Figure 14

(compare with Figure 5 right, which represents the images by πx of the same vanishing cy-

cles; see also Figure 2 of [215]); the bold dots represent the intersections of the fiber with the

compactification divisor.

While it is easy to see that mk remains trivial for k 6= 2, the compactification modifies

the product m2 in the category Lagvc(W̄ , {γi}) by introducing an infinite number of immersed

triangular regions with boundary in L0 ∪ L1 ∪ L2. This induces a deformation of the product

structure, and the uncompactified case considered in §4 now arises as a limiting situation in

which the areas of the hexagonal regions containing the intersections with the compactification

divisor tend to infinity.

For example, the product m2(x0, y1) remains a multiple of z̄, but the relevant coefficient

is now a sum of infinitely many contributions, corresponding to immersed triangles in which

the edge joining x0 to y1 is an arbitrary immersed arc between these two points inside L1. The

convergence of the series
∑

i± exp(−2π area(Ti)) follows directly from the fact that the area

grows quadratically with the number of times that the x0y1 edge wraps around L1. Similarly,

m2(y0, x1) is a multiple of z̄ as in the uncompactified case, but with a coefficient now given

by the sum of an infinite series of contributions; and similarly for m2(y0, z1) and m2(y1, z0),
which remain multiples of x̄, and for m2(z0, x1) and m2(x0, z1), which are proportional to ȳ.

The important new feature of the compactified Landau-Ginzburg model is thatm2(x0, x1) is

now a multiple of x̄ (with a coefficient that may be zero or non-zero depending on the choice of

the cohomology class of the symplectic form); since there are again infinitely many immersed

triangular regions with vertices x0, x1, x̄ (the smallest two of which are embedded and easily
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visible on Figure 14), the relevant coefficient is the sum of an infinite series.

Observe that the two embedded triangles are to be counted with opposite signs (the differ-

ences in orientations at the two vertices of degree 1 cancel each other, while the non-triviality

of the spin structures and the complementarity of the sides result in a total of three sign

changes, see §4.6); hence, in the “symmetric” case where the six triangular regions delim-

ited by L0 ∪ L1 ∪ L2 have equal areas, these two contributions cancel each other. The same

is true of the other (immersed) triangles with vertices x0, x1, x̄, which arise in similarly can-

celling pairs. Hence, in the symmetric situation, we end up having m2(x0, x1) = 0 as in §4;

however in the general case m2(x0, x1) can still be a non-zero multiple of x̄. There are similar

statements for m2(y0, y1) and m2(z0, z1), which are multiples of ȳ and z̄ respectively (and also

vanish in the symmetric case).

6.3 HMS for products

Let W1 : X1 → C and W2 : X2 → C be two Lefschetz fibrations, with critical points

respectively pi, 1 ≤ i ≤ r and qj , 1 ≤ j ≤ s, and associated critical values λi = W1(pi) and

µj = W2(qj). Then W = W1 +W2 : X1 × X2 → C is a Lefschetz fibration with rs critical

points (pi, qj), and associated critical values W (pi, qj) = λi + µj (we will assume that these

are pairwise distinct and nonzero).

For all t ∈ C, the fiber Mt = W−1(t) ⊂ X1 × X2 can be viewed as the total space of a

fibration φt :Mt → C given by φt(p, q) = W1(p), with fiber φ−1
t (λ) = W−1

1 (λ)×W−1
2 (t−λ).

The r + s critical values of φt are λ1, . . . , λr and t − µ1, . . . , t − µs. If t varies along an arc

γ joining 0 to λi + µj , the critical value t − µj of φt converges to the critical value λi by

following the arc γ − µj . Hence, the vanishing cycle Lγ ⊂ M0 associated to the arc γ is a

fibered Lagrangian sphere, mapped by φ0 to the arc γ̃ = γ − µj joining the critical values −µj
and λi of φ0.

More precisely, the fiber of φ0 above an interior point of γ̃ is symplectomorphic to the

product Σ1 × Σ2 of the smooth fibers of W1 and W2, and its intersection with the vanishing

cycleLγ is a product of two Lagrangian spheres Si×Tj ⊂ Σ1×Σ2, where Si and Tj correspond

to vanishing cycles ofW1 andW2 associated to the critical values λi and µj respectively. Above

the end points of γ̃, the product Si × Tj collapses to either {pi} × Tj (above γ̃(1) = λi) or

Si × {qj} (above γ̃(0) = −µj). Denoting by ni the complex dimension of Xi, a model for the

topology of the restriction of φ0 to Lγ is given by the map φ : Sn1+n2−1 → [0, 1] defined over

the unit sphere in Rn1+n2 by (x1, . . . , xn1, xn1+1, . . . , xn1+n2) 7→ x21 + · · ·+ x2n1
.

Up to a suitable isotopy we can assume that the critical values λi all have the same imagi-

nary part, and 0 < Im(λi)≪ Re(λ1)≪ · · · ≪ Re(λr) (so that line segments joining the origin

to λi form an ordered collection that can be used to define Lagvc(W1)). Similarly, assume that

µj all have the same real part, and 0 < Re(µj) ≪ Im(µs) ≪ · · · ≪ Im(µ1). Then there is

a natural way to choose arcs γij , 1 ≤ i ≤ r, 1 ≤ j ≤ s, joining the origin to λi + µj , with

both real and imaginary parts monotonically increasing, in such a way that the lexicographic

ordering of the labels ij coincides with the clockwise ordering of the arcs γij around the origin.
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Figure 15: The vanishing cycles of W =W1 +W2 : X1 ×X2 → C

The arcs γ̃ij to which the vanishing cycles Lij ⊂ M0 project under φ0 are then as shown in

Figure 15.

In this situation, we have the following result, which gives supporting evidence for Conjec-

ture 1.3:

Proposition 6.3 The vanishing cycles Lij of W are in one-to-one correspondence with pairs

of vanishing cycles (Si, Tj) of W1 and W2, and

HomLagvc(W1+W2)(Lij , Li′j′) ≃ HomLagvc(W1)(Si, Si′)⊗HomLagvc(W2)(Tj , Tj′).

Proof. [Sketch of proof] For i < i′ and j < j′, the intersections between Lij and Li′j′
localize into a single smooth fiber of φ0, whose intersection with Lij is Si × Tj while the

intersection with Li′j′ is Si′ × Tj′ (up to isotopy in general, but by suitably modifying the

fibrations W1 and W2 to make them trivial over large open subsets and by choosing the arcs γij
carefully we can make this hold strictly). Therefore, in this case intersections points between

Lij and Li′j′ correspond to pairs of intersections between Si and Si′ and between Tj and Tj′ ,
so Hom(Lij , Li′j′) ≃ Hom(Si, Si′) ⊗ Hom(Tj , Tj′). After choosing suitable trivializations of

the canonical bundles (so that the phase of Lij at an intersection point can easily be compared

with the sums of the phases of Si and Tj), it becomes easy to check that this isomorphism is

compatible with gradings.

When i = i′ and j < j′ the intersections between Lij and Lij′ lie in a singular fiber of φ0

(of the form W−1
1 (λi)× Σ2), inside which Lij and Lij′ identify with {pi} × Sj and {pi} × Sj′

respectively (see Figure 15); recalling that Hom(Si, Si) = C by definition, we obtain the

desired formula. Similarly for Lij ∩ Li′j when i < i′ and j = j′. Finally, the case i = i′ and

j = j′ is trivial.

In all other cases, there are no morphisms from Lij to Li′j′ . Indeed, if either i > i′ or i = i′

and j > j′ then (i, j) follows (i′, j′) in the lexicographic ordering, so there are no morphisms

from Lij to Li′j′ . The only remaining case is when i < i′ and j > j′; in that case the triviality

of Hom(Lij , Li′j′) follows from the fact Lij ∩ Li′j′ = ∅ (because the projections γ̃ij and γ̃i′j′
are disjoint). �

In order to prove Conjecture 1.3, one needs to achieve a better understanding of pseudo-

holomorphic discs in M0 with boundary in
⋃
Lij . This is most easily done in the case of
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low-dimensional examples such as the mirror to CP1 × CP1 (already studied in a different

manner in §5.1), or more generally any situation where the fibers are 0-dimensional, because

the description then becomes purely combinatorial. Another piece of supporting evidence is

the following

Lemma 6.4 When i < i′ < i′′ and j < j′ < j′′, the composition m2 : Hom(Lij , Li′j′) ⊗
Hom(Li′j′, Li′′j′′) → Hom(Lij , Li′′j′′) is expressed (up to homotopy) in terms of compositions

in Lagvc(W1) and Lagvc(W2) by the formula m2(s⊗ t, s′ ⊗ t′) = m2(s, s
′)⊗m2(t, t

′).

Proof. [Sketch of proof] After deforming the fibrationsW1 andW2 and the arcs γij, γi′j′, γi′′j′′
(hence “up to homotopy” in the statement), we can assume that all intersections between Lij ,
Li′j′ and Li′′j′′ occur in a portion of M0 where the fibration φ0 is trivial. Choose an almost-

complex structure which is locally a product in φ−1
0 (U) ≃ U × Σ1 × Σ2 ⊂ M0. Then every

pseudo-holomorphic disc with boundary in Lij∪Li′j′∪Li′′j′′ contributing tom2 projects under

φ0 to the same triangular region in U (the unique triangular region with boundary in γ̃ij ∪
γ̃i′j′ ∪ γ̃i′′j′′ , which we can assume to be arbitrarily small), while the projections to the factors

Σ1 and Σ2 are exactly those pseudo-holomorphic discs which contribute tom2 : Hom(Si, Si′)⊗
Hom(Si′ , Si′′)→ Hom(Si, Si′′) and m2 : Hom(Tj, Tj′)⊗ Hom(Tj′, Tj′′)→ Hom(Tj , Tj′′). �

Other parts of Conjecture 1.3 are also accessible to similar methods. However, the general

situation is quite subtle, partly because the definition of higher compositions in a product of

two A∞-categories is more complicated than one might think, but also because one has to deal

with more complicated moduli spaces of pseudo-holomorphic discs.
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Mirror symmetry for Del Pezzo surfaces:
Vanishing cycles and coherent sheaves.

1 Mirrors of Fano varieties

The phenomenon of mirror symmetry has been studied extensively in the case of Calabi-

Yau manifolds (where it corresponds to a duality between N = 2 superconformal sigma mod-

els), but also manifests itself in more general situations. For example, a sigma model whose

target space is a Fano variety is expected to admit a mirror, not necessarily among sigma mod-

els, but in the more general context of Landau-Ginzburg models.

For us, a Landau-Ginzburg model is simply a pair (M,W ), where M is a non-compact

manifold (carrying a symplectic structure and/or a complex structure), and W is a complex-

valued function on M called superpotential. The general philosophy is that, when a Landau-

Ginzburg model (M,W ) is mirror to a Fano variety X , the complex (resp. symplectic) ge-

ometry of X corresponds to the symplectic (resp. complex) geometry of the critical points of

W .

We place ourselves in the context of homological mirror symmetry, where mirror symmetry

is interpreted as an equivalence between certain triangulated categories naturally associated to

a mirror pair [151]. In our case, B-branes on a Fano variety are described by its derived

category of coherent sheaves, and under mirror symmetry they correspond to the A-branes of

a mirror Landau-Ginzburg model. These A-branes are described by a suitable analogue of

the Fukaya category for a symplectic fibration, namely the derived category of Lagrangian

vanishing cycles. A rigorous definition of this category has been proposed by Seidel [214]

in the case where the critical points of the superpotential are isolated and non-degenerate,

following ideas of Kontsevich [152] and Hori, Iqbal, Vafa [120].

Therefore, for a Fano variety X and a mirror Landau-Ginzburg model W : M → C, the
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homological mirror symmetry conjecture can be formulated as follows:

Conjecture 1.1 The derived category of Lagrangian vanishing cycles Db(Lagvc(W )) is equiv-

alent to the derived category of coherent sheaves Db(coh(X)).

Remark 1.2 Homological mirror symmetry also predicts another equivalence of derived cat-

egories. Namely, viewing now X as a symplectic manifold and M as a complex manifold, the

derived category of B-branes of the Landau-Ginzburg model W : M → C, which was defined

algebraically in [134, 194] following ideas of Kontsevich, should be equivalent to the derived

Fukaya category of X . This aspect of mirror symmetry will be addressed in a further paper;

for now, we focus exclusively on Conjecture 1.1.

One of the first examples for which Conjecture 1.1 has been verified is that of CP2 and its

mirror Landau-Ginzburg model which is the elliptic fibration with three singular fibers deter-

mined by the superpotentialW0 = x+y+1/xy on (C∗)2 (or rather a fiberwise compactification

of this fibration), see [215], [16]. Other examples of surfaces for which the derived category of

coherent sheaves has been shown to be equivalent to the derived category of Lagrangian vanish-

ing cycles of a mirror Landau-Ginzburg model include weighted projective planes, Hirzebruch

surfaces [16], and toric blow-ups of CP2 [243]. For all these examples, the toric structure plays

a crucial role in determining the geometry of the mirror Landau-Ginzburg model.

Our goal in this chapter is to consider the case of a Del Pezzo surface XK obtained by

blowing up CP2 at a set K of k ≤ 8 points (this is never toric as soon as k ≥ 4). Our proposal

is that a mirror of XK can be constructed in the following manner. Observe that the elliptic

fibration with three singular fibers determined by the superpotential W0 = x + y + 1/xy
on (C∗)2 (i.e., the mirror of CP2) admits a natural compactification to an elliptic fibration

W0 : M → CP1 in which the fiber above infinity consists of nine rational components (see

§3.1 for details). Consider a deformation of W0 to another elliptic fibration Wk : M → CP1,

such that k of the 9 critical points in the fiber W0
−1(∞) are displaced towards finite values of

the superpotential. Let

Mk =M \Wk
−1(∞),

and denote by Wk : Mk → C the restriction of Wk to Mk. In the generic case, Wk is an

elliptic fibration with k+ 3 nodal fibers, while Wk
−1(∞) is a singular fiber with 9− k rational

components. Although we will focus on the Del Pezzo case, this construction also provides a

mirror in some borderline situations. For example, it can be applied without modification to

the case where CP2 is blown up at k = 9 points which lie at the intersection of two elliptic

curves (the fiber Wk
−1(∞) is then a smooth elliptic curve).

There are two aspects to the geometry of Mk. Viewing Mk as a complex manifold (a

Zariski open subset of a rational elliptic surface), its complex structure is closely related to

the set of critical values of Wk, which has to be chosen in accordance with a given symplectic

structure on XK . A generic choice of the symplectic structure on XK (for which there are

no homologically nontrivial Lagrangian submanifolds) determines a complex structure on Mk
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for which the k + 3 critical values of Wk are all distinct (leading to a very simple category of

B-branes). In the opposite situation, which we will not consider here, if we equip XK with a

symplectic form for which there are homologically nontrivial Lagrangian submanifolds, then

some of the critical values of Wk become equal, and the topology of the singular fibers may

become more complicated.

The symplectic geometry of Mk is more important to us. Since H2(Mk,C) ≃ Ck+2, the

symplectic form ω on Mk, or rather its complexified variant B + iω, depends on k + 2 moduli

parameters. As we will see in §4, these parameters completely determine the derived category

of Lagrangian vanishing cycles of Wk; the actual positions of the critical values are of no

importance, as long as the critical points ofWk remain isolated and non-degenerate (see Lemma

3.2). This means that we shall not concern ourselves with the complex structure on Mk; in fact,

a compatible almost-complex structure is sufficient for our purposes, which makes the problem

of deforming the elliptic fibration W0 in the prescribed manner a non-issue.

To summarize, we have:

Construction 1.3 Given a Del Pezzo surface XK obtained by blowing up CP2 at k points, the

mirror Landau-Ginzburg model is an elliptic fibrationWk :Mk → C with k+3 nodal singular

fibers, which has the following properties:

(i) the fibration Wk compactifies to an elliptic fibration Wk over CP1 in which the fiber

above infinity consists of 9− k rational components;

(ii) the compactified fibrationWk can be obtained as a deformation of the elliptic fibration

W0 :M → CP1 which compactifies the mirror to CP2.

Moreover, the manifold Mk is equipped with a symplectic form ω and a B-field B, whose

cohomology classes are determined by the set of points K in an explicit manner as discussed

in §5.

Our main result is the following:

Theorem 1.4 Given any Del Pezzo surface XK obtained by blowing up CP2 at k points, there

exists a complexified symplectic formB+iω onMk for which Db(coh(XK)) ∼= Db(Lagvc(Wk)).

The mirror map, i.e. the relation between the cohomology class [B+ iω] ∈ H2(Mk,C) and

the positions of the blown up points in CP2, can be described explicitly (see Proposition 5.1).

On the other hand, not every choice of [B + iω] ∈ H2(Mk,C) yields a category equivalent

to the derived category of coherent sheaves on a Del Pezzo surface. There are two reasons

for this. First, certain specific choices of [B + iω] correspond to deformations of the complex

structure of XK for which the surface contains a −2-curve, which causes the anticanonical

class to no longer be ample. There are many ways in which this can occur, but perhaps the

simplest one corresponds to the case where a same point is blown up twice, i.e. we first blow

up CP2 at k − 1 generic points and then blow up a point on one of the exceptional curves. We

then say that XK is obtained from CP2 by blowing up k points, two of which are infinitely

close, and call this a “simple degeneration” of a Del Pezzo surface. In this case again we have:
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Theorem 1.5 If XK is a blowup of CP2 at k points, two of which are infinitely close, and a

simple degeneration of a Del Pezzo surface, then there exists a complexified symplectic form

B + iω on Mk for which Db(coh(XK)) ∼= Db(Lagvc(Wk)).

More importantly, deformations of the symplectic structure on Mk need not always cor-

respond to deformations of the complex structure on XK (observe that H2(Mk,C) is larger

than H1(XK , TXK)). The additional deformation parameters on the mirror side can however

be interpreted in terms of noncommutative deformations of the Del Pezzo surface XK (i.e.,

deformations of the derived category Db(coh(XK))). In this context we have the following

theorem, which generalizes the result obtained in [16] for the case of CP2:

Theorem 1.6 Given any noncommutative deformation of the Del Pezzo surface XK , there

exists a complexified symplectic form B + iω on Mk for which the deformed derived category

Db(coh(XK,µ)) is equivalent to Db(Lagvc(Wk)). Conversely, for a generic choice of [B +
iω] ∈ H2(Mk,C), the derived category of Lagrangian vanishing cycles Db(Lagvc(Wk)) is

equivalent to the derived category of coherent sheaves of a noncommutative deformation of a

Del Pezzo surface.

The mirror map is again explicit, i.e. the parameters which determine the noncommutative

Del Pezzo surface can be read off in a simple manner from the cohomology class [B + iω].

Remark 1.7 The key point in the determination of the mirror map is that the parameters which

determine the composition tensors in Db(Lagvc(Wk)) can be expressed explicitly in terms of

the cohomology class [B + iω] (see §4.3). A remarkable feature of these formulas is that

they can be interpreted in terms of theta functions on a certain elliptic curve (see §4.5). As a

consequence, our description of the mirror map also involves theta functions (see §5).

The rest of the chapter is organized as follows. In §2 we describe the bounded derived

categories of coherent sheaves on Del Pezzo surfaces, their simple degenerations, and their

noncommutative deformations. In §3 we describe the topology of the elliptic fibration Mk and

its vanishing cycles. In §4.1 we recall Seidel’s definition of the derived category of Lagrangian

vanishing cycles of a symplectic fibration, and in the rest of §4 we determine Db(Lagvc(Wk)).
Finally in §5 we compare the two viewpoints, describe the mirror map, and prove the main

theorems.

2 Derived categories of coherent sheaves on blowups

of CP2

The purpose of this section is to give a description of the bounded derived categories of

coherent sheaves on Del Pezzo surfaces, their simple degenerations, and their noncommutative
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deformations. We always work over the field of complex numbers C.

2.1 Del Pezzo surfaces and blowups of the projective plane at distinct points

Definition 2.1 A smooth projective surface S is called a Del Pezzo surface if the anticanonical

sheaf OS(−KS) is ample (i.e., a Del Pezzo surface is a Fano variety of dimension 2).

The Kodaira vanishing theorem and Serre duality give us immediately that for any Del

Pezzo surface

H1(S,O(−mKS)) = 0 for all m ∈ Z,

H2(S,O(−mKS)) = 0 for all m ≥ 0,

H2(S,O(−mKS)) = H0(S,O((m+ 1)KS)) for all m ∈ Z.

In particular, we obtain that H1(S,OS) ∼= H2(S,OS) = 0, and H0(S,O(mKS)) = 0 for all

m > 0. By the Castelnuovo-Enriques criterion any Del Pezzo surface is rational.

Let S be a Del Pezzo surface. The integer K2
S is called the degree of S and will be denoted

by d. The Noether formula gives a relation between the degree and the rank of the Picard group

of a Del Pezzo surface: d = K2
S = 10− rkPicS ≤ 9.

We can also introduce another integer number which is called the index of S. This is the

maximal r > 0 such thatO(−KS) = O(rH) for some divisorH . The inequality d ≤ 9 implies

that r ≤ 3.
Now recall the classification of Del Pezzo surfaces.

If r = 3, then S ∼= P2 is the projective plane and d = 9. If r = 2, then S ∼= P1 × P1 is

the quadric and d = 8. The other Del Pezzo surfaces are not minimal and can be obtained by

blowing up the projective plane P2. More precisely, if S is a Del Pezzo surface of index r = 1,
then it has degree 1 ≤ d ≤ 8 and S is a blowup of the projective plane P2 at k = 9− d distinct

points. The ampleness of the anticanonical class requires that in this set no three points lie on

a line, and no six points lie on a conic; moreover, if k = 8 the eight points are not allowed to

lie on an irreducible cubic which has a double point at one of these points. Conversely, any

surface which is a blowup of the projective plane at a set of k ≤ 8 different points satisfying

these constraints is a Del Pezzo surface of degree d = 9 − k. All these facts are well-known

and can be found in any textbook on surfaces (see e.g. [99]).

Denote by Db(coh(S)) the bounded derived category of coherent sheaves on S. It is known

that the bounded derived category of coherent sheaves on any Del Pezzo surface has a full ex-

ceptional collection, which makes it possible to establish an equivalence between the category

Db(coh(S)) and the bounded derived category of finitely generated modules over the algebra

of the exceptional collection ([193], see also [160]). This is a particular case of a more general

statement about derived categories of blowups.

First, recall the notion of exceptional collection.
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Definition 2.2 An object E of a C-linear triangulated category D is said to be exceptional if

Hom(E,E[k]) = 0 for all k 6= 0, and Hom(E,E) = C. An ordered set of exceptional objects

σ = (E0, . . . En) is called an exceptional collection if Hom(Ej , Ei[k]) = 0 for j > i and

all k. The exceptional collection σ is said to be strong if it satisfies the additional condition

Hom(Ej , Ei[k]) = 0 for all i, j and for k 6= 0.

Definition 2.3 An exceptional collection (E0, . . . , En) in a category D is called full if it gen-

erates the categoryD, i.e. the minimal triangulated subcategory ofD containing all objects Ei
coincides with D. In this case we say that D has a semiorthogonal decomposition of the form

D = 〈E0, . . . , En〉 .
The most studied example of an exceptional collection is the sequence of invertible sheaves

〈OPn, . . . ,OPn(n)〉 on the projective space Pn ([27]). In particular, this exceptional collection

on the projective plane P2 has length 3.

Definition 2.4 The algebra of a strong exceptional collection σ = (E0, . . . , En) is the algebra

of endomorphisms B(σ) = End(E) of the object E =
n
⊕
i=0

Ei.

Assume that the triangulated categoryD has a full strong exceptional collection (E0, . . . , En)
and B is the corresponding algebra. Denote by modB the category of finitely generated right

modules over B. There is a theorem according to which if D is an enhanced triangulated cat-

egory in the sense of Bondal and Kapranov [37], then it is equivalent to the bounded derived

category Db(modB). This equivalence is given by the functor RHom(E ,−) (see [37]).

For example, if D ∼= Db(coh(X)) is the bounded derived category of coherent sheaves on

a projective variety X, then it is enhanced. Actually, the category of quasi-coherent sheaves

Qcoh has enough injectives, and Db(coh(X)) is equivalent to the full subcategoryDb
coh(Qcoh(X)) ⊂

Db(Qcoh(X)) whose objects are complexes with cohomologies in coh(X).
Assume that X is smooth and (E0, . . . , En) is a strong exceptional collection on X. The

object E =
⊕n

i=0Ei defines the derived functor

RHom(E ,−) : D+(Qcoh(X)) −→D+(ModB),

where ModB is the category of all right modules over B. Moreover, the functor RHom(E ,−)
sends objects of Db

coh(Qcoh(X)) to objects of the subcategory Db
mod(ModB), which is also

equivalent to Db(modB). This gives us a functor

RHom(E ,−) : Db(coh(X)) −→Db(modB).

The objects Ei for i = 0, . . . , n are mapped to the projective modules Pi = Hom(E , Ei).
Moreover, B =

⊕n
i=0 Pi. The algebraB has n+1 primitive idempotents ei, i = 0, . . . , n such

that 1B = e0 + · · ·+ en and eiej = 0 if i 6= j. The right projective modules Pi coincide with

eiB. The morphisms between them can be easily described since

Hom(Pi, Pj) = Hom(eiB, ejB) ∼= ejBei ∼= Hom(Ei, Ej).
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This yields an equivalence between the triangulated subcategory of Db(coh(X)) generated by

the collection 〈E0, . . . , En〉 and the derived category Db(modB). Here we use the fact that the

algebraB has a finite global dimension and any right (and left) moduleM has a finite projective

resolution consisting of the projective modules Pi with i = 0, . . . , n. Finally, if the collection

(E0, . . . , En) is full, then we obtain an equivalence between Db(coh(X)) and Db(modB).
Sometimes it is useful to represent the algebra B as a category B which has n+ 1 objects,

say v0, . . . , vn, and morphisms defined by the rule Hom(vi, vj) ∼= Hom(Ei, Ej) with the natural

composition law. Thus B =
⊕

0≤i,j≤n

Hom(vi, vj).

Theorem 2.5 [193, 160] Let π : XK → P2 be a blowup of the projective plane P2 at a set

K = {p1, . . . , pk} of any k distinct points, and let l1, . . . , lk be the exceptional curves of the

blowup. Let (F0, F1, F2) be a full strong exceptional collection of vector bundles on P2. Then

the sequence

(2.1) (π∗F0, π
∗F1, π

∗F2,Ol1 , . . . ,Olk) ,

where the Oli are the structure sheaves of the exceptional −1-curves li, is a full strong excep-

tional collection on XK . Moreover, the sheaves Oli and Olj are mutually orthogonal for all

i 6= j.
In particular, there is an equivalence

(2.2) Db(coh(XK)) ∼= Db(modBK),

where BK is the algebra of homomorphisms of the exceptional collection (2.1).

There are no restrictions on the set of points K = {p1, . . . , pk} in this theorem and, in particu-

lar, we do not need to assume that XK is a Del Pezzo surface.

We can easily describe the space of morphisms from π∗Fi to the sheaf Olj , since it is

naturally identified with the space that is dual to the fiber of the vector bundle Fi at the point

pj ∈ P2, i.e.

HomXK
(π∗Fi,Olj ) ∼= HomP2(Fi,Opj ).

There are various standard exceptional collections on the projective plane. One of them is

the collection of line bundles (O,O(1),O(2)), another is the collection (O, TP2(−1),O(1)),
where TP2 is the tangent bundle on P2. The latter choice is the most convenient for us. It is easy

to see that

Hom(O, TP2(−1)) ∼= Hom(TP2(−1),O(1)) ∼= V and Hom(O,O(1)) ∼= Λ2V ∼= V ∗,

where V is the 3-dimensional vector space whose projectivization P(V ) is the given projective

plane P2.
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O

π∗T (−1)

π∗O(1)

Ol1
.
.
.
.
.
.
.

Olk

Λ2V

V V

Figure 1: The quiver BK for a blowup of P2 at k distinct points.

Let us consider the blowup XK of the projective plane P(V ) at a set K = {p1, . . . , pk} of

k distinct points, and the exceptional collection

(2.3) σ = (OXK
, π∗TP2(−1), π∗OP2(1),Ol1, . . . ,Olk).

Let BK(σ) be the category of homomorphisms of this exceptional collection (see Figure 1).

Then the surface XK can be recovered from the category BK(σ) by means of the following

procedure.

Denote by Sj the 2-dimensional space of homomorphisms from π∗TP2(−1) to Olj and

denote by Uj the 1-dimensional space of homomorphisms from O(1) to Olj . The composition

law in the category BK(σ) gives a map from Uj ⊗ V to Sj. The kernel of this map is a 1-

dimensional subspace Vj ⊂ V , which defines a point pj ∈ P(V ). In this way, we can determine

all the points p1, . . . , pk ∈ P(V ) and completely recover the surface XK starting from the

category BK(σ).

Remark 2.6 Exceptional objects and exceptional collections on Del Pezzo surfaces are well-

studied objects. First, any exceptional object of the derived category is isomorphic to a sheaf up

to translation. Second, any exceptional sheaf can be included in a full exceptional collection.

Third, any full exceptional collection can be obtained from a given one by a sequence of natural

operations on exceptional collections called mutations. All these facts can be found in the

paper [160].

2.2 Simple degenerations of Del Pezzo surfaces

We now look at some simple degenerations of the situation considered above, namely when

two points, for example p1 and p2, converge to each other and finally coincide. More precisely,

this means that we first blow up a point p and after that we blow up some point p′ on the

−1-curve which is the pre-image of p under the first blowup. This operation is sometimes



MIRROR SYMMETRY FOR DEL PEZZO SURFACES 81

called a blowup at two “infinitely close” points; more precisely, it corresponds to blowing up

a subscheme of length 2 supported at p. In this case, the pre-image π−1(p) consists of two

rational curves meeting at one point. One of them is a−1-curve which we denote by l′, and the

other is a−2-curve which we denote by l. The curve l is the proper transform of the exceptional

curve of the first blow up performed at the point p ∈ P2.
In this paragraph, we consider the situation where the surface XK is the blowup of the pro-

jective plane P2 at a subscheme K which is supported at a set of k − 1 points {p, p3, . . . , pk}
and has length 2 at the point p. In this case the surface XK is not a Del Pezzo surface, be-

cause it possesses a −2-curve l. However, it follows from general results about blowups that

Db(coh(XK)) still possesses a full exceptional collection [193].

O

π∗T (−1)

π∗O(1)

Oπ−1(p) Ol′

Ol3
.
.
.
.
.

Olk

Λ2V

V V

a

b

deg(a) = 0, deg(b) = 1.

Figure 2: The cohomology algebra of the DG-quiver BK(τ) for a blowup of P2 with two

infinitely close points.

Proposition 2.7 Let XK be the blowup of P2 at a subscheme K supported at a set of k − 1
points {p, p3, . . . , pk} and with length 2 at the point p. Then the sequence

(2.4) τ =
(
OXK

, π∗TP2(−1), π∗OP2(1),Oπ−1(p),Ol′,Ol3 , . . . ,Olk
)

is a full exceptional collection on XK .

As before we can see that the sheavesOli andOlj are mutually orthogonal for all i 6= j, and

eachOli is orthogonal to bothOl′ andOπ−1(p). However, the collection τ is not strong, because

there are non-trivial morphisms from Oπ−1(p) to Ol′ in degrees 0 and 1. More precisely,

Hom(Oπ−1(p),Ol′) ∼= C and Ext1(Oπ−1(p),Ol′) ∼= C.
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Denote by a and b two morphisms from Oπ−1(p) to Ol′ of degrees 0 and 1 respectively. It

is easy to see that composition with the morphism a gives isomorphisms between the spaces

Hom(F,Oπ−1(p)) and Hom(F,Ol′) for any element F of the exceptional collection τ (see Fig-

ure 2).

Two approaches can be used to obtain an analogue of equivalence (2.2) for this situation.

The first possibility is to associate to the non-strong exceptional collection τ a differential

graded algebra of homomorphisms, and obtain an equivalence between the derived category

of coherent sheaves and the derived category of finitely generated (right) DG-modules over

the DG-algebra of homomorphisms of the exceptional collection. (One could also try to work

in the framework of A∞-algebras, which might be more appropriate here considering that the

mirror situation involves an A∞-category with non-zero m3, see §4.4).

Another approach is to change the exceptional collection τ to another one which is strong.

There are natural operations on exceptional collections which are called mutations and which

allow us to obtain new exceptional collections starting from a given one.

We omit the definition of mutations, which is classical and can be found in many places.

However, we note that the left mutation of the exceptional collection (2.4) in the pair (π∗OP2(1),Oπ−1(p))
gives us a new exceptional collection

(2.5) τ ′ = (OXK
, π∗TP2(−1),M, π∗OP2(1),Ol′,Ol3 , . . . ,Olk)

whereM is the line bundle on XK which is the kernel of the surjection π∗OP2(1)→ Oπ−1(p).
This new exceptional collection τ ′ is strong.

O

π∗T (−1) M

π∗O(1)

Ol′

Ol3
.
.
.
.
.

Olk

Λ2V

V V

Figure 3: The quiver BK(τ
′) for a blowup of P2 with two infinitely close points.
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In fact, we can also consider the same left mutation when the blown up points are all

distinct, and obtain in that case as well a strong exceptional collection

σ′ = (OXK
, π∗TP2(−1),M, π∗OP2(1),Ol2,Ol3 , . . . ,Olk),

which behaves very much like τ ′. The distinguishing feature of the case where we blow up the

point p twice is that in the exceptional collection τ ′ the composition map

(2.6) Hom(M, π∗OP2(1))⊗ Hom(π∗OP2(1),Ol′) −→ Hom(M,Ol′)

is identically zero, whereas for σ′ (i.e., when the points of K are distinct) the corresponding

composition is non-trivial. In this sense, the mutation allows us to give a simple description of

the behaviour of the category under the degeneration process where two points of K converge

to each other. Namely, the algebra BK(τ
′) of homomorphisms of the exceptional collection τ ′

is obtained as a degeneration of the algebra of homomorphisms of the exceptional collection

σ′ in which the composition (2.6) becomes zero.

Proposition 2.8 Let XK be the blowup of P2 at a subscheme K supported at a set of k − 1
points {p, p3, . . . , pk} and with length 2 at the point p. Then there is an equivalenceDb(coh(XK)) ∼=
Db(modBK(τ

′)), where BK(τ
′) is the algebra of homomorphisms of the exceptional collec-

tion τ ′.

In this context, the surface XK can again be recovered from the category BK(τ
′). Namely,

the points p, p3, . . . , pk can be determined by the same method as above. To recover XK , we

also have to determine the position of the point p′ on the exceptional curve of the blowup of

the point p. This is equivalent to finding a tangent direction at the point p. Consider the kernel

of the composition map

Hom(O,M)⊗Hom(M,Ol′) −→ Hom(O,Ol′).

It is a one-dimensional subspace of Hom(O,M). The image of this subspace in the space

V ∗ = Hom(O, π∗O(1)) determines a line in the projective space P(V ) which passes through

the point p and hence a tangent direction at p.

2.3 Noncommutative deformations of Del Pezzo surfaces

As before, let XK be the blowup of the projective plane at a set K of k distinct points.

Consider the strong exceptional collection

σ = (O, π∗TP2(−1), π∗OP2(1),Ol1, . . . ,Olk).

By the discussion in §2.1, the derived category of coherent sheaves Db(coh(XK)) is equivalent

to the category of finitely generated (right) modules over the algebra BK of homomorphisms

of σ. The algebraBK can also be represented by the category BK associated to the exceptional

collection σ (see Figure 1).
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The category BK has strictly more deformations than the surface XK . We saw above that

the surface XK can be reconstructed from the category BK , and that the deformation of the

surface XK is controlled by the variation of the set K ⊂ P2.
A general deformation of the category BK can be viewed as the category of an exceptional

collection on a noncommutative deformation of the surface XK . In other words, if BK,µ is a

deformation of the category BK then the bounded derived category Db(modBK,µ) of finitely

generated (right) modules over the algebra BK,µ will be viewed as the derived category of

coherent sheaves on a noncommutative surface XK,µ. Any such noncommutative surface can

be represented as the blowup of a noncommutative plane P2
µ at some set K consisting of k of

its “points”. This procedure is discussed in detail in [246].

In the rest of this section, we describe the deformations of the category BK . Recall that a

deformation of a category is, by definition, a deformation of its composition law. We proceed

in two steps. The first step is to describe the deformations of the subcategory B(σ0) associated

to the subcollection σ0 = (O, π∗T (−1), π∗O(1)). This subcategory B(σ0) is the category of

homomorphisms of the full strong exceptional collection (O, T (−1),O(1)) on P2. Therefore,

considering a deformation of the subcategory B(σ0) we obtain a noncommutative deformation

P2
µ of the projective plane. The second step is to describe the deformations of all other compo-

sitions in the category BK . These deformations correspond to variations of the set of “points”

K on the noncommutative projective plane P2
µ.

F0

F1

F2

U
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Figure 4: The quiver Bµ for a noncommutative P2
µ.

Noncommutative deformations of the projective plane have been described in [10], [40].

Any deformation of the category B(σ0) is a category with three ordered objects F0, F1, F2 and

with three-dimensional spaces of homomorphisms from Fi to Fj when i < j (see Figure 4).

Any such category Bµ is determined by the composition tensor µ : V ⊗ U → W. We will

consider only the nondegenerate (geometric) case, where the restrictions µu = µ(·, u) : V →
W and µv = µ(v, ·) : U → W have rank at least two for all nonzero elements u ∈ U and

v ∈ V , and the composition of µ with any nonzero linear form on W is a bilinear form of rank

at least two on V ⊗ U . The equations detµu = 0 and detµv = 0 define closed subschemes

ΓU ⊂ P(U) and ΓV ⊂ P(V ). Namely, up to projectivization the set of points of ΓU (resp.

ΓV ) consists of all u ∈ U (resp. v ∈ V ) for which the rank of µu (resp. µv) is equal to 2.
It is easy to see that the correspondence which associates to a vector v ∈ V the kernel of

the map µv : U → W defines an isomorphism between ΓV and ΓU . Moreover, under these

circumstances ΓV is either the entire projective plane P(V ) or a cubic in P(V ). If ΓV = P(V )
then µ is isomorphic to the tensor V ⊗ V → Λ2V, i.e. we get the usual projective plane P2.
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Thus, the non-trivial case is the situation where ΓV is a cubic, i.e. an elliptic curve which

we now denote by E. This elliptic curve comes equipped with two embeddings into the pro-

jective planes P(U) and P(V ) respectively; by restriction ofO(1) these embeddings determine

two line bundles L1 and L2 of degree 3 over E, and it can be checked that L1 6= L2. This

construction has a converse:

Construction 2.9 The tensor µ can be reconstructed from the triple (E,L1,L2). Namely, the

spaces U, V are isomorphic to H0(E,L1)
∗ and H0(E,L2)

∗ respectively, and the space W is

dual to the kernel of the canonical map

H0(E,L1)⊗H0(E,L2) −→ H0(E,L1 ⊗ L2),

which induces the tensor µ : V ⊗ U −→W .

The details of these constructions and statements can be found in [10], [40].

Remark 2.10 Note that we can also consider a triple (E,L1,L2) such that L1
∼= L2. Then

the procedure described above produces a tensor µ with ΓV ∼= P(V ), which defines the usual

commutative projective plane. Thus, in this particular case the tensor µ does not depend on

the curve E.

Now we describe the deformations of the other compositions in the category BK . Given a

category Bµ of the form described above, corresponding to a noncommutative projective plane

P2
µ, and given a set K = {p1, . . . , pk} of k points on the elliptic curve E, we can construct a

category BK,µ in the following manner. A point pj ∈ E ⊂ P(U) determines a one-dimensional

subspace of U , generated by a vector uj ∈ U . The map µuj : V → W has rank 2; denote by

vj a non-zero vector in its kernel. The category BK,µ is then constructed from the category

Bµ by adding k mutually orthogonal objects Olj for j = 1, . . . , k, and defining the spaces of

morphisms by the rule

Hom(F2,Olj) = C, Hom(F1,Olj ) = V/Kerµuj = V/〈vj〉, Hom(F0,Olj) = W/Imµvj .

The two composition tensors involving Hom(F2,Olj ) are defined in the obvious manner as

suggested by the notation. The only non-obvious composition is the map V/〈vj〉 ⊗ U →
W/Imµvj , which is by definition induced by the tensor µ : V ⊗ U −→W.

Conversely, if we consider a category BK,µ which is a deformation of BK and an extension

of the category Bµ, then the kernel of the composition map

Hom(F2,Olj )⊗ V −→ Hom(F1,Olj )

defines a one-dimensional subspace 〈vj〉 ⊂ V . The map µvj must have rank 2, since otherwise

µvj would be an isomorphism and the composition map Hom(F2,Olj )⊗W −→ Hom(F0,Olj )
would vanish identically, which by assumption is not the case. Therefore, the objects Olj
correspond to points on the curve E.
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Thus, any category BK,µ is defined by the data (E,L1,L2, p1, . . . , pk), where E is a cubic,

L1,L2 are line bundles of degree 3 on E, and p1, . . . , pk is a set of distinct points on E. If

L1
∼= L2, then we obtain the category BK related to a blowup of the usual commutative

projective plane. In the general case, the bounded derived category Db(modBK,µ) of finite

rank modules over the algebra BK,µ is viewed as the derived category of coherent sheaves on

the non-commutative surface XK,µ, which is a blowup of k points on the non-commutative

projective plane P2
µ.

A standard approach to noncommutative geometry is to determine a noncommutative va-

riety either by an abelian category of (quasi)coherent sheaves on it or by a noncommutative

(graded) algebra which is considered as its (homogeneous) coordinate ring. The question of

how to define the abelian category of coherent sheaves on Del Pezzo surfaces and on other

blowups of surfaces is discussed in the paper [246]. We briefly describe one of the possible ap-

proaches. It is very important to note that the category Db(modBK,µ) possess a Serre functor

S, i.e. an additive autoequivalence for which there are bi-functorial isomorphisms

Hom(X,SY )
∼−→ Hom(Y,X)∗

for any X, Y ∈ Db(modBK,µ). In the case of the bounded derived category of finite rank

modules over a finite dimensional algebra of finite homological dimension, the Serre functor is

the functor which takes a complex of modules M • to the complex RHomBK,µ
(M,BK,µ)

∗. The

Serre functor is an exact autoequivalence.

Now we can take the projective module P0 (corresponding to O, see the discussion after

Definition 2.4) and consider the sequence of objects Rm = Sm[−2m]P0 for all m ∈ Z. Let us

consider the subcategory A ⊂Db(modBK,µ) consisting of all objects F such that

Hom(Rm, F [i]) = 0 for all i 6= 0 and sufficiently large m≫ 0.

If the categoryA is abelian and its bounded derived categoryDb(A) is equivalent to Db(modBK,µ)
then A can be considered as the category of coherent sheaves on the noncommutative surface

XK,µ, and XK,µ can be called a noncommutative Del Pezzo surface.

The reason of such a definition of the abelian category of coherent sheaves on a noncom-

mutative Del Pezzo surface is inspired by the commutative case. In the commutative case the

Serre functor is isomorphic to the functor ⊗O(K)[2], where O(K) is the canonical line bun-

dle. Hence, for usual commutative surfaces the objects Rm are isomorphic to the invertible

sheaves O(mK). Since for a Del Pezzo surface X the anticanonical sheaf O(−K) is ample,

we have H i(X,F (−mK)) = 0 for all i 6= 0 and any coherent sheaf F when m is sufficiently

large. This property makes it possible to separate pure coherent sheaves from other complexes

of coherent sheaves.

We can also consider the graded space A =
⊕∞

p=0Hom(R0, R−p) and can endow it with

the structure of a graded algebra using the isomorphisms Hom(R0, R−p) ∼= Hom(Ri, Ri−p)
given by the functors Si[−2i] for all i ∈ Z. This algebra can be considered as the homoge-

neous coordinate ring of a noncommutative Del Pezzo surface. It seems that such rings are
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noncommutative deformations of homogeneous commutative coordinate rings of usual Del

Pezzo surfaces.

In any case, these remarks about abelian categories of coherent sheaves on noncommutative

Del Pezzo surfaces will not be needed in the rest of the argument. We will only use the de-

scription of the bounded derived category of coherent sheaves on the noncommutative blowup

XK,µ in terms of finite rank modules over the algebra BK,µ, i.e. we state an equivalence of

triangulated categories

(2.7) Db(coh(XK,µ)) ∼= Db(modBK,µ).

3 The mirror Landau-Ginzburg models

3.1 Compactification of the mirror of CP2

As mentioned in the introduction, the mirror of CP2 is an elliptic fibration with 3 singular

fibers, determined by (a fiberwise compactification of) the superpotential W0 = x+ y + 1/xy
on (C∗)2. This Landau-Ginzburg model compactifies naturally to an elliptic fibration W0 :
M → CP1, which we now describe.

Compactifying (C∗)2 to CP2, we can view W0 as the quotient of the two homogeneous

degree 3 polynomials P0 = X2Y + XY 2 + Z3 and P∞ = XY Z, which define a pencil of

cubics with three base points of multiplicities respectively 4, 4, and 1. Namely, the cubic C0

defined by P0 intersects the line X = 0 at (0 : 1 : 0) (with multiplicity 3), the line Y = 0 at

(1 : 0 : 0) (with multiplicity 3), and the line Z = 0 at (0 : 1 : 0), (1 : 0 : 0) and (1 : −1 : 0).
Blow up CP2 three times successively at the point where the cubic C0 and the line X = 0 (or

their proper transforms) intersect each other, i.e. first at the point (0 : 1 : 0), and then twice

at suitable points of the exceptional divisors (see Figure 5). Similarly, blow up three times the

intersection of the cubic C0 with the line Y = 0.

s
X=0 Z=0

C0

π←− s
X=0 Z=0

C̃0

E1
π←− s

X=0 Z=0
C̃0

Ẽ1E2
π←−

s

X=0 Z=0
C̃0

Ẽ1
Ẽ2

E3

Figure 5: The successive blowups at (0 : 1 : 0).

Let C̃0 be the proper transform of C0 under these blowups, and let C̃∞ be the configuration

of 9 rational curves formed by the proper transforms of the three coordinate lines and the
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exceptional divisors of the six blowups (so, in Figure 5, all components other than C̃0 are

eventually part of C̃∞). Then C̃0 and C̃∞ intersect transversely at three smooth points, and

define a pencil of elliptic curves representing the anticanonical class in CP2 blown up six

times. The complement of C̃∞ identifies with (C∗)2, and the restriction of the CP1-valued map

defined by the pencil to this open subset coincides with W0. Blowing up the three points where

C̃0 and C̃∞ intersect, we obtain a rational elliptic surface M , and the pencil becomes an elliptic

fibration W0 :M → CP1, which provides a natural compactification of W0 : (C
∗)2 → C.

r r r r
3j2

r

3j

r

3

r

∞

rrr
r

r r r
rr

Figure 6: The singular fibers of W0.

The meromorphic function W0 has 12 isolated non-degenerate critical points. Three of

them are the pre-images of the points (1 : 1 : 1), (j : j : 1), and (j2 : j2 : 1) (j = e2iπ/3), and

correspond to the three critical points of W0 in (C∗)2 (with associated critical values 3, 3j, and

3j2). The nine other critical points all lie in the fiber above infinity: they are the nodes of the

reducible configuration C̃∞ (see Figure 6).

This compactification process can also be described in a more symmetric manner by view-

ing (C∗)2 as the surface {xyz = 1} ⊂ (C∗)3, and W0 = x + y + z. Compactifying (C∗)3 to

CP3 leads one to consider the cubic surface {XY Z = T 3} ⊂ CP3, which presents A2 singu-

larities at the three points (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), and (0 : 0 : 1 : 0). After blowing up

CP3 at these three points, we obtain a smooth cubic surface, in which the hyperplane sections

C̃0 = {X + Y + Z = 0} and C̃∞ = {T = 0} define a pencil of elliptic curves with three base

points. As before, C̃0 is a smooth elliptic curve, and C̃∞ is a configuration of 9 rational curves

(the proper transforms of the three coordinate lines where the singular cubic surface intersects

the plane T = 0, and the six −2-curves arising from the resolution of the singularities). Blow-

ing up the three points of C̃0 ∩ C̃∞, we again obtain a rational elliptic surface, and an elliptic

fibration with 12 isolated critical points, 9 of which lie in the fiber above infinity (as in Figure

6).

3.2 The vanishing cycles of W0

Each singular fiber of W0 is obtained from the regular fiber by collapsing a certain num-

ber of vanishing cycles, and the monodromy of the fibration around a singular fiber is given

by a product of Dehn twists along these vanishing cycles. In this section, we determine the

homology classes of the vanishing cycles associated to the critical points of W0.
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More precisely, consider the fiber Σ0 = W0
−1(0), which is a smooth elliptic curve (in

fact, the proper transform of the curve called C̃0 in §3.1), and consider the following ordered

collection of arcs (γi)0≤i≤3 joining the origin to the various critical values of W0: γ0, γ1, γ2
are straight line segments joining the origin to λ0 = 3, λ1 = 3j2, and λ2 = 3j respectively, and

γ3 is the straight line eiπ/3R+ joining the origin to λ3 =∞.

Using parallel transport (with respect to an arbitrary horizontal distribution) along the arc

γi, we can associate a vanishing cycle to each critical point p ∈ W0
−1(λi); this vanishing

cycle is well-defined up to isotopy, and in particular we can consider its homology class in

H1(Σ0,Z) ≃ Z2 (well-defined up to a choice of orientation). If we fix a symplectic structure on

M for which the fibers ofW0 are symplectic submanifolds, then we have a canonical horizontal

distribution (given by the symplectic orthogonal to the fiber), which allows us to consider the

vanishing cycles as Lagrangian submanifolds of Σ0, well-defined up to Hamiltonian isotopy;

in §4 this will be of utmost importance, but for now we ignore the symplectic structure and

only view W0 as a topological fibration.

Lemma 3.1 In terms of a suitable basis {a, b} of H1(Σ0,Z), the vanishing cycles L0, L1, L2

associated to the critical values λ0, λ1, λ2 (and the arcs γ0, γ1, γ2) represent the classes [L0] =
−2a− b, [L1] = −a+ b, and [L2] = a+2b, respectively; and the vanishing cycles L3, . . . , L11

associated to the nine critical points in the fiber at infinity represent the class [L3] = · · · =
[L11] = a+ b.

Proof. The vanishing cycles L0, L1, L2 are exactly those of the mirror of CP2, and are well-

known (cf. e.g. [215] or [16]). In particular it is known that, choosing a suitable homology basis

{a, b} forH1(Σ0,Z), and fixing appropriate orientations ofL0, L1, L2, we have [L0] = −2a−b,
[L1] = −a + b, and [L2] = a + 2b (cf. e.g. Figure 14 in [16]).

We now consider the 9 critical points in the fiber at infinity. It is clear that L3, . . . , L11

admit disjoint representatives, and hence are all homologous. Their homology class can be

determined by considering the monodromy of the elliptic fibration W0, which is given by the

product of the positive Dehn twists along the vanishing cycles. Considering the action on

H1(Σ0,Z), and still using the basis {a, b} considered above, the monodromies around the

critical values λ0, λ1, λ2 are given by

τ0 =

(
−1 4
−1 3

)
, τ1 =

(
2 1
−1 0

)
, and τ2 =

(
−1 1
−4 3

)
,

while the monodromy around the fiber at infinity is given by τ 9, where τ is the positive Dehn

twist along [L3] = · · · = [L11]. On the other hand, because the arcs γ0, . . . , γ3 are ordered

clockwise around the origin, we have τ0τ1τ2τ
9 = 1. Therefore,

τ 9 =

(
−8 9
−9 10

)
,

and considering Ker(τ 9 − 1) we obtain [L3] = · · · = [L11] = a+ b. �
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Proof. [Alternative proof] (compare with §4.2 of [16]). Recall thatM is obtained from CP2 by

successive blowups of the base points of the pencil of cubics defined by P0 = X2Y +XY 2+Z3

and P∞ = XY Z. Consider the ruled surface F obtained by blowing up CP2 just once at the

point (0 : 1 : 0): the projection (X : Y : Z) 7→ (X : Z) naturally extends into a fibration

πx : F → CP1, of which the exceptional divisor is a section. For λ ∈ CP1, denote by Ĉλ
the proper transform of the plane cubic Cλ defined by P0 − λP∞, which is also the image of

W0
−1(λ) under the natural projection p :M → F .

The restriction πx,λ of πx to Ĉλ has degree two, and for λ 6∈ crit(W0) its four branch points

are associated to distinct critical values in CP1, namely zero and the three roots of the equation

x(λ−x)2 = 4. Indeed, sinceCλ always has an order 3 tangency with the lineX = 0 at (0 :1 :0),
Ĉλ is always tangent to the fiber π−1

x (0). The three other branch points are the critical points of

the projection to the first coordinate on (C∗)2 ∩ Cλ = {(x, y) ∈ (C∗)2, xy(λ − x − y) = 1};
viewing xy(λ − x − y) = 1 as a quadratic equation in the variable y, the discriminant is

x(λ− x)2 − 4.

s
s

s
s

δ2
δ0

δ1

δ′

δ′′

Figure 7: The projections of the vanishing cycles of W0

As λ tends to λi (i ∈ {0, 1, 2}), two of the critical values of πx,λ converge to each other;

keeping track of the manner in which these critical values coalesce when λ varies from 0 to λi
along the arc γi, we obtain an arc δi ⊂ CP1, with end points in crit(πx,0) (see Figure 7). The

lift of δi under the double cover πx,0 is (up to homotopy) the vanishing cycle Li (note that the

projection p :M → F allows us to implicitly identify Ĉλ with W0
−1(λ) for λ 6=∞).

Similarly, the behavior of the critical values of πx,λ as λ tends to infinity describes the

degeneration of Ĉλ to the singular configuration Ĉ∞, which consists of two sections and two

fibers of πx : F → CP1 (the fibers above 0 and∞, the exceptional section, and the pre-image

of the line Y = 0). Namely, as λ tends to infinity along the arc γ3, the critical value with

argument −2π/3 approaches zero, while the two other roots of x(λ− x)2 − 4 tend to infinity.

The manner in which pairs of critical values coalesce is encoded by the arcs δ′ and δ′′ in Figure

7, and the four vanishing cycles associated to the degeneration are essentially the lifts under

πx,0 of closed loops which bound regular neighborhoods of the arcs δ′ and δ′′; they all represent

the same homotopy class inside Ĉ0.

Recall that W0
−1(∞) ≃ C̃∞ is obtained from Ĉ∞ by repeatedly blowing up two of the

nodes. Taking pre-images under these blowup operations, the vanishing cycles associated to the

two other nodes of Ĉ∞ are naturally identified with two of the nine vanishing cyclesL3, . . . , L11
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associated to the fiber at infinity ofW0. In particular, these vanishing cycles represent the same

homology class in H1(Σ0,Z) ≃ H1(Ĉ0,Z) as the lifts of δ′ and δ′′.
It is then easy to check that, for suitable choices of orientations, we have [L0] · [L1] =

[L0] · [L2] = [L1] · [L2] = −3, [L0] · [L3+i] = [L2] · [L3+i] = −1, and [L1] · [L3+i] = −2, which

completes the proof of Lemma 3.1. �

3.3 The vanishing cycles of (Mk,Wk)
Recall from the introduction that our proposal for the mirror of a Del Pezzo surface XK

obtained from CP2 by blowing up k ≤ 8 generic points is an elliptic fibration Wk : Mk → C,

obtained by deforming the fibration W0 to another elliptic fibration Wk : M → CP1, and

considering the restriction to Mk = M \Wk
−1(∞). More precisely, remember that Wk has

3 + k irreducible nodal fibers corresponding to critical values λ0, . . . , λk+2 ∈ C, of which

the first three correspond naturally to the irreducible nodal fibers of W0, while the k other

finite critical values correspond to the deformation of critical points inW0
−1(∞) towards finite

values of the superpotential. Meanwhile, Wk
−1(∞) is a singular fiber with 9− k components.

While the precise locations of the critical values λi are closely related to the complex struc-

ture on Mk, they are essentially irrelevant from the point of view of symplectic topology and

categories of vanishing cycles. Indeed, if we consider a family (Mk,t,Wk,t) of fibrations in-

dexed by a real parameter t, with the property that for all t the critical points ofWk,t are isolated

and non-degenerate, then the vanishing cycles remain the same for all values of t, up to smooth

isotopies inside the reference fiber. For this reason, we do not need to make a specific choice

of λi. To fix ideas, let us say that λ0 is close to 3, λ1 is close to 3j2, λ2 is close to 3j, and

λi is close to infinity for i ≥ 3; we again choose the origin as base point, and note that the

smooth elliptic curve W−1
k (0) is diffeomorphic to W0

−1(0), so we implicitly identify them

and again call our reference fiber Σ0. We also choose an ordered collection of arcs γi joining

the origin to λi which lie close to those considered in §3.2, thus ensuring that the homology

classes [L0], . . . , [Lk+2] ∈ H1(Σ0,Z) of the corresponding vanishing cycles remain those given

by Lemma 3.1.

Fixing a symplectic form ωk on Mk (compatible with Wk, i.e. restricting positively to the

fibers), the vanishing cycles L0, . . . , Lk+2 associated to the arcs γ0, . . . , γk+2 naturally become

Lagrangian submanifolds of the reference fiber (Σ0, ωk|Σ0) (cf. e.g. [7, 214, 217]). Indeed,

the symplectic form defines a natural horizontal distribution outside of the critical points of

Wk, given by the symplectic orthogonal to the fiber. Using this horizontal distribution, parallel

transport induces symplectomorphisms between the smooth fibers, and the vanishing cycle Li
is by definition the set of points in the reference fiber Σ0 for which parallel transport along

γi converges to the critical point in the fiber W−1
k (λi). It is also useful to consider the Lef-

schetz thimble Di, which is the set of points swept out by parallel transport of Li above γi; by

construction, Di is a Lagrangian disk in (Mk, ωk), fibered above the arc γi, and ∂Di = Li.
We recall the following classical result (we provide a proof for completeness):

Lemma 3.2 A deformation of the system of arcs {γi} by an isotopy in Diff(C, crit(Wk)) affects
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the vanishing cycles Li by Hamiltonian isotopies; moreover, the same property holds if the

symplectic fibration (Mk, ωk,Wk) is deformed in a manner such that the cohomology class

[ωk] remains constant and the critical points of Wk remain isolated and non-degenerate.

Proof. We first consider a deformation of the system of arcs {γi}, based at a regular value

λ∗ ∈ C \ crit(Wk) (in our case the origin), to an isotopic system of arcs {γ′i} based at a regular

value λ′∗. This means that we are given an arc δ : [0, 1] → C \ crit(Wk) joining λ∗ to λ′∗, and

continuous families of arcs {γi,t}, 0 ≤ t ≤ 1, with γi,0 = γi and γi,1 = γ′i, such that γi,t joins

the regular value δ(t) to the critical value λi, and {γi,t}0≤i≤k+2 is an ordered collection of arcs

for all t ∈ [0, 1]. The vanishing cycles L′
i associated to the arcs γ′i live inside Σ′

∗ = W−1
k (λ′∗),

while the original vanishing cycles Li associated to γi are submanifolds of Σ∗ = W−1
k (λ∗).

However, we claim that the isotopy induces a symplectomorphism φ : Σ∗ → Σ′
∗ with the

property that φ(Li) and L′
i are mutually Hamiltonian isotopic for all i; this is the meaning of

the statement of the lemma.

Namely, parallel transport along the arc δ (using the horizontal distribution described above)

induces a symplectomorphism φ from Σ∗ = W−1
k (λ∗) to Σ′

∗ = W−1
k (λ′∗). For all t ∈ [0, 1]

we can consider the vanishing cycle Li,t ⊂ W−1
k (δ(t)) associated to the arc γi,t, and its image

L′
i,t ⊂ Σ′

∗ under the symplectomorphism induced by parallel transport along δ([t, 1]). The fam-

ily L′
i,t, t ∈ [0, 1] defines a smooth isotopy from L′

i,0 = φ(Li) to L′
i,1 = L′

i through Lagrangian

submanifolds of Σ′
∗. Moreover, each vanishing cycle Li,t ⊂ W−1

k (δ(t)) bounds a Lagrangian

thimble Di,t, and the cylinder Ci,t swept by Li,t under parallel transport along δ([t, 1]) is also

Lagrangian. By continuity, the relative cycles Di,t ∪ Ci,t (with boundary L′
i,t) all represent the

same relative homotopy class in π2(Mk,Σ
′
∗), and since Di,t and Ci,t are Lagrangian they all

have zero symplectic area. This implies that the Lagrangian submanifolds L′
i,t, t ∈ [0, 1] are

all Hamiltonian isotopic inside Σ′
∗; in particular, φ(Li) and L′

i are Hamiltonian isotopic.

We now consider a symplectic fibration W ′
k : (Mk, ω

′
k) → C which is isotopic to Wk

through an isotopy Wk,t : (Mk, ωk,t) → C that preserves the cohomology class of the sym-

plectic form (i.e., [ωk,t] = [ωk] for all t ∈ [0, 1]). We assume that each Wk,t has isolated

non-degenerate critical points. This allows us to deform the system of arcs {γi} through a

family {γi,t} with end points at the critical values of Wk,t; for t = 1 we obtain a system of arcs

{γ′i} based at a regular value λ′∗ of W ′
k. By Moser’s theorem, there exists a continuous family

of symplectomorphisms φt from (Mk, ωk,t) to (Mk, ω
′
k), or rather, since these are non-compact

manifolds, from open subsets of (Mk, ωk,t) to an open subset of (Mk, ω
′
k); however, after “en-

larging” (Mk, ω
′
k) by adding to ω′

k the pullback of a suitable area form on C, which affects

neither the symplectic structure on the fibers nor the parallel transport symplectomorphisms,

we can ensure that φt is defined over an arbitrarily large open subset of Mk, which is good

enough for our purposes. Moreover, by a relative version of Moser’s argument, we can also

ensure that φt maps the reference fiber of Wk,t to the reference fiber of W ′
k, and in particular

that φ = φ0 maps Σ∗ = W−1
k (λ∗) to Σ′

∗ =W ′
k
−1(λ′∗).

We now claim that φ(Li) ⊂ Σ′
∗ is Hamiltonian isotopic to the vanishing cycle L′

i of W ′
k

associated to the arc γ′i. Indeed, by considering the images under φt of the vanishing cycles Li,t
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associated to the arcs γi,t, we obtain a smooth isotopy from φ(Li) to L′
i through Lagrangian

submanifolds of Σ′
∗. Moreover, the thimbles D′

i and φ(Di) represent the same relative homo-

topy class (as can be seen by considering the images by φt of the thimbles Di,t associated to

γi,t), and both are Lagrangian with respect to ω′
k, which again implies that φ(Li) and L′

i are

Hamiltonian isotopic. �

3.4 A basis of H2(Mk)
The manifold Mk is simply connected, and its second Betti number is equal to k+2. A Q-

basis of H2(Mk) is given by considering the homology class of the fiber of Wk, [Σ0], and k+1
classes [C̄], [C̄0], . . . , [C̄k−1] constructed from the vanishing cycles Li and Lefschetz thimbles

Di in the following manner.

By Lemma 3.1 we have [L1] = [L0] + [L2] in H1(Σ0,Z), so there exists a 2-chain C in Σ0

such that ∂C = −L0 + L1 − L2. Then

C̄ = C +D0 −D1 +D2

is a 2-cycle in Mk. Note that [C̄ ] is in fact the image of the generator of H2((C
∗)2,Z) ≃ Z

under the inclusion map (see the proof of Lemma 4.9 in [16]).

Similarly, for 0 ≤ i < k we have 3 [L3+i] = [L2] − [L0] in H1(Σ0,Z), so there exists a

2-chain Ci in Σ0 such that ∂Ci = 3L3+i + L0 − L2, and we can consider the 2-cycle

C̄i = Ci − 3D3+i −D0 +D2

in Mk. We also introduce 2-chains ∆i,j (i, j ∈ {0, . . . , k − 1}) in Σ0 such that ∂∆i,j =
L3+j − L3+i, and the corresponding 2-cycles

∆̄i,j = ∆i,j +D3+i −D3+j .

We can chooseCi and ∆i,j in such a way that Cj−Ci = 3∆i,j (and hence [C̄j]− [C̄i] = 3 [∆̄i,j]
in H2(Mk)).

To summarize the discussion, the vanishing cycles Li and the 2-chains C, Ci, ∆i,j are

represented on Figures 8–9 (compare with Figure 2 in [215] and with [243]).

4 Categories of vanishing cycles

4.1 Definition

As proposed by Kontsevich [152] and Hori-Iqbal-Vafa [120], the category of A-branes as-

sociated to a Landau-Ginzburg model W : (M,ω) → C is a Fukaya-type category which
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Figure 8: The vanishing cycles of Wk and the chain C
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Figure 9: The chains Ci (left) and ∆i,j (right)

contains not only compact Lagrangian submanifolds of M but also certain non-compact La-

grangians whose ends fiber in a specific way above half-lines in C. In the case where the

critical points of W are isolated and non-degenerate, this category admits an exceptional col-

lection whose objects are Lagrangian thimbles associated to the critical points. Following the

formalism introduced by Seidel [214], [217], we view it as the derived category of a finite di-

rectedA∞-category Lagvc(W, {γi}) associated to an ordered collection of arcs {γi}. We briefly

recall the definition; the reader is referred to [214, 217] and to §3.1 of [16] for details.

Consider a symplectic fibration W : (M,ω) → C with isolated non-degenerate critical

points, and assume for simplicity that the critical values λ0, . . . , λr of W are distinct. Pick

a regular value λ∗ of W , and choose a collection of arcs γ0, . . . , γr ⊂ C joining λ∗ to the

various critical values of W , intersecting each other only at λ∗, and ordered in the clockwise

direction around λ∗. Consider the horizontal distribution defined by the symplectic form: by
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parallel transport along the arc γi, we obtain a Lagrangian thimble Di and a vanishing cycle

Li = ∂Di ⊂ Σ∗ (where Σ∗ = W−1(λ∗)). After a small perturbation we can always assume that

the vanishing cycles Li intersect each other transversely inside Σ∗. The following definition is

motivated by the observation that the intersection theory of the Lagrangian thimbles Di ⊂ M
is closely related to that of the vanishing cycles Li inside Σ∗ [214]:

Definition 4.1 (Seidel) The directed category of vanishing cycles Lagvc(W, {γi}) is an A∞-

category (over a coefficient ring R) with objects L0, . . . , Lr corresponding to the vanishing

cycles (or more accurately to the thimbles); the morphisms between the objects are given by

Hom(Li, Lj) =





CF ∗(Li, Lj ;R) = R|Li∩Lj | if i < j

R · id if i = j

0 if i > j;

and the differential m1, composition m2 and higher order products mk are defined in terms of

Lagrangian Floer homology inside Σ∗. More precisely,

mk : Hom(Li0 , Li1)⊗ · · · ⊗Hom(Lik−1
, Lik)→ Hom(Li0 , Lik)[2− k]

is trivial when the inequality i0 < i1 < · · · < ik fails to hold (i.e. it is always zero in this case,

except for m2 where composition with an identity morphism is given by the obvious formula).

When i0 < · · · < ik, mk is defined by fixing a generic ω-compatible almost-complex struc-

ture on Σ∗ and counting pseudo-holomorphic maps from a disk with k + 1 cyclically ordered

marked points on its boundary to Σ∗, mapping the marked points to the given intersection

points between vanishing cycles, and the portions of boundary between them to Li0 , . . . , Lik
respectively.

This definition calls for several clarifications. First of all, in our case Σ∗ is a smooth elliptic

curve and the vanishing cycles are homotopically non-trivial closed loops, we have π2(Σ∗) = 0
and π2(Σ∗, Li) = 0; hence, we need not be concerned by bubbling issues in the definition

of the Floer differential and products. In fact, the pseudo-holomorphic disks in Σ∗ that we

have to consider are nothing but immersed polygonal regions bounded by the vanishing cycles,

satisfying a local convexity condition at each corner point.

Also, the Maslov class vanishes identically, so we have a well-defined Z-grading by Maslov

index on the Floer complexes CF ∗(Li, Lj;R) once we choose graded Lagrangian lifts of the

vanishing cycles. Since in our case c1(Σ∗) = 0, we can do this by considering a nowhere

vanishing 1-form Ω ∈ Ω1(Σ∗,C) and choosing a real lift of the phase function φi = arg(Ω|Li
) :

Li → S1 for each vanishing cycle. The degree of a given intersection point p ∈ Li ∩Lj is then

determined by the difference between the phases of Li and Lj at p.
Our next remark is that the pseudo-holomorphic disks appearing in Definition 4.1 are

counted with appropriate weights, and with signs determined by choices of orientations of

the relevant moduli spaces. The orientation is determined by the choice of a spin structure
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for each vanishing cycle Li; in our case this spin structure must extend to the thimble, so it

is necessarily the non-trivial one. In the one-dimensional case there is a convenient recipe for

determining the correct sign factors, due to Seidel [217]. As will be clear from the discussion

in §4.2 below, we will only be interested in the specific case where all morphisms have even

degree and all spin structures are non-trivial. The sign rule can then be summarized as follows:

pick a marked point on each Li, distinct from the intersections with the other vanishing cycles;

then the sign associated to a pseudo-holomorphic map u : (D2, ∂D2)→ (Σ∗,∪Li) is (−1)ν(u),
where ν(u) is the number of marked points that the boundary of u passes through ([217], see

also §4.6 of [16]).

Finally, the weight attributed to each pseudo-holomorphic map u keeps track of its relative

homology class, which makes it possible to avoid convergence problems. The usual approach

favored by mathematicians is to work over a Novikov ring, which keeps track of the relative

homology class by introducing suitable formal variables. To remain closer to the physics, we

use C as our coefficient ring, and assign weights according to the symplectic areas; this is in

fact equivalent to working over the Novikov ring and specializing at the cohomology class of

the symplectic form.

The weight formula is simplest when there is no B-field; in that case, we consider untwisted

Floer theory, since any flat unitary bundle over the thimble Di is trivial and hence restricts to

Li as the trivial bundle. We then count each map u : (D2, ∂D2)→ (Σ∗,∪Li) with a coefficient

(−1)ν(u) exp(−2π
∫
D2 u

∗ω). (The normalization factor 2π is purely a matter of conventions,

and is sometimes omitted in the literature; here we include it for convenience). Hence, given

two intersection points p ∈ Li ∩ Lj , q ∈ Lj ∩ Lk (i < j < k), we have by definition

m2(p, q) =
∑

r∈Li∩Lk
deg r=deg p+deg q

(
∑

[u]∈M(p,q,r)

(−1)ν(u) exp(−2π
∫

D2

u∗ω)

)
r

where M(p, q, r) is the moduli space of pseudo-holomorphic maps u from the unit disk to

Σ∗ (equipped with a generic ω-compatible almost-complex structure) such that u(1) = p,

u(j) = q, u(j2) = r (where j = exp(2iπ
3
)), and mapping the portions of unit circle [1, j],

[j, j2], [j2, 1] to Li, Lj and Lk respectively. The other products are defined similarly. (Observe

that Seidel’s definition [214] does not involve any weights; this is because he only considers

exact Lagrangian submanifolds in exact symplectic manifolds, in which case the symplectic

areas are entirely determined by the primitives of the Liouville form and can be eliminated by

considering suitably rescaled bases of the Floer complexes.)

In presence of a B-field, the weights are modified by the fact that we now consider twisted

Floer homology. Indeed, each thimble Di now comes equipped with a trivial complex line

bundle Ei = C and a connection ∇i with curvature −2πiB, so its boundary Li is equipped

with the restricted bundle and the restricted connection, whose holonomy is hol∇i
(Li) =

exp(−2πi
∫
Di
B) by Stokes’ theorem. Since this property characterizes the connection ∇i

uniquely up to gauge, we can drop the line bundle and the connection from the notation

when considering the objects (Li, Ei,∇i) of Lagvc(W, {γi}). Nonetheless, the holonomy of
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∇i modifies the weights attributed to the pseudo-holomorphic disks in the definition of the

twisted Floer differentials and compositions. Namely, the weight attributed to a given pseudo-

holomorphic map u : (D2, ∂D2) → (Σ∗,∪Li) is modified by a factor corresponding to the

holonomy along its boundary, and becomes

(−1)ν(u) hol(u(∂D2)) exp(2πi

∫

D2

u∗(B + iω)).

More precisely, we fix trivializations of the line bundles Ei, so that for each intersection point

p ∈ Li ∩ Lj we have a preferred isomorphism between the fibers (Ei)|p and (Ej)|p; then

it becomes possible to define the holonomy along the closed loop u(∂D2) using the parallel

transport induced by ∇i from one “corner” of u to the next one, and the chosen isomorphism

at each corner.

Although the category Lagvc(W, {γi}) depends on the chosen ordered collection of arcs

{γi}, Seidel has obtained the following result [214] (for the exact case, but the proof extends

to our situation):

Theorem 4.2 (Seidel) If the ordered collection {γi} is replaced by another one {γ′i}, then the

categories Lagvc(W, {γi}) and Lagvc(W, {γ′i}) differ by a sequence of mutations.

Hence, the category naturally associated to the fibration W is not the finite A∞-category

defined above, but rather a (bounded) derived category, obtained from Lagvc(W, {γi}) by con-

sidering twisted complexes of formal direct sums of Lagrangian vanishing cycles, and adding

idempotent splittings and formal inverses of quasi-isomorphisms (see [152] and §5 of [214]).

If two categories differ by mutations, then their derived categories are equivalent; hence the

derived category Db(Lagvc(W )) depends only on the symplectic topology of W and not on

the choice of an ordered system of arcs [214].

For the examples we consider, the A∞-category Lagvc(W, {γi}) will in fact be an honest

category (see below); the bounded derived category Db(Lagvc(W )) is then by definition the

bounded derived category of finite rank modules over the algebra associated to this category.

4.2 Objects and morphisms

We now determine the categories Lagvc(Wk, {γi}) associated to the Landau-Ginzburg mod-

els (Mk,Wk) mirror to Del Pezzo surfaces and the systems of arcs {γi} introduced in §3.3. We

start with the objects and morphisms.

Recall that Wk has k + 3 isolated critical points, giving rise to k + 3 vanishing cycles

L0, . . . , Lk+2 in the reference fiber Σ0 ≃ W−1
k (0). The homology classes of these vanishing

cycles have been determined in §3 and are given by Lemma 3.1; these determine the vanishing

cycles up to Lagrangian isotopy.

The derived category of vanishing cycles is not affected if we modify some of the vanishing

cycles by Hamiltonian isotopies (more precisely, a Hamiltonian isotopy induces a chain map

on the Floer complexes, which yields a quasi-isomorphism between the finite A∞-categories
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of vanishing cycles). Hence, equipping the elliptic curve Σ0 with a compatible flat metric, we

can identify Σ0 with the quotient of C by a lattice, and represent the vanishing cycles Li by

closed geodesics parallel to those represented in Figure 8.

Assume that the cohomology class of the symplectic form ωk on Mk is generic (or more

precisely, with the notations of §3.4, that [ωk] · [∆̄i,j ] is never an integer multiple of [ωk] · [Σ0]).
Then the geodesics Li are all distinct, and their intersections are as pictured in Figure 8, so we

have:

Lemma 4.3 The geometric intersection numbers between the vanishing cycles are:

• |L0 ∩ L1| = |L0 ∩ L2| = |L1 ∩ L2| = 3;

• for 0 ≤ i < k, |L0 ∩ L3+i| = |L2 ∩ L3+i| = 1 and |L1 ∩ L3+i| = 2;

• for 0 ≤ i < j < k, |L3+i ∩ L3+j | = 0 as soon as [ωk] · [Σ0] 6 | [ωk] · [∆̄i,j].

In the rest of this section, unless otherwise specified we always assume that the vanishing

cycles Li are represented by distinct closed geodesics.

As in [16], we denote by x0, y0, z0 (resp. x1, y1, z1 and x̄, ȳ, z̄) the generators of Hom(L0, L1)
(resp. Hom(L1, L2) and Hom(L0, L2)) corresponding to the intersection points represented in

Figure 8. Moreover, we denote by ai (resp. bi, b
′
i and ci) the generators of Hom(L0, L3+i)

(resp. Hom(L1, L3+i) and Hom(L2, L3+i)) corresponding to the intersection points between

these vanishing cycles (see Figure 9).

Lemma 4.4 For suitable choices of graded lifts of the vanishing cycles, all the morphisms in

Lagvc(Wk, {γi}) have degree 0.

Proof. Equip Σ0 with a compatible flat metric and with a constant holomorphic 1-form Ω.

Taking geodesic representatives of the vanishing cycles, the phase functions φi = arg(Ω|Li
) :

Li → R/2πZ are constant, and we can normalize Ω so that it takes real negative values on

the oriented tangent space to L0, i.e. φ0 = π. Then it is possible to choose real lifts φ̃i ∈
R of the phases in such a way that π = φ̃0 > φ̃1 > φ̃2 > φ̃3 = · · · = φ̃k+2 > 0 (see

Figure 8 and recall the orientations chosen in Lemma 3.1). In the 1-dimensional case, the

relationship between Maslov index and phase is very simple: given a transverse intersection

point p between two graded Lagrangians L, L′ ⊂ Σ0, the Maslov index of p ∈ CF ∗(L, L′) is

equal to the smallest integer greater than 1
π
(φ̃L′(p)− φ̃L(p)). Since we only consider the Floer

complexes CF ∗(Li, Lj) for i < j, which implies that φ̃j − φ̃i ∈ (−π, 0) at every intersection

point, for these choices of graded Lagrangian lifts of the vanishing cycles all morphisms in

Lagvc(Wk, {γi}) have degree 0. �

Since each product mj shifts degree by 2− j, it follows immediately that the A∞-category

Lagvc(Wk, {γi}) is actually an honest category:

Corollary 4.5 mj = 0 for all j 6= 2.

Hence, the final step of the argument is a careful study of the various immersed triangular

regions bounded by the vanishing cycles in Σ0 and their contributions to m2.
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4.3 Compositions As before we assume that the Lagrangian vanishing cycles are realized

by distinct closed geodesics in the flat torus Σ0, and we determine the contributions to m2 of

the various immersed triangular regions in (Σ0,∪Li). We use the notations introduced in §4.2

for the intersection points, and those introduced in §3.4 for various 2-chains in Σ0 and the

corresponding 2-cycles in Mk. We also introduce the following notations:

Definition 4.6 Let qC = exp(2πi [B+ iω] · [C̄]) and qF = exp(2πi [B+ iω] · [Σ0]), and define

ζ+ =
∑

n∈Z

(−1)n qnC q
n(3n+1)/2
F , ζ− =

∑

n∈Z

(−1)n qnC q
n(3n−1)/2
F , ζ0 =

∑

n∈Z

(−1)n qnC q
3n(n−1)/2
F .

Since ω is a symplectic form on Σ0, we have |qF | = exp(−2π [ω] · [Σ0]) < 1, which ensures

the convergence of the series ζ+, ζ− and ζ0.

Proposition 4.7 There exist constants αxy, αyx, αyz, αzy, αzx, αxz ∈ C such that

m2(x0, y1) = αxyz̄, m2(y0, x1) = αyxz̄,

m2(y0, z1) = αyzx̄, m2(z0, y1) = αzyx̄,

m2(z0, x1) = αzxȳ, m2(x0, z1) = αxzȳ,

and these constants satisfy the relation

(4.1)
αxyαyzαzx
αyxαzyαxz

= −qC
(∑

n∈Z (−1)n q
n
C q

n(3n+1)/2
F∑

n∈Z (−1)n q
n
C q

n(3n−1)/2
F

)3

= −qC
(
ζ+
ζ−

)3

.

Remark 4.8 The quantity appearing in the right-hand side of (4.1) can be understood in terms

of certain theta functions; see §4.5 for details.

Before giving the proof, we make an observation which will be useful throughout this

section. The geodesics Li are not necessarily those pictured in Figure 8, but they are parallel to

them. So we can deform (in a non-Hamiltonian manner) the configuration of vanishing cycles

to that of Figure 8, and all intersection points and relative 2-cycles in (Σ0,∪Li) can be followed

through the deformation. Hence, immersed triangular regions in (Σ0,∪Li) are in one to one

correspondence with those in the configuration of Figure 8 (but of course the deformation does

not preserve areas). Moreover, we can choose the deformation in such a way that the relative

2-cycles C and Ci in Σ0 deform to those represented on Figures 8–9 (rather than to 2-cycles

which differ by a multiple of the fundamental cycle of Σ0).

Proof. [Proof of Proposition 4.7] The composition m2(x0, y1) is the sum of an infinite series

of contributions, corresponding to all immersed triangular regions in Σ0 with corners at the

intersection points x0, y1, and one of the points in L0 ∩ L2. By the above remark we can

enumerate these regions by looking at Figure 8. Considering the side which lies on L1, it is

then easy to see that for every homotopy class of arc joining x0 to y1 inside L1 there is a unique

such immersed triangular region, and the third vertex is always z̄.
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These various regions can be labelled by integers n ∈ Z in such a way that, denoting by

Txy,n the corresponding 2-chains in Σ0, we have ∂Txy,n − ∂Txy,n′ = (n− n′)(−L0 +L1 −L2)
for all n, n′ ∈ Z. We can choose the integer labels in such a way that, after deforming to the

configuration in Figure 8, Txy,0 becomes the smallest triangle with vertices x0, y1, z̄. (So, in

Figure 8, Txy,−1 is the immersed region bounded by the portions of L0 ∪ L1 ∪ L2 which do

not belong to ∂Txy,0; and all the other Txy,n have edges which wrap more than once around the

vanishing cycles).

By comparing ∂Txy,n and ∂Txy,0, it is clear that the 2-chain represented by Txy,n can be

expressed in the form Txy,n = Txy,0+nC +φ(n)Σ0 for some φ(n) ∈ Z. Moreover, by looking

at Figure 8 one easily checks that φ(n) = 1
2
n(3n + 1). (So e.g. Txy,−1 = Txy,0 − C + Σ0,

and Txy,1 = Txy,0 + C + 2Σ0). Let ψxy ∈ C be the coefficient of the contribution of Txy,0 to

m2(x0, y1). Then, by comparing the symplectic areas and boundary holonomies for Txy,n and

Txy,0, one easily checks that the contribution of Txy,n is equal to

(−1)n exp
(
2πi [B + iω] ·

(
n[C̄ ] +

n(3n+ 1)

2
[Σ0]

))
ψxy = (−1)n qnC q

n(3n+1)/2
F ψxy.

In this expression the sign factor (−1)n is due to the non-triviality of the spin structures (ob-

serve that ∂C = −L0 + L1 − L2 passes once through each of the three marked points on

L0, L1, L2); the total holonomy of the flat connections ∇i along ∂Txy,n − ∂Txy,0 = n ∂C is

exp(2πi n
∫
D0−D1+D2

B) by Stokes’ theorem; and the integral of B + iω over Txy,n differs

from that over Txy,0 by the amount n
∫
C
(B + iω) + 1

2
n(3n+ 1) [B + iω] · [Σ0].

Summing over n ∈ Z, and using the notation introduced in Definition 4.6, we obtain

αxy = ζ+ ψxy.

The calculations of m2(y0, z1) and m2(z0, x1) are exactly identical, and lead to similar expres-

sions. Namely, denote by ψyz (resp. ψzx) the contribution of the triangular region Tyz,0 (resp.

Tzx,0) which, after deforming to the configuration in Figure 8, corresponds to the smallest tri-

angle with vertices y0, z1, x̄ (resp. z0, x1, ȳ). Then one easily checks by the same argument as

above that αyz = ζ+ ψyz and αzx = ζ+ ψzx.

Next we consider the composition m2(y0, x1), which is again the sum of an infinite series

of contributions from triangular regions Tyx,n, n ∈ Z, which all have vertices y0, x1, z̄. We

can choose the labels in such a way that, after deforming to the configuration in Figure 8, Tyx,0
becomes the smallest such triangle, and Tyx,n = Tyx,0+nC + 1

2
n(3n− 1)Σ0. Denoting by ψyx

the coefficient associated to Tyx,0, it is easy to check by the same argument as above that the

contribution of Tyx,n is equal to (−1)n qnC q
n(3n−1)/2
F ψyx, so that

αyx = ζ−ψyx.

Similarly, with the obvious notations we have αzy = ζ−ψzy and αxz = ζ−ψxz. Finally, observe

that
ψxyψyzψzx
ψyxψzyψxz

= −qC .
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Indeed, Txy,0 + Tyz,0 + Tzx,0 − Tyx,0 − Tzy,0 − Txz,0 = C (cf. Figure 8). Therefore, compar-

ing the weights associated to these various triangles, the weighting by area gives a factor of

exp(2πi
∫
C
B+ iω), while the holonomy along the boundary ∂C = −L0+L1−L2 is equal to

exp(2πi
∫
D0−D1+D2

B), and finally the minus sign is due to the orientation conventions, since

∂C passes once through each of the three marked points on the vanishing cycles. Hence

αxyαyzαzx
αyxαzyαxz

=
ψxyψyzψzx ζ

3
+

ψyxψzyψxz ζ
3
−

= −qC
(
ζ+
ζ−

)3

.

�

Remark 4.9 If [ω+iB]·[C̄] = 0, then qC = 1 and the ratio between αxyαyzαzx and αyxαzyαxz
becomes equal to −1 irrespective of the value of qF ; this corresponds to a classical (commu-

tative) Del Pezzo surface.

Moreover, in the limit where [ω] · [Σ0] → ∞, we have qF = 0 and the ratio becomes −qC ,

which corresponds to the toric case studied in [16].

Proposition 4.10 There exist constants αxx, αyy, αzz ∈ C such that

m2(x0, x1) = αxxx̄, m2(y0, y1) = αyy ȳ, m2(z0, z1) = αzzz̄,

and these constants satisfy the relation

αxxαyyαzz
αyxαzyαxz

= −qF
qC

(∑
n∈Z (−1)n q

n
C q

3n(n−1)/2
F∑

n∈Z (−1)n q
n
C q

n(3n−1)/2
F

)3

= −qF
qC

(
ζ0
ζ−

)3

.

Proof. The argument is similar to the proof of Proposition 4.7. The immersed triangular re-

gions which contribute tom2(x0, x1) all have vertices x̄ as their third vertex, and can be indexed

by integers n ∈ Z in a manner such that ∂Txx,n − ∂Txx,n′ = (n− n′) ∂C for all n, n′ ∈ Z. We

can choose the integer labels in such a way that, after deforming to the standard configuration,

Txx,0 and Txx,1 = Txx,0 + C are the two embedded triangles with vertices x0, x1, x̄ visible on

Figure 8. It is then easy to check that Txx,n = Txy,0 + nC + 3
2
n(n− 1)Σ0. Hence, denoting by

ψxx the coefficient associated to Txx,0, we have

αxx = ζ0ψxx,

by the same argument as in previous calculations. Similarly, with the obvious notations, we

have αyy = ζ0ψyy and αzz = ζ0ψzz. Moreover, Txx,0 + Tyy,0 + Tzz,0 − Tyx,0 − Tzy,0 − Txz,0 =
Σ0 − C, which implies (by the same argument as above) that

ψxxψyyψzz
ψyxψzyψxz

= −qF
qC
.
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Therefore
αxxαyyαzz
αyxαzyαxz

=
ψxxψyyψzz ζ

3
0

ψyxψzyψxz ζ3−
= −qF

qC

(
ζ0
ζ−

)3

.

�

When qF = 0 (in particular in the toric case) we have αxxαyyαzz = 0, as in [16]. The

same conclusion also holds when qC = 1 (the commutative case). In fact, when qC = 1 each

of the constants αxx, αyy, αzz is zero, since in that case we have ζ0 = 0 (because the terms

corresponding to n and 1− n in the series defining ζ0 exactly cancel each other).

Definition 4.11 Let qi = exp(2πi [B + iω] · [C̄i]), and define

ζi,+ =
∑

n∈Z

(−1)n qni q
n(3n+1)/2
F , ζi,− =

∑

n∈Z

(−1)n qni q
n(3n−1)/2
F , ζi,0 =

∑

n∈Z

(−1)n qni q
3n(n−1)/2
F .

Proposition 4.12 There exist constants βx̄,i, βȳ,i, βz̄,i ∈ C such that

m2(x̄, ci) = βx̄,iai, m2(ȳ, ci) = βȳ,iai, m2(z̄, ci) = βz̄,iai,

and these constants satisfy the relations

β2
z̄,i αxyαzz

βx̄,iβȳ,i αzyαxz
=
(ζi,−
ζ−

)2 ζ+ ζ0
ζi,+ ζi,0

,

β2
x̄,i αyzαxx

βȳ,iβz̄,i αxzαyx
= −qi

(ζi,+
ζ−

)2 ζ+ ζ0
ζi,0 ζi,−

, and
β2
ȳ,i αzxαyy

βz̄,iβx̄,i αyxαzy
= −qF

qi

(ζi,0
ζ−

)2 ζ+ ζ0
ζi,− ζi,+

,

where ζ+, ζ−, ζ0, ζi,+, ζi,−, ζi,0, qi and qF are as in Definitions 4.6 and 4.11.

Proof. As before, the constants βx̄,i, βȳ,i, βz̄,i are the sums of infinite series corresponding

to all immersed triangular regions with vertices at ai, ci, and one of x̄, ȳ, z̄. For example the

coefficient βz̄,i associated to composition m2(x̄, ci) is the sum of an infinite series of contribu-

tions associated to triangular regions Tz̄,i,n, n ∈ Z. The integer labels can be chosen so that

∂Tz̄,i,n − ∂Tz̄,i,n′ = (n − n′)∂Ci and, after deforming to the configuration in Figure 9, Tz̄,i,0
becomes the smallest triangle with vertices z̄, ai, ci (i.e., the triangle which appears with coef-

ficient−2 in the 2-chain Ci). Then one easily checks that Tz̄,i,n = Tz̄,i,0+nCi+
1
2
n(3n−1)Σ0.

Therefore, denoting by ψz̄,i the coefficient associated to Tz̄,i,0, the same argument as in the

previous calculations yields the formula

βz̄,i = ζi,−ψz̄,i.

Similarly, denote by Tx̄,i,n, n ∈ Z, the immersed triangles contributing to m2(x̄, ci), in such

a way that ∂Tx̄,i,n− ∂Tx̄,i,n′ = (n−n′)∂Ci, and Tx̄,i,0 corresponds to the smallest triangle with

vertices x̄, ai, ci in Figure 9 (i.e. the triangle which appears with coefficient +2 in the 2-chain
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Ci). Then Tx̄,i,n = Tx̄,i,0 + nCi +
1
2
n(3n + 1)Σ0. Therefore, denoting by ψx̄,i the contribution

of Tx̄,i,0, we have βx̄,i = ζi,+ψx̄,i.
Finally, labelling the triangles with vertices ȳ, ai, ci by integers in such a way that Tȳ,i,0

and Tȳ,i,1 = Tȳ,i,0 + Ci correspond to the negative and positive parts of Ci respectively, it is

easy to check that Tȳ,i,n = Tȳ,i,0 + nCi +
3
2
n(n− 1)Σ0, so denoting by ψȳ,i the contribution of

Tȳ,i,0 we have βȳ,i = ζi,0ψȳ,i. It follows that

β2
z̄,i αxyαzz

βx̄,iβȳ,i αzyαxz
=

ψ2
z̄,i ψxyψzz

ψx̄,iψȳ,i ψzyψxz

ζ2i,− ζ+ ζ0

ζi,+ ζi,0 ζ
2
−

.

Moreover, the 2-chains 2 Tz̄,i,0 + Txy,0 + Tzz,0 and Tx̄,i,0 + Tȳ,i,0 + Tzy,0 + Txz,0 are equal,

which implies that ψ2
z̄,i ψxyψzz = ψx̄,iψȳ,i ψzyψxz and completes the proof of the first identity.

The arguments are the same for

β2
x̄,i αyzαxx

βȳ,iβz̄,i αxzαyx
=

ψ2
x̄,i ψyzψxx

ψȳ,iψz̄,i ψxzψyx

ζ2i,+ ζ+ ζ0

ζi,0 ζi,− ζ2−
,

observing that 2 Tx̄,i,0 + Tyz,0 + Txx,0 − Tȳ,i,0 − Tz̄,i,0 − Txz,0 − Tyx,0 = Ci (for which the

corresponding weight is −qi), and for

β2
ȳ,i αzxαyy

βz̄,iβx̄,i αyxαzy
=

ψ2
ȳ,i ψzxψyy

ψz̄,iψx̄,i ψyxψzy

ζ2i,0 ζ+ ζ0

ζi,− ζi,+ ζ2−
,

observing that 2 Tȳ,i,0 + Tzx,0 + Tyy,0 − Tz̄,i,0− Tx̄,i,0− Tyx,0 − Tzy,0 = Σ0 −Ci (for which the

corresponding weight is −qF /qi). �

Corollary 4.13 The constants βx̄,i, βȳ,i, βz̄,i satisfy the relations:
β3
z̄,i

β3
x̄,i

αxyαyxαzz
αyzαzyαxx

= − 1

qi

(ζi,−
ζi,+

)3
,

β3
x̄,i

β3
ȳ,i

αyzαzyαxx
αzxαxzαyy

=
q2i
qF

(ζi,+
ζi,0

)3
, and

β3
ȳ,i

β3
z̄,i

αzxαxzαyy
αxyαyxαzz

= −qF
qi

( ζi,0
ζi,−

)3
.

Proposition 4.14 For all 0 ≤ i, j < k we have the identities

βȳ,i βz̄,j
βȳ,j βz̄,i

= q̃i,j
ζi,0 ζj,−
ζj,0 ζi,−

,
βz̄,i βx̄,j
βz̄,j βx̄,i

= q̃i,j
ζi,− ζj,+
ζj,− ζi,+

, and
βx̄,i βȳ,j
βx̄,j βȳ,i

= q̃−2
i,j

ζi,+ ζj,0
ζj,+ ζi,0

,

where q̃i,j = exp(2πi [B + iω] · [∆̄i,j]), and ζi,+, ζi,−, ζi,0 are as in Definition 4.11.

Proof. We claim that Tȳ,i,0 + Tz̄,j,0− Tȳ,j,0− Tz̄,i,0 = ∆i,j . Indeed, consider first a situation in

which L3+i lies in the position represented in Figure 9, and L3+j lies close to it, but is slightly

shifted towards the lower-right direction. Then the intersection points aj and cj lie close to ai
and ci, and following the triangular regions through the small deformation which takes L3+i to

L3+j , we easily see that Tz̄,j,0 is obtained by slightly truncating Tz̄,i,0 on its L3+i side. Similarly,
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Tȳ,j,0 is obtained by slightly truncating Tȳ,i,0, and since ∆i,j is simply the thin strip in between

L3+i and L3+j the claim follows.

The same property remains true if L3+i and L3+j are further apart from each other. This can

be checked explicitly for example in the configuration of Figure 8, where ∆i,j is as pictured on

Figure 9 (right). (In this configuration the deformation from L3+i to L3+j passes through ȳ and

z̄, so the triangles Tz̄,i,0 and Tz̄,j,0 lie on opposite sides of z̄, and similarly for Tȳ,i,0 and Tȳ,j,0;
this latter triangle is now the small region to the lower-right of ȳ on Figure 8).

As a consequence, we have the identity

ψȳ,iψz̄,j
ψȳ,jψz̄,i

= q̃i,j ,

which implies the first formula in the proposition. The two other formulas are proved similarly,

using the equalities Tz̄,i,0 + Tx̄,j,0 − Tz̄,j,0 − Tx̄,i,0 = ∆i,j and Tx̄,i,0 + Tȳ,j,0 − Tx̄,j,0 − Tȳ,i,0 =
−2∆i,j . �

Remark 4.15 The various ratios computed in Propositions 4.7–4.14 are intrinsic quantities

attached to the symplectic geometry of Wk, i.e. they are invariant under Hamiltonian deforma-

tions, irrespective of whether the vanishing cycles are represented by geodesics or not. Equiv-

alently, they are invariant under rescalings of the chosen generators of the morphism spaces

in Lagvc(Wk, {γi}). On the other hand, if we allow ourselves to use the fact that the vanish-

ing cycles are geodesics in a flat torus, we can also compute some interesting non-intrinsic

quantities (i.e., quantities which depend on a particular choice of scaling of the generators).

For example, the invariance of L0, L1, L2 under the translation of the torus which maps

x0 to y0 (and y0 to z0, z0 to x0) implies that, for suitable choices of the marked points associ-

ated to the spin structures and of the isomorphisms between lines used to calculate boundary

holonomies, αxy = αyz = αzx, αyx = αxy = αxz, and αxx = αyy = αzz. In fact, going over the

calculations in the proofs of Propositions 4.7 and 4.10, and observing that, in terms of areas

and boundary holonomies, the contributions of Txy,0 − Tyx,0 and Txx,0 − Tyx,0 are equivalent

to those of 1
3
C and 1

3
(Σ0−C) respectively, one easily checks that there exists a constant s 6= 0

such that

(4.2)

αxy = αyz = αzx = s q
1/3
C ζ+,

αxx = αyy = αzz = s q
1/3
F q

−1/3
C ζ0,

αyx = αzy = αxz = −s ζ−,

where by definition q
1/3
C = exp(2πi

3
[B+ iω] · [C̄ ]) and q

1/3
F = exp(2πi

3
[B+ iω] · [Σ0]). Similarly,

for suitable choices we have

(4.3) βx̄,i = si q
1/3
i ζi,+, βȳ,i = si q

1/3
F q

−1/3
i ζi,0, and βz̄,i = −si ζi,−,

where si is a non-zero constant and q
1/3
i = exp(2πi

3
[B + iω] · [C̄i]).
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The formulas (4.2) and (4.3) are only valid in the flat case, when the complexified symplectic

form on Σ0 is translation-invariant and the vanishing cycles are geodesics; however, in the

general case we can always modify our choices of generators of the various morphism spaces

by suitable scaling factors (or equivalently, modify the vanishing cycles by certain Hamiltonian

isotopies) in order to make these formulas hold. It is therefore these simpler formulas that we

will use in order to determine the mirror map in §5 below.

4.4 Simple degenerations

In this section we consider the situation where the symplectic area of one of the 2-cycles

∆̄i,j becomes a multiple of that of the fiber Σ0. The vanishing cycles L3+i and L3+j are then

Hamiltonian isotopic to each other in Σ0, and hence cannot be represented by disjoint geodesics

anymore. However we can still represent L3+i by a closed geodesic, and L3+j by a small

generic Hamiltonian perturbation of L3+i, intersecting it transversely in two points. These two

intersection points have Maslov indices 0 and 1 respectively (if we choose the same graded lifts

as previously), and for this configuration we have:

Lemma 4.16 If there exist integers n ∈ Z and i < j such that [ω] · [∆̄i,j] = n [ω] · [Σ0], then

Hom(L3+i, L3+j) is graded isomorphic to H∗(S1)⊗ C. Moreover, the differential

m1 : Hom
0(L3+i, L3+j)→ Hom1(L3+i, L3+j)

is zero if [B] · [∆̄i,j] ∈ Z+ n [B] · [Σ0], and an isomorphism otherwise.

Proof. The only contributions tom1 come from the two disksD′ and D′′ bounded by L3+i and

L3+j . The 2-chain D′ −D′′ in Σ0 has symplectic area zero, and is in fact given by D′ −D′′ =
∆i,j − nΣ0. Hence we can compare the coefficients ψ′ and ψ′′ associated to these two disks by

the same argument as in §4.3. Namely, ψ′ and ψ′′ differ by a sign factor, a holonomy factor,

and an area factor.

In this case the sign factor is −1 (the sign rule for odd degree morphisms is slightly more

subtle than that for even degree morphisms [217]; here we can see directly that the signs for

D′ and D′′ have to be different since the untwisted Floer homology of L3+i and L3+j is non-

trivial); the holonomy factor is the total holonomy along ∂(D′ − D′′) = L3+j − L3+i, i.e.

exp(2πi
∫
D3+i−D3+j

B); and the area factor is exp(2πi
∫
D′−D′′ B + iω). It follows that

ψ′ = − exp
(
2πi [B + iω] · ([∆̄i,j ]− n[Σ0])

)
ψ′′,

since D′ −D′′ +D3+i −D3+j = ∆̄i,j − nΣ0. Since m1 is determined by the sum ψ′ + ψ′′, we

conclude that m1 = 0 if and only if [B + iω] · ([∆̄i,j]− n[Σ0]) is an integer. �

In other words, if [B + iω] · [∆̄i,j] ∈ Z ⊕ ([B + iω] · [Σ0])Z, then (L3+i,∇3+i) and

(L3+j ,∇3+j) are essentially identical, and we have a non-cancelling pair of extra morphisms

of degrees 0 and 1 from L3+i to L3+j ; this mirrors the situation in which CP2 is blown up twice
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at infinitely close points, in which case there is a rational −2-curve and the derived category of

coherent sheaves is richer than in the generic case. In all other situations the intersection points

between L3+i and L3+j , if any, are killed by the twisted Floer differential (even when L3+i and

L3+j are Hamiltonian isotopic).

Remark 4.17 It is important to note that, due to the presence of immersed convex polygonal

regions with two edges on L0 ∪ L1 ∪ L2 and two edges on L3+i ∪ L3+j (with a corner at the

intersection point of Maslov index 1), we have to consider not only the Floer differential m1,

but also the higher-order composition m3. For example, when L3+i and L3+j are Hamiltonian

isotopic the composition

m3 : Hom(L0, L2)⊗Hom(L2, L3+i)⊗Hom1(L3+i, L3+j) −→ Hom(L0, L3+j)

is in general non-zero (and similarly with L1 instead of L0 or L2).

As in §2.2, it is possible to describe things in a simpler and more unified manner by con-

sidering a suitable mutation of the exceptional collection (L0, . . . , Lk+2). Assume for sim-

plicity that the two vanishing cycles which may coincide are L3 and L4, while the others are

represented by distinct geodesics. Then we can modify the system of arcs {γi} considered

so far to a new ordered system of arcs {γ′i} such that γ′i = γi for i 6∈ {2, 3}, γ′3 = γ2,
and γ′2 connects the origin to λ3 ≈ ∞ along the negative real axis. This gives rise to a

new category Lagvc(Wk, {γ′i}), in which all objects but one can be identified with the objects

Li, i 6= 3 of Lagvc(Wk, {γi}); thus, we denote by L0, L1, L
′, L2, L4, . . . , Lk+2 the objects of

Lagvc(Wk, {γ′i}). The morphisms and compositions not involvingL′ are as in Lagvc(Wk, {γi}).
The new vanishing cycle L′ is Hamiltonian isotopic to the image of L3 under the positive

Dehn twist along L2. In particular, with the notations of Lemma 3.1, and for a suitable choice

of orientation, its homology class is [L′] = [L2]−[L3] = b. Choosing a geodesic representative,

we have |L0 ∩ L′| = 2, |L1 ∩ L′| = 1, |L′ ∩ L2| = 1, and |L′ ∩ L3+i| = 1 for i ≥ 1, and all

morphisms in Lagvc(Wk, {γ′i}) have degree 0.

Because L′ is Hamiltonian isotopic to the image of L3 under the Dehn twist along L2,

the fiber Σ0 contains a 2-chain ∆′ with ∂∆′ = L′ + L4 − L2 and such that
∫
∆′ ω =

∫
∆3,4

ω.

Capping off ∆′ with the appropriate Lefschetz thimbles, we obtain a 2-cycle ∆̄′ in Mk, with

[∆̄′] = [∆̄3,4] in H2(Mk,Z). The composition

Hom(L′, L2)⊗ Hom(L2, L4) −→ Hom(L′, L4)

corresponds to an infinite series of triangular immersed regions in Σ0, of which in general two

are embedded. The case where the symplectic area of ∆′ is a multiple of that of the fiber

corresponds precisely to the situation where the two embedded triangular regions have equal

symplectic areas. In general, the immersed triangles contributing to the composition can be

labelled T ′
n, n ∈ Z, in such a way that T ′

n = T ′
0 + n∆′ + 1

2
n(n− 1)Σ0. Arguing as before, one

easily shows that the composition is given by the contribution of T ′
0 multiplied by the factor

∑

n∈Z

(−1)n q′ n qn(n−1)/2
F , where q′ = exp(2πi[B + iω] · [∆̄′]) = q̃3,4.
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This multiplicative factor vanishes if and only if q′ = qkF for some k ∈ Z (an easy way to see

this is to view this factor as a theta function, see below), i.e. iff [B + iω] · [∆̄′] ∈ Z ⊕ ([B +
iω] · [Σ0])Z. Hence, as in §2.2 the mutation makes it possible to avoid dealing with a non-

trivial differential, and provides an alternative description in which the simple degeneration

corresponds to one of the composition maps becoming identically zero.

4.5 Modular invariance and theta functions

In this section we study the modularity properties of the category Lagvc(Wk, {γi}) with re-

spect to some of the parameters governing deformations of the complexified symplectic struc-

ture, and the relation with theta functions.

Proposition 4.18 Consider two complexified symplectic forms κ = B + iω and κ′ = B′ + iω′

on Mk, such that [κ′] · [Σ0] = [κ] · [Σ0] and [κ′] − [κ] ∈ H2(Mk,Z) ⊕ (κ · [Σ0])H
2(Mk,Z).

Then the categories Lagvc(Wk, κ, {γi}) and Lagvc(Wk, κ
′, {γi}) are equivalent.

Proof. First consider the situation where ω′ = ω, and B′ = B + dχ for some 1-form χ.

Then the vanishing cycles Li remain the same, but the associated flat connections differ, and

we can e.g. take ∇′
i = ∇i − 2πiχ. Then the contribution of a pseudo-holomorphic map

u : (D2, ∂D2) → (Σ0,∪Li) is actually the same in both cases, since the holonomy term

changes by exp(−2πi
∫
u(∂D2)

χ), while the weight factor changes by exp(2πi
∫
D2 u

∗dχ) =

exp(2πi
∫
u(∂D2)

χ). So, in the more general situation where [B′ − B] ∈ H2(Mk,Z) and [B′ −
B] · [Σ0] = 0 (still assuming ω′ = ω), after modifying B by an exact term we can assume that

B and B′ coincide over Σ0, and that the integral of B′ − B over each thimble Di is a multiple

of 2π. In this situation the vanishing cycles Li are the same, and the associated flat connections

are gauge equivalent (since their holonomies differ by multiples of 2π), so the corresponding

twisted Floer theories are identical.

Next, consider the situation where [B+iω] changes by an integer multiple of [B+iω]· [Σ0].
After adding an exact term to κ = B + iω (which does not affect the category of vanishing

cycles by Lemma 3.2 and by the above remark), we can assume that κ and κ′ coincide over Σ0,

and that the relative cohomology class of κ′ − κ is an element of (κ · [Σ0])H
2(Mk,Σ0;Z).

Let Di and D′
i be the thimbles associated to the arc γi and to the symplectic forms ω and ω′

respectively. The integrality assumption on κ′ − κ implies that there exists an integer ni ∈ Z
such that

∫
Di
κ′ = ni[κ] · [Σ0] +

∫
Di
κ. Since Di and D′

i can be deformed continuously into

each other (by deforming the horizontal distribution), there exists a 2-chain Ki in Σ0 such that

[Di + Ki − D′
i] = 0 in H2(Mk). Then

∫
Ki
ω =

∫
Ki
ω′ = −

∫
Di
ω′ = −ni[ω] · [Σ0]. Since

the symplectic area of the 2-chain Ki ⊂ Σ0 is an integer multiple of that of the fiber, the

two vanishing cycles L′
i = ∂D′

i and Li = ∂Di are mutually Hamiltonian isotopic in Σ0, and

hence we can assume that L′
i = Li. Moreover, in H2(Mk, Li) we have [D′

i] = [Di] − ni[Σ0].
Therefore,

∫
D′

i
B′ =

∫
Di
B′−ni

∫
Σ0
B′ = (

∫
Di
B+ni[B] · [Σ0])−ni[B] · [Σ0] =

∫
Di
B. So the

flat connections ∇i and ∇′
i have the same holonomy, which implies that (Li,∇i) and (L′

i,∇′
i)

behave identically for twisted Floer theory. �
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This property explains the invariance of the structure coefficients (αxy, etc.) under certain

changes of variables. More precisely, one easily checks that ζ+(qCq
3
F , qF ) = −q−1

C q−2
F ζ+(qC , qF ),

ζ−(qCq
3
F , qF ) = −q−1

C q−1
F ζ−(qC , qF ), and ζ0(qCq

3
F , qF ) = −q−1

C ζ0(qC , qF ). This implies that

the quantities considered in Propositions 4.7 and 4.10 are invariant under the change of vari-

ables (qC , qF ) 7→ (qCq
3
F , qF ); a closer examination shows that the individual constants αxy, etc.

are also invariant under this change of variables.

On the other hand, one easily checks that ζ+(qCqF , qF ) = −q−1
C ζ0(qC , qF ), ζ0(qCqF , qF ) =

ζ−(qC , qF ), and ζ−(qCqF , qF ) = ζ+(qC , qF ), which may seem surprising at first. The rea-

son is that this change of variables corresponds to a non-Hamiltonian deformation of e.g. L1

which sweeps exactly once through the entire fiber Σ0. This deformation preserves the in-

tersection points, but induces a non-trivial permutation of their labels: namely, x0, y0, z0 be-

come y0, z0, x0 respectively, and x1, y1, z1 become z1, x1, y1 respectively. Thus, for example,

αxy(qC , qF ) = αyx(qCqF , qF ) = αzz(qCq
2
F , qF ) (and similarly for the other coefficients).

Another way to understand these invariance properties is to relate the functions ζ+, ζ−, and

ζ0 to theta functions. Recall that the ordinary theta function is an analytic function defined by

θ(z, τ) =
∑

n∈Z

exp(πin2τ + 2πinz),

where z ∈ C and τ ∈ H (here H is the upper half-plane {Im τ > 0}). This function is

quasiperiodic with respect to the lattice Λτ ⊂ C generated by 1 and τ , and its behavior under

translation by an element of the lattice is given by the formula

θ(z + uτ + v, τ) = exp(−πiu2τ − 2πiuz)θ(z, τ).

The zeros of the theta function are the infinite set
{
z = (n+ 1

2
) + (m+ 1

2
)τ | n,m ∈ Z

}
.

Here we consider theta functions with rational characteristics a, b ∈ Q, defined by

θa,b(z, τ) =
∑

n∈Z

exp(πi(n+ a)2τ + 2πi(n+ a)(z + b)).

Let us introduce new variables q = exp(πiτ) and w = exp(πiz). Now the following three

θ-functions play a very important role in our considerations:

θ 1
2
, 1
2
(3z, 3τ) = exp( iπ

2
) q3/4

∑

n∈Z

(−1)nw6n+3q3n
2+3n,

θ 1
6
, 1
2
(3z, 3τ) = exp( iπ

6
) q1/12

∑

n∈Z

(−1)nw6n+1q3n
2+n,

θ 5
6
, 1
2
(3z, 3τ) = exp(− iπ

6
) q1/12

∑

n∈Z

(−1)nw6n−1q3n
2−n.

The zero set of the function θ 1
2
, 1
2
(3z, 3τ) is

{
n
3
+mτ | n,m ∈ Z

}
, while the zero sets of the

functions θ 1
6
, 1
2
(3z, 3τ) and θ 5

6
, 1
2
(3z, 3τ) are

{
n
3
+ (m+ 1

3
)τ | n,m ∈ Z

}
and

{
n
3
+ (m− 1

3
)τ | n,m ∈ Z

}
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respectively. These three theta functions can be viewed as holomorphic sections of a line

bundle of degree 3 on the elliptic curve E = C/Λτ ; considering the zero sets, we see that this

line bundle is L = OE(3 · (0)). These three sections of L determine an embedding of the

elliptic curve E = C/Λτ into the projective plane, given by

z 7→ (θ 1
2
, 1
2
(3z, 3τ) : θ 1

6
, 1
2
(3z, 3τ) : θ 5

6
, 1
2
(3z, 3τ)).

Observe that the two functions

θ 1
2
, 1
2
(3z, 3τ) θ 1

6
, 1
2
(3z, 3τ)θ 5

6
, 1
2
(3z, 3τ) and θ 1

2
, 1
2
(3z, 3τ)3 + θ 1

6
, 1
2
(3z, 3τ)3 + θ 5

6
, 1
2
(3z, 3τ)3

coincide up to a constant multiplicative factor, since they both correspond to holomorphic

sections of the line bundle L⊗3 over E, and an easy calculation shows that they have the same

zero set {n
3
+ m

3
τ |n,m ∈ Z}. Therefore, the image of the above embedding of E into P2 is

the cubic given by the equation

(A3 +B3 + C3)XY Z −ABC(X3 + Y 3 + Z3) = 0,

where (A,B,C) are the values of the three theta functions at any given point of C/Λτ (not in
1
3
Λτ ).

Consider the function

(
θ 1

6
, 1
2
(3z, 3τ)

θ 5
6
, 1
2
(3z, 3τ)

)3

= −
(∑

n∈Z (−1)nw6n+1 qn(3n+1)

∑
n∈Z (−1)nw6n−1 qn(3n−1)

)3

.

Substituting q2 = qF and w6 = qC , one easily checks that this coincides with the expression

which appears in Proposition 4.7,

αxyαyzαzx
αyxαzyαxz

= −qC
(∑

n∈Z (−1)n q
n
C q

n(3n+1)/2
F∑

n∈Z (−1)n q
n
C q

n(3n−1)/2
F

)3

.

Similarly,

(
θ 1

2
, 1
2
(3z, 3τ)

θ 5
6
, 1
2
(3z, 3τ)

)3

= q2

(∑
n∈Z(−1)nw6n+3q3n

2+3n

∑
n∈Z(−1)nw6n−1q3n2−n

)3

= −q2
(∑

n∈Z(−1)nw6n−3q3n
2−3n

∑
n∈Z(−1)nw6n−1q3n2−n

)3

.

After the same substitution q2 = qF and w6 = qC , this coincides with the expression given in

Proposition 4.10,

αxxαyyαzz
αyxαzyαxz

= −qF
qC

(∑
n∈Z (−1)n q

n
C q

3n(n−1)/2
F∑

n∈Z (−1)n q
n
C q

n(3n−1)/2
F

)3

.
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Similarly, in the case where (4.2) holds, one easily checks that

(4.4)

αxy = αyz = αzx = s̃ e−2iπ/3 θ 1
6
, 1
2
(3z0, 3τ),

αxx = αyy = αzz = s̃ θ 1
2
, 1
2
(3z0, 3τ),

αyx = αzy = αxz = s̃ e2iπ/3 θ 5
6
, 1
2
(3z0, 3τ),

where τ = [B + iω] · [Σ0], z0 = 1
3
[B + iω] · [C̄], and s̃ = eiπ/2 q

−1/24
F q

1/6
C s 6= 0. Similar

interpretations can be made for the quantities considered in Propositions 4.12–4.14 and in

(4.3).

5 Proof of the main theorems

The derived categories considered in §2 depend on an elliptic curve E, two degree 3 line

bundles L1,L2 over E, and k points p1, . . . , pk on E. Meanwhile, the categories considered in

§4 depend on a cohomology class [B + iω] ∈ H2(Mk,C). We now show how to relate these

two sets of parameters.

Fix the cohomology class [B+iω] ∈ H2(Mk,C), and consider the categoryDb(Lagvc(Wk))
studied in §4. With the notations of §3.4, assume that [ω] · [∆̄i,j ] is not an integer multiple of

[ω] · [Σ0] for any i, j ∈ {0, . . . , k − 1}. Then Db(Lagvc(Wk)) admits a full strong excep-

tional collection (L0, . . . , Lk+2), whose properties have been studied in §4. In particular, the

objects and morphisms in this exceptional collection are the same as for the exceptional collec-

tion σ = (OXK
, π∗TP2(−1), π∗OP2(1),Ol1, . . . ,Olk) considered in §2 for the derived category

of coherent sheaves on a (possibly noncommutative) Del Pezzo surface. Hence, our goal is

now to compare the composition laws and show that, for a suitable choice of the parameters

(E,L1,L2, K), the algebra of homomorphisms of the exceptional collection (L0, . . . , Lk+2) is

isomorphic to the algebra BK,µ considered in §2. More precisely, we claim:

Proposition 5.1 Let E be the elliptic curve C/Λτ , where τ = [B + iω] · [Σ0], realized as a

plane cubic via the embedding j : E → P2 given by z 7→ (ϑ+(z) : ϑ0(z) : ϑ−(z)), where

ϑ+(z) = e−2iπ/3θ 1
6
, 1
2
(3z, 3τ), ϑ0(z) = θ 1

2
, 1
2
(3z, 3τ), and ϑ−(z) = e2iπ/3θ 5

6
, 1
2
(3z, 3τ).

Let z0 = 1
3
[B + iω] · [C̄], and for i ∈ {0, . . . , k − 1} let pi = 1

3
[B + iω] · [C̄i]. Finally,

let L1 = OE(3 · (−z0)) and L2 = OE(3 · (0)). Then the algebra of homomorphisms of

the exceptional collection (L0, . . . , Lk+2) is isomorphic to BK,µ, where µ is determined by

(E,L1,L2) via Construction 2.9 and K = {j(z0 + p0), . . . , j(z0 + pk−1)}.
Proof. After a suitable rescaling of the chosen bases of the morphism spaces (or just by

deforming to the situation where the fiber is flat and the vanishing cycles are geodesics), we can
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assume that the compositions of morphisms between the objects L0, . . . , Lk+2 are given by the

formulas (4.2) and (4.3). We identify the vector spaces U = Hom(L0, L1), V = Hom(L1, L2),
and W = Hom(L0, L2) with C3 by considering the bases (x0, y0, z0), (x1, y1, z1), and (x̄, ȳ, z̄).
The composition tensor µ : V ⊗ U → W is determined by the three constants a = αxy =
αyz = αzx, b = αxx = αyy = αzz, and c = αyx = αzy = αxz. In particular, given an element

v = (X, Y, Z) ∈ V , the composition map µv = µ(v, ·) : U →W is given by the matrix

(5.1)




αxxX αyzZ αzyY
αxzZ αyyY αzxX
αxyY αyxX αzzZ


 =




bX aZ cY
cZ bY aX
aY cX bZ




which has rank 2 precisely when

(5.2) det(µv) = (a3 + b3 + c3)XY Z − abc(X3 + Y 3 + Z3) = 0.

By (4.4), the constants a, b, c are (up to a non-zero constant factor) the values of the theta func-

tions ϑ+, ϑ0, ϑ− at the point z0. Therefore, by the discussion in §4.5, there are two possibilities:

1. if z0 ∈ 1
3
Λτ , then abc = 0 and µv always has rank 2; as explained in §2.3 this corresponds

to a commutative situation;

2. if z0 6∈ 1
3
Λτ , then (5.2) defines a cubic ΓV ⊂ P(V ) = P2, and this cubic is precisely the

image of the embedding j.

The same situation holds for µu; interestingly, under the chosen identifications of P(U) and

P(V ) with P2, the two subschemes ΓU ⊂ P(U) and ΓV ⊂ P(V ) determined by the equations

det(µu) = 0 and det(µv) = 0 coincide exactly. However, with this description, the isomor-

phism σ : ΓV → ΓU which takes v to the point of ΓU corresponding to Ker µv is not the

identity map. Here the reader is referred to the discussion on pp. 37–38 of [10], which we

follow loosely.

Given a point v = (X : Y : Z) ∈ ΓV , the kernel of µv can be obtained as the cross-product

of any two of the rows of the matrix (5.1). Taking e.g. the first two rows, we obtain that the

corresponding point of ΓU is

(5.3) σ(X : Y : Z) = (a2XZ − bcY 2 : c2Y Z − abX2 : b2XY − acZ2).

Observe that j maps the origin to (1 : 0 : −1) ∈ ΓV , and that the corresponding point in

ΓU is σ(1 : 0 : −1) = (a : b : c) = j(z0). Hence, considering only the situation where

ΓU ≃ ΓV ≃ E, and identifying E with ΓV by means of the embedding j, the identification of

E with ΓU is given by the embedding σ ◦ j, which is the composition of j with the translation

by z0. Therefore, the line bundles onE induced by the two inclusions ofE into P(U) and P(V )
are respectively (σ ◦ j)∗OP2(1) = OE(3 · (−z0)) = L1 and j∗OP2(1) = OE(3 · (0)) = L2. It

then follows from the discussion in §2.3 that the composition tensor µ corresponds to the data
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(E,L1,L2). This remains true even when z0 ∈ 1
3
Λτ , since in that case we have L1 ≃ L2 and

the composition tensor associated to the triple (E,L1,L2) is that of the usual projective plane

(see Remark 2.10).

Next we consider the composition Hom(L2, L3+i) ⊗ W −→ Hom(L0, L3+i). Choosing

generators of the lines Hom(L2, L3+i) and Hom(L0, L3+i) we can view this map as a linear

form on W . In the given basis of W , this linear form is given by
(
βx̄,i , βȳ,i , βz̄,i

)
, which by

(4.3) coincides up to a non-zero constant factor with

(
ϑ+(pi) , ϑ0(pi) , ϑ−(pi)

)
.

On the other hand we know from §2.3 that the kernel of this linear form should be exactly

Imµvi , where vi ∈ ΓV is the point being blown up.

For any v = (X : Y : Z) ∈ ΓV , the projection W → W/Imµv is a linear form given up to

a scaling factor by the dot product of any two columns of the matrix (5.1). Taking e.g. the first

two columns, we obtain that the expression of this linear form relatively to our chosen basis of

W is (
c2XZ − abY 2 , a2Y Z − bcX2 , b2XY − acZ2

)
.

Interestingly, if we assume that (X : Y : Z) = σ(X̃ : Ỹ : Z̃), where σ is the transformation

given by (5.3), then this expression simplifies to a scalar multiple of (X̃ , Ỹ , Z̃). Hence, we

conclude that vi = σ(j(pi)) = j(z0 + pi). �

Remark 5.2 At this point the reader may legitimately be concerned that, since the homology

classes [C̄ ] and [C̄i] are canonically defined only up to a multiple of [Σ0], and since [B] is only

defined up to an element of H2(Mk,Z), the points z0 and pi of E are canonically determined

only up to translations by elements of 1
3
Λτ . However, the line bundle L1 = OE(3 · (−z0)) is not

affected by this ambiguity in the determination of z0, and neither are the relative positions of

the points pi, since the quantity pj−pi = [B+iω] · [∆̄i,j ] is well-defined up to an element of Λτ .

Moreover, a simultaneous translation of all the blown up points by an element of 1
3
Λτ amounts

to an automorphism of the triple (E,L1,L2), which does not actually affect the category. (From

the point of view of the embedding j, this automorphism simply permutes the homogeneous

coordinates X, Y, Z and multiplies them by cubic roots of unity; this is consistent with the

observation made after the proof of Proposition 4.18).

Theorems 1.4 and 1.6 now follow directly from the discussion. Namely, in the case of a

blowup of CP2 at a set K = {p0, . . . , pk−1} of k distinct points (Theorem 1.4), we consider

a cubic curve E ⊂ CP2 which contains all the points of K, and view it as an elliptic curve

C/Λτ for some τ ∈ C with Im τ > 0. This allows us to view the points pi as elements of

C/Λτ (well-defined up to a simultaneous translation of all pi by an element of 1
3
Λτ , since the

origin can be chosen at any of the flexes of E; however by Remark 5.2 this does not matter

for our construction). Then we equip Mk with a complexified symplectic structure such that

[B + iω] · [Σ0] = τ , [B + iω] · [C̄] = 0, and [B + iω] · [C̄i] = 3pi. The existence of such a

B + iω follows from a standard result about symplectic structures on Lefschetz fibrations:
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Proposition 5.3 (Gompf) Given any cohomology class [ζ ] ∈ H2(Mk,R) such that [ζ ] · [Σ0] >
0, the manifold Mk admits a symplectic structure in the cohomology class [ζ ], for which the

fibers of Wk are symplectic submanifolds.

Proof. The map Wk : Mk → C is a Lefschetz fibration, and the argument given in the proof

of [96, Theorem 10.2.18] can be adapted in a straightforward manner to this situation, even

though the base of the fibration is not compact. (Alternatively, one can also work with the

compactified fibration Wk : M → CP1). The symplectic form ω constructed by this argument

lies in the cohomology class t[ζ ] +W ∗
k ([volC]) for some constant t > 0; since the area form on

C is exact, we have [ω] = t[ζ ], and scaling ω by a constant factor we obtain the desired result.

�

By Proposition 5.1 the algebra of homomorphisms of the exceptional collection (L0, . . . , Lk+2)
is then isomorphic toBK , which implies thatDb(Lagvc(Wk)) ∼= Db(modBK) ∼= Db(coh(XK)).

In the case of a noncommutative blowup of P2 (Theorem 1.6), consider the triple (E,L1,L2)
associated to the underlying noncommutativeP2, and view againE as a quotientC/Λτ . Choose

z0 (well-defined up to an element of 1
3
Λτ ) such thatL2⊗L−1

1 ≃ OE(3·(z0)−3·(0)) ∈ Pic0(E).
As explained in §2.3, the blown up points must all lie in ΓV ⊂ P(V ), and under the identifica-

tion ΓV ≃ E they can be viewed as elements pi ∈ C/Λτ . Equip Mk with a complexified sym-

plectic structure such that [B+iω]·[Σ0] = τ , [B+iω]·[C̄ ] = 3z0, and [B+iω]·[C̄i] = 3(pi−z0).
By Proposition 5.1 the algebra of homomorphisms of the exceptional collection (L0, . . . , Lk+2)
is then isomorphic to BK,µ, which yields the desired equivalence of categories.

Theorem 1.5 is proved similarly, working with the mutated exceptional collections τ ′ (in-

troduced in §2.2) and (L0, L1, L
′, L2, L4, . . . , Lk+2) (introduced in §4.4). The details are left

to the reader.

Remark 5.4 The construction carried out for Theorem 1.4 also applies to some limit situa-

tions in which XK is actually not a Del Pezzo surface. For example, the argument applies

equally well to the situation where CP2 is blown up at nine points which lie at the intersection

of two elliptic curves. In this case the mirror is an elliptic fibration over C for which the com-

pactification has a smooth fiber at infinity. Compared to that of CP2 (k = 0), this extreme case

where k = 9 lies at the opposite end of the spectrum that we consider.
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Lagrangian fibrations on blowups of toric
varieties and mirror symmetry for hyper-
surfaces.

1 Mirrors of Landau-Ginzburg models

A number of recent results [136], [218], [73], [3], [103] suggest that the phenomenon

of mirror symmetry is not restricted to Calabi-Yau or Fano manifolds. Indeed, while mirror

symmetry was initially formulated as a duality between Calabi-Yau manifolds, it was already

suggested in the early works of Givental and Batyrev that Fano manifolds also exhibit mirror

symmetry. The counterpart to the presence of a nontrivial first Chern class is that the mirror of

a compact Fano manifold is not a compact manifold, but rather a Landau-Ginzburg model, i.e.

a (non-compact) Kähler manifold equipped with a holomorphic function called superpotential.

A physical explanation of this phenomenon and a number of examples have been given by Hori

and Vafa [122]. From a mathematical point of view, Hori and Vafa’s construction amounts to a

toric duality, and can also be applied to varieties of general type [57], [139], [136], [103].

The Strominger-Yau-Zaslow (SYZ) conjecture [228] provides a geometric interpretation

of mirror symmetry for Calabi-Yau manifolds as a duality between (special) Lagrangian torus

fibrations. In the language of Kontsevich’s homological mirror symmetry [151], the SYZ con-

jecture reflects the expectation that the mirror can be realized as a moduli space of certain

objects in the Fukaya category of the given manifold, namely, a family of Lagrangian tori

equipped with rank 1 local systems. Note that this homological perspective eliminates the re-

quirement of finding special Lagrangian fibrations, at the cost of privileging one side of mirror

symmetry: in the Calabi-Yau case, the framework we follow produces a degenerating family

Y 0 of complex manifolds (B-side) starting with a Lagrangian torus fibration on a symplectic
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manifold X0 (A-side).

Outside of the Calabi-Yau situation, homological mirror symmetry is still expected to hold

[152], but the Lagrangian tori bound holomorphic discs, which causes their Floer theory to be

obstructed; the mirror superpotential can be interpreted as a weighted count of these holomor-

phic discs [119], [13], [14], [82]. We call such a mirror a B-side Landau-Ginzburg model.

In the Calabi-Yau case, mirror symmetry is expected to be involutive; i.e when the sym-

plectic form on X0 is in fact a Kähler form for some degenerating family of complex structures

then the mirror Y should be equipped with its own Kähler form which is mirror to these com-

plex structures. Involutivity should hold beyond the Calabi-Yau situation, but requires making

sense of a class of potential functions on symplectic manifolds, calledA-side Landau-Ginzburg

models, which have well defined Fukaya categories. The idea for such a definition goes back

to Kontsevich [152], and was studied in great depth by Seidel in [217] in the special case of

Lefschetz fibrations.

Remark 1.1 The general theory of Fukaya categories F(X,W∨) of A-side Landau-Ginzburg

models is still under development in different contexts [5], [2], [4]; we shall specifically point

out where it is being used in this chapter. In fact, we will also need to consider twisted versions

of A-side Landau-Ginzburg models, where objects of the Fukaya category carry relatively spin

structures with respect to a background class in H2(X,Z/2) (rather than spin structures); see

Section 7.

On manifolds of general type (or more generally, whose first Chern class cannot be rep-

resented by an effective divisor), the SYZ approach to mirror symmetry seems to fail at first

glance due to the lack of a suitable Lagrangian torus fibration. The idea that allows one to over-

come this obstacle is to replace the given manifold with another closely related space which

does carry an appropriate SYZ fibration. Thus, we make the following definition:

Definition 1.2 We say that aB-side Landau-Ginzburg model (Y,W ) is SYZ mirror to a Kähler

manifold X (resp. an A-side Landau-Ginzburg model (X,W∨)) if there exists an open dense

subset X0 of X , and a Lagrangian torus fibration π : X0 → B, such that the following

properties hold:

1. Y is a completion of a moduli space of unobstructed torus-like objects of the Fukaya

category F(X0) (resp. F(X0,W∨)) containing those objects which are supported on

the fibers of π;

2. the function W restricts to the superpotential induced by the deformation of F(X0) to

F(X) (resp. F(X0,W∨) to F(X,W∨)) for these objects.

We say that (Y,W ) is a generalized SYZ mirror of X if (after shiftingW by a suitable additive

constant) it is an SYZ mirror of a (suitably twisted)A-side Landau-Ginzburg model with Morse-

Bott superpotential, whose critical locus is isomorphic to X .
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The last part of the definition is motivated by the expectation that the Fukaya category of a

Morse-Bott superpotential, twisted by a background class which accounts for the non-triviality

of the normal bundle to the critical locus, is equivalent (up to an additive constant shift in the

curvature term, which accounts for exceptional curves through the critical locus) to the Fukaya

category of the critical locus; see Corollary 7.8 and Proposition 7.10.

Definition 1.2 and the construction of moduli spaces of objects of the Fukaya category are

clarified in Section 2 and Appendix A. To understand the first condition in the case of anA-side

Landau-Ginzburg model, it is useful to note that every object of the Fukaya category F(X0)
of compact Lagrangians also defines an object of F(X0,W∨) since the objects of the latter

are Lagrangians satisfying admissibility properties outside a compact set and such properties

trivially hold for compact Lagrangians. Hence the fibers of π automatically define objects of

F(X0,W∨); we shall enlarge this space by considering certain non-compact Lagrangians in

X0 which can be seen as limits of compact Lagrangians.

Remark 1.3 It is important to note that, even in the absence of superpotentials, the assertion

that Y 0 is SYZ mirror to X0 may not imply that the Fukaya category of X0 is equivalent to

the derived category of Y 0; at a basic level, the example of the Kodaira surface mentioned in

[1] shows that there may in general be an analytic gerbe on Y 0 so that the Fukaya category

of X0 is in fact mirror to sheaves twisted by this gerbe. Beyond the Calabi-Yau situation, a

complete statement of homological mirror symmetry for SYZ mirrors would have to consider

further deformations of the derived category of sheaves by (holomorphic) polyvector fields on

Y . The superpotential W should be thought of as the leading order term of this deformation

corresponding to discs of Maslov index 2.

More fundamentally, our construction of the analytic completion relies on choices, and it

is expected that different choices will given rise to different mirrors. Indeed, this phenomenon

would provide a mirror symmetry explanation for the existence of derived equivalent varieties

which are birational. Nonetheless, as completely arbitrary choices of completions give rise to

varieties which are not derived equivalent (e.g. a blowup), the task of passing from our SYZ

miror statement to homological mirror symmetry would require a more careful understanding

of the completions that we have introduced. This chapter begins this task by explaining how

some of the points that we add should correspond to objects of the Fukaya category supported

by immersed or non-compact Lagrangians (see Remark A.12).

In this chapter we use this perspective to study mirror symmetry for hypersurfaces (and

complete intersections) in toric varieties. If H is a smooth hypersurface in a toric variety V ,

then one simple way to construct a closely related Kähler manifold with effective first Chern

class is to blow up the product V ×C along the codimension 2 submanifold H× 0. By a result

of Bondal and Orlov [39], the derived category of coherent sheaves of the resulting manifold

X admits a semi-orthogonal decomposition into subcategories equivalent to DbCoh(H) and

DbCoh(V × C); and ideas similar to those of [227] can be used to study the Fukaya category

of X , as we explain in Section 7 (cf. Corollary 7.8). Thus, finding a mirror to X is, for many

purposes, as good as finding a mirror to H . Accordingly, our main results concern SYZ mirror
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symmetry for X and, by a slight modification of the construction, for H . Along the way we

also obtain descriptions of SYZ mirrors to various related spaces. These results provide a

geometric foundation for mirror constructions that have appeared in the recent literature [57],

[139], [136], [218], [221], [3], [103].

We focus primarily on the case where V is affine, and other cases which can be handled

with the same techniques. The general case requires more subtle arguments in enumerative

geometry, which should be the subject of further investigation.

1.1 Statement of the results Our main result can be formulated as follows (see §3 for the

details of the notations).

Let H = f−1(0) be a smooth nearly tropical hypersurface (cf. §3.1) in a (possibly non-

compact) toric variety V of dimension n, and let X be the blow-up of V × C along H × 0,

equipped with an S1-invariant Kähler form ωǫ for which the fibers of the exceptional divisor

have sufficiently small area ǫ > 0 (cf. §3.2).

Let Y be the toric variety defined by the polytope {(ξ, η) ∈ Rn × R | η ≥ ϕ(ξ)}, where ϕ
is the tropicalization of f . Let w0 = −T ǫ + T ǫv0 ∈ O(Y ), where T is the Novikov parameter

and v0 is the toric monomial with weight (0, . . . , 0, 1), and set Y 0 = Y \ w−1
0 (0). Finally, let

W0 = w0 + w1 + · · · + wr ∈ O(Y ) be the leading-order superpotential of Definition 3.10,

namely the sum of w0 and one toric monomial wi (1 ≤ i ≤ r) for each irreducible toric divisor

of V (see Definition 3.10). We assume:

Assumption 1.4 c1(V ) · C > max(0, H · C) for every rational curve C ≃ P1 in V .

This includes the case where V is an affine toric variety as an important special case. Under

this assumption, our main result is the following:

Theorem 1.5 Under Assumption 1.4, the B-side Landau-Ginzburg model (Y 0,W0) is SYZ

mirror to X .

In the general case, the mirror of X differs from (Y 0,W0) by a correction term which is of

higher order with respect to the Novikov parameter (see Remark 6.3).

Equipping X with an appropriate superpotential, given by the affine coordinate of the C
factor, yields an A-side Landau-Ginzburg model whose singularities are of Morse-Bott type.

Up to twisting by a class in H2(X,Z/2), this A-side Landau-Ginzburg model can be viewed

as a stabilization of the sigma model with target H .

Theorem 1.6 Assume V is affine, and let WH
0 = −v0+w1+ · · ·+wr ∈ O(Y ) (see Definition

3.10). Then the B-side Landau-Ginzburg model (Y,WH
0 ) is a generalized SYZ mirror of H .

Unlike the other results stated in this introduction, this theorem strictly speaking relies on

the assumption that Fukaya categories of Landau-Ginzburg models satisfy certain properties

for which we do not provide complete proofs. In Section 7, we give sketches of the proofs of

these results, and indicate the steps which are missing from our argument.
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A result similar to Theorem 1.6 can also be obtained from the perspective of mirror duality

between toric Landau-Ginzburg models [122], [57], [136], [103]. However, the toric approach

is much less illuminating, because geometrically it works at the level of the open toric strata in

the relevant toric varieties (the total space of O(−H) → V on one hand, and Y on the other

hand), whereas the interesting geometric features of these spaces lie entirely within the toric

divisors.

Theorem 1.5 relies on a mirror symmetry statement for open Calabi-Yau manifolds which

is of independent interest. Consider the conic bundle

X0 = {(x, y, z) ∈ V 0 × C2 | yz = f(x)}

over the open stratum V 0 ≃ (C∗)n of V , where f is again the defining equation of the hyper-

surface H . The conic bundle X0 sits as an open dense subset inside X , see Remark 3.5. Then

we have:

Theorem 1.7 The open Calabi-Yau manifold Y 0 is SYZ mirror to X0.

In the above statements, and in most of this chapter, we view X or X0 as a symplectic

manifold, and construct the SYZ mirror Y 0 (with a superpotential) as an algebraic moduli

space of objects in the Fukaya category of X or X0. This is the same direction considered

e.g. in [218], [73], [3]. However, one can also work in the opposite direction, starting from the

symplectic geometry of Y 0 and showing that it admitsX0 (now viewed as a complex manifold)

as an SYZ mirror. For completeness we describe this converse construction in Section 8 (see

Theorem 8.4); similar results have also been obtained independently by Chan, Lau and Leung

[51].

The methods we use apply in more general settings as well. In particular, the assumption

that V be a toric variety is not strictly necessary – it is enough that SYZ mirror symmetry for

V be sufficiently well understood. As an illustration, in Section 11 we derive analogues of

Theorems 1.5–1.7 for complete intersections.

1.2 A reader’s guide The rest of this chapter is organized as follows.

First we briefly review (in Section 2) the SYZ approach to mirror symmetry, following [13],

[14]. Then in Section 3 we introduce notation and describe the protagonists of our main results,

namely the spaces X and Y and the superpotential W0.

In Section 4 we construct a Lagrangian torus fibration on X0, similar to those previously

considered by Gross [101], [102] and by Castaño-Bernard and Matessi [46], [47]. In Section

5 we study the Lagrangian Floer theory of the torus fibers, which we use to prove Theorem

1.7. In Section 6 we consider the partial compactification of X0 to X , and prove Theorem 1.5.

Theorem 1.6 is then proved in Section 7.

In Section 8 we briefly consider the converse construction, namely we start from a La-

grangian torus fibration on Y 0 and recover X0 as its SYZ mirror.
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Finally, some examples illustrating the main results are given in Section 9, while Sec-

tions 10 and 11 discusses various generalizations, including to hypersurfaces in abelian vari-

eties (Theorem 10.4) and complete intersections in toric varieties (Theorem 11.1).

2 Review of SYZ mirror symmetry

In this section, we briefly review SYZ mirror symmetry for Kähler manifolds with effec-

tive anticanonical class; the reader is referred to [13], [14] for basic ideas about SYZ, and to

Appendix A for technical details.

2.1 Lagrangian torus fibrations and SYZ mirrors

In first approximation, the Strominger-Yau-Zaslow conjecture [228] states that mirror pairs

of Calabi-Yau manifolds carry mutually dual Lagrangian torus fibrations (up to “instanton cor-

rections”). A reformulation of this statement in the language of homological mirror symmetry

[151] is that a mirror of a Calabi-Yau manifold can be constructed as a moduli space of suitable

objects in its Fukaya category (namely, the fibers of an SYZ fibration, equipped with rank 1

local systems); and vice versa. In Appendix A, we explain how ideas of Fukaya [80] yield

a precise construction of such a mirror space from local rigid analytic charts glued via the

equivalence relation which identifies objects that are quasi-isomorphic in the Fukaya category.

We consider an open Calabi-Yau manifold of the form X0 = X \ D, where (X,ω, J) is

a Kähler manifold of complex dimension n and D ⊂ X is an anticanonical divisor (reduced,

with normal crossing singularities). X0 can be equipped with a holomorphic n-form Ω (with

simple poles along D), namely the inverse of the defining section of D. The restriction of Ω to

an oriented Lagrangian submanifold L ⊂ X0 is a nowhere vanishing complex-valued n-form

on L; the complex argument of this n-form determines the phase function arg(Ω|L) : L→ S1.

Recall that L is said to be special Lagrangian if arg(Ω|L) is constant; a weaker condition is

to require the vanishing of the Maslov class of L in X0, i.e. we require the existence of a lift

of arg(Ω|L) to a real-valued function. (The choice of such a real lift then makes L a graded

Lagrangian, and yields Z-gradings on Floer complexes.)

The main input of the construction of the SYZ mirror of the open Calabi-Yau manifold X0

is a Lagrangian torus fibration π : X0 → B (with appropriate singularities) whose fibers have

trivial Maslov class. (Physical considerations suggest that one should expect the fibers of π to

be special Lagrangian, but such fibrations are hard to produce.)

The base B of the Lagrangian torus fibration π carries a natural real affine structure (with

singularities along the locus Bsing of singular fibers), i.e. B \ Bsing can be covered by a set of

coordinate charts with transition functions in GL(n,Z) ⋉ Rn. A smooth fiber L0 = π−1(b0)
and a collection of loops γ1, . . . , γn forming a basis of H1(L0,Z) determine an affine chart

centered at b0 in the following manner: given b ∈ B \Bsing close enough to b0, we can isotope
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L0 to L = π−1(b) among fibers of π. Under such an isotopy, each loop γi traces a cylinder Γi
with boundary in L0 ∪ L; the affine coordinates associated to b are then the symplectic areas

(
∫
Γ1
ω, . . . ,

∫
Γn
ω).

In the examples we will consider, “most” fibers of π do not bound nonconstant holomorphic

discs in X0; we call such Lagrangians tautologically unobstructed. Recall that a (graded, spin)

Lagrangian submanifold L of X0 together with a unitary rank one local system ∇ determines

an object (L,∇) of the Fukaya category F(X0) [81] whenever certain counts of holomorphic

discs cancel; this condition evidently holds if there are no non-constant discs. Thus, given an

open subset U ⊂ B \ Bsing such that all the fibers in π−1(U) are tautologically unobstructed,

the moduli space of objects (L,∇) where L ⊂ π−1(U) is a fiber of π and∇ is a unitary rank 1

local system on L yields an open subset U∨ ⊂ Y 0 of the SYZ mirror of X0.

A word is in order about the choice of coefficient field. A careful definition of Floer ho-

mology involves working over the Novikov field (here over complex numbers),

(2.1) Λ =

{
∞∑

i=0

ciT
λi
∣∣∣ ci ∈ C, λi ∈ R, λi → +∞

}
.

Recall that the valuation of a non-zero element of Λ is the smallest exponent λi that appears

with a non-zero coefficient; the above-mentioned local systems are required to have holonomy

in the multiplicative subgroup

UΛ =
{
c0 +

∑
ciT

λi ∈ Λ
∣∣ c0 6= 0 and λi > 0

}

of unitary elements (or units) of the Novikov field, i.e. elements whose valuation is zero. The

local system ∇ ∈ Hom(π1(L), UΛ) enters into the definition of Floer-theoretic operations by

contributing holonomy terms to the weights of holomorphic discs: a rigid holomorphic disc u
with boundary on Lagrangians (Li,∇i) is counted with a weight

(2.2) T ω(u)hol(∂u),

where ω(u) is the symplectic area of the disc u, and hol(∂u) ∈ UΛ is the total holonomy of the

local systems ∇i along its boundary. (Thus, local systems are conceptually an exponentiated

variant of the “bounding cochains” used by Fukaya et al [81], [82]). Gromov compactness

ensures that all structure constants of Floer-theoretic operations are well-defined elements of

Λ.

Thus, in general the SYZ mirror of X0 is naturally an analytic space defined over Λ. How-

ever, it is often possible to obtain a complex mirror by treating the Novikov parameter T as

a numerical parameter T = e−2πt with t > 0 sufficiently large; of course it is necessary to

assume the convergence of all the power series encountered. The local systems are then taken

to be unitary in the usual sense, i.e. ∇ ∈ Hom(π1(L), S
1), and the weight of a rigid holomor-

phic disc, still given by (2.2), becomes a complex number. The complex manifolds obtained

by varying the parameter t are then understood to be mirrors to the family of Kähler manifolds

(X0, tω).
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To provide a unified treatment, we denote by K the coefficient field (Λ or C), by UK the

subgroup of unitary elements (either UΛ or S1), and by val : K→ R the valuation (in the case

of complex numbers, val(z) = − 1
2πt

log |z|).
Consider as above a contractible open subset U ⊂ B \Bsing above which all fibers of π are

tautologically unobstructed, a reference fiber L0 = π−1(b0) ⊂ π−1(U), and a basis γ1, . . . , γn
of H1(L0,Z). A fiber L = π−1(b) ⊂ π−1(U) and a local system ∇ ∈ Hom(π1(L), UK)
determine a point of the mirror, (L,∇) ∈ U∨ ⊂ Y 0. Identifying implicitly H1(L,Z) with

H1(L0,Z), the local system ∇ is determined by its holonomies along the loops γ1, . . . , γn,

while the fiber L is determined by the symplectic areas of the cylinders Γ1, . . . ,Γn. This yields

natural coordinates on U∨ ⊂ Y 0, identifying it with an open subset of (K∗)n via

(2.3) (L,∇) 7→ (z1, . . . , zn) =
(
T

∫
Γ1
ω∇(γ1), . . . , T

∫
Γn
ω∇(γn)

)
.

One feature of Floer theory that is conveniently captured by this formula is the fact that, in

the absence of instanton corrections, the non-Hamiltonian isotopy from L0 to L is formally

equivalent to equipping L0 with a non-unitary local system for which val(∇(γi)) =
∫
Γi
ω.

The various regions of B over which the fibers are tautologically unobstructed are sepa-

rated by walls (real hypersurfaces in B, or thickenings of real hypersurfaces) of potentially

obstructed fibers (i.e. which bound non-constant holomorphic discs), across which the local

charts of the mirror (as given by (2.3)) need to be glued together in an appropriate manner to

account for “instanton corrections”.

The discussion preceding Equation (12.4) makes precise the idea that we can embed the

moduli space of Lagrangians equipped with unitary local systems in an analytic space obtained

by gluing coordinate charts coming from non-unitary systems. This will be the first step in the

construction of the mirror manifold as a completion of the moduli space of Lagrangians.

Consider a potentially obstructed fiber L = π−1(b) of π, where b ∈ B \ Bsing lies in a

wall that separates two tautologically unobstructed chambers. By deforming this fiber to a

nearby chamber, we obtain a bounding cochain (with respect to the Floer differential) for the

moduli space of holomorphic discs with boundary on L. While local systems on L define ob-

jects of F(X0), the quasi-isomorphism type of such objects depends on the choice of bounding

cochain, which in our case amounts to a choice of this isotopy. In the special situation we are

considering, we use this argument to prove in Lemma A.13 that any unitary local system on

L can be represented by a non-unitary local system on a fiber lying in a tautologically unob-

structed chamber. This implies that the space obtained by gluing the mirrors of the chambers

contains the analytic space corresponding to all unitary local systems on smooth fibers of π.

The gluing maps for the mirrors of nearby chambers are given by wall-crossing formulae,

with instanton corrections accounting for the disc bubbling phenomena that occur as a La-

grangian submanifold is isotoped across a wall of potentially obstructed Lagrangians (see [13]

for an informal discussion, and Appendix A.1 for the relation with the invariance proof of Floer

cohomology in this setting [81], [80]). Specifically, consider a Lagrangian isotopy {Lt}t∈[0,1]
whose end points are tautologically unobstructed and lie in adjacent chambers. Assume that
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all nonconstant holomorphic discs bounded by the Lagrangians Lt in X0 represent a single

relative homotopy class β ∈ π2(X0, Lt) (we implicitly identify these groups with each other

by means of the isotopy), or its multiples (for non-simple discs). The weight associated to the

class β defines a regular function

zβ = T ω(β)∇(∂β) ∈ O(U∨
i ),

in fact a monomial in the coordinates (z1, . . . , zn) of (2.3). In this situation, assuming its

transversality, the moduli spaceM1({Lt}, β) of all holomorphic discs in the class β bounded

by Lt as t varies from 0 to 1, with one boundary marked point, is a closed (n− 1)-dimensional

manifold, oriented if we fix a spin structure on Lt. Thus, evaluation at the boundary marked

point (combined with identification of the submanifolds Lt via the isotopy) yields a cycle

Cβ = ev∗[M1({Lt}, β)] ∈ Hn−1(Lt). The instanton corrections to the gluing of the local

coordinate charts (2.3) are then of the form

(2.4) zi 7→ (h(zβ))
Cβ ·γizi,

where h(zβ) = 1 + zβ + · · · ∈ Q[[zβ ]] is a power series recording the (virtual) contributions of

multiple covers of the discs in the class β. In practice, we shall only use the weaker property

that these transformations are of the form

(2.5) zi 7→ hi(zβ)zi,

where hi(zβ) ∈ 1 + zβQ[[zβ ]].
In the examples we consider in this chapter, there are only finitely many walls in B, and

the above considerations are sufficient to construct the SYZ mirror of X0 out of instanton-

corrected gluings of local charts. In general, intersections between walls lead, via a “scatter-

ing” phenomenon, to an infinite number of higher-order instanton corrections; it is conjectured

that these Floer-theoretic corrections can be determined using the machinery developed by

Kontsevich-Soibelman [157], [158] and Gross-Siebert [104], [106].

Remark 2.1 We have discussed how to construct the analytic space Y 0 (“B-model”) from the

symplectic geometry of X0 (“A-model”). When Y 0 makes sense as a complex manifold (i.e.,

assuming convergence), one also expects it to carry a natural Kähler structure for which the A-

model of Y 0 is equivalent to the B-model of X0. We will however not emphasize this feature

of mirror symmetry.

2.2 The superpotential In the previous section we explained the construction of the SYZ

mirror Y 0 of an open Calabi-Yau manifold X0 = X \D, where D is an anticanonical divisor

in a Kähler manifold (X,ω, J), equipped with a Lagrangian torus fibration π : X0 → B. We

now turn to mirror symmetry for X itself.
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The Fukaya category of X is a deformation of that of X0: the Floer cohomology of La-

grangian submanifolds of X0, when viewed as objects of F(X), is deformed by the presence

of additional holomorphic discs that intersect the divisor D. Let L be a Lagrangian fiber of the

SYZ fibration π : X0 → B: since the Maslov class of L in X0 vanishes, the Maslov index of

a holomorphic disc bounded by L in X is equal to twice its algebraic intersection number with

D. Following Fukaya, Oh, Ohta, and Ono [81] we associate to L and a rank 1 local system ∇
over it the obstruction

(2.6) m0(L,∇) =
∑

β∈π2(X,L)\{0}

zβ(L,∇) ev∗[M1(L, β)] ∈ C∗(L;K),

where zβ(L,∇) = T ω(β)∇(∂β) is the weight associated to the class β, and M1(L, β) is the

moduli space of holomorphic discs with one boundary marked point in (X,L) representing

the class β. In the absence of bubbling, one can achieve regularity, and [M1(L, β)] can be

defined as the fundamental class of the manifoldM1(L, β). To consider a more general sit-

uation, we appeal to the work of Fukaya, Oh, Ohta, and Ono who define such a potential for

Lagrangian fibers in toric manifolds in [82]. While the examples we consider are not toric,

their construction applies more generally whenever the moduli spaces of stable holomorphic

discs with non-positive Maslov index contribute trivially to the Floer differential. The situation

is therefore simplest when the divisorD is nef, or more generally when the following condition

holds:

Assumption 2.2 Every rational curve C ≃ P1 in X has non-negative intersection number

D · C ≥ 0.

Consider first the case of a Lagrangian submanifold L which is tautologically unobstructed

in X0. By positivity of intersections, the minimal Maslov index of a non-constant holomorphic

disc with boundary on L is 2 (when β ·D = 1). Gromov compactness implies that the chain

ev∗[M1(L, β)] is actually a cycle, of dimension n − 2 + µ(β) = n, i.e. a scalar multiple

n(L, β)[L] of the fundamental class of L; whereas the evaluation chains for µ(β) > 2 have

dimension greater than n and we discard them. Thus (L,∇) is weakly unobstructed, i.e.

m0(L,∇) = W (L,∇) eL
is a multiple of the unit in H0(L,K), which is Poincaré dual to the fundamental class of L.

More generally, Assumption 2.2 excludes discs of negative Maslov index, while the vanishing

of the contribution of discs of Maslov index 0 is explained in Appendix A.2.

Given an open subset U ⊂ B \ Bsing over which the fibers of π are tautologically un-

obstructed in X0, the coordinate chart U∨ ⊂ Y 0 considered in the previous section now

parametrizes weakly unobstructed objects (L = π−1(b),∇) of F(X), and the superpotential

(2.7) W (L,∇) =
∑

β∈π2(X,L)
β·D=1

n(L, β) zβ(L,∇)
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is a regular function on U∨. The superpotential represents a curvature term in Floer theory: the

differential on the Floer complex of a pair of weakly unobstructed objects (L,∇) and (L′,∇′)
squares to (W (L′,∇′) − W (L,∇)) id. In particular, the family Floer cohomology [79] of

an unobstructed Lagrangian submanifold of X with the fibers of the SYZ fibration over U is

expected to yield no longer an object of the derived category of coherent sheaves over U∨ but

rather a matrix factorization of the superpotential W .

In order to construct the mirror of X globally, we again have to account for instanton

corrections across the walls of potentially obstructed fibers of π. As before, these corrections

are needed in order to account for the bubbling of holomorphic discs of Maslov index 0 as one

crosses a wall, and encode weighted counts of such discs. Under Assumption 2.2, positivity

of intersection implies that all the holomorphic discs of Maslov index 0 are contained in X0;

therefore the instanton corrections are exactly the same for X as for X0, i.e. the moduli space

of objects of F(X) that we construct out of the fibers of π is again Y 0 (the SYZ mirror of X0).

A key feature of the instanton corrections is that the superpotential defined by (2.7) natu-

rally glues to a regular function on Y 0; this is because, by construction, the gluing via wall-

crossing transformations identifies quasi-isomorphic objects of F(X), for which the obstruc-

tions m0 have to match, as explained in Corollary A.11. Thus, the mirror of X is the B-side

Landau-Ginzburg model (Y 0,W ), where Y 0 is the SYZ mirror ofX0 andW ∈ O(Y 0) is given

by (2.7). (However, see Remark 1.3).

Remark 2.3 The regularity of the superpotential W is a useful feature for the construction of

the SYZ mirror of X0. Namely, rather than directly computing the instanton corrections by

studying the enumerative geometry of holomorphic discs in X0, it is often easier to determine

them indirectly, by considering either X or some other partial compactification of X0 (satisfy-

ing Assumption 2.2), computing the mirror superpotential in each chamber of B \ Bsing, and

matching the expressions on either side of a wall via a coordinate change of the form (2.4).

When Assumption 2.2 fails, the instanton corrections to the SYZ mirror of X might differ

from those for X0 (hence the difference between the mirrors might be more subtle than sim-

ply equipping Y 0 with a superpotential). However, this only happens if the (virtual) counts

of Maslov index 0 discs bounded by potentially obstructed fibers of π in X differ from the

corresponding counts in X0. Fukaya-Oh-Ohta-Ono have shown that this issue never arises for

toric varieties [82, Corollary 11.5]. In that case, the deformation of the Fukaya category which

occurs upon (partially) compactifying X0 to X (due to the presence of additional holomorphic

discs) is accurately reflected by the deformation of the mirror B-model given by the superpo-

tential W (i.e., considering matrix factorizations rather than the usual derived category).

Unfortunately, the argument of [82] does not adapt immediately to our setting; thus for the

time being we only consider settings in which Assumption 2.2 holds. This will be the subject

of further investigation.

The situation is in fact symmetric: just as partially compactifying X0 to X is mirror to

equipping Y 0 with a superpotential, equipping X0 or X with a superpotential is mirror to
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partially compactifying Y 0. One way to justify this claim would be to switch to the other

direction of mirror symmetry, reconstructing X0 as an SYZ mirror of Y 0 equipped with a

suitable Kähler structure (cf. Remark 2.1). However, in simple cases this statement can also

be understood directly. The following example will be nearly sufficient for our purposes (in

Section 7 we will revisit and generalize it):

Example 2.4 Let X0 = C∗, whose mirror Y 0 ≃ K∗ parametrizes objects (L,∇) of F(X0),
where L is a simple closed curve enclosing the origin (up to Hamiltonian isotopy) and ∇ is a

unitary rank 1 local system on L. The natural coordinate on Y 0, as given by (2.3), tends to zero

as the area enclosed by L tends to infinity. Equipping X0 with the superpotential W (x) = x,

the Fukaya category F(X0,W ) also contains “admissible” non-compact Lagrangian subman-

ifolds, i.e. properly embedded Lagrangians whose image under W is only allowed to tend to

infinity in the direction of the positive real axis. Denote by L∞ a properly embedded arc which

connects +∞ to itself by passing around the origin (and encloses an infinite amount of area).

An easy calculation in F(X0,W ) shows that HF∗(L∞, L∞) ≃ H∗(S1;K); so L∞ behaves

Floer cohomologically like a torus. In particular, L∞ admits a one-parameter family of de-

formations in F(X0,W ); these are represented by equipping L∞ with a bounding cochain in

HF1(L∞, L∞) = K of sufficiently large valuation (with our conventions, the valuation of 0
is +∞). Given a point cT λ ∈ K, the Floer differential on the Floer complex of (L∞, cT

λ)
with another Lagrangian counts, in addition to the usual strips, triangles with one boundary

puncture converging to a time 1 chord of an appropriate Hamiltonian (equal to a positive mul-

tiple of Re(x) near +∞) with ends on L∞ (this is the implementation of the Fukaya category

F(X0,W ) appearing in [219]); these triangles are counted with Novikov weights equal to their

topological energy.

Except for the case c = 0, these additional objects of the Fukaya category turn out to be

isomorphic to simple closed curves (enclosing the origin) with rank 1 local systems. More pre-

cisely, let Lλ be the fiber enclosing an additional amount of area λ ∈ R compared to a suitable

reference Lagrangian L0, and∇c the local system with holonomy c. (Fixing a Liouville 1-form

θ, we choose L0 so that
∫
L0
θ is equal to the action A of the Hamiltonian chord from L∞ to it-

self; so
∫
Lλ
θ = A+λ.) Then an easy computation shows that the pairs (L∞, cT

λ) and (Lλ,∇c)

represent quasi-isomorphic objects of F(C∗,W ). Thus, in F(C∗,W ) the previously consid-

ered moduli space of objects contains an additional point L∞; this naturally extends the mirror

from Y 0 ≃ K∗ to Y ≃ K, and the coordinate coming from identifying bounding cochains on

L∞ with local systems on closed curves defines an analytic structure near this point.

Alternatively, one can geometrically recover the Lagrangians Lλ (together with a trivial

noncompact component which is quasi-isomorphic to zero) as self-surgeries of the immersed

Lagrangian obtained by deformingL∞ to a curve with one self-intersection, enclosing the same

amount of area as Lλ. This self-intersection corresponds to a generator in HF 1(L∞, L∞), giv-

ing rise to a bounding cochain. The Floer-theoretic isomorphisms between bounding cochains

on admissible Lagrangians and embedded Lagrangians then become an instance of the surgery

formula of [83].



BLOWUPS AND MIRROR SYMMETRY FOR HYPERSURFACES 127

3 Notations and constructions

3.1 Hypersurfaces near the tropical limit

Let V be a (possibly non-compact) toric variety of complex dimension n, defined by a fan

ΣV ⊆ Rn. We denote by σ1, . . . , σr the primitive integer generators of the rays of ΣV . We

consider a family of smooth algebraic hypersurfaces Hτ ⊂ V (where τ → 0), transverse to

the toric divisors in V , and degenerating to the “tropical” limit. Namely, in affine coordinates

x = (x1, . . . , xn) over the open stratum V 0 ≃ (C∗)n ⊂ V , Hτ is defined by an equation of the

form

(3.1) fτ =
∑

α∈A

cατ
ρ(α)xα = 0,

where A is a finite subset of the lattice Zn of characters of the torus V 0, cα ∈ C∗ are arbitrary

constants, and ρ : A→ R satisfies a certain convexity property.

More precisely, fτ is a section of a certain line bundle L over V , determined by a convex

piecewise linear function λ : ΣV → R with integer linear slopes. (Note that L need not be

ample; however the convexity assumption forces it to be nef.) The polytope P associated to

L is the set of all v ∈ Rn such that 〈v, ·〉 + λ takes everywhere non-negative values; more

concretely, P = {v ∈ Rn | 〈σi, v〉 + λ(σi) ≥ 0 ∀1 ≤ i ≤ r}. It is a classical fact that

the integer points of P give a basis of the space of sections of L. The condition that Hτ be

transverse to each toric stratum of V is then equivalent to the requirement that A ⊆ P ∩ Zn

intersects nontrivially the closure of each face of P (i.e., in the compact case, A should contain

every vertex of P ).

Consider a polyhedral decomposition P of the convex hull Conv(A) ⊆ Rn, whose set of

vertices is exactly P(0) = A. We will mostly consider the case where the decomposition P is

regular, i.e. every cell of P is congruent under the action of GL(n,Z) to a standard simplex.

We say that ρ : A→ R is adapted to the polyhedral decompositionP if it is the restriction toA
of a convex piecewise linear function ρ̄ : Conv(A) → R whose maximal domains of linearity

are exactly the cells of P .

Definition 3.1 The family of hypersurfaces Hτ ⊂ V has a maximal degeneration for τ → 0 if

it is given by equations of the form (3.1) where ρ is adapted to a regular polyhedral decompo-

sition P of Conv(A).

The logarithm map Logτ : x = (x1, . . . , xn) 7→ 1
| log τ |

(log |x1|, . . . , log |xn|) maps Hτ to its

amoeba Πτ = Logτ (Hτ ∩ V 0); it is known [180], [201] that, for τ → 0, the amoeba Πτ ⊂ Rn

converges to the tropical hypersurface Π0 ⊂ Rn defined by the tropical polynomial

(3.2) ϕ(ξ) = max {〈α, ξ〉 − ρ(α) |α ∈ A}
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(namely, Π0 is the set of points where the maximum is achieved more than once). Combina-

torially, Π0 is the dual cell complex of P; in particular the connected components of Rn \ Π0

can be naturally labelled by the elements of P(0) = A, according to which term achieves the

maximum in (3.2).

Example 3.2 The toric variety V = P1 × P1 is defined by the fan Σ ⊆ R2 whose rays are

generated by σ1 = (1, 0), σ2 = (0, 1), σ3 = (−1, 0), σ4 = (0,−1). The piecewise linear

function λ : Σ → R with λ(σ1) = λ(σ2) = 0, λ(σ3) = 3, and λ(σ4) = 2 defines the line

bundle L = OP1×P1(3, 2), whose associated polytope is P = {(v1, v2) ∈ R2 : 0 ≤ v1 ≤
3, 0 ≤ v2 ≤ 2}. Let A = P ∩ Z2. The regular decomposition of P shown in Figure 1 (left) is

induced by the function ρ : A → R whose values are given in the figure. The corresponding

tropical hypersurface Π0 ⊆ R2 is shown in Figure 1 (right); Π0 is the limit of the amoebas of a

maximally degenerating family of smooth genus 2 curves Hτ ⊂ V as τ → 0.

When the toric variety V is non-compact, P is unbounded, and the convex hull of A is only

a proper subset of P . For instance, Figure 1 also represents a maximally degenerating family

of smooth genus 2 curves in V 0 ≃ (C∗)2 (where now P = R2).

5 2 1 2

2 0 0 2

2 1 2 5

Figure 1: A regular decomposition of the polytope for OP1×P1(3, 2), and the corresponding

tropical hypersurface.

We now turn to the symplectic geometry of the situation we just considered. Assume

that V is equipped with a complete toric Kähler metric, with Kähler form ωV . The torus

T n = (S1)n acts on (V, ωV ) by Hamiltonian diffeomorphisms; we denote by µV : V → Rn

the corresponding moment map. It is well-known that the image of µV is a convex polytope

∆V ⊂ Rn, dual to the fan ΣV . The preimage of the interior of ∆V is the open stratum V 0 ⊂ V ;

over V 0 the logarithm map Logτ and the moment map µV are related by some diffeomorphism

gτ : R
n ∼→ int(∆V ).

For a fixed Kähler form ωV , the diffeomorphism gτ gets rescaled by a factor of | log τ | as

τ varies; in particular, the moment map images µV (Hτ ) = gτ (Πτ ) ⊆ ∆V of a degenerating

family of hypersurfaces collapse towards the boundary of ∆V as τ → 0. This can be avoided by

considering a varying family of Kähler forms ωV,τ , obtained from the given ωV by symplectic

inflation along all the toric divisors of V , followed by a rescaling so that [ωV,τ ] = [ωV ] is
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independent of τ . (To be more concrete, one could e.g. consider a family of toric Kähler forms

which are multiples of the standard complete Kähler metric of (C∗)n over increasingly large

open subsets of V 0.)

Throughout this chapter, we will consider smooth hypersurfaces that are close enough to

the tropical limit, namely hypersurfaces of the form considered above with τ sufficiently close

to 0. The key requirement we have for “closeness” to the tropical limit is that the amoeba

should lie in a sufficiently small neighborhood of the tropical hypersurface Π0, so that the

complements have the same combinatorics. Since we consider a single hypersurface rather

than the whole family, we will omit τ from the notation.

Definition 3.3 A smooth hypersurface H = f−1(0) in a toric variety V is nearly tropical if it

is a member of a maximally degenerating family of hypersurfaces as above, with the property

that the amoeba Π = Log(H) ⊂ Rn is entirely contained inside a neighborhood of the tropical

hypersurface Π0 which retracts onto Π0.

In particular, each element α ∈ A determines a non-empty open component of Rn \ Π;

we will (abusively) refer to it as the component over which the monomial of f with weight α
dominates.

We equip V with a toric Kähler form ωV of the form discussed above, and denote by µV
and ∆V the moment map and its image. Let δ > 0 be a constant such that a standard symplectic

tubular neighborhood UH of H of size δ embeds into V and the complement of the moment

map image µV (UH) has a non-empty component for each element ofA (i.e. for each monomial

in f ).

Remark 3.4 The assumption that the degeneration is maximal is made purely for convenience,

and to ensure that the toric variety Y constructed in §3.3 below is smooth. However, all of our

arguments work equally well in the case of non-maximal degenerations.

3.2 Blowing up

Our main goal is to study SYZ mirror symmetry for the blow-up X of V ×C along H × 0,

equipped with a suitable Kähler form.

Recalling that the defining equation f of H is a section of a line bundle L → V , the

normal bundle to H × 0 in V × C is the restriction of L ⊕ O, and we can construct explicitly

X as a hypersurface in the total space of the P1-bundle P(L ⊕ O) → V × C. Namely, the

defining section of H × 0 projectivizes to a section s(x, y) = (f(x) : y) of P(L⊕O) over the

complement of H × 0; and X is the closure of the graph of s. In other terms,

(3.3) X = {(x, y, (u : v)) ∈ P(L ⊕O) | f(x)v = yu}.

In this description it is clear that the projection p : X → V × C is a biholomorphism outside

of the exceptional divisor E = p−1(H × 0).
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The S1-action on V × C by rotation of the C factor preserves H × 0 and hence lifts to an

S1-action on X . This action preserves the exceptional divisor E, and acts by rotation in the

standard manner on each fiber of the P1-bundle p|E : E → H×0. In coordinates, we can write

this action in the form:

(3.4) eiθ · (x, y, (u : v)) = (x, eiθy, (u : eiθv)).

Thus, the fixed point set of the S1-action on X consists of two disjoint strata: the proper

transform Ṽ of V × 0 (corresponding to y = 0, v = 0 in the above description), and the

section H̃ of p over H × 0 given by the line subbundle O of the normal bundle (i.e., the point

(0 : 1) in each fiber of p|E).

The open stratum V 0 × C∗ of the toric variety V × C carries a holomorphic (n + 1)-form

ΩV×C = in+1
∏

j d logxj ∧ d log y, which has simple poles along the toric divisor DV×C =

(V ×0)∪ (DV ×C) (where DV = V \V 0 is the union of the toric divisors in V ). The pullback

Ω = p∗(ΩV×C) has simple poles along the proper transform ofDV×C, namely the anticanonical

divisorD = Ṽ ∪p−1(DV ×C). The complementX0 = X \D, equipped with the S1-invariant

holomorphic (n+ 1)-form Ω, is an open Calabi-Yau manifold.

Remark 3.5 X \ Ṽ corresponds to v 6= 0 in (3.3), so it is isomorphic to an affine conic bundle

over V , namely the hypersurface in the total space of O ⊕ L given by

(3.5) {(x, y, z) ∈ O ⊕ L | f(x) = yz}.

Further removing the fibers over DV , we conclude that X0 is a conic bundle over the open

stratum V 0 ≃ (C∗)n, given again by the equation {f(x) = yz}.
We equip X with an S1-invariant Kähler form ωǫ for which the fibers of the exceptional

divisor have a sufficiently small area ǫ > 0. Specifically, we require that ǫ ∈ (0, δ/2), where δ
is the size of the standard tubular neighborhood of H that embeds in (V, ωV ). The most natural

way to construct such a Kähler form would be to equip L with a Hermitian metric, which

determines a Kähler form on P(L⊕O) and, by restriction, on X; on the complement of E the

resulting Kähler form is given by

(3.6) p∗ωV×C +
iǫ

2π
∂∂̄ log(|f(x)|2 + |y|2),

where ωV×C is the product Kähler form on V × C induced by the toric Kähler form ωV on V
and the standard area form of C.

However, from a symplectic perspective the blowup operation amounts to deleting from

V × C a standard symplectic tubular neighborhood of H × 0 and collapsing its boundary (an

S3-bundle over H) onto E by the Hopf map. Thus, X and V ×C are symplectomorphic away

from neighborhoods of E and H × 0; to take full advantage of this, we will choose ωǫ in such
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a way that the projection p : X → V × C is a symplectomorphism away from a neighborhood

of the exceptional divisor. Namely, we set

(3.7) ωǫ = p∗ωV×C +
iǫ

2π
∂∂̄
(
χ(x, y) log(|f(x)|2 + |y|2)

)
,

where χ is a suitably chosen S1-invariant smooth cut-off function supported in a tubular neigh-

borhood of H × 0, with χ = 1 near H × 0. It is clear that (3.7) defines a Kähler form provided

ǫ is small enough; specifically, ǫ needs to be such that a standard symplectic neighborhood of

size ǫ of H × 0 can be embedded (S1-equivariantly) into the support of χ. For simplicity, we

assume that χ is chosen so that the following property holds:

Property 3.6 The support of χ is contained inside p−1(UH×Bδ), where UH ⊂ V is a standard

symplectic δ-neighborhood of H and Bδ ⊂ C is the disc of radius δ.

Remark 3.7 ωǫ lies in the same cohomology class [ωǫ] = p∗[ωV×C]− ǫ[E] as the Kähler form

defined by (3.6), and is equivariantly symplectomorphic to it.

3.3 The mirror B-side Landau-Ginzburg model Using the same notations as in the previ-

ous section, we now describe a B-side Landau-Ginzburg model which we claim is SYZ mirror

to X (with the Kähler form ωǫ, and relatively to the anticanonical divisor D).

Recall that the hypersurface H ⊂ X has a defining equation of the form (3.1), involving

toric monomials whose weights range over a finite subset A ⊂ Zn, forming the vertices of a

polyhedral complex P (cf. Definition 3.1).

We denote by Y the (noncompact) (n + 1)-dimensional toric variety defined by the fan

ΣY = R≥0 · (P × {1}) ⊆ Rn+1 = Rn ⊕ R. Namely, the integer generators of the rays of ΣY
are the vectors of the form (−α, 1), α ∈ A, and the vectors (−α1, 1), . . . , (−αk, 1) span a cone

of ΣY if and only if α1, . . . , αk span a cell of P .

Dually, Y can be described by a (noncompact) polytope ∆Y ⊆ Rn+1, defined in terms of

the tropical polynomial ϕ : Rn → R associated to H (cf. (3.2)) by

(3.8) ∆Y = {(ξ, η) ∈ Rn ⊕ R | η ≥ ϕ(ξ)}.

Remark 3.8 The polytope ∆Y also determines a Kähler class [ωY ] on Y . While in this chapter

we focus on the A-model of X and the B-model of Y , it can be shown that the family of

complex structures on X obtained by blowing up V × C along the maximally degenerating

family Hτ × 0 (cf. §3.1) corresponds to a family of Kähler forms asymptotic to | log τ |[ωY ] as

τ → 0.

Remark 3.9 Even though deforming the hypersurface H inside V does not modify the sym-

plectic geometry of X , the topology of Y depends on the chosen polyhedral decomposition

P (i.e., on the combinatorial type of the tropical hypersurface defined by ϕ). However, the
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various possibilities for Y are related to each other by crepant birational transformations, and

hence are expected to yield equivalent B-models. (The A-model of Y , on the other hand, is

affected by these birational transformations and does depend on the tropical polynomial ϕ, as

explained in the previous remark.)

The facets of ∆Y correspond to the maximal domains of linearity of ϕ. Thus the irreducible

toric divisors of Y are in one-to-one correspondence with the connected components of Rn \
Π0, and the combinatorics of the toric strata of Y can be immediately read off the tropical

hypersurface Π0 (see Example 3.12 below).

It is advantageous for our purposes to introduce a collection of affine charts on Y indexed

by the elements of A (i.e., the facets of ∆Y , or equivalently, the connected components of

Rn \ Π0).

For each α ∈ A, let Yα = (K∗)n ×K, with coordinates vα = (vα,1, . . . , vα,n) ∈ (K∗)n and

vα,0 ∈ K (as before, K is either Λ or C). Whenever α, β ∈ A are connected by an edge in the

polyhedral decomposition P (i.e., whenever the corresponding components of Rn \Π0 share a

top-dimensional facet, with primitive normal vector β−α), we glue Yα to Yβ by the coordinate

transformations

(3.9)

{
vα,i = vβi−αi

β,0 vβ,i (1 ≤ i ≤ n),

vα,0 = vβ,0.

These charts cover the complement in Y of the codimension 2 strata (as Yα covers the open

stratum of Y and the open stratum of the toric divisor corresponding to α). In terms of the

standard basis of toric monomials indexed by weights in Zn+1, vα,0 is the monomial with

weight (0, . . . , 0, 1), and for i ≥ 1 vα,i is the monomial with weight (0, . . . ,−1, . . . , 0,−αi)
(the i-th entry is −1).

Denoting by T the Novikov parameter (treated as an actual complex parameter when K =
C), and by v0 the common coordinate vα,0 for all charts, we set

(3.10) w0 = −T ǫ + T ǫv0.

With this notation, the above coordinate transformations can be rewritten as

vα,i =
(
1 + T−ǫw0

)βi−αi vβ,i, 1 ≤ i ≤ n.

More generally, for m = (m1, . . . , mn) ∈ Zn we set vmα = vm1
α,1 . . . v

mn
α,n. Then

(3.11) vmα = (1 + T−ǫw0)
〈β−α,m〉vmβ .

We shall see that w0 and the transformations (3.11) have a natural interpretation in terms of the

enumerative geometry of holomorphic discs in X .
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Next, recall from §3.1 that the inward normal vectors to the facets of the moment polytope

∆V associated to (V, ωV ) are the primitive integer generators σ1, . . . , σr of the rays of ΣV .

Thus, there exist constants ̟1, . . . , ̟r ∈ R such that

(3.12) ∆V = {u ∈ Rn | 〈σi, u〉+̟i ≥ 0 ∀1 ≤ i ≤ r}.

Then for i = 1, . . . , r we set

(3.13) wi = T̟ivσiαi

where αi ∈ A is chosen to lie on the facet of P defined by σi, i.e. so that 〈σi, αi〉 is minimal.

Hence, by the conditions imposed in §3.1, 〈σi, αi〉 + λ(σi) = 0, where λ : ΣV → R is

the piecewise linear function defining L = O(H). By (3.11), the choice of αi satisfying the

required condition is irrelevant: in all cases vσiαi
is simply the toric monomial with weight

(−σi, λ(σi)) ∈ Zn ⊕ Z. Moreover, this weight pairs non-negatively with all the rays of the fan

ΣY , therefore wi defines a regular function on Y .

With all the notation in place, we can at last make the following definition, which clarifies

the statements of Theorems 1.5 and 1.6:

Definition 3.10 We denote by Y 0 the complement of the hypersurface DY = w−1
0 (0) in the

toric (n+ 1)-fold Y , and define the leading-order superpotential

(3.14) W0 = w0 + w1 + · · ·+ wr = −T ǫ + T ǫv0 +

r∑

i=1

T̟ivσiαi
∈ O(Y ).

We also define

(3.15) WH
0 = −v0 + w1 + · · ·+ wr = −v0 +

r∑

i=1

T̟ivσiαi
∈ O(Y ).

Remark 3.11 Since there are no convergence issues, we can think of (Y 0,W0) and (Y,WH
0 )

either as B-side Landau-Ginzburg models defined over the Novikov field or as one-parameter

families of complex B-side Landau-Ginzburg models defined over C.

Example 3.12 When H is the genus 2 curve of Example 3.2, the polytope ∆Y has 12 facets

(2 of them compact and the 10 others non-compact), corresponding to the 12 components

of Rn \ Π0, and intersecting exactly as pictured on Figure 1 right. The edges of the figure

correspond to the configuration of P1’s and A1’s along which the toric divisors of the 3-fold Y
intersect.

Label the irreducible toric divisors by Da,b (0 ≤ a ≤ 3, 0 ≤ b ≤ 2), corresponding

to the elements (a, b) ∈ A. Then the leading-order superpotential W0 consists of five terms:

w0 = −T ǫ+T ǫv0, where v0 is the toric monomial of weight (0, 0, 1), which vanishes with mul-

tiplicity 1 on each of the 12 toric divisors; and up to constant factors, w1 is the toric monomial
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with weight (−1, 0, 0), which vanishes with multiplicity a on Da,b; w2 is the toric monomial

with weight (0,−1, 0), vanishing with multiplicity b on Da,b; w3 is the monomial with weight

(1, 0, 3), with multiplicity (3 − a) on Da,b; and w4 is the monomial with weight (0, 1, 2), with

multiplicity (2− b) on Da,b. In particular, the compact divisors D1,1 and D2,1 are components

of the singular fiber {W0 = −T ǫ} ⊂ Y 0 (which also has a third, non-compact component);

and similarly for {WH
0 = 0} ⊂ Y .

(In general the order of vanishing of wi on a given divisor is equal to the intersection

number with Π0 of a semi-infinite ray in the direction of −σi starting from a generic point in

the relevant component of Rn \ Π0.)

This example does not satisfy Assumption 1.4, and in this case the actual mirror of X
differs from (Y 0,W0) by higher-order correction terms. On the other hand, if we consider the

genus 2 curve with 10 punctures H ∩ V 0 in the open toric variety V 0 ≃ (C∗)2, which does fall

within the scope of Theorem 1.5, the construction yields the same toric 3-fold Y , but now we

simply have W0 = w0 (resp. WH
0 = −v0).

4 Lagrangian torus fibrations on blowups of toric va-

rieties

As in §3.2, we consider a smooth nearly tropical hypersurface H = f−1(0) in a toric

variety V of dimension n, and the blow-up X of V × C along H × 0, equipped with the S1-

invariant Kähler form ωǫ given by (3.7). Our goal in this section is to construct an S1-invariant

Lagrangian torus fibration π : X0 → B (with appropriate singularities) on the open Calabi-

Yau manifold X0 = X \D, where D is the proper transform of the toric anticanonical divisor

of V × C. (Similar fibrations have been previously considered by Gross [101], [102] and by

Castaño-Bernard and Matessi [46], [47].) The key observation is that S1-invariance forces the

fibers of π to be contained in the level sets of the moment map of the S1-action. Thus, we begin

by studying the geometry of the reduced spaces.

4.1 The reduced spaces The S1-action (3.4) on X is Hamiltonian with respect to the Kähler

form ωǫ given by (3.7), and its moment map µX : X → R can be determined explicitly.

Outside of the exceptional divisor, we identify X with V ×C via the projection p, and observe

that µX(x, y) =
∫
D(x,y)

ωǫ, where D(x, y) is a disc bounded by the orbit of (x, y), namely the

total transform of {x} × D2(|y|) ⊂ V × C. (We normalize µX so that it takes the constant

value 0 over the proper transform of V × 0; also, our convention differs from the usual one by

a factor of 2π.)

Hence, for given x the quantity µX(x, y) is a strictly increasing function of |y|. Moreover,
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applying Stokes’ theorem we find that

(4.1) µX(x, y) = π|y|2 + ǫ

2
|y| ∂
∂|y|

(
χ(x, y) log(|f(x)|2 + |y|2)

)
.

In the regions where χ is constant this simplifies to:

(4.2) µX(x, y) =




π|y|2 + ǫ

|y|2
|f(x)|2 + |y|2 where χ ≡ 1 (near E),

π|y|2 where χ ≡ 0 (away from E).

(Note that the first expression extends naturally to a smooth function over E.)

The critical points of µX are the fixed points of the S1-action. Besides Ṽ = µ−1
X (0), the

fixed points occur along H̃ , which lies in the level set µ−1
X (ǫ); in particular, all the other level

sets of µX are smooth. Since for any given x the moment map µX is a strictly increasing

function of |y|, each level set of µX intersects p−1({x} × C) along a single S1-orbit. Hence,

for λ > 0, the natural projection to V (obtained by composing p with projection to the first

factor) yields a natural identification of the reduced space Xred,λ = µ−1
X (λ)/S1 with V .

For λ ≫ ǫ, µ−1
X (λ) is disjoint from the support of the cut-off function χ, and the reduced

Kähler form ωred,λ on Xred,λ
∼= V coincides with the toric Kähler form ωV . As λ becomes

closer to ǫ, ωred,λ differs from ωV near H but remains cohomologous to it. At the critical

level λ = ǫ, the reduced form ωred,ǫ is singular along H (but its singularities are fairly mild,

see Lemma B.1). Finally, for λ < ǫ the Kähler form ωred,λ differs from ωV in a tubular

neighborhood of H , inside which the normal direction to H has been symplectically deflated.

In particular, one easily checks that

(4.3) [ωred,λ] = [ωV ]−max(0, ǫ− λ)[H ].

Our goal is to exploit the toric structure of V to construct families of Lagrangian tori in

Xred,λ. The Kähler form ωred,λ on Xred,λ
∼= V is not T n-invariant near H; in fact it isn’t even

smooth along H for λ = ǫ. However, there exist (smooth) toric Kähler forms ω′
V,λ, depending

piecewise smoothly on λ, with [ω′
V,λ] = [ωred,λ]; see (13.5) for an explicit construction. The

following result will be proved in Appendix B.

Lemma 4.1 There exists a family of homeomorphisms (φλ)λ∈R+ of V such that:

1. φλ preserves the toric divisor DV ⊂ V ;

2. the restriction of φλ to V 0 is a diffeomorphism for λ 6= ǫ, and a diffeomorphism outside

of H for λ = ǫ;

3. φλ intertwines the reduced Kähler form ωred,λ and the toric Kähler form ω′
V,λ;

4. φλ = id at every point whose T n-orbit is disjoint from the support of χ;
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5. φλ depends on λ in a continuous manner, and smoothly except at λ = ǫ.

The diffeomorphism (singular along H for λ = ǫ) φλ given by Lemma 4.1 yields a preferred

Lagrangian torus fibration on the open stratumX0
red,λ = (µ−1

X (λ)∩X0)/S1 ofXred,λ (naturally

identified with V 0 under the canonical identification Xred,λ
∼= V ), namely the preimage by φλ

of the standard fibration of (V 0, ω′
V,λ) by T n-orbits:

Definition 4.2 We denote by πλ : X0
red,λ → Rn the composition πλ = Log ◦ φλ, where Log :

V 0 ∼= (C∗)n → Rn is the logarithm map (x1, . . . , xn) 7→ 1
| log τ |

(log |x1|, . . . , log |xn|), and

φλ : (Xred,λ, ωred,λ)→ (V, ω′
V,λ) is as in Lemma 4.1.

Remark 4.3 By construction, the natural affine structure (see §2.1) on the base of the La-

grangian torus fibration πλ identifies it with the interior of the moment polytope ∆V,λ associ-

ated to the cohomology class [ω′
V,λ] = [ωred,λ] ∈ H2(V,R).

4.2 A Lagrangian torus fibration on X0 We now assemble the Lagrangian torus fibrations

πλ on the reduced spaces into a (singular) Lagrangian torus fibration on X0:

Definition 4.4 We denote by π : X0 → B = Rn × R+ the map which sends the point x ∈
µ−1
X (λ) ∩X0 to π(x) = (πλ(x̄), λ), where x̄ ∈ X0

red,λ is the S1-orbit of x.

The map π is continuous, and smooth away from λ = ǫ. The fiber of π above (ξ, λ) ∈ B
is obtained by lifting the Lagrangian torus π−1

λ (ξ) ⊂ Xred,λ to µ−1
X (λ) and “spinning” it by the

S1-action.

Away from the fixed points of the S1-action, µ−1
X (λ) is a coisotropic manifold with isotropic

foliation given by the S1-orbits. Moreover, the S1-bundle µ−1
X (λ) → Xred,λ is topologically

trivial for λ > ǫ (setting y ∈ R+ gives a global section), trivial over the complement of H for

λ = ǫ, and the circle bundle associated to the line bundle O(−H) for λ < ǫ; in any case, its

restriction to a fiber of πλ is topologically trivial. The fibers of πλ are smooth Lagrangian tori

(outside of H when λ = ǫ, which corresponds precisely to the S1-fixed points); therefore, we

conclude that the fibers of π are smooth Lagrangian tori unless they contain fixed points of the

S1-action.

The only fixed points occur for λ = ǫ, when µ−1
X (λ) contains the stratum of fixed points H̃.

The identification of the reduced space with V maps H̃ to the hypersurface H , so the singular

fibers map to

(4.4) Bsing = Π′ × {ǫ} ⊂ B,

where Π′ = πǫ(H ∩ V 0) ⊂ Rn is essentially the amoeba of the hypersurface H (up to the fact

that πǫ differs from the logarithm map by φǫ). The fibers above the points of Bsing differ from

the regular fibers in that, where a smooth fiber π−1(ξ, λ) ≃ T n+1 is a trivial S1-bundle over
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π−1
λ (ξ) ≃ T n ⊂ V 0, for λ = ǫ some of the S1 fibers (namely those which lie over points of H)

are collapsed to points.

Because the fibration π has non-trivial monodromy around Bsing, the only globally defined

affine coordinate on B is the last coordinate λ (the moment map of the S1-action); other affine

coordinates are only defined over subsets of B \ Bsing, i.e. in the complement of certain cuts.

Our preferred choice for such a description relates the affine structure on B to the moment

polytope ∆V × R+ of V × C. Namely, away from a tubular neighborhood of Π′ × (0, ǫ) the

Lagrangian torus fibration π coincides with the standard toric fibration on V × C:

Proposition 4.5 Outside of the support of χ (a tubular neighborhood of the exceptional divisor

E), the Kähler form ωǫ is equal to p∗ωV×C, and the moment map of the S1-action is the standard

one µX(x, y) = π|y|2. Moreover, outside of π(suppχ), the fibers of the Lagrangian fibration

π are standard product tori, i.e. they are the preimages by p of the orbits of the T n+1-action in

V × C.

Proof. The first statement follows immediately from formulas (3.7) and (4.1). The second one

is then a direct consequence of the manner in which π was constructed and condition (3) in

Lemma 4.1. �

Recall that the support of χ is constrained by Property 3.6. Thus, the fibration π is standard

(coincides with the standard toric fibration on V ×C) over a large subset Bstd = (Rn ×R+) \
(Log(UH) × (0, δ)) of B. Since ωǫ = p∗ωV×C over π−1(Bstd), we conclude that over Bstd

the affine structure of B agrees with that for the standard toric fibration of V × C, i.e. as an

affine manifoldBstd can be naturally identified with the complement of µV (UH)× (0, δ) inside

int(∆V )× R+.

This description of the affine structure on B \ Bsing can be extended from Bstd to the

complement of a set of codimension 1 cuts. Recall from §2.1 that the affine coordinates of

b ∈ B \ Bsing relative to some reference point b0 are given by the symplectic areas of certain

relative 2-cycles (Γ1, . . . ,Γn+1) with boundary on π−1(b) ∪ π−1(b0); the above identification

of Bstd with a subset of ∆V × R+ arises from taking the boundaries of Γi to be (homologous

to) orbits of the various S1 factors of the T n+1-action on V × C.

When b and b0 have the same last coordinate λ > ǫ, we can choose Γ1, . . . ,Γn to be con-

tained in µ−1
X (λ), and obtained as the lifts of relative 2-cycles Γi,red in Xred,λ with boundary on

fibers of πλ; we can fix such lifts by requiring that y ∈ R+ on Γi. Since
∫
Γi
ωǫ =

∫
Γi,red

ωred,λ,

the affine structure on the level set Rn×{λ} ⊂ B is the same as that on the base of the fibration

πλ on the reduced space Xred,λ, which can be identified via the diffeomorphism φλ with the

standard toric fibration on (V, ω′
V,λ). For λ > ǫ we have [ωred,λ] = [ω′

V,λ] = [ωV ], so the base is

naturally identified with the interior of the moment polytope ∆V ; moreover, this identification

is consistent with our previous description of the affine structure overBstd, since in that region

the various Kähler forms agree pointwise.

In other terms, over Rn × (ǫ,∞) ⊂ B, the affine structure is globally a product int(∆V )×
(ǫ,∞) of the affine structure on the moment polytope of (V, ωV ) and the interval (ǫ,∞), in a

manner that extends the previous description over Bstd.
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For λ < ǫ, the affine structure on Rn × {λ} ⊂ B can be described similarly, by choosing

relative 2-cycles Γi,red in Xred,λ with boundary on fibers of πλ and lifting them to relative 2-

cycles Γ′
i in µ−1

X (λ). Since the lifts may intersect the exceptional divisor E, we cannot require

y ∈ R+ as in the case λ > ǫ. Instead, we use the monomial xα0 for some α0 ∈ A to fix a

trivialization of L = O(H) over V 0, and choose the lifts so that x−α0z = x−α0f(x)/y ∈ R+

on Γ′
i. Since

∫
Γ′
i
ωǫ =

∫
Γi,red

ωred,λ, the affine structure on the level set Rn × {λ} ⊂ B is

again identical to that on the base of the fibration πλ on Xred,λ, or equivalently via φλ, the

standard toric fibration on (V, ω′
V,λ). Thus, the affine structure identifies Rn × {λ} ⊂ B with

the interior of the moment polytope ∆V,λ associated to the Kähler class [ω′
V,λ] = [ωred,λ] =

[ωV ]−max(0, ǫ−λ)[H ]. However, this description is no longer consistent with that previously

given for Bstd, because the boundary of Γ′
i does not represent the expected homology class in

π−1(b).
Specifically, assume b0 and b ∈ (Rn \ Log(UH)) × {λ} lie in the connected components

corresponding to α0 and α ∈ A respectively. Then the boundary of Γ′
i in π−1(b0) does represent

the homology class of the orbit of the i-th S1-factor, while the boundary in π−1(b) differs from

it by αi − α0,i times the orbit of the last S1-factor. Moreover,

∫

Γi,red

ωV −
∫

Γi,red

ωred,λ = (ǫ− λ)(Γi,red ·H) = (ǫ− λ)(αi − α0,i).

This formula also gives the difference between the ωǫ-areas of the relative cycles Γ′
i and the

relative cycles Γi ⊂ π−1(Bstd) previously used to determine affine coordinates over Bstd.

Hence, the affine coordinates determined by the relative cycles Γ′
i differ from those constructed

previously over Bstd by a shear

(4.5) (ζ1, . . . , ζn, λ) 7→
(
ζ1 + (ǫ− λ)(α1 − α0,1), . . . , ζn + (ǫ− λ)(αn − α0,n), λ

)

or more succinctly, (ζ, λ) 7→
(
ζ + (ǫ− λ)(α− α0), λ

)
.

More globally, over Rn×(0, ǫ) ⊂ B the affine structure can be identified (using the relative

cycles Γ′
i to define coordinates) with a piece of the moment polytope for the total space of the

line bundle O(−H) over V (equipped with a toric Kähler form in the class [ωV ] − ǫ[H ]),
consistent with the fact that the normal bundle to Ṽ insideX isO(−H); but this description is

not consistent with the one we have given over Bstd.

On the other hand, the shears (4.5) map the complement of the amoeba of H in ∆V,λ to the com-

plement of a standard (ǫ − λ)-neighborhood of the amoeba of H in ∆V . Thus, making cuts along

the projection of the exceptional divisor, we can extend the affine coordinates previously described over

Bstd, and identify the affine structure onB\(Π′×(0, ǫ]) with an open subset of int(∆V )×R+, obtained

by deleting an (ǫ− λ)-neighborhood of the amoeba of H from int(∆V )× {λ} for all λ ∈ (0, ǫ].
This is the picture of B that we choose to emphasize, depicting it as the complement of a set of

“triangular” cuts inside ∆V × R+; see Figure 2.
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×

ǫ
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Figure 2: The base of the Lagrangian torus fibration π : X0 → B. Left: H = {point} ⊂ CP1.

Right: H = {x1 + x2 = 1} ⊂ C2.

Remark 4.6 While the fibration we construct is merely Lagrangian, it is very reasonable to conjecture

that in fact X0 carries an S1-invariant special Lagrangian fibration over B. The holomorphic (n + 1)-
form Ω = p∗ΩV×C on X0 is S1-invariant, and induces a holomorphic n-form on the reduced space

X0
red,λ, which turns out to coincide with the standard toric form ΩV = in

∏
j d log xj . Modifying the

construction of the fibration πλ : X0
red,λ → Rn so that its fibers are special Lagrangian with respect

to ΩV would then be sufficient to ensure that the fibers of π are special Lagrangian with respect to Ω.

In dimension 1 this is easy to accomplish by elementary methods. In higher dimensions, making πλ
special Lagrangian requires the use of analysis, as the deformation of product tori in V 0 (which are

special Lagrangian with respect to ω′
V,λ and ΩV ) to tori which are special Lagrangian for ωred,λ and

ΩV is governed by a first-order elliptic PDE [179] (see also [128, §9] or [13, Prop. 2.5]). If one were

to argue as in the proof of Lemma 4.1 (cf. Appendix B), the 1-forms used to construct φλ should be

chosen not only to satisfy the usual condition for Moser’s trick, but also to be co-closed with respect to

a suitable rescaling of the Kähler metric induced by ωt,λ. When V = (C∗)n this does not seem to pose

any major difficulties, but in general it is not obvious that one can ensure the appropriate behavior along

the toric divisors.

5 SYZ mirror symmetry for X0

In this section we apply the procedure described in §2 to the Lagrangian torus fibration π : X0 → B
of §4 in order to construct the SYZ mirror to the open Calabi-Yau manifold X0 and prove Theorem 1.7.

The key observation is that, by Proposition 4.5, most fibers of π are mapped under the projection p to

standard product tori in the toric variety V ×C; therefore, the holomorphic discs bounded by these fibers

can be understood by reducing to the toric case, which is well understood (see e.g. [56]).

Proposition 5.1 The fibers of π : X0 → B which bound holomorphic discs in X0 are those which

intersect the subset p−1(H × C).
Moreover, the simple holomorphic discs in X0 bounded by such a fiber contained in µ−1

X (λ) have

Maslov index 0 and symplectic area |λ − ǫ|, and their boundary represents the homology class of an
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S1-orbit if λ > ǫ and its negative otherwise.

Proof. Let L ⊂ X0 be a smooth fiber of π, contained in µ−1
X (λ) for some λ ∈ R+, and let u :

(D2, ∂D2) → (X0, L) be a holomorphic disc with boundary in L. Denote by L′ the projection of

L to V (i.e., the image of L by the composition pV of p and the projection to the first factor). The

restriction of pV to µ−1
X (λ) coincides with the quotient map to the reduced space Xred,λ ≃ V ; thus,

L′ is in fact a fiber of πλ, i.e. a Lagrangian torus in (V 0, ωred,λ), smoothly isotopic to a product torus

inside V 0 ≃ (C∗)n.

Since the relative homotopy group π2(V
0, L′) ≃ π2((C

∗)n, (S1)n) vanishes, the holomorphic disc

pV ◦ u : (D2, ∂D2) → (V 0, L′) is necessarily constant. Hence the image of the disc u is contained

inside a fiber p−1
V (x) for some x ∈ V 0.

If x 6∈ H , then p−1
V (x)∩X0 = p−1({x}×C∗) ≃ C∗, inside which p−1

V (x)∩L is a circle centered at

the origin (an orbit of the S1-action). The maximum principle then implies that the map u is necessarily

constant.

On the other hand, when x ∈ H , p−1
V (x) ∩ X0 is the union of two affine lines intersecting trans-

versely at one point: the proper transform of {x}×C, and the fiber of E above x (minus the point where

it intersects Ṽ ). Now, p−1
V (x) ∩ L is again an S1-orbit, i.e. a circle inside one of these two components

(depending on whether λ > ǫ or λ < ǫ); either way, p−1
V (x) ∩ L bounds exactly one non-constant

embedded holomorphic disc in X0 (and all of its multiple covers). The result follows. �

Denote byBreg ⊂ B the set of those fibers of π which do not intersect p−1(UH×C). From Property

3.6 and Propositions 4.5 and 5.1, we deduce:

Corollary 5.2 The fibers of π above the points of Breg are tautologically unobstructed in X0, and

project under p to standard product tori in V 0 × C.

With respect to the affine structure, Breg = (Rn \ Log(UH)) × R+ is naturally isomorphic to

(∆V \ µV (UH))× R+.

Definition 5.3 The chamber Uα is the connected component ofBreg over which the monomial of weight

α dominates all other monomials in the defining equation of H .

Remark 5.4 By construction, the complement of Log(UH) is a deformation retract of the complement

of the amoeba of H inside Rn; so the set of tautologically unobstructed fibers of π retracts onto Breg =⊔
Uα.

As explained in §2.1, Uα determines an affine coordinate chart U∨
α for the SYZ mirror of X0, with

coordinates of the form (2.3).

Specifically, fix a reference point b0 ∈ Uα, and observe that, since L0 = π−1(b0) is the lift of an

orbit of the T n+1-action on V ×C, its first homology carries a preferred basis (γ1, . . . , γn, γ0) consisting

of orbits of the various S1 factors. Consider b ∈ Uα, with coordinates (ζ1, . . . , ζn, λ) (here we identify

Uα ⊂ Breg with a subset of the moment polytope ∆V × R+ ⊂ Rn+1 for the T n+1-action on V × C),

and denote by (ζ01 , . . . , ζ
0
n, λ

0) the coordinates of b0. Then the valuations of the coordinates given by

(2.3), i.e., the areas of the cylinders Γ1, . . . ,Γn,Γ0 bounded by L0 and L = π−1(b), are ζ1 − ζ01 , . . . ,
ζn − ζ0n, and λ− λ0 respectively. In order to eliminate the dependence on the choice of L0, we rescale
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each coordinate by a suitable power of T , and equip U∨
α with the coordinate system

(5.1) (L,∇) 7→ (vα,1, . . . , vα,n, wα,0) =
(
T ζ1∇(γ1), . . . , T ζn∇(γn), T λ∇(γ0)

)
.

(Compare with (2.3), noting that ζi = ζ0i +
∫
Γi
ωǫ and λ = λ0 +

∫
Γ0
ωǫ.)

As in §3.3, we set vα = (vα,1, . . . , vα,n), and for m ∈ Zn we write v
m
α = vm1

α,1 . . . v
mn
α,n. Moreover,

we write w0 for wα,0; this is a priori ambiguous, but we shall see shortly that the gluings between the

charts preserve the last coordinate.

The “naive” gluings between these coordinate charts (i.e., those which describe the geometry of the

space of (L,∇) up to Hamiltonian isotopy without accounting for instanton corrections) are governed by

the global affine structure of B \Bsing. Their description is instructive, even though it is not necessary

for our argument.

For λ > ǫ the affine structure is globally that of ∆V × (ǫ,∞). Therefore, (5.1) makes sense and is

consistent with (2.3) even when b does not lie in Uα; thus, for λ > ǫ the naive gluing is the identity map

(vα = vβ , and wα,0 = wβ,0).

On the other hand, for λ ∈ (0, ǫ) we argue as in §4.2 (cf. equation (4.5) and the preceding discus-

sion). When b = (ζ1, . . . , ζn, λ) lies in a different chamber Uβ from that containing the reference point

b0 (i.e., Uα), the intersection number of a cylinder Γ′
i constructed as previously with the exceptional

divisor E is equal to βi − αi, and its symplectic area differs from ζi − ζ0i by (βi − αi)(ǫ − λ). More-

over, due to the monodromy of the fibration, the bases of first homology used in Uα and Uβ differ by

γi 7→ γi + (βi − αi)γ0 for i = 1, . . . , n. Thus, for λ < ǫ the naive gluing between the charts U∨
α and

U∨
β corresponds to setting

vα,i = T−(βi−αi)(ǫ−λ)∇(γ0)βi−αivβ,i = (T−ǫw0)
βi−αivβ,i, 1 ≤ i ≤ n.

The naive gluing formulas for the two cases (λ > ǫ and λ < ǫ) are inconsistent. As seen in §2.1,

this is not unexpected: the actual gluing between the coordinate charts {U∨
α }α∈A differs from these

formulas by instanton corrections which account for the bubbling of holomorphic discs as L is isotoped

across a wall of potentially obstructed fibers.

Given a potentially obstructed fiber L ⊂ µ−1
X (λ), the simple holomorphic discs bounded by L are

classified by Proposition 5.1. For λ > ǫ, the symplectic area of these discs is λ− ǫ, and their boundary

loop represents the class γ0 ∈ H1(L) (the orbit of the S1-action), so the corresponding weight is

T λ−ǫ∇(γ0) (= T−ǫw0); while for λ < ǫ the symplectic area is ǫ− λ and the boundary loop represents

−γ0, so the weight is T ǫ−λ∇(γ0)−1 (= T ǫw−1
0 ). As explained in §2.1, we therefore expect the instanton

corrections to the gluings to be given by power series in (T−ǫw0)
±1.

While the direct calculation of the multiple cover contributions to the instanton corrections would

require sophisticated machinery, Remark 2.3 provides a way to do so by purely elementary techniques.

Namely, we study the manner in which counts of Maslov index 2 discs in partial compactifications of

X0 vary between chambers. The reader is referred to Example 3.1.2 of [14] for a simple motivating

example (corresponding to the case where H = {point} in V = C).

Recall that a point of U∨
α corresponds to a pair (L,∇), where L = π−1(b) is the fiber of π above

some point b ∈ Uα, and ∇ is a unitary rank 1 local system on L. Given a partial compactification X ′

of X0 (satisfying Assumption 2.2), (L,∇) is a weakly unobstructed object of F(X ′), i.e. m0(L,∇) =
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WX′(L,∇) eL, where WX′(L,∇) is a weighted count of Maslov index 2 holomorphic discs bounded

by L in X ′. Varying (L,∇), these weighted counts define regular functions on each chart U∨
α , and by

Corollary A.11, they glue into a global regular function on the SYZ mirror of X0.

We first use this idea to verify that the coordinate w0 = wα,0 is preserved by the gluing maps, by

interpreting it as a weighted count of discs in the partial compactification X0
+ of X0 obtained by adding

the open stratum Ṽ 0 of the divisor Ṽ .

Lemma 5.5 Let X0
+ = p−1(V 0 ×C) = X0 ∪ Ṽ 0 ⊂ X. Then any point (L,∇) of U∨

α defines a weakly

unobstructed object of F(X0
+), with

(5.2) WX0
+
(L,∇) = wα,0.

Proof. Let u : (D2, ∂D2) → (X0
+, L) be a holomorphic disc in X0

+ with boundary on L whose

Maslov index is 2. The image of u by the projection p is a holomorphic disc in V 0 × C ≃ (C∗)n × C
with boundary on the product torus p(L) = S1(r1) × · · · × S1(r0). Thus, the first n components of

p ◦ u are constant by the maximum principle, and we can write p ◦ u(z) = (x1, . . . , xn, r0γ(z)), where

|x1| = r1, . . . , |xn| = rn, and γ : D2 → C maps the unit circle to itself. Moreover, the Maslov index of

u is twice its intersection number with Ṽ . Therefore γ is a degree 1 map of the unit disc to itself, i.e. a

biholomorphism; so the choice of (x1, . . . , xn) determines u uniquely up to reparametrization.

We conclude that each point of L lies on the boundary of a unique Maslov index 2 holomorphic disc

in X0
+, namely the preimage by p of a disc {x} × D2(r0). These discs are easily seen to be regular,

by reduction to the toric case [56]; their symplectic area is λ (by definition of the moment map µX , see

the beginning of §4.1), and their boundary represents the homology class γ0 ∈ H1(L) (the orbit of the

S1-action on X). Thus, their weight is Tω(u)∇(∂u) = T λ∇(γ0) = wα,0, which completes the proof.

�

Lemma 5.5 implies that the local coordinates wα,0 ∈ O(U∨
α ) glue to a globally defined regular

function w0 on the mirror of X0 (hence we drop α from the notation).

Next, we consider monomials in the remaining coordinates vα. First, let σ ∈ Zn be a primitive

generator of a ray of the fan ΣV , and denote by D0
σ the open stratum of the corresponding toric divisor

in V . We will presently see that the monomial vσα is related to a weighted count of discs in the partial

compactification X ′
σ of X0 obtained by adding p−1(D0

σ × C):

(5.3) X ′
σ = p−1((V 0 ∪D0

σ)× C) \ Ṽ ⊂ X.

Let ̟ ∈ R be the constant such that the corresponding facet of ∆V has equation 〈σ, u〉 +̟ = 0, and

let αmin ∈ A be such that 〈σ, αmin〉 is minimal.

Lemma 5.6 Any point (L,∇) of U∨
α (α ∈ A) defines a weakly unobstructed object of F(X ′

σ), with

(5.4) WX′
σ
(L,∇) = (1 + T−ǫw0)

〈α−αmin,σ〉T̟vσα.

Proof. After performing dual monomial changes of coordinates on V 0 and on U∨
α (i.e., replacing the

coordinates (x1, . . . , xn) by (xτ1 , . . . ,xτn) where 〈σ, τi〉 = δi,1, and (vα,1, . . . , vα,n) by (vσα, . . . )), we

can reduce to the case where σ = (1, 0, . . . , 0), and V 0 ∪D0
σ ≃ C× (C∗)n−1.

With this understood, let u : (D2, ∂D2) → (X ′
σ , L) be a Maslov index 2 holomorphic disc with

boundary on L. The composition of u with the projection p is a holomorphic disc in (V 0 ∪D0
σ)×C ≃
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C × (C∗)n−1 × C with boundary on the product torus p(L) = S1(r1) × · · · × S1(r0). Thus, all

the components of p ◦ u except for the first and last ones are constant by the maximum principle.

Moreover, since the Maslov index of u is twice its intersection number with D0
σ, the first component of

p ◦ u has a single zero, i.e. it is a biholomorphism from D2 to the disc of radius r1. Therefore, up to

reparametrization we have p ◦ u(z) = (r1z, x2, . . . , xn, r0γ(z)), where |x2| = r2, . . . , |xn| = rn, and

γ : D2 → C maps the unit circle to itself.

A further constraint is given by the requirement that the image of u be disjoint from Ṽ (the proper

transform of V × 0). Thus, the last component γ(z) is allowed to vanish only when (r1z, x2, . . . , xn) ∈
H , and its vanishing order at such points is constrained as well. We claim that the intersection number

k of the disc D = D2(r1)× {(x2, . . . , xn)} with H is equal to 〈α − αmin, σ〉. Indeed, with respect to

the chosen trivialization of O(H) over V 0, near pV (L) the dominating term in the defining section of

H is the monomial xα, whose values over the circle S1(r1) × {(x2, . . . , xn)} wind α1 = 〈α, σ〉 times

around the origin; whereas near D0
σ (i.e., in the chambers which are unbounded in the direction of −σ)

the dominating terms have winding number 〈αmin, σ〉. Comparing these winding numbers we obtain

that k = 〈α − αmin, σ〉.
Assume first that (x2, . . . , xn) are generic, in the sense that D intersects H transversely at k distinct

points (r1ai, x2, . . . , xn), i = 1, . . . , k (with ai ∈ D2). The condition that u avoids Ṽ implies that γ
is allowed to have at most simple zeroes at a1, . . . , ak. Denote by I ⊆ {1, . . . , k} the set of those ai at

which γ does have a zero, and let

γI(z) =
∏

i∈I

z − ai
1− āiz

.

Then γI maps the unit circle to itself, and its zeroes in the disc are the same as those of γ, so that γ−1
I γ

is a holomorphic function on the unit disc, without zeroes, and mapping the unit circle to itself, i.e. a

constant map. Thus γ(z) = eiθγI(z), and

(5.5) p ◦ u(z) = (r1z, x2, . . . , xn, r0e
iθγI(z))

for some I ⊆ {1, . . . , k} and eiθ ∈ S1. We conclude that there are 2k holomorphic discs of Maslov

index 2 in (X ′
σ, L) whose boundary passes through a given generic point of L. It is not hard to check that

these discs are all regular, using e.g. the same argument as in the proof of Lemma 7 in [15]. Succinctly:

observing that u does not intersect H̃ , projection to V decomposes (via a short exact sequence) the

Cauchy-Riemann operator for u into a ∂̄ operator on the trivial holomorphic line bundle with trivial real

boundary condition (along the fibers of the projection), and the ∂̄ operator for the “standard” disc D in

C× (C∗)n−1 (which itself splits into a direct sum of line bundles and is easily checked to be surjective);

this implies surjectivity.

When the disc D is not transverse to H , we can argue in exactly the same manner, except that

a1, . . . , ak ∈ D2 are no longer distinct; and γ may have a multiple zero at ai as long as its order of

vanishing does not exceed the multiplicity of (r1ai, x2, . . . , xn) as an intersection of D with H . We

still conclude that p ◦ u is of the form (5.5). These discs are not all distinct (or regular), but we can

argue by continuity as follows. There are diffeomorphisms arbitrarily C∞-close to identity which fix

a neighborhood of H and map S1(r1) × {(x2, . . . , xn)} to a nearby circle S1(r′1) × {(x′2, . . . , x′n)}
contained in a generic fiber. The moduli space of holomorphic discs with respect to the pullback of the

standard complex structure by such a diffeomorphism is canonically identified with the moduli space

of holomorphic discs for the standard complex structure with boundary on the nearby generic fiber.
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This provides an explicit regularization of the moduli space, and we conclude that the enumeration of

holomorphic discs is as in the transverse case (i.e., discs which can be written in the form (5.5) in more

than one way should be counted with a multiplicity equal to the number of such expressions.)

All that remains is to calculate the weights (2.2) associated to the holomorphic discs we have iden-

tified. Denote by (ζ1, . . . , ζn, λ) the affine coordinates of π(L) ∈ Uα introduced above, and consider

a disc given by (5.5) with |I| = ℓ ∈ {0, . . . , k}. Then the relative homology class represented by

p ◦ u(D2) in C × (C∗)n−1 × C ⊂ V × C is equal to [D2(r1) × {pt}] + ℓ[{pt} × D2(r0)]. By ele-

mentary toric geometry, the symplectic area of the disc D2(r1) × {pt} with respect to the toric Kähler

form ωV×C is equal to 〈σ, µV 〉 + ̟ = ζ1 + ̟, while that of {pt} × D2(r0) is equal to λ. Thus, the

symplectic area of the disc p◦u(D2) with respect to ωV×C is ζ1+̟+ℓλ. The disc we are interested in,

u(D2) ⊂ X ′
σ, is the proper transform of p ◦u(D2) under the blowup map; since its intersection number

with the exceptional divisor E is equal to |I| = ℓ, we conclude that

(5.6)
∫
D2 u

∗ωǫ =
(∫

D2(p ◦ u)∗ωV×C

)
− ℓǫ = ζ1 +̟ + ℓ(λ− ǫ).

On the other hand, the degree of γI|S1 : S1 → S1 is equal to |I| = ℓ, so in H1(L,Z) we have

[u(S1)] = γ1 + ℓγ0. Thus the weight of u is

Tωǫ(u)∇(∂u) = T ζ1+̟+ℓ(λ−ǫ)∇(γ1)∇(γ0)ℓ = (T−ǫw0)
ℓT̟vα,1.

Summing over the
(k
ℓ

)
families of discs with |I| = ℓ for each ℓ = 0, . . . , k, we find that

WX′
σ
(L,∇) =

k∑

ℓ=0

(k
ℓ

)
(T−ǫw0)

ℓ T̟vα,1 = (1 + T−ǫw0)
kT̟vα,1.

�

Next we extend Lemma 5.6 to the case of general monomials in the coordinates vα. Let σ be any

primitive element of Zn, and denote again by αmin an element of A such that 〈αmin, σ〉 is minimal.

Denote by V ′
σ = V 0 ∪ D0

σ the toric partial compactification of V 0 obtained by adding a single toric

divisor D0
σ in the direction of the ray−σ. The hypersurface H0 admits a natural partial compactification

H ′
σ inside V ′

σ.

We claim that H ′
σ is smooth for τ sufficiently small in (3.1). Indeed, rescaling fτ by a factor of

x
−αmin if necessary, we can assume without loss of generality that 〈αmin, σ〉 = 0. Then fτ extends to

a regular function on V ′
σ, whose restriction to D0

σ is again a maximally degenerating family of Laurent

polynomials, associated to the regular polyhedral decomposition P ∩ σ⊥ of the convex hull of A ∩ σ⊥.

This implies that for sufficiently small τ the restriction of fτ toD0
σ vanishes transversely; the smoothness

of H ′
σ follows.

By blowing up V ′
σ × C along H ′

σ × 0 and removing the proper transform of V ′
σ × 0, we obtain a

partial compactification X ′
σ of X0. While X ′

σ does not necessarily embed into X, we can equip V ′
σ

(resp. X ′
σ) with a toric (resp. S1-invariant) Kähler form which agrees with ωV (resp. ωǫ) everywhere

outside of an arbitrarily small neighborhood of the compactification divisor.

Denote by L ⊂ X0 a smooth fiber of π which lies in the region where the Kähler forms agree (so

that L is Lagrangian in X ′
σ as well).

Lemma 5.7 The Maslov index 0 holomorphic discs bounded by L inside X ′
σ are all contained in X0

and described by Proposition 5.1.
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Moreover, if L is tautologically unobstructed in X0 and lies over the chamber Uα, then the points

(L,∇) ∈ U∨
α define weakly unobstructed objects of F(X ′

σ), with

(5.7) WX′
σ
(L,∇) = (1 + T−ǫw0)

〈α−αmin ,σ〉T̟vσα

for some ̟ ∈ R.

Proof. The Maslov index of a disc in X ′
σ with boundary on L is twice its intersection number with the

compactification divisor, and Assumption 2.2 is satisfied (in fact X ′
σ is affine). Thus all Maslov index 0

holomorphic discs are contained in the open stratum X0, and Proposition 5.1 holds. (Since L lies away

from the compactification divisor, the symplectic area of these discs remains the same as for ωǫ.)
Thus, whenever L lies over a chamber Uα it does not bound any holomorphic discs of Maslov index

zero or less in X ′
σ, and the Maslov index 2 discs can be classified exactly as in the proof of Lemma

5.6. The only difference is that, since we evaluate the symplectic areas of these discs with respect to the

Kähler form on X ′
σ rather than X, the constant term ̟ in the area formula (5.6) now depends on the

choice of the toric Kähler form on V ′
σ near the compactification divisor. �

By Remark 2.3 (see also Corollary A.11), the expressions (5.7) determine globally defined regular

functions on the mirror of X0. Thus, we can use Lemma 5.7 to determine the wall-crossing transforma-

tions between the affine charts of the mirror.

Consider two adjacent chambers Uα and Uβ separated by a wall of potentially obstructed fibers of

π, i.e. assume that α, β ∈ A are connected by an edge in the polyhedral decomposition P. Then we

have:

Proposition 5.8 The instanton-corrected gluing between the coordinate charts U∨
α and U∨

β preserves

the coordinate w0, and matches the remaining coordinates via

(5.8) v
σ
α = (1 + T−ǫw0)

〈β−α,σ〉
v
σ
β for all σ ∈ Zn.

Proof. Let {Lt}t∈[0,1] be a path among smooth fibers of π, with L0 and L1 tautologically unobstructed

and lying over the chambers Uα and Uβ respectively. We consider the partial compactifications X0
+ and

X ′
σ of X0 introduced in Lemmas 5.5–5.7; in the case of X ′

σ we choose the Kähler form to agree with

ωǫ over a large open subset which contains the path Lt, so as to be able to apply Lemma 5.7.

Since these partial compactifications satisfy Assumption 2.2, the moduli spaces of Maslov index

0 holomorphic discs bounded by the Lagrangians Lt in X0
+, X ′

σ, and X0 are the same, and the cor-

responding wall-crossing transformations are identical (see Appendix A). Noting that the expressions

(5.2) and (5.7) are manifestly convergent over the whole completions (K∗)n+1 of U∨
α and U∨

β , we ap-

peal to Lemma A.10, and conclude that these expressions for the superpotentials WX0
+

and WX′
σ

over

the chambers U∨
α and U∨

β match under the wall-crossing transformation. Thus w0 is preserved, and for

primitive σ ∈ Zn the monomials vσα and v
σ
β are related by (5.8). (The case of non-primitive σ follows

obviously from the primitive case.) �

This completes the proof of Theorem 1.7. Indeed, the instanton-corrected gluing maps (5.8) coincide

with the coordinate change formulas (3.11) between the affine charts for the toric variety Y introduced

in §3.3. Therefore, the SYZ mirror of X0 embeds inside Y , by identifying the completion of the local

chart U∨
α with the subset of Yα where w0 is non-zero. It follows that the SYZ mirror of X0 is the subset

of Y where w0 is non-zero, namely Y 0.
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6 Proof of Theorem 1.5

We now turn to the proof of Theorem 1.5. We begin with an elementary observation:

Lemma 6.1 If Assumption 1.4 holds, then every rational curve C ≃ P1 in X satisfies D ·C = c1(X) ·
C > 0; so in particular Assumption 2.2 holds.

Proof. c1(X) = p∗V c1(V )−[E], where pV is the projection to V andE = p−1(H×0) is the exceptional

divisor. Consider a rational curve C in X (i.e., the image of a nonconstant holomorphic map from P1

to X), and denote by C ′ = pV (C) the rational curve in V obtained by projecting C to V . Applying

the maximum principle to the projection to the last coordinate y ∈ C, we conclude that C is contained

either in p−1(V × 0) = Ṽ ∪ E, or in p−1(V × {y}) for some nonzero value of y.

When C ⊂ p−1(V × {y}) for y 6= 0, the curve C is disjoint from E and its projection C ′ is

nonconstant, so c1(X) · [C] = c1(V ) · [C ′] > 0 by Assumption 1.4.

When C is contained in Ṽ , the curve C ′ is again nonconstant, and since the normal bundle of Ṽ in

X is O(−H), we have c1(X) · [C] = c1(V ) · [C ′]− [H] · [C ′], which is positive by Assumption 1.4.

Finally, we consider the case where C is contained in E but not in Ṽ . Then

c1(X) · [C] = [D] · [C] = [Ṽ ] · [C] + [p−1(DV )] · [C] = [Ṽ ] · [C] + c1(V ) · [C ′].

The first term is non-negative by positivity of intersection; and by Assumption 1.4 the second one is

positive unless C ′ is a constant curve, and non-negative in any case. However C ′ is constant only when

C is (a cover of) a fiber of the P1-bundle p|E : E → H×0; in that case [Ṽ ] · [C] > 0, so c1(X) · [C] > 0
in all cases. �

As explained in §2.2, this implies that the tautologically unobstructed fibers of π : X0 → B remain

weakly unobstructed in X, and that the SYZ mirror of X is just Y 0 (the SYZ mirror of X0) equipped

with a superpotential W0 which counts Maslov index 2 holomorphic discs bounded by the fibers of π.

Indeed, the conclusion of Lemma 6.1 implies that any component which is a sphere contributes at least 2

to the Maslov index of a stable genus 0 holomorphic curve bounded by a fiber of π. Thus, Maslov index

0 configurations are just discs contained in X0, and Maslov index 2 configurations are discs intersecting

D transversely in a single point.

Observe that each Maslov index 2 holomorphic disc intersects exactly one of the components of

the divisor D. Thus, the superpotential W0 can be expressed as a sum over the components of D =
Ṽ ∪ p−1(DV × C), in which each term counts those discs which intersect a particular component.

It turns out that the necessary calculations have been carried out in the preceding section: Lemma 5.5

describes the contribution from discs which only hit Ṽ , and Lemma 5.6 describes the contributions from

discs which hit the various components of p−1(DV × C). Summing these, and using the notations of

§3.3, we obtain that, for any point (L,∇) of U∨
α (α ∈ A),

W0(L,∇) = wα,0 +
r∑

i=1

(1 + T−ǫw0)
〈α−αi,σi〉T̟iv

σi
α = w0 +

r∑

i=1

wi.

Hence W0 is precisely the leading-order superpotential (3.14). This completes the proof of Theorem

1.5.
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Remark 6.2 In the proofs of Lemmas 5.5 and 5.6 we have not discussed in any detail the orientations of

moduli spaces of discs, which determine the signs of the various terms appearing in the superpotential.

The fact that those are all positive follows from two ingredients.

The first is that, for a standard product torus in a toric variety, equipped with the standard spin struc-

ture, the contributions of the various families of Maslov index 2 holomorphic discs to the superpotential

are all positive. See [54] for a detailed calculation in the case of the Clifford torus. The fact that all

the signs are the same is not surprising, since a monomial change of variables can be used to reduce

to a single example, namely the family of discs D2 × {pt} bounded by a product torus in C × (C∗)n

equipped with the standard spin structure. The same argument also applies to the discs in Lemma 5.5

since those can also be reduced to the toric case.

The second ingredient is a comparison of the orientations of moduli spaces of discs in V and their

lifts to X (as in Lemma 5.6). A short calculation shows that, for the standard spin structure, the orien-

tation of the moduli space of lifted discs in X agrees with that induced by the orientation of the moduli

space of discs in V and the natural orientation of the orbits of the S1-action. See the proof of Corollary

8 in [15] for a similar argument. The positivity of the signs in Lemma 5.6 follows.

Remark 6.3 When Assumption 1.4 does not hold, the SYZ mirror of X differs from (Y 0,W0), since

the enumerative geometry of discs is modified by the presence of stable genus 0 configurations of to-

tal Maslov index 0 or 2. A borderline case that remains fairly easy is when the strict inequality in

Assumption 1.4 is relaxed to

c1(V ) · C ≥ max(0,H · C).

(This includes the situation whereH is a Calabi-Yau hypersurface in a toric Fano variety as an important

special case.)

In this case, Assumption 2.2 still holds, so the mirror of X remains Y 0; the only modification is that

the superpotential should also count the contributions of configurations consisting of a Maslov index 2

disc together with one or more rational curves satisfying c1(X) · C = 0. Thus, we now have

W = (1 + c0)w0 + (1 + c1)w1 + · · ·+ (1 + cr)wr,

where c0, . . . , cr ∈ Λ are constants (determined by the genus 0 Gromov-Witten theory of X), with

val(ci) > 0.

7 From the blowup X to the hypersurface H

The goal of this section is to prove Theorem 1.6. As a first step, we establish:

Theorem 7.1 Under Assumption 1.4, the B-side Landau-Ginzburg model (Y,W0) is SYZ mirror to the

A-side Landau-Ginzburg model (X,W∨ = y) (with the Kähler form ωǫ).

(Recall that y is the coordinate on the second factor of V × C.)

Proof. [Sketch of proof] This result follows from Theorem 1.5 by the same considerations as in Ex-

ample 2.4. Specifically, equipping X with the superpotential W∨ = y enlarges its Fukaya category by
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adding admissible non-compact Lagrangian submanifolds, i.e., properly embedded Lagrangian subman-

ifolds ofX whose image under W∨ is only allowed to tend to infinity in the direction of the positive real

axis; in other terms, the y coordinate is allowed to be unbounded, but only in the positive real direction.

Let a0 ⊂ C be a properly embedded arc which connects +∞ to itself by passing around the origin,

encloses an infinite amount of area, and stays away from the projection to C of the support of the

cut-off function χ used to construct ωǫ. Then we can supplement the family of Lagrangian tori in X0

constructed in §4 by considering product Lagrangians of the form L = p−1(L′ × a0), where L′ is an

orbit of the T n-action on V . Indeed, by Proposition 4.5, away from the exceptional divisor the fibers

of π : X0 → B are lifts to X of product tori L′ × S1(r) ⊂ V × C. For large enough r, the circles

S1(r) can be deformed by Hamiltonian isotopies in C to simple closed curves that approximate a0 as

r →∞; moreover, the induced isotopies preserve the tautological unobstructedness in X0 of the fibers

of π which do not intersect p−1(H × C). In this sense, p−1(L′ × a0) is naturally a limit of the tori

p−1(L′ × S1(r)) as r →∞. The analytic structure near this point is obtained by equation (2.3), which

naturally extends as in Example 2.4.

To be more specific, let L′ = µ−1
V (ζ1, . . . , ζn) for (ζ1, . . . , ζn) a point in the component of ∆V \

µV (UH) corresponding to the weight α ∈ A, and equip L = p−1(L′ × a0) with a local system ∇ ∈
Hom(π1(L), UK). The maximum principle implies that any holomorphic disc bounded by L in X0

must be contained inside a fiber of the projection to V (see the proof of Proposition 5.1). Thus L is

tautologically unobstructed in X0, and (L,∇) defines an object of the Fukaya category F(X0,W∨),
and a point in some partial compactification of the coordinate chart U∨

α considered in §5. Denoting by

γ1, . . . , γn the standard basis of H1(L) ≃ H1(L
′) given by the various S1 factors, in the coordinate

chart (5.1) the object (L,∇) corresponds to

(vα,1, . . . , vα,n, wα,0) =
(
T ζ1∇(γ1), . . . , T ζn∇(γn), 0

)
.

Thus, equipping X0 with the superpotential W∨ extends the moduli space of objects under consideration

from Y 0 = Y \ w−1
0 (0) to Y .

Under Assumption 1.4, (L,∇) remains a weakly unobstructed object of the Fukaya categoryF(X,W∨).
We now study the families of Maslov index 2 holomorphic discs bounded by L in X, in order to deter-

mine the corresponding value of the superpotential and show that it agrees with (3.14). Under projection

to the y coordinate, any holomorphic disc u : (D2, ∂D2) → (X,L) maps to a holomorphic disc in C
with boundary on the arc a0, which is necessarily constant; hence the image of u is contained inside

p−1(V ×{y}) for some y ∈ a0. Moreover, inside the toric variety p−1(V ×{y}) ≃ V the holomorphic

disc u has boundary on the product torus L′.

Thus, the holomorphic discs bounded by L in X can be determined by reduction to the toric case

of (V,L′). For each toric divisor of V there is a family of Maslov index 2 discs which intersect it

transversely at a single point and are disjoint from all the other toric divisors; these discs are all regular,

and exactly one of them passes through each point of L [56]. The discs which intersect the toric divisor

corresponding to a facet of ∆V with equation 〈σ, ·〉 +̟ = 0 have area 〈σ, ζ〉 +̟ and weight T̟vσα.

Summing over all facets of ∆V , we conclude that

(7.1) W0(L,∇) =
r∑

i=1

T̟iv
σi
α .
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Moreover, because w0 = 0 at the point (L,∇), the coordinate transformations (3.11) simplify to v
σi
αi

=
v
σi
α . Thus the expression (7.1) agrees with (3.14). �

Remark 7.2 In order to fill the details of this sketch, we would need a sufficient development of Fukaya

categories of A-side Landau-Ginzburg models in order to verify the existence of the analytic charts at

infnity. The most straightforward way to do this is to introduce non-compact Lagrangians which are

mirror to the powers of an ample line bundle on Y , and check that (i) these Lagrangians generate the

Fukaya category and (ii) when r is sufficiently large, the product Lagrangian L′×S1(r) ⊂ V ×C defines

a module over the Floer cochains of this generating family which is equivalent to the one associated to

the product of L′ with an admissible arc in C equipped with a bounding cochain which is a multiple of

a degree 1 generator coming from a self-intersection at infinity.

Our next observation is that W∨ : X → C has a particularly simple structure. The following

statement is a direct consequence of the construction:

Proposition 7.3 W∨ = y : X → C is a Morse-Bott fibration, with 0 as its only critical value; in

fact the singular fiber W∨−1(0) = Ṽ ∪ E ⊂ X has normal crossing singularities along crit(W∨) =
Ṽ ∩ E ≃ H .

Remark 7.4 However, the Kähler form on crit(W∨) ≃ H is not that induced by ωV , but rather that

induced by the restriction of ωǫ, which represents the cohomology class [ωV ] − ǫ[H]. To compensate

for this, in the proof of Theorem 1.6 we will actually replace [ωV ] by [ωV ] + ǫ[H].

Proposition 7.3 allows us to relate the Fukaya category of (X,W∨) to that of H , using the ideas devel-

oped by Seidel in [217], adapted to the Morse-Bott case (see [251]).

Remark 7.5 Strictly speaking, the literature does not include any definition of the Fukaya category of

a superpotential without assuming that it is a Lefschetz fibration. The difficulty resides not in defining

the morphisms and the compositions, but in defining the higher order products in a coherent way. These

technical problems were resolved by Seidel in [219], by introducing a method of defining Fukaya cat-

egories of Lefschetz fibration that generalizes in a straightforward way to the Morse-Bott case we are

considering. This construction will be revisited in [5]. As the reader will see, in the only example where

we shall study such a Fukaya category, the precise nature of the construction of higher products will not

enter.

Outside of its critical locus, the Morse-Bott fibration W∨ carries a natural horizontal distribution

given by the ωǫ-orthogonal to the fiber. Parallel transport with respect to this distribution induces sym-

plectomorphisms between the smooth fibers; in fact, parallel transport along the real direction is given

by (a rescaling of) the Hamiltonian flow generated by ImW∨, or equivalently, the gradient flow of

ReW∨ (for the Kähler metric).

Given a Lagrangian submanifold ℓ ⊂ crit(W∨) ≃ H , parallel transport by the positive gradient

flow of ReW∨ yields an admissible Lagrangian thimble Lℓ ⊂ X (topologically a disc bundle over ℓ).
Moreover, any local system ∇ on ℓ induces by pullback a local system ∇̃ on Lℓ. However, there is a

subtlety related to the nontriviality of the normal bundle to H inside X:
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Lemma 7.6 The thimble Lℓ is naturally diffeomorphic to the restriction of the complex line bundle

L = O(H) to ℓ ⊂ H .

Proof. First note that, for the Lefschetz fibration f(x, y) = xy on C2 equipped with its standard

Kähler form, the thimble associated to the critical point at the origin is {(x, x̄), x ∈ C} ⊂ C2. Indeed,

parallel transport preserves the quantity |x|2−|y|2, so that the thimble consists of the points (x, y) where

|x| = |y| and xy ∈ R≥0, i.e. y = x̄. In particular, the thimble projects diffeomorphically onto either of

the two C factors (the two projections induce opposite orientations).

Now we consider the Morse-Bott fibration W∨ : X → C. The normal bundle to the critical locus

critW∨ = Ṽ ∩ E ≃ H is isomorphic to L ⊕ L−1 (where L is the normal bundle to H inside Ṽ ,

while L−1 is its normal bundle inside E). Moreover, W∨ is locally given by the product of the fiber

coordinates on the two line subbundles. The local calculation then shows that, by projecting to either

subbundle, a neighborhood of ℓ in Lℓ can be identified diffeomorphically with a neighborhood of the

zero section in either L|ℓ or L−1
|ℓ . �

Lemma 7.6 implies that, even when ℓ ⊂ H is spin, Lℓ ⊂ X need not be spin; indeed, w2(TLℓ) =
w2(Tℓ) + w2(L|ℓ). Rather, Lℓ is relatively spin, i.e. its second Stiefel-Whitney class is the restriction

of the background class s ∈ H2(X,Z/2) Poincaré dual to [Ṽ ] (or equivalently to [E]). Hence, apply-

ing the thimble construction to an object of the Fukaya category F(H) does not determine an object

of F(X,W∨), but rather an object of the s-twisted Fukaya category Fs(X,W∨) (we shall verify in

Proposition 7.10 that thimbles are indeed weakly unobstructed objects of this category).

Remark 7.7 While it has not appeared in the literature, the notion of weak unobstructedness of an

admissible Lagrangian L is a straightforward generalization of the case of closed Lagrangians. There

is a Floer-theoretic A∞-structure on the ordinary cohomology of L, and a natural A∞-homomorphism

from the ordinary cohomology of L equipped with this A∞-structure to the endomorphisms of L as an

object of the Fukaya category of the potential. This homomorphism is not necessarily an isomorphism,

but it is always unital and preserves the curvature m0. We say that L is weakly unobstructed if the

curvature is a multiple of the unit in H0(L). In the case of thimbles, radial parallel transport allows one

to lift Maurer-Cartan elements and bounding cochains from an arbitrarily small neighborhood of the

critical fiber to the total space. This implies that an admissible thimble which bounds no holomorphic

disc of Maslov index less than 2 in a neighborhood of the critical fiber is weakly unobstructed; and the

curvature is then the product of the unit with the count of Maslov index 2 discs passing through a generic

point near the critical fiber.

Corollary 7.8 Under Assumption 1.4, there is a fully faithful A∞-functor from the Fukaya category

F(H) to Fs(X,W∨), which at the level of objects maps (ℓ,∇) to the thimble (Lℓ, ∇̃).

Proof. [Sketch of proof] Let ℓ1, ℓ2 be two Lagrangian submanifolds of crit(W∨) ≃ H , assumed to

intersect transversely (otherwise transversality is achieved by Hamiltonian perturbations, which may

be needed to achieve regularity of holomorphic discs in any case), and denote by L1, L2 ⊂ X the

corresponding thimbles. (For simplicity we drop the local systems from the notations; we also postpone

the discussion of relatively spin structures until further below).

Recall that HomFs(X,W∨)(L1, L2) is defined by perturbing L1, L2 to Lagrangians L̃1, L̃2 whose

images under W∨ are half-lines which intersect transversely and such that the first one lies above the
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second one near infinity; so for example, fixing a small angle θ > 0, we can take L̃1 (resp. L̃2) to be

the Lagrangian obtained from ℓ1 (resp. ℓ2) by the gradient flow of Re(e−iθW∨) (resp. Re(eiθW∨)).
(A more general approach would be to perturb the holomorphic curve equation by a Hamiltonian vector

field generated by a suitable rescaling of the real part of W∨, instead of perturbing the Lagrangian

boundary conditions; in our case the two approaches are equivalent.)

We now observe that L̃1 and L̃2 intersect transversely, with all intersections lying in the singular

fiber W∨−1(0), and in fact L̃1 ∩ L̃2 = ℓ1 ∩ ℓ2. Thus, HomF(H)(ℓ1, ℓ2) and HomFs(X,W∨)(L1, L2)
are naturally isomorphic. Moreover, the maximum principle applied to the projection W∨ implies that

all holomorphic discs bounded by the (perturbed) thimbles in X are contained in (W∨)−1(0) = Ṽ ∪E
(and hence their boundary lies on ℓ1 ∪ ℓ2 ⊂ H ⊂ Ṽ ∪E).

After quotienting by a suitable reference section, we can view the defining section of H as a mero-

morphic function on Ṽ , with f−1(0) = H . Since f = 0 at the boundary, and since a meromorphic

function on the disc which vanishes at the boundary is everywhere zero, any holomorphic disc in Ṽ
with boundary in ℓ1 ∪ ℓ2 must lie entirely inside f−1(0) = H . By the same argument, any holomorphic

disc in E with boundary in ℓ1 ∪ ℓ2 must stay inside H as well. Finally, Lemma 6.1 implies that sta-

ble curves with both disc and sphere components cannot contribute to the Floer differential (since each

sphere component contributes at least 2 to the total Maslov index).

This implies that the Floer differentials on HomF(H)(ℓ1, ℓ2) and HomFs(X,W∨)(L1, L2) count the

same holomorphic discs. The same argument applies to Floer products and higher structure maps.

To complete the proof it only remains to check that the orientations of the relevant moduli spaces

of discs agree. Recall that a relatively spin structure on a Lagrangian submanifold L with background

class s is the same thing as a stable trivialization of the tangent bundle of L over its 2-skeleton, i.e. a

trivialization of TL|L(2)⊕E|L(2) , whereE is a vector bundle over the ambient manifold withw2(E) = s;
such a stable trivialization in turn determines orientations of the moduli spaces of holomorphic discs

with boundary on L (see [81, Chapter 8], noting that the definition of spin structures in terms of stable

trivializations goes back to Milnor [181]).

In our case, we are considering discs in H with boundary on Lagrangian submanifolds ℓi ⊂ H ,

and the given spin structures on ℓi determine orientations of the moduli spaces for the structure maps

in F(H). If we consider the same holomorphic discs in the context of the thimbles Li ⊂ X, the spin

structure of ℓi does not induce a spin structure on TLi ≃ Tℓi ⊕ L|ℓi (what would be needed instead

is a relatively spin structure on ℓi with background class w2(L|H)). On the other hand, the normal

bundle to H inside X, namely L ⊕ L−1, is an SU(2)-bundle and hence has a canonical isotopy class

of trivialization over the 2-skeleton. Thus, the spin structure on ℓi induces a trivialization of TLi ⊕
L−1 over the 2-skeleton of Li, i.e. a relative spin structure on Li with background class w2(L−1

|Li
) =

s|Li
. Furthermore, because w2(L ⊕ L−1) = 0, stabilizing by this rank 2 bundle does not affect the

orientation of the moduli space of discs [81, Proposition 8.1.16]. Hence the structure maps of F(H)
and Fs(X,W∨) involve the same moduli spaces of holomorphic discs, oriented in the same manner,

which completes the proof. �

Remark 7.9 The reason the above is only a sketch of proof is that the construction of the two Fukaya

categories requires choices of perturbations, and we have not discussed how to arrange for these choices

to yield the same answer. A model for such arguments in a related situation is provided by Seidel in

[217, Section (14c)].
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Implicit in the statement of Corollary 7.8 is the fact that, if (ℓ,∇) is weakly unobstructed in F(H),
then (Lℓ, ∇̃) is weakly unobstructed in Fs(X,W∨). In our setting, the values of the superpotentials

for objects of F(H) and their images in Fs(X,W∨) differ by an additive constant δ. This constant is

easiest to determine if we assume that V is affine:

Proposition 7.10 Under the assumption that V is affine, the functor of Corollary 7.8 increases the value

of the superpotential by δ = T ǫ.

Proof. [Sketch of proof] Consider a weakly unobstructed object (ℓ,∇) of F(H) and the corresponding

thimble Lℓ ⊂ X. Holomorphic discs bounded by Lℓ in X are contained in the level sets of W∨ = y
(by the maximum principle). By Remark 7.7, we only need to study the moduli spaces of such discs for

small values of y.

For y > 0, the intersection Lyℓ of Lℓ with (W∨)−1(y) ≃ V is a circle bundle over ℓ, lying in the

boundary of a standard symplectic tubular neighborhood of size ǫ of H in (W∨)−1(y) equipped with

the restriction of ωǫ. Indeed, as y → 0, the fibers of W∨ degenerate to the normal crossing divisor

Ṽ ∪ E. Symplectic parallel transport identifies the standard disc bundle E \ (Ṽ ∩ E) ≃ H × D2(ǫ)
inside (W∨)−1(0) with a standard symplectic neighborhood Uy of H inside (W∨)−1(y) for y > 0.

The boundary of Uy (a trivial S1-bundle over H) consists of all points in (W∨)−1(y) whose parallel

transport converges to Ṽ ∩ E ≃ H as y → 0, and in particular it contains Lyℓ .

However, while the restriction of ωǫ to (W∨)−1(y) ≃ V is cohomologous to ωV for all y > 0 and

agrees with it pointwise for y sufficiently large, the actual forms differ near H for small y. Under the

identification (W∨)−1(y) ≃ V , the neighborhoods Uy are small tubular neighborhoods ofH , increasing

in size along a suitably normalized gradient flow of |f | as y increases, and agreeing with a standard ωV -

neighborhood of H of size ǫ for y ≫ ǫ1/2.

Using that V is affine, H is the vanishing locus of the globally defined holomorphic function f , and

the maximum principle applied to f implies that, for small enough y (or for all y if ǫ is small enough),

all holomorphic discs bounded by Lyℓ in V lie in a neighborhood U ′y of H (possibly larger than Uy).

The complex structure on the neighborhood U ′y of H in V is not biholomorphic to the standard

product complex structure on a domain in H × C, but agrees with it along H . Thus, for small enough

y, an arbitrarily C∞-small perturbation of the almost-complex structure on V (preserving the holomor-

phicity of f ) ensures the existence of a holomorphic projection map πH : U ′y → H , without affecting

counts of holomorphic discs; without loss of generality, we can further assume that πH maps Lyℓ to ℓ as

an S1-bundle, with |f | constant in the S1 fiber over each point of ℓ.
Holomorphic discs with boundary on Lyℓ can then be classified by using the projection to H . The

Maslov index of a disc u : D2 → (V,Lyℓ ) (with image contained in U ′y) is the sum of the Maslov index

of πH ◦ u and twice the intersection number of u with H . Thus, the weak unobstructedness of ℓ in H
implies that of Lyℓ , and there are two types of Maslov index 2 discs to consider:

• πH ◦ u is a Maslov index 2 disc in H , and u avoids H;

• πH ◦ u is constant, and u intersects H transversely once.

In the first case, we observe that, given a point p̂ ∈ Lyℓ , each holomorphic disc v : D2 → (H, ℓ)
through p = πH(p̂) has a unique lift u through p̂ that avoids H . Indeed, v determines the value of log |f |
along the boundary of the disc u; the (unique) harmonic extension of this function to the entire disc can
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be expressed as the real part of some holomorphic function g, unique up to a pure imaginary additive

constant. We then find that necessarily f ◦ u = exp(g) up to some constant factor which is determined

by requiring that the marked point map to p̂. This, together with πH ◦ u = v, determines u. Recalling

that Lyℓ lives on the boundary of a standard symplectic neighborhood of H , and using that u is disjoint

from H , we further observe that the symplectic area of u in (W∨)−1(y) is equal to that of v in H , and

the holonomy of ∇̃ along the boundary of u equals that of ∇ along the boundary of v. Moreover, the

same argument as in the proof of Corollary 7.8 shows that the orientations of the moduli spaces match.

Thus, the total contribution of all these discs corresponds exactly to the superpotential in F(H).
In the second case, denoting πH ◦u = p ∈ ℓ, by construction Lyℓ intersects π−1

H (p) in a circle which

bounds a disc of symplectic area ǫ, and u necessarily maps D2 biholomorphically onto this disc. These

small discs of size ǫ in the normal slices to H are regular, and contribute positively to the superpotential:

indeed, their deformation theory splits into that of constant discs inH and that of the standard disc in the

complex plane with boundary on a circle with the trivial spin structure (the triviality of the spin structure

is due to the twist by the background class s). Thus, these discs are responsible for the additional term

T ǫ in the superpotential for Lℓ.
For the sake of completeness, we also consider the case y = 0, where the intersection of Lℓ with

(W∨)−1(0) = Ṽ ∪E is simply ℓ. The argument in the proof of Corollary 7.8 then shows that holomor-

phic discs bounded by ℓ in Ṽ ∪ E lie entirely within H; however, there is a nontrivial contribution of

Maslov index 2 configurations consisting of a constant disc together with a rational curve contained in

E, namely the P1 fiber of the exceptional divisor over a point of ℓ ⊂ H . (These exceptional spheres are

actually the limits of the area ǫ discs discussed above as y → 0). �

Remark 7.11 The assumption that V is affine can be weakened somewhat: for Proposition 7.10 to hold

it is sufficient to assume that the minimal Chern number of a rational curve contained in Ṽ is at least

2. When this assumption does not hold, the discrepancy δ between the two superpotentials includes

additional contributions from the enumerative geometry of rational curves of Chern number 1 in Ṽ .

Remark 7.12 The A∞-functor from F(H) to Fs(X,W∨) is induced by a Lagrangian correspondence

in the product H × X, namely the set of all (p, q) ∈ H × X such that parallel transport of q by the

gradient flow of −ReW∨ converges to p ∈ critW∨. This Lagrangian correspondence is admissible

with respect to pr∗2W
∨, and weakly unobstructed with m0 = δ. While the Ma’u-Wehrheim-Woodward

construction of A∞-functors from Lagrangian correspondences [176] has not yet been developed in the

setting considered here, it is certainly the right conceptual framework in which Corollary 7.8 should be

understood.

By analogy with the case of Lefschetz fibrations [217], it is expected that the Fukaya category of a

Morse-Bott fibration is generated by thimbles, at least under the assumption that the Fukaya category

of the critical locus admits a resolution of the diagonal. The argument is expected to be similar to that

in [217], except in the Morse-Bott case the key ingredient becomes the long exact sequence for fibered

Dehn twists [251]. Thus, it is reasonable to expect that the A∞-functor of Corollary 7.8 is in fact a

quasi-equivalence.

Similar statements are also expected to hold for the wrapped Fukaya category ofH and the partially

wrapped Fukaya category of (X,W∨) (twisted by s); however, this remains speculative, as the latter

category has not been suitably constructed yet.
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In any case, Corollary 7.8 and Proposition 7.10 motivate the terminology introduced in Definition

1.2.

Proof. [Proof of Theorem 1.6] While Theorem 7.1 provides an SYZ mirror to the Landau-Ginzburg

model (X,W∨), in light of the above discussion several adjustments are necessary in order to arrive at

a generalized SYZ mirror to H .

1. As noted in Remark 7.4, the restriction of ωǫ to crit(W∨) does not agree with the restriction of

ωV to H . To remedy this, in our main construction V should be equipped with a Kähler form

in the class [ωV ] + ǫ[H] rather than [ωV ]. This ensures that the critical locus of W∨ is indeed

isomorphic to H equipped with the restriction of the Kähler form ωV .

2. In light of Corollary 7.8, the A-side Landau-Ginzburg model (X,W∨) should be twisted by the

background class s = PD([Ṽ ]) ∈ H2(X,Z/2). Namely, the tori we consider in our main

argument should be viewed as objects of Fs(X,W∨) rather than F(X,W∨). This modifies the

sign conventions for counting discs and hence the mirror superpotential.

3. By Proposition 7.10, the additive constant δ = T ǫ should be subtracted from the superpotential,

since the natural A∞-functor from F(H) to Fs(X,W∨) increases m0 by that amount.

Thus, the mirror space remains the toric variety Y , but the superpotential is no longer

(7.2) W0 = w0 +
r∑

i=1

T̟iv
σi
αi
;

we now make explicit how each of the above changes affects the potential.

Replacing [ωV ] by [ωV ] + ǫ[H] amounts to changing the equations of the facets of the moment

polytope ∆V from 〈σi, ·〉 +̟i = 0 to 〈σi, ·〉 +̟i + ǫλ(σi) = 0 (where λ : ΣV → R is the piecewise

linear function defining L = O(H)). Accordingly, each exponent ̟i in (7.2) should be changed to

̟i + ǫλ(σi).
Next, we twist by the background class s = PD([Ṽ ]), and view the tori studied in Section 5 as

objects of Fs(X,W∨) rather than F(X,W∨). Specifically, s lifts to a class in H2(X,L;Z/2) (dual

to [Ṽ ] ∈ H2n(X \ L)), and twisting the standard spin structure by this lift of s yields a relatively spin

structure on L. By [81, Proposition 8.1.16], this twist affects the signed count of holomorphic discs

in a given class β ∈ π2(X,L) by a factor of (−1)k where k = β · [Ṽ ]. Recall from §6 that, of the

various families of holomorphic discs that contribute to the superpotential, the only ones that intersect

Ṽ are those described by Lemma 5.5; thus the only effect of the twisting by the background class s is to

change the first term of W0 from w0 to −w0.

Finally, we subtract δ = T ǫ from the superpotential, and find that the appropriate superpotential to

consider on Y is given by

W ′
0 = −T ǫ −w0 +

r∑

i=1

T̟i+ǫλ(σi)v
σi
αi

= −T ǫv0 +
r∑

i=1

T̟iT ǫλ(σi)vσiαi
.

Finally, recall from §3.3 that the weights of the toric monomials v0 and v
σi
αi

are respectively (0, 1) and

(−σi, λ(σi)) ∈ Zn ⊕ Z. Therefore, a rescaling of the last coordinate by a factor of T ǫ changes v0 to
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T ǫv0 and v
σi
αi

to T ǫλ(σi)vσiαi
. This change of variables eliminates the dependence on ǫ (as one would

expect for the mirror to H) and replaces W ′
0 by the simpler expression

−v0 +
r∑

i=1

T̟iv
σi
αi
,

which is exactly WH
0 (see Definition 3.10). �

Remark 7.13 Another way to produce an A∞-functor from the Fukaya category of H to that of X
(more specifically, the idempotent closure of Fs(X)) is the following construction considered by Ivan

Smith in [227, Section 4.5].

Given a Lagrangian submanifold ℓ ⊂ H , first lift it to the boundary of the ǫ-tubular neighborhood

of H inside V , to obtain a Lagrangian submanifold Cℓ ⊂ V which is a circle bundle over ℓ; then,

identifying V with the reduced space Xred,ǫ = µ−1
X (ǫ)/S1, lift Cℓ to µ−1

X (ǫ) and “spin” it by the S1-

action, to obtain a Lagrangian submanifold Tℓ ⊂ X which is a T 2-bundle over ℓ. Then Tℓ formally

splits into a direct sum T+
ℓ ⊕ T−

ℓ ; the A∞-functor is constructed by mapping ℓ to either summand.

The two constructions are equivalent: in Fs(X,W∨) the summands T±
ℓ are isomorphic to the thim-

ble Lℓ (up to a shift). One benefit of Smith’s construction is that, unlike Lℓ, the Lagrangian submanifold

Tℓ is entirely contained inside X0, which makes its further study amenable to T -duality arguments

involving X0 and Y 0.

8 The converse construction

As a consequence of Theorem 1.7, the mirror Y 0 of X0 can be defined as a variety not only over the

Novikov field, but also over the complex numbers. In this section, we impose the maximal degeneration

condition (cf. Definition 3.1) which implies that Y 0 is smooth. We then reverse our viewpoint from

the preceding discussion: treating T as a numerical parameter and equipping Y 0 with a Kähler form,

we shall reconstruct X0 (as an analytic space that also happens to be defined over complex numbers)

as an SYZ mirror. Along the way, we also obtain another perspective on how compactifying Y 0 to

the toric variety Y amounts to equipping X0 with a superpotential. We omit any discussion of Y or

Y 0 equipped with A-side Landau-Ginzburg models, which would require a deeper understanding of the

corresponding Fukaya categories.

(Note: many of the results in this section were also independently obtained by Chan, Lau and Leung

[51].)

To begin our construction, observe that Y 0 = Y \ w−1
0 (0) carries a natural T n-action, given in the

coordinates introduced in §3.3 by

(eiθ1 , . . . , eiθn) · (vα,1, . . . , vα,n, vα,0) = (eiθ1vα,1, . . . , e
iθnvα,n, vα,0).

This torus is a subgroup of the (n+ 1)-dimensional torus which acts on the toric variety Y , namely the

stabilizer of the regular function w0 = −T ǫ + T ǫv0.
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We equip Y 0 with a T n-invariant Kähler form ωY . To make things concrete, take ωY to be the

restriction of a complete toric Kähler form on Y , with moment polytope

∆Y = {(ξ, η) ∈ Rn ⊕ R | η ≥ ϕ(ξ) = max
α∈A

(〈α, ξ〉 − ρ(α))}

(cf. (3.8)). We denote by µ̃Y : Y → Rn+1 the moment map for the T n+1-action on Y , and by µY :
Y 0 → Rn the moment map for the T n-action on Y 0. Observing that µY is obtained from µ̃Y by

restricting to Y 0 and projecting to the first n components, the critical locus of µY is the union of all

codimension 2 toric strata, and the set of critical values of µY is precisely the tropical hypersurface

Π0 ⊂ Rn defined by ϕ. Finally, we also equip Y 0 with the T n-invariant holomorphic (n + 1)-form

given in each chart by

ΩY = d log vα,1 ∧ · · · ∧ d log vα,n ∧ d logw0.

Note that this holomorphic volume form scales with ǫ.

Lemma 8.1 The map πY = (µY , |w0|) : Y 0 → BY = Rn × R+ defines a T n-invariant special

Lagrangian torus fibration on Y 0. Moreover, π−1
Y (ξ, r) is singular if and only if (ξ, r) ∈ Π0 × {T ǫ},

and obstructed if and only if r = T ǫ.

This fibration is analogous to some of the examples considered in [101], [102], [46], [47]; see also

Example 3.3.1 in [14].

The statement that π−1
Y (ξ, r) is special Lagrangian follows immediately from the observation that

ΩY descends to the holomorphic 1-form d logw0 on the reduced space µ−1
Y (ξ)/T n ≃ C∗; thus the circle

|w0| = r is special Lagrangian in the reduced space, and its lift to µ−1
Y (ξ) is special Lagrangian in Y 0.

A useful way to think of these tori is to consider the projection of Y 0 to the coordinate w0, whose

fibers are all isomorphic to (C∗)n except for w−1
0 (−T ǫ) = v−1

0 (0) which is the union of all toric strata

in Y . In this projection, π−1
Y (ξ, r) fibers over the circle of radius r centered at the origin, and intersects

each of the fibers w−1
0 (reiθ) in a standard product torus (corresponding to the level ξ of the moment

map). In particular, π−1
Y (ξ, r) is singular precisely when r = T ǫ and ξ ∈ Π0.

By the maximum principle, any holomorphic disc in Y 0 bounded by π−1
Y (ξ, r) must lie entirely

within a fiber of the projection to w0. Since the regular fibers of w0 are isomorphic to (C∗)n, inside

which product tori do not bound any nonconstant holomorphic discs, π−1
Y (ξ, r) is tautologically unob-

structed for r 6= T ǫ. When r = T ǫ, π−1
Y (ξ, r) intersects one of the components of w−1

0 (−T ǫ) (i.e.

one of the toric divisors of Y ) in a product torus, which bounds various families of holomorphic discs

as well as configurations consisting of holomorphic discs and rational curves in the toric strata. This

completes the proof of Lemma 8.1.

The maximum principle applied to w0 also implies that every rational curve in Y is contained in

w−1
0 (−T ǫ) (i.e. the union of all toric strata), hence disjoint from the anticanonical divisor w−1

0 (0), and

thus satisfies c1(Y ) · C = 0; in fact Y is a toric Calabi-Yau variety. So Assumption 2.2 holds, and

partially compactifying Y 0 to Y does not modify the enumerative geometry of Maslov index 0 discs

bounded by the fibers of πY . Hence the SYZ mirror of Y is just the mirror of Y 0 equipped with an

appropriate superpotential, and we determine both at the same time.

The wall r = T ǫ divides the fibration πY : Y 0 → BY into two chambers; accordingly, the SYZ

mirror of Y 0 (and Y ) is constructed by gluing together two coordinate charts U ′ and U ′′ via a trans-

formation which accounts for the enumerative geometry of discs bounded by the potentially obstructed
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fibers of πY . We now define coordinate systems for both charts and determine the superpotential (for

the mirror of Y ) in terms of those coordinates. For notational consistency and to avoid confusion, we

now denote by τ (rather than T ) the Novikov parameter recording areas with respect to ωY .

We start with the chamber r > T ǫ, over which the fibers of πY can be deformed into product tori

in Y (i.e., orbits of the T n+1-action) by a Hamiltonian isotopy that does not intersect w−1
0 (−T ǫ) (from

the perspective of the projection to w0, the isotopy amounts simply to deforming the circle of radius r
centered at 0 to a circle of the appropriate radius centered at −T ǫ).

Fix a reference fiber L0 = π−1
Y (ξ0, r0), where ξ0 ∈ Rn and r0 > T ǫ, and choose a basis

(γ1, . . . , γn, γ
′
0) of H1(L

0,Z), where −γ1, . . . ,−γn correspond to the factors of the T n-action on L0,

and −γ′0 corresponds to an orbit of the last S1 factor of T n+1 acting on a product torus µ̃−1
Y (ξ0, η0)

which is Hamiltonian isotopic to L0 in Y . (The signs are motivated by consistency with the notations

used for X0.)

A point of the chart U ′ mirror to the chamber {r > T ǫ} corresponds to a pair (L,∇), where

L = π−1
Y (ξ, r) is a fiber of πY (with r > T ǫ), Hamiltonian isotopic to a product torus µ̃−1

Y (ξ, η) in Y ,

and ∇ ∈ Hom(π1(L), UK). We rescale the coordinates given by (2.3) to eliminate the dependence on

the base point (ξ0, r0), i.e. we identify U ′ with a domain in (K∗)n+1 via

(8.1) (L,∇) 7→ (x′1, . . . , x
′
n, z

′) =
(
τ−ξ1∇(γ1), . . . , τ−ξn∇(γn), τ−η∇(γ′0)

)
.

(Compare with (2.3), noting that −ξi = −ξ0i +
∫
Γi
ωY and −η = −η0 +

∫
Γ′
0
ωY .)

Lemma 8.2 In the chart U ′, the superpotential for the mirror to Y is given by

(8.2) W∨(x′1, . . . , x
′
n, z

′) =
∑

α∈A

(1 + κα)τ
ρ(α)x′1

α1 . . . x′n
αnz′

−1
,

where κα ∈ K are constants with val(κα) > 0.

Proof. Consider a point (L,∇) ∈ U ′, where L = π−1
Y (ξ, r) is Hamiltonian isotopic to the product

torus L′ = µ̃−1
Y (ξ, η) in Y . As explained above, the isotopy can be performed without intersecting the

toric divisors of Y , i.e. without wall-crossing; therefore, the isotopy provides a cobordism between the

moduli spaces of Maslov index 2 holomorphic discs bounded by L and L′ in Y .

It is well-known that the families of Maslov index 2 holomorphic discs bounded by the standard

product torus L′ in the toric manifold Y are in one-to-one correspondence with the codimension 1 toric

strata of Y . Namely, for each codimension 1 stratum, there is a unique family of holomorphic discs

which intersect this stratum transversely at a single point and do not intersect any of the other strata.

Moreover, every point of L′ lies on the boundary of exactly one disc of each family, and these discs are

all regular [56] (see also [13, §4]).

The toric divisors of Y , or equivalently the facets of ∆Y , are in one-to-one correspondence with the

elements of A. The symplectic area of a Maslov index 2 holomorphic disc in (Y,L′) which intersects

the divisor corresponding to α ∈ A (and whose class we denote by βα) is equal to the distance from the

point (ξ, η) to that facet of ∆Y , namely η − 〈α, ξ〉 + ρ(α), whilst the boundary of the disc represents

the class ∂βα =
∑
αiγi − γ′0 ∈ H1(L

′,Z). The weight associated to such a disc is therefore

zβα(L
′,∇) = τη−〈α,ξ〉+ρ(α)∇(γ1)α1 . . .∇(γn)αn∇(γ′0)−1 = τρ(α)x′1

α1 . . . x′n
αnz′−1.



158

Using the isotopy between L and L′, we conclude that the contributions of Maslov index 2 holomorphic

discs in (Y,L) to the superpotential W∨ add up to

∑

α∈A

zβα(L,∇) =
∑

α∈A

τρ(α)x′1
α1 . . . x′n

αnz′−1.

However, the superpotential W∨ also includes contributions from (virtual) counts of stable genus

0 configurations of discs and rational curves of total Maslov index 2. These configurations consist of

a single Maslov index 2 disc (in one of the above families) together with one or more rational curves

contained in the toric divisors of Y (representing a total class C ∈ H2(Y,Z)). The enumerative invariant

n(L, βα+C) giving the (virtual) count of such configurations whose boundary passes through a generic

point of L can be understood in terms of genus 0 Gromov-Witten invariants of suitable partial compact-

ifications of Y (see e.g. [51]). However, all that matters to us is the general form of the corresponding

terms of the superpotential. Since the rational components contribute a multiplicative factor τ [ωY ]·C to

the weight, we obtain that

W∨ =
∑

α∈A

(
1 +

∑

C∈H2(Y,Z)
[ωY ]·C>0

n(L, βα +C) τ [ωY ]·C
)
τρ(α)x′1

α1 . . . x′n
αnz′−1,

which is of the expected form (8.2). �

Next we look at the other chart U ′′, which corresponds to the chamber r < T ǫ of the fibration

πY . Fix again a reference fiber L0 = π−1
Y (ξ0, r0), where ξ0 ∈ Rn and r0 < T ǫ, and choose a basis

(γ1, . . . , γn, γ
′′
0 ) of H1(L

0,Z), where −γ1, . . . ,−γn correspond to the factors of the T n-action on L0,

and γ′′0 can be represented by a loop in L0 over which w0 runs counterclockwise around the circle of

radius r0 while vα,1, . . . , vα,n ∈ R+ (for some arbitrary choice of α). Note that the fibration w0 : Y →
C is trivial over the disc of radius r0; in fact the coordinates (w0, vα,1, . . . , vα,n) (for any α) give a

biholomorphism from the subset {|w0| ≤ r0} of Y to D2(r0)× (C∗)n. Then γ′′0 can be characterized as

the unique element of H1(L
0,Z) which arises as the boundary of a section of w0 : Y → C over the disc

of radius r0; we denote by β0 the relative homotopy class of this section. A point of U ′′ corresponds

to a pair (L,∇) where L = π−1
Y (ξ, r) is a fiber of πY (with r < T ǫ), and ∇ ∈ Hom(π1(L), UK). As

before, we rescale the coordinates given by (2.3) to eliminate the dependence on the base point (ξ0, r0),
i.e. we identify U ′′ with a domain in (K∗)n+1 via

(8.3) (L,∇) 7→ (x′′1 , . . . , x
′′
n, y

′′) =
(
τ−ξ1∇(γ1), . . . , τ−ξn∇(γn), τ [ωY ]·β0∇(γ′′0 )

)
.

Lemma 8.3 In the chart U ′′, the superpotential for the mirror to Y is given by

(8.4) W∨(x′′1 , . . . , x
′′
n, y

′′) = y′′.

Proof. By the maximum principle applied to the projection to w0, any holomorphic disc bounded

by L = π−1
Y (ξ, r) in Y must be contained in the subset {|w0| ≤ r} ⊂ Y , which is diffeomorphic

to D2 × (C∗)n. Thus, for topological reasons, any holomorphic disc bounded by L must represent a

multiple of the class β0. Since the Maslov index is equal to twice the intersection number with w−1
0 (0),

Maslov index 2 discs are holomorphic sections of w0 : Y → C over the disc of radius r, representing

β0.
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The formula (8.4) now follows from the claim that the number of such sections passing through a

given point of L is n(L, β0) = 1. This can be viewed as an enumerative problem for holomorphic sec-

tions of a trivial Lefschetz fibration with a Lagrangian boundary condition, easily answered by applying

the powerful methods of [216, §2]. An alternative, more elementary approach is to deform ωY among

toric Kähler forms in its cohomology class to ensure that, for some ξ0 ∈ Rn, µ−1
Y (ξ0) is given in one of

the coordinate charts Yα of §3.3 by equations of the form |vα,1| = ρ1, . . . , |vα,n| = ρn. (In fact, many

natural choices for ωY cause this property to hold immediately.) When this property holds, the max-

imum principle applied to vα,1, . . . , vα,n implies that the holomorphic Maslov index 2 discs bounded

by L0 = π−1
Y (ξ0, r0) are given by letting w0 vary in the disc of radius r0 while the other coordinates

vα,1, . . . , vα,n are held constant. All these discs are regular, and there is precisely one disc passing

through each point of L0. It follows that n(L0, β0) = 1. This completes the proof, since the invariant

n(L0, β0) is not affected by the deformation of ωY to the special case we have considered, and the value

of n(L, β0) is the same for all the fibers of πY over the chamber r < T ǫ. �

We can now formulate and prove the main result of this section:

Theorem 8.4 The rigid analytic manifold

(8.5) X 0 = {(x1, . . . , xn, y, z) ∈ (K∗)n ×K2 | yz = f̃(x1, . . . , xn)},

where f̃(x1, . . . , xn) =
∑
α∈A

(1 + κα)τ
ρ(α)xα1

1 . . . xαn
n , is SYZ mirror to (Y 0, ωY ).

Moreover, the B-side Landau-Ginzburg model (X 0,W∨ = y) is SYZ mirror to (Y, ωY ).

Proof. The two charts U ′ and U ′′ are glued to each other by a coordinate transformation which accounts

for the Maslov index 0 holomorphic discs bounded by the potentially obstructed fibers of πY . There

are many families of such discs, all contained in w−1
0 (−T ǫ) = v−1

0 (0). However we claim that the first

n coordinates of the charts (8.1) and (8.3) are not affected by these instanton corrections, so that the

gluing satisfies x′′1 = x′1, . . . , x
′′
n = x′n.

One way to argue is based on the observation that all Maslov index 0 configurations are contained

in w−1
0 (−T ǫ). Consider as in §2.1 a Lagrangian isotopy {Lt}t∈[0,1] between fibers of πY in the two

chambers (with Lt0 the only potentially obstructed fiber), and the cycles Cα = ev∗[M1({Lt0}, α)] ∈
Hn−1(Lt0) corresponding to the various classes α ∈ π2(Y,Lt) that may contain Maslov index 0 con-

figurations. The fact that each Cα is supported on Lt0 ∩ w−1
0 (−T ǫ) implies readily that Cα · γ1 =

· · · = Cα · γn = 0. Since the overall gluing transformation is given by a composition of elementary

transformations of the type (2.4), the first n coordinates are not affected.

By Corollary A.11, a more down-to-earth way to see that the gluing preserves x′′i = x′i (i =
1, . . . , n) is to consider the partial compactification Y ′

i of Y 0 given by the moment polytope ∆Y ∩{ξi ≤
K} for some constant K ≫ 0 (still removing w−1

0 (0) from the resulting toric variety). From the per-

spective of the projection w0 : Y 0 → C∗, this simply amounts to a toric partial compactification of

each fiber, where the generic fiber (C∗)n is partially compactified along the i-th factor to (C∗)n−1 ×C.

The Maslov index 2 holomorphic discs bounded by L = π−1
Y (ξ, r) inside Y ′

i are contained in the fibers

of w0 by the maximum principle; requiring that the boundary of the disc pass through a given point

p ∈ L (where we assume w0 6= −T ǫ), we are reduced to the fiber of w0 containing p, which L intersects

in a standard product torus (S1)n ⊂ (C∗)n−1 × C (where the radii of the various S1 factors depend

on ξ). Thus, there is exactly one Maslov index 2 holomorphic disc in (Y ′
i , L) through a generic point
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p ∈ L (namely a disc over which all coordinates except the i-th one are constant). The superpotential

is equal to the weight of this disc, i.e. τK−ξi∇(γi), which can be rewritten as τKx′i if r > T ǫ, and

τKx′′i if r < T ǫ. Comparing these two expressions, we see that the gluing between U ′ and U ′′ identifies

x′i = x′′i .

The gluing transformation between the coordinates y′′ and z′ is more complicated, but is now deter-

mined entirely by a comparison between (8.2) and (8.4): since the two formulas for W∨ must glue to a

regular function on the mirror, y′′ must equal the right-hand side of (8.2), hence

y′′z′ =
∑

α∈A

(1 + κα)τ
ρ(α)x′1

α1 . . . x′n
αn = f̃(x′1, . . . , x

′
n).

This completes the proof of the theorem. �

The first part of Theorem 8.4 is a statement of SYZ mirror symmetry in the opposite direction from

Theorem 1.7; the two results taken together relate the symplectic topology and algebraic geometry of

the spaces X0 and Y 0 to each other. More precisely, we would like to treat τ as a fixed complex number

and view the mirror of (Y 0, ωY ) as a complex manifold. The convergence of the function f̃ depends

only on that of the constants κα, which is unknown in general but holds in practice for a number of

examples (see [51] and other work by the same authors). Even when convergence is not an issue, the

result reveals the need for care in constructing the mirror map: while our main construction is essentially

independent of the coefficients cα appearing in (3.1) (which do not affect the symplectic geometry of

X0), the direction considered here requires the complex structure of X0 to be chosen carefully to match

with the Kähler class [ωY ], specifically we have to take cα = 1 + κα.

The second part of Theorem 8.4 gives a mirror symmetric interpretation of the partial compactifica-

tion of Y 0 to Y , in terms of equipping X0 with the superpotential W∨ = y. From the perspective of our

main construction (viewing X0 as a symplectic manifold and Y 0 as its SYZ mirror), we saw the same

phenomenon in Section 7.

9 Examples

9.1 Hyperplanes and pairs of pants We consider as our first example the (higher dimensional) pair

of pants H defined by the equation

(9.1) x1 + · · ·+ xn + 1 = 0

in V = (C∗)n. (The case n = 2 corresponds to the ordinary pair of pants; in general H is the comple-

ment of n+ 1 hyperplanes in general position in CPn−1.)

The tropical polynomial corresponding to (9.1) is ϕ(ξ) = max(ξ1, . . . , ξn, 0); the polytope ∆Y

defined by (3.8) is equivalent via (ξ1, . . . , ξn, η) 7→ (η − ξ1, . . . , η − ξn, η) to the orthant (R≥0)
n+1 ⊂

Rn+1. Thus Y ≃ Cn+1. In terms of the coordinates (z1, . . . , zn+1) of Cn+1, the monomial v0 is given

by v0 = z1 . . . zn+1. Thus, in this example our main results are:
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1. the open Calabi-Yau manifold Y 0 = Cn+1 \{z1 . . . zn+1 = 1} is SYZ mirror to the conic bundle

X0 = {(x1, . . . , xn, y, z) ∈ (C∗)n × C2 | yz = x1 + · · ·+ xn + 1};

2. the B-side Landau-Ginzburg model (Y 0,W0 = −T ǫ + T ǫ z1 . . . zn+1) is SYZ mirror to the

blowup X of (C∗)n × C along H × 0, where

H = {(x1, . . . , xn) ∈ (C∗)n |x1 + · · ·+ xn + 1 = 0};

3. the B-side Landau-Ginzburg model (Cn+1,WH
0 = −z1 . . . zn+1) is a generalized SYZ mirror of

H .

The last statement in particular has been verified in the sense of homological mirror symmetry by Sheri-

dan [221]; see also [3] for a more detailed result in the case n = 2 (the usual pair of pants).

If instead we consider the same equation (9.1) to define (in an affine chart) a hyperplane H ≃ CPn−1

inside V = CPn, with a Kähler form such that
∫
CP1 ωV = A, then our main result becomes that the

B-side Landau-Ginzburg model consisting of Y 0 = Cn+1 \ {z1 . . . zn+1 = 1} equipped with the

superpotential

W0 = −T ǫ + T ǫz1 . . . zn+1 + z1 + · · · + zn + TAzn+1

is SYZ mirror to the blowup X of CPn × C along H × 0 ≃ CPn−1 × 0.

Even though CPn−1 is not affine, Theorem 1.6 still holds for this example if we assume that n ≥ 2,

by Remark 7.11. In this case, the mirror we obtain for CPn−1 (viewed as a hyperplane in CPn) is the

B-side Landau-Ginzburg model

(Cn+1,WH
0 = −z1 . . . zn+1 + z1 + · · ·+ zn + TAzn+1).

Rewriting the superpotential as

WH
0 = z1 + · · ·+ zn + zn+1(T

A − z1 . . . zn) = W̃ (z1, . . . , zn) + zn+1 g(z1, . . . , zn)

makes it apparent that this B-side Landau-Ginzburg model is equivalent (e.g. in the sense of Orlov’s

generalized Knörrer periodicity [196]) to the B-side Landau-Ginzburg model consisting of g−1(0) =
{(z1, . . . , zn) ∈ Cn | z1 . . . zn = TA} equipped with the superpotential W̃ = z1 + · · · + zn, which is

the classical toric mirror of CPn−1.

9.2 ALE spaces Let V = C, and let H = {x1, . . . , xk+1} ⊂ C∗ consist of k + 1 points, k ≥ 0, with

|x1| ≪ · · · ≪ |xk+1| (so that the defining polynomial of H , fk+1(x) = (x−x1) . . . (x−xk+1) ∈ C[x],
is near the tropical limit).

The conic bundle X0 = {(x, y, z) ∈ C∗ × C2 | yz = fk+1(x)} is the complement of the regular

conic x = 0 in the Ak-Milnor fiber

X ′ = {(x, y, z) ∈ C3 | yz = fk+1(x)}.

In fact, X ′ is the main space of interest here, rather than its open subsetX0 or its partial compactification

X (note that X ′ = X \ Ṽ ). However the mirror of X ′ differs from that of X simply by excluding the

term w0 (which accounts for those holomorphic discs that intersect Ṽ ) from the mirror superpotential.
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The tropical polynomial ϕ : R → R corresponding to fk+1 is a piecewise linear function whose

slope takes the successive integer values 0, 1, . . . , k + 1. Thus the toric variety Y determined by the

polytope ∆Y = {(ξ, η) ∈ R2 | η ≥ ϕ(ξ)} is the resolution of the Ak singularity {st = uk+1} ⊂ C3.

The k+2 edges of ∆Y correspond to the toric strata of Y , namely the proper transforms of the coordinate

axes s = 0 and t = 0 and the k rational (−2)-curves created by the resolution. Specifically, Y is

covered by k + 1 affine coordinate charts Uα with coordinates (sα = vα,1, tα = v−1
α+1,1), 0 ≤ α ≤ k;

denoting the toric coordinate vα,0 by u, equation (3.9) becomes sαtα = u, and the regular functions

s = s0, t = tk, u ∈ O(Y ) satisfy the relation st = uk+1.

Since w0 = −T ǫ + T ǫv0 = −T ǫ + T ǫu, the space Y 0 is the complement of the curve u = 1 inside

Y . With this understood, our main results become:

1. the complement Y 0 of the curve u = 1 in the resolution Y of the Ak singularity {st = uk+1} ⊂
C3 is SYZ mirror to the complement X0 of the curve x = 0 in the Milnor fiber X ′ = {(x, y, z) ∈
C3 | yz = fk+1(x)} of the Ak singularity;

2. the B-side Landau-Ginzburg model (Y 0,W0 = s) is SYZ mirror to X ′;

3. the Landau-Ginzburg models (Y,W0 = s) and (X ′,W∨ = y) are SYZ mirror to each other.

These results show that the oft-stated mirror symmetry relation between the smoothing and the resolu-

tion of the Ak singularity (or, specializing to the case k = 1, between the affine quadric T ∗S2 and the

total space of the line bundle O(−2) → P1) needs to be corrected either by removing smooth curves

from each side, or by equipping both sides with superpotentials.

One final comment that may be of interest to symplectic geometers is that W0 = s vanishes to

order k + 1 along the t coordinate axis, and to orders 1, 2, . . . , k along the exceptional curves of the

resolution. The higher derivatives of the superpotential encode information about the A∞-products on

the Floer cohomology of the Lagrangian torus fiber of the SYZ fibration, and the high-order vanishing

of W0 along the toric divisors of Y 0 indicates that the Ak Milnor fiber contains Lagrangian tori whose

Floer cohomology is isomorphic to the usual cohomology of T 2 as an algebra, but carries non-trivial

A∞-operations. (See also [167] for related considerations.)

Corollary 9.1 For α ∈ {2, . . . , k + 1}, let r ∈ R+ be such that exactly α of the points x1, . . . , xk+1

satisfy |xi| < r. Then the Floer cohomology of the Lagrangian torus Tr = {(x, y, z) ∈ X ′ | |x| =
r, |y| = |z|} in the Ak Milnor fiber X ′, equipped with a suitable spin structure, is HF∗(Tr, Tr) ≃
H∗(T 2; Λ), equipped with an A∞-structure for which the generators a, b of HF1(Tr, Tr) satisfy the

relations m2(a, b) + m2(b, a) = 0; mi(a, . . . , a) = 0 for all i; mi(b, . . . , b) = 0 for i ≤ α − 1; and

mα(b, . . . , b) 6= 0.

Proof. The condition |x| = r implies that the torus Tr yields a point in the chamber Uα, while the

condition that |y| = |z| implies that it lies on the critical locus of W0: this shows that Tr is a critical

point of W0 of order α+ 1.

By a construction which is standard in the toric case (see [55]), the restriction of W0 to a chart of Y
modeled after a domain in H1(Tr,Λ

∗) (identified with (Λ∗)2 by choosing the basis (a, b)) agrees with

the map

(9.2) (exp(λa), exp(λb)) 7→
∑

k

mk(λaa+ λbb, . . . , λaa+ λbb).
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Choosing a to correspond to the generator which vanishes on loops whose projection to C is constant,

the result follows immediately. � 9.3 Plane curves For p, q ≥ 2, consider a smooth Riemann

surface H of genus g = (p− 1)(q − 1) embedded in V = P1 × P1, defined as the zero set of a suitably

chosen polynomial of bidegree (p, q). (The case of a genus 2 curve of bidegree (3, 2) was used in §3 to

illustrate the general construction, see Examples 3.2 and 3.12.)

Namely, in affine coordinates f is given by

f(x1, x2) =

p∑

a=0

q∑

b=0

ca,bτ
ρ(a,b)xa1x

b
2,

where ca,b ∈ C∗ are arbitrary, ρ(a, b) ∈ R satisfy a suitable convexity condition, and τ ≪ 1. The

corresponding tropical polynomial

(9.3) ϕ(ξ1, ξ2) = max{aξ1 + bξ2 − ρ(a, b) | 0 ≤ a ≤ p, 0 ≤ b ≤ q}

defines a tropical curve Π0 ⊂ R2; see Figure 1. We also denote by H ′, resp. H0, the genus g curves

with p + q (resp. 2(p + q)) punctures obtained by intersecting H with the affine subset V ′ = C2 ⊂ V ,

resp. V 0 = (C∗)2.

The polytope ∆Y = {(ξ1, ξ2, η) | η ≥ ϕ(ξ1, ξ2)} has (p + 1)(q + 1) facets, corresponding to the

regions where a particular term in (9.3) realizes the maximum. Thus the 3-fold Y has (p + 1)(q + 1)
irreducible toric divisors Da,b (0 ≤ a ≤ p, 0 ≤ b ≤ q) (we label each divisor by the weight of the

dominant monomial). The moment polytopes for these divisors are exactly the components of R2 \Π0,

and the tropical curve Π0 depicts the moment map images of the codimension 2 strata where they

intersect (a configuration of P1’s and A1’s); see Figure 3 left (and compare with Figure 1 right).

The leading-order superpotential W0 of Definition 3.10 consists of five terms: w0 = −T ǫ + T ǫv0,

where v0 is the toric monomial of weight (0, 0, 1), which vanishes with multiplicity 1 on each of the

toric divisors Da,b; and four termsw1, . . . , w4 corresponding to the facets of ∆V . Up to constant factors,

w1 is the toric monomial with weight (−1, 0, 0), which vanishes with multiplicity a on Da,b; w2 is the

toric monomial with weight (0,−1, 0), vanishing with multiplicity b on Da,b; w3 is the monomial with

weight (1, 0, p), with multiplicity (p − a) on Da,b; and w4 is the monomial with weight (0, 1, q), with

multiplicity (q − b) on Da,b (compare Example 3.12).

Our main results for the open curve H0 ⊂ V 0 = (C∗)2 are the following:

1. the complement Y 0 of w−1
0 (0) ≃ (C∗)2 in the toric 3-fold Y is SYZ mirror to the conic bundle

X0 = {(x1, x2, y, z) ∈ (C∗)2 × C2 | yz = f(x1, x2)};

2. the B-side Landau-Ginzburg model (Y 0, w0) is SYZ mirror to the blowup of (C∗)2 × C along

H0 × 0;

3. the B-side Landau-Ginzburg model (Y,−v0) is a generalized SYZ mirror to the open genus g
curve H0.

The B-side Landau-Ginzburg models (Y 0, w0) and (Y,−v0) have regular fibers isomorphic to (C∗)2,

while the singular fiber w−1
0 (−T ǫ) = v−1

0 (0) is the union of all the toric divisors Da,b. In particular,
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the singular fiber consists of (p+1)(q +1) toric surfaces intersecting pairwise along a configuration of

P1’s and A1’s (the 1-dimensional strata of Y ), themselves intersecting at triple points (the 0-dimensional

strata of Y ); the combinatorial structure of the trivalent configuration of P1’s and A1’s is exactly given

by the tropical curve Π0. (See Figure 3 left).

If we partially compactify to V ′ = C2, then we get:

(2’) the B-side Landau-Ginzburg model (Y 0, w0+w1+w2) is SYZ mirror to the blowup of C3 along

H ′ × 0;

(3’) the B-side Landau-Ginzburg model (Y,−v0 + w1 + w2) is mirror to H ′.

Adding w1+w2 to the superpotential results in a partial smoothing of the singular fiber; namely, the

singular fiber is now the union of the toric surfaces Da,b where a > 0 and b > 0 (over which w1 + w2

vanishes identically) and a single noncompact surface S′ ⊂ Y , which can be thought of as a smoothing

(or partial smoothing) of S′
0 = (

⋃
aDa,0) ∪ (

⋃
bD0,b).

By an easy calculation in the toric affine charts of Y , the critical locus of WH′ = −v0 + w1 +
w2 (i.e. the pairwise intersections of components of W−1

H′ (0) and the possible self-intersections of S′)

is again a union of P1’s and A1’s meeting at triple points; the combinatorics of this configuration is

obtained from the planar graph Π0 (which describes the critical locus of WH0 = −v0) by deleting all

the unbounded edges in the directions of (−1, 0) and (0,−1), then inductively collapsing the bounded

edges that connect to univalent vertices and merging the edges that meet at bivalent vertices (see Figure

3 middle); this construction can be understood as a sequence of “tropical modifications” applied to the

tropical curve Π0.

D00
D10

D20
D30

D32D22
D12

D02

D01

D11

D21

D31

D32D22
D12

D11

D21

D31
S′

S′

D11

D21

S

S

Figure 3: The singular fibers of the mirrors to H0 = H ∩ (C∗)2 (left) and H ′ = H ∩ C2

(middle), and of the leading-order terms of the mirror to H (right). Here H is a genus 2 curve

of bidegree (3, 2) in P1 × P1.

The closed genus g curve H does not satisfy Assumption 1.4, so our main results do not apply to it.

However, it is instructive to consider the leading-order mirrors (Y 0,W0) to the blowup X of P1×P1×C
along H × 0 and (Y,WH

0 ) to the curve H itself. Indeed, in this case the additional instanton corrections

(i.e., virtual counts of configurations that include exceptional rational curves in Ṽ ) are expected to only

have a mild effect on the mirror: specifically, they should not affect the topology of the critical locus,

but merely deform it in a way that can be accounted for by corrections to the mirror map. We will return

to this question in a forthcoming chapter.
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The zero set of the leading-order superpotential WH
0 = −v0 + w1 + w2 + w3 + w4 is the union

of the compact toric surfaces Da,b, 0 < a < p, 0 < b < q, with a single noncompact surface S ⊂ Y ,

which can be thought of as a smoothing (or partial smoothing) of the union S0 of the noncompact toric

divisors of Y . (There may also be new critical points which do not lie over 0; we shall not discuss them.)

Here again, an easy calculation in the toric affine charts shows that the singular locus of (WH
0 )−1(0)

(i.e., the pairwise intersections of components and the possible self-intersections of S) forms a configu-

ration of 3g − 3 P1’s meeting at triple points. Combinatorially, this configuration is obtained from the

planar graph Π0 by deleting all the unbounded edges, then inductively collapsing the bounded edges that

connect to univalent vertices and merging the edges that meet at bivalent vertices (see Figure 3 right);

this can be understood as a sequence of tropical modifications turning Π0 into a closed genus g tropical

curve (i.e., a trivalent graph without unbounded edges).

(The situation is slightly different when p = q = 2 and g = 1: in this case (WH
0 )−1(0) =

D1,1 ∪ S, and the critical locus D1,1 ∩ S is a smooth elliptic curve. In this case, the higher instanton

corrections are easy to analyze, and simply amount to rescaling the first term −v0 of the superpotential

by a multiplicative factor which encodes certain genus 0 Gromov-Witten invariants of P1 × P1.)

10 Generalizations

In this section we mention (without details) a couple of straightforward generalizations of our con-

struction.

10.1 Non-maximal degenerations

In our main construction we have assumed that the hypersurface H ⊂ V is part of a maximally

degenerating family (Hτ )τ→0 (see Definition 3.1). This was used for two purposes: (1) to ensure

that, for each weight α ∈ A, there exists a connected component of Rn \ Log(H) over which the

corresponding monomial in the defining equation (3.1) dominates all other terms, and (2) to ensure that

the toric variety Y associated to the polytope (3.8) is smooth.

(Note that the regularity of P also ensures the smoothness of H throughout, and of H ′
σ in the

discussion before Lemma 5.7; without the regularity assumption, smoothness can still be achieved by

making generic choices of the coefficients cα in (3.1).)

In general, removing the assumption of maximal degeneration, some of the terms in the tropical

polynomial

ϕ(ξ) = max {〈α, ξ〉 − ρ(α) |α ∈ A}
may not achieve the maximum under any circumstances; denote by Ared the set of those weights which

do achieve the maximum for some value of ξ. Equivalently, those are exactly the vertices of the polyhe-

dral decomposition P of Conv(A) induced by the function ρ : A→ R. Then the elements of A \ Ared
do not give rise to connected components of the complement of the tropical curve, nor to facets of ∆Y ,

and should be discarded altogether. Thus, the main difference with the maximal degeneration case is

that the rays of the fan ΣY are the vectors (−α, 1) for α ∈ Ared, and the toric variety Y is usually

singular.



166

Indeed, the construction of the Lagrangian torus fibration π : X0 → B proceeds as in §4, and the

arguments in Sections 4 to 6 remain valid, the only difference being that only the weights α ∈ Ared give

rise to chambers Uα of tautologically unobstructed fibers of π, and hence to affine coordinate charts U∨
α

for the SYZ mirror Y 0 of X0. Replacing A by Ared throughout the arguments addresses this issue.

The smooth mirrors obtained from maximal degenerations are crepant resolutions of the singular

mirrors obtained from non-maximal ones. Starting from a non-maximal polyhedral decomposition P,

the various ways in which it can be refined to a regular decomposition correspond to different choices

of resolution. We give a few examples.

Example 10.1 Revisiting the example of the Ak-Milnor fiber considered in §9.2, we now consider the

case where the roots of the polynomial fk+1 satisfy |x1| = · · · = |xk+1|, for example fk+1(x) =
xk+1 − 1, which gives

X ′ = {(x, y, z) ∈ C3 | yz = xk+1 − 1}.
Then the tropical polynomial ϕ : R→ R is ϕ(ξ) = max(0, (k+1)ξ), and the polytope ∆Y = {(ξ, η) ∈
R2 | η ≥ ϕ(ξ)} determines the singular toric variety {st = uk+1} ⊂ K3, i.e. the Ak singularity, rather

than its resolution as previously.

Geometrically, the Lagrangian torus fibration π normally consists of k+2 chambers, depending on

how many of the roots of fk+1 lie inside the projection of the fiber to the x coordinate plane. In the case

considered here, all the walls lie at |x| = 1, and the fibration π only consists of two chambers (|x| < 1
and |x| > 1).

In fact, Z/(k + 1) acts freely on X0
k = {(x, y, z) ∈ C∗ × C2 | yz = xk+1 − 1}, making it an

unramified cover of X0
0 = {(x̂, y, z) ∈ C∗ × C2 | yz = x̂ − 1} ≃ C2 \ {yz = −1} via the map

(x, y, z) 7→ (xk+1, y, z). The Lagrangian tori we consider on X0
k are simply the preimages of the

SYZ fibration on X0
0 , which results in the mirror being the quotient of the mirror of X0

0 (namely,

{(ŝ, t̂, u) ∈ K3 | ŝt̂ = u, u 6= 1}) by a Z/(k + 1)-action (namely ζ · (ŝ, t̂, u) = (ζŝ, ζ−1t̂, u)). As

expected, the quotient is nothing other than Y 0
k = {(s, t, u) ∈ K3 | st = uk+1, u 6= 1} (via the map

(ŝ, t̂, u) 7→ (ŝk+1, t̂k+1, u)).

Example 10.2 The higher-dimensional analogue of the previous example is that of Fermat hypersur-

faces in (C∗)n or in CPn. Let H be the Fermat hypersurface in CPn given by the equation
∑
Xd
i = 0

in homogeneous coordinates, i.e. xd1 + · · ·+ xdn + 1 = 0 in affine coordinates, and let X be the blowup

of CPn × C at H × 0. In this case, the open Calabi-Yau manifold X0 is

X0 = {(x1, . . . , xn, y, z) ∈ (C∗)n × C2 | yz = xd1 + · · ·+ xdn + 1}.

The tropical polynomial corresponding to H is ϕ(ξ1, . . . , ξn) = max(dξ1, . . . , dξn, 0), which is highly

degenerate. Thus the toric variety Y associated to the polytope ∆Y given by (3.8) is singular, in fact it

can be described as

Y = {(z1, . . . , zn+1, v) ∈ Kn+2 | z1 . . . zn+1 = vd},
which can be viewed as the quotient of Kn+1 by the diagonal action of (Z/d)n (multiplying all coordi-

nates by roots of unity but preserving their product), via the map (z̃1, . . . , z̃n+1) 7→ (z̃d1 , . . . , z̃
d
n+1, z̃1 . . . z̃n+1).

As in the previous example, this is consistent with the observation that X0 is a (Z/d)n-fold cover of

the conic bundle considered in §9.1, where (Z/d)n acts diagonally by multiplication on the coordinates

x1, . . . , xn.
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(As usual, considering a maximally degenerating family of hypersurfaces of degree d instead of a

Fermat hypersurface would yield a crepant resolution of Y .)

By Theorem 1.6, the affine Fermat hypersurface H0 = H ∩ (C∗)n is mirror to the singular B-side

Landau-Ginzburg model (Y,WH
0 = −v) or, in other terms, the quotient of (Kn+1, W̃H

0 = −z̃1 . . . z̃n+1)
by the action of (Z/d)n, which is consistent with [221].

Furthermore, by Remark 7.11 the theorem also applies to projective Fermat hypersurfaces of degree

d < n in CPn. Setting a = 1
n+1

∫
CP1 ωCPn , and placing the barycenter of the moment polytope of CPn

at the origin, we find that (
Y,WH

0 = −v + T a(z1 + · · ·+ zn+1)
)

is mirror to H (for d < n; otherwise this is only the leading-order approximation to the mirror). Equiv-

alently, this can be viewed as the quotient of

(
Kn+1, W̃H

0 = −z̃1 . . . z̃n+1 + T a(z̃d1 + · · ·+ z̃dn+1)
)

by the action of (Z/d)n, which is again consistent with Sheridan’s work.

Example 10.3 We now revisit the example considered in §9.3, where we found the mirrors of nearly

tropical plane curves of bidegree (p, q) to be smooth toric 3-folds (equipped with suitable superpoten-

tials) whose topology is determined by the combinatorics of the corresponding tropical plane curve Π0

(or dually, of the regular triangulation P of the rectangle [0, p]× [0, q]).
A particularly simple way to modify the combinatorics is to “flip” a pair of adjacent triangles of

P whose union is a unit parallelogram; this affects the toric 3-fold Y by a flip. This operation can be

implemented by a continuous deformation of the tropical curve Π0 in which the length of a bounded

edge shrinks to zero, creating a four-valent vertex, which is then resolved by creating a bounded edge

in the other direction and increasing its length. The intermediate situation where Π0 has a 4-valent

vertex corresponds to a non-maximal degeneration where P is no longer a maximal triangulation of

[0, p] × [0, q], instead containing a single parallelogram of unit area; the mirror toric variety Y then

acquires an ordinary double point singularity. The two manners in which the four-valent vertex of the

tropical curve can be deformed to a pair of trivalent vertices connected by a bounded edge then amount

to the two small resolutions of the ordinary double point, and differ by a flip.

10.2 Hypersurfaces in abelian varieties As suggested to us by Paul Seidel, the methods we use to

study hypersurfaces in toric varieties can also be applied to the case of hypersurfaces in abelian varieties.

For simplicity, we only discuss the case of abelian varieties V which can be viewed as quotients of

(C∗)n (with its standard Kähler form) by the action of a real lattice ΓB ⊂ Rn, where γ ∈ ΓB acts by

(x1, . . . , xn) 7→ (eγ1x1, . . . , e
γnxn). In other terms, the logarithm map identifies V with the product

TB × TF of two real Lagrangian tori, the “base” TB = Rn/ΓB and the “fiber” TF = iRn/(2πZ)n

(which corresponds to the orbit of a T n-action).

Since the T n-action on V is not Hamiltonian, there is no globally defined Rn-valued moment map.

However, there is an analogous map which takes values in a real torus, namely the quotient of Rn by the

lattice spanned by the periods of ωV on H1(TB) × H1(TF ); due to our choice of the standard Kähler

form on (C∗)n, this period lattice is simply ΓB, and the “moment map” is the logarithm map projecting

from V to the real torus TB = Rn/ΓB .
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A tropical hypersurface Π0 ⊂ TB can be thought of as the image of a ΓB-periodic tropical hy-

persurface Π̃0 ⊂ Rn under the natural projection Rn → Rn/ΓB = TB . Such a tropical hypersurface

occurs naturally as the limit of the amoebas (moment map images) of a degenerating family of hyper-

surfaces Hτ inside the degenerating family of abelian varieties Vτ (τ → 0) corresponding to rescaling

the lattice ΓB by a factor of | log τ |. (We keep the Kähler class [ωV ] and its period lattice ΓB constant

by rescaling the Kähler form of (C∗)n by an appropriate factor, so that the moment map is given by the

base τ logarithm map, µV = Logτ : Vτ → TB .) As in §3 we call Hτ ⊂ Vτ “nearly tropical” if its

amoeba Πτ = Logτ (Hτ ) ⊂ TB is contained in a tubular neighborhood of the tropical hypersurface Π0;

we place ourselves in the nearly tropical setting, and elide τ from the notation.

Concretely, the hypersurface H is defined by a section of a line bundle L → V whose pullback to

(C∗)n is trivial; L can be viewed as the quotient of (C∗)n × C by ΓB, where γ ∈ ΓB acts by

(10.1) γ# : (x1, . . . , xn, v) 7→ (τ−γ1x1, . . . , τ
−γnxn, τ

κ(γ)
x
λ(γ)v),

where λ ∈ Hom(ΓB ,Z
n) is a homomorphism determined by the Chern class c1(L) (observe that

Hom(ΓB,Z
n) ≃ H1(TB ,Z) ⊗ H1(TF ,Z) ⊂ H2(V,Z)), and κ : ΓB → R satisfies a cocycle-type

condition in order to make (10.1) a group action. A basis of sections of L is given by the theta functions

(10.2) ϑα(x1, . . . , xn) =
∑

γ∈ΓB

γ∗#(x
α), α ∈ Zn/λ(ΓB).

(Note: for γ ∈ ΓB, ϑα and ϑα+λ(γ) actually differ by a constant factor.) The defining section f of H
is a finite linear combination of these theta functions; equivalently, its lift to (C∗)n can be viewed as

an infinite Laurent series of the form (3.1), invariant under the action (10.1) (which forces the set of

weights A to be λ(ΓB)-periodic.) We note that the corresponding tropical function ϕ : Rn → R is also

ΓB-equivariant, in the sense that ϕ(ξ + γ) = ϕ(ξ) + 〈λ(γ), ξ〉 − κ(γ) for all γ ∈ ΓB.

Let X be the blowup of V × C along H × 0, equipped with an S1-invariant Kähler form ωǫ such

that the fibers of the exceptional divisor have area ǫ > 0 (chosen sufficiently small). Denote by Ṽ the

proper transform of V × 0, and let X0 = X \ Ṽ . Then X0 carries an S1-invariant Lagrangian torus

fibration π : X0 → B = TB ×R+, constructed as in §4 by assembling fibrations on the reduced spaces

of the S1-action. This allows us to determine SYZ mirrors to X0 and X as in §5 and §6.

The construction can be understood either directly at the level of X and X0, or by viewing the

whole process as a ΓB-equivariant construction on the cover X̃, namely the blowup of (C∗)n×C along

H̃ × 0, where H̃ is the preimage of H under the covering map q : (C∗)n → (C∗)n/ΓB = V . The latter

viewpoint makes it easier to see that the enumerative geometry arguments from the toric case extend to

this setting.

As in the toric case, each weight ᾱ ∈ Ā := A/λ(ΓB) determines a connected component of the

complement TB \Π0 of the tropical hypersurface Π0, and hence a chamber Uᾱ ⊂ Breg ⊂ B over which

the fibers of π are tautologically unobstructed. Each of these determines an affine coordinate chart U∨
ᾱ

for the SYZ mirror of X0, and these charts are glued to each other via coordinate transformations of the

form (3.11).

Alternatively, we can think of the mirror as a quotient by ΓB of a space built from an infinite col-

lection of charts U∨
α , α ∈ A, where each chart U∨

α has coordinates (vα,1, . . . , vα,n, w0), glued together

by (3.11). Specifically, for each element γ = (γ1, . . . , γn) ∈ ΓB, we identify U∨
α with U∨

α+λ(γ) via the

map

(10.3) γ∨# : (vα,1, . . . , vα,n, w0) ∈ U∨
α 7→ (T γ1vα,1, . . . , T

γnvα,n, w0) ∈ U∨
α+λ(γ),
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where the multiplicative factors T γi account for the amount of symplectic area separating the different

lifts to X̃ of a given fiber of π.

Setting v0 = 1 + T−ǫw0, we can again view the SYZ mirror Y 0 of X0 as the complement of the

hypersurface w−1
0 (0) = v−1

0 (1) in a “locally toric” variety Y covered (outside of codimension 2 strata)

by local coordinate charts Yα = (K∗)n × K (α ∈ A) glued together by (3.9) and identified under the

action of ΓB . Namely, for all α, β ∈ A and γ ∈ ΓB we make the identifications

(v1, . . . , vn, v0) ∈ Yα ∼ (vα1−β1
0 v1, . . . , v

αn−βn
0 vn, v0) ∈ Yβ,(10.4)

(v1, . . . , vn, v0) ∈ Yα ∼ (T γ1v1, . . . , T
γnvn, v0) ∈ Yα+λ(γ).(10.5)

Finally, the abelian variety V is aspherical, and any holomorphic disc bounded by π−1(b), b ∈ Breg

must be entirely contained in a fiber of the projection to V , so that the only contribution to the su-

perpotential is w0 (as in the case of hypersurfaces in (C∗)n). With this understood, our main results

become:

Theorem 10.4 Let H be a nearly tropical hypersurface in an abelian variety V , let X be the blowup

of V × C along H × 0, and let Y be as above. Then:

1. Y 0 = Y \ w−1
0 (0) is SYZ mirror to X0 = X \ Ṽ ;

2. the B-side Landau-Ginzburg model (Y 0, w0) is SYZ mirror to X;

3. the B-side Landau-Ginzburg model (Y,−v0) is generalised SYZ mirror to H .

Note that, unlike Theorems 1.5 and 1.6, this result holds without any restrictions: when V is an abelian

variety, Assumption 1.4 always holds and there are never any higher-order instanton corrections. On

the other hand, the statement of part (3) implicitly uses the properties of Fukaya categories of Landau-

Ginzburg models whose proofs are sketched in Section 7 (whereas parts (1) and (2) rely only on familiar

versions of the Fukaya category).

The smooth fibers of −v0 : Y → K (or equivalently up to a reparametrization, w0 : Y 0 → K∗) are

all abelian varieties, in fact quotients of (K∗)n (with coordinates v = (v1, . . . , vn)) by the identification

v
m ∼ v〈λ(γ),m〉

0 T 〈γ,m〉
v
m for all m ∈ Zn and γ ∈ ΓB,

while the singular fiber is a union of toric varieties

v−1
0 (0) =

⋃

ᾱ∈Ā

Dᾱ

glued (to each other or to themselves) along toric strata. The moment polytopes for the toric varieties

Dᾱ are exactly the components of TB \ Π0, and the tropical hypersurface Π0 depicts the moment map

images of the codimension 2 strata of Y along which they intersect.

Example 10.5 When H is a set of n points on an elliptic curve V , we find that the fibers of −v0 : Y →
K are a family of elliptic curves, all smooth except v−1

0 (0) which is a union of n P1’s forming a cycle

(in the terminology of elliptic fibrations, this is known as an In fiber). In this case the superpotential

−v0 has n isolated critical points, all lying in the fiber over zero, as expected.
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Figure 4: A tropical genus 2 curve on the 2-torus (left); the singular fiber of the mirror Landau-

Ginzburg model is the quotient of the toric Del Pezzo surface shown (right) by identifying

Ei ∼ E ′
i.

Example 10.6 Now consider the case where H is a genus 2 curve embedded in an abelian surface V
(for example its Jacobian torus). The tropical genus 2 curve Π0 is a trivalent graph on the 2-torus TB
with two vertices and three edges, see Figure 4 left. Since TB \ Π0 is connected, the singular fiber

v−1
0 (0) of the mirror B-side Landau-Ginzburg model is irreducible. Specifically, it is obtained from

the toric Del Pezzo surface shown in Figure 4 right, i.e. P2 blown up in 3 points, by identifying each

exceptional curve Ei with the “opposite” exceptional curve E′
i (the proper transform of the line through

the two other points). Thus the critical locus of the superpotential is a configuration of three rational

curves E1 = E′
1, E2 = E′

2, E3 = E′
3 intersecting at two triple points. (Compare with §9.3: the mirrors

are very different, but the critical loci are the same).

11 Complete intersections

In this section we explain (without details) how to extend our main results to the case of complete

intersections in toric varieties (under a suitable positivity assumption for rational curves, which always

holds in the affine case).

11.1 Notations and statement of the results

Let H1, . . . ,Hd be smooth nearly tropical hypersurfaces in a toric variety V of dimension n, in

general position. We denote by fi the defining equation of Hi, a section of a line bundle Li which can

be written as a Laurent polynomial (3.1) in affine coordinates x = (x1, . . . , xn); by ϕi : R
n → R the

corresponding tropical polynomial; and by Πi ⊂ Rn the tropical hypersurface defined by ϕi. (To ensure

smoothness of the mirror, it is useful to assume that the tropical hypersurfaces Π1, . . . ,Πd intersect

transversely, though this assumption is actually not necessary).

We denote by X the blowup of V × Cd along the d codimension 2 subvarieties Hi × Cd−1
i , where

Cd−1
i = {yi = 0} is the i-th coordinate hyperplane in Cd. (The blowup is smooth since the subvarieties

Hi×Cd−1
i intersect transversely). Explicitly, X can be a described as a smooth submanifold of the total
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space of the (P1)d-bundle
∏d
i=1 P(Li ⊕O) over V × Cd,

(11.1) X = {(x, y1, . . . , yd, (u1 :v1), . . . , (ud :vd)) | fi(x)vi = yiui ∀i = 1, . . . , d}.

Outside of the union of the hypersurfaces Hi, the fibers of the projection pV : X → V obtained by

composing the blowup map p : X → V × Cd with projection to the first factor are isomorphic to Cd;

above a point which belongs to k of the Hi, the fiber consists of 2k components, each of which is a

product of C’s and P1’s.

The action of T d = (S1)d on V × Cd by rotation on the last d coordinates lifts to X; we equip X
with a T d-invariant Kähler form for which the exceptional P1 fibers of the i-th exceptional divisor have

area ǫi (where ǫi > 0 is chosen small enough). As in §3.2, we arrange for the Kähler form on X to

coincide with that on V × Cd away from the exceptional divisors. We denote by µX : X → Rd the

moment map.

The dense open subset X0 ⊂ X over which we can construct an SYZ fibration is the complement

of the proper transforms of the toric strata of V × Cd; it can be viewed as an iterated conic bundle over

the open stratum V 0 ≃ (C∗)n ⊂ V , namely

(11.2) X0 ≃ {(x, y1, . . . , yd, z1, . . . , zd) ∈ V 0 × C2d | yizi = fi(x) ∀i = 1, . . . , d}.

Consider the polytope ∆Y ⊆ Rn+d defined by

(11.3) ∆Y = {(ξ, η1, . . . , ηd) ∈ Rn ⊕ Rd | ηi ≥ ϕ(ξi) ∀i = 1, . . . , d},

and let Y be the corresponding toric variety. For i = 1, . . . , d, denote by v0,i the monomial with weight

(0, . . . , 0, 1, . . . , 0) (the (n+ i)-th entry is 1), and set

(11.4) w0,i = −T ǫi + T ǫiv0,i.

Denote by A the set of connected components of Rn\(Π1∪· · ·∪Πd), and index each component by

the tuple of weights ~α = (α1, . . . , αd) ∈ Zn×d corresponding to the dominant monomials of ϕ1, . . . , ϕd
in that component. Then for each ~α ∈ A we have a coordinate chart Y~α ≃ (K∗)n×Kd with coordinates

v~α = (v~α,1, . . . , v~α,n) ∈ (K∗)n and (v0,1, . . . , v0,d) ∈ Kd, where the monomial vm~α = vm1
~α,1 . . . v

mn
~α,n

is the toric monomial with weight (−m1, . . . ,−mn, 〈α1,m〉, . . . , 〈αd,m〉) ∈ Zn+d. These charts glue

via

(11.5) v
m
~α =

(
d∏

i=1

(1 + T−ǫiw0,i)
〈βi−αi,m〉

)
v
m
~β
.

Denoting by σ1, . . . , σr ∈ Zn the primitive generators of the rays of the fan ΣV , and writing the

moment polytope of V in the form (3.12), for j = 1, . . . , r we define

(11.6) wj = T̟jv
σj
~αmin(σj)

,

where ~αmin(σj) ∈ A is chosen so that all 〈σj , αi〉 are minimal. In other terms, v
σj
~αmin(σj)

is the toric

monomial with weight (−σj, λ1(σj), . . . , λd(σj)) ∈ Zn+d, where λ1, . . . , λd : ΣV → R are the piece-

wise linear functions defining Li = O(Hi).
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Finally, define Y 0 to be the subset of Y wherew0,1, . . . , w0,d are all non-zero, and define the leading-

order superpotentials

(11.7) W0 = w0,1 + · · ·+ w0,d +w1 + · · ·+ wr =
d∑

i=1

(−T ǫi + T ǫiv0,i) +
r∑

i=1

T̟jv
σj
~αmin(σj)

,

(11.8) WH
0 = −v0,1 − · · · − v0,d + w1 + · · ·+ wr = −

d∑

i=1

v0,i +
r∑

i=1

T̟jv
σj
~αmin(σj)

.

With this understood, the analogue of Theorems 1.5–1.7 is the following

Theorem 11.1 With the above notations:

1. Y 0 is SYZ mirror to the iterated conic bundle X0;

2. assuming that all rational curves in X have positive Chern number (e.g. when V is affine), the

B-side Landau-Ginzburg model (Y 0,W0) is SYZ mirror to X;

3. assuming that V is affine, the B-side Landau-Ginzburg model (Y,WH
0 ) is a generalized SYZ

mirror to the complete intersection H1 ∩ · · · ∩Hd ⊂ V .

As in Theorem 10.4, part (3) of this theorem relies on the expected properties of Fukaya categories of

Landau-Ginzburg models.

Remark 11.2 Denoting by Xi the blowup of V × C at Hi × 0 and by X0
i the corresponding conic

bundle over V 0, the space X (resp. X0) is the fiber product of X1, . . . ,Xd (resp. X0
1 , . . . ,X

0
d ) with

respect to the natural projections to V . This perspective explains many of the geometric features of the

construction.

11.2 Sketch of proof The argument proceeds along the same lines as for the case of hypersurfaces,

of which it is really a straightforward adaptation. We outline the key steps for the reader’s convenience.

As in §4, a key observation to be made about the T d-action onX is that the reduced spaces Xred,λ =
µ−1
X (λ)/T d (λ ∈ Rd≥0) are all isomorphic to V via the projection pV (though the Kähler forms may differ

near H1 ∪ · · · ∪Hd). This allows us to build a (singular) Lagrangian torus fibration

π : X0 → B = Rn × (R+)
d

(where the second component is the moment map) by assembling standard Lagrangian torus fibrations

on the reduced spaces. The singular fibers of π correspond to the points of X0 where the T d-action is

not free; therefore

Bsing =

d⋃

i=1

Π′
i × {(λ1, . . . , λd) |λi = ǫi},
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where Π′
i ⊂ Rn is essentially the amoeba of Hi. The potentially obstructed fibers of π : X0 → B are

precisely those that intersect p−1
V (H1 ∪ · · · ∪Hd), and for each ~α ∈ A we have an open subset U~α ⊂ B

of tautologically unobstructed fibers which project under p to standard product tori in V 0 × Cd.

Each of the components U~α ⊂ B determines an affine coordinate chart U∨
~α in the SYZ mirror to

X0. Namely, for b ∈ U~α ⊂ B, the Lagrangian torus L = π−1(b) ⊂ X0 is the preimage by p of a

standard product torus in V ×Cd. Denoting by (ζ1, . . . , ζn, λ1, . . . , λd) ∈ ∆V ×Rd+ the corresponding

value of the moment map of V × Cd, and by (γ1, . . . , γn, γ0,1, . . . , γ0,d) the natural basis of H1(L,Z),
we equip U∨

~α with the coordinate system

(11.9) (L,∇) 7→ (v~α,1, . . . , v~α,n, w0,1, . . . , w0,d)

:=
(
T ζ1∇(γ1), . . . , T ζn∇(γn), T λ1∇(γ0,1), . . . , T λd∇(γ0,d)

)
.

For b ∈ U~α, the Maslov index 2 holomorphic discs bounded by L = π−1(b) in X can be determined

explicitly as in §5, by projecting to V × Cd. Specifically, these discs intersect the proper transform of

exactly one of the toric divisors transversely in a single point, and there are two cases:

Lemma 11.3 For any i = 1, . . . , d, L bounds a unique family of Maslov index 2 holomorphic discs

in X which intersect the proper transform of V × Cd−1
i = {yi = 0} transversely in a single point;

the images of these discs under p are contained in lines parallel to the yi coordinate axis, and their

contribution to the superpotential is w0,i.

Lemma 11.4 For any j = 1, . . . , r, denote by Dσj the toric divisor in V associated to the ray σj of

the fan ΣV , and let ki = 〈αi − αimin(σj), σj〉 (i = 1, . . . , d). Then L bounds 2k1+···+kd families of

Maslov index 2 holomorphic discs in X which intersect the proper transform of Dσj ×Cd transversely

in a single point (all of which have the same projections to V ), and their total contribution to the

superpotential is (
d∏

i=1

(1 + T−ǫiw0,i)
ki

)
T̟iv

σj
~α .

The proofs are essentially identical to those of Lemmas 5.5 and 5.6, and left to the reader. As in §5, the

first lemma implies that the coordinates w0,i agree on all charts U∨
~α , and the second one implies that the

coordinates v~α,i transform according to (11.5). The first two statements in Theorem 11.1 follow.

The last statement in the theorem follows from equipping X with the superpotential W∨ = y1 +
· · · + yd : X → C, which has Morse-Bott singularities along the intersection of the proper transform

of V × 0 with the d exceptional divisors, i.e. crit(W∨) ≃ H1 ∩ · · · ∩ Hd. As in §7, the nontriviality

of the normal bundle forces us to twist the Fukaya category of (X,W∨) by a background class s ∈
H2(X,Z/2), in this case Poincaré dual to the sum of the exceptional divisors (or equivalently to the

sum of the proper transforms of the toric divisors V ×Cd−1
i ). The thimble construction then provides a

fully faithful A∞-functor from F(H1∩· · ·∩Hd) toFs(X,W∨). The twisting affects the superpotential

by changing the signs of the terms w0,1, . . . , w0,d. Moreover, the thimble functor modifies the value of

the superpotential by an additive constant, which equals T ǫ1 + · · · + T ǫd when V is affine (the i-th
term corresponds to a family of small discs of area ǫi in the normal direction to Hi). Putting everything

together, the result follows by a straightforward adaptation of the arguments in §7.
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Appendix A. Moduli of objects in the Fukaya category

A.1 General theory

Let L be an embedded spin Lagrangian of vanishing Maslov class in the Kähler manifold X0 =
X \ D, where D is an anticanonical divisor which satisfies Assumption 2.2. We begin with a brief

overview of the results of [80], which in part implement the constructions of [81] in the setting of de

Rham cohomology.

For each positive real number E, Fukaya defines a curved A∞ structure on the de Rham cochains

with coefficients in Λ0/T
E , which we denote by

Ω∗(L; Λ0/T
EΛ0) ≡ Ω∗(L;R)⊗R Λ0/T

EΛ0.

The operations are obtained from the moduli space of holomorphic discs in X0 = X \D with bound-

ary on L, whose energy is bounded by E. By induction, one obtains an unbounded sequence of real

numbers Ei, together with formal diffeomorphisms on Ω∗(L; Λ0/T
EiΛ0) which pull back the A∞

structure constructed from discs of energy bounded by Ei to the projection of the A∞ structure on

Ω∗(L; Λ0/T
Ei+1Λ0) modulo TEi . After applying such a formal diffeomorphism, we may therefore

assume that the A∞ map

Ω∗(L; Λ0/T
Ei+1Λ0)→ Ω∗(L; Λ0/T

EiΛ0)

is defined by projection of coefficient rings. Taking the inverse limit over Ei, we obtain an A∞ structure

on Ω∗(L; Λ0). By passing to the canonical model (i.e. applying a filtered version of the homological

perturbation lemma [133]), we can reduce this A∞ structure to H∗(L; Λ0).
Fukaya checks that any class b ∈ H1(L;UΛ) defines a deformed A∞ structure on the cohomology.

In particular, there is a subset

ŶL ⊂ H1(L;UΛ)

consisting of elements for which thisA∞ structure has vanishing curvature (i.e. solutions to the Maurer-

Cartan equation). Gauge transformations [81, Section 4.3] define an equivalence relation on this set; we

call the quotient the moduli space of simple objects supported on L, which we denote YL.

Remark A.1 The original formalism of Fukaya, Oh, Ohta, and Ono [81] considered deformation

classes corresponding to b ∈ H1(L; Λ+), called bounding cochains, which via exponentiation Λ+ →
1 +Λ+ can also be reinterpreted as local systems. As noted in the discussion following Theorem 1.2 of

[80], there are inclusions 1 + Λ+ ⊂ UΛ ⊂ Λ∗, and the original construction of Floer cohomology can

be generalised to all unitary local systems using an idea of Cho.

The invariance statement of Floer cohomology [81, Theorem 14.1-14.3] asserts that YL does not

depend on the choice of auxiliary data (e.g almost-complex structure) in the following sense: let Y1
L

and Y2
L denote the moduli spaces for different choices of auxiliary structures. A homotopy between the

auxiliary data induces an isomorphism

(12.1) Y1
L
∼= Y2

L

which is invariant under homotopies of homotopies.
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Assumption A.2 The A∞ structure on H∗(L; Λ0) is isomorphic to the undeformed structure.

Remark A.3 For most Lagrangians that we consider, this condition holds automatically because there

is a choice of almost complex structure for which the Lagrangian bounds no holomorphic discs which

are not constant.

In this setting, the Maurer-Cartan equation vanishes identically, and the gauge equivalence relation is

trivial. A choice of isomorphism of the Floer-theoretic A∞-structure with the undeformed structure (e.g.

a choice of almost complex structure for which there are no non-constant holomorphic discs) therefore

yields an identification of the moduli space YL of simple objects of the Fukaya category supported on

L with its first cohomology with coefficients in UΛ:

YL ≡ H1(L;UΛ).

Let Lt be a Hamiltonian path of Lagrangians in X0 with vanishing Maslov class, and Jt a family

of almost complex structures on X which we assume are fixed at infinity. We describe the isomor-

phism (12.1) in the special situation which we consider in this chapter. We first identify H1(L0;Z) ∼=
H1(Lt;Z) via the given path. A basis for this group yields an identification

(z1, . . . , zn) : H
1(L0;UΛ)→ UnΛ .

Assumption A.4 For the family (Lt, Jt), all stable holomorphic discs represent multiples of a given

relative homology class β ∈ H2(X,L0;Z).

The wall-crossing map is then of the form

(12.2) zi 7→ hi(zβ)zi,

where hi is a power series with Q coefficients and leading order term equal to 1, and zβ denotes the

monomial Tω(β)z[∂β]. Equation (12.2) can be extracted from the construction in Section 11 of [80]. For

an explicit derivation, see [241, Lemma 4.4]: for bounding cochains, the transformation corresponds to

adding a power series in zβ with vanishing constant term, and Equation (12.2) follows by exponentiation.

By Proposition 5.8, the following assumption holds in the geometric setting of the main theorem:

Assumption A.5 The power series hi is the expansion of a rational function in zβ .

In this case, the transformation in Equation (12.2) converges away from the zeroes and poles of hi. This

is stronger than the general result proved by Fukaya namely that the transformation converges in an

analytic neighbourhood of the unitary elements in H1(L; Λ∗).
In order to extend this construction to the non-Hamiltonian setting, we use the main construction

of [80] which identifies the moduli space of simple objects supported on Lagrangians near L (but not

necessarily Hamiltonian isotopic to it) with an affinoid domain in H1(L; Λ∗) in the sense of Tate.

Given a path {Lt}t∈[0,1] between Lagrangians L0 and L1 in which there is no wall crossing (e.g.

so that no Lagrangian in the family bounds a holomorphic disc), the natural gluing map between these

domains is obtained from the flux homomorphism

Φ({Lt}) ∈ H1(L0;R)
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and the product on cohomology groups

H1(L0;R)×H1(L0; Λ
∗)→ H1(L0; Λ

∗)

induced by the map on coefficients (λ, f) 7→ T λf . In the absence of wall crossing we identify

H1(L1; Λ
∗) with H1(L0; Λ

∗) via this rescaling map.

Given a general path between Lagrangians L0 and L1 (subject to Assumptions A.4 and A.5), this

identification is modified by the wall crossing formula given in Equation (12.2), yielding a birational

map

H1(L0; Λ
∗) 99K H1(L1; Λ

∗),

defined away from a hypersurface. We glue the moduli spaces of objects supported near L0 and L1

using this identification.

Remark A.6 The construction of a map for a Lagrangian path can be reduced to the case of Hamiltonian

paths as follows: any path (Lt, J) can be deformed, with fixed endpoints, to a path (L′
t, Jt) which is a

concatenation of paths for which the Lagrangian is constant and paths in which there is no wall-crossing.

The desired map is then obtained as a composition of the wall-crossing maps for Hamiltonian paths and

the rescalings given by the flux homomorphism.

The idea for constructing the deformed path follows the main strategy for proving convergence in

[80]. Whenever ǫ is sufficiently small, there is a (compactly supported) diffeomorphism ψǫ taking Lt to

Lt+ǫ which preserves the tameness of J . For tautological reasons, there is a path without wall-crossing

from (Lt, J) to (Lt+ǫ, Jt+ǫ) if Jt+ǫ is the pullback of J by ψǫ. Interpolating between this pullback and

(Lt+ǫ, J), via pullbacks of (Lt+s, J), we then reach (Lt+ǫ, J) via a path for which the Lagrangian is

constant and Assumption A.4 remains satisfied.

Remark A.7 (1) More generally, given a path from L0 to L1 that can be decomposed into finitely many

sub-paths {Lt}t∈[tj ,tj+1], each satisfying Assumption A.4 for some relative class βj , and for which

the wall-crossing transformations are rational functions as in Assumption A.5, we again obtain a wall-

crossing map

(12.3) H1(L0; Λ
∗) 99K H1(L1; Λ

∗)

by composing the maps associated to the various sub-paths.

(2) When all the classes βj have the same boundary inH1(Lt,Z) and the same symplectic areas, the

monomials zβj are all equal and the birational transformation (12.3) again takes the form of Equation

(12.2) up to rescaling of the coefficients.

If we restrict attention to the smooth fibers of a Lagrangian torus fibration, we obtain an embedding

of the moduli space Y0
π of all simple objects supported on such Lagrangians into the rigid analytic space

(12.4)
∐

H1(L; Λ∗)/ ∼

where the equivalence relation identifies points which correspond to each other under the birational

wall-crossing transformations of Equation (12.3) induced by all paths among smooth fibres. It does not

automatically follow from the above considerations that this quotient is a well-behaved (e.g. separated)
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analytic space, but in our case this will not be an issue. By the invariance of Floer cohomology [81,

Theorem 14.1-14.3], the transformations induced by homotopic paths are equal. The fact that these

transformations should in general depend only on the homotopy class of the path in the space of all

fibres (i.e. allowing fibres which are not necessarily embedded), is expected to follow as a consequence

of forthcoming developments in the study of family Floer cohomology in the presence of singular fibres.

In our main example, this independence will be manifest from Proposition 5.8, and the quotient (12.4)

can easily be seen to be a smooth analytic space.

Remark A.8 We can think of (12.4) as the natural (analytic) completion of Y0
π. While the points of

this completion do not necessarily correspond to unitary local systems on Lagrangians in X0 with the

given Kähler form, in good situations, they can be interpreted as Lagrangians in X0 equipped with a

completed Kähler form. Slightly strengthening Assumption 2.2 by requiring that X0 be the complement

of a nef divisor, we can obtain such a completion by inflation along the divisor at infinity.

It shall be convenient for our purposes to consider a completion which is obtained by gluing only

finitely many charts. To this end, assume that {Lt}t∈[0,1] is a path of Lagrangians so that the wall-

crossing map defines an embedding

(12.5) H1(L0;UΛ) →֒ H1(L1; Λ
∗).

In this case, the above construction yields that all elements of YL0 can be represented in Equation (12.4)

by elements of H1(L1; Λ
∗).

More generally, assume that {Lα}α∈A is a collection of fibers with the property that for some fixed

almost complex structure J , any smooth fiber L can be connected to some fiber Lα in our collection by

a path such that the wall-crossing map defines an embedding H1(L;UΛ)→ H1(Lα; Λ
∗). We define

(12.6) Ŷ0
π ≡

∐

α∈A

H1(Lα; Λ
∗)/ ∼ .

Lemma A.9 There is a natural analytic embedding of Y0
π into Ŷ0

π. ✷

Next, we study the moduli spaces of holomorphic discs in X with boundary on a Lagrangian L ⊂
X0 of vanishing Maslov class. Since D is an anticanonical divisor, stable holomorphic discs whose

intersection number with D is 1 have Maslov index equal to 2. Assumption 2.2 implies that there are

no discs of negative Maslov index, and that those of vanishing Maslov index are disjoint from D. For

each unitary local system ∇ on L, choice of almost complex structure J , and action cutoff E we obtain

a Λ0/T
EΛ0-valued de Rham cochain

(12.7)
∑

β∈π2(X,L)
β·D=1

zβ(L,∇) ev∗[M1(L, β, J)] ∈ Ω0(L; Λ0/T
EΛ0)

which is closed with respect to the Floer differential. Passing to the canonical model and to the inverse

limit over E we obtain a multiple of the unit in the self-Floer cohomology of (L,∇):

(12.8) m0(L,∇, J) =W (L,∇, J) eL ∈ H0(L; Λ).
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Since the moduli spaces of discs of vanishing Maslov index in X and in X \D agree, the invariance

of Floer theory and in particular of the potential function [81, Theorem B], as extended to non-unitary

local systems in [80], implies that W (L,∇, J) gives rise to a well-defined convergent function on Y0
π.

Because of this, we shall henceforth drop J from the notation. For non-unitary local systems, W (L,∇)
may not in general converge, so we have to impose this as an additional assumption. With this in mind,

the proof of the following result follows from the unitary case by Remark A.6.

Lemma A.10 If for each α ∈ A, the map ∇ 7→ W (Lα,∇) converges on H1(Lα; Λ
∗), then W defines

a regular function on Ŷ0
π. ✷

We record the following consequence:

Corollary A.11 If (Li,∇i) and (Lj,∇j) are identified by a wall-crossing gluing map, thenW (Li,∇i) =
W (Lj,∇j). ✷

Remark A.12 Fukaya has announced that rank 1 unitary local systems on immersed Lagrangians which

are fibers of π define a rigid analytic space which includes Ŷ0
π as an analytic subset. The general idea is

to describe the nearby smooth fibers as the result of Lagrangian surgery, and understand the behaviour

of holomorphic discs under such surgeries sufficiently explicitly to produce an analytic structure on this

neighbourhood which can be seen to be compatible with the analytic structure on Ŷ0
π.

We expect that, in the presence of a potential function, similar ideas can be applied to associate

analytic charts to certain admissible non-compact Lagrangians arising as limits of smooth fibers. While

we do not develop the general theory in this chapter, Example 2.4 explains how one can use equivalences

in the Fukaya category (rather than surgery formulae) to produce the desired charts in the class of

examples we encounter.

A.2 Convergence of the wall-crossing

In this section, we verify that the assumptions of Lemma A.9 hold for the smooth fibers of the map

π : X0 → B introduced in Definition 4.4. Recall that the moment map µX of the S1-action descends to

a natural map fromB to R+; we write X0
λ = µ−1

X (λ)∩X0. If ǫ is the blowup parameter in the definition

of X, then all fibers of π contained in X0
λ are smooth whenever λ 6= ǫ; and the smooth fibers in X0

ǫ are

exactly those whose image under the blowdown map p : X0 → V 0 × C is disjoint from H × C.

Assumption A.2 follows immediately from Proposition 5.1 for all fibers of π whose images under p
are disjoint from H ×C, since these bound no holomorphic discs. In general, invariance of Floer coho-

mology shows that Assumption A.2 is independent of the choice of almost complex structure. Moreover,

the identification of the A∞ structure obtained by deforming by an element in H1(L; Λ+) with the de-

formed Floer theory for the associated local system in H1(L; 1 + Λ+) implies that Assumption A.2

holds for the Floer theory of L equipped with unitary local systems as well, since an analytic function

vanishing on 1 + Λ+ must vanish on all of UΛ. The same argument shows that the A∞ structure on

L equipped with a non-unitary local system is also undeformed, as long as the valuation is sufficiently

small. By Fukaya’s work on Family Floer cohomology [80], we conclude that the A∞ structure on a

Lagrangian fibre L′ sufficiently close to L is undeformed. Here, sufficiently close means that there is a

diffeomorphism preserving the tameness of J and moving L to L′; in compact subsets of the space of
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smooth fibres, there are uniform bounds on the size of such neighbourhoods, so we conclude that the

condition of having undeformed A∞ structure is open and closed among smooth fibres of π. Therefore,

all smooth fibres of π satisfy Assumption A.2.

We next choose Lagrangians {Lα}α∈A, labelled by the monomials in the equation defining the

hypersurface H . We require that Lα be contained in X0
ǫ , and that its projection to B lie in the chamber

Uα ⊂ B (see Definition 5.3).

Lemma A.13 Any smooth fiber L of π can be connected to some fiber Lα so that the wall-crossing map

defines an embedding

(12.9) H1(L;UΛ)→ H1(Lα; Λ
∗).

Proof. There are two cases to consider:

Case 1: Assume that the smooth fiber L lies in X0
ǫ . Then πǫ(L) lies outside of the amoeba of

H (cf. Equation (4.4)) and L is tautologically unobstructed (cf. Proposition 5.1). By Remark 5.4, the

component of the complement of the amoeba over which L lies determines a chamber Uα, and L can be

connected to Lα by a path of tautologically unobstructed fibers. The absence of holomorphic discs in

this region implies that there are no non-trivial walls, and hence that the map

(12.10) H1(L; Λ∗)→ H1(Lα; Λ
∗)

is given simply by a rescaling of the coefficients (see the discussion following Equation (12.2)). This

completes the argument in this case.

Case 2: Assume that L lies in X0
λ, with λ 6= ǫ. Choose a smooth fiber Lλα which is also contained

in X0
λ and whose projection lies in some chamber Uα, and consider the concatenation of a path from L

to Lλα via Lagrangians contained in X0
λ with a path from Lλα to Lα over the chamber Uα. Since the map

associated to the latter path is a simple rescaling as in the previous case, it suffices to show convergence

of the wall-crossing map for the path from L to Lλα.

To this end, recall from Proposition 5.1 that the simple holomorphic discs bounded by the La-

grangian torus fibers along the path all have the same area |λ− ǫ| and their boundaries all represent the

same homology class in H1(Lt,Z). Thus, the monomials zβ = Tω(β)z[∂β] associated to their homology

classes are all equal, and by Remark A.7 (2) the wall crossing map is of the form

(12.11) zi 7→ hi(zβ)zi,

where hi is a power series with coefficients in Q and leading order term equal to 1. Whenever we

evaluate at a point of H1(L;UΛ), the valuation of zβ is |λ − ǫ| > 0, and so hi(zβ) and its inverse both

converge and take values in UΛ. Thus the leading order term of (12.11) is identity, and the wall-crossing

map defines an embedding

H1(L;UΛ) →֒ H1(Lλα; Λ
∗).

Composing this map with the rescaling isomorphism induced by the flux homomorphism of a path over

Uα, we arrive at the desired result. �

Appendix B. The geometry of the reduced spaces
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In this section we study in more detail the symplectic geometry of the reduced spaces Xred,λ =
µ−1
X (λ)/S1 and prove Lemma 4.1.

Recall from §4.1 that the moment map for the S1-action on X is given by (4.1), and that the only

fixed points apart from Ṽ = µ−1
X (0) occur along H̃ , which lies in the level set µ−1

X (ǫ). Also recall that,

for all λ > 0, the natural projection to V (obtained by composing p : X → V × C with projection to

the first factor) yields a natural identification of Xred,λ with V .

We will exploit the toric structure of V to construct families of Lagrangian tori in Xred,λ equipped

with the reduced Kähler form ωred,λ. The two obstacles are (1) the lack of smoothness along H at

λ = ǫ, and (2) the lack of T n-invariance near H .

We start with the first issue, giving a formula for ωred,λ near H̃ and introducing an explicit family

of smoothings. Consider a small neighborhood of H̃ where, without loss of generality, we may assume

that χ ≡ 1.

Lemma B.1 Identifying Xred,λ with V as above, where χ ≡ 1 we have

(13.1) ωred,λ = ωV −max(0, ǫ − λ) c1(L) + dα0,λ,

where c1(L) = iFL/2π is the Chern form of the chosen Hermitian metric on L, and

(13.2) α0,λ =
min(λ, ǫ) dc(|f(x)|2)

2
(√

4πǫ|f(x)|2 + (λ− ǫ+ π|f(x)|2)2 + π|f(x)|2 + |λ− ǫ|
)
.

Proof. Recall that away from Ṽ we can write X as a conic bundle f(x) = yz. Where f 6= 0 and

χ ≡ 1, the restriction of ωǫ to µ−1
X (λ) is equal to

p∗V ωV + d

(
1

4
|y|2dc(log |y|2) + ǫ

4π

|z|2
1 + |z|2 d

c(log |z|2)
)
.

Since dc log |y|2 + dc log |z|2 = dc log |f |2, using (4.2) we can rewrite the 1-form in this expression as

either

1

4
|y|2dc(log |f |2) + ǫ− λ

4π
dc(log |z|2) or

ǫ

4π

|z|2
1 + |z|2 d

c(log |f |2) + λ− ǫ
4π

dc(log |y|2).

Now ddc log |y|2 = 0, whereas ddc log |z|2 = −4πp∗V c1(L), so we find that (still where f 6= 0 and

χ ≡ 1)

(ωǫ)|µ−1
X (λ) = p∗V

(
ωV + (λ− ǫ)c1(L)

)
+ d

(
dc(|f(x)|2)

4|z|2
)

(13.3)

= p∗V ωV + d

(
ǫ

4π

dc(|f(x)|2)
|y|2 + |f(x)|2

)
.

The first expression makes sense wherever z 6= 0, in particular for λ < ǫ; the second one makes sense

wherever y 6= 0, in particular for λ > ǫ. Solving (4.2) for |y|, we obtain

2π|y|2 =
√

4πǫ|f(x)|2 + (λ− ǫ+ π|f(x)|2)2 − π|f(x)|2 + (λ− ǫ),
and 2λ|z|2 =

√
4πǫ|f(x)|2 + (λ− ǫ+ π|f(x)|2)2 + π|f(x)|2 − (λ− ǫ).
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Substituting into (13.3) gives the desired expression. �

We can smooth the singularity of ωred,λ by considering the modified Kähler forms given near H by

ωsm,λ = ωV −max(0, ǫ − λ) c1(L) + dακ,λ

where κ > 0 is an arbitrarily small constant, and

(13.4) αt,λ =
min(λ, ǫ) dc(|f(x)|2)

2
(√

4πǫ|f(x)|2 + (λ− ǫ+ π|f(x)|2)2 + t2χ̃+ π|f(x)|2 + |λ− ǫ|
)
,

where χ̃ = χ̃(|f(x)|, λ) is a suitable cut-off function which equals 1 near H̃ and vanishes outside of the

region where χ ≡ 1. (We can also assume that χ̃ vanishes whenever λ is not close to ǫ.) We set ωsm,λ =
ωred,λ wherever χ 6= 1. Choosing κ small enough ensures that ωV − max(0, ǫ − λ) c1(L) + dαt,λ is

non-degenerate for all t ∈ [0, κ]; it is then a Kähler form, because αt,λ can be written as dc of some

function of |f(x)|.
The Kähler forms ωsm,λ are all smooth, coincide with ωred,λ away fromH for all λ, and everywhere

when λ is not very close to ǫ. Moreover, [ωsm,λ] = [ωred,λ] by construction, and the dependence of

ωsm,λ on λ is piecewise smooth.

Like ωred,λ, the Kähler form ωsm,λ is not invariant under the given torus action, but there exist toric

Kähler forms in the same cohomology class. Such a Kähler form ω′
V,λ can be constructed by averaging

ωsm,λ with respect to the standard T n-action on V :

(13.5) ω′
V,λ =

1

(2π)n

∫

g∈Tn

g∗ωsm,λ dg.

To see that the T n-orbits are Lagrangian with respect to ω′
V,λ, we note that the pullback of ωsm,λ to an

orbit represents the trivial cohomology class, since the classes [ωV ] and [H] are both trivial on a torus

fibre. The pullback of ω′
V,λ is therefore also trivial in cohomology, but since it is invariant, it must vanish

pointwise. This in turn implies that the T n-action not only preserves ω′
V,λ but in fact it is Hamiltonian.

We now state again Lemma 4.1 and give its proof:

Lemma B.2 There exists a family of homeomorphisms (φλ)λ∈R+ of V such that:

1. φλ preserves the toric divisor DV ⊂ V ;

2. the restriction of φλ to V 0 is a diffeomorphism for λ 6= ǫ, and a diffeomorphism outside of H for

λ = ǫ;

3. φλ intertwines the reduced Kähler form ωred,λ and the toric Kähler form ω′
V,λ;

4. φλ = id at every point whose T n-orbit is disjoint from the support of χ;

5. φλ depends on λ in a continuous manner, and smoothly except at λ = ǫ.

Proof. We proceed in two stages, obtaining φλ as the composition of two maps φsm,λ, taking ωred,λ
to ωsm,λ, and φavg,λ taking ωsm,λ to ω′

V,λ, each satisfying all the other conditions in the statement. The
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arguments are quite similar in both cases; we start with the construction of φavg,λ (Steps 1–2), then

proceed with φsm,λ (Steps 3–4).

Step 1. Let βλ = ωsm,λ − ω′
V,λ. Since ω′

V,λ is T n-invariant, for θ ∈ tn ≃ Rn we have

exp(θ)∗ωsm,λ − ωsm,λ = exp(θ)∗βλ − βλ =

∫ 1

0

d

dt
(exp(tθ)∗βλ) dt

= d

[∫ 1

0
exp(tθ)∗

(
ιθ#βλ

)
dt

]
.

Hence, averaging over all elements of T n, we see that the 1-form

a′λ =
1

(2π)n

∫

[−π,π]n

∫ 1

0
exp(tθ)∗

(
ιθ#βλ

)
dt dθ

satisfies ω′
V,λ − ωsm,λ = da′λ (i.e., da′λ = −βλ).

Let U ⊂ V be the orbit of the support of χ under the standard T n-action on Xred,λ
∼= V . Outside

of U , the Kähler forms ωsm,λ = ωred,λ are T n-invariant, and ωsm,λ and ω′
V,λ coincide (in fact they both

coincide with ωV ). Therefore, βλ is supported in U , and consequently so is a′λ.

Let ω′
t,λ = tω′

V,λ + (1 − t)ωsm,λ (for t ∈ [0, 1] these are Kähler forms since ω′
V,λ and ωsm,λ are

Kähler). Denote by vt the vector field such that ιvtω
′
t,λ = −a′λ and by ψt the flow generated by vt. Then

by Moser’s trick,

d

dt
(ψ∗

t ω
′
t,λ) = ψ∗

t

(
Lvtω

′
t,λ +

dω′
t,λ

dt

)
= ψ∗

t (dιvtω
′
t,λ + da′λ) = 0,

so ψ∗
tω

′
t,λ = ωsm,λ, and the time 1 flow ψ1 intertwines ωsm,λ and ω′

V,λ as desired. Moreover, because

a′λ is supported in U , outside of U we have ψt = id. However, it is not clear that the flow preserves the

toric divisors of V .

Step 2. To remedy the issue with the flow not preserving the toric divisors, we modify a′λ in a

neighborhood of DV . Let f ′λ,t be a family of C1 real-valued functions (with locally Lipschitz first

derivatives), smooth on V 0, with the following properties:

• the support of f ′λ,t is contained in the intersection of U with a small tubular neighborhood of DV ;

• at every point x ∈ DV , belonging to a toric stratum S ⊂ V ,

(13.6) the 1-form a′λ + df ′λ,t vanishes on (TxS)
⊥,

where the orthogonal is with respect to ω′
t,λ;

• f ′λ,t depends smoothly on t, and piecewise smoothly on λ.

We construct f ′λ,t by induction over toric strata of increasing dimension, successively constructing func-

tions f ′λ,t,≤k : V → R which satisfy (13.6) for all strata of dimension at most k and are smooth outside

of strata of dimension < k. We start by setting f ′λ,t,≤0 = 0, which satisfies (13.6) at the fixed points of

the torus action since they lie away from the support of a′λ.
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Assume f ′λ,t,≤k constructed, and consider a stratum S of dimension k+1. At each point x ∈ S, the

restriction of a′λ + df ′λ,t,≤k to (TxS)
⊥ is a real-valued linear form, vanishing whenever x belongs to a

lower-dimensional stratum, and smooth outside of strata of dimension < k. Let f ′0λ,t,S be a C1 function

on a neighborhood of S, smooth outside of the strata of dimension ≤ k, which vanishes on S and whose

derivative in the normal directions at each point of S satisfies (df ′0λ,t,S)|(TxS)⊥ = −(a′λ+df ′λ,t,≤k)|(TxS)⊥ .
(For instance, identify a neighborhood of S with a subset of its normal bundle in a manner compatible

with the toric structure, and take f ′0λ,t,S to be linear in the fibers).

Let χS be a cut-off function with values in [0, 1], defined and smooth outside of the strata of di-

mension ≤ k, equal to 1 at all points of a neighborhood of S which are much closer to S than to any

other (k + 1)-dimensional stratum, and with support disjoint from those of the corresponding cut-off

functions for all other (k + 1)-dimensional strata. Specifically, picking an auxiliary metric, we take χS
to be the product of a standard smooth cut-off function supported in a tubular neighborhood of S with

functions χS/Σ for all strata Σ with dimΣ ≥ k + 1 and dim(Σ ∩ S) ≤ k, chosen so that χS/Σ equals

1 except near Σ, where it depends on the ratio between distance to S and distance to Σ, equals 1 at all

points that lie much closer to S than to Σ, and vanishes at all points that lie closer to Σ than to S.

We note that near a lower-dimensional stratum S′, the norm of dχS is bounded by a constant over

distance to S′. We then set f ′λ,t,S = χSf
′0
λ,t,S . By construction, this function is smooth away from strata

of dimension ≤ k. Moreover, near a lower-dimensional stratum S′, f ′0λ,t,S is bounded by a constant

multiple of distance to S times distance to S′, so the regularity of f ′λ,t,S is indeed as desired.

By construction, f ′λ,t,≤k+1 = f ′λ,t,≤k +
∑

dimS=k+1 f
′
λ,t,S has the desired properties on all strata

of dimension ≤ k + 1. (Note that, since a′λ vanishes outside of U , so do the various functions we

construct.) Finally, we let f ′λ,t = f ′λ,t,≤n−1.

We now use Moser’s trick again, replacing a′λ by ã′t,λ = a′λ + df ′λ,t. Namely, denote by ṽt,λ the

vector field such that ιṽt,λω
′
t,λ = −ãt,λ. This vector field is locally Lipschitz continuous along DV , and

smooth on V 0; moreover, by construction it is supported in U and, by (13.6), tangent to each stratum

of DV . We thus obtain φavg,λ with all the desired properties by considering the time 1 flow generated

by ṽt,λ. (Note: because we have assumed that ωV defines a complete Kähler metric on V , it is easy to

check that even when V is noncompact the time 1 flow is well-defined.)

Step 3. We now turn to the construction of φsm,λ. We interpolate between ωred,λ and ωsm,λ via the

family of Kähler forms ωt,λ, t ∈ [0, κ], defined by

ωt,λ = ωV −max(0, ǫ− λ) c1(L) + dαt,λ

where χ ≡ 1 (where αt,λ is given by (13.4)) and ωt,λ = ωred,λ wherever χ 6= 1.

These Kähler forms are smooth whenever t > 0 or λ 6= ǫ. Let at,λ be the 1-form with support

contained in the region where χ ≡ 1, and defined by at,λ = dαt,λ/dt inside that region. By construction,

dωt,λ/dt = dat,λ. We use Moser’s trick again, and denote by vt,λ the vector field such that ιvt,λωt,λ =
−at,λ. This vector field vanishes outside of U , and is smooth except for t = 0 and λ = ǫ, in which

case it is singular along H . We will momentarily check that the flow of vt,λ is well-defined even for

λ = ǫ; the time κ flow then intertwines ωred,λ and ωsm,λ as desired, except it need not preserve the toric

divisors of V , an issue which we will address in Step 4 below.

Differentiating (13.4) with respect to t, we have

(13.7) at,λ =
t χ̃min(λ, ǫ) dc(|f(x)|2)

2
√
Φ
(√

Φ+ π|f(x)|2 + |λ− ǫ|
)2 ,
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where

(13.8) Φ = 4πǫ|f(x)|2 + (λ− ǫ+ π|f(x)|2)2 + t2χ̃.

Taking the dual vector field, we find that

(13.9) vt,λ =
t χ̃min(λ, ǫ)∇t,λ(|f(x)|2)

2
√
Φ
(√

Φ+ π|f(x)|2 + |λ− ǫ|
)2 ,

where ∇t,λ is the gradient with respect to the Kähler metric determined by ωt,λ.

We restrict our attention to the neighborhood of H̃ where χ̃ ≡ 1, since it is clear that vt,λ is well-

defined and smooth everywhere else. To estimate the norm of ∇t,λ(|f(x)|2), we differentiate (13.4) to

find that, in this region,

(13.10) dαt,λ =
2min(λ, ǫ)

(
π(ǫ+ λ)|f |2 + (λ− ǫ)2 + t2 + |λ− ǫ|

√
Φ
)
d|f | ∧ dc|f |

√
Φ
(√

Φ+ π|f |2 + |λ− ǫ|
)2

− 2πmin(λ, ǫ)|f |2 c1(L)(√
Φ+ π|f |2 + |λ− ǫ|

) .

(Here we have used the fact that ddc|f |2 = −4π|f |2c1(L) + 4d|f | ∧ dc|f |.)
When λ− ǫ and |f(x)|2 are much smaller than ǫ, we have Φ ∼ 4πǫ|f |2 +(λ− ǫ)2+ t2. Estimating

the various terms in (13.10), we find that the second term tends to zero near H , while the leading-order

part of the coefficient of d|f | ∧ dc|f | is bounded from below by ǫ/
√
Φ (and from above by 4ǫ/

√
Φ).

Hence:

(13.11) dαt,λ &
ǫ√
Φ
d|f | ∧ dc|f |.

(where & means that the inequality holds up to lower-order terms.) In more geometric terms, the Kähler

metrics induced by ωt,λ blow up in the normal direction to H , by an amount of the order of ǫ/
√
Φ, while

remaining well-behaved in the other directions.

This implies in turn that the norms of d(|f(x)|2) and ∇t,λ(|f(x)|2) with respect to the Kähler

metric ωt,λ are bounded by 2(
√
Φ/ǫ)1/2|f(x)|; and, more importantly, the norm of ∇t,λ(|f(x)|2) with

respect to a suitable fixed auxiliary metric is locally bounded by a constant multiple of (
√
Φ/ǫ)|f(x)|.

Plugging into (13.9), we conclude that the norm of vt,λ (again with respect to a smooth auxiliary metric)

is bounded by a constant multiple of t|f(x)|/Φ ≤ t|f(x)|/(t2 + 4πǫ|f(x)|2), and hence uniformly

bounded. Thus, even though vt,λ itself is not continuous at (t, λ, |f(x)|) = (0, ǫ, 0), its flow is well-

defined and continuous even for λ = ǫ, and depends continuously on λ.

Geometrically, for λ − ǫ sufficiently small, near H the leading-order term in vt,λ points radially

away from H , in the same direction as the gradient of |f(x)| with respect to ωV , and the time t flow

rescales the radial coordinate r = |f(x)| in a suitable manner. A complicated explicit formula for the

leading-order term of the rescaling can be obtained by comparing the Kähler areas of small discs in

the direction normal to H; for example, for λ = ǫ one finds that the time t flow maps points where

|f(x)| = r0 to points where |f(x)|2 ≈ 1
2r0(r0 + (r20 +

1
πǫt

2)1/2).



BLOWUPS AND MIRROR SYMMETRY FOR HYPERSURFACES 185

Step 4. We now modify the flow constructed in Step 3 in order to arrange for the toric divisors of V
to be preserved. We proceed as in Step 2, i.e. we replace the 1-forms at,λ used in Step 3 with at,λ+dft,λ
for carefully constructed real-valued functions ft,λ, smooth on V 0 except for (t, λ) = (0, ǫ), such that:

• the support of ft,λ is contained in the intersection of U with a small tubular neighborhood of DV ;

• at every point x ∈ DV , belonging to a toric stratum S ⊂ V ,

(13.12) the 1-form at,λ + dft,λ vanishes on (TxS)
⊥,

where the orthogonal is with respect to ωt,λ;

• where it is smooth, ft,λ depends smoothly on t, and piecewise smoothly on λ.

We construct ft,λ inductively to satisfy (13.12) on toric strata of increasing dimension, by exactly the

same method as in Step 2. The main new difficulty is that we need to control the behavior of ft,λ near

H for (t, λ) close to (0, ǫ).
We begin with a geometric digression. Fix a collection of smooth foliations FS of neighborhoods

of H ∩ S in V for all toric strata S ⊂ V , with the following properties:

• each leaf of FS intersects S transversely at a single point;

• |f | is constant on the leaves; in particular the leaves through H ∩ S are contained in H;

• given two strata S′ ⊂ S, the leaves of FS′ are unions of leaves of FS .

• given two strata S and Σ which intersect transversely along a stratum S′ = S ∩ Σ, the leaves of

FS through S′ foliate Σ.

The existence of FS with these properties follows from the transversality of H to all toric strata. Indeed,

near a k-dimensional stratum S′ and away from all lower-dimensional strata, consider a toric chart of

the form (C∗)k × Cn−k, and modify the first k coordinates (in a C∞ manner) so that, near H , |f |
only depends on these coordinates, without changing the remaining n − k coordinates. Each stratum

S ⊃ S′ is then defined by the vanishing of a certain subset of the last n − k coordinates; we choose

the leaves of FS to be given by letting these coordinates vary and fixing all others. (More globally, start

from a collection of toric charts identifying neighborhoods of strata with toric vector bundles over them,

and modify the bundle structures compatibly along H so that |f | is constant in the fibers and the strata

containing a given one remain given by distinguished sub-bundles.)

Henceforth, unless stated otherwise, all estimates (on distances, derivatives, etc.) are with respect

to a fixed reference metric (independent of t and λ), rather than the metric gt,λ determined by ωt,λ; and

the notation O(. . . ) means that an inequality holds up to a constant factor which is uniformly bounded

independently of t and λ over any compact subset of V .

Recall that ωt,λ blows up (by a factor of the order of ǫ/
√
Φ, cf. (13.11)) in the directions transverse

to the complex hyperplane field

Θ = Ker (d|f |) ∩Ker (dc|f |).

In what follows, we will often have better estimates on derivatives along Θ than on arbitrary derivatives.

We will call derivatives of order (ℓ,m), denoted by D(ℓ,m)(. . . ), the derivatives of order ℓ +m along
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ℓ vector fields tangent to Θ and m arbitrary vector fields. Since the hyperplane distribution Θ is not

integrable, estimates on higher derivatives in the direction of Θ only make sense up to lower-order

derivatives along the level sets of |f |; however, the curvature of Θ is O(|f |2), and the estimates we will

obtain below on derivatives of order (ℓ+2,m) will generally be no better than O(|f |2) times the bounds

on derivatives of order (ℓ,m+ 1).
Along a stratum S, denote by πSt,λ : TV|S → TS⊥ the orthogonal projection (with respect to ωt,λ).

Because S is transverse to H , and hence to Θ near H , the behavior of ωt,λ in the directions transverse

to Θ implies that, near H ∩ S, the ωt,λ-orthogonal to S becomes nearly tangent to Θ for (t, λ) close to

(0, ǫ). Specifically, near H ∩S, the maximum angle (with respect to a fixed reference metric) between a

unit vector in TS⊥ and Θ is O(ǫ−1
√
Φ). Thus, denoting by (πSt,λ)

‖ and (πSt,λ)
⊥ the components of πSt,λ

along Θ and its orthogonal for the reference metric, pointwise we have (πSt,λ)
⊥ = O(ǫ−1

√
Φ). This in

turns implies that ∣∣dc(|f |2) ◦ πSt,λ
∣∣ = O

(
ǫ−1|f |

√
Φ
)
.

Along the level sets of |f |, the coefficient of d|f | ∧ dc|f | in (13.10) remains constant, and so the ge-

ometric behavior of the ωt,λ-orthogonals TS⊥ can be controlled uniformly. In particular, the derivatives

along Θ of (πSt,λ)
⊥ are bounded by O(

√
Φ) to all orders. On the other hand, the variation of (13.10) in

the directions transverse to the level sets of |f | implies that each derivative in those directions worsens

the bounds by a factor of 1/
√
Φ. We conclude that D(ℓ,m)((πSt,λ)

⊥) = O(Φ(1−m)/2). Meanwhile, by a

similar reasoning, D(ℓ,m)((πSt,λ)
‖) = O(Φ−m/2).

These estimates on πSt,λ (and the inequality |f | ≤ (Φ/4πǫ)1/2) in turn imply that

D(ℓ,m)
(
dc(|f |2) ◦ πSt,λ

)
= O

(
Φ(2−m)/2

)
.

Thus, the 1-form at,λ from Step 3 satisfies

∣∣at,λ ◦ πSt,λ
∣∣ =

tχ̃min(λ, ǫ)
∣∣dc(|f |2) ◦ πSt,λ

∣∣

2
√
Φ
(√

Φ+ π|f |2 + |λ− ǫ|
)2 = O

(
t|f |
Φ

)
= O

(
t√
Φ

)

and D(ℓ,m)
(
at,λ ◦ πSt,λ

)
= O

(
t

Φ(m+1)/2

)
.

We now return to our main construction. Starting with fλ,t,≤0 = 0 as before, assume that we have

already constructed fλ,t,≤k, supported in a neighborhood of the intersection of H with the toric strata of

dimension ≤ k, in such a way that (13.12) holds for all strata of dimension ≤ k. We further require that,

away from all strata of dimension ≤ k− 1, resp. near a stratum S′ of dimension ≤ k− 1 (and assuming

S′ is the closest such stratum),

(13.13) D(ℓ,m)(ft,λ,≤k) = O

(
t

Φ(m+1)/2

)
, resp. O

(
t

Φ(m+1)/2
dist

min(0,2−ℓ−m)
S′

)
,

where distS′ is the distance to S′ with respect to the fixed reference metric.

Let S be a stratum of dimension k+1. The above estimates on the derivatives of πSt,λ, together with

(13.13), imply that at any point of S which lies away from the strata of dimension ≤ k − 1, resp. near
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(and closest to) such a stratum S′,

(13.14)

D(ℓ,m)
(
(at,λ + dft,λ,≤k) ◦ πSt,λ

)
= O

(
t

Φ(m+1)/2

)
, resp. O

(
t

Φ(m+1)/2
dist

min(0,1−ℓ−m)
S′

)
.

(Note that, while the quantity in (13.14) involves an additional derivative of ft,λ,≤k, the extra factor of

Φ−1/2 when this derivative is taken in a direction transverse to Θ is offset by the factor of Φ1/2 in the

estimates for the transverse component of πSt,λ.)

Near a stratum S′ ⊂ S with dimS′ ≤ k, condition (13.12) for ft,λ,≤k along S′ implies that (at,λ +
dft,λ,≤k)◦πSt,λ vanishes along S′. Since Θ is transverse to S′, (13.14) for (ℓ,m) = (1, 0) in turn implies

that, at all points of S which lie near S′,

(13.15)
∣∣(at,λ + dft,λ,≤k) ◦ πSt,λ

∣∣ = O
(t distS′√

Φ

)
,

Meanwhile, since the distance to the nearest k-dimensional stratum is no greater than the distance to the

nearest lower-dimensional stratum, the bounds in the second part of (13.14) also hold when dimS′ = k.

Hence, at any point of S which lies near (and closest) to a stratum S′ ⊂ S of dimension ≤ k,

(13.16) D(ℓ,m)
(
(at,λ + dft,λ,≤k) ◦ πSt,λ

)
= O

(
t

Φ(m+1)/2
dist1−ℓ−mS′

)
.

Define a function f0λ,t,S on a neighborhood of the given (k + 1)-dimensional stratum S, smooth

outside of the leaves of FS through strata of dimension ≤ k − 1 (and H if (λ, t) = (ǫ, 0)), which

vanishes on S and whose derivative at each point of S satisfies

(13.17) df0λ,t,S = −(at,λ + dfλ,t,≤k) ◦ πSt,λ.

Specifically, we identify the leaves of FS with open subsets in the fibers of the normal bundle to S, and

take f0λ,t,S to be linear in the fibers. We then define fλ,t,S = χSf
0
λ,t,S , where χS is the same cut-off

function as in Step 2.

By construction, f0t,λ,S = O(t distS/
√
Φ). Moreover, using (13.15), along the leaf of FS through a

point x ∈ S which lies near a lower-dimensional stratum S′ we have f0t,λ,S = O(t distS′(x) distS/
√
Φ).

The derivative of f0λ,t,S along the leaves ofFS is the constant extension of (13.17) alongFS ; whereas

its derivative in the directions transverse to FS is a cross-term which grows linearly with distance to S
and involves the dependence of (13.17) on the point of S. Moreover, the leaves of FS are tangent to the

level sets of |f | near H , and hence nearly tangent to Θ: the maximum angle between vectors in TFS
and Θ is O(|f |). It then follows from (13.14) that, away from (k − 1)-dimensional strata,

(13.18) D(ℓ,m)(f0λ,t,S) = O

(
t

Φ(m+1)/2

)
.

Meanwhile, along the leaf of FS through a point x ∈ S which lies near (and closest to) a stratum S′ ⊂ S
with dimS′ ≤ k, (13.16) implies that

D(ℓ,m)(f0λ,t,S) = O

(
t

Φ(m+1)/2

(
distS′(x)2−ℓ−m + distS′(x)1−ℓ−m distS(·)

))
.
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The leaf of FS through x locally stays close to a leaf through S′, which by construction is contained in

some other stratum of DV . In particular, as soon as the distance to S is sufficiently large compared to

distS′(x), points on the leaf through x lie closer to some other stratum Σ of dimension ≥ k+1 (and not

containing S) than to S, and so the cut-off function χS vanishes identically. Thus, over the support of

χS , distS′(·) and distS′(x) are within bounded factors of each other. Since distS ≤ distS′ , we conclude

that, at all points of the support of χS which lie near (and closest to) S′,

(13.19) D(ℓ,m)(f0λ,t,S) = O

(
t

Φ(m+1)/2
dist2−ℓ−mS′

)
.

Now we observe that the derivatives of the cut-off function χS are O(1) away from strata of dimen-

sion ≤ k, and near a stratum S′ ⊂ S of dimension ≤ k the derivatives of order r are O(1/distrS′). Thus,

(13.18) and (13.19) imply that away from k-dimensional strata, resp. near (and closest to) S′ ⊂ S with

dimS′ ≤ k,

(13.20) D(ℓ,m)(fλ,t,S) = O

(
t

Φ(m+1)/2

)
, resp. O

(
t

Φ(m+1)/2
dist2−ℓ−mS′

)
.

We now set

ft,λ,≤k+1 = ft,λ,≤k +
∑

dimS=k+1

ft,λ,S.

By construction, ft,λ,≤k+1 is supported in a neighborhood of the intersection of H with the strata of

dimension at most k + 1, and satisfies (13.12) for all strata of dimension ≤ k + 1. Indeed, by (13.20),

dft,λ,S vanishes along strata of dimension ≤ k, so (13.12) continues to hold for those; whereas, over the

interior of the stratum S, dft,λ,S = df0t,λ,S , and the contributions from other (k + 1)-dimensional strata

vanish.

Moreover, ft,λ,≤k+1 satisfies the estimate (13.13) (with k+1 instead of k), as needed for the induc-

tion to proceed. Indeed, this follows immediately from the estimates (13.13) for ft,λ,≤k (note that the

second estimate also holds near k-dimensional strata, since the distance to the nearest k-dimensional

stratum is no greater than that to the nearest lower-dimensional stratum), and (13.20) for ft,λ,S .

Thus, we can indeed carry out the construction of ft,λ,≤k with the desired properties by induction

on k. Finally, we let ft,λ = ft,λ,≤n−1.

As a consequence of the estimates (13.20) on individual terms, ft,λ is C1 with locally Lipschitz first

derivatives, and smooth on V 0, except along H for (t, λ) = (0, ǫ). By construction, it is supported in

the intersection of U with a neighborhood of DV , and satisfies (13.12) for all toric strata.

By (13.13), |dft,λ| = O(t/Φ), while |dft,λ|Θ| = O(t/
√
Φ).

Because the Kähler form ωt,λ blows up like ǫ/
√
Φ in the directions transverse to Θ, we conclude

that the Hamiltonian vector field of ft,λ with respect to ωt,λ is bounded by O(t/
√
Φ) (again with respect

to the fixed reference metric), hence locally uniformly bounded. (Recall that
√
Φ ≥ t wherever χ̃ ≡ 1,

while the other terms are bounded below wherever χ̃ < 1.) Moreover, the regularity of ft,λ implies that

this vector field is locally Lipschitz continuous, and smooth on V 0, except along H for (t, λ) = (0, ǫ).
Combining this with the outcome of Step 3, we find that the vector field ṽt,λ defined by ιṽt,λω

′
t,λ =

−at,λ−dft,λ is smooth on V 0 (and locally Lipschitz continuous along DV ), except along H for (t, λ) =
(0, ǫ), and its norm (again with respect to a smooth reference metric) is bounded by O(t/

√
Φ), hence

locally uniformly bounded. Thus, even though ṽt,λ is not continuous along H for (t, λ) = (0, ǫ), its
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flow is well-defined and continuous even for λ = ǫ. We then obtain φsm,λ with all the desired properties

by considering the time κ flow generated by ṽt,λ. �
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Hodge theoretic aspects of mirror symme-
try.

1 Hodge theory and Mirror Symmetry

This chapter is a first in a series aiming to develop a general procedure associating a 2-dimensional

cohomological field theory in the sense [155] (CohFT in short) to a certain structure in derived algebraic

geometry. More precisely, for any Calabi-Yau A∞-category satisfying appropriate finiteness conditions

(smoothness and compactness), and such that a noncommutative analog of the Hodge ⇒ de Rham

spectral sequence collapses, we associate an infinite-dimensional family of CohFTs. The additional

parameters needed to specify the CohFT are of a purely cohomological nature. Conjecturally, our

procedure applied to the Fukaya category should give (higher genus) Gromov-Witten invariants of the

underlying symplectic manifold.

This program was first outlined by the second author in several talks given in 2003-2004, and some

aspects of it were later developed in depth by K.Costello [62], [60], [63], [61]. The whole picture turns

out to be very intricate, and in the process of writing we realized that we have to address a large variety

of problems. In this installment we do not discuss the general plan of our approach but rather focus on

those features ofA∞ or dg categories that can be captured by Hodge theoretic constructions. We propose

a formalism that starts with Homological Mirror Symmetry and extrapolates a geometric picture for the

requisite categories that makes them amenable to study via old and new Hodge theory. Our hope is that

this geometric treatment will provide new invariants and will expand the scope of possible applications

in symplectic geometry and algebraic geometry.

Mirror symmetry was introduced in physics as a special duality between twoN = 2 super conformal

field theories. Traditionally a N = 2 super conformal field theory is constructed as a quantization of a

non-linear σ-model with target a compact Calabi-Yau manifold equipped with a Ricci flat Kähler metric

and a closed 2-form - the so called B-field. Two Calabi-Yau manifolds X and Y form a mirror pair

X|Y if the associated N = 2 super conformal field theories are mirror dual to each other [65].

Homological Mirror Symmetry was introduced in 1994 by the second author for the case of Calabi-
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Yau manifolds but today the realm of its applicability is much broader. In particular many of our consid-

erations in the present work are governed by an analogue of Homological Mirror Symmetry for geome-

tries with potentials. We study the effect of such mirror symmetry on the associated categories of D-

branes and especially on the associated non-commutative Hodge structures on homological invariants,

i.e. on the Hochschild and cyclic homology and cohomology of such categories. We study mirror pairs

consisting of a compact manifold on one side, and of a Landau-Ginzburg model with a proper potential

on a non-compact manifold having c1 = 0 on the other. We formulate the mirror symmetry conjecture

on the Hodge theoretic level in both directions. That is, we compare the non-commutative Hodge struc-

tures associated with a compact complex manifold and a mirror holomorphic Landau-Ginzburg model,

and also the non-commutative Hodge structures associated with a compact complex manifold with a

chosen smooth anticanonical divisor and with the mirror symplectic Landau-Ginzburg model. This pic-

ture is clearly non-symmetric and has to be generalized. In order to completely understand the Hodge

theoretic aspect of mirror symmetry, one will have to allow for non-trivial potentials on both sides of

the duality and include the novel toric dualities between formal Landau-Ginzburg models of Clarke [57]

and the new smooth variations of non-commutative Hodge structures of Calabi-Yau type that we attach

to anticanonical Q-divisors in section 4.3. We plan to return to such a generalization in a future work.

Due to its foundational nature the chapter comes out somewhat long winded and technical for which

we apologize. It is organized in three major parts:

The first part introduces and develops the abstract theory of non-commutative (nc)Hodge structures.

This theory is a variant of the formalism of semi-infinite Hodge structures that was introduced by Baran-

nikov [21], [22], [23]. We discuss the general theory of nc-Hodge structures in the abstract and analyze

the various ways in which the Betti, de Rham and Hodge filtration data can be specified. In particular

we compare nc and ordinary Hodge theory and explain how nc-Hodge theory fits within the setup of

categorical non-commutative geometry. We also pay special attention to the nc-aspect of Hodge theory

and its interaction with the classification of irregular connections on the line via topological data. One

of the most useful technical results in this part is the gluing Theorem 2.35 which allows us to assemble

nc-Hodge structures out of some simple geometric ingredients. This theorem is used later in the chapter

for constructing nc-Hodge structures attached to geometries with a potential.

The second part explains how symplectic and complex geometry give rise to nc-Hodge structures

and how these structures can be viewed as interesting invariants of Gromov-Witten theory, projective

geometry and the theory of algebraic cycles. In particular we analyze the Betti part of the nc-Hodge

theory of a projective space (viewed as a symplectic manifold) and use this analysis to propose a gen-

eral conjecture for the integral structure on the cohomology of the Fukaya category of a general compact

symplectic manifold. The formula for the integral structure uses only genus zero Gromov-Witten invari-

ants and characteristic classes of the tangent bundle. Our conjecture is in complete agreement with the

recent work of Iritani [123] who made a similar proposal based on mirror symmetry for toric Fano orb-

ifolds. We also discuss in detail the origin of the Stokes data for holomorphic geometries with potentials

and investigate the possible categorical incarnations of this data.

In the third part we study nc-Hodge structures and their variations under the Calabi-Yau condition.

We extend and generalize the standard treatment of the deformation theory of Calabi-Yau spaces in order

to get a theory which works equally well in the nc-context and to be able to properly define the canon-

ical coordinates in Homological Mirror Symmetry. We approach the deformation-obstruction problem

both algebraically and by Hodge theoretic means and we obtain unobstructedness results, generalized
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pre Frobenius structures and some interesting geometric properties of period domains for nc-Hodge

structure. We also study global and infinitesimal deformations and describe different constructions of

Betti and de Rham nc-Hodge data for ordinary geometry, relative geometry, geometry with potentials

and abstract nc-geometry.

2 Non-commutative Hodge structures

In this section we will discuss the notion of a pure non-commutative (nc) Hodge structure. The

nc-Hodge structures are analogues of the classical notion of a pure Hodge structure on a complex

vector space. Both the nc-Hodge structures discussed presently and Simpson’s non-abelian Hodge

structures [224] generalize classical Hodge theory. In Simpson’s theory, one allows for non-linearity in

the substrate of the Hodge structure: the non-abelian Hodge structures of [224] are given by imposing

Hodge and weight filtrations on non-linear topological invariants of a Kähler space, e.g. on cohomology

with non-abelian coefficients, or on the homotopy type. In contrast the nc-Hodge structures discussed

in this chapter consist of a novel filtration-type data (the twistor structure of [225], [113], [207]) which

are still specified on a vector space, e.g. on the periodic cyclic homology of an algebra.

Similarly to ordinary Hodge theory nc-Hodge structures arise naturally on the de Rham cohomology

of non-commutative spaces of categorical origin.

2.1 Hodge structures

We will give several different descriptions of a nc-Hodge structure in terms of local data. We

begin with the notion of a rational and unpolarized nc-Hodge structures, ignoring for the time being the

existence of polarizations and integral lattices.

2.1.1 Notation The nc-Hodge structures will be described in terms of geometric data on the punctured

complex line, so we fix once and for all a coordinate u on C and the compactification C ⊂ P1. We will

write C[[u]] for the algebra of formal power series in u, and C((u)) for the field of formal Laurent

series in u. Similarly, we will write C{u} for the algebra of power series in u having positive radius

of convergence, and C{u}[u−1] for the field of meromorphic Laurent series in u with a pole at most at

u = 0.

2.1.2 Meromorphic connections on the complex line We will need some standard notions and facts

related to meromorphic connections on Riemann surfaces. We briefly recall those next. More details

can be found in e.g. [205, chapter II].
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Let M be a finite dimensional vector space over C{u}[u−1], and let ∇ be a meromorphic connec-

tion on M . Explicitly∇ is given by a C-linear map∇ d
du

: M →M which satisfies the Leibniz rule for

multiplication by elements in C{u}[u−1]. A holomorphic extension of M is a free finitely generated

C{u}-submodule H ⊂M , such that

H ⊗C{u} C{u}[u−1] = M .

Traditionally (see e.g. [205, section 0.8]) a holomorphic extension is called a lattice. We will avoid this

classical terminology since it may lead to confusion with the integral lattice structures that we need.

As usual the data (M ,∇) or (H ,∇) should be viewed as local models for geometric data on a

Riemann surface: (M ,∇) is the local model of a germ of a meromorphic bundle with connection on a

Riemann surface, and (H ,∇) is the local model of a holomorphic bundle with meromorphic connection

on a Riemann surface.

Suppose (M ,∇) is a meromorphic bundle with connection over C{u}[u−1] and let

H ⊂ M be a holomorphic extension. We say that H is logarithmic with respect to ∇ if ∇(H ) ⊂
H

du
u . We say that (M ,∇) has at most a regular singularity at 0 if we can find a holomorphic exten-

sion H ⊂M which is logarithmic with respect to ∇.

Remark 2.1 The Riemann-Hilbert correspondence implies (see e.g. [205, II.3.7]) that the functor of

taking the germ at 0 ∈ P1:




finite rank algebraic vector bundles with

connections on A1 − {0} with a regular

singularity at∞


 G0 //

(
finite dimensional C{u}[u−1]-
vector spaces with meromorphic

connections

)

is an equivalence of categories. For future reference we choose once and for all an inverse B0 of G0.

We will call B0 the algebraization functor or the Birkhoff extension functor.

Suppose H is a holomorphic bundle over C{u} equipped with a meromorphic connection ∇. Let

M = H ⊗C{u} C{u}[u−1] and let (M,∇) = B0(M ,∇) be the corresponding Birkhoff extension.

The algebraic bundle M on A1 − {0} admits a natural extension to a holomorphic bundle H on A1:

on a small punctured disc centered at 0 ∈ A1, the bundle M is analytically isomorphic to M , and so

H gives us an extension to the full disc. In particular G0 and B0 can be promoted to a pair of inverse

equivalences




finite rank algebraic vector bundles on A1

equipped with a meromorphic connection

with poles at most at 0 and∞, and a reg-

ular singularity at∞




G0 //
(

finite rank free C{u}-modules

equipped with a meromorphic

connection

)

B0
oo

which we will denote again by G0 and B0.
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2.1.3 Stokes data Let (H ,∇) be a holomorphic bundle with meromorphic connection over C{u}.
We will need the Deligne-Malgrange description of the associated meromorphic connection (M ,∇) via

a filtered sheaf on the circle. We briefly recall this description next. More details can be found in [171]

and [20]. Let (M,∇) := B0((M ,∇)) be the Birkhoff extension of (M ,∇) to P1. Consider the circle

S1 := C×/R×
+. The sheaf of local ∇-horizontal sections of Man on C× is a locally constant sheaf on

C×, which by contractability of R×
+ induces a locally constant sheaf S of C-vector spaces on S1.

The sheaf S is equipped with a natural local filtration by subsheaves {S≤ω}ω∈Del, where

(i) Del is the complex local system on S1 for which for every open U ⊂ S1 the space of sections

Del(U) is defined to be the space of all holomorphic one forms ω on the sector

Sec(U) :=
{
reiϕ

∣∣ r > 0, ϕ ∈ U
}

which are of the form

ω =



∑

a∈Q
a<−1

cau
a


 du,

where at most finitely many ca 6= 0 and the branches ua are chosen arbitrarily.

Note that the germs of sections of Del are naturally ordered: if ω′, ω′′ ∈ Del(U), ϕ ∈ U , and if

ω′ − ω′′ = cau
a +

(
higher

order terms

)
,

then one sets

ω′ <ϕ ω
′′ ⇔ Re

(
cae

iϕ(a+1)

a+ 1

)
< 0.

(ii) For every ϕ ∈ S1 and every ω ∈ Delϕ the stalk

(S≤ω)ϕ ⊂ Sϕ

is defined to be the subspace

(S≤ω)ϕ :=





s ∈ Sϕ = Γ
(
R×
+e

iϕ,Man
)∇

∣∣∣∣∣∣∣∣∣∣∣∣

e−
∫
ωs has moderate growth in

the direction ϕ, i.e.

∥∥∥e−
∫
ωs
∥∥∥
|R×

+e
iϕ

= O
(
r−N

)
,

when r→ 0, N ≫ 0.





Here ‖ • ‖ is the Hermitian norm of a section of M computed in some (any) meromorphic trivi-

alization of Man near u = 0.
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Definition 2.2 The filtration we just defined is the Deligne-Malgrange-Stokes filtration, and the Del-

filtered sheaf S is called the Stokes structure associated to (M ,∇).

Remark 2.3 The Deligne-Malgrange-Stokes filtration satisfies the following property. First of all, there

exists a covariantly local system of finite sets Del(M ,∇) ⊂ Del canonically associated with (M ,∇)
such that the filtration by all of Del is determined by a filtration by all Del(M ,∇)(U) and all con-

secutive factors are non-trivial at all points of S1 except finitely many (called the directions of the

Stokes rays). Outside the Stokes rays the set DelM ,∇(φ) is totally ordered. It is easy to see that when

we cross a Stokes ray then the order changes by flipping the order on several disjoint intervals (e.g.

{1, 2, 3, 4, 5, 6} → {2, 1, 3, 6, 5, 4}). Moreover, on the subquotients corresponding to these intervals,

two filtrations coming from the left and from the right of the anti Stokes ray are opposed to each other.

This implies that the graded pieces with respect to the Deligne-Malgrange-Stokes filtration are locally

constant sytems of vector spaces on the total space of stalks of the sheaf Del(M ,∇) (which is a disjoint

union of finite coverings of S1).

Remark 2.4 A fundamental theorem of Deligne and Malgrange [171, Theorem 4.2], [20, Theorem 4.7.3]

asserts that the functor (M ,∇) 7→
(
S, {S≤ω}ω∈Del

)
is an equivalence between the category of mero-

morphic connections over C{u}[u−1] and the category of Del-filtered local systems on S1 satisfying the

conditions described in Remark 2.3. We will use this equivalence to define the Betti part of a nc-Hodge

structure.

2.1.4 The definition of a nc-Hodge structure After these preliminaries we are now ready to define

nc-Hodge structures.

Definition 2.5 A rational pure nc-Hodge structure consists of the data (H,EB ,
∼−→), where

• H is a Z/2-graded algebraic vector bundle on A1.

• EB is a local system of finite dimensional Z/2-graded Q-vector spaces on

A1 − {0}.

•
∼−→ is an analytic isomorphism of holomorphic vector bundles on A1 − {0}:

∼−→: EB ⊗OA1−{0}

∼=−→ H|A1−{0}.

Note: The isomorphism
∼−→ induces a natural flat holomorphic connection ∇ on H|A1−{0}.

These data have to satisfy the following axioms:
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(nc-filtration axiom) ∇ is a meromorphic connection on H with a pole of order ≤ 2 at u = 0 and a

regular singularity at∞. More precisely, there exist:

• a holomorphic frame of H near u = 0 in which

∇ = d+


∑

k≥−2

Aku
k


 du

with Ak ∈ Matr×r(C), r = rank H .

• a meromorphic frame of H near u =∞ in which

∇ = d+


∑

k≥−1

Bku
−k


 d(u−1)

and Bk ∈ Matr×r(C).

(Q-structure axiom) The Q-structure EB on (H,∇) is compatible with Stokes data. More precisely,

let
(
S, {S≤ω}ω∈Del

)
be the Stokes structure corresponding to the germ

(H ,∇) := G0(H,∇), and let SB ⊂ S be the Q-structure on S induced from EB via the

isomorphism
∼−→. We require that the Deligne-Malgrange-Stokes filtration on S is defined over

Q, i.e.

(S≤ω ∩ SB)⊗Q C = S≤ω

for all local sections ω ∈ Del.

(opposedness axiom) The Q-structure SB induces a real structure on S and hence a complex con-

jugation τ : S→ S. Let Ĥ be the holomorphic bundle on P1 obtained as the gluing of Halg
|{|u|≤1}

and
(
γ∗Halg

)
|{|u|≥1}

via τ , where where γ : P1 → P1 is the real structure on P1 which fixes the

unit circle, i.e. γ(u) := 1/ū. Then we require that Ĥ be holomorphically trivial, i.e. Ĥ ∼= O⊕r
P1 .

A morphism f : (H1,EB,1,
∼−→1) → (H2,EB,2,

∼−→2) of nc-Hodge structures is a pair

f = (f, fB), where f : H1 → H2, is an algebraic map of vector bundles which intertwines the connec-

tions, and fB : EB,1 → EB,2 is a map of Q-local systems, such that f◦ ∼−→1

=
∼−→2 ◦(fB ⊗ idO). We will write (⊕Q− ncHS) for the category of pure nc-Hodge structures.

Remark 2.6 The meromorphic connection (M,∇) where M = H ⊗C[u] C[u, u
−1] can be thought of

as the de Rham data of the nc-Hodge structure, the local system SB of rational vector spaces over S1

endowed with the rational Stokes filtration (see Q-structure axiom) can be thought of as the Betti data,

and the holomorphic extension H of M can be thought of as the analogue of the Hodge filtration.
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2.1.5 Variations of nc-Hodge structures One can also define variations of nc-Hodge structures:

Definition 2.7 Let S be a complex manifold. A variation of pure nc-Hodge structures over S is a

triple (H,EB ,
∼−→), where

• H is a holomorphic Z/2-graded vector bundle on A1×S which is algebraic in the A1-direction.

• EB is a local system of Z/2-graded Q-vector spaces on (A1 − {0}) × S.

•
∼−→ is an analytic isomorphism of holomorphic vector bundles

∼−→: EB ⊗O(A1−{0})×S

∼=→ H|(A1−{0})×S .

Let ∇ be the induced meromorphic connection on H . The data (H,EB ,
∼−→) should satisfy:

(nc-filtration axiom) The connection ∇ has a regular singularity along {∞}×S and Poincaré rank

≤ 1 along {0} × S, i.e.

u2 · ∇ ∂
∂u

: H → H

is a holomorphic differential operator on H of order ≤ 1.

(Griffiths transversality axiom) For every locally defined vector field ξ ∈ TS we have that

u · ∇ξ : H → H,

is a holomorphic differential operator on H of order ≤ 1.

(Q-structure axiom) The Stokes structure on the local system S on S1 × S is well defined, i.e. the

steps in the Deligne-Malgrange-Stokes filtration on S are sheaves on S1 × S. Furthermore the

Q-structure EB is compatible with the Stokes data as in Definition 2.5.

(opposedness axiom) The relative version of the gluing construction for nc-Hodge structures gives

a globally defined complex vector bundle Ĥ on P1 × S, which is holomorphically trivial in the

P1 direction. Moreover, with respect to the extension Ĥ the connection ∇ is meromorphic with

Poincaré rank one along ({0} × S) ∪ ({∞} × S).

2.1.6 Relation to other definitions Various special cases and partial versions of our notion of a nc-

Hodge structure have been studied before in slightly different but related setups. We list a few of the

relevant notions and references without going into detailed comparisons:

• A version of (Z-graded) nc-Hodge structures appears in the fundamental work of K.Saito (see

[208], [210], [209] and references therein) on the Hodge theoretic invariants of quasi-homogeneous

hypersurface singularities under the name weight system.
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• A version of the notion of a variation of (complex) nc-Hodge structure appears in the work of

Cecotti-Vafa in Conformal Field Theory [48], [49], [50], [29] under the name tt∗-geometry.

• Various versions of the notion of a (complex,polarized) nc-Hodge structure appear in algebraic

geometry and non-abelian Hodge theory in the works of Simpson [224], [225] and T.Mochizuki

[183], [184], [185], [186] under the names of (tame or wild) harmonic bundle or pure twistor

structure, and in the work of Sabbah [207] under the name integrable pure twistor D-module.

• The analytic germ of a (complex) variation of nc-Hodge structures appears in mirror symmetry

in the work of Barannikov [21], [22], [23] and Barannikov and the second author [24] under the

name semi-infinite Hodge structure. The integral structures on semi-infinite Hodge structure

were recently introduced and studied in the work of Iritani [123].

• A version of the notion of a (real) nc-Hodge structure appears in singularity theory in the work

of Hertling [113], [114] and Hertling-Sevenchek [115] under the name TER structure. Hertling

and Sevenchek also consider polarized and mixed nc-Hodge structures. Those appear under the

names TERP structure and mixed TERP structure respectively. In particular in [115] Hertling

and Sevenchek study the degenerations of of TERP structures and prove a version of Schmid’s

nilpotent orbit theorem which gives rise to the notion of a limiting mixed TERP structure. De-

generations of variants of nc-Hodge structures, as well as limiting mixed nc-Hodge structures

appear also in the works of Sabbah [206] and S.Szabo [229].

2.1.7 Relation to usual Hodge theory Recall (see e.g. [67]) that a pure rational Hodge structure of

weight w is a triple (V, F •V, VQ) where:

• V is a complex vector space,

• VQ ⊂ V is a Q-subspace such that V = VQ ⊗Q C, and

• F •V is a Hodge filtration of weight w on V , i.e F •V is a decreasing finite exhaustive filtration

by complex subspaces which satisfies F pV ⊕ Fw+1−pV = V , where the complex conjugation

on V is the one given by the real structure VR = VQ ⊗ R ⊂ V .

A pure Hodge structure is a direct sum of pure Hodge structures of various weights, and a morphism of

pure Hodge structures is a linear map of complex vector spaces, which maps the rational structures into

each other and is strictly compatible with the filtrations. We will write (⊕Q−HS) for the category

of pure rational Hodge structures. It is well known [67] that (⊕Q−HS) is an abelian Q-linear tensor

category. For every w ∈ Z we have a ⊗-invertible object in (⊕Q−HS) of pure weight 2w: the Tate

Hodge structure Q(w) given by Q(w) := (C, F •,Q), where F i = C for i ≤ w and F i = {0} for

i > w.

It turns out that pure Hodge structures can be viewed as nc-Hodge structures. This is achieved

through a version of the Rees module construction (see e.g. [224]) which converts a filtered vector
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space into a bundle over the affine line A1. Specifically, given a pure Hodge structure (V, F •V, VQ) of

weight w we consider the rank one meromorphic bundle with connection

T w
2
:=

(
C{u}[u−1], d − w

2
· du
u

)

and we set

• H := H wmod 2 :=
∑

i u
−iF iV {u} viewed as a C{u}-submodule in C{u}[u−1]⊗CV . Clearly,

this submodule is preserved by the operator ∇u d
du

for the connection ∇ :=
(
d− w

2 · duu
)
⊗ idV ,

i.e. (H ,∇) is a logarithmic holomorphic extension of the meromorphic bundle with connection

T w
2
⊗C V .

Note: Consider the algebraization (H,∇) = B0 (H ,∇) of (H ,∇). The fiber H1 :=
H/(u − 1)H of H at 1 ∈ A1 is canonically identified with V . By definition the connection

∇ on H has monodromy (−1)w idV and so preserves any rational subspace in V .

• EB := E wmod 2
B - the Q-local system on A1 − {0} defined as the subsheaf EB ⊂ H consisting of

sections whose value at 1 is in VQ ⊂ V = H/(u−1)H . In other words EB is the locally constant

sheaf on A1 − {0} with fiber VQ and monodromy (−1)w idVQ .

•
∼−→ is the isomorphism of complex local systems, corresponding to the embedding EB ⊂ H .

Remark 2.8 On every simply connected open (in the analytic topology) subset

U ⊂ A1 − {0} the bundle with connection T w
2

has a horizontal section uw/2. In particular on such

opens we have H|U =
∑

i u
w/2u−iF i[u].

The data
(
H,EB ,

∼−→
)

satisfy tautologically the (Q-structure axiom) and the (opposedness ax-

iom) from Definition 2.5. Indeed, the (Q-structure axiom) is satisfied since by definition ∇ has a

regular singularity at 0 and so S≤ω = S or 0 for all ω. The (opposedness axiom) is satisfied as it

is equivalent in the case of regular singularities to the oposedness property in the definition of the usual

Hodge structures.

Thus, the assignment (V, F •V, VQ)→
(
H,EB ,

∼−→
)

gives a functor

n : (⊕Q−HS)→ (⊕Q− ncHS)

which by definition factors through the orbit category (see e.g. [149] for the definition of an orbit

category)

π : (⊕Q−HS)→ (⊕Q−HS)/(• ⊗Q(1)),

i.e we have N = n ◦ π for a functor

N : (⊕Q−HS)/(• ⊗Q(1))→ (⊕Q− ncHS).
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The proof of the following statement is an immediate consequence from the definition.

Lemma 2.9 The functor N is fully faithful and its essential image consists of all nc-Hodge structures

that have regular singularities and monodromy = id on H0 and = − id on H1.

Remark 2.10 It is straightforward to check that the functor N can also be defined in families and

embeds the category of variations of Hodge structures (modulo the Tate twist) into the category of

variations of nc-Hodge structures.

2.1.8 nc-Hodge structures of exponential type As we saw in section 2.1.7 the usual Hodge struc-

tures give rise to special nc-Hodge structures with regular singularities. The nc-Hodge structures with

regular singularities are also important because they can serve as building blocks of general nc-Hodge

structures. Let (H,EB ,
∼−→) be a nc-Hodge structure, let (H ,∇) = G0((H,∇)) be the germ of (H,∇)

at zero, and assume that A−2 6= 0, i.e. ∇ has a second order pole. According to Turrittin-Levelt formal

decomposition theorem (see e.g. [170], [20], [205, II.5.7 and II.5.9]) we can find a finite base change

pN : C → C, pN (t) := tN = u, so that p∗N(H ,∇)[t−1] is formally isomorphic to a direct sum

of regular singular connections on meromorphic bundles multiplied by exponents of Laurent polyno-

mials. More precisely we can find polynomial tails gi(t) ∈ C[t−1], C{t}[t−1]-vector spaces Ri and

meromorphic connections

(∇i) d
dt

: Ri → Ri,

each with at most regular singularity at 0, so that we have an isomorphism of formal meromorphic

connections over C((t)):

Ψ : p∗N(H ,∇)
⊗

C{t}[t−1]

C((t))
∼=−→




m⊕

i=1

Egi
⊗

C{t}[t−1]

(Ri,∇i)


 ⊗

C{t}[t−1]

C((t)).

Here Ef denotes the rank one holomorphic bundle with meromorphic connection

(C{t}, d − df), and (Ri,∇i) denote meromorphic bundles with connections having regular singular-

ities.

Remark 2.11 The bundle Ef has a non-vanishing horizontal section, namely ef . In particular the

multivalued flat sections of Egi⊗(Ri,∇i) are given by multiplying multivalued flat sections of (Ri,∇i)
by egi .

In the examples coming from Mirror Symmetry that we are interested in, the base change pN is not

needed for the decomposition to work. In this case we can take gi(u) = ci/u where c1, . . . , cm ∈ C
denote the distinct eigenvalues of A−2. Because of this we introduce the following definition (see also

[115, Definition 8.1]):
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Definition 2.12 We say that a nc-Hodge structure (H,EB ,
∼−→) is of exponential type if there exists a

formal isomorphism

Ψ : (H ⊗C{u} C[[u]],∇)
∼=→

m⊕

i=1

(
Eci/u ⊗ (Ri,∇i)

)
⊗C{u} C[[u]]

where (Ri,∇i) are meromorphic bundles with connections with regular singularities and c1, . . . , cm ∈
C denote the distinct eigenvalues of A−2.

Remark 2.13 • There are various sufficient conditions that will guarantee that a given nc-Hodge

structure is decomposable without base change. For instance, this will be the case if A−2 has distinct

eigenvalues, or ifA−1 = 0. More generally, it suffices to require that we can find holomorphic functions

ℓi(u) ∈ C{u} so that ℓi(0) = ci for i = 1, . . . ,m and the characteristic polynomial of u2A(u) is

det
(
c · id−u2A(u)

)
=
∏m
i=1(c− ℓi)νi .

• Not every irregular connection with a pole of order two is of exponential type. Indeed the rank two

connection

∇ = d−
(

0 u−2

u−1 u−1

2

)

has a horizontal section (
e−2u−

1
2

u
1
2 e−2u−

1
2

)
,

and so one needs a quadratic base change for the formal decomposition to work for this connection.

• If a nc-Hodge structure (H,EB ,
∼−→) is of exponential type, then one can check (see [115, Lemma 8.2])

that for each i = 1, . . . ,m we can find a unique holomorphic extension Hci ⊂ Ri in which the connec-

tion has a second order pole and so that Ψ induces a formal isomorphism of holomorphic bundles with

meromorphic connections

Ψ : (H ,∇)⊗ C[[u]]
∼=−→




m⊕

i=1

Eci/u
⊗

C{u}

(Hci ,∇i)


⊗ C[[u]],

over C[[u]].

The nc-Hodge structures with regular singularities or the nc-Hodge structures of exponential type com-

prise full subcategories

(⊕Q− ncHS)reg ⊂ (⊕Q− ncHS)exp ⊂ (⊕Q− ncHS)

in (⊕Q− ncHS). In fact, in the exponential type case one can state the nc-Hodge structure axioms

in an easier way. The simplification comes from the fact that in this case the Deligne-Malgrange-

Stokes filtration is given by subsheaves S≤λ of S that are labeled by λ ∈ R and consisting of solutions
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decaying faster than O
(
exp

(
λ+o(1)

r

))
, r = |u|. Indeed, tracing through the definition one sees that

in the exponential case for a ray defined by ϕ the jumps of the steps of the Deligne-Malgrange-Stokes

filtration occur exactly at the numbers Re(cie
−iϕ). Furthermore, the associated graded pieces for the

filtration are local systems on the circle and in fact coincide with the regular pieces (Ri,∇i) that appear

in the formal decomposition of the connection. Hence one arrives at the following

Definition 2.14 A rational pure nc-Hodge structure of exponential type consists of the data (H,EB ,
∼−→

), where

• H is a Z/2-graded algebraic vector bundle on A1.

• EB is a local system of finite dimensional Z/2-graded Q-vector spaces on

A1 − {0}.

•
∼−→ is an analytic isomorphism of holomorphic vector bundles on A1 − {0}:

∼−→: EB ⊗OA1−{0}

∼=−→ H|A1−{0}.

These data have to satisfy the following axioms:

(nc-filtration axiom)exp The connection ∇ induced from
∼−→ is a meromorphic connection of expo-

nential type on H with a pole of order ≤ 2 at u = 0 and a regular singularity at ∞. More

precisely, there exist:

• a holomorphic frame of H near u = 0 in which

∇ = d+


∑

k≥−2

Aku
k


 du

with Ak ∈ Matr×r(C), r = rankC{u} H .

• a holomorphic frame of H near u =∞ in which

∇ = d+


∑

k≥−1

Bku
−k


 d(u−1)

and Bk ∈ Matr×r(C).

• a formal isomorphism over C((u)):

(H [u−1],∇) ∼=→
m⊕

i=1

Eci/u ⊗ (Ri,∇i)

where (Ri,∇i) are meromorphic bundles with connections with regular singularities and

c1, . . . , cm ∈ C denote the distinct eigenvalues of A−2.
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(Q-structure axiom)exp The Q-structure EB on (H,∇) is compatible with Stokes data in the follow-

ing sense. The filtration {S≤λ}λ∈R of S by the subsheaves S≤λ, whose stalk at ϕ ∈ S1 is given

by

(S≤λ)ϕ :=





s ∈ Sϕ = Γ
(
R×
+e

iϕ,H
)

∣∣∣∣∣∣∣∣∣∣∣∣

s is a ∇-horizontal section of H over the

ray R×
+e

iϕ, for which

∥∥s
(
reiϕ

)∥∥ = O

(
exp

(
λ+ o(1)

r

))
.

when r → 0.





is defined over Q, i.e.

(S≤λ ∩ SB)⊗Q C = S≤λ

for all λ ∈ R.

(opposedness axiom)exp = (opposedness axiom)

Remark 2.15 It is instructive to understand more explicitly the behavior of the Deligne-Malgrange-

Stokes filtration for nc-Hodge structures (or more generally irregular connections) of exponential type.

As before we denote by S the complex local system on the circle S1 corresponding to a nc-Hodge

structure for which A−2 has distinct eigenvalues c1, . . . cm.

By definition, for every ϕ, the steps in the Deligne-Malgrange-Stokes filtration (S≤λ)ϕ jump ex-

actly when λ crosses one of the numbers Re(cke
−iϕ). More invariantly, the assignment ϕ ∈ S1 7→

{Re(c1e−iϕ), . . . ,Re(cke−iϕ)} ⊂ R is a sheaf Λ of finite sets of real numbers (possibly with repeti-

tions) on S1. For a general value of ϕ, the real numbers {Re(c1e−iϕ), . . . ,Re(cke−iϕ)} are all distinct

but for finitely many special values of ϕ some of Re(c1e
−iϕ), . . . ,Re(cke

−iϕ) will coalesce. More

precisely we have the Stokes rays R>0 · i(cb − ca) and the associated set SD ⊂ [0, 2π) of Stokes direc-

tions: i.e. ϕ ∈ SD, if and only if there is some pair a 6= b s.t. ca − cb = rei(
π
2
+ϕ) for some r > 0.

Clearly for every open arc U ⊂ S1, which does not intersect SD the restriction Λ|U is a local system

of finite sets of cardinality m. Moreover the values ϕ ∈ SD are precisely the ones for which some of

Re(c1e
−iϕ), . . . ,Re(cke

−iϕ) become equal to each other.

Now recall that for any given ϕ ∈ S1, the subspaces (S≤λ)ϕ ⊂ Sϕ do not change if we move

λ ∈ R continuously without passing through some element of Λϕ. In other words, we can label the

steps of the Deligne-Malgrange-Stokes filtration by local sections of Λ, and so that at each ϕ ∈ S1 the

steps are ordered according to the order on Λϕ induced from the embedding Λϕ ⊂ R. The finite set

SD ⊂ S1 of Stokes directions breaks the circle into disjoint arcs. Over each such arc U we have that

Λ|U is a local system of finite sets of real numbers with m linearly ordered flat sections and the steps

Deligne-Malgrange-Stokes filtration of S|U are labeled naturally by these sections. If we move from U
to an adjacent arc U ′ by passing across a Stokes direction φ ∈ SD, then some of the elements in the

labelling set get identified at φ and get reordered when we cross over to U ′ (see Figure 1).
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λ1

λ2

λ3

λ4

λ′1

λ′2

λ′3

λ′4

U U ′

S1

R

Stokes

direction φ

Figure 1: The system of labels for the Deligne-Malgrange-Stokes filtration.

In fact, if λ1 < . . . < λm are the ordered flat sections of Λ|U , and λ′1 < . . . < λ′m are the ordered

flat sections of Λ|U ′ , then the transition from the λ’s to the λ′’s is always such that certain groups of

consecutive λ’s are totally reordered into groups of consecutive λ′’s. For instance in Figure 1 the passage

from {λ1, λ2, λ3, λ4} to {λ′1, λ′2, λ′3, λ′4} across the Stokes point φ ∈ SD has the effect of relabelling:

λ1 7→ λ′1, λ2 7→ λ′4, λ3 7→ λ′3, and λ4 7→ λ′2.

This behavior of the labelling set and the behavior of the associated filtration can be systematized in the

following:

Definition 2.16 Let S be a finite dimensional local system of Z/2-graded complex vector spaces over

S1. Let c1, . . . , cm be distinct complex numbers, let Λ be the sheaf of finite sets of real numbers on S1

given by ϕ 7→ {Re(c1e−iϕ), . . . ,Re(c1e−iϕ)}, and let

SD ⊂ S1 be the associated set of Stokes directions.

An abstract Deligne-Malgrange-Stokes filtration of S of exponential type and exponents (c1, . . . , cm)
is a filtration by subsheaves S≤λ such that:

• S≤λ is labeled by local continuous sections λ of Λ and is locally constant on any arc which does

not intersect SD.

• Suppose ϕ ∈ SD, and let U,U ′ ⊂ S1 − SD be the two arcs adjacent at ϕ. Let λ1 < · · · < λm
and λ′1 < · · · < λ′m be the ordered flat sections of Λ|U and Λ|U ′ respectively. Trivialize S on

U ∪ U ′ ∪ {ϕ} by identifying the flat sections with the elements of the fiber Sϕ and let

0 ⊂ F≤λ1 ⊂ . . . ⊂ F≤λm ⊂ Sϕ, and 0 ⊂ F ′
≤λ′1
⊂ . . . ⊂ F ′

≤λ′m
⊂ Sϕ
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be the filtrations corresponding to this trivialization and the filtrations S≤λ on U and U ′ respec-

tively, i.e.

F≤λi := lim
ψ∈U
ψ→ϕ

(S≤λi)ψ and F ′
≤λ′i

:= lim
ψ∈U ′

ψ→ϕ

(
S≤λ′i

)
ψ

Let 1 ≤ i1 < j1 ≤ i2 < j2 ≤ · · · ≤ ik < jk ≤ m be the sequence of integers such that λa = λ′a
for a 6∈ [i1, j1] ∪ [i2, j2] ∪ · · · ∪ [ik, jk], and for each interval [is, js] we have that λ′js = λis ,

λjs−1 = λis+1, . . .λ′is = λjs . Then we require that:

– for each a 6∈ [i1, j1] ∪ [i2, j2] ∪ · · · ∪ [ik, jk] we have F≤λa = F ′
λ′a

;

– for each s = 1, . . . , k, F≤λjs = F≤λ′js
and the filtrations

F≤λis /F≤λis−1
⊂ F≤λis+1

/F≤λis−1
⊂ · · · ⊂ F≤λjs /F≤λis−1

F ′
≤λ′is

/F ′
≤λ′is−1

⊂ F ′
≤λ′is+1

/F ′
≤λ′is−1

⊂ · · · ⊂ F ′
≤λ′js

/F ′
≤λ′is−1

are (js − is)-opposed.

Remark 2.17 The above discussion generalizes immediately from connections of exponential type to

arbitrary meromorphic connections (see remark 2.3). One gets a collection of curves drawn on the

boundary of the cylinder which can be interpreted as a projection to 0-jets of a Legendrian link in the

contact manifold of 1-jets of functions on S1.

The categories of nc-Hodge structures, of nc-Hodge structures of exponential type, or of nc-Hodge

structures with regular singularities all behave similarly to ordinary Hodge structures. For instance one

can introduce the notion of polarization on nc-Hodge structures, which specializes to the usual notion

in the case of ordinary Hodge structures. (This will not be needed for our discussion so we will not

spell it out here. The interested reader may wish to consult [114], [115], [154] for the details of the

definition.) In fact we have the following

Lemma 2.18 The categories (⊕Q− ncHS)reg ⊂ (⊕Q− ncHS)exp ⊂ (⊕Q− ncHS) are Q-linear

abelian categories. The respective categories of polarizable nc-Hodge structures are semi-simple.

Proof: The statement is a manifestation of Simpson’s Meta-Theorem from [225]. The opposedness

axiom implies that the respective categories are abelian and the existence of polarizations implies the

semi-simplicity. The proofs follow verbatim the argument in usual Hodge theory or the argument in

[225]. Alternatively one can use the comparison statement [115, Lemma 3.9] identifying the nc-Hodge

structures with pure twistor structures and then invoke [225, Lemma 1.3 and Lemma 3.1]. ✷

The bundles with connections (Hci ,∇i) can be thought of as the regular singular constituents of the nc-

Hodge structure (H,EB ,
∼−→). The (Hci ,∇i)’s are invariants of the nc-Hodge structure but of course

they do not give a complete set of invariants (see the third point in 2.13). As usual we need additional
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Stokes data (see e.g. [205]) in order to reconstruct the pair (H ,∇) from its regular constituents. To

understand how the rest of nc-Hodge structure arises from the constituents we need to understand how

the rational structure EB interacts with the Stokes data. This process is very similar to the interaction

between Betti, de Rham and Dolbeault cohomology in ordinary Hodge theory and we will describe it in

detail in section 2.3.

The nc-Hodge structures one finds in geometric examples are very often regular (e.g. in the case of

ordinary Hodge structures) or at worst have exponential type. It is also expected that the nc-Hodge

structures arising in mirror symmetry will always be of exponential type but at the moment this is only

supported by experimental evidence.

We will discuss in detail some of this evidence in the subsequent sections. Before we get to the

examples however, it will be instructive to comment on the reason for introducing the nc-Hodge struc-

tures at the first place. The geometric significance of these structures stems from the fact that they appear

naturally on the cohomology of non-commutative spaces of categorical nature.

2.2 Hodge structures in nc geometry The version of non-commutative geometry that is most rel-

evant to nc-Hodge structures is the one in which a proxy for the notion of a non-commutative space

(nc-space) is a category, thought of as the (unbounded) derived category of quasi-coherent sheaves on

that space.

2.2.1 Categorical nc-geometry The basic notion here is:

Definition 2.19 A graded complex nc-space (respectively a complex nc-space) is a C-linear differen-

tial graded (respectively Z/2-graded) category C which is homotopy complete and cocomplete.

Notation: We will often write CX for the category to signify that it describes the sheaf theory of some

nc-space X, even when we do not have a geometric construction of X.

The categorical point of view to non-commutative geometry goes back to the works of Bondal [33],

Bondal-Orlov [38, 39] with many non-trivial examples computed in the later works of Orlov [194,

196, 195], Caldero-Keller [42, 43], Aroux, Orlov, and the first author, [16, 17], Kuznetsov [162, 161,

163], etc. More recently this approach to nc-geometry became the central part of a long term research

program initiated by the second author and was studied systematically in the works of the second author

and Soibelman [159, 154], Toën [234], and Toën-Vaquie [237].

Remark 2.20 (i) We do not spell out here the notions of homotopy completeness and cocompleteness

in dg categories since on one hand they are quite technical and on the other hand will not be used later

in the chapter. It is worth mentioning though that some effort is required to define these notions. In the

original approach of the second author described in his 2005 IAS lectures and in his 2007 course at the

University of Miami the homotopy completeness and cocompletness in C was defined by a universal
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property for homotopy coherent diagrams of objects in the dg category labeled by simplicial sets. Alter-

natively [236] one may use the model category (Cop −mod) of Cop-dg modules, whose equivalences

are the quasi-isomorphisms, and whose fibrations are the epimorphisms. In these terms one says that C
is homotopy complete if the full subcategory of (Cop −mod) consisting of quasi-representable objects

is preserved by all small homotopy limits (defined via the given model structure). Similarly we say that

C is homotopy cocomplete if Cop is homotopy complete.

(ii) Note that in the above definition the category C is automatically triangulated as follows already

from the existence of finite homotopy limits, and Karoubi closed by the standard mapping telescope

construction [32].

Example 2.21 The two main types of nc-spaces are the following:

usual schemes: Usual complex schemes can be viewed as (graded) nc-spaces. Given a scheme X
over C, the corresponding category CX is the derived category D(Qcoh(X)w) of quasi-coherent

sheaves onX taken with an appropriate dg enhancement (see [37]). In particular, the closed point

pt = Spec(C) corresponds to the category Cpt of complexes of C-vector spaces.

modules over an algebra: If A is a differential graded (or Z/2-graded) unital associative algebra over

C, then we get a nc-space ⊕ncSpec(A) such that C⊕ncSpec(A) = (A−mod) is the category of

dg modules over A which admit an exhaustive increasing filtration whose associated graded are

sums of shifts of A.

To illustrate how the above notion of a nc-space fits with the ncHodge structures we will concentrate

on the case of nc-affine spaces, i.e. nc-spaces equivalent to ⊕ncSpec(A) for some differential Z/2-

graded algebra A over C. Note that because of derived Morita equivalences an affine nc-space X does

not determine an algebra A uniquely, i.e. different algebras can give rise to the same nc-space.

Remark 2.22 The condition is not as restrictive as it appears at a first glance. In fact almost all nc-

spaces that one encounters in practice are affine. For instance usual quasi-compact quasi-separated

schemes of finite type over C are affine when viewed as nc-spaces. This follows from a deep theo-

rem of Bondal and van den Bergh [41] which asserts that for such a scheme X the category CX =
D(Qcoh(X)) has a compact generator E . That is, we can find an object E ∈ CX so that

Hom(E , •) : CX → Cpt

commutes with homotopy colimits and has a zero kernel. In particular the dg algebra computing the

category CX is given in terms of the generator E , i.e.

CX ∼= (Hom(E , E)op −mod).
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Suppose now that X = ⊕ncSpec(A). Recall that an object E ∈ CX = (A − mod) is perfect

if Hom(E , •) preserves small homotopy colimits. We will write ⊕PerfX for the full subcategory of

perfect objects in CX . We now have the following definition (see e.g. [159], [154] or [237]):

Definition 2.23 A complex differential Z/2-graded algebra is called

smooth: if A ∈ ⊕Perf⊕ncSpec(A⊗Aop);

compact: if dimCH
•(A, dA) < +∞ or equivalently if A ∈ ⊕Perfpt.

Note: One can check (see e.g. [159] or [237]) that the properties of X being smooth ad compact do

not depend on the choice of the algebra A which computes CX . Also, for a usual scheme X of finite

type over C, smoothness and compactness in the scheme-theoretic sense are equivalent to smoothness

and compactness in the nc-sense.

2.2.2 The main conjecture The analogy with commutative geometry suggests that one should look

for pure nc-Hodge structures on the cohomology of smooth an proper nc-spaces. More precisely we

have the following basic conjecture

Conjecture 2.24 Let X be a smooth and compact nc-space over C. Then the periodic cyclic homology

HP•(CX) of CX carries a natural functorial pure Q-nc-Hodge structure with regular singularities.

Furthermore if the Z/2-grading on X can be refined to a Z-grading, then the nc-Hodge structure

on HP•(CX) is an ordinary pure Hodge structure, i.e. belongs to the essential image of the functor N.

2.2.3 Cyclic homology There are some natural candidates for the various ingredients of the con-

jectural nc-Hodge structure on HP•(CX). Assuming that X ∼= ⊕ncSpec(A) is nc-affine, we can

compute HP•(CX) in terms of A. Namely

HP•(CX) = HP•(A) = HP•

(
Cred
• (A,A)((u)), ∂ + u · B

)
,

where

• u is an even formal variable (of degree 2 in the Z-graded case);

• Cred
−k+1(A,A)((u)) := A⊗ (A/C · 1A)⊗k ⊗ C((u)), for all k ≥ 0;
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• ∂ = b+ δ, where

b(a0 ⊗ · · · ⊗ an) :=
n−1∑

i=0

(−1)deg(a0⊗···⊗ai)a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)deg(a0⊗···⊗an)(deg(an)+1)+1ana0 ⊗ · · · ⊗ an−1,

is the Hochschild differential, and

δ(a0 ⊗ · · · ⊗ an) :=
n∑

i=0

(−1)deg(a0⊗···⊗ai−1)a0 ⊗ · · · ⊗ dAai ⊗ · · · ⊗ an

is the differential induced from dA via the Leibniz rule;

•

B(a0⊗ · · · ⊗ an) :=
n∑

i=0

(−1)(deg(a0⊗···⊗ai)−1)(deg(ai+1⊗···⊗an)−1)1A ⊗ ai+1 ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai,

is Connes’ cyclic differential.

2.2.4 The degeneration conjecture and the vector bundle part of the nc-Hodge structure Note

that by construction HP•(CX) is a module over C((u)). We can also look at the negative cyclic homol-

ogy HC−
• (CX) of CX . By definition HC−

• (CX) is the cohomology of the complex

(
Cred
• (A,A)[[u]], ∂ + u ·B

)
,

and so is a module over C[[u]]. The specialization

HC−
• (CX)/uHC

−
• (CX)

of this module at u = 0 maps to the cohomology of the complex

(Cred
• (A,A), ∂)

of reduced Hochschild chains for A which by definition is the Hochschild homology HH•(A) of A.

The Hochschild-to-cyclic spectral sequence implies that

(2.1) dimC((u))HP•(A) ≤ dimCHH•(A)

If X is a smooth and compact nc-space, the Hochschild chain complex of CX is the derived tensor

product over A⊗Aop of a perfect complex with finite dimensional cohomology with itself. In particular

HH•(CX) := HH•(A) is a finite dimensional C-vector space, and so by (2.1) we have that HP•(CX)
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is finite dimensional over C((u)). Thus the C[[u]]-module HC−
• (CX) is finitely generated and so

corresponds to the formal germ at u = 0 of an algebraic Z/2-graded coherent sheaf on A1
C. The fiber of

this sheaf at u = 0 is HH•(CX) and the generic fiber is HP•(CX). In [159], [154] the second author

proposed the so called degeneration conjecture asserting that for a smooth and compact nc-space X =
⊕ncSpec(A) we have an equality of dimensions in (2.1). In other words the degeneration conjecture

assert that for a smooth and compact nc-space the C[[u]]-module HC−
• (CX) is free of finite rank and

thus corresponds to an algebraic vector bundle on the one dimensional formal disc D := Spf(C[[u]]).

Remark 2.25 There is a lot of evidence supporting the validity of this conjecture. The work of Weibel

[250] shows that ifX is a usual quasi-compact and quasi-separated complex scheme the Hochschild and

periodic cyclic homology of X viewed as a nc-space can be identified with the algebraic de Rham and

Dolbeault cohomology of X respectively. Combined with the degeneration of the Hodge-to-de-Rham

spectral sequence in the smooth proper case this shows that the degeneration conjecture holds true for

usual schemes. Also recently in a very exciting sequence of papers [130], [129] Kaledin proved the

degeneration conjecture for graded nc-spaces X = ⊕ncSpec(A) for which A is concentrated in non-

negative degrees. The case of graded nc-spaces X = ⊕ncSpec(A) for which A is concentrated in

non-positive degrees was also settled by Shklyarov [222]. The general graded case and the Z/2-graded

case are still wide open.

2.2.5 The meromorphic connection in the u-direction The next observation is that the C{u}[u−1]-
module HP•(CX) comes equipped with a natural meromorphic connection. Indeed, recall that by the

work of Getzler [91] there is a version of the Gauss-Manin connection which exists on the periodic

cyclic homology of any flat family of differential graded algebras (see also [239], [131]). An analogous

statement holds in the Z/2-graded case as explained e.g. in [159, Section 11.5]. The Gauss-Manin

connection for any family of dg algebras Ax over the formal disc Spf C[[x]] with a formal parameter x,

is an operator

∇GM
u ∂

∂x

: H•(Cred(Ax,Ax)[[u, x]], ∂Ax + u ·BAx)→ H•(Cred(Ax,Ax)[[u, x]], ∂Ax + u ·BAx)

satisfying the Leibniz rule with respect to the multiplications by u and x (compare this with the (Grif-

fiths transversality axiom) in Definition 2.7 from Section 2.1.5).

Suppose now A is a differential Z/2-graded algebra with product mA, differential dA, and a strict

unit 1A. Then we can form a flat family A → A1 − {0} of differential Z/2-graded algebras parameter-

ized by the punctured affine line A1−{0}. The fiberAt ofA over a point t ∈ A1
C−{0} is the d(Z/2)g

algebra for which the underlying Z/2-graded vector space is A and

mAt := t ·mA,

dAt := t · dA,
1At := t−1 · 1A.
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Looking at the scaling properties of ∂ and B we see that the identity morphism on the level of cochains

induces a natural isomorphism

(2.2) H•
(
Cred
• (At,At)[[u]], ∂At + u ·BAt

) ∼= //H•(Cred
• (A,A)[[u]], ∂ + ut−2 ·B).

This isomorphism does not come from a quasi-isomorphism of complexes, as the identity map is not

a morphims of complexes: the differentials do not coincide but differ by the factor t. If A is smooth

and compact, then the negative cyclic homology of the family of algebras At gives rise to an algebraic

vector bundle H̃C
−

on the product (A1−{0})×D. Here D := Spf C[[u]] denotes the one dimensional

formal disc. We will write (t, u) for the coordinates on (A1 − {0}) × D. We will be interested in fact

only in the formal neigborhood of point t = 1 where we can choose as a local coordinate x := log(t).
The Getzler-Gauss-Manin connection then can be viewed as a relative holomorphic connection ∇GM on

H̃C
−

which differentiates only along A1
C − {0}. On the other hand the formal completion of the group

C× at 1 acts on (A1
C − {0}) × D by (t, u) 7→ (µt, µ2u) for µ ∈ C×. The isomorphism (2.2) gives rise

to a C×-equivariant structure on the vector bundle H̃C
−

and the infinitesimal action of d/dµ associated

with this equivariant structure gives a holomorphic differential operator Λ ∈ Diff≤1(H̃C
−
, H̃C

−
) with

symbol equal to (
t
∂

∂t
+ 2u

∂

∂u

)
· id

H̃C
− .

Hence

∇u2 ∂
∂u

:=
u

2
·Λ−∇GM

ut
2

∂
∂t

is a first order differential operator on H̃C
−

with symbol

u2
∂

∂u
· id

H̃C
−

and so after restricting H̃C
−

to {1}×D this operator gives a meromorphic connection ∇ on the C[[u]]-
module HC−

• (CX) with at most a second order pole at u = 0. Note also that if the algebra A is

Z-graded, then the family At t is easily seen to be trivial and the connection ∇ has the first order pole

at u = 0 with monodromy equal to (−1)parity.

2.2.6 The Q-structure The categorical origin of the rational (or integral) structure of the conjec-

tural nc-Hodge structure is more mysterious. Conceptually the correct rational structure should come

from the Betti cohomology or, say, the topological K-theory of the nc-space. There are two natural

approaches to constructing the rational structure EB ⊂ HP•(CX):

(a) The soft algebra approach ([154]). Let again X = ⊕ncSpec(A) be an affine nc-space, and

assume X is compact. By analogy with the classical geometric case one expects that there should exist

a nuclear Frechét d(Z/2)g algebra AC∞ so that
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• The K-theory of AC∞ satisfies Bott periodicity, i.e. Ki(AC∞) = Ki+2(AC∞) for all i ≥ 0.

• There is a homomorphism ϕ : A → AC∞ of d(Z/2)g algebras for which ϕ∗ : HP•(A) →
HP•(AC∞) is an isomorphism, and the image of the Chern character map

ch : K•(AC∞)→ HP•(AC∞)

is an integral lattice, and hence gives a rational structure EB ⊂ HP•(A).

Note: IfX is a smooth and compact complex variety and if E ∈ ⊕Perf(X) is a vector bundle generating

CX , then one may take

A := A0,•(X, E∨ ⊗ E), ∂̄)
AC∞ := A0,0(X, E∨ ⊗ E).

Note that the algebra AC∞ is Morita equivalent to C∞(X).

(b) The semi-topological K-theory approach (Bondal, Toën, [235]). Assume again that X =
⊕ncSpec(A) is a smooth and compact graded nc-affine nc-space. Consider the moduli stack MX

of all objects in ⊕PerfX . This is an∞-stack which by a theorem of Toën and Vaquie [237] is locally

geometric and locally of finite presentation. Moreover for any a, b ∈ N the substack M
[a,b]
X ⊂ MX

consisting of objects of amplitude in the interval [a, b] is a geometric b − a + 1-stack. The functor

sending a complex scheme to the underlying topological space in the analytic topology gives rise by a

left Kan extension to a topological realization functor

| • | : Ho (Stacks/C)→ Ho(Top)

from the homotopy category of stacks to the homotopy category of complex spaces. Following Friedlander-

Walker [78] we define the semi-topological K-group of the nc-space X to be

Kst
0 (X) := π0(|MX |).

The group structure here is induced by the direct sum ⊕ of A-modules: the monoid

(π0(|MX |),⊕) is actually a group. To see this note that for anyA-module E we have that [E ⊕E[1]] =
0 in π0(|MX |). Indeed we have distinguished triangles

E // 0 // E[1] // E[1]

E // E ⊕ E[1] // E[1] // E[1]

the first of which corresponds to id ∈ Ext1(E[1], E) = Hom(E,E), and the second corresponds to

0 ∈ Ext1(E[1], E) = Hom(E,E). Since Ext1(E[1], E) = Hom(E,E) is a vector space, it follows

that id deforms to 0 continuously and so the second terms in the above triangles represent the same point

in π0(|MX |).
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More generally ⊕ makes |MX | into an H-space Kst(X) which is the degree zero part of a natural

spectrum. Using this one can define Kst
i (X) for all i ≥ 0.

Next note that since CX is triangulated it is a module over the category ⊕Perfpt of complexes of

C-vector spaces with finite dimensional total cohomology. In particular Kst
• (X) is a graded module

over Kst
• (pt). It can be checked that

Kst(pt) = BU = Ktop(pt),

and so Kst
• (X) is a graded Z[u]-module (deg u = 2).

Now we can define

Ktop
• (X) := Kst

• (X)[u−1] = Kst
• (X) ⊗Z[u] Z[u, u

−1].

Again one expects that there is a Chern character map

ch : Ktop
• (X)→ HP•(CX)

whose image gives a rational structure EB on HP•(CX).

Note: If X is a smooth and compact complex variety, then the Friedlander-Walker comparison theorem

[77] implies that Ktop(D(QCoh(X))) ∼= Ktop(Xtop), where Xtop is the topological space underlying

X.

2.2.7 Questions Even though we have some good candidates for the ingredients H , ∇, EB of the

conjectural nc-Hodge structure associated with a nc-space, there are several important problems that

need to be addressed before one can prove Conjecture 2.24:

• show that the connection ∇ has regular singularities (this is automatically true in the Z-graded

case);

• show that ∇ preserves the rational structure;

• show that the opposedness axiom hold.

One can show that for a smooth compact nc-space the coefficient A−2 in the u-connection is a nilpotent

operator, which gives an evidence in favor of the regular singularity question.

In fact Conjecture 2.24 and the above questions are special cases of a general conjecture which predicts

the existence of a general nc-Hodge structure on the periodic cyclic homology of a curved d(Z/2)g
category which is formally smooth and compact. We will not discuss the general conjecture or the

relevant constructions here but we will revisit these questions in some interesting geometric examples

in Section 3.
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2.3 Gluing data

In this section we discuss how general nc-Hodge structures of exponential type can be glued to-

gether out of nc-Hodge structures with regular singularities and additional gluing data.

2.3.1 nc-De Rham data The de Rham part of a nc-Hodge structure of exponential type can be

prescribed in three equivalent ways:

ncdR(i) A pair (M ,∇), where M is a finite dimensional vector space over C{u}[u−1] and ∇ is a

meromorphic connection. These data should satisfy the following

Property ncdR(i): There exist:

• a frame e = (e1, . . . , er) of M over C{u}[u−1] in which

∇ = d+


∑

k≥−2

Aku
k


 du

with Ak ∈ Matr×r(C), r = rankC{u}[u−1] M . In other words, there is a holomorphic extension

H = C{u}e1 ⊕ . . .⊕ C{u}er in which ∇ has at most a second order pole.

• a formal isomorphism over C((u)):

(M ,∇)⊗C{u}[u−1] C((u))
∼=→

m⊕

i=1

Eci/u ⊗ (Ri,∇i)

where (Ri,∇i) are meromorphic bundles with connections with regular singularities and c1, . . . , cm ∈
C denote the distinct eigenvalues of A−2.

ncdR(ii) A pair (M,∇), where M is an algebraic vector bundle on A1 − {0} and ∇ is a connection on

M . These data should satisfy the following

Property ncdR(ii): M can be extended to an algebraic vector bundle M̃ on P1, and

• with respect to this extension and appropriate local trivializations at zero and infinity we must

have

∇ = d+


∑

k≥−2

Aku
k


 du near 0,

∇ = d+


∑

k≥−1

Bku
−k


 d(u−1) near∞.
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In other words ∇ : M̃ → M̃ ⊗O
P1

Ω1
P1(2 · {0}+ {∞}).

• There is a formal isomorphism over C((u)):

(M,∇)⊗C[u,u−1] C((u))
∼=→

m⊕

i=1

Eci/u ⊗ (Ri,∇i)

where (Ri,∇i) are meromorphic bundles with connections with regular singularities and c1, . . . , cm ∈
C denote the distinct eigenvalues of A−2.

ncdR(iii) An algebraic holonomic D-module M on A1. The D-module M should also satisfy the

following

Property ncdR(iii): M has regular singularities and H•
DR(A

1,M) = 0.

The nc-de Rham data of types ncdR(i), ncdR(ii), and ncdR(iii) form obvious full subcategories in the

categories of meromorphic connections over C{u}[u−1], algebraic vector bundles with connections on

A1 − {0}, and coherent algebraic D-modules on A1 respectively. We have the following

Lemma 2.26 The categories of nc-de Rham data of types ncdR(i), ncdR(ii), and

ncdR(iii) are all equivalent.

Proof. In essence we have already discussed the equivalence ncdR(i) ⇔ ncdR(ii) in Remark 2.1.

Explicitly (M ,∇) = G0((M,∇)) = (M ⊗C[u,u−1] C{u}[u−1],∇).
We define a functor F : (data (iii))→ (data (ii)) as follows. Let M be a regular holonomic algebraic

D-module on A1 with trivial de Rham cohomology. Denote the coordinate on A1 by v. The vanishing

of de Rham cohomology means that the action d
dv : M → M is an invertible operator. Consider the

algebraic Fourier transform ΦM which is the same vector space as M endowed with action of the Weyl

algebra defined by

ṽ :=
d

dv

d

dṽ
:= −v

where ṽ is the coordinate on the dual line. By our assumptions ΦM is a holonomic D-module on which

ṽ acts invertibly. Hence ΦM is the direct image of a holonomic D-module ΦM ′ on A1 − {0} under

the embedding (
A1 − {0}

)
→֒ A1 = Spec(C[ṽ])

Finally, making the change of coordinates u = 1/ṽ we obtain a D-module M on A1 − {0} with

coordinate u.

We claim that F(M) := M obtained in this way satisfies the property ncdR(ii), and that by this

construction one obtains all such modules. It follows from the well-known properties of the Fourier
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transform that ΦM has no singularities in A1 − {0} and the its singularity at ṽ = 0 is regular. Hence

M is a vector bundle on A1 − {0} endowed with connection with regular singularity at ∞. It only

remains to to use the well-known fact (see e.g. [172, Chapters IX-XI] or [138, Theorem 2.10.16]) that

the exponential type property forM is equivalent to the property of M to have only regular singularities.

✷

Remark 2.27 The characterization of the exponential type property in terms of the Fourier transform

can be stated more precisely (see [172, Chapters IX-XI] or [138, Theorem 2.10.16]): For an algebraic

holonomic D-module M on the complex affine line, the following two conditions are equivalent:

1) M has regular singularities;

2) the Fourier transform ΦM of M has no singularities outside 0, its singularity at 0 is regular, and

its singularity at infinity is of exponential type.

Explicitly ΦM being of exponential type at infinity means that if x is a coordinate on A1 centered

at 0, then after passing to the formal completion (ΦM) ⊗C[x] C((x
−1)) the resulting module will be

isomorphic to a finite sum
m⊕

i=1

Ecix ⊗ (Ri,∇i)

where (Ri,∇i) are D-modules with a regular singularity at infinity.

Remark 2.28 Note that the de Rham data ncdR(i) is analytic in nature, whereas ncdR(ii) and ncdR(iii)

are algebraic. In fact from the proof it is clear that ncdR(ii) and ncdR(iii) and their equivalence still

make sense if we replace C with any field of characteristic zero.

2.3.2 nc-Betti data The (rational) Betti part of a nc-Hodge structure of exponential type can be

prescribed in four ways:

ncB(i) A (middle perversity) perverse sheaf G • of Q-vector spaces on the Riemann surface C (taken

with the analytic topology) satisfying the following

Property ncB(i): RΓ(C,G •) = 0.

ncB(ii) A constructible sheaf F of Q-vector spaces on the Riemann surface C (taken with the analytic

topology) satisfying the following
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Property ncB(ii): RΓ(C,F ) = 0.

ncB(iii) A finite collection of distinct points S = {c1, . . . , cn} ⊂ C, and

• a collection U1, U2, . . . , Un of finite dimensional non-zero Q-vector spaces,

• a collection of linear maps Tij : Uj → Ui, for all i, j = 1, . . . , n,

satisfying the following

Property ncB(iii): Tii ∈ GL(Ui).

ncB(iv) A local system S of Q-vector spaces on S1 equipped with a filtration {S≤λ}λ∈R by subsheaves

of Q-vector spaces, satisfying the following

Property ncB(iv): The filtration {S≤λ ⊗C}λ∈R of S⊗C is a Deligne-Malgrange-Stokes filtration of

exponential type. In other words, there exist complex numbers c1, . . . , cn ∈ C so that:

• For every ϕ ∈ S1, the filtration {(S≤λ ⊗ C)ϕ}λ∈R of the stalk (S ⊗ C)ϕ jumps exactly at

the real numbers {Re
(
cke

−iϕ
)
}nk=1.

• The associated graded sheaves of S ⊗ C with respect to {S≤λ ⊗ C}λ∈R are local systems

on S1.

Again there are natural equivalences of the different types of Betti data (for ncB(iii) the equivalence

depends on certain choices of paths as one can see from the proof of Theorem 2.29 and the statement

of Lemma 2.30.). Consider the full subcategories (ncB(i)) and (ncB(ii)) of nc-Betti data of types

ncB(i) and ncB(ii) in the category of perverse sheaves of Q-vector spaces on C and in the category of

constructible sheaves of Q-vector spaces on C respectively. We have the following

Theorem 2.29 The categories of nc-Betti data of types ncB(i) and ncB(ii) are naturally equivalent.

More precisely, the natural functors

H−1 : Db
constr(C,Q)→ Constr(C,Q) and [1] : Constr(C,Q)→ Db

constr(C,Q)

induce mutually inverse equivalences of the full subcategories (ncB(i)) ⊂ Db
constr(C,Q) and (ncB(ii)) ⊂

Constr(C,Q).

Proof. First we look at the data ncB(i) more closely. Suppose X is a complex analytic space underlying

a complex quasi-projective variety. Recall (see e.g. [28], [137], [69]) that a bounded complex G • of

sheaves of C-vector spaces on X is called a (middle perversity) perverse sheaf if it has constructible

cohomology sheaves Hk(G •) and if

• for all k ∈ Z, we have dimR{x ∈ X| H−k(i∗xG
•) 6= 0} ≤ 2k,
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• for all k ∈ Z, we have dimR{x ∈ X| Hk(i!xG •) 6= 0} ≤ 2k.

Here ix : x →֒ X denotes the inclusion of the point x in X.

For future reference we will write Db
constr(X,Q) for the derived category of complexes of Q-vector

spaces on X with constructible cohomology, Perv(X,Q) ⊂ Db
constr(X,Q) for the full subcategory

of middle perversity perverse sheaves, and Constr(X,Q) ⊂ Db
constr(X,Q) for the full subcategory of

constructible sheaves.

From the definition it is clear that if G • is a perverse sheaf on C, then G • has at most two non-trivial

cohomology sheavesH−1(G •) andH0(G •). Moreover the support ofH0(G •) has dimension ≤ 0. Now

the cohomology RΓ•(G •) = H•(C,G •) can be computed via the hypercohomology spectral sequence

Epq2 = Hp(C,Hq(G •))⇒ Hp+q(C,G •).

Since G • has only two cohomology sheaves, the E2 sheet of this spectral sequence is

0 H0(C,H0(G •))

,,❨❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
H1(C,H0(G •))

,,❳❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳
H2(C,H0(G •)) · · ·

−1 H0(C,H−1(G •)) H1(C,H−1(G •)) H2(C,H−1(G •)) · · ·

0 1 2

By Artin’s vanishing theorem for constructible sheaves [8, Corollary 3.2] he have Hp(C,Hq(G •)) = 0
for all q and all p > 1. Furthermore since H0(G •) has at most zero dimensional support we have

H1(C,H0(G •)) = 0. In particular the spectral sequence degenerates at E2 and the only potentially

non-trivial cohomology groups of G • are

H−1(C,G •) = H0(C,H−1(G •)), and

H0(C,G •) = H1(C,H−1(G •))⊕H0(C,H0(G •)).

Thus under the assumption that RΓ(G •) = 0 we get that H0(C,H0(G •)) = 0, i.e. that H0(G •) = 0.

In other words G • = F [1] for some constructible sheaf F with RΓ(F ) = 0.

To finish the proof of the theorem we need to show that for every constructible sheaf F with

RΓ(F ) = 0, the object F [1] will be perverse (for the middle perversity). For this we will have to

look more closely at constructible sheaves on the complex line.

Suppose F is a constructible sheaf of Q vector spaces on C. Then there is a finite set S =
{c1, . . . , cn} of points in C so that C − S is the maximal open set on which F restricts to a local

system. Let F := F|C−S denote this local system. Let C − S j→֒ C
i←֓ S be the natural inclusions and

let ϕ : F → j∗j
∗F = j∗F be the adjunction homomorphism.

Before we can describe F and F via the quiver-like data of type ncB(iii) we will need to make

some rigidifying choices. First we fix a base point c0 ∈ C−S. For i = 1, . . . , n we choose a collection

of a small disjoint discs Di ⊂ C, each Di centered at ci. For each disc we fix a point oi ∈ ∂Di and
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denote by li the loop starting and ending at oi and tracing ∂Di once in the counterclockwise direction.

We fix an ordered system of non-intersecting paths {ai}ni=1 ⊂ C − (∪ni=1Di) which connect the base

point c0 with the each of the oi as in Figure 2.

ci

c0

oi

Di ai

Figure 2: A system of paths for S ⊂ C.

Let monli : Foi → Foi be the monodromy operator associated with the local system F and the loop

li. The stalk (j∗F)ci of the constructible sheaf j∗F at ci can be identified naturally with the subspace

F
monli
oi of invariants for the local monodromy. Taking stalks at each ci ∈ S we get Q-vector spaces Fci

and the adjunction map ϕ : F → j∗F induces linear maps

ϕci : Fci → F
monci
oi ⊂ Foi .

Note that, by descent, specifying the constructible sheaf F is equivalent to specifying the collection of

points S ⊂ C, the local system F on C− S, the collection of vector spaces {Fci}ni=1 and the collection

of linear maps {ϕci}ni=1. In particular, the compactly supported pullback of F [1] via the inclusion

ici : {ci} →֒ C can be computed in terms of these linear algebraic data and is given explicitly by the

complex

i!ci(F [1]) = [ Fci

ϕci // Foi

1−monli // Foi

−1 0 1

].

By definition F [1] is a perverse sheaf iff for all ci ∈ S the complex of vector spaces i!ci(F [1]) has no

cohomology in strictly negative degrees, i.e. iff ϕci is injective for all i = 1, . . . , n.

Next we rewrite the condition RΓ(C,F ) = 0 in terms of the descent data

(F, {Fci}, {ϕci}). To simplify notation let U := Fc0 , Vi = Fci for i = 1, . . . , n. Let Ti : U → U
be the monodromy operator for the local system F and the c0-based loop γi obtained by first tracing

the path ai from c0 to oi, then tracing the loop li, and then tracing back ai in the opposite direction.

Similarly we have linear maps ψi : Vi → UTi ⊂ U obtained by conjugating ϕci : Vi → Foi with the

operator of parallel transport in F along the path ai.
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The descent data for F with respect to the open cover C = (C−S)∪(∪ni=1Di) are now completely

encoded in the linear algebraic data (U, {Vi}ni=1, {Ti}ni=1, {ψi}ni=1). Cover C by the two opens C − S
and ∪ni=1Di. The intersection of these two opens is the disjoint union of punctured discs

∐n
i=1(Di−ci).

The Mayer-Vietoris sequence for F and this cover identifies RΓ(C,F ) with the complex:

⊕n
i=1 Vi

⊕n
i=1ψi // U⊕n

⊕n
i=1(1−Ti) // U⊕n

⊕ ⊕

U

id⊕n
U

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
⊕n

i=1(1−Ti)
// U⊕n

− id⊕n
U

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

0 1 2

In other words we have a quasi-isomorphism of complexes of Q-vector spaces:

RΓ(C,F ) ∼=
⊕n

i=1 Vi ⊕n
i=1ψi

,,❩❩❩❩❩❩
❩❩❩❩❩

❩❩❩❩⊕
U⊕n

U id⊕n
U

11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

0 1

The acyclicity of this complex is equivalent to the conditions

(a) the maps ψi : Vi → U are injective for all i = 1, . . . , n, and

(b) the map U → ⊕ni=1U/Vi is an isomorphism.

Thus the acyclicity of RΓ(C,F ) implies the perversity of F [1]. The theorem is proven.

✷

The conditions (a) and (b) from the proof of Theorem 2.29 suggest a better way of recording the linear

algebraic content of F . Namely, if we set Ui := U/Vi, then we can use (b) to identify U with ⊕ni=1Ui,
Vi with ⊕j 6=iUj and the map ψi : Vi →֒ U with the natural inclusion ⊕j 6=iUj ⊂ ⊕ni=1Ui. The only thing

left is the data of the monodromy operators Ti ∈ GL(U), i = 1, . . . , n. However for each i we have

embedding

Vi
�

� ψi //Ker

[
U

(1−Ti)−→ U

]

and so under the decomposition U = ⊕ni=1Ui the automorphism Ti has a block form

Ti =




1 0 · · · 0 T1i 0 · · · 0
0 1 · · · 0 T2i 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 Tii 0 · · · 0
0 0 · · · 0 Ti+1,i 1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 Tni 0 · · · 1



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where Ti|Ui
=
∑n

j=1 Tji, and Tji : Ui → Uj . The linear maps Tji are unconstrained except for the

obvious condition that for all i the map Ti should be invertible, which is equivalent to Tii : Ui → Ui
being invertible for all i = 1, . . . , n. Also since S was chosen to be such that C − S is the maximal

open on which F is a local system, it follows that Ui 6= {0} for all i = 1, . . . , n.

In other words we have proven the following

Lemma 2.30 Fix the set of points S = {c1, . . . , cn} and choose the discs {Di}i=n and the system

of paths {ai}ni=1. The functor assigning to a constructible sheaf F with singularities at S the data

({Ui}ni=1, {Tij}) establishes an equivalence between the groupoid of all data of type ncB(ii) with sin-

gularities exactly at S and all data of type ncB(iii) with the given S.

The bridge between the nc- de Rham and Betti data is provided as usual by the Riemann-Hilbert corre-

spondence. This is tautological but we record it for future reference:

Lemma 2.31 The de Rham functor:

M → cone

(
M ⊗C[u] Oan

A1

∂
∂u //M ⊗C[u] Oan

A1

)

establishes an equivalence between the categories (ncdR(iii)) and (ncB(i))⊗C.

Finally, note that Theorem 2.29, together with Lemma 2.31, and Deligne’s classification [20, Theo-

rem 4.7.3] of germs of irregular connections give immediately:

Lemma 2.32 The data data (ncB(ii)) and (ncB(iv)) are equivalent.

Proof. Let F be a constructible sheaf of Q-vector spaces on C. Define a local system S of Q-vector

spaces on S1 as the restriction of F to the circle “at infinity”, i.e. define the stalk of S at ϕ ∈ S1 to be

Sϕ := lim
r→+∞

Freiϕ .

Next, for any λ ∈ R and any ϕ ∈ S1 consider the half-plane

Hϕ,λ := (λ+ {u ∈ C| Re(u) ≥ 0}) · eiϕ,
as shown on Figure 3.

Now suppose thatRΓ(C,F ) = 0. By the long exact sequence for the cohomology of the pair Hϕ,λ ⊂ C
we get that H i(C,Hϕ,λ;F ) = 0 unless i = 1. The Deligne-Malgrange-Stokes filtration on S is then

given explicitly by

Sϕ,≤λ := H1(C,Hϕ,λ;F ) ⊂ Sϕ.

✷

For the purposes of nc-Hodge theory all these statements can be summarized in the following
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Figure 3: The half-plane Hϕ,λ.

Theorem 2.33 There is natural equivalence of categories




triples (H,EB ,
∼−→) satisfying

the (nc-filtration axiom)exp and

the (Q-structure axiom)exp


↔




quadruples ((H,∇),FB ,f), where

• H is an algebraic Z/2-graded vector

bundle on C and ∇ is a meromor-

phic connection on H satisfying the

(nc-filtration axiom)exp;

• FB ∈ Constr(C,Q), satisfying RΓ(C,FB) =
0;

• f is an isomorphism

f : FB ⊗C→ DR
(
Φ
[
ι∗
(
(H,∇)|A1−{0}

)])

in Db
constr(C,C)




Here as before

DR is the de Rham complex functor from the derived category of regular holonomic D-modules to the

derived category of constructible sheaves,

ι is the inclusion map ι : A1 − {0} →֒ A1 given by ι(v) = v−1, and

Φ(•) is the Fourier-Laplace transform for D-modules on A1.

Proof. Follows immediately from previous equivalences. ✷

2.4 Structure results

In this section we collect a few results clarifying the structure properties of the nc-Hodge structures

of exponential type.
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2.4.1 A quiver description of nc-Betti data Since the gluing data ncB(iii) are of essentially com-

binatorial nature, it is natural to look for a quiver interpretation of this data. To that end consider the

algebra

(2.3) A n :=

〈
p1,. . . , pn
T ,T−1

11 ,. . . ,T−1
nn

∣∣∣∣∣∣

p1 + p2 + . . . + pn = 1
pipj = pjpi for i 6= j, p2

i = pi
T−1
ii piTpi = piTpiT

−1
ii = pi

〉

This is the path algebra of the complete quiver having n ordered vertices, n2 − n arrows connecting all

pairs of distinct vertices, and 2n-loops - two at each vertex, with the only relations being that the two

loops at every given vertex are inverses to each other.

Note that our description of the gluing data ncB(iii) now immediately gives the following

Lemma 2.34 For a given set of points S = {c1, . . . , cn} ⊂ C, the category of gluing data ncB(iii)

with singularities at S is equivalent to the category of finite dimensional representations of An.

In particular since the braid group Bn on n-strands acts naturally on the data ncB(iii) we get a

homomorphism Bn → Aut(An) from the braid group to the group of algebra automorphisms of An.

2.4.2 Gluing of nc-Hodge structures It is natural to expect that the usual classification of connections

with second order poles in terms of formal regular type and Stokes multipliers can be promoted to a

similar classification of nc-Hodge structures. The search for such a classification leads naturally to the

following theorem:

Theorem 2.35 Let
{(
H,EB ,

∼−→
)}

be a nc-Hodge structure of exponential type. Then specifying
{(
H,EB ,

∼−→
)}

is equivalent to specifying the following data:

(regular type) A finite set S = {c1, . . . , cn} ⊂ C and a collection
{(

(Ri,∇i),EB,i, ∼−→i

)}n
i=1

of

nc-Hodge structures with regular singularities.

(gluing data) A base point c0 ∈ C− S, a collection of discs {Di}ni=1 and paths {ai}ni=1, chosen as in

the proof of Theorem 2.29, and for every i 6= j, i, j ∈ {1, . . . , n} a map of rational vector spaces

Tij : (EB,j)c0 −→ (EB,i)c0

Proof. It will be convenient to introduce formal counterparts to the de Rham parts of the nc-Hodge

structures appearing in the statement of the theorem. We consider the following:

formal(a) A pair (M for,∇for), where M for is a finite dimensional vector space over C((u)) and ∇for

is a meromorphic connection on M for of exponential type.
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formal(b) A finite set of points S = {c1, . . . , cn} ⊂ C and a collection {(Rfor
i ,∇for

i )}ni=1 where

each Rfor
i is a non-zero finite dimensional vector space over C((u)) and each ∇for

i is a meromorphic

connection on Rfor
i with a regular singularity.

formal(c) A finite collection of points S = {c1, . . . , cn} ⊂ C, and

• a collection U1, U2, . . . , Un of finite dimensional non-zero Q-vector spaces,

• a collection of linear maps Tii ∈ GL(Ui), for all i = 1, . . . , n,

By Remark 2.13 the natural functor from the category of data formal(b) to the category of data for-

mal(a), which is given by

(formal(b)) // (formal(a))

(
S; {(Rfor

i ,∇for
i )}ni=1

)
//
⊕n

i=1 E
ci/u ⊗ (Rfor

i ,∇for
i ) =: (M for,∇for)

is an equivalence of categories.

Also we have the following

Lemma 2.36 The categories of data formal(b) and formal(c) are naturally equivalent.

Proof. Indeed, consider the category C of all data consisting of a finite set of points

S = {c1, . . . , cn} ⊂ C and a collection {(Ri,∇i)}ni=1 where each Ri is a non-zero finite dimen-

sional vector space over C{u}[u−1] and each ∇i is a meromorphic connection on Ri with a regular

singularity and non-trivial monodromy. Then we have natural functors

(formal(b))

C

(•)⊗C((u))
99tttttttttt

mon
%%❏

❏❏
❏❏

❏❏
❏❏

❏

(formal(c))

where (•)⊗C((u)) is the passage to a formal completion and mon is given by assigning to each (Ri,∇i)
the pair (Ui, Ti), where Ui is the fiber of the Birkhoff extension B0(Ri,∇i) of (Ri,∇i) at 1 ∈ A1, and

Ti is the monodromy of B0(Ri,∇i) around the unit circle traced in the positive direction.

This proves the lemma since mon is an equivalence by the Riemann-Hilbert correspondence and

(•)⊗ C((u)) is an equivalence by the formal decomposition theorem [205, II.5.7]).

✷
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Note that these equivalences are compatible with the corresponding equivalence of analytic de Rham

data and Betti data. More precisely we have a commutative diagram of functors

(2.4) (ncdR(i)) //
OO

��

(formal(a))
OO

��
(ncB(iii)) // (formal(c))

Here the right vertical equivalence is the composition of the equivalences (formal(a)) ∼= (formal(b)) ∼=
(formal(c)) that we just discussed. The left vertical equivalence is the composition of the equiva-

lence (ncdR(i)) ∼= (ncdR(iii)) given in Lemma 2.26, the equivalence (ncdR(iii)) ∼= (ncB(i)) from

Lemma 2.31, the equivalence (ncB(i)) ∼= (ncB(ii)) given in Theorem 2.29, and the equivalence

(ncB(ii)) ∼= (ncB(iii)) from Lemma 2.30.

Horizontally we have the forgetful functors

(ncdR(i)) // (formal(a))

(M ,∇) ✤ // (M ,∇)⊗C{u}[u−1] C((u)),

and

(ncB(iii)) // (formal(c))
(
S; {Ui}ni=1, {Tij}ni,j=1

)
✤ // (S; {Ui}ni=1, {Tii}ni=1) .

Next we need the following

Lemma 2.37 Suppose that (M ,∇) is some de Rham data of type ncdR(i) and let

(M for,∇for) = (M ,∇)⊗C{u}[u−1] C((u))

be the corresponding formal data. Then:

(a) the map

(
C{u}-submodules H ⊂ M , on

which ∇ has a pole of order ≤ 2

)
(•)⊗C[[u]] //

(
C[[u]]-submodules H for ⊂ M for, on

which ∇for has a pole of order ≤ 2

)
,

is bijective.

(b) If Ψ : (M for,∇for)→⊕n
i=1 E

ci/u ⊗ (Rfor
i ,∇for

i ) is a formal isomorphism, then the map

(
C[[u]]-submodules H for ⊂ M for, on

which ∇for has a pole of order ≤ 2

) 

C[[u]]-submodules H for

i ⊂ Rfor
i , for

all i = 1, . . . , n, on which ∇for
i has a

pole of order ≤ 2


 ,

Ψ
oo

is bijective.



HODGE THEORETIC ASPECTS OF MIRROR SYMMETRY 229

Proof. (a) Pick some frame e of M over C{u}[u−1] and let H 0 := C{u} · e ⊂M be the submodule

of all sections in M that are holomorphic in this frame. Now any C{u}-submodule H ⊂ M , on

which ∇ has a pole of order ≤ 2 will be a C{u}-submodule of M which is commensurable with H 0,

i.e. we will have uNH 0 ⊂ H ⊂ u−NH 0 for N ≫ 1. However the formal completion functor

(•)⊗C{u} C[[u]] establishes an isomorphism between the Grassmanian GLr(C{u}[u−1])/GLr(C{u})
and the affine Grassmanian GLr(C((u))/GLr(C[[u]]). But this map preserves the condition that a

submodule H is invariant under ∇u2d/du which proves (a).

(b) As already mentioned in Remark 2.13 this is proven in [115, Lemma 8.2]. Alternatively we can

reason as in the proof of part (a). Let H be a C[[u]]-submodule in M for which is commensurable

with H 0,for and preserved by ∇u2 d
du

. The operator ∇u2 d
du

acts on the infinite-dimensional topological

complex vector space M for with finitely many infinite Jordan blocks with eigenvalues {c1, . . . , cn}.
The corresponding generalized eigenspaces are exactly modules Eci/uRfor

i . Hence

H
for = ⊕i

(
H

for ∩ Eci/uR
for
i

)

Therefore we obtain extensions Rfor
i with second order poles and regular singularity.

Combining the previous lemma with the equivalences in diagram (2.4) and the description of nc-Hodge

structures from Section 2.1.8 gives the theorem. ✷

2.5 Deformations of nc-spaces and gluing

In this section we will briefly examine how the gluing construction for nc-Hodge structures varies

with parameters. In particular, we will look at deformations of nc-spaces and the way the gluing data for

the nc-Hodge structures on the cohomology of these spaces interacts with the appearance of a curvature

in the d(Z/2g algebra computing the sheaf theory of the space.

2.5.1 The cohomological Hochschild complex

Suppose X = ⊕ncSpecA is a nc-affine nc-space. Recall that the cohomological Hochschild

complex is defined as

C•(A,A) :=
∏

n≥0

HomC−Vect

(
(ΠA)⊗n, A

)
,

Its shift ΠC•(A,A) is a Lie superalgebra with respect to the Gerstenhaber bracket [90], and can be in-

terpreted as the Lie algebra of continuous derivations of the free topological algebra
∏
n≥0 ((ΠA)

⊗n)
∨

.

The multiplication mA and differential dA of A combine into a cochain

γA := mA + dA ∈ C•(A,A) satisfying [γA, γA] = 0.

The formal deformation theory of X is controlled by a d(Z/2)g Lie algebra structure ΠC•(A,A)
endowed with the differential [γA, •]. It is convenient to consider also the reduced Hochschild complex

C•
red(A,A) :=

∏

n≥0

HomC−Vect

(
(Π (A/C · 1A))⊗n , A

)
,
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which is naturally a subspace of C•(A,A). The reduced complex is (after the parity change) a dg Lie

subalgebra in ΠC•(A,A). Moreover it is quasi-isomorphic to ΠC•(A,A). Hence, for deformation

theory purposes one can replace ΠC•(A,A) by ΠC•
red(A,A).

Let γ =
∑

i≥1 γit
i ∈ tCeven

red (A,A)[[t]] be a formal path consisting of solutions of the Maurer-

Cartan equation, i.e.

dγ +
1

2
[γ,γ ] = 0 (⇔ [γ + γA,γ + γA] = 0 ) .

Such a solution defines so called formal deformation of the d(Z/2)g algebra A as a weak (or curved)

A∞-algebra (see e.g. [165] for the definition and [213] for a more detailed analysis). We can use the

cochain γ + γA ∈ Ceven(A,A)[[t]] to twist the notion of an A-module. We will write Aγ for the

(weak) A∞-algebra over C[[t]] corresponding to A and γ + γA and (Aγ − mod) for the C[[t]]-linear

dg category of all modules over Aγ . By definition (Aγ − mod) is the category of dg modules over

a bar-type resolution of Aγ [159]. As an algebra the relevant bar dg algebra is the completed tensor

product

(2.5)
∏

n≥0

(
(ΠA)⊗n

)∨ ⊗̂C[[t]]

where the algebra structure comes from the usual algebra structure on C[[t]] and the tensor algebra

structure on
∏
n≥0 ((ΠA)

⊗n)
∨

. Thus for every γ ∈ tCeven
red (A,A)[[t]] which solves the Mauer-Cartan

equation we get a differential γ + γA on the graded algebra (2.5). The bar dg algebra of Aγ is now

defined as the dg algebra

Bγ :=


∏

n≥0

(
(ΠA)⊗n

)∨ ⊗̂C[[t]],γ + γA


 .

The dg category (Aγ −mod) is by definition the category of dg modules over Bγ which are topologi-

cally free as modules of the underlying algebra, i.e. after forgetting the differential, and also satisfying

the condition of unitality at t = 0.

As before this category can be viewed as the category CXγ := (Aγ − mod) of quasi-coherent

sheaves on a nc-affine nc-space Xγ → D defined over the formal disc D = Spf(C[[t]]). More generally

we will get a nc-space X over the formal scheme of solutions to the Maurer-Cartan equation and Xγ →
D is the restriction of X to the formal path γ + γA sitting inside that formal scheme.

Similarly we can use γ to twist the notion of a Hochschild cohomology class for A. Namely we can

consider the Hochschild cohomology of the A∞-algebra Aγ . It is given explicitly as the cohomology

HH•
γ(A) := H• (C•(A,A)[[t]], [ γ + γA, •]) ,

and is a commutative algebra with respect to the cup product. Note also that the algebra HH•
γ(A) comes

equipped with a unit [1A] and a distinguished even element [γ + γA], i.e. a structure similar to the one

discussed in Section 2.2.5.

Remark 2.38 • If γ has no component of degree zero, i.e. if

γ ∈ tCeven
red,+(A,A)[[t]], where C•

red,+(A,A) =
∏

n≥1

HomC−Vect

(
(Π (A/C · 1A))⊗n , A

)
,
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then Aγ is an honest (strong) A∞-algebra, and the category (Aγ −mod) will typically have many in-

teresting objects. Furthermore, in this case smoothness and compactness are stable under deformations.

That is, if A is smooth (respectively compact) over C, then Aγ is smooth (respectively compact) over

C[[t]].

• If the n = 0 component of γ is non-trivial, i.e. if the corresponding A∞ structure has a non-trivial

m0, then the category (Aγ − mod) may have no non-zero objects. The basic example of this is when

A = C and γ = t · 1A.

If the original algebra A has the degeneration property, then it is easy to see that the Hodge-to-de Rham

spectral sequence will degenerate for the periodic cyclic homology of Aγ . In other words the formal

nc-space X will give rise to a variation of nc-Hodge structures over the formal scheme of solutions of

the Maurer-Cartan equation for A. When we have a non-trivial n = 0 component in γ this may lead to

a paradoxical situation in which we have a family of nc-spaces over D which has no sheaves over the

generic point but has non-trivial de Rham cohomology (i.e. periodic cyclic homology) generically. This

suggests the following important

Question 2.39 What is the geometrical meaning of HH•
γ(A), HH•(Aγ), HH

−
• (Aγ), and HP•(Aγ),

when γ has non-trivial n = 0 component and the objects of (Aγ −mod) dissapear over D×?

Remark 2.40 Note that if γ solves the Maurer-Cartan equation, then for any c ∈ tC[[t]], the cochain

γ + c · 1A will also solve the Maurer-Cartan equation1 . So we have a natural mechanism for modifying

formal paths of solutions of the Maurer-Cartan equation. We will exploit this mechanism in the next

section.

2.5.2 Corrections by constants

The unpleasant phenomenon of having nc-spaces with no sheaves and non-trivial cohomology at

the generic point is related to the gluing description for nc-Hodge structures. The idea is that the A-

modules that dissapear at the generic point of D may reappear again if we modify the weak A∞ algebra

Aγ appropriately. The periodic cyclic homologies of the different admissible modifications of Aγ then

correspond to the regular pieces in the gluing description of the nc-de Rham data given by HP•(Aγ).
More precisely we have the following

Conjecture 2.41 Suppose that A is a smooth and compact d(Z/2)g algebra. Let γ ∈ tCeven
red (A,A)[[t]]

be a formal even path of solutions of the Maurer-Cartan equation for A. Then the periodic cyclic

homology HP• (Aγ) carries a canonical functorial structure of a variation of Q-nc-Hodge structures

1In fact this is the main reason for all the hassle with the unit and the reduced complex in this section.
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of exponential type over D = Spf(C[[t]]). Furthermore there exists a positive integer N and a finite

collection of pairwise distinct Puiseux series

ci =
∑

j≥1

ci,jt
j
N , ci,j ∈ C

such that:

• The series ci are the distinct eigenvalues of the operator of mutiplication by the class [γ + γA]
in the supercommutative algebra HH•

γ(A)⊗̂C[[t]]C((t)).

• For each i the category (Aγ+ci·1A −mod) is a non-trivial C
[[
t1/N

]]
-linear d(Z/2)g category

which are smooth and compact over C
[[
t1/N

]]
and is computed by a d(Z/2)g algebraBi defined

over C
[[
t1/N

]]
and quasi-isomorphic to the (weak) A∞-algebra Aγ+ci·1A .

• The Hochschild homologies HH•(Bi) are flat C
[[
t1/N

]]
-modules and we have

∑

i

rkC[[t1/N ]](HH•(Bi)) = rkC[[t1/N ]]HH• (Aγ) = dimCHH•(A).

• The variation of nc-Hodge structures HP• (Aγ) viewed as a variation over C
[[
t1/N

]]
has as

regular constituents the variations of nc-Hodge structures on HP•(Bi) whose existence is pre-

dicted by Conjecture 2.24.

In particular Conjecture 2.41 says that the categorical and Hodge theoretic content of the algebra Aγ

consists of the following data:

(categories) A finite collection of smooth and compact C
[[
t1/N

]]
-linear d(Z/2)g categories (Bi −

mod).

(gluing) A finite collection of distinct Piuseux series ci ∈ C
[[
t1/N

]]
, and formal nc-gluing data which

glues the variations of regular nc-Hodge structures on HP•(Bi) into a variation of nc-Hodge

structure of exponential type over C
[[
t1/N

]]
.

In the above discussion we have tacitly replaces the analytic setting from Section 2.3 by a formal setting.

One can check that both the de Rham and Betti data make sense here, e.g. one can speak about homotopy

classes of non-intersecting paths to points ci thinking about t as a small real positive parameter.

Remark 2.42 This situation is analogous to a well known setup in singularity theory. Namely, if we

have a germ of an isolated hypersurface singularity given by an equation f = 0, and if we have a

deformation of f which has several critical values, then the Milnor number of the original singularity is

equal to the sum of the Milnor numbers of the simpler critical points of the deformed function. In fact,

as we will see in section 3.2 the singularity setup is a rigorous manifestation of the above conjectural

picture.
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2.5.3 Singular deformations Suppose next that A is compact but not smooth (or smooth but non-

compact) d(Z/2)g algebra and let again γ ∈ tCeven
red (A,A)[[t]] be a formal path of solutions of the

Maurer-Cartan equation. We expect that the usual definition of smoothness and compactness can be

modified to give a notion of smoothness together with compactness of Aγ at the generic point, i.e. over

C((t)), even when the objects in (Aγ −mod) dissapear over C((t)).
In the case when Aγ is smooth and compact over C((t)), i.e. when the deformation given by γ is

a smoothing deformation, we also expect Conjecture 2.41 to hold at the generic point. More precisely,

we expect to have Puiseux series ci as above for which the associated categories (Aγ+ci1A −mod) are

non-trivial and smooth and compact over C
((
t1/N

))
. We also expect that the periodic cyclic homology

HP• (Aγ) is equipped with a variation of nc-Hodge structures of exponential type over C((t)) so

that the periodic cyclic homologies of the categories (Aγ+ci1A −mod) are the regular pieces of this

variation after we base change to C
((
t1/N

))
. Finally, the Puiseux series {ci} should be the eigenvalues

of the operator of multiplication by [γ + γA] ∈ HH• (Aγ) ⊗̂C[[t]]C((t)).

3 Examples and relation to mirror symmetry

In this section we discuss examples of nc-Hodge structures arising from smooth and compact

Calabi-Yau geometries and we study how these structures are affected by mirror symmetry. Specifically

we look at a generalization of Homological Mirror Symmetry which relates categories of boundary topo-

logical field theories (or D-branes) associated with the following two types of geometric backgrounds:

A-model backgrounds: Pairs (X,ω), where X is a compact C∞-manifold, and ω is a symplectic form

on X satisfying a convergence property (see below).

B-model backgrounds: Pairs w : Y → disc ⊂ C, where Y is a complex manifold with trivial canoni-

cal class, and w is a proper holomorphic map.

We will explain how each such background (both in the A and the B model) gives rise to the geometric

and Hodge theoretic data described in Section 2.5.2. Namely we get:

• A finite collection {ZA/Bi } of smooth compact nc-spaces. In fact {ZA/Bi } will be (see Sec-

tion 4.4.1 for the definition) odd/even Calabi-Yau nc-spaces of dimension
(
dimRX

2 mod 2
)/

(dimC Y mod 2).

• Complex numbers c
A/B
i and Betti gluing data

{
T
A/B
ij

}
for the regular nc-Hodge structures on

the periodic cyclic homology of Z
A/B
i .

In particular the data
(
HC−

•

(
ZAi
)
,
{
cAi
}
,
{
TAij

})
and

(
HC−

•

(
ZBi
)
,
{
cBi
}
,
{
TBij

})
each glue into

a nc-Hodge structure of exponential type. The generalized Homological Mirror Symmetry Conjec-

ture now asserts that if two A/B-model backgrounds (X,ω)/(Y,w) are mirror to each other, then the

associated nc-geometry and nc-Hodge structure packages are isomorphic:
(
ZAi ,

{
cAi
}
,
{
TAij
}) ∼=

(
ZBi ,

{
cBi
}
,
{
TBij
})
.



234

3.1 A-model Hodge structures: symplectic manifolds

Suppose (X,ω) is a compact symplectic manifold of dimension dimRX = 2d. In the case when

X is a Calabi-Yau variety (in particular c1(X) = 0) one has a family of superconformal field theories

attached to X in the large volume limit (i.e. after the rescaling ω → ω/~ where 0 < ~ ≪ 1), and

the A-twist gives a topological quantum field theory (see [121]). In mathematical terms it means that

we have Gromov-Witten invariants and a Z-graded Fukaya category associated to (X,ω/~). One the

other side, Gromov-Witten invariants can be defined for an arbitrary compact symplectic manifold, not

necessarily the one with c1(X) = 0. Our goal in this section is to describe what is an analog of the

Fukaya category for general (X,ω).
Namely, it is expected that for (X,ω) of large volume the Fukaya category of (X,ω) is a weak

Z/2-graded A∞-category which will satisfy the generalized smoothness and compactness properties

conjectured in Section 2.5.3. Briefly this should work as follows. Following Fukaya-Oh-Ohta-Ono [81]

consider a finite collection L = {Li} of transversal oriented spin Lagrangian submanifolds in X and

form a “degenerate” version FukL of Fukaya’s category which only involves the Li. More precisely we

take Ob (FukL) = {Li}, and define

HomFukL (Li, Lj) =

{
CLi∩Lj , i 6= j,

A•(Li,C), i = j.

Here CLi∩Lj is taken with the ordinary algebra structure but is put in degree equal to the Maslov grading

mod 2, and A•(Li,C) is the dg algebra of C∞ differential forms on Li.
We consider a 1-parameter family of symplectic manifolds

(3.1)
(
X,

ω

~

)
, ~ ∈ R>0, ~→ 0.

It will be convenient to introduce a new parameter q := exp(−1/~) (note that q → 0 when ~ → 0).

Denote by Cq the usual Novikov ring:

Cq :=

{
∞∑

i=0

aiq
Ei

∣∣∣∣
formal series where ai ∈ C and Ei ∈ R
with limi→∞Ei = +∞.

}

In the case [ω] ∈ H2(X,Z) one can replace the Novikov ring Cq by more familiar algebra C((q)) of

Laurent series. The three-point genus zero Gromov-Witten invariants of the symplectic family (3.1)

give rise (see e.g. [155],[168],[223], [65],[85]) to a Cq-valued (small) quantum deformation of the cup

product on H•(X,C):
∗q : H

•(X,C)⊗2 → H•(X,C)⊗ Cq

Conjecturally the series for the quantum product is absolutely convergent for sufficiently small q.

What is constructed in [81] is a solution γ of the Maurer-Cartan equation in the cohomological

Hochschild complex of FukL with coefficients in the series in Cq with strictly positive exponents (equal

to the areas of non-trivial pseudo-holomorphic discs). The meaning of the quantum product is the cup-

product in the Hochschild cohomology of the deformed weak category.

The dZ/2g category FukL over Cq is compact but not smooth. If the collection L is chosen to be big

enough, i.e. if it generates the full Fukaya category, then FukL is the large volume limit of Fuk(X,ω),
i.e. the limit in which all disc instantons for ω are supressed.
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Now the formalism of Section 2.5.3 should associate with FukL = (A −mod) and γ a finite col-

lection {ci} of formal series in positive powers of q and a collection {Fuki} of non-trivial smooth and

compact modifications of the Fukaya category whose Hochschild homologies are the regular singularity

constitutents of the Hochschild homology of the q-family of Fukaya categories near the large volume

limit. In this geometric context, we expect that the {ci} are the eigenvalues of the quantum multipli-

cation operator c1(TX) ∗q (•) acting on H•(X,C) ⊗ C[[u]]. Some evidence for this comes from the

observation that when c1(TX) vanishes in H2(X,Z), then the Fukaya category is Z-graded thus is a

fixed point of the renormalization group. There is also a more explicit direct argument identifying the

class c1(TX) with the infnitesimal generator of the renormalization group, but we will not discuss it

here.

The formalism of Section 2.5.3 now predicts that the periodic cyclic homology of the Fukaya cat-

egory, which additively should be the same as the de Rham cohomology of X, should carry a natural

nc-Hodge structure satisfying the degeneration conjecture from Section 2.2.4. This expectation is sup-

ported by ample evidence coming from mirror symmetry for Calabi-Yau complete intersections. Here

we present further evidence by describing a natural nc-Hodge structure on the de Rham cohomology of

a symplectic manifold and by showing that as ω approaches the large volume limit this structure fits in

a natural variation of nc-Hodge structures.

Using the quantum product ∗q we will attach to (X,ω) a variation ((H ,∇),EB , ∼−→) of nc-Hodge

structures over a small disc {q ∈ C| |q| < r} in the q-plane. First we describe the nc-Hodge filtration

(H ,∇) and its variation in the q-direction:

• H := H•(X,C)⊗ C{u, q} and

H
0 :=

(
⊕

k=dmod 2

Hk(X,C)

)
⊗ C{u, q}

H
1 :=

(
⊕

k=d+1mod 2

Hk(X,C)

)
⊗ C{u, q}

• ∇ is a meromorphic connection on H with poles along the coordinate axes u = 0 and q = 0,

given by

∇ ∂
∂u

:=
∂

∂u
+ u−2 (κX ∗q •) + u−1Gr,

∇ ∂
∂q

:=
∂

∂q
− q−1u−1 ([ω] ∗q •) ,

where:

κX ∈ H2(X,Z) denotes the first Chern class of the cotangent bundle of X computed w.r.t. any

ω-compatible almost complex structure, and

Gr : H →H is the grading operator defined to be Gr|Hk(X,C) :=
k−d
2 idHk(X,C).
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The data (H ,∇) define a q-variation of (the de Rham part of) nc-Hodge structures. Defining the Q-

structure is much more delicate. To gain some insight into the shape of the rational local system EB one

can look at the monodromy in the q direction of the algebraic bundle with connection

(H,∇)|(A1−{0})×{q∈C| |q|<R}, (H,∇) = Balong u((H ,∇)).

In some cases the fact that EB should be preserved by∇ and the Stokes filtration is rational with respect

to EB is enough to determine EB completely:

Proposition 3.1 Let X = CPn−1 and let ω be the Fubini-Studi form. Let (H,∇) be the holomorphic

bundle with meromorphic connection on (A1 − {0}) × {q ∈ C| |q| < R} defined above. Let ψ ∈ H be

a holomorphic section which is covariantly constant with respect to∇. Then

(a) For every u 6= 0, ψ 6= 0 the limit (in a sector of the q-plane)

ψcl(u) = lim
q→0

(
exp

(
− log(q)

u
([ω] ∧ (•))

))
ψ

exists. Furthermore, ψcl satisfies the differential equation

(
d

du
+ u−2κX ∧+u−1Gr

)
ψcl = 0.

(b) The vector

ψconst(u) := exp(log(u)Gr) exp

(
log(u)

u
κX ∧ (•)

)
ψcl ∈ H•(X,C)

is independent of u.

(c) Define the rational structure EB ⊂ H∇ as the subsheaf of all covariantly constant sections ψ for

which the vector ψconst ∈ H•(X,C) belongs to the image of the map

H•(X,Q)
d //H•(X,C)

Γ̂(X)∧(•) //H•(X,C),

where d ∈ GL(H•(X,C)) is the operator of multiplication by (2πi)k/2 on Hk(X,C), and Γ̂(X)
is a new characteristic class of X defined as

Γ̂(X) := exp


Cch1(TX) +

∑

n≥2

ζ(n)

n
chn(TX)


 ,

where

C = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− ln(n)

)

is Euler’s constant, and ζ(s) is Riemann’s zeta function.
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Then the inclusion EB ⊂ H∇ is compatible with Stokes data, i.e. the rational structure EB satisfies

(Q-structure axiom)exp.

The calculation presented below was known already to B.Dubrovin [70, Section 4.2.1], where he also

obtained a Taylor expansions of a power of a Gamma function in quantum cohomology, although he did

not identify it with a characteristic class.

Proof of Proposition 3.1. In the standard basis {1, h, h2, . . . , hn−1} of H•(Pn−1,C) the connection ∇
on H is given by

∇∂
∂u

=
∂

∂u
+ u−2




0 nq
n 0

. . .
. . .

n 0


+ u−1




1−n
2 0

. . .

. . .

0 n−1
2




∇∂
∂q

=
∂

∂q
− q−1u−1




0 q
1 0

. . .
. . .

1 0


 ,

If ψ =
∑n

i=1 ψih
i−1 is a local section of H , a straightforward check shows that the condition on ψ to

be ∇-horizontal is solved by the following ansatz:

ψn = u
1−n
2

∫

Γu,q

exp(F)
n−1∏

i=1

dzi
zi

ψn−1 =

(
uq

∂

∂q

)
ψn

ψn−2 =

(
uq

∂

∂q

)2

ψn

· · ·

ψ1 =

(
uq

∂

∂q

)n−1

ψn.

Here F is the function on (C×)n−1 with coordinates z1, . . . , zn−1 depending on parameters u, q 6= 0
and given by

F(z1, z2, . . . , zn−1;u, q) := u−1

(
z1 + z2 + . . . zn−1 +

q

z1z2 . . . zn−1

)
.
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The integral is taken over some fixed (n − 1)-dimensional semi-algebraic non-compact cycle Γu,q in

(C×)n−1 (depending on the parameters u,q) which is going to infinity in directions where Re(F) →
−∞.

More generally, the domain of integration Γu,q used for defining ψn can be taken to be a (n − 1)-
dimensional rapid decay homology chain in (C×)n−1. The rapid decay homology cycles on smooth

complex algebraic varieties are the natural domains of integration for periods of cohomology classes

of irregular connections. The rapid decay homology was introduced and studied by Hien [116], [117],

following previous works of Sabbah [204] and Bloch-Esnault [31]. In particular by a recent work of

Mochizuki [187], [188] and Hien [117] it follows that (after a birational base change) taking periods

induces a perfect pairing between the de Rham cohomology of an irregular connection and the rapid

decay homology. This powerful general theory is not really needed in our case where the manifold is

the affine algebraic torus (C×)n−1 but it does provide a useful perspective.

Explicitly the non-compact cycles that we will use to generate horizontal sections of (H,∇) will be

the (n − 1)-dimensional relative cycles for a pair (X , Z) constructed as follows. Start with a smooth

projective compactification X of (C×)n−1 with a normal crossing boundary divisor D which is adapted

to F in the sense that if u and q are nonzero, the divisors of zeroes and poles of F in X do not intersect

with each other, and locally at points of D the function F can be written as a product of an invertible

holomorphic function and a monomial in the local coordinates. Let X be the real oriented blow-up of

X along the divisor D. Now consider the real boundary ∂X of X , i.e. the union of all the boundary

divisors of the real oriented blow-up. The boundary ∂X contains a natural open real semi-algebraic

subset Z ⊂ ∂X consisting of all points b ∈ ∂X , such that |F(z;u, q)| → ∞ when z → b, and for

points z ∈ t(C×)n−1 near b the argument of F(z;u, q) lies strictly in the left half-plane of C. Note

that the real blow-up X has the same homotopy type as X −D = (C×)(n−1) and so relative cycles on

(X , Z) can be thought of as non-compact cycles on (C×)(n−1). Moreover since Z is defined by our

condition on the argument of F , it follows that relative cycles with boundaries in Z give rise to well

defined integrals of exp(F)∏ z−1
i dzi.

Next observe the integrals over relative cycles with integral coefficients, i.e. elements inHn−1(X , Z;Z)
give rise to a covariantly constant integral lattice in the bundle (H,∇). Furthermore the Deligne-

Malgrange-Stokes filtration is integral with respect to this lattice. Indeed if we fix a real number λ,

then whenever Re (F) < λ · |u|−1, it follows that | exp(F)| < exp(λ · |u|−1) when u→ 0. Hence the

steps of the Deligne-Malgrange-Stokes filtration of (H,∇) are easy to describe in this language: they

correspond to periods of exp(F)∏ z−1
i dzi on relative cycles on (X , Z) whose boundary is contained

in half-planes of the form Re(F) < const. The periods over cycles with integral coefficients and the

same boundary property then give a full integral lattice in each such step.

Now to finish the proof of the proposition we have just to calculate the limiting lattice (which is

independent of u and q) consisting of vectors ψconst ∈ H•(X,C) defined in terms of ψ by the formula

in part (b) of the statement of the proposition.

For a general ∇-horizontal local section ψ =
∑n

i=1 ψih
i−1 in a sector at 0 in the q-plane (for given

u 6= 0) one has an asymptotic expansion of ψ at q → 0 given by:

(3.2) ψn =
n−1∑

i=0

ai(u)(log q)
i +O(q(log q)n) + . . . ,

Then we have that the “classical limit” (at q → 0 where the quantum multiplication becomes classical)
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is given by

ψcl(u) =




(n− 1)!un−1an−1(u)
(n− 2)!un−2an−2(u)

...

0!u0a0(u)


 .

Now we restrict to the case where all variables are real, u < 0, q > 0 and the contour of integration

being the positive octant {(z1, . . . , zn) ∈ Cn| zi > 0 ∀i}.
Function ψn = ψn(u, q) decays exponentially fast at q → +∞ for a given u < 0, hence one can

extract its asymptotic expansion at q → 0 through the Mellin transform:

+∞∫

0

ψnq
s dq

q
=

∞∑

i=0

ai(u)
i!(−1)i
si+1

+O(1), s→ 0.

This integral can be calculated explicitly

+∞∫

0

ψnq
s dq

q
= u

1−n
2

+∞∫

0

· · ·
+∞∫

0︸ ︷︷ ︸
n times

dq

q

n−1∏

i=1

dzi
zi

exp

(
u−1

(
z1 + z2 + . . . zn−1 +

q

z1z2 . . . zn−1

))
qs

= u
1−n
2

+∞∫

0

· · ·
+∞∫

0︸ ︷︷ ︸
n−1 times

n−1∏

i=1

dzi
zi

exp

(
u−1

n−1∑

i

zi

)

·
∫ +∞

0
exp

(
q

uz1z2 . . . zn−1

)
qs
dq

q︸ ︷︷ ︸
||

Γ(s)(−uz1z2...zn−1)s

= u
1−n
2 (−u)sΓ(s)

∫ +∞

0
· · ·
∫ +∞

0

n−1∏

i=1

(
dzi
zi
zsi exp

zi
u

)

= u
1−n
2 (−u)sΓ(s) ((−u)sΓ(s))n−1

= u
1−n
2 (−u)nsΓ(s)n.

The conclusion is that the chosen branch ψcl(u) is completely defined by the expansion

u
1−n
2 (−u)nsΓ(s)n =

ψcl,n(u)

(−u)0s +
ψcl,n−1(u)

(−u)1s2 + · · · + ψcl,1(u)

(−u)n−1sn
+O(1), s→ 0

Furthermore, all the other branches can be obtained by acting on the branch we know by the monodromy
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transformations (around q = 0)

(2π
√
−1)i
ui




0 0
1 0

. . .
. . .

1 0




i

,

for i = 0, . . . , n− 1.

Section ψcl satisfies the differential equation
(
d

du
+ u−2κX ∧+u−1Gr

)
ψcl = 0.

which is the classical limit (at q → 0) of the equation

∇∂
∂u
(ψ) = 0

One can check that the operator d
du + u−2κX ∧+u−1Gr can be written as

exp

(
− log(u)

u
κX ∧ (•)

)
exp(− log(u)Gr) ◦ d

du
◦ exp(log(u)Gr) exp

(
log(u)

u
κX ∧ (•)

)

This follows from the commutation relation

[κX ∧ (•),Gr] = −κX ∧ (•)

Finally, in the above formulas one can replace log(u) by log(−u) (and also u
1−n
2 by (−u) 1−n

2 with

principal values at the domain u < 0. Having this modification in mind, we conclude that the vector

ψconst = ψconst(u) := exp(log(−u)Gr) exp

(
log(−u)

u
κX ∧ (•)

)
ψcl ∈ H•(X,C)

is independent of u, and in particular it coincides with ψcl(−1), as for u = −1 the correction matrices

relating ψconst(u) and ψcl(u) are identity matrices. Therefore the vector ψconst is given by Taylor

coefficients

ψconst,1s
0 + · · ·+ ψconst,ns

n−1 = snΓ(s)n +O(sn) = Γ(1 + s)n +O(sn)

We see that ψconst ∈ H•(X,C) (after rescaling by operator d from the Proposition) with the value of

the multiplicative characteristic class associated with the series Γ(1 + s) = 1 +O(s) ∈ C[[s]] and the

tangent bundle TX , because [TX ] = n[O(1)] − [O] for X = CPn, and by the classical expansion

log(Γ(1 + s)) = Cs+
∑

k≥2

ζ(k)

k
sk

The action of the monodromy corresponds (up to torsion) to the multiplication by κX ∈ H•(X,Z). ✷

The previous proposition suggests the following general definition:
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Definition 3.2 The rational structure on (H,∇) is the local subsystem EB ⊂ H|A1−{0} of multivalued

∇-horizontal sections whose values at 1 belong to the image of

H•(X,Q)
d //H•(X,C)

Γ̂(TX)∧(•) //H•(X,C),

where d ∈ GL(H•(X,C)) is the operator of multiplication by (2πi)k/2 on Hk(X,C), and Γ̂(TX) is a

new characteristic class of X defined as

Γ̂(TX) :=

d∏

i=1

Γ(1 + λi),

where Γ(s) is the classical gamma function and λi are the Chern roots of TX computed in any ω-

admissible almost complex structure.

Remark 3.3 Apart from the calculation in Proposition 3.1 there are a few other (loose) motivations for

this definition:

• The class Γ̂ appears in the context of deformation quantization in the work of the second author [153,

Section 4.6].

• The number χ(X)ζ(3) appears in the mirror formula for the quintic threefold.

• Golyshev’s description [93], [94] of the nc-motives associated with the Landau-Ginzburg mirror of a

toric Fano involves similar hypergeometric series.

• The same class Γ̂ was derived and a definition similar to Definition 3.2 was proposed in the recent

work of Iritani [123] for the case of toric orbifolds by tracing out the mirror image of rational structure

of the mirror Landau-Ginzburg model.

Conjecture 3.4 The triple (H,EB ,
∼−→) associated above with a symplectic manifold (X,ω) is a varia-

tion of nc-Hodge structures of exponential type.

Remark 3.5 (i) In general it is not clear if the (Q-structure axiom)exp holds in this case. It does hold

trivially in the graded case, i.e. when X is a Calabi-Yau.

(ii) At the moment the “exponential type” part of the conjecture is not supported by any evidence

beyond the graded case in which the nc-Hodge structure is regular. It is possible that for non-Kähler

symplectic manifolds the nc-Hodge structure on the de Rham cohomology is not of exponential type.
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3.2 B-model Hodge structures: holomorphic Landau-Ginzburg models

Suppose we have an algebraic map w : Y → C, where Y is a smooth quasi-projective manifold and

w has a compact critical locus crit(w) ⊂ Y . Let S = {c1, . . . , cm} ⊂ C denote the critical values of w.

A pair (Y,w) like that is called a holomorphic Landau-Ginzburg model and often arises (see e.g.

[122, 121]) as the mirror of a symplectic manifold underlying a hypersurface, or a complete intersection

in a toric variety. Remarkably the pair (Y,w) give rise to a natural nc-space nc(Y,w). The category

Cnc(Y,w) can be described in two equivalent ways (in fact these descriptions are valid even if the critical

locus of w is not compact). First note that it is enough to define ⊕PerfCnc(Y,w)
since that the category

Cnc(Y,w) can be thought of as the homotopy colimit completion of ⊕PerfCnc(Y,w)
. For the latter we have

two models:

⊕PerfCnc(Y,w)
as a category of matrix factorizations: This model was proposed originally by the sec-

ond author as a mathematical description of the category of D-branes and was subsequently

studied extensively in the physics and mathematics literature, see [134, 135] and [194, 196, 195].

A matrix factorization on (Y,w) is a pair
(
E = E0 ⊕ E1, dE ∈ End(E)opp

)
, where

E is a Z/2-graded algebraic vector bundle on Y , and

dE is an odd endomorphism satisfying d2E = w · idE .

In the case when Y is affine the Z/2-graded complex Hom((E, dE), (F, dF ) of homomorphisms

between two matrix factorizations is defined as Hom((E, dE), (F, dF ) := (Hom(E,F ), d) where

for a ϕ : E → F we have dϕ := ϕ ◦ dE − dF ◦ ϕ. For general Y the same definition works

if we replace Hom(E,F ) by some acyclic model, e.g. if we use the Dolbeault resolution. The

resulting category MF(Y,w) of matrix factorizations is a C-linear d(Z/2)g category. We define

⊕PerfCnc(Y,w)
to be the derived category Db(MF(Y,w)) of the category of matrix factorizations.

To construct Db(MF(Y,w)) one notes that in addition to being a d(Z/2)g category MF(Y,w)
can also be viewed as a curved d(Z/2)g category with central curvature w (see e.g. [199] for the

definition) or as a Z/2-graded weak A∞-category, i.e. an A∞ category with an m0-operation

given by w (see e.g. [213], [165] for the definition). In particular we can form the associated

homotopy category (in the A∞-sense) which by definition will be the derived category of matrix

factorizations.

Alternatively, one can use the following two step construction proposed by Orlov. First we pass

to the homotopy category of MF(Y,w), i.e. we consider the category whose objects are matrix

factorizations and whose morphisms are given by the quotient of Hom((E, dE), (F, dF )) by ho-

motopy equivalences. Next (following the standard wisdom) we need to quotient Ho(MF(Y,w))
by the subcategory of acyclic factorizations. Since the matrix factorizations are not complexes,

they do not have cohomology and so we can not define acyclicity in the usual way. But there

is another point of view on acyclicity. If we have a short exact sequence of usual complexes,

then the total complex of this diagram will be an acyclic complex. So we define acyclic matrix

factorizations as the total matrix factorization of an exact sequence of factorizations. With this

definition we get a thick subcategory in the homotopy category Ho(MF(Y,w)) matrix factoriza-

tions and then we can pass to the Serre quotient of Ho(MF(Y,w)) by this thick subcategory. We

set Db(MF(Y,w)) to be this Serre quotient.
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⊕PerfCnc(Y,w)
as a category of singularities: This model was proposed originally by D. Orlov as an

alternative to the matrix factorization description which is localized near the critical set of w.

Orlov proved the equivalence of the two models, various versions of the localization theorem,

and proved several duality statements relating derived categories of singularities to other familiar

categories [194, 196, 195].

Suppose Z is a quasi-projective complex scheme. The derived category Db
Sing(Z) of singulari-

ties of Z is defined as the quotient

Db
Sing(Z) := Db(Coh(Z))/⊕PerfZ

of the (dg enhancement of the) bounded derived category Db(Coh(Z)) of coherent sheaves

on Z by the thick subcategory of perfect complexes on Z . The syzygy theorem implies that

Db
Sing(Z) = 0 whenever Z is smooth and so Db(Coh(Z)) can be thought of as an invariant of

the singularities of Z .

If now w : Y → C is a holomorphic Landau-Ginzburg model we write Yc for the fiber w−1(c) and set

⊕PerfCnc(Y,w)
:= Db

Sing(Y0).

Note that if 0 ∈ A1 is not a critical value of w, then with this definition we will get ⊕PerfCnc(Y,w)
= 0.

In order to get non-trivial categories we will use the critical values S = {c1, . . . , cn} to shift the

potentail w ///o/o/o w − ci and associate with nc(Y,w) honest categories ⊕Perf i := ⊕PerfCnc(Y,w−ci)
=

Db
Sing(Yci). Conjecturally, these categories are smooth and compact.

Mirror symmetry suggests that the nc-space nc(Y,w) gives rise to the B-model geometric and Hodge

theoretic data described in Section 2.5.2, and in particular that the periodic cyclic homology of Cnc(Y,w)

carries a canonical nc-Hodge structure. In fact we have already described the geometric part of the data,

namely the numbers {ci} and the categories {⊕Perf i}. These data of course fix the regular type (in the

sense of Theorem 2.35) of the nc-Hodge structure but we are still missing the gluing data. Here we

propose a construction of the Hodge structure on the periodic cyclic homology of Cnc(Y,w) but similarly

to the A-model we have to rely on the actual geometry of (Y,w) in order to produce the gluing data.

At present it is not clear if the gluing data can be reconstructed from the category Cnc(Y,w) or more

generally from its one parameter deformation.

First we discuss the appropriate cohomologies of the Landau-Ginzburg model. Let

H
•
for := H•

DR((Y,w);C)

= H• mod 2
Zar (Y, (Ω•

Y [[u]], udDR + dw∧))

be the Z/2-graded C[[u]]-module of algebraic de Rham cohomology of the potential w. In the case

when crit(w) is compact, the C[[u]]-module H •
for is known to be free by the work of Barannikov and

the second author (unpublished), Sabbah [203], or Ogus-Vologodsky [191]. This implies the following
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Lemma 3.6 Assume that Y is quasi-projective and the critical locus of w is compact. Then we have:

(i) The fiber of H •
for at u = 0 is the algebraic Dolbeault cohomology

H•
Zar (Y, (Ω

•
Y , dw∧)) ∼= H•

an (Y, (Ω
•
Y , dw∧))

of the potential w.

(ii) There is a canonical isomorphism

H•
Zar (Y, (Ω

•
Y [[u]], udDR + dw∧)) ∼= H•

an (Y, (Ω
•
Y [[u]], udDR + dw∧))

(iii) If the map w is proper then H •
for is the formal germ at u = 0 of an algebraic vector bundle on

the affine line

H
•
alg := H• mod 2

Zar (Y, (Ω•
Y [u], udDR + dw∧))

Proof. The cohomology sheaves of the complex (Ω•
Y , dw∧) are supported on the critical locus of w

and so, by our compactness assumption, must be coherent sheaves on Y both in the analytic and in the

Zariski topology. The hypercohomology spectral sequence then implies that the hypercohomology of

the complex (Ω•
Y , dw∧) is finite dimensional and the spectral sequence associated with the filtration

induced by multiplication by u implies that H•
Zar/an (Y, (Ω

•
Y [[u]], udDR + dw∧)) is a finite rank C[[u]]-

module. Furthermore, the same spectral sequence implies that

dimC((u)) H
•
Zar/an (Y, (Ω

•
Y ((u)), udDR + dw∧)) ≤ dimCH•

Zar/an (Y, (Ω
•
Y , dw∧)) .

The freeness statement of Barannikov and the second author (see e.g. [203]) now gives that these two

dimensions are equal and so H•
Zar (Y, (Ω

•
Y [[u]], udDR + dw∧)) is a free finite rank module over C[[u]].

This proves part (i) of the lemma.

For part (ii) we only need to notice that the two spaces in question are computed by spectral se-

quences associated with the filtrations by the powers of u and that these spectral sequences have E2-

sheets whose entries are finite sums of copies of H•
Zar (Y, (Ω

•
Y , dw∧)) and H•

an (Y, (Ω
•
Y , dw∧)) respec-

tively. Each of these can in turn be computed from the hypercohomology spectral sequence for the

complex (Ω•
Y , dw∧) of (Zariski or analytic) coherent sheaves. But the cohomology sheaves of this

complex are supported on the zero locus of dw which by assumption is projective. Hence by GAGA

the Zariski and analytic cohomologies of this complex are naturally isomorphic. This gives isomor-

phisms of the hypercohomology and filtration spectral sequences in the Zariski and the analytic setup

respectively and so the two types of hypercohomologies are isomorphic.

Finally, part (iii) was also proven by Barannikov and the second author, and by Sabbah [203]. ✷

Remark 3.7 The isomorphism in part (ii) of the previous lemma is not convergent for u→ 0 in general.

Indeed if u 6= 0 is a complex number, then the complex vector space

H•
an (Y, (Ω

•
Y , udDR + dw∧)) is the same as the usual de Rham cohomology H•

DR(Y,C) of Y . Indeed,

for such a fixed u 6= 0, the complex (Ω•
Y , udDR + dw∧)) ∼=

(
Ω•
Y , dDR + u−1dw∧

)
) is the holomorphic

de Rham complex of the local system (OY , dDR+u−1dw). But the multiplication by exp(−u−1w) is an
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analytic automorphism of the line bundleOY which gauge transforms the connection dDR+u
−1dw into

the trivial connection dDR. Hence exp(−u−1w) identifies (Ω•
Y , udDR + dw∧) with the holomorphic de

Rham complex (Ω•
Y , dDR) and H•

an (Y, (Ω
•
Y , udDR + dw∧)) with H•

DR(Y,C). On the other hand, the

space

H•
Zar (Y, (Ω

•
Y , udDR + dw∧)) depends on the potential in an essential way. For instance, if w : Y → A1

is a Lefschetz fibration, then the complex (Ω•
Y , dw∧) is just the Koszul

complex associated with the regular section dw ∈ Ω1
Y . In particular the space

H•
Zar(Y, (Ω

•
Y , dDR+dw∧)) ∼= H•

Zar(Y, (Ω
•
Y , dw∧)) has dimension equal to the number of critical points

of w. More generally H•
Zar(Y, (Ω

•
Y , dDR+dw∧)) can be identified (see e.g. [132]) with the cohomology

of the perverse sheaf of vanishing cycles of w.

Remark 3.8 Under our assumptions, the algebraic de Rham and Dolbeault cohomologies H•
DR((Y,w);C)

and H•
Dol((Y,w);C) of the potential w can be identified respectively with the periodic cyclic and

Hochschild homologies HP•(Cnc(Y,w)) and HH•(Cnc(Y,w)) of the nc-space Cnc(Y,w) (more precisely,

of the collection of categories ⊕Perf i labeled by numbers {ci}). This can be done, e.g. by choosing

strong generators Ei of ⊕Perf i, and then identifying HP•(Cnc(Y,w)) and HH•(Cnc(Y,w)) with the peri-

odic cyclic and Hochschild homologies of the curved d(Z/2)g algebra, which consists of the d(Z/2)g

algebra RHom(E , E) and a central curvature given by w. A detailed proof of the comparison theorem

giving the identifications H•
DR((Y,w);C)

∼= HP•(Cnc(Y,w)) and H•
Dol((Y,w);C)

∼= HH•(Cnc(Y,w))
can be found in the recent work of Junwu Tu [240].

We will construct a nc-Hodge structure on H•
DR((Y,w);C) by using the dual description of nc-Hodge

structures given in Theorem 2.35. Here we will assume that we choose an open subset (in the analytic

topology) Y ′ ⊂ Y such that

• crit(w) ⊂ Y ′,

• w(Y ′) is an open disc in C,

• the closure Y
′

of Y ′ is a manifold with corners,

• the restriction of w to the part of the boundary of Y
′

lying over w(Y ′) is a smooth fibration.

In the case when w is already proper one can choose Y ′ to be the pre-image under w of an open disc

in C containing all the critical values ci.

Label the critical values of w: S = {c1, . . . , cn}, and let c0 ∈ w(Y ′) − S. Choose a system of

paths {ai}ni=1 and discs Di as in the proof of Theorem 2.35. Choose c0-based loops γ1, . . . , γn, so

that γi goes once around ci in the counterclockwise direction, all γi intersect only at c0, and each γi
encloses the path ai and the disc Di (see Figure 4). Let Γi denote the closed region in C enclosed by

γi. Adjusting if necessary the choice of the γi we can ensure also the each Γi is convex. From now on

we will always assume that this is the case.
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Figure 4: A system of thickened loops for S ⊂ C.

For i = 1, . . . , n set Yi := w−1(Γi) ∩ Y ′ and consider the Q-vector spaces of relative cohomology

Ui := H•(Yi, Yc0 ;Q),

and

U := ⊕ni=1Ui

= H•(w−1 (∪ni=1Γi) , Yc0 ;Q)

= H•(Y, Yc0 ;Q).

Let Ti : U → U be the monodromy along γi. By definition Ti satisfies

(Ti − 1)|⊕j 6=iUj
= 0

and so we get operators Tji : Ui → Uj , such that Ti|Ui
=
∑n

j=1 Tji. By construction the operator Tii is

the monodromy along γi of the local system on Γi of local relative cohomology, i.e. the local system of

Q-vector spaces whose fiber at c ∈ Γi is H•(Yi, Yc;Q). Hence Tii is an isomorphism, and so the data

(S, {Ui}ni=1 , {Tij}) are nc-Betti data of type ncB(iii).

Remark 3.9 (a) By Lemma 2.30 the data (S, {Ui}ni=1 , {Tij}) are the same thing as a constructible

sheaf F of Q-vector spaces on C, satisfying RΓ(C,F ) = 0. The sheaf F can be described directly

in terms of the geometry of (Y,w): for a c ∈ C the stalk Fc of F at c is the relative cohomology

H•(Y, Yc;Q).

(b) The geometric construction of F makes sense for every cohomology theory K. Indeed for every

such K we can form a constructible sheaf of abelian groups KF whose stalk at c ∈ C is K(Y, Yc) and
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which again satisfies RΓ(C,KF ) = 0. The vanishing of cohomology here is not obvious but can be

proven as follows. Given a disk D ⊂ w(Y ′) ⊂ C s.t. ∂D ∩ S = ∅, and given any point c ∈ ∂D
consider the abelian group A(D, c) := K(w−1(D), Yc). The collection of abelian groups A(D, c)
satisfies:

• A(D, c) are locally constant under small perturbations of (D, c), and

• for every decomposition (D, c) = (D1, c) ∪ (D2, c) of D obtained by cutting D along a chord

starting at c, we have A(D, c) = A(D1, c)⊕A(D2, c).

This immediately gives us an equivalent description of KF via data of type ncB(iii), which in turn yields

the vanishing of cohomology of KF .

Next, in order to complete the data ncB(iii) to a full-fledged nc-Hodge structure of exponential type,

we need to construct:

• a collection {(Ri,∇i)}mi=1 of holomorphic bundles Ri over C{u} equipped with meromorphic

connections ∇i with at most second order pole and regular singularities, and

• for each i = 1, . . . ,m, an isomorphism fi between the local system on S1 induced from (Ri,∇i)
and the local system on S1 corresponding to the vector space Ui⊗C and the monodromy operator

Tii.

As explained above the local system on the circle corresponding to the vector space Ui ⊗ C and the

monodromy operator Tii can be described geometrically as the sheaf of complex vector spaces on the

loop γi, whose stalk at c ∈ γi is H•((Yi, Yc);C). We will exploit this geometric picture to produce

(Ri,∇i) and the isomorphism fi. The most convenient way to define the ∇i is by using a Betti-to-de

Rham cohomology isomorphism given by oscillating integrals.

Fix i ∈ {1, . . . ,m} and let Z := Yi, ∆ := Γi − ci ⊂ C, f := w− ci. By construction we have:

Z is a C∞-manifold with boundary which is the closure of an open (in the classical topology) subset

in the quasi projective complex manifold Y .

∆ ⊂ C is a closed disc containing zero.

f : Z →∆ is an analytic surjective map whose only critical value is zero and whose critical locus

crit(f ) ⊂ Z is compact.

Consider now the Z/2-graded C[[u]]-module H•
DR((Z,f );C) of de Rham cohomology of (Z,f ). By

lemma 3.6 we know that H•
DR((Z,f );C) is a free C[[u]]-module which can be computed as the co-

homology of the complex (A•(Z)[[u]], dtot), where A•(Z)[[u]] are the global C∞ complex valued

differential forms on Z , and dtot := ∂̄ + u∂ + df∧. The C[[u]]-module H•
DR((Z,f );C) carries a

natural meromorphic connection ∇ differentiating in the u-direction and having a second order pole at
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u = 0. This connection is induced from a connection ∇ on the C[[u]]-module A•(Z)[[u]] which also

has a second order pole and is defined by the formula

∇u2 d
du

:= u2 d
du − f · (•) + uGr :A•(Z)[[u]] //A•(Z)[[u]],

where

Gr|Ap,q(Z)[[u]] :=
q − p
2
· idAp,q(Z)[[u]]

is the grading operator coming from nc-geometry (compare with 2.1.7).

With this definition we have

Lemma 3.10 The operator ∇u2 d
du

satisfies:

(a)
[
∇u2 d

du
, dtot

]
= u

2 · dtot.

(b) ∇u2 d
du

preserves ker(dtot) and im(dtot) and so induces a meromorphic connection ∇ with a

second order pole on the C[[u]]-module H•
DR((Z,f );C).

Proof. We compute

[
∇u2 d

du
, dtot

]
=

[
u2

d

du
− f + uGr, ∂̄ + u∂ + df∧

]

=

[
u2

d

du
, u∂

]
− [f , u∂] +

[
uGr, ∂̄ + u∂ + df∧

]

= u2∂ + udf ∧+
u∂̄

2
− udf∧

2
− u2∂

2

=
u

2
· dtot.

Part (b) follows immediately from (a) ✷

Suppose now that α = α0 + α1u + α2u
2 + · · · ∈ A•(Z)[[u]], αi =

∑
αp,qi , αp,qi ∈ Ap,q(Z) is a

dtot-cocycle. Then the differential d+ u−1df∧ = ∂̄ + ∂ + u−1df∧ = u−1/2uGrdtotu
−Gr will kill the

element

uGrα :=
∑

i≥0
0≤p,q≤dimZ

αp,qi ui+
q−p
2 ∈ A•(Z)((u1/2)).

Therefore the expression e
f
u uGrα satisfies formally

d
(
e

f
uuGrα

)
= 0,

i.e. is d-closed. Moreover, the action of the operator ∇u2 d
du

on α translates to the action of u2 d
du on the

above expression modulo formally exact forms.
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Consider now a closed connected arc δ ⊂ ∂∆ = γi and let Sec(δ) ⊂ ∆ be the corresponding

open sector (see Figure 5) with vertex at 0 ∈ ∆, and boundary made out of the arc δ and the segments

connecting 0 with the end points of δ. Note that the convexity of ∆ assures that Sec(δ) ⊂ ∆. Denote

by Sec(δ)∨ ⊂ C the dual angle sector consisting of u ∈ C such that Re(w/u) < 0 for all w ∈ Sec(δ).
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Figure 5: A sector in ∆.

Clearly, for each class in the relative integral homology H•(Z,f
−1(δ);Z) we can choose a relative

chain c representing it, so that c satisfies:

(†)

∥∥∥∥∥∥∥∥

• c is piece-wise real analytic;

• f(supp(c)) ⊂ Sec(δ);

• f(supp(∂c)) ⊂ δ.

For every such relative chain c we now have:

Lemma 3.11 For every dtot-closed formal power series of forms α ∈ A•
Z(Z)[[u]] and every relative

chain c ∈ C•(Z,f
−1(δ);Z) satisfying (†) the oscillating integral

∫

c

e
f
u uGrα

is well defined as an asymptotic series in uQ(log u)N in the sector Sec(δ)∨.

Proof. Let N ≥ 0 be a non-negative integer. Clearly the expression

ef/uuGr


 ∑

0≤i≤N

αiu
i




is a well defined analytic function on Z × Sec(δ)∨. Using the fact that (d+ u−1df∧)uGrα = 0 and the

Malgrange-Sibuya theory of asymptotic sectorial solutions to analytic differential equations, we get that

(3.3)

∫

c

ef/uuGr


 ∑

0≤i≤N

αiu
i


 ≃

∑

j∈Q,k∈N

cj,ku
j(log(u))k
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is asymptotic to a series in uQ(log u)N in which the logarithms enter with bounded powers. Thus the

limit of (3.3) as N →∞ is asymptotic to a series in uQ(log u)N on Sec(δ)∨. ✷

The previous lemma shows that the C[[u]]-module with connection (H•
DR((Z,f );C),∇) is formally

isomorphic to a meromorphic local system of the form Ef/u ⊗ (Ri,∇i), where Ri is a free C[[u]]-
module, and ∇i has regular singularities. Furthermore the lemma shows that the oscillating integrals

above identify the local system on γi given by (c ∈ γi) 7→ H•((Yi, Yc),Q) with a rational structure on

(Ri⊗C[[u]]C((u)),∇i). In particular the data {(Ri,∇i)}mi=1 and (S, {Ui}, {Tij}) constitute the regular

type and gluing data (in the sense of Theorem 2.35) of a nc-Hodge structure of exponential type.

Usually if one tries to make a Landau-Ginzburg model with proper map w from non-proper examples

above, one gets new parasitic critical points. Choosing an appropriate domain Y ′ ⊂ Y one can define

the gluing data for the relevant critical points.

3.3 Mirror symmetry examples

Finally, in order to give a general idea of the mirror correspondence, we briefly discuss three ex-

amples of Landau-Ginzburg models mirror dual to symplectic manifolds of positive, vanishing, and

negative anti-canonical class respectively.

• For X = CPn one of the possible mirror dual Landau-Ginzburg models is given by Y = (C×)n

endowed with potential

w(z1, . . . , zn) = z1 + · · ·+ zn +
q

z1 . . . zn

where q ∈ C× is a parameter. In this model the map w is not proper. This can be repaired

by compactifying the fibers of w to (n − 1)-dimensional projective Calabi-Yau varieties. The

compactification is not unique, it depends on combinatorial data, but the compactified space has

the same critical points as Y . In general, for symplectic manifolds (X,ω) with ω representing

the anticanonical class, one can combine equations for the connection in q and u directions and

get a beautiful variation of Hodge structures with strong arithmetic properties as predicted by our

considerations in section 3.1 (see also Golyshev’s work [93], [94]).

• For a smooth projective Calabi-Yau variety X one can take for Y the product (X∨ × A2N ,w)
where X∨ is a Calabi-Yau variety mirror dual to X, N ≥ 1 is arbitrary integer and w is the

pullback from A2N of a non-degenerate quadratic form. In general, the complex dimension of

the Landau-Ginzburg model is equal to half of the real dimension of X modulo 2.

• For X being a complex curve of genus g ≥ 2 (considered as a symplectic manifold), the first

author proposed several years ago a mirror Landau-Ginzburg model (Y,w) which is a complex

algebraic 3-dimensional manifold with non-vanishing algebraic volume element, such that locally

(in the analytic topology) near each point the pair (Y,w) is isomorphic to

w : C3 → C, (x, y, z) 7→ xyz
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The set of critical point of w is the union of 3g−3 copies of CP1 glued along points 0,∞meeting

3 curves at a point. The graph obtained by contracting each copy of C× to an edge is a connected

3-valent graph with g loops, representing a maximal degeneration point in the Deligne-Mumford

moduli stack of stable genus g curves.

4 Generalized Tian-Todorov theorems and canonical

coordinates

In this section we will examine more closely the other direction of the mirror symmetry correspon-

dence, i.e. the situation in which symplectic Landau-Ginzburg models appear as mirrors of complex

manifolds with a fixed anti-canonical section. In order to understand the Hodge theoretic implications

of this process we first revisit a classical concept in the subject: the notion of canonical coordinates.

4.1 Canonical coordinates for Calabi-Yau variations of nc-Hodge structures

4.1.1 Variations over supermanifolds We begin with a reformulation of the definition of variations

of nc-Hodge structures (Definition 2.7) to allow for bases that are supermanifolds:

Definition 4.1 For a complex analytic supermanifold S, a variation of nc-Hodge structures over S
(respectively a variation of nc-Hodge structures over S of exponential type) is a triple (H,EB ,

∼−→),
where

• H is a holomorphic Z/2-graded vector bundle on A1×S which is algebraic in the A1-direction;

• EB is a local system of Z/2-graded Q-vector spaces on (A1 − {0}) × S;

•
∼−→ is an analytic isomorphism of holomorphic vector bundles

∼−→: EB ⊗O(A1−{0})×S

∼=→ H|(A1−{0})×S ;

so that:

♦ the induced meromorphic connection ∇ on H|(A1−{0})×S satisfies: locally on S, for every section ξ
of TS , the operators ∇u2 ∂

∂u
,∇uξ extend to operators on A1 × S, and

♦ the triple (H,EB ,
∼−→) satisfies the (Q-structure axiom) and the (Opposedness axiom) (re-

spectively (H,∇) is of exponential type and (H,EB ,
∼−→) satisfies the (Q-structure axiom)exp

and the (Opposedness axiom)exp).



252

Remark 4.2 From now on we will suppress the Q-structure and the opposedness axioms since they

will not play any special role in our analysis. At any given stage of the discussion they can be added

without any harm or alteration to the arguments.

4.1.2 Calabi-Yau variations Suppose now (H,EB ,
∼−→) is a variation of nc-Hodge structures over

a supermanifold S. For any point x ∈ S let H0,x denote the fiber of H at (0, x) ∈ A1 × S. We get a

canonical map

µx : TxS → End (H0,x) ,

defined as follows: Extend the tangent vector v ∈ TxS to some analytic vector field ξ defined in a

neighborhood of x. Consider the holomorphic first order differential operator ∇uξ : H → H . By

construction this operator has symbol (uξ) ⊗ idH . In particular, the restriction of ∇uξ to the slice

{0} × S ⊂ A1 × S will have zero symbol, and so will be an O-linear endomorphism of H|{0}×S . We

define µx(v) to be the action of this O-linear map on the fiber H(0,x). It is straightforward to check that

this action is independent of the extension ξ and depends on v only.

Definition 4.3 Let S be a complex analytic supermanifold. We say that a variation (H,EB ,
∼−→) of nc-

Hodge structures on S is of Calabi-Yau type at a point x ∈ S if there exists an (even or odd) vector

h ∈ H(0,x), so that the linear map

TxS // H(0,x)

v ✤ // (µx(v))(h)

is an isomorphism. Such a vector h will be called a generating vector for H at x.

It follows from the definition that if S is the base of a variation of nc-Hodge structures which is of

Calabi-Yau type at a point x ∈ S, then the tangent space TxS is a unital commutative associative

algebra acting on H0,x via the map µx and such that H0,x is a free module of rank one. The condition

on a variation to have a Calabi-Yau type (even or odd) is an open condition on x ∈ S. Variations of nc-

Hodge structures of Calabi-Yau type should arise naturally on the periodic cyclic homology of smooth

and compact d(Z/2)g categories which are Calabi-Yau in the sense of [159]. The basic geometric

example of a Calabi-Yau variation is an extension of the setup we discussed in section 3.1:

Example 4.4 Let (X,ω) be a compact symplectic manifold with dimRX = 2d. Conjecturally there

exists a non-empty open subset S ⊂ H•(X,C) so that the big quantum product ∗x is absolutely conver-

gent for all x ∈ S (the product is given by a formula similar to one on page 276). The manifold S has

a natural structure of a supermanifold being an open subset in the affine super space H•(X,C). As in

section 3.1 we define a variation of nc-Hodge structures (H,EB ,
∼−→) on S by taking H to be the trivial

vector bundle on A1 × S with fiber H•(X,C), and defining the connection ∇ on H by the formulas:

∇ ∂
∂u

:=
∂

∂u
+ u−2 (κX ∗x •) + u−1Gr,

∇ ∂
∂ti

:=
∂

∂ti
− q−1u−1 (ti ∗x •) ,
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where the (ti) form a basis on H•(X,C), and (ti) are the dual linear coordinates.

Clearly, if we restrict (H,∇) to S ∩ H2(X,C) we will get back the bundle with connection we

defined in section 3.1. We now define the integral lattice EB and isomorphism
∼−→ on S as the ∇-

horizontal extensions of the integral lattice and isomorphism we had defined on S ∩H2(X,C). Finally,

in order to match the framework of nc-geometry, we should change the parity of the bundle H in the

case d = 1 mod 2.

4.1.3 Decorated Calabi-Yau variations The variations of nc-Hodge structures of Calabi-Yau type

need to be decorated by a few additional pieces of data before we can extract canonical coordinates

from them. To motivate our choice of such data we first recall the Deligne-Malgrange classification of

logarithmic holomorphic extension of regular connections.

Let S be a complex analytic supermanifold, let D be a one dimensional complex disc, and let E

be a complex local system on (D − {pt}) × S and let (E ,∇) be the associated holomorphic bundle

E := E ⊗ O(D−{pt})×S on (D − {pt}) × S with the induced flat connection ∇. Suppose Ẽ is a

holomorphic bundle on D×S which extends E and on which∇ has a logarithmic pole. The restriction

Ẽ|{pt}×S is a holomorphic bundle on S and∇ induces: a holomorphic connection Ẽ∇ and anOS-linear

residue endomorphism ResẼ(∇) on Ẽ|{pt}×S . Furthermore the integrability of ∇ on (D − {pt}) × S
implies that Ẽ∇ is also integrable and that the endomorphism ResẼ(∇) is covariantly constant with

respect to Ẽ∇ [205, Section 0.14b].

Recall next that by Deligne’s extension theorem (see e.g. [66, Chapter II.5] or [205, Corollary II.2.21])

meromorphic bundles with connections with regular singularities always admit functorial holomorphic

extensions across the pole divisor. Deligne’s extension procedure is not unique and depends on the

choice of a set-theoretic section of the quotient map C → C/Z. We fix V to be the unique Deligne

extension of E for which ∇ has a logarithmic pole at {pt} × S and a residue with eigenvalues whose

real parts are in the interval (−1, 0]. Now the classification theorem of Deligne-Malgrange [205, Theo-

rem III.1.1] asserts that there is a natural equivalence of categories




Holomorphic extensions of E to

D × S for which ∇ has a loga-

rithmic singularity along {pt} ×
S


 oo //




Decreasing filtrations of E by

C-local subsystems on (D −
{pt})× S


 .

The equivalence depends on the chosen Deligne extension and is explicitly given as follows. Let t be a

complex coordinate on D which vanishes at pt ∈ D. Consider the restriction V/tV of V to {pt} × S.

This is a holomorphic bundle on S equipped as above with the holomorphic connection V∇ and the

covariantly constant residue endomorphism ResV(∇). Suppose now that Ẽ is another holomorphic

bundle on D × S which extends E and on which ∇ has a logarithmic pole. For any k ∈ Z we define a

subbundle (V/tV)k ⊂ V/tV by setting

(V/tV)k := V ∩ t
kẼ

tV ∩ tkẼ
where V and Ẽ are viewed as subsheaves in the meromorphic bundle E.
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By construction the sub-bundles (V/tV)k are preserved both by V∇ and by the residue endomor-

phism ResV(∇) and so give rise to ∇-covariantly constant meromorphic subbundles of E, or equiva-

lently to C-local subsystems of E .

Alternatively we can use a more intrinsic description of holomorphic extensions of (E ,∇) which

is beter adapted to our examples and in particular to Example 4.8. Namely, instead of relying on the

Deligne extension and the induced filtration we can use decreasing filtrations E≤λ of E labeled by

real numbers λ ∈ R and such that on the associated graded pieces the monodromy on D − {pt} has

eigenvalues in R+ × exp(2πiλ).

We can now introduce the additional data that one needs for the canonical coordinates

Definition 4.5 Let S be a complex supermanifold and let (H,EB ,
∼−→) be a variation of nc-Hodge

structures of Calabi-Yau type on S. A decoration on (H,EB ,
∼−→) is a pair (H̃, ψ) where:

H̃ is an extension of H to (Z/2)-graded vector bundle on P1 × S so that ∇ has a regular singularity

at {∞} × S.

ψ is a H̃∇-covariantly constant section of H̃{∞}×S .

A decoration is called rational iff the R-filtration on the local system EB ⊗ C is compatible with the

rational structure, and if the vector ψ(x) ∈ H̃{∞}×{x} = gr(EB ⊗ C)x is rational, i.e. if ψ(x) ∈
gr(EB)x.

The previous discussion applied to the local system EB ⊗ C, the disc D = {|u| > 1} ∪ {∞} and

the point pt =∞ shows that the data of a decoration are equivalent to the data (EB ⊗ C)≤•, ψ), where

(EB ⊗ C)≤• is a decreasing filtration of EB⊗C (labeled by real numbers) and ψ is a covariantly constant

section (along S) of the corresponding logarithmic holomorphic extension of H . We will freely go back

and forth between these two points of view.

Any decorated variation (H,E ,
∼−→; H̃, ψ) of nc-Hodge structures of Calabi-Yau type gives rise to a

natural open domain U ⊂ S defined by

U :=



x ∈ S

∣∣∣∣∣∣

H̃P1×{x} is holomorphically trivial and if

s ∈ Γ
(
P1 × {x}

)
is such that sx(∞) = ψ(∞, x),

then sx(0) is a generating vector for (H,E ,
∼−→).





Furthermore for every x ∈ U we get a natural map canx : TxS → H̃∞,x defined as the composition

TxS
µx(•)(sx(0)) //

canx

33H0,x

ev−1
(0,x) //Γ

(
H̃|P1×{x}

) ev(∞,x) //H̃∞,x.

where ev(t,x) : Γ
(
P1, H̃|P1×{x}

)
→ H̃t,x denotes the natural evaluation of sections, which is invertible

by the triviality assumption on H̃|P1×{x}.



HODGE THEORETIC ASPECTS OF MIRROR SYMMETRY 255

The pullback of the flat connection H̃∇ by the map can induces a flat connection on TS|U . The canonical

coordinates on S come from the following easy claim whose proof we omit

Claim 4.6 The flat connection can∗
(
H̃∇
)

on TS|U is torsion free and so gives rise to a natural affine

structure and affine coordinates on U . If the decoration is rational then the tangent bundle TS|U carries

a natural rational structure.

Remark 4.7 (i) The canonical coordinates on U corresponding to a decorated nc-variation of Hodge

structures are only affine coordinates and are defined only up to a translation.

(ii) For any u ∈ A1−{0} we can introduce another affine structure which is a vector structure. In fact,

we get an analytic isomorphism between U and a domain in Hu,• = (EB)u,• ⊗ C:

x ∈ U 7→ ev(u,x) ev
−1
(∞,x)(ψ(x)) ∈ H(u,x).

One can use this to show that the local Torelli theorem holds for decorated Calabi-Yau variations of

nc-Hodge structures.

Example 4.8 The setup of Example 4.4 gives not only a variation of nc-Hodge structures but in fact

gives a rationally decorated nc-Hodge structure of Calabi-Yau type. Indeed by definition the fibers

of H are identified with Π
dH•(X,C). The monodromy of the connection around ∞ ∈ P1 is the

operator acting by (−1)i+d exp(κX∧(•)) onH i(X,C). Consider the monodromy invariant filtration on

H•(X,C) whose step in degree d−i
2 is H≥i(X,C). Let H̃ be the corresponding logarithmic extension

of H and let ψ be the section of H̃ corresponding to the image of 1 ∈ H0(X,C) ⊂ H•(X,C). The

bundle H̃|{∞}×S is trivialized and ∇ ∂
∂ti

= ∂
∂ti

in this trivialization. This gives the desired decoration

(H̃, ψ) and the associated canonical coordinates are the standard canonical coordinates in Gromov-

Witten theory.

4.1.4 Generalized decorations The notion of a decorated Calabi-Yau variation of nc-Hodge struc-

tures can be generalized in various ways. For instance, instead of specifying a covariantly constant

filtration on H giving the extension H̃ we can start with any holomorphic bundle H ′ defined on

{u ∈ P1| |u| ≥ R}, and an identification of C∞-bundles

p∗1

(
H ′

|{|u|=R}

)
∼= (EB ⊗ C){|u|=R}×S ,

where p1 : {|u| = R} × S → {|u| = R} is the projection on the first factor.

Furthermore (locally in S) the holomorphic bundle p∗1H
′ on {u ∈ P1| |u| ≥ R} × S carries a flat

connection defined along S only. We can use the above identification to glue this together with H along
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{|u| = R} × S to get a bundle H̃ on P1 × S equipped with a flat connection ∇/S along S. This

generalizes the first part of the decoration. For the second part we will take a ∇/S-covariantly constant

section ψ of H̃|{∞}×S . Now the same definition of the set U and the canonical map can make sense in

this context. The resulting connection on TS|U is again torsion free.

4.1.5 Formal variations of Calabi-Yau type The notion of a Calabi-Yau variation extends readily to

the formal context. Suppose S = Spf C[[x1, . . . , xN , ξ1, . . . , ξM ]] be a formal algebraic supermanifold,

where xi are even and ξj are odd formal variables. The de Rham part of formal variation of nc-Hodge

structures on S is a pair (H,∇) where H is a (Z/2)-graded algebraic vector bundle over D× S, where

D is the one dimensional formal disc D := Spf(C[[u]]). Here ∇ is a meromorphic connection on H
such that ∇u2 ∂

∂u
, ∇u ∂

∂xi

,∇u ∂
∂ξj

are regular differential operators on H .

We say that such a pair (H,∇) has the Calabi-Yau property if we can find a vector h ∈ H0,0, so that

the natural linear map T0S → H0,0, v 7→ µ0(v)(h) is an isomorphism.

Finally a decoration of a formal Calabi-Yau de Rham data (H,∇) is a pair (e, h), where e is a

trivialization e : H|D×{0} → H0,0 ⊗ OD×{0}, and h ∈ H0,0 is a generating vector for the Calabi-Yau

property.

Again a decorated de Rham data of Calabi-Yau type gives an affine structure and canonical formal

coordinates on S.

4.2 Algebraic framework: dg Batalin-Vilkovisky algebras

In this section we discuss the aspects of algebraic deformation theory relevant to the study of nc-

Hodge structures. We will work over C but all algebraic considerations in this section make sense over

any field of characteristic zero.

4.2.1 Preliminaries onL∞ algebras Our main objects of interest here will be differential Z/2-graded

algebras over C or more generally Z/2-graded L∞-algebras over C. We begin with a definition:

Definition 4.9 A complex differential Z/2-graded Lie algebra g (or a Z/2-graded L∞-algebra) is

called homotopy abelian if it is L∞ quasi-isomorphic to an abelian d(Z/2)g Lie algebra.

Remark 4.10 Homotopy abelian differential Z/2-graded Lie algebras can be characterized in a variety

of ways. In particular we have the following statements that follow readily from the definition:

• A differential Z/2-graded Lie algebra g is homotopy abelian if and only if all the higher opera-

tions mn vanish on its L∞ minimal model gmin = H•(g, dg), i.e. mn = 0 for n ≥ 1.

• A differential Z/2-graded Lie algebra g is homotopy abelian if and only if there exist d(Z/2)g
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Lie algebras g1 and g2, and morphisms of d(Z/2)g Lie algebras:

g1∼=
��⑦⑦
⑦⑦

∼=
!!❇

❇❇
❇

g g2

so that g2 is an abelian d(Z/2)g Lie algebra, and the morphisms g1 → g and g1 → g2 are

quasi-isomorphisms.

• A differential Z/2-graded Lie algebra g is homotopy abelian if and only if the Lie algebra coho-

mology algebra H•(g,C) is free, i.e. is isomorphic to the algebra of formal power series on some

(possibly infinitely many) supervariables. Here the Lie algebra cohomology is defined as

H•(g,C) := H•


∏

n≥0

Hom(C−Vect)(Sym
n
Πg,C)•, d




where d is the cochain Cartan-Eilenberg differential.

After the prioneering work of Deligne and Drinfeld in the 80’s, it is by now a common wisdom (see

e.g. [173, Chapter III.9]) that dg Lie algebras give rise to solutions of moduli problems. In particular

a homotopy abelian d(Z/2)g Lie algebra g gives rise to a moduli space - the formal supermanifold

⊕Mod(g,dg) := Spf(H•(g,C)).

The property of being homotopy abelian is preserved by suitably non-degenerate deformations and

various other natural operations:

Proposition 4.11 (i) Let g be a flat family of d(Z/2)g Lie algebras (or (Z/2)-graded L∞ algebras)

over C[[u]]. That is g is a flat (Z/2)-graded C[[u]]-module, and the Lie bracket and differential on g are

C[[u]]-linear. Assume further that

(A) ggen := g⊗C[[u]] C((u)) is homotopy abelian over C((u)), and

(B) H• (g, dg) is a flat C[[u]]-module.

Then the special fiber g0 := g⊗̂C[[u]]C is also a homotopy abelian d(Z/2)g Lie algebra over C.

(ii) If g is a homotopy abelian d(Z/2)g Lie algebra over C, and g1 → g is a morphism of L∞-algebras

inducing a monomorphism H• (g1, dg1) →֒ H• (g, dg), then g1 is homotopy abelian as well.

(iii) If g is a homotopy abelian d(Z/2)g Lie algebra over C, and g→ g2 is a morphism of L∞-algebras

inducing an epimorphism H• (g, dg) ։ H• (g2, dg2), then g2 is homotopy abelian as well.

Proof. The proof is standard so we only mention some of the highlights of the argument. First note that

parts (ii) and (iii) follow immediately by passing to minimal models. For part (i) we note first that the
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assumption (B) implies (and is in fact equivalent to) the existence of C[[u]]-linear quasi-isomorphisms

p1, p2 of complexes:

(H• (g0, dg0) [[u]], 0)
∼= (H• (g, dg) , 0)

p1 //
(g, dg) ,

p2
oo

and a C[[u]]-linear homotopy h so that

p2 ◦ p1 = id
p1 ◦ p2 = id+ [dg, h] .

Next note that the homological perturbation theory of [157] carries over verbatim to the L∞-context

and gives explicit expressions for the higher products mn on (H• (g0, dg0) [[u]], 0) as a polynomial

expression in p1, p2 and h. In particular the operations mn are all C[[u]]-linear and are given by universal

expressions. But by assumption (A) we know that the higher operations are zero after tensoring with

⊗C[[u]]C((u)) and so mn = 0 as formal power series in u for all n ≥ 1. This implies that mn|u=0 = 0
for all n ≥ 1 and so the proposition is proven. ✷

4.2.2 DG Batalin-Vilkovisky algebras Recall [173, Chapter III.10] the notion of a dg BV algebra:

Definition 4.12 A differential Z/2-graded Batalin-Vilkovisky algebra over C is the data (A, d,∆),
where A is a Z/2-graded suppercommutative associative unital algebra, and d : A → A, ∆ : A → A
are odd C-linear maps satisfying:

• d(1) = ∆(1) = 0,

• d is a differential operator of order ≤ 1 on A,

• ∆ is a differential operator of order ≤ 2 on A,

• d2 = ∆2 = d∆+∆d = 0.

Note that the first two properties in the definition imply that d is a derivation of A. Also g := ΠA
together with [a, b] := ∆(ab)−∆(a)b−(−1)deg(a)a∆(b) is a Lie superalgebra with two anti-commuting

differentials d and ∆.

Definition 4.13 We will say that a d(Z/2)g Batalin-Vilkovisky algebra (A, d,∆) has the degeneration

property if for every N ≥ 1 we have that H•(A[u]/(uN ), d + u∆) is a free C[u]/(uN )-module.

Equivalently (A, d,∆) has the degeneration property iffH•(A[[u]], d+u∆) is a topologically free (flat)

C[[u]]-module. This in turn is equivalent to the existence of a (non-unique) isomorphism of topological

C[[u]]-modules:

(4.1) T : H•(A[[u]], d + u∆)
∼= //H•(A, d)[[u]].
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In this situation we will always normalize T so that T|u=0 = idH•(A,d).

The degeneration property for dg Batalin-Vilkovisky algebras defined above is weaker than the ∂∂̄-

lemma used Barannikov and the second author in [24] and by Manin in [173, 174]. In particular it has

potentially a wider scope of applications - a feature that we will exploit next. We begin with a general

smoothness result which was also proven by J.Terilla [231].

Theorem 4.14 Suppose (A, d,∆) is a d(Z/2)g Batalin-Vilkovisky algebra which has the degeneration

property. Let g := ΠA be the associated super Lie algebra with anti-commuting differentials d and ∆.

Then:

(1) The d(Z/2)g Lie algebra (g, d) is homotopy abelian, i.e. is quasi-isomorphic to H•(g, d) en-

dowed with the trivial bracket and the zero differential. In particular the associated moduli space

⊕Mod(g,d) is (non-canonically) isomorphic to a formal neighborhood of 0 in the super affine

space ΠH•(g, d).

(2) Every choice of a normalized degeneration isomorphism T as in equation (4.1) gives an identifi-

cation of formal manifolds

ΦT : ⊕Mod(g,d)

∼= //
(

formal neighborhood of

0 in ΠH•(g, d)

)

Proof. Part (1) of the theorem follows immediately from

Lemma 4.15 The d(Z/2)g Lie algebra (g((u)), d + u∆) is homotopy abelian over C((u)).

Proof. Consider the formal completion at zero Â of the vector superspace underlying A = Πg as an

algebraic supermanifold, and let as before D = Spf(C[[u]]) be the formal one dimensional disc. The

d(Z/2)g Lie algebra structure on g[[u]] is encoded in an odd vector field ξ ∈ Γ(Â × D, T ) on the

supermanifold Â× D, defined by

ȧ := ξ(a) = da+ u∆a+
1

2
[a, a].

There is a natural automorphism (i.e. a formal change of coordinates) F : Â × D× → Â × D× on the

formal supermanifold Â× D× given by

F (a) := u
(
exp

(a
u

)
− 1
)
= a+

1

u

1

2!
a2 +

1

u2
1

3!
a3 + · · · ,

and in the new coordinates b = F (a) the vector field ξ is linear:

ḃ = ȧ · exp
(a
u

)
=

(
da+ u∆a+

1

2
[a, a]

)
· exp

(a
u

)

= u ·
(
da

u
+ u∆

(a
u

)
+ u

1

2

[a
u
,
a

u

])
· exp

(a
u

)

= u · (d+ u∆) exp
(a
u

)
= (d+ u∆)b.
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So in the b-coordinates, the vector field ξ depends only on the differential d+ u∆ and does not depend

on any higher operations. Passing to the minimal model we see that (g((u)), d + u∆) is homotopy

abelian, which proves the lemma. ✷

The lemma implies that the hypothesis (A) of Proposition 4.11 (i) holds. On the other hand the hypothe-

sis (B) holds by the degeneration assumption. Therefore by Proposition 4.11 (i) we conclude that (g, d)
is homotopy abelian. This proves part (1) of the theorem.

Next we construct the identification ΦT . Given a formal path in ⊕Mod(g,d), i.e. a family of solutions

(up to guage equivalence)

a(ε) = a1ε+ a2ε
2 + a3ε

3 + · · · ∈ εA[[ε]]

d(a(ε)) +
1

2
[a(ε), a(ε)] = 0

of the Maurer-Cartan equation in (g, d), we have to construct the corresponding formal path through the

origin in H•(g, d).
As a first step choose a lift of the formal arc a(ε) to a formal series in two variables ã(ε, u) ∈

εA[[ε, u]] such that

(d+u∆)ã+
1

2
[ã, ã] = 0,

a(ε, 0) = a(ε).

Consider the reparameterization

b̃ = F (ã) = u

(
exp

(
ã

u

)
− 1

)
∈ εA((u))[[ε]].

Arguing as before we see that b̃ satisfies (d+ u∆)b̃ = 0. So if we expand

b̃ = b̃1ε+ b̃2ε
2 + · · · , where b̃n ∈ A((u)), satisfy (d+ u∆)b̃n = 0,

we can define cohomology classes
[
b̃n

]
∈ H•(A((u)), d + u∆). We can now apply the isomorphism

T ⊗C[[u]] C((u)) to the series

∑

n≥1

[
b̃n

]
εn ∈ εH•(A((u)), d + u∆)[[ε]],

to obtain an element

T


∑

n≥1

[
b̃n

]
εn


 ∈ εH•(A, d)((u))[[ε]].

In fact one has the following lemma whose proof we will skip since it is a somewhat tedious application

of homological perturbation theory:



HODGE THEORETIC ASPECTS OF MIRROR SYMMETRY 261

Lemma 4.16 There exists a lift ã(ε, u) of a(ε) such that the associated class T
(∑

n≥1

[
b̃n

])
belongs

to εH•(A, d)[[ε]] ⊂ εH•(A, d)((u))[[ε]]. Any such lift ã produces the same class T
(∑

n≥1

[
b̃n

])
and

this class depends only on the gauge equivalence class of the original arc a, i.e. on the image a(ε) of

a(ε) in ⊕Mod(g,d).

Now by definition the map ΦT assigns the class T
(∑

n≥1

[
b̃n

])
⊂ εH•(A, d)[[ε]] to the formal arc

a(ε). ✷

4.2.3 Geometric interpretation The previous discussion can be repackaged geometrically as follows.

A (Z/2)-graded Batalin-Vilkovisky algebra (A, d,∆), gives rise to a family M → D = Spf(C[[u]])
of formal manifolds over the one dimensional formal disc. The family M is the total space of the

relative moduli space ⊕Mod(g,d+u∆) over C[[u]]. If (A, d,∆) has the degeneration property, then by

Lemma 4.15 we have an affine structure on the generic fiber M gen := M ⊗C[[u]] C((u)) of the family

(see Figure 6) given by the map F .

⊕Mod

⊕Mod(g,d)

u H•(g, d)

0 ∞

Figure 6: The relative moduli ⊕Mod→ P1.

Furthermore the map T can be viewed as an extension of the affine bundle M gen → D× to a trivial

bundle on P1−{0} of formal super affine spaces, where the fiber at∞ is the super affine space H•(g, d).
This results into a family ⊕Mod → P1 of formal super manifolds, which is a trivial vector bundle

outside of zero but has a non-linear fiber at 0 ∈ P1. Moreover by picking the closed point in each fiber
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we get a section of ⊕Mod → P1, which is just the zero section of the vector bundle ⊕Mod|P1−{0} →
P1 − {0}. The normal bundle to this section in ⊕Mod is trivial (hence ⊕Mod is trival as a non-linaer

bundle over P1), and the map ΦT gives a (non-linear) trivialization of ⊕Mod over P1. This type of

geometry was already discussed in [52].

4.2.4 Relation to Calabi-Yau variations of nc-Hodge structures Suppose (A, d,∆) is a dZ/2g

Batalin-Vilkovisky algebra which has the degeneration property. In this generality one does not expect

to find a natural connection on H•(A, d+u∆) along u, i.e. one does not expect to have a general formal

analogue of a nc-Hodge structure.

However, a natural connection along the u-line may exist if we specify some additional data on

(A, d,∆). Following the analogy with the nc-Hodge structure associated with a symplectic manifold

and the Gromov-Witten invariants, it is sufficient to specify:

• an even element κ ∈ A, with dκ = 0, and

• a grading operator Gr : A→ A,

so that if we consider Γ−1 := Gr : A → A, and Γ−2 : A → A - the operator of multiplication by κ,

then we have the commutation relations:

[Γ−1,∆] = −1

2
∆

[Γ−2, d] = 0

d = [Γ−1, d] + [Γ−2,∆] .

These commutation relations imply the identity

[
u
∂

∂u
+ u−1Γ−2 + Γ−1, d+ u∆

]
=

1

2
(d+ u∆),

which is consistent with the general formulas from Section 2.2.5. In particular, we can define a connec-

tion on H•(A, d + u∆) along the u-line by setting

∇ ∂
∂u

:=
∂

∂u
+ u−2Γ−2 + u−1Γ−1.

Example 4.17 Let Y be a (possibly non-compact) d-dimensional Calabi-Yau manifold with a fixed

holomorphic volume form ΩY . Let w : Y → C be a proper holomorphic function. This geometry gives

rise to a natural dg Batalin-Vilkovisky algebra:

A := ΓC∞

(
Y,∧•T 1,0

Y ⊗∧•A0,1
Y

)
,

d := ∂̄ + ιdw,

∆ := ⊕divΩY
= ι−1

ΩY
◦ ∂ ◦ ιΩY

,

where ιΩY
: ∧•T 1,0

Y → ∧d−•Ω1,0
Y denotes the contraction with ΩY .
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As discussed in section 3.2 in this situation we get a connection along u which conjecturally de-

fines a nc-Hodge structure. The connection is defined the above formula with Γ−2 = the operator of

multiplication by −w, and Γ−1 = Gr : A → A, the grading operator which is equal to q+p−d
2 · id on

ΓC∞

(
Y,∧pT 1,0

Y ⊗ ∧qA0,1
Y

)
.

We will elaborate on this geometric picture in the next section.

4.3 B-model framework: manifolds with anticanonical sections

4.3.1 The classical Tian-Todorov theorem. Let X be a compact Kähler manifold. By Kodaira-

Spencer theory we know that the deformations of X are controlled by the dg Lie algebra
(
g(1), dg(1)

)
:=
(
ΓC∞

(
X,T 1,0

X ⊗C∞
X
A0,•
X

)
, ∂̄
)
.

The classical Tian-Todorov theorem [232], [233] can be formulated as follows:

Theorem 4.18 If X is a compact Kähler manifold with c1(X) = 0 ∈ Pic(X), then
(
g(1), dg(1)

)
is

homotopy abelian. In particular the formal moduli space of X is smooth.

Proof. Since c1(X) = 0 ∈ Pic(X) we can find a unique up to scale holomorphic volume form ΩX on

X. As in example 4.17 the pair (X,ΩX) gives rise to a dg Batalin-Vilkovisky algebra (A, d,∆):

A := ΓC∞

(
X,∧•T 1,0

X ⊗∧•A0,1
X

)

d := ∂̄

∆ := ⊕divΩX
= ι−1

ΩX
◦ ∂ ◦ ιΩX

.

Consider the associated dg Lie algebra (g, dg) := (ΠA, d). We have a natural inclusion of dg Lie

algebras (
g(1), dg(1)

)
�

� / (g, dg)

(
ΓC∞

(
X,T 1,0

X ⊗C∞
X
A0,•
X

)
, ∂̄
)
�

� / ΓC∞

(
X,∧•T 1,0

X ⊗ ∧•A0,1
X

)

which embeds
(
g(1), dg(1)

)
as a direct summand in (g, dg), and so induces and embeddingH•

(
g(1), dg(1)

)
⊂

H• (g, dg) in cohomology. So by Proposition 4.11 it suffices to check that (g, dg) is homotopy abelian.

On the other hand the contraction map ιΩX
gives an isomorphism of bicomplexes between the dg

Batalin-Vilkovisky algebra (A, d,∆) and the Dolbeault bicomplex (A•(X), ∂̄, ∂). Since X is assumed

compact and Kähler, the Hodge-to-de Rham spectral sequence degenerates on X which is equivalent

to the equality dimHk
dR(X,C) = dim(⊕p+q=kHp(X,ΩqX)) which implies that the Dolbeault bicom-

plex (A•(X), ∂̄, ∂) has the degeneration property. Thus by Theorem 4.14 (1) it follows that (g, dg) is

homotopy abelian. The theorem is proven. ✷
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4.3.2 Canonical coordinates on the moduli of Calabi-Yau manifolds. Let X be a Calabi-Yau

manifold, i.e. a d-dimensional compact Kähler manifold with c1(X) = 0 in Pic(X). Let (A, d,∆)
be the dg Batalin-Vilkovisky algebra defined in section 4.3.1. The contraction map ιΩX

identifies the

C[[u]]-module H• (g[[u]], d + u∆) with the Rees module of the nc-Hodge filtration on H•
dR(X,C) for

which Hp,q(X) ⊂ F p−q
2 . Now choose one of the following equivalent pieces of data:

• a filtration G• on H•
dR(X,C) which is opposed to the nc-Hodge filtration,

• a splitting of the nc-hodge filtration,

• an extension of the associated nc-Hodge structure to a trivial bundle on P1 such that the connec-

tion has at most a first order pole at infinity.

Each such choice gives rise to an affine structure on ⊕Mod(g,dg). This affine structure is the same as

the one described in section 4.1.3 corresponding to the nc-Hodge structure above and the decoration ψ
given by the class [ΩX ] in the associated graded grG• H•

dR(X,C).
In mirror symmetry considerations a choice of this type arises naturally when X is a Calabi-Yau

manifold near a large complex structure limit point. Concretely, suppose X = Xz is member in a

holomorphic family {Xz} of compact d-dimensional Calabi-Yau manifolds parameterized by z in a

polydisc
∏M
i=1{zi ∈ C | 0 < |zi| ≪ 1}, and such that:

• M = dimCH
1 (Xz, TXz);

• for each i = 1, . . . ,M the monodromy operator ti ∈ GL
(
H1
(
Xz, TXz

))
assigned to the circle

(traced counterclockwise)

γi =

{
z

∣∣∣∣
zj = zj , j 6= i,
|zi| = |zi|

}

is unipotent of order d.

In this setup, the filtration G• of H• (Xz,C) invariant under all unipotent operators
∏M
i=1 t

ai
i , ai ∈ Z>0

will be opposed to the Hodge filtration and will thus give us canonical coordinates on the polydisc. This

affine structure corresponds to a rational decoration of a Calabi-Yau variation of nc-Hodge structures.

4.3.3 Generalizations. Here we generalize the previous discussion to the case of varieties with

divisors.

(i) Let X be a d-dimensional smooth projective variety over C, and let D ⊂ X be a normal cross-

ings anti-canonical divisor, i.e OX(D) = K−1
X ∈ Pic(X). Typically such an X will be a Fano or

a quasi-Fano. If D is smooth, then by adjunction D will be a Calabi-Yau. Specifying such a divi-

sor is equivalent to specifying a logarithmic volume form on X. This is a unique up to scale n-form

ΩX logD ∈ Γ
(
X,ΩdX(logD)

)
on X which has a first order pole along D and does not vanish anywhere

on X −D.

Let TX,D be the subsheaf of TX of holomorphic vector fields on X which at the points of D are

tangent to D. This is a locally free subsheaf of TX of rank d which controls the deformation theory of
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the pair (X,D). The relevant dg Batalin-Vilkovisky algebra (A, d,∆) is an obvious generalization of

the one in the absolute case:

A := ΓC∞

(
X,∧•TX,D ⊗C∞

X
∧•A0,1

X

)

d := ∂̄

∆ := ⊕divΩX logD
= ι−1

ΩX logD
◦ ∂ ◦ ιΩX logD

,

where ιΩX logD
: ∧•TX,D → Ωd−•

X (logD) is the isomorphism given by contraction with ΩX logD.

Again the map ιΩX logD
identifies (A, d,∆) with the logarithmic Dolbeault bicomplex

(
A•,•(logD), ∂̄, ∂

)
.

In particular, for all u 6= 0 we get an identification of the cohomology of the complex (A, d+ u∆) with

the cohomology of the total complex of the double complex
(
Ω•,•
X (logD), ∂̄, ∂

)
, which is equal [247,

Section 6.1] to the cohomology of the open variety X − D. In other words for all u 6= 0 we have an

isomorphism

(4.2) H•(A, d + u∆) ∼= H•
dR(X −D,C).

Now mixed Hodge theory implies the following

Lemma 4.19 The logarithmic dg Batalin-Vilkovisky algebra (A, d,∆) has the degeneration property.

In particular the formal moduli of the pair (X,D) is smooth.

We will return to the proof of this lemma in section 4.3.4 but first we will discuss a couple of variants

of this geometric setup.

(ii) Suppose X is a smooth projective d-dimensional Calabi-Yau manifold. Let as before ΩX be the

holomorphic volume form on X. Let D ⊂ X be a normal crossings divisor. Typically if D is smooth,

it will be a variety of general type.

Consider the dg Batalin-Vilkovisky algebra (A, d,∆) given by

A := ΓC∞

(
X,∧•TX,D ⊗C∞

X
∧•A0,1

X

)

d := ∂̄

∆ := ⊕divΩX
= ι−1

ΩX
◦ ∂ ◦ ιΩX

,

The contraction ιΩX
identifies this algebra with the dg Batalin-Vilkovisky algebra

(
ΓC∞

(
X,Ω•

X(relD)⊗C∞
X
∧•A0,1

X

)
, ∂̄, ∂

)
,

where ΩkX(relD) ⊂ ΩkX denotes the subsheaf of all holomorphic k-forms that restrict to 0 ∈ ΩkD−sing(D).

The cohomology of the total complex associated with this double complex is the de Rham cohomology

of the pair (X,D), and so again we get an identification

(4.3) H•(A, d+ u∆) ∼= H•
dR(X,D;C)

valid for all fixed u 6= 0. Again using this identification and mixed Hodge theory one deduces the

following
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Lemma 4.20 The dg Batalin-Vilkovisky algebra (A, d,∆) has the degeneration property and hence the

formal moduli space of the pair (X,D) is smooth.

(iii) The setups (i) and (ii) have a natural common generalization. Fix a smooth projective complex

variety of dimension d, a normal crossings divisor D = ∪i∈IDi ⊂ X, and a collection of weights

{ai}i∈I ⊂ [0, 1] ∩Q, so that

∑

i∈I

ai[Di] = −KX ∈ Pic(X)⊗Q.

Represent the ai’s by reduced fractions, takeN ≥ 1 to be the least common multiple of the denominators

of these fractions and such that

∑

i∈I

(Nai)[Di] = −NKX ∈ Pic(X),

and set ni := aiN . In particular we have a unique up to scale section Ω̃X ∈ Γ
(
X,K

⊗(−N)
X

)
whose di-

visor is
∑

i∈I niDi. In this situation we can again promote the Dolbeault dg Lie algebra which computes

the deformation theory of (X,D) to a dg Batalin-Vilkovisky algebra (A, d,∆), where

A := ΓC∞

(
X,∧•TX,D ⊗C∞

X
∧•A0,1

X

)

d := ∂̄

∆ := ⊕div
Ω̃X

.

The divergence operator ⊕div
Ω̃X

is defined as follows. Restricting the section Ω̃X to X −D we get a

nowhere vanishing section of K
⊗(−N)
X−D , i.e. a flat holomorphic connection onKX−D . If U ⊂ X−D is a

simply connected open, then we can choose ΩU a holomorphic volume form on U which is covariantly

constant for this flat connection, and define the associated divergence operator ⊕divΩU
:= ι−1

ΩU
◦∂◦ιΩU

.

But by the flatness of the connection it follows that any other covariantly constant volume form on U
will be proportional to ΩU with a constant proportionality coefficient. Since by definition ⊕divcΩU

=
⊕divΩU

for any constant c we get a well defined divergence operator on X − U . Furthermore locally

this divergence operator is a given by a holomorphic volume form which is a branch of
(
Ω̃X

)−1/N
and

so by continuity it gives a well defined map of locally free sheaves ⊕div
Ω̃X

: ∧iTX,D → ∧i−1TX,D.

Again we claim that

Lemma 4.21 The dg Batalin-Vilkovisky algebra (A, d,∆) has the degeneration property and the formal

moduli space of the pair (X,D) is smooth.

Proof. The proof of this lemma again reduces to mixed Hodge theory via a map similar to the isomor-

phisms (4.2) and (4.3). However constructing this map is a bit more involved than the arguments we

used to construct (4.2) and (4.3).

Consider the root stack Z = X
〈{

Di
N

}
i∈I

〉
as defined in e.g. [175], [126]. By construction Z is a

smooth proper Deligne-Mumford stack, equipped with a finite and flat morphism π : Z → X.
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Conceptually the best way to define the stack Z is as a moduli stack classifying (special) log struc-

tures associated with X, the divisor D and the number N (see [175] for the details). Etale locally on X
the stack Z can be described easily as a quotient stack. Indeed choose etale locally an identification of

X with a neighborhood of zero in Ad with coordinates z1, . . . , zd, so that D = D1 ∪ · · · ∪Dr and Di

is identified with the hyperplane zi = 0. Then the corresponding etale local patch in Z is canonically

isomorphic to the stack quotient [
Ad/µN × · · · × µN︸ ︷︷ ︸

r-times

]
,

where µN ⊂ C× is the group ofN -th roots of unity, and (ζ1, . . . , ζr) ∈ µ×r
N acts as (z1, . . . , zr, zr+1, . . . , zd) 7→

(ζ1z1, . . . , ζrzr, zr+1, . . . , zd).
In particular, this description shows (see [175, Theorem 4.1]) that:

• The map π is an isomorphism over X − D and in general identifies X with the coarse moduli

space of Z;

• There is a strict normal crossings divisor D̃ = ∪i∈ID̃i ⊂ Z , such that

OZ
(
−ND̃i

)
= π∗OX (−Di)

as ideal subsheaves of OZ ;

• For all j we have the Hurwitz formula ΩjZ(log D̃) = π∗ΩjX(logD).

In particular we have canonical isomorphisms

π∗KX
∼= OZ

(
−
∑

i∈I

niD̃i

)

π∗KX
∼= KZ ⊗OZ

(
(1−N)

∑

i∈I

D̃i

)

the first given by the section π∗Ω̃X and the second coming from the Hurwitz formula.

There is a natural complex local system of rank one on X −D with monodromy in µN associated

with the choices of N -th root of the section Ω̃X . It is easy to see that the pullback of this local system

admits a canonical extension (as a local system) to Z , which we denote by Ξ. Moreover, we have a

canonical meromorphic section ΩZ of KZ ⊗C Ξ with divisor
∑

i∈I(N − 1− ni)D̃i. It is easy to check

locally by using the etale local description of Z as a quotient stack the contraction ιΩZ
gives a well

defined isomorphism of locally free sheaves:

ιΩZ
: ∧jTZ,D̃

∼= //Ωd−jZ

(
log D̃(1), rel D̃(0)

)
⊗C Ξ.

Here

D̃(0) := ∪i∈I0D̃i I0 = {i ∈ I|ai = 0}
D̃(1) := ∪i∈I1D̃i I1 = {i ∈ I|ai = 1}.
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Now taking into account the Hurwitz isomorphism ∧jT
Z,D̃
∼= π∗ ∧j TX,D and using adjunction, we can

view ιΩZ
as an isomorphism

(4.4) ∧jTX,D
∼= //
(
π∗Ω

d−j
Z

(
log D̃(1), rel D̃(0)

)
⊗C Ξ

)

It is immediate from the definition that the isomorphism (4.4) (taken for all j) identifies the dg Batalin-

Vilkovisky algebra (A, d,∆) with the Dolbeault bicomplex
(
ΓC∞

(
X,
(
π∗Ω

•
Z

(
log D̃(1), rel D̃(0)

)
⊗C Ξ

)
⊗C∞

X
A0,•
X

)
, ∂̄, ∂

)
.

But the above complex equipped with the differential ∂+ ∂̄ is the Dolbeault resolution of the complex of

sheaves π∗

(
Ω•
Z

(
log D̃(1), rel D̃(0)

)
⊗C Ξ, ∂

)
which is equal to the derived direct imageRπ∗

(
Ω•
Z

(
log D̃(1), rel D̃(0)

)
⊗C Ξ

since π is finite. Now combined with the Leray spectral sequence for π this gives, for all u 6= 0 an iso-

morphism

(4.5) H•(A, d+ u∆) ∼= H•
dR

(
Z − D̃(1), D̃(0) − D̃(1);Ξ

)
,

which specializes to both isomorphisms (4.2) and (4.3).

Now the fact that Z is a smooth and proper Deligne-Mumford stack and mixed Hodge theory (see

4.3.4) for
(
Z − D̃(1), D̃(0) − D̃(1)

)
endowed with local system Ξ imply that (A, d,∆) has the degen-

eration property. ✷

Remark 4.22 The fact that the root stack in the previous proof can be viewed as the moduli stack of

special log structures is very interesting. It suggests that the setup we just discussed may fit naturally in

the recent approach of Gross-Siebert [104, 105] to mirror symmetry and instanton corrections via log

degenerations of toric Fano manifolds (see also [158, 157]). The relationship between these two setups

is certainly worth studying and we plan to return to it in the future.

(iv) Yet another generalization of the previous picture arises when we take the variety X to be a normal-

crossings Calabi-Yau. More precisely assume that X is a strict normal crossings variety with irreducible

components X = ∪i∈IXi equipped with a holomorphic volume form ΩX on X − Xsing such that

the restriction of ΩX on each Xi has a logarithmic pole along Xi ∩ (∪j 6=iXj) and the residues of

these restricted forms cancel along each Xi ∪ Xj . Taking a colimit along the projective system of

all finite intersections of components of X we get again a dg Batalin-Vilkovisky algebra Atot(X) =
colimJ⊂I A (∩i∈JXi) and again by using mixed Hodge theory we can check that this algebra has the

degeneration property.

4.3.4 Mixed Hodge theory in a nutshell. In this section we briefly recall the basic arguments from

Deligne’s mixed Hodge theory [68] that are necessary for proving the degeneration property of the dg

Batalin-Vilkovisky algebras in section 4.3.3 (i)-(iv).

Suppose we are given:
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• a finite ordered collection (Xα) of smooth complex projective varieties;

• for every α a choice of a Z×Z-graded complex of sheaves of differential forms which are either

C∞ or are C−∞ (i.e. currents) and constrained so that their wave front (singular support) is

contained in a given conical Lagrangian in T∨Xα which is the conormal bundle to a normal

crossings divisor in Xα;

• a collection of integers nα ∈ Z.

Consider the complexCtot = ⊕αC•
α[nα] equipped with three differentials ∂, ∂̄, δ, where δ =

∑
α<β δαβ ,

and the δαβ come from pullbacks and pushforwards for some mapsXβ →֒ Xα orXα →֒ Xβ . The state-

ment we need now can be formulated as follows:

Claim 4.23 For every k ≥ 1 the cohomology

H•
(
Ctot[u]/(uk), ∂̄ + δ + u∂

)

is a free C[u]/(uk)-module.

Proof. If X is smooth projective over C and if
(
A•(X), ∂̄

)
is the ∂̄-complex of (either C∞ or C−∞)

differential forms on X, then the inclusion

(
ker ∂, ∂̄

)
→֒
(
A•(X), ∂̄

)

is a quasi-isomorphism.

This implies that the horizontal arrows in the diagram of complexes

(
ker ∂[u]/(uk), ∂̄ + δ + u∂

)
//
(
Ctot[u]/(uk), ∂̄ + δ + u∂

)

(
ker ∂[u]/(uk), ∂̄ + δ

)
//
(
Ctot, ∂̄ + δ

)
[u]/(uk),

are quasi-isomorphisms. Indeed, this follows by noticing that there are natural filtrations on both sides

(by the powers of u and the index α) which give rise to convergent spectral sequences and induce the

quasi-isomorphic inclusion
(
ker ∂, ∂̄

)
→֒
(
Ctot, ∂̄

)
on the associated graded. This proves the claim. ✷

Remark 4.24 • Note that the same reasoning implies that the natural map

(
ker ∂, ∂̄ + δ

)
։
(
ker ∂/ im ∂, ∂̄ + δ

)
= (H•(Xα), δ) ,

is also a quasi-isomorphism, which reduces the problem of computing

H•
(
Ctot[u]/(uk), ∂̄ + δ + u∂

)
to a homological algebra question on a complex of finite dimensional

vector spaces.

• There is useful variant of the theory, also discussed in [68]: the previous discussion immediately

generalizes to the case of cochain complexes of a collection of projective manifolds with coefficients in

some unitary local systems.
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Next we discuss a few examples and applications of the geometric setup from section 4.3.3.

4.3.5 The moduli stack of Fano varieties. As a consequence of section 4.3.3 (iii) we get a new

proof and a refinement of the following result of Ran [200], [146]:

Theorem 4.25 LetX be a complex Fano manifold, that is letX be a smooth proper C-variety for which

K−1
X is ample. Then the versal deformations of X are unobstructed.

Proof: ChooseN > 1 so thatK
⊗(−N)
X is very ample and all the higher cohomology groupsHk

(
X,K

⊗(−N)
X

)

vanish for k ≥ 1. Choose a generic section Ω̃X ∈ H0
(
X,K

⊗(−N)
X

)
= 0 whose zero locus is a smooth

and connected divisor D ⊂ X.

Consider now g = ΠRΓ (X,∧•TX,D) with the Schouten bracket. By Lemma 4.21 this d(Z/2)g
Lie algebra is homotopy abelian and so as in the proof of Theorem 4.18 we conclude that g(1) =
RΓ (X,TX,D) is homotopy abelian. Since this d(Z/2)g Lie algebra governs the deformation theory of

(X,D) as a variety with a divisor, it follows that the formal germ of the deformation space of the pair

(X,D) is smooth. Next we will need the following simple

Lemma 4.26 Suppose (X ′,D′) is a small deformation of (X,D) as a variety with divisor. Then X ′ is

still a Fano with K
⊗(−N)
X′ is very ample and D′ ∈

∣∣∣K⊗(−N)
X′

∣∣∣.

Proof: The condition of K
⊗(−N)
X being very ample is open in the moduli of X. Furthermore by

definition K
⊗(−N)
X ⊗ OX(−D) = OX and so by the small deformation hypothesis it follows that

K
⊗(−N)
X′ ⊗OX′(−D) is in the connected component of the identity of Pic(X ′). ButX ′ is a Fano and so

Lie(Pic0(X ′)) = H1(X ′,OX′) = 0. Hence K
⊗(−N)
X′ ⊗ OX′(−D) = OX as

well. ✷

The theorem now follows easily. The versal deformation space of smooth connected D’s for a given

X is smooth and isomorphic to a domain in P
h0

(
X,K

⊗(−N)

X′

)
−1

. Since the dimension of these projective

spaces is locally constant in X by Riemann-Roch and vanishing of the higher cohomologies, it follows

that the map from the versal deformation space of the pairs (X,D) to the versal deformation stack of X
is smooth. In other words the versal deformation stack of X has a presentation in the smooth topology

with a smooth atlas - the versal deformation space for (X,D). Hence the versal deformations of X are

a smooth stack. ✷

4.3.6 Algebras for the Landau-Ginzburg model. Consider again the setup of a holomorphic

Landau-Ginzburg model. Suppose Y is smooth and quasi-projective over C and of dimension dimY =
d. Suppose there exists a nowhere vanishing algebraic volume form ΩY ∈ Γ(Y,KY ), and let w : Y →
A1 be a regular function with compact critical locus.
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This data gives a dg Batalin-Vilkovisky algebra (A, d,∆) where

A := ΓC∞

(
Y,∧•T 1,0

Y ⊗C∞
Y
∧•A0,1

Y

)

d := ∂̄ + ιdw

∆ := ⊕div
Ω̃Y
.

Again the contraction ιΩY
identifies (A, d,∆) with the twisted Dolbeault bicomplex(

A•(Y ), ∂̄ + dw∧, ∂
)
. The latter satisfies the degeneration property by the work of Barannikov and

the second author, Sabbah [203], or Ogus-Vologodsky [191]

Remark 4.27 It will be interesting to combine the previous discussion with the discussion in sec-

tion 4.3.3 (iii) or with the broken Calabi-Yau geometry from section 4.3.3 (iv). Suppose we have a

quasi-projective smooth complex Y , a regular function w : Y → A1 with compact critical locus, and

suppose we are given a normal crossings divisor D = ∪i∈IDi and a system of weights {ai}i∈I as in

section 4.3.3 (iii). Then we can write the w-twisted version of the dg Batalin-Vilkovisky algebra for

(Y,D) which by general nonsense will compute the deformation theory of the data (Y,D,w). Similarly

we can add a potential to a Y which itself is a normal-crossings Calabi-Yau, as in section 4.3.3 (iv). We

expect that the resulting algebras will again have the degeneration property but we have not investigated

this question.

4.4 Categorical framework: spherical functors

In this section we briefly discuss some algebraic aspects of the deformation theory of nc-spaces (see

section 2.2.1). For simplicity we will discuss the Z-graded case but in fact all definitions and statements

readily generalize to the Z/2 case.

4.4.1 Calabi-Yau nc-spaces. Suppose X = ⊕ncSpec(A) is a graded nc-affine nc-space over C.

If X is smooth, then A ∈ ⊕PerfX×Xop = ⊕Perf (A⊗Aop −mod) and we define the smooth dual of

A to be A! := HomA⊗Aop (A,A⊗A). Similarly if X is compact, then A ∈ ⊕Perfpt and we define the

compact dual of A to be A∗ := HomC(A,C) ∈ (A⊗Aop −mod).
If X is both a smooth and compact nc-space, then we have isomorphisms

A! ⊗A A∗ ∼= A∗ ⊗A A! ∼= A

in the category (A⊗Aop −mod). The endofunctor SX : CX → CX given by the A-bimodule A∗ is

called the Serre functor of X. It is an autoequivalence of CX which is central (i.e. commutes with all

autoequivalences). Moreover for any two objects E ,F ∈ ⊕PerfX there is a functorial identification

HomX(E ,F)∨ ∼= HomX(F , SXE).

With this notation we have the following definition (see also [159]):
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Definition 4.28 We say that a smooth graded nc-affine nc-space X = ⊕ncSpec(A) is a Calabi-Yau

of dimension d ∈ Z if A! ∼= A[−d] in (A⊗Aop −mod). We say that a compact nc-affine nc-

spaceX = ⊕ncSpec(A) is a Calabi-Yau of dimension d ∈ Z ifA∗ ∼= A[d] in (A⊗Aop −mod).

The definition works also in the Z/2-graded case, where the dimension d is understood as an element

of Z/2.

For a nc-space which is both smooth and compact the two conditions are equivalent and are equivalent

to having an isomorphism of endofunctors SX ∼= [d].

Remark 4.29 This definition of a Calabi-Yau structure on a smooth compact nc-space is somewhat

simplistic and should be taken with a grain of salt. The true definition (see [159]) implies the isomor-

phism of functors SX ∼= [d] but also involves higher homotopical data which is encoded in a cyclic

category structure on CX . We will suppress the cyclic structure here in order to simplify the discussion.

We are interested in nc-space analogues of the Tian-Todorov theorem. The unobstructedness of graded

smooth and compact nc-Calabi-Yau spaces was recently analyzed by Pandit [198] via the T 1-lifting

property of Ran [200] and Kawamata [146]. Here we formulate the following general

Theorem 4.30 Suppose that X is a smooth and compact nc-Calabi-Yau space of dimension d ∈ Z (or

of dimension d ∈ Z/2 in the Z/2-graded case). Assume that X satisfies the degeneration conjecture

(see section 2.2.4). Then:

• the Hochschild cochain algebra C•(X) of X is a homotopy abelian L∞ algebra;

• the formal moduli space ⊕ModX of X is a formal supermanifold, i.e.

⊕ModX := ⊕ModC•(A,A)
∼= Spf C[[x1, . . . , xN , ξ1, . . . , ξM ]];

• the negative cyclic homology of the universal family over ⊕ModX gives a vector bundle H →
⊕ModX×D which is equipped with a flat meromorphic connection ∇ so that∇u∂/∂xi ,∇u∂/∂ξj ,

and ∇u2∂/∂u are regular;

• (H,∇) is the de Rham part of a Calabi-Yau variation of nc-Hodge structures.

We will only sketch some of the highlights of the proof of this theorem here since going into full details

will take us too far afield. The proof is based on a mildly generalized version of Deligne’s conjecture

(see e.g. [156], [230]) which states that the Hochschild cochain complex of an affine nc-space is also

an algebra over the operad of chains of the little discs operad. The first step is to show that under the

Calabi-Yau assumption the Hochschild cochain complex C•(X) is also naturally an algebra over the

cyclic operad of chains of the framed little discs operad (i.e. the operad of little discs with a marked point

point on the boundary). Next one shows that the validity of the degeneration conjecture for X implies
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that the induced S1-action on the cochain complex, is homotopically trivial. Finally by a topological

argument one deduces from this the fact that all the higher L∞ operations on C•(X) must vanish.

Remark 4.31 It seems certain2 that from deformation quantization it follows that if X is a smooth and

projective Calabi-Yau variety, then the data described in the above theorem is canonically isomorphic to

the formal completion of the variation of nc-Hodge structures described in section 4.3.2.

For a general smooth and compact nc-Calabi-Yau space we expect that the formal variation of nc-

de Rham data in theorem 4.30 converges to give an analytic de Rham data which contains a compatible

nc-Betti data EB and so extends to an honest variation of nc-Hodge structures.

4.4.2 Spherical functors. In this section we introduce a special version of the general notion of a

spherical functor [6] which is tailored to the Calabi-Yau condition. We begin with a definition:

Definition 4.32 Let X and Y be two graded nc-spaces. A morphism f : X → Y is a triple of functors

CX

f∗
��

CY

f !

OO

f∗

OO

so that (f∗, f∗) and (f∗, f
!) are (left, right) pairs of adjoint functors.

Suppose now X, Y are smooth and compact graded nc-spaces and let Y be a nc-Calabi-Yau of dimen-

sion d.

Definition 4.33 A morphism f : X → Y is spherical if:

(a) the cone of the natural adjunction morphism idCX
→ f ! ◦ f∗ is isomorphic to the shifted Serre

functor of X: cone
(
idCX

→ f ! ◦ f∗
) ∼= SX [1− d],

(b) the natural map f ! → SX [1 − d] ◦ f∗, induced from the isomorphism in (a) and the adjunction

f ! → f ! ◦ f∗ ◦ f∗ is an isomorphism of functors.

Remark 4.34 (a) If f is spherical, then the associated reflection functor

Rf := cone
(
f∗ ◦ f ! → idCY

)
is an auto-equivalence of CY [6].

(b) Similarly to the definition of a Calabi-Yau structure the above notion of a spherical functor should

be viewed as a weak preliminary version of a stronger more refined notion which has to involve higher

homotopical data and has yet to be defined carefully.

2We borrowed this delightful expression from [132].
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Example 4.35 (i) Let X = pt, and let Y be a d-dimensional smooth and compact nc-Calabi-Yau and

let E ∈ CY be a spherical object, i.e. an object for which the complex of C-vector spaces HomY (E , E) is

quasi isomorphic to (H•(Sd,C), 0). The morphism of nc-spaces f : pt→ Y given by f∗(V ) = E ⊗V ,

for any V ∈ Cpt = (VectC) is spherical.

(ii) Let X be smooth and projective of dimension d+1, and let i : Y →֒ X be a smooth anti-canonical

divisor in X. The Y is a d-dimensional Calabi-Yau and we have a natural spherical nc-morphism

f : X → Y given by f∗ := i∗, f ! := i∗, etc.

(iii) Let Y be a smooth projective d-dimensional Calabi-Yau. Let i : X →֒ Y be a smooth hypersurface.

Then we have a natural spherical nc-morphism f : X → Y given by f∗ = i∗, f ! = i!, and f∗ = i∗.

Remark 4.36 The geometry of Example 4.35 (ii), where X is taken to be a smooth projective Fano,

and i : Y →֒ X is a smooth anti-canonical divisor, can be encoded algebraically in the categories

CX = D(Qcoh(X)), CY = D(Qcoh(Y )), the functor f∗ = i∗, and another natural triple of categories:

• the compact category Dcompact
support

(Qcoh(X − Y )) = ker(f∗),

• the compact category Dsupp Y (Qcoh(X)) = the subcategory in D(Qcoh(X)) generated by

i∗D(Qcoh(Y )),

• the smooth category D(Qcoh(X − Y )) = the quotient D(Qcoh(X))/Dsupp Y (Qcoh(X)).

There is a similar triple of categories for the setup in Example 4.35 (iii). It will be very interesting

to describe the categorical data that encodes anti-canonical divisors with normal crossings or more

generally the fractional anti-canonical divisor setup from section 4.3.3 (iii). It seems likely that in this

situation one gets a system of nested categories and functors with a “spherical” condition imposed on

the whole system rather than on individual functors. This is a very interesting question that we plan to

investigate in the future.

Remark 4.37 It is clear from the examples above that spherical functors give a unifying framework for

handling different type of geometric pairs.

Suppose that X and Y are smooth and compact nc-spaces, Y is a nc-Calabi-Yau, f : X → Y is a

spherical map, and the degeneration conjecture holds for both X and Y . In this situation we expect that

the deformation theory of f : X → Y is controlled by a homotopy abelian d(Z/2)g Lie algebra which

is L∞-quasi-isomorphic to

(4.6) cone

(
C•(Y )

f ! //C•(X)

)
[1− d].
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Moreover, using f∗ (or f !) we can build a new nc-space Z by taking CZ to be the semi-orthogonal

extension CZ = 〈CX , CY 〉, where we set

HomZ (CY , CX) := 0

HomZ (E ,F) := HomY (f∗E ,F) for all E ∈ CX ,F ∈ CY .

We expect that the deformation theory of f : X → Y is equivalent to the deformation theory of Z and

in particular that the L∞ algebra C•(Z) is quasi-isomorphic to the algebra (4.6).

Remark 4.38 We should point out that even though deformation quantization provides a conceptual

bridge between the categorical framework and the geometric framework of the previous section, the

actual connection between the two frameworks is tenuous at best. The source of the problem lies in the

fact that the deformation quantization of general Poisson maps can be obstructed [252].

4.5 A-model framework: symplectic Landau-Ginzburg models

We already noted in Examples 4.4 and 4.8 that there are natural canonical coordinates and a Calabi-

Yau variation of nc-Hodge structures that one can attach to the A-model on a compact symplectic

manifold. An interesting open problem is to find an algebraic description of these coordinates and

variation in terms of some d(Z/2)g Batalin-Vilkovisky algebra that is naturally attached to the Fukaya

category. This question is hard and we will not study it directly here. Instead we will look at the

question of finding canonical coordinates and variation in another symplectic context, i.e. for symplectic

Landau-Ginzburg models, and try to get an insight into a possible algebraic formulation in that case.

It will be interesting to compare our formalism with the recent work of Fan-Jarvis-Ruan [75] on the

symplectic geometry of quasi-homogeneous Landau-Ginzburg potentials with isolated singularities but

at the moment we do not see a direct relationship.

4.5.1 Symplectic geometry with potentials.

The objects we would like to understand are triples (Y,w, ω), where

• Y is a C∞-manifold and ω is a C∞-symplectic form on Y .

• w : Y → C is a proper C∞-map such that there exists an R > 0 so that over

{z ∈ C| |z| ≥ R} the map w is a smooth fibration with fibers symplectic submanifolds in (Y, ω).

Similarly to the case of compact symplectic manifolds one can associate Gromov-Witten invariants to

such a geometry. Specifically, if we fix n ≥ 1, g ≥ 0, and β ∈ H2(Y,Z), then we can use stable

pseudo-holomorphic pointed curves in Y to define a natural linear (correlator) map

I
(1)
g,β,n−1 : H•(Y,Q)⊗(n−1) ⊗H•

(
Mg,n,Q

)
//H•(Y,Q).

Indeed, note that Poincaré duality gives an identification

H•(Y,Q) ∼= H•(Y, YR;Q)[− dim Y ],
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where R > 0 is as above and YR = w−1 ({z ∈ C| |z| ≥ R}) ⊂ Y . Combining this identification

with the isomorphism (H•)∨ = H• we see that I
(1)
g,β,n−1 will be given by a class in H•(Y,Q)⊗(n−1) ⊗

H•(Y, YR;Q)⊗H•(Mg,n,Q).
Next consider the usual moduli stackMg,n(Y, β) of stable pseudo-holomorphic maps. Here it will

be convenient to assume that an almost-complex structure on Y tamed by ω is chosen in such a way

that w|YR is holomorphic. The stackMg,n(Y, β) is non compact but near infinity it parameterizes only

pseudo-holomorphic maps ϕ : C → Y such that w ◦ ϕ : C → C is constant and w ◦ ϕ(C) ∈ C is close

to infinity. Thus the virtual fundamental class of Mg,n(Y, β) is well defined as a class in the relative

homology

[
Mg,n(Y, β)

]
vir
∈ H•

(
Y n ×Mg,n, Y

n−1 × YR ×Mg,n;Q
)

= H•(Y,Q)⊗(n−1) ⊗H•(Y, YR;Q)⊗H•(Mg,n,Q).

We define I
(1)
g,β,n−1 to be the map given by the relative virtual fundamental class

[
Mg,n(Y, β)

]
vir

.

This collection of correlates satisfies analogues of the usual axioms of a cohomological field theory

[155] but we will not discuss them here. Consider now a cohomology class

x = (x2, x 6=2) ∈ H•(Y,C) = H2(Y,C)⊕H 6=2(Y,C),

where H•(Y,C) is viewed as a supermanifold over C.

Now for every such x we define a quantum product

• ∗x • : H•(Y,C)⊗H•(Y,C) //H•(Y,C)

by the formula

α1 ∗x α2 :=
∑

m≥0

∑

β∈H2(Y,Z)

exp (〈β, x2〉) ·
1

m!
I
(1)
g,β,m+1

(
(α1 ⊗ α2 ⊗ x 6=2 ⊗ · · · ⊗ x 6=2︸ ︷︷ ︸

m times

)⊗ 1M0,m+1

)
.

Now this quantum multiplication together with the usual formulas (see Examples 4.4 and 4.8) can be

used to define a decorated variation of nc-Hodge structures over the (conjecturally non-empty) domain

in H•(Y,C) where the series defining ∗x is absolutely convergent.

Remark 4.39 There are some interesting variants of this construction. For instance we can take a sym-

plectic manifold (Y, ω) with no potential and a pseudo-convex boundary. In this situation M g,n(Y, β)
is already compact, as long as β 6= 0. Also in a symplectic Landau-Ginzburg model (Y, ω,w) we can

allow for w to be non-proper and instead require that its fibers have pseudo-convex boundary. Finally

one can consider a symplectic Y equipped with a proper map Y → Ck, holomorphic at infinity and

with k ≥ 2.

4.5.2 Categories of branes Let (Y, ω,w) be a symplectic geometry with a proper potential. There

are two natural categories that we can attach to this geometry: the Fukaya category of the general fiber
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of w, and the Fukaya-Seidel category of w. Understanding the structure properties of these categories

or even defining them properly is a difficult task which requires a lot of effort and hard work. We will

not explain any of these intricate details but will rather use the Fukaya and Fukaya-Seidel categories as

conceptual entities. For details of the definitions and a rigorous development of the theory we refer the

reader to the main sources [81, 85, 217, Sei07a]. The categories that we are interested in are:

(1) The Fukaya-Seidel category ⊕FS(Y, ω,w) of the potential w has objects which are unitary local

systems V on (graded) ω-Lagrangian submanifolds L ⊂ Y such that:

• w(L) ⊂ (compact) ∪ R≤0;

• The restriction of L over the ray R≤0 is a fibration on R≤−R and when z ∈ R≤0, and z →
−∞, we have that the fiber Lz ⊂ Yz is a Lagrangian submanifold in the symplectic manifold(
Yz, ω|Yz

)
.

The morphisms between two objects (L1,V1) and (L2,V2) are defined as homomorphisms between the

fibers of the local systems at the intersection points of the two Lagrangians. As usual to make this work

one has to perturb one of the Lagrangians, say L2 by a Hamiltonian isotopy to ensure transversality of

the intersection. A new feature of this setup (compared to the situation of symplectic manifolds with

no potential) is that the allowable isotopies are tightly controlled - they correspond to small wiggling,

see Figure 7, of the tail of the tadpole-like image of the Lagrangian in C and a lift of this wiggling to Y
given by a non-linear symplectic connection identifying the fibers of Y .

����������������

L1

L2

Figure 7: Tadpole-like w-images of two Lagrangian submanifolds.

The compositions of morphisms are given by correlators counting pseudo-holomorphic discs whose

boundary is contained in the given Lagrangian submanifolds.

(2) The Fukaya category Fuk(Yz) of a fiber
(
Yz, ω|Yz

)
over a point z ∈ C which is not a critical value

for w. The objects in this category are again pairs consisting of (graded) Lagrangian submanifolds in

Yz equipped with unitary local systems, and morphisms and compositions are defined again by maps

between the fibers of the local systems at the intersection points and by counting discs. The parallel

transport w.r.t. a non-linear symplectic connection on w : Y → C identifies symplectically all fibers(
Yz, ω|Yz

)
over points z ∈ R≤0 when z → −∞. We will denote any one such fiber as (Y−∞, ω−∞).
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Now observe that by intersecting a Lagrangian L ⊂ Y with the fiber Y−∞ we get an assignment L 7→
L−∞ := L ∩ Y−∞. We expect that this assignment can be promoted to a spherical functor (see also

[Sei07a] for a similar discussion)

F : ⊕FS(Y,w, ω) //Fuk(Y−∞, ω−∞)

so that the associated spherical twist RF : Fuk(Y−∞, ω−∞)→ Fuk(Y−∞, ω−∞) categorifies the mon-

odromy around the circle {z ∈ C| |z| = R}.
In this situation one can also define relative Gromov-Witten invariants

J
(1)
g,β,n−2 : H•(Y, Y−∞;Q)⊗H•(Y,Q)⊗(n−2) ⊗H•

(
Mg,n,Q

)
//H•(Y, Y−∞;Q).

For we again use the duality (H•)∨ ∼= H• and the Poincaré duality H•(Y, Y−∞;Q) ∼= H•(Y, Y+∞;Q)

to rewrite J
(1)
g,β,n−2 as a class in

H•(Y, Y−∞;Q)⊗H•(Y, Y+∞;Q)⊗H•(Y,Q)⊗(n−2) ⊗H•

(
Mg,n,Q

)
.

This class can again be defined as a virtual fundamental class space Mg,n(Y, β) of stable pseudo-

holomorphic maps. Again we can interpret the virtual class as a relative homology class:

[
Mg,n(Y, β)

]
vir
∈ H•

(
Y n ×Mg,n, Y

n−2 ×
(
(Y −
R,ε × Y ) ∪ (Y × Y +

R,ε)
)
×Mg,n;Q

)

= H•(Y, Y
−
R,ε;Q)⊗H•(Y, Y

+
R,ε;Q)⊗H•(Y,Q)⊗(n−2) ⊗H•

(
Mg,n,Q

)

= H•(Y, Y−∞;Q)⊗H•(Y, Y+∞;Q)⊗H•(Y,Q)⊗(n−2) ⊗H•

(
Mg,n,Q

)
,

and so it gives the desired map J
(1)
g,β,n−2.
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Figure 8: The domain Dε.

Here 1≫ ε > 0, and Y ±
R,ε = w−1(±Dε), where Dε ⊂ C is the domain given by (see Figure 8)

Dε :=

{
z ∈ C

∣∣∣∣ |z| ≥ R and Arg z ∈
(
π

2
− ε, 3π

2
+ ε

)}
.
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Again the relative invariants J
(1)
g,β,n−2 give rise to a quantum multiplication and through the usual for-

mulas from Examples 4.4 and 4.8 we again get a decorated variation of nc-Hodge structures over a

(conjecturally non-empty) domain in H•(Y,C) with fiber H•(Y, Y−∞).

4.5.3 Mirror symmetry. In conclusion we systematize all the objects introduced above in a mirror

table (see also [13]) describing the corresponding A and B-model entities in parallel:

invariants A-model B-model

geometry

a triple (Y,w, ω) where:

w : Y → C is a proper
C∞-map (Y, ω) is symplectic with
c1(TY ) = 0

a pair Z ⊂ X where:

X is smooth projective, and
Z ⊂ X is a smooth anticanoni-
cal divisor

cohomology
H•(Y,C)
H•(Y, Y−∞;C)
H•(Y−∞,C)

} variations of
ncHS over
a domain in
H•(Y,C)

H•(X − Z,C)
H•(X,C)
H•(Z,C)

} variations of
ncHS over
a domain in
H•(X − Z,C)

categories

Fuk(Y−∞)

⊕FS(Y )

F

OO

:
Fuk(Y−∞) is a CY
category and F is a
spherical functor

D(Z)

D(X)

F

OO

:
D(Z) is a CY cat-
egory and F is a
spherical functor

The part of ⊕FS(Y ) consisting of La-

grangians fibered over where the
circle is of radius R≫ 0.

DsuppZ(X) :
a full compact (non
smooth) subcategory
in D(X)

The part of ⊕FS(Y ) consisting
of compact Lagrangian sumanifolds
in Y

Dcompact
support

(X − Z) :
a full compact (non
smooth) subcate-
gory in D(X)

The wrapped ⊕FS category: the Hom
space between (L1,V1) and (L2,V2) is
the sum of Hom(V1,V2)x, x ∈ L1 ∩ L2,
and L2 is deformed so that w(L2) be-
comes a spiral:

wrapped infinitely many times

D(X − Z) : a smooth (non com-
pact) category
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Interpretations of spectra.

1 Categorical linear systems

The studies of homological mirror symmetry (HMS) as correspondence of Lefshetz pencils was

initiated in [144] as part of the general theory of categorical linear systems. In this chapter, we look at

the monodromy of these linear systems. We utilise these monodromies by introducing a new notion of

noncomutative spectrum. We will use the setup and the notations from [144]. We start with a pencil

where the fibers are CY varieties and the global pencils constitute mirrors of Fano manifolds. We have

the following category diagram:

CY Fano

F (CY )→ F (Fano)

Here F (CY ), F (Fano) are the corresponding Fukaya-Seidel categories. ImΦ(F (CY )) = A is a

localization category F (CY )/ ∼. (Using HMS we can use Db(X) - the category of coherent sheaves

on algebraic varieties X.)

This localization category has a filtration:

A ⊃ Fλ1 ⊃ · · · ⊃ Fλn

where:

• λi are the asymptotics of limiting stability conditions.
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• Z = zλi(· · · )

• Fλi = {F s.t. Z(F ) = zλi(· · · )}

• λi are also the asymptotics of the PDE

(
∂

∂u
+ u−2K + u−1G

)

The above filtration can also be seen as the monodromy of the perverse sheaf of categories over the

skeleton. Following [144] we think of the category as a perverse sheaf of categories over lagrangian

skeleton. In the diagram bellow we describe our findings in [144].

←→
• •

• •
Homotopy

of Skeleta

dim of CAT

Monodromy

of Perverse

Sheaves

Asymptotics

of Stab

Conditions

Orlov Spectra

The main idea in current chapter is to give an interpretation of the above λi filtration as a noncom-

mutative spetrum and a spectrum of Landau-Ginzburg (LG) models. We use the theory of LG models

as generalized theory of singularity.

The above considerations lead to birational invariants, which will appear in more details in [142],

[145]. (For definitions and general theory of LG models and HMS we refer to [143].)

We will base our birational considerations on the following major notions and ideas:

1. Quantum spectrum. The quantum spectrum is defined in [142]. Let K· be the quantum multi-

plication by canonical class. It defines the following splitting of cohomology:

H = ⊕λiHλi .

Here λi are the eigenvalues of K·. We call these eigenvalues quantum spectrum. The main

theorem proven in [142] is:

MAIN THEOREM: The splitting H = ⊕λiHλi is a birational invariant.

2. Noncommutative spectrum. The noncommutative spectrum is defined in [142].

In the current chapter we extend these ideas and give some examples.
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A) We build analogues with low dimensional topology and give several new directions for

research.

B) We extend the definition of a noncommutative spectrum to multispectra. Possible applica-

tions are discussed.

Our considerations are only the tip of the iceberg. We propose a correspondence between

nonrationality over algebraically nonclosed fields and complexity of the discriminant loci of

the moduli space of LG models. We will consider some arithmetics applications in Section

3. In fact one can define several different spectra.

In addition to the quantum spectrum mentioned above, one can define several other spec-

tra:

• Noncommutative spectrum;

defined by the asymptotics of the quantum equation.

• Givental spectrum;

defined by the solutions of the Givental’s equation.

• Spectrum of LG model – multiplier ideal sheaf;

defined as the Steenbrink spectrum of a new singularity theory of the LG model.

• Asymptotics of stability conditions – stability spectrum;

defined as asymptotics of limiting stability conditions.

• Serre dimension of the Kuznetsov’s component;

defined as a categorical dimension.

• Arnold-Varchenko-Steenbrink spectrum of the affine cone.

defined as the classical spectrum of the affine cone singularity over X.

• R-charges – the assymptotics of RG flow – the same as asymptotics of Kähler-Ricci

flow – see Section 6.

We will discuss relations among some of them. Understanding the complete scope of re-

lations is an intriguing problem. We initiate the study of these connections in this chapter.

We will develop this connections in upcoming papers [140], [108].

C) We also propose a parallel between the existence of Kähler-Einstein metrics and the top

number of the noncommutative spectra. Recall that

lct(X,G) = sup {λ ∈ Q | the log pair (X,λD) l.c.s. ∀G inv. D}

We note the following parallel:

nonrationality

of (X,G)
orbifold

∃ of K.E.

metric on

(X,G)

δ > dimX − 2
X is not rational

δ is lct for sing

lct(X,G)

>
dimX

dimX + 1

In the above table lct is the log canonical treshold.

We take this parallel further:
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D) We connect the noncommutative spectra with elliptic genus and conformal field theory. We

connect orbifoldization of elliptic genus with spectra of singular varieties. This leads to a

categorical interpretation of Birkar’s boundness theorem. We propose the idea of categori-

cal resolution and “boundness” of conformal field theories – the central charges correspond

to the noncommutative spectra.

As a consequence we propose a parallel between Zamolodchikov’s c-theorem and up-

persemicontinuity condition of noncommutative spectra.

We will call the monotonicity of the highest number of the spectrum uppersemicon-

tinuity. In other words, the highest number of the spectrum is decreasing monotonically

when moving from the boundary of Frobenius manifold to its general point.

The chapter is organized as follows. We explain the general theory in Section 2. The Fano applica-

tions are considered in Section 2. The arithmetics applications are considered in Section 3. The parallel

with 3-dimensional topology are discussed in Section 4. The extension to multispectra is discussed in

Section 5. In Section 6, we consider the connection of spectra with elliptic genus. We make a connection

between Birkar’s theory and the conformal field theories.

2 Noncommutative spectra

In this section we introduce the idea of noncommutative spectra – an idea which belongs to M.

Kontsevich. We describe new birational invariants and describe some easy applications.

2.1 Definitions of quantum and nc spectra

Let X be a projective algebraic variety over C, with a given ample line bundle. The Gromov-Witten

invariants in genus zero define a potential F0: formal series on H•(X) with coefficients in Q[[T ]] – see

e.g. [143]. We briefly recall two conjectures (see e.g. [142]).

1. First we have:

Conjecture 2.1 F0 is convergent for a point γ ∈ H•(X) and for T ∈ C, both close to 0.

2. Assuming Γ-conjecture (see e.g. [143]) we get that nc Hodge structures are parametrized by a

domain

M ⊂ H•(X,C)/H2(X, 2πiZ),

which is a meromorphic connection on the trivial bundle over u-plane Cu with fiber H•(X):

∇ d
du

=
d

du
+

1

u2
K +

1

u
G

(Recall that the Γ-conjecture gives a lattice, hypothetically compatible with Stokes filtrations along rays

at u→ 0. For more details see [143].)
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We define the operator K = K(γ) as the quantum product with c1(TX)+
∑

i 6=2(2−i)γi . It depends

on the point γ = (γi ∈ H i(X))i=0,...,2 dimCX in Frobenius manifoldM. We also define the operator G

as a constant operator given by G|Hi(X) =
i−dimCX

2 · idHi(X).

We use the example bellow to introduce and demonstrate two important definitions. Let X be a

smooth 3-dimensional cubic in P4. Operators K , G on 4-dimensional space Heven(X) = ⊕3
i=0H

2i(X)
with the basis being powers of the hyperplane section, at point γ = 0 ∈ M, are:

K = 2·




0 6 0 36
1 0 15 0
0 1 0 6
0 0 1 0


 , G =




−3
2 0 0 0
0 −1

2 0 0
0 0 1

2 0
0 0 0 3

2




Solutions of the quantum equation

(2.1)

(
d

du
+

1

u2
K +

1

u
G

)
ψ(u) = 0

grow at u→ 0 as

∼ u− 5
6 ,∼ u−

1
6 .

Definition 2.2 Quantum spectrum is the spectrum of K , a finite subset {za} = SpecX ⊂ C (depends

on the point γ inM).

Definition 2.3 Noncommutative spectrum: The asymptotics of the sub-exponential growth solutions of

the equation 2.1 above form the noncommutative spectrum or nc spectrum.

In what follows we will denote by δ minus two times the lowest number of noncommutative spec-

trum. In the above example

δ =
5

3
.

Consider a purely even affine submanifoldMalg ⊂M, given by deformations of quantum product

by linear combinations of algebraic classes H
alg
Q (X) ⊂ Heven(X,Q).

Conjecture 2.4 For any point in Malg and a choice of disjoint paths from ∞ to points of the corre-

sponding quantum spectrum (see Figure 1), we obtain a semi-orthogonal decomposition Db(Coh(X)) =
〈C1, . . . , Cr〉 where r is the number of elements of the spectrum.

All categories C1, . . . , Cr are saturated (i.e. smooth and proper), equal to local Fukaya-Seidel cate-

gories for the mirror LG dual (Y,W : Y → C), if it exists.

Example 2.5 1. X = Pn, the quantum spectrum is µn+1 = {z ∈ C | zn+1 = 1} (for some point

inM)
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Figure 1: Gabrielov paths (Red dots correspond to eigenvalues of quantum multiplication.)

This gives Db(CohX) = 〈O, . . . ,O(n)〉.

2. Conjectural blow-up formula: If X̃ = BlY (X) where Y ⊂ X is a smooth closed subvariety of

codimension m ≥ 2, then the quantum spectrum SpecX̃ looks like
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with (m−1) shifted copies of SpecY around one copy of SpecX . (Here the blue dots correspond

to eigenvalues of quantum multiplication added after blow ups.)

3. IfX is a Calabi-Yau manifold or a manifold of general type the quantum spectrum is just a point.

4. The above considerations lead to the following theorem proven in [142]:

MAIN THEOREM: The splitting H = ⊕λiHλi is a birational invariant.

2.2 Dimension theory

In this section, we introduce Serre dimension which (with some exceptions) is equal to the number

δ from the noncommutative spectrum. We see that sometimes elementary pieces Ca = Cza , za ∈
SpecX (could be combined as some points of the spectrum collide), are themselves equivalent to derived

categories of coherent sheaves on some varieties, of certain dimensions ≤ dimX.

In general, for a saturated category C one can define its Serre dimension [74]

dimSerre C := lim
|k|→+∞

{
i

k
| Exti(IdC , SkC ) 6= 0

}
⊂ R.

Here SC : C → C is the Serre functor [35]:

HomC(E,F )
⋆ = HomC(F, SCE), ∀E,F ∈ Ob(C).

In general, Serre dimension could be an empty set, or an interval.

For categories Db(Coh(X)), it is exactly the dimension dimX ∈ Z≥0. For a fractional Calabi-Yau

category SkC ∼ [n], the Serre dimension is equal to Calabi-Yau dimension n
k , hence fractional.

Example 2.6 Fukaya-Seidel category of Y = Cx, W = xd, d ≥ 2: dimSerre = 1− 2
d .

Let us assume that (H,∇) is a connection with second order pole and regular singularity (i.e. all so-

lutions have polynomial growth). Then the order of growth defines a filtration by subbundles, preserved

by connection ∇, the indices form the subexponential growth spectrum = nc spectrum.

ESSENTIAL EXAMPLE.

Consider the hypersurface X ⊂ Pn of Calabi-Yau/general type. The connection on the image of

H•(Pn) in H•(X) under restriction map, i.e. the span of powers of c1(O(1)) ∈ H2(X) :

∇ d
du

=
d

du
+

1

u2
K +

1

u
G,K = classical product with c1(TX)

The nc spectrum is

(− dimX/2,− dimX/2, . . .)

for X a manifold of general type and so

δ = dimX.

For X a Calabi-Yau manifold nc spectrum is
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(− dimX/2, 1 − dimX/2, . . . ,+dimX/2)

and δ = dimX. Similar behavior happens for Calabi-Yau when we replace the multiplication by

c1(TX) = 0, by the multiplication by an inhomogeneous class c1(TX) +
∑

i 6=2(2 − i)γi, γi ∈ H i(X),
i ∈ 2Z.

2.2.1 More general example

Let us consider a weighted projective space Pω0,...,ωn and generic complete intersection X of hyper-

surfaces of degrees d1, . . . , dm. In what follows we investigate the connection between nc spectrum,

Givental spectrum and Steenbrink spectrum in this example.

Recall that such a complete intersection is called well-formed iff (here unions are understood with

multiplicities)

(⋆)
⋃

i

{ 1
ωi
, . . . ,

ωi − 1

ωi
} ⊂

⋃

j

{ 1
dj
, . . . ,

dj − 1

dj
}

We call the numbers from ⋆ Givental spectrum.

Well formed X is smooth, and does not meet singularities of Pω0,...,ωn . Let us assume that X is a

Fano variety, i.e.
∑

i ωi >
∑

j dj .
We define the Givental’s hypergeometric operator:

∏

i

ωωi
i · ∂dimX −

∏

j

d
dj
j · q·

∏
j(∂ + 1

dj
) · · · (∂ +

dj−1
dj

)
∏
i(∂ + 1

ωi
) · · · (∂ + ωi−1

ωi
)
, ∂ := q

d

dq
, u = c· q−

1∑
i ωi−

∑
j dj

The nc spectrum of the Laplace operator of the Givental’s hypergeometric operator is:

−dimX
2 + {complement in (⋆)} · (∑i ωi −

∑
j dj)→ numbers s0 ≤ s1 ≤ · · · .

The adjusted Steenbrink spectrum is:

(s0, s1 + 1, s2 + 2, . . .).
The adjusted Steenbrink spectrum is symmetric with center at 0.

Example 2.7 Let use consider complete intersection of two hypersurfaces of degree d1 = 2, d2 = 4 in

P6 = P6(1, 1, 1, 1, 1, 1, 1).
The growth spectrum is

(−7

4
,−6

4
,−6

4
,−5

4
)

In other words the solutions of the quantum equation grow as

u−
7
4 , log(u)u−

6
4 , u−

6
4 , u−

5
4

.

Adding (0, 1, 2, 3) to nc spectrum we obtain adjusted Steenbrink spectrum:
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(−7

4
,−1

2
,+

1

2
,+

7

4
)

.

2.3 Some computational tools

We briefly discuss some methods for calculations. We start with:

Theorem 2.8 (Saito’s Theorem) ([226]) Pf (t) = Spf (t)

Here Pf (t) =
∑
α
(dim Jα)t

α is the Poincare series and Spf (t) =
∑
i
(ni.t

i) - is the spectrum poly-

nomial and ni - are the multiplicity of spectral number.

Recall that for f(λw1x1, . . . , λ
wnxn) = λf(x1, . . . , xn) we define weight

wt.(xa11 , . . . , x
an
n ) =

∑n
i=1(1 + ai)wi

Example 2.9 Let us look at the example of three dimensional cubic from a new point of view:

f(x1, . . . , x5) = x31 + · · ·+ x35
Pf (t) = t

5
3 + 5t2 + 10t

7
3 + 5t3 + t

10
3

δ = 10
3 − 5

3 = 5
3

Let us denote by Cone(X) the cone over a hypersurface X and C is the Fukaya-Seidel cate-

gory associated with the most singular fiber of the LG model of X. By Orlov’s theorem we have

Db(Cone(X/G)) = C .

Denote by Sl the lowest number of the Steenbrink spectrum and by Sh the highest number of the

Steenbrink spectrum for Cone(X/G). An A-side conjectural version of Orlov’s theorem suggests:

Conjecture 2.10 The Steenbrink spectra ofCone(X) determines noncommutative spectrum associated

with X. The following identity holds

δ = Sh − Sl.

Let C be a Calabi-Yau category s.t. Serre functor satisfies Sa = [b].
HH•(C) = ⊕HH i(C)[δ]

Definition 2.11 The homomorphism

ǫ : (Q× Z2)→ Aut(C)

defines a categorical covering. The covering structure is recorded by multiplication in the A∞.

In the example 2.8 we get t
10
3 , t

5
3 define 10

3 − 5
3 , which produces degree of a covering.

Example 2.12 x41+ · · ·+x45. We consider this hypersurface as an affine cone. We compute the Poincare

polynomial and obtain:

Pf = t
5
4 + · · ·+ t

15
4 ⇒ δ = 15

4 − 5
4
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Example 2.13 x31 + · · · + x35. We consider this hypersurface as an affine cone. Here we can compute

the Bernstein polynomial

bf (t) = (t+ 1)(t+ 2)(t+ 3)(t+ 5
3)(t+

7
3)(t+

8
3)(t+

10
3 )

and obtain:

δ = 10
3 − 5

3

2.4 New nonrationality results

In this section we record the results of our method and compare them with already known results.

We use the simplest of invariants – δ. We hope that other numbers of the noncommutative spectrum can

be used as well. In fact it seems that these numbers mirror classical theory of multiplier ideal sheaves

and characterize the stratification of the base loci of the anticanonical system for Fano’s.

We have defined

δ = dim(X) − 2(N − d)/d
As an immediate consequence we get in [142].

Theorem 2.14 1. Let X be a Fano smooth hypersurface of degree d in P5−1 such that

d > 5/2.

Then X is not rational.

2. Let X be a Fano smooth hypersurface of degree d in P6−1 such that

d ≥ 6/2

and H2,2(X,Z) = Z. Then X is not rational.

3. Let us assume uppersemicontinuity condition. Let X be a Fano smooth hypersurface of odd

dimension and of degree d in PN−1 such that

d > N/2

Then X is not rational.

4. Let X be a Fano smooth hypersurface of even dimension k = (N − 2)/2 and of degree d such

that

d > N/2

and Hk,k(X,Z) = Z. Then X is not rational.

We briefly describe the idea of the proof.

Proof.

The above formulae is equivalent to δ > dim(X) − 2.
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1. dim(X) = 3 Assume that X is rational so it is obtained via sequence of blow ups and blow

downs with centers curves.

According to the ESSENTIAL EXAMPLE the maximal asymptotics we get under blow ups are

integers less or equal to 1.

Our MAIN THEOREM ensures that these integers do not interact. So the maximum δ we can get

by blow up is

dim(X) − 2 = 1.

- a contradiction.

2. dim(X) = 4. Assume δ > 2. The fact that H2,2(X,Z) = Z ensures that δ > 2 stays unchanged

under deformations. Assume that X is rational so it is obtained via sequence of blow ups and

blow downs with centers points, surfaces, curves.

According to the ESSENTIAL EXAMPLE the maximal asymptotics we get under blow ups are

integers less or equal to 2.

The MAIN THEOREM ensures that these integers do not interact. So the maximum δ we can get

by blow up is

dim(X) − 2 = 2.

- a contradiction.

The case d = 3, H2,2(X,Z) = Z will be treated in [142]. Let us briefly mention the idea. We

have a splitting

H = ⊕λiHλi .

With the exception of one all of these Hλi are one dimensional. The high dimensional one has

a symmetric noncommutative Hodge structure. With 20 dimensional space of deformation this

noncommutative Hodge structure cannot come from a commutative surface.

3. dim(X) = N − 2, N − 2 is odd. In this case δ > dim(X) − 2.

Assume that X is rational so it is obtained via sequence of blow ups and blow downs.

According to the ESSENTIAL EXAMPLE the maximal asymptotics we get under blow ups are

integers less or equal to dim(X) − 2. According to uppersemicontinuity these asymptotics can

only go down. The MAIN THEOREM ensures that these integers do not interact. So the maximum

δ we can get by blow up is

dim(X) − 2.

- a contradiction.
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4. dim(X) = N − 2 = 2k, N − 2 is even Hk,k(X,Z) = Z . In this case δ > dim(X) − 2. The

fact that Hk,k(X,Z) = Z ensures that δ > dim(X) − 2 does not go down.

Assume that X is rational so it is obtained via sequence of blow ups and blow downs.

According to the ESSENTIAL EXAMPLE the maximal asymptotics we get under blow ups are

integers less or equal to dim(X)−2. According to uppersemicontinuity these asymptotics can go

only down. The MAIN THEOREM ensures that these integers do not interact. So the maximum

δ we can get by blow up is

dim(X) − 2.

- a contradiction.

�

Similarly we have [142].

Theorem 2.15 Let X be a smooth Fano complete intersection of hypersurfaces of degrees d1, . . . , dm
in PN . Denote by dt the sum d1 + · · ·+ dn and by dm the minimal degree.

In this case the Arnold number (the largest number of the noncommutative spectrum) is equal to:

δ = dim(X) − 2((dt − dm)/dm)
.

1. Let X be 3 dimensional and δ > 1. Then X is not rational.

2. Let X be 4 dimensional, H2,2(X,Z) = Z and δ > 2. Then X is not rational.

Let us assume uppersemicontinuity condition.

3. Let X be of odd dimension and δ > dim(X)− 2. Then X is not rational.

4. Let X be of even dimension 2k, Hk,k(X,Z) = Z and δ > dim(X) − 2. Then X is not rational.

The same result works for well formed complete intersection in weighted projective spaces. The

formulae for δ is similar:

δ = dimX − 2
ωsum − dsum

dmax
, ωsum :=

∑

j

ωj for Pω0,...,ωn

3 Application to Arithmetics

The GW invariants can be defined over algebraically nonclosed fields L. Therefore the techniques of

noncommutative spectrum can be used to investigate nonrationality over algebraically nonclosed fields
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L. Of course changing the fields does not change the GW invariants but it changes algebraic cycles.

Changing algebraic cycles affects deformations of LG models and as a result the spectrum of quantum

multiplication by the canonical class. In this case we do not need an uppersemicontinuity - the restriction

on deformation comes from algebraic cycles.

Recall the example from the introduction - the two dimensional cubic: X : X3
0 + · · · + X3

3 = 0.

Consider X over algebraically nonclosed field L s.t. PicXL = 1. After analyzing the Sarkisov links

we conclude that X is not rational.

We will look at this example from the point of view of the spectrum. We begin with:

Theorem 3.1 LetX be a Fano stack of dimension at most 4 over a field L such that image of CH(X) in∑
iH

i(X,Z) is generated by powers of anticanonical class. Assume that Arnold constant ( the highest

number in the spectrum) is bigger than dim(X) − 2. Then X is not rational.

The same theorem works in the case when dimension of X is greater than four but with the assump-

tion of uppersemicontinuity condition.

Proof. We give a proof under assumption of an isomorphism between the quantum cohomologies and

Jacobian ring proven in many cases. The quantum multiplication by the canonical class K corresponds

to multiplication of the class of W .

QH(Hr) ∼= Jac(W )

multi K mult by W

QH ∼= Jac(W )

∪ ∪
subring subring

generated by K generated by W

W the LG

counterpart of K

Ppolynomial ofW

W + P (W )

all deformations

have the same critical values

as W

It follows that the spectrum of the most singular fiber ofW does not go down since this most singular

fiber does not split further under deformations. So we have δ > dimXL − 2 = 2.

From another point the main assumption and the fact that we blow up points, curves and surfaces

implies that δ = 2 - a contradiction. In the case of dimension higher than 4 the proof is the same.

�

We return to the case of cubic surface. We assume existence of a point in XL over L. Its Landau-

Ginzburg models is:

w =
(x+ y + 1)3

xy
for cubic
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Ẽ6

|

• the deformation

does not change

If the PicXL = Z then W have only two singular fibers.

We compute:

δ = 2− 2
4− 3

3
=

4

3

⇒ X is not rational

Since the PicXL = Z the deformation of W is restricted so we cannot morsify and δ does not go

down to 0. So XL is not rational.

We move to considering a cubic with PicXL = Z+ Z:

1. In the case PicXL = Z+Z⇒we get a conic bundle with 5 singular fibers. By Noether formulae:

8− S = k2 = 3,

so we have 5 singular fibers. (The classical Iskovskikh criteria |2KP1 + S| = | − 4p + 5p| 6= ∅
gives nonrationality.)

We will use spectrum in order to compute nonrationality. We compute the Bernstein polynomial

for a cubic as an affine cone with a singularity at zero.

We have 8− C = 3. C = 5 pts.

|2K + C| = | − 4 + 5| = OP1(1) 6= ∅
f = a5x2 + b5y2 + c5z2

f = (s + 1)2(s+ 2)2(s+ 3
2)

2 · · · (s + 3
10)

So δ = 3
2 − 3

10 6= 0 and XL is nonrational.

5

P1

|2KP1 + S| = | − 4p + 5p| 6= ∅

• •

non-splitting

|2K + S| 6= ∅ δ > 0

nonrationality

⇐⇒
⇒ ⇐
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2. We consider del Pezzo surface XL = of degree 4 in P3(1, 1, 1, 2) with PicXL = Z + Z It is a

conic bundle with 6 singular fibers. (The classical Iskovskikh criteria |2KP1+S| = |−4p+6p| 6=
∅ gives nonrationality.)

As before we use the Bernstein polynomial to show that δ > 0 and XL are not rational.

8− S = K2 = 2

6

|2K + S| 6= ∅
2 points

δ = 2− 25−4
4

no splitting

3. Consider del Pezzo surface XL of degree 6 in P(1, 1, 2, 3).

8− S = K2 = 1

S = 7

· · ·

7

|2K + 7| 6= ∅

δ = 2− 27−6
6

no splitting

As before we use the Bernstein polynomial to show that δ > 0 and XL are not rational.

The above observations suggest the following conjecture.

Conjecture 3.2 Let XL be a conic bundle over P2 (or another rational surface). Assume that the

following holds:

|2K + S| 6= ∅ nonsplitting

δ > dim(XL)− 2

Then XL is not rational.
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Let us consider a stack X/G. In this case the GW invariant of X are different from the ones of

X/G. From another point the new contributions to cohomologies do form as twisted sectors which do

not interact with the quantum span of the anticanonical divisor.

We denote the cohomologies associated to twisted sectors by Hγ1 , ... + · · · ,Hγk . We have the

following splitting of quantum cohomologies.

QH(X)G = H +Hγ1 + · · ·Hγk

It leads to the following conjecture.

Conjecture 3.3 LetX/G be a stack defined over a field L such that the image ofCH(X) in
∑

iH
i(X,Z)

is generated by powers of anticanonical class.

Assume that δ > dim(X/G) − 2. Then X/G is not rational.

The proof is very similar to the proof of the previous theorem. As before we have:

QH = H +Hγ1 + · · ·Hγk −→ Jac(Wm) + Jγ1 + · · · Jγk
〈1,K(1)1〉 deformed ∼= 〈Wm〉+ P (Wm)

= no new eigenvalues

Here we denote by Wm the potential modified by the contributions of the age factors. As before

we do not have further splitting of the cohomology and the inequality δ > dim(X/G) − 2 implies

nonrationality.

We will look at some examples of del Pezzo stacks.

Using this theorem we consider several examples of del Pezzo stacks - all hypersurfaces in weighted

projective P3. Consider the case of weights: 3, 3, 5, 5 and a hypersurface of degree 15. In this case

δ = 2− 2(16− 15)/15 = 28/15 > 0 so we have nonrationality. We can conpute the spectrum applying

theorem 5.5. Using Singular we compute the Steenbrink spectrum of Cone(X) - (0, 1), . . . , (28/15, 1).
So δ = 48/15. We obtain nonrationality.

Remark 3.4 Observe that choice of the fieldL and the condition Im(CH → H) = 〈1,K(1),K2(1), · · · 〉
are essential. Without these assumptions the most singular fiber of Wm splits to singularities A4, A2,

A2 and further which makes δ = 0.

Similarly consider the weights: 3, 5, 7, 11 and a hypersurface of degree 25. The Steenbrink spectrum

of Cone(X) is (0, 1), . . . , (48/25, 1). So δ = 48/25. We obtain nonrationality.

This methods work in all Johnson-Kollár examples as well as in higher dimension - for more see

[127].

4 Low dimensional topology invariants
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We explain a parallel between quantum spectrum and classical 3-dim, 4-dim invariants. First we

recall the classical theory. We start with theory of knots and Alexander polynomials. Consider the

singular curve:

f(z, w) = zp + wq, (z, w) ∈ C2

Sǫ = {|z|2 + |w|2 = ǫ2} ⊂ C2, 0 < ǫ << 1

Kp,q = f−1(0) ∩ Sǫ a knot

Alexander polynomial of this torus knot is:

∆p,q = t−
(p−1)(q−1)

2 · (t− 1)(tpq − 1)

(tp − 1)(tq − 1)

We define Sp(f) :=
∑

α∈Q nf,αt
α the Steenbrink spectrum

Steen = {α1, α2, . . . , αµ}, µ = (p− 1)(q − 1)

Fact 1 ∆Kp,q = t−
µ
2
∏µ
i=1 Φαi(t), Φαi(t) = (t− e2πiαi)

Example 4.1 ((p, q) = (2, 3))

∆K2,3 = t−
µ
2
(t6 − 1)(t− 1)

(t2 − 1)(t3 − 1)
= t−

µ
2 (t− e2πi 56 )(t− e2πi 76 )

Steen = {56 , 76}. Also using Thom-Sebastiani theorem we get:

Steen = {Steen(z2)}+ {Steen(w3)} = {1
2
}+ {1

3
,
2

3
} = {5

6
,
7

6
}

Example 4.2 ((p, q) = (2, 5))

∆K2,5 = t−
µ
2
(t10 − 1)(t − 1)

(t2 − 1)(t5 − 1)

Steen = { 1
10 ,

3
10 ,

7
10 ,

9
10}. Using Thom-Sebastiani we get:

Steen(z2 + w5) = {Steen(z2)}+ {Steen(w5)} = {1
2
}+ {1

5
,
2

5
,
3

5
,
4

5
}

We move 1 dimension higher. Consider an elliptic surface E(n): an elliptic fibration.

1212

E(2) = K3

12 singular fibers

E(1) = P2
p1,...,p9
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We describe fibered knot surgery and its connections with Seiberg Witten invariants SW.

holomorphic elliptic curves

S2

S1×

S1 × (
∑

g ×S1) into E(n)

Under surgery:

SWEK(n) =
∑

K∈Z

SW (K[F ])tK = SWE(n)(t)∆K(t), SWE(n) = (t− t−1)n−2

where F is the fiber of EK(n).

Theorem 4.3 (Gr = SW ) Coefficients of ∆K count holomorphic curves g = 1 in the class K[F ] in

EK(n).

We explore the connection with spectra. Recall that:

∑
g → S3 −K

S1

Φ the monodromy of the surgery (char polynomial of ∆k(t)) produces an endofunctor on Fuk(
∑

g)

and Fuk(Symk
∑

g) (or FS(
∑

g)?).

Conjecture 4.4 Φ defines filtration on HH(Fuk(
∑

g)) which corresponds to Steen.

Conjecture 4.5 Db
sing(f) has a filtration

Db
sing(f) ⊃ Fα1 ⊃ Fα2 · · ·

given by the spectra.

Let F be mirror of Db
sing(f). Consider the quantum differential equation 2.1

{asymptotics of 2.1} ↔ {Spectrum of f}
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Conjecture 4.6 Entropy of Φ: η(Φ) is the first coefficient of ∆K(t).

These simple observations suggest the following questions:

Question 4.7 Does the spectrum define canonical filtration on Floer homology?

Question 4.8 What is the symplectic meaning of this filtration? We expect it is connected with the

structures of the Lagrangian skeleta.

We discuss further applications. We define modular spectrum of a link M - link of singularity

Xf ← Y1,q as the Steenbrink Steen(Y1,q). We give a brief example to fix notations.

Example 4.9 M = Σ(2, 3, 5)
Y1,q − E8

WRT (M)↔ (1, 7, 11, 13, 17, 19, 23, 29)

Here WRT (M) is the Witten-Reshetikhin-Turaev (WRT) invariant of the 3-manifold M .

We pose the following:

Question 4.10 Is there a categorical meaning of WRT?

We will discuss some of these questions in the next section.

4.1 Spectra and WRT

LetM be a smooth 3-manifold which is a link of an isolated normal surface singularity in C3. In the

following sections, we study topological invariants of M and their relation to spectra. GPPV invariants1

Ẑb(q) [110], [53] are q-series that refine the WRT invariants.

Series Zb(q) can be expressed as a linear combination of false theta functions in the case of Seifert

manifolds with 3 singular fibres. Corresponding theta functions can be conjecturally written as com-

ponents of a vector-valued modular form, which is know for some examples, including links of ADE
singularities [53]. Induced representation of SL(2,Z) is a subrepresentation of 2m-dimensional Weil

representation for some integer m and θ functions are labelled by residue classes modulo 2m. We are

interested in these residue classes for all components of the modular form, not just those that correspond

to Ẑb. We call this set Modular spectrum for convenience. A precise definition depends on the conjec-

tural existence of a natural vector-valued modular form. It was posed as a question in [53] what is a

deeper meaning of these residue classes.

Example 4.11 The relation with the spectrum started with an observation about E8 singularity, de-

fined by the equation x2 + y3 + z5 = 0. Its link is a Poincaré homology sphere, Seifert manifold

1also called BPS q-series or homological blocks
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M(−2, 1/2, 2/3, 4/5). WRT invariants of this manifold have been studied in [166]. Lawrence and

Zagier defined two functions holomorphic inside the unit circle:

θ+(τ) = q1/120(1 + 11q + 19q3 + 29q7 − 31q8 − 41q14 − . . .
θ−(τ) = q49/120(7 + 13q + 17q2 + 23q4 − 37q11 − 43q15 − . . .

The first function gives WRT as the radial limits at the roots of unity. Both functions together form a

vector-valued modular form for SL(2,Z).
Those functions can be written as a linear combination of theta functions assigned to residue classes

modulo 60 (see Section 2):

θ+(τ) = θ130,1(τ) + θ130,11(τ) + θ130,19(τ) + θ130,29(τ) + . . .

θ−(τ) = θ130,7(τ) + θ130,13(τ) + θ130,17(τ) + θ130,23(τ) + . . .

The spectrum of E8 singularity is

{1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30}

and we can see that the numerators of the elements of spectrum correspond to residue classes of the

theta functions while the denominator corresponds to the modulus.

This example can be generalized in two ways. One is the class of Brieskorn homology spheres

xp1 + yp2 + zp3 = 0 for a0, a1, a2 pairwise coprime. An analogical relation of theta functions and

spectrum is true for them as described in Section 3. It is remarkable since the spectrum contains negative

numbers and this is reflected in topology.

Theorem 4.1 Let M be a Brieskorn homology sphere, i.e. the link of the singularity X given by the

equation xp1 + yp2 + zp3 = 0 Then

Modular spectrum of M = Steenbrink spectrum of X.

Another generalization is the class of ADE singularities. Here we need to take a spectrum of a

different but related singularity - universal Abelian cover.

Theorem 4.2 Let M be a link of ADE singularity X and Y be the corresponding maximal Abelian

cover. Then

Modular spectrum of M = Steenbrink spectrum of Y.

This phenomenon can be certainly generalized to Seifert manifolds, where Ẑb have been explicitly

computed recently. For more general plumbed 3-manifolds, the singularities to consider are splice-

quotients and their universal covers, where the spectrum is difficult to compute, however much can be

said about the topology itself using ideas from singularity theory and simpler invariants than spectrum.

For these generalizations, see [108]. On the topology side, since the description of Ẑb using false theta

functions is limited to 3 singular fibres of Seifert fibration onM , we need to replace theta function labels

by something more general. The poles of Borel plane [111] seem to be a good candidate.
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4.1.1 Theta functions

We will follow the notation in [53]. In particular we denote q = e2πiτ and y = e2πiz .

Definition 4.12 Let m be a positive integer and r a residue class mod 2m. We define weight 1/2 theta

function and weight 3/2 unary theta function as (respectively)

(4.1) θm,r(τ, z) =
∑

ℓ∈Z
ℓ≡r (mod 2m)

qℓ
2/4myℓ; θ1m,r(τ) =

∑

ℓ∈Z
ℓ≡r (mod 2m)

ℓ qℓ
2/4m,

Unary theta functions form a (rank 2m) vector-valued modular form of weight 3/2. Its matrices S
and T define Weil representation of S̃L(2,Z), the double cover of SL(2,Z).

Definition 4.13 False theta function (or Eichler integral) of θm,r is

(4.2) Ψm,r(τ) =
∑

ℓ∈Z
ℓ≡r (mod 2m)

sgn(ℓ) qℓ
2/4m.

False theta functions keep a weaker modular property - quantum modularity [256].

Note also the obvious relations:

Ψm,r(τ) = Ψm,−r(τ)(4.3)

Ψm,r+2m(τ) = Ψm,r(τ)(4.4)

The basic idea is the correspondence r
m as an element of the spectrum of certain singularity related

to the 3-manifold and Ψm,r(τ) as an Eichler integral of a certain theta function assigned to a 3-manifold.

4.1.2 GPPV invariants

A plumbed 3-manifold M admits GPPV invariants [110], which are q-series Ẑb(q) defined using

plumbing graph of M and labeled by elements of H1(M) or spinc structures. These invariants can be

computed by an explicit integral formula [53]. It is an intriguing question whether the series Zb can be

written as components of (quantum) modular forms.

The vector-valued modular forms described in [53] have usually more components than is the num-

ber of Zb(q) (as in the example E8 in the introduction). It is not clear what is the meaning of these

components for the 3-manifold and how to get an intrinsic definition of them.

4.1.3 Example of Brieskorn homology sphere Σ(3, 4, 5)
Here we give an example of theorem 4.1. Homology sphere Σ(3, 4, 5) is the link of x3+y4+z5 = 0.

This case has been studied in [53], p. 67. They describe a representation of S̃L(2,Z) given by theta

functions θ1m,r and corresponding false theta functions Ψm,r. The number m is 3 · 4 · 5 = 60.
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False theta functions:

Ψ60,1 −Ψ60,31 −Ψ60,41 −Ψ60,49

Ψ60,2 +Ψ60,22 +Ψ60,38 +Ψ60,58

Ψ60,7 +Ψ60,17 +Ψ60,23 −Ψ60,47

Ψ60,11 +Ψ60,19 +Ψ60,29 −Ψ60,59

Ψ60,13 −Ψ60,37 −Ψ60,43 −Ψ60,53

Ψ60,14 +Ψ60,26 +Ψ60,34 −Ψ60,46

If we use the relation Ψm,2m+r = Ψm,r and multiply first and fifth row by -1 (change of the basis of the

representation) we obtain

Ψ60,−1 +Ψ60,31 +Ψ60,41 +Ψ60,49

Ψ60,2 +Ψ60,22 +Ψ60,38 +Ψ60,58

Ψ60,7 +Ψ60,17 +Ψ60,23 +Ψ60,73

Ψ60,11 +Ψ60,19 +Ψ60,29 +Ψ60,61

Ψ60,−13 +Ψ60,37 +Ψ60,43 +Ψ60,53

Ψ60,14 +Ψ60,26 +Ψ60,34 +Ψ60,46

Now the labels r of Ψm,r are exactly the numerators of the elements of Steenbrink spectrum of x3+y4+
z5 = 0. The terms in each sum correspond to the orbits of a natural action of Z2

2 on the spectrum. Note

that since the theta functions only depend on r (mod 2m) the relevant spectrum is spectrum modulo 2

(we cannot hope to recover the full Hodge-theoretic information from topology).

The series Z0(q) is at the fifth row. It contains the term labelled by the smallest number in the

spectrum: -13/60.

Remark 4.14 As conjectured in [53], components of the representation should correspond to non-

abelian SL(2,C) connections (it is true for Brieskorn spheres). If we use this identification and restrict

it to real connections, we recover the classical relation of the signature of Milnor fiber of the Brieskorn

singularity and Casson invariant of M [76].

4.1.4 ADE singularities

Before we get to the relation of GPPV and the spectrum, we need to recall the notion of universal

Abelian cover of an isolated singularity (see, for example, [189]). Recall that a closed oriented 3-

manifold M is a Q-homology sphere if H∗(M,Q) = H∗(S
3,Q).

Definition 4.15 Let X be a germ of an isolated normal surface singularity whose link M is a Q-

homology sphere. The universal Abelian cover Y of X is a maximal Abelian cover of the germ ramified

at the singular point.2

2The covering group is then H1(M,Z)
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Ẑb and modular forms of the links of ADE singularities were computed in [53], see also [118].

Using their results, we obtain theorem 4.2. All ADE singularities, their Abelian covers and invariants

are summarized in table 4.1.4.

manifold M X Y false thetas of M spectrum of Y

lens space An C2 no thetas empty

M(−2; 1
2
, 1
2
, n−3
n−2

) Dn An−3 Ψ1,n−2,Ψ2,n−2, . . . ,Ψn−3,n−2 (1, 2, . . . , n− 3)/(n− 2)

M(−2; 1
2
, 2
3
, 2
3
) E6 D4 Ψ6,1 +Ψ6,5, 2Ψ6,3 (1, 3, 3, 5)/6

M(−1; 1
2
, 2
3
, 3
4
) E7 E6 Ψ12,1 +Ψ12,7,Ψ12,4 +Ψ12,8,Ψ12,5 +Ψ12,11 (1, 4, 5, 7, 8, 11)/12

Σ(2, 3, 5) E8 E8 4.11,[166] (1, 7, 11, 13, 17, 19, 23, 29)/30

Table 1: Labels of false theta functions for M , the link of singularity X, correspond to the

spectrum of the universal Ab. cover Y of X.

4.2 Topological invariants of plane curve singularity

We give some ideas of the categorical origin of these topological invariants. Let C = {f(x, y) = 0}
be a germ of a plane curve having an isolated singularity at the origin p and LC,p be an algebraic link

of the plane curve singularity. There have been lots of works studying relations between algebraic

geometry of C and topology of LC,p. For example, the Alexander polynomial of LC,p can be computed

via the ring of functions OC thanks to the works of Campillo-Delgado-Gusein-Zade (cf. [44]) and

the HOMFLY-PT polynomial of LC,p can be expressed in terms of Hilbert schemes of the plane curve

singularity thanks to the works of Oblomkov-Shende (cf. [190]) and Maulik (cf. [177]). On the other

hand, there have been lots of interests in mirror symmetry of hypersurface singularities these days

(see [72] and references therein for more details) and plane curve singularities again have provided

natural testing grounds for mirror symmetry conjecture. Takahashi conjectured that for an invertible

polymial f, the category of graded matrix factorization HMSLf (f) will be equivalent to the Fukaya-

Seidel category Fuk→(fT ) of the Berglund-Hübsch mirror polynomial fT and recently there have been

lots of works in this direction and both categories have been intensively studied. For example, it turns

out that HMSLf (f) has a full exceptional collection and admits a Gepner type stability condition when f
is of ADE type. Here, we will discuss the relation between Hilbert schemes of plane curve singularities,

certain topological data of some algebraic links, and matrix factorizations. To be more precise, we will

consider the images of ideals which belong to certain Hilbert scheme C
[∗]
p in the category HMFLf (f)

when f = x2 + y3. Then we can check that the images have interesting properties. For example,

a natural stratification on (some parts of) the Hilbert scheme C
[∗]
p corresponds to an indecomposable

object in HMSLf (f). We can also verify that the difference between the Alexander polynomial and the

HOMFLY-PT polyonomial of LC,p can be expressed in terms of HMFLf (f).

4.2.1 Hilbert schemes

Let C = {f(x, y) = 0} be the germ of a plane curve with an isolated singularity at the origin at

p = (0, 0).
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Definition 4.16 Let C
[l]
p be the Hilbert scheme of length l zero dimensional subschemes of C which are

set-theoretically supported at p. And let C
[∗]
p :=

⋃
l C

[l]
p .

The normalization induces an embedding OC → C[[t]]. And the natural valuation induces a valua-

tion OC → N. Let Γ = ν(O) be the semigroup. Let I ⊂ OC be a Lf -graded ideal. Then OC/I gives

an element in D
Lf
sg (Rf ).

Proposition 4.17 Let f be a weighted homogeneous polynomial. Then there is a C∗-action on C
[∗]
p . A

C∗-invariant ideal gives an Z-graded ideal.

Proof. The obvious C∗-action on f induces an action on C
[∗]
p and having a C∗-action is equivalent to

having a Z-grading. �

The following remark tells us that not all ideals of OC give nontrivial elements in HMFLf (f).

Remark 4.18 Let g be a nonzero divisor in OC . Then O/(g) is a perfect complex.

Proof. We have the following short exact sequence.

0→ OC → OC → OC/(g)→ 0

Therefore O/(g) is a perfect complex. �

4.2.2 Example f = x2 + y3

We can compute Lf as follows.

Lf = Z−→x ⊕ Z−→y ⊕ Z
−→
f /(
−→
f − 2−→x − 3−→y ) ∼= Z

Rf = OC = C[[x, y]]/(x2 + y3) = C[[t2, t3]]

There is a stratification on the Hilbert scheme as follows.

(1)

(ti + uti+1), i ≥ 2, u ∈ C

(ti, ti+1), i ≥ 2

The C∗-invariant parts of the Hilbert scheme are as follows.

(1)

(ti), i ≥ 2

(ti, ti+1), i ≥ 2

The semigroup Γ is {0, 2, 3, 4, 5, 6, 7, · · · }.

The Koszul resolution of C[[x, y]]/(x, y) induces anLf -graded matrix factorization F = (F0, F1, f0, f1)

of f where P (
−→
f ) := S(−−→x )⊕ S(−−→y ) and

F0 := S ⊕ ∧2P (−→f ), F1 := P (
−→
f ).
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Proposition 4.19 The matrix factorizations correspond to the ideal (ti, ti+1) is the image of the above

matrix factorization under the autoequivalence (
−→
l ) for some

−→
l ∈ Lf .

Proof. Let M = C[[x, y]]/(x, y). Let M stab be the above matrix factorization. Note that (ti, ti+1) is

isomorphic to (t2, t3) as an Rf -modules. The only difference between them is grading and hence we

obtain the desired conclusion. �

Proposition 4.20 The ideal (ti, ti+1) is an exceptional object in HMFLf (f).

Proof. Because C[[x, y]]/(x, y) is an exceptional object (cf. [89]), we see that (ti, ti+1) is also

exceptional. �

Then we have the following.

Corollary 4.21 The ideal (ti, ti+1) is an indecomposable object in HMFLf (f).

It is well-known that there are only finitely many indecomposable objects in HMFLf (f) up to

autoequivalences.

Theorem 4.22 The difference between the Alexander polynomial and the HOMFLY-PT polynomial is a

categorical invariant.

Proof. The difference between the Alexander polynomial and the HOMFLY-PT polynomial of LC,p
is the integration over ideals of type (ti, ti+1). And every element of the form (ti, ti+1) can be obtained

from (t2, t3) by applying translations. From the above discussion, we see that these ideals give non-

trivial elements in HMFLf (f). Therefore, one can see that the difference can be written in terms of

HMFLf (f). �

5 Generalization of Spectra

We extend the connection of spectra with Alexander polynomial initiated in the previous section.

We extend the correspondence:

Multivariable Alexander Polynomials ←→ multispectra

Theorem of Libgober [169] says that we can associate to spectrum of f1, f2, . . . ↔ faces of quasi-

adjunction. We will give a categorical version of this process:

5.1 Splitting of a potential

Consider a Landau-Ginzburg model with a potential W = W1 +W2 We consider the associated

Fukaya-Seidel categories FS(W1), FS(W2), FS(W ).
We start with the tower:
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FS(W1 +W2) FS(W1)

FS(W1) FS(W1 ∩W2)

Example 5.1 (X5
3 ⊂ P6 5-dim cubic)

Db(X5
3 )
∼= FS(W1 +W2)

Db(X4
6 )
∼= FS(W1)

Db(X4
6 )
∼= FS(W2)

Conjecture 5.2 The NC spectra of X5
3 is a superposition of X4

6 and X4
6 .

We have the P.D.E.

∇ d
du

=
d

du
+

1

u2
K +

1

u
G

Conjecture 5.3 The P.D.E. of X4
6 and P.D.E. of X4

6 produce the P.D.E. of X5
3 via convolution.

PDE(X4
6 ) ∗A PDE(X4

6 )
∼= PDE(X5

3 )

We see that asymptotics are superposition of asymptotics.

Corollary 5.4 Let P̃NX is a blow-up of PN along X. Then the faces of quasiadjuction contain

(−(dimX)/2, . . . ,−(dimX)/2)

In general, we have

Spec({Ai}) ։ Spec({K})
Here the algebra {K} is the algebra generated by canonical bundle. {Ai} is the algebra generated by

algebraic cycles. The above epimorphism defines a deeper filtration.

Question 5.5 Is this new filtration a birational invariant?

Question 5.6 Does the algebra defined by splitting produce birational invariants?

We consider the example of 5-dim cubics.

Db(X5
3 )

Db(X4
3,2) Db(X4

3,2)
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δ1(X
5
3 ) =

7

3

δ1(X
5
3,2) = 4− 2

6− 3− 2

3
=

10

3

We compute the quasiadjunction of the above splitting.

−10
3

−10
3

quasiadjunction faces

Observation

We notice that in the above spliting −(dimX)/2, . . . , (dimX)/2 do not belong to quasiadjunction

faces of the polygon. This suggest a different proof of the nonrationality 3-dimensional cubic.

5.2 Category filtrations

For a category C and A,B and a noncommutative Hodge structure H,∇,Herm > 0, we define a

sequence of stability conditions J1, . . . ,Jk corresponding to asymptotics of stability spectrum.

We consider the asymptotics of integral
∫
Γ′(0) α(0) ∼ Asymptotics at z = 0. These asymptotics

define stability spectrum.

Example 5.7 Consider the category An - 1 dimensional Fukaya-Seidel categories. So we have xje
p
u dx

is a stability condition. Here p is a polynomial of degree < (n− 1).

Step 1 We have α = dx.

Step 2 We move to define Kähler metric on moduli space of stability conditions. We begin withKij(u, ū) =∫∫
C x

ixje
p
u
− p̄

ū dxdx̄

Φ : |u| ≤ 1→ GL(n + 1,C)

∀|u| = 1,Φ(u)Φt(u) = Kij

We define Hermitian form

H(u) = Φ(u)Φt(u)

Asymptotics

∫
xie

p
u dx

define asymptotics and the noncommutative spectrum.

As we saw the asymptotics of the integral lim
n→0

Zn =
∑
uαi define stability and nc spectra. We

move in to investigate the connection with analysis.

We have the following:
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Theorem 5.8 The stability conditions J1, . . . ,Jk define a filtration on C:

F≤i(C) = semistable Obj(E)

such that

ZJi(E) ≤ O(|J |j)

This theorem will be discussed in detail in [142]. We will make some use of this filtration in what

follows. We consider a Fano X and a splitting of a canonical divisor KX = D1 +D2.

X − Fano

KX = D1 +D2

On the mirror side we have spitting of the potential W =W1 +W2.

FS(W1) FS(W )

Fuk(CY ) FS(W2)

Monodromy of W1 gives a filtration:

FS(W1) ⊃ Fλ1 ⊃ · · · ⊃ Fλn

Monodromy of W2 gives a filtration:

FS(W2) ⊃ Fµ1 ⊃ · · · ⊃ Fµn

giving a double filtration

FS(W ) ⊃ Fµ1,λ1 ⊃ · · ·
FS(W ) ⊃ Fν1 ⊃ · · ·

The behavior of λi, µj is of Thom Sebastiani type generalized

νi
ThomSebastiani

= (λi, µi)

In fact, we have a correspondence:





Choices

of

W1, W2, ...



→





generalized

Thom Sebastiani

λi µi νi
...

...
...





Question 5.9 Can one produce out of λi, µi, νi new birational invariants?
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We discuss briefly a couple of examples.

Example 5.10 (Polytope of quasiadjunction (x2 + y3)(x3 + y2))

2u+ 3v = 1
2
3
2
5
2

3u+ 2v = 1
2
3
2
5
2

(x2 + y3)(x3 + y2)

The Alexander polynomial is:

(t21t
3
2 + 1)(t31t

2
2 + 1)

Example 5.11 (3-dim cubic)

−KX = 2H

f = Q′
3Q

′
3 two cubics

λ1 =
5

3

λ2 =
5

3

δ =
5

3
→

local Alexander

polynomials

⇓
5

3
Q′

3

Q′
3

Mirror

W =W1 +W2

| |
Q′′

3 Q′′
3

5

3

5

3

no deformations
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KX = Q′
3 +Q′′

3

jumping local systems

λi

H i(Lλ 6= 0)

W =W1 +W2

FS(W1) FS(W2)

∪ ∪
Fλ1 Fν1
∪ ∪
...

...

6 Spectrum, orbifoldization and conformal field theory

In this section we propose a new point of view of noncommutative spectra. Details will appear

elsewhere see e.g. [140], [108].

Our approach is based on the parallel between:

• Birkar’s proof [30] of boundness of Fano’s.

• Zamolodchikov’s [97] c-theorem.

We combine these two directions with categorical resolution of singularities. The final outcome is

creating theory of noncommutative spectra similar to Arnold-Varchenko-Steenbrink spectrum.

We will describe a procedure of computing noncommutative spectrum as equivariant part of Steen-

brink spectrum of the corresponding affine cone.

Steenbrink Spectrum
Elliptic−−−−−−−−→

Equivariant
Noncommutative Spectrum.

We consider the following examples.

1. Let X be a hypersurface (Fermat) of degree d in PN

xd0 + · · · xdN

by Steenbrink (y
1
d + · · ·+ y

d−1
d )N+1.

This is the fixed part of the Elliptic genus when applied to 5-dim. cubic.

Recall that

x30 + · · · x36 = 0

has Steenbrink Spectrum

(y
1
3 + y

2
3 )7
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We orbitalize using action of Z3

1

3
y−

7
2


 ∑

0≤a≤3

(
y

1
3 − yω−a

y
1
3 − ω−a

)7

+
∑(

y
6
3

)7



So after that, we get

−21(y− 7
2 + y

1
2 ) + y−

7
6 + y

7
6

⇒
(
−7

6
,
7

6

)
- noncommutative spectrum

2. Similarly for 2-dim. cubic y−
2
3 + 2 + y

2
3 .

For K3 (x40 + · · ·+ x43 = 0), we have 2y−1 + 20 + 2y.

Proposition 6.1 For CY, the procedure gives −dimX
2 , . . . , dimX

2 .

Proposition 6.2 For general type, the procedure gives −dimX
2 , . . . , dimX

2 .

Proposition 6.3 The uppersemicontinuity for Steenbrink spectrum brings uppersemicontinuity for non-

commutative spectrum.

We consider the Berglund-Hübsch Mirror Symmetry.

X∨ = Cn+1/Γ
f−→ C

where X∨ is the mirror of X ⊂ PN . So we have:

Conjecture 6.4 Db
sing(X

∨, f)eq = Fuk0(X).

Now we present a program which not only explains Conjecture 6.1 but suggests a far going program

of categorical resolutions. We begin by:

Conjecture 6.5 Let r : X → Xsing be a resolution of singularity. There exists a category C0 which

does not depend on r.

In the case of orbifold we can be more precise:

Conjecture 6.6 There exists a pieceH0 ⊂ H i(X) which does not depend on r. ThenH0
∼= IH(Xsing).

We have:

HString(Xsing) = IH(Xsing) + TS1 + · · ·TSw

Here IH are the intersection cohomologies of X. The noncommutative spectrum is defined over

IH(Xsing). We can combine above conjecture with our orbifoldization procedure. We observe that the

twisted sectors we need to take are precisely the ones on which the group acts with determinant equal

to one. The above considerations can be lifted to categorical level.
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Conjecture 6.7 Consider a resolution S′ res←− S of terminal singularities. Assume S − Ssing has a

volume form. Then

1. H0 is independent of r;

2. C0 is a CY-category, subcategory of Perf(X) is independent of r.

We would like to make a parallel between Birkar’s theory and category theory.

S − SsingSsing

Ht Ct

resolutions

H0 C0

In the above setting S − Ssing determines H0 and Ssing the rest of semi-orthogonal decomposition.

We have a correspondence between classical and categorical notions:

KX , B ←→ Ssing

B′
complement ←→ S/Ssing

volumes←→ Categorical Entropy h

Let CdE be a log Calabi-Yau category. (We fix the biggest number in the spectra and d is the categorical

dimension.)

Question 6.8 Φ is a functor of CdE . Are h(Φ) bounded?

Question 6.9 Is Aut(CdE ) of Jordan type? (Here Aut(CdE ) is the group of autoequivalences).

Question 6.10 Is F(CdE) a bounding family? ( Here F(CdE) is the family parametrizing the categories

with dimension d and bounded the biggest number of the spectra from below. Proper definition will take

effort.)

Question 6.11 Consider the splitting

C =
λ(E,d)⋃

i≥0

Ci

H =

λ(E,d)⋃

i≥0

Hi

Show that λ(E , d) is finite.
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Question 6.12 Are categorical dimensions of CλiE,d bounded?

The above considerations suggest the following parallels.

Fano Category CFT

Birkar’s Theory

E , d Boundness

σ, d
Boundness of

log CY theory

Behavior of

σ, d
theory

Jordan Property

of

Birational Aut

Jordan Property

of

Aut Db

uppersemicontinuity

of Spectra

Zamolodchikov

Theorem

The Zamolodchikov’s c theorem suggests semicontinuity of the noncommutative spectra - see [48],

[107]. This correspondence will be discussed elsewhere.

Our findings in the previous sections suggest that in the case of X, an algebraic surface, we have

the following correspondence.

{
Additional basic

for H2(X) classes

}

{
Phantoms

of Db(X) classes

} {
δ > 0

}

The above findings suggest that new (A,B) structures can be used to define new invariants, A side

invariants for the B side.

We have the following parallel:

Resolution of singularity Surgery

Creation of Spectra Creation of Spectra

Conjecture 6.13 Log transform (rational blow down) creates nontrivial δ > 0.

This suggests the following questions.

Question 6.14 Can we have symplectic 4-fold with the same basic classes but different spectra?

We have a connection with k-spectra of CFT. This observations lead to: symplectic Poincare con-

jectures.

- Find a 4-dim symplectic manifold s.t. X
homeo∼= P2 and δ(X) > 0.

- Find a 4-dim symplectic manifold s.t. X
homeo∼= P1 × P1 and δ(X) > 0.

- Find a 2n-dim symplectic manifold s.t. X ∼= Pn and δ(X) > 0.
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The parallel between RG flow and Kaehler Ricci flow suggests that the other R-charges can also

lead to birational invariants.

Renormalisation group flow and defects lines in the LG model could lead to higher invariants. We

investigate these phenomena further in [109].
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What have we achieved in this dissertation? We have facilitated the use of Homological Mirror

Symmetry to solve deep problems in Birational Geometry, e.g. nonrationality questions. The only

algebraic geometry applications of Homological Mirror Symmetry before that were counting curves.

Birational Geometry is a central part of Algebraic Geometry - we still need to admit we do not

understand the non rationality of cubics. The first steps in that direction were done by Riemann -

the theory of elliptic integral proves nonrationality of a one dimensional smooth cubic. In dimension

two rationality questions was done by Enriques, Castelnuovo, Zariski. Some spectacular results were

obtained in dimension 3 and higher by Clemens, Griffiths, Voisin, Kollár, Tschinkel.

This dissertation offers a completely different method based on Homological Mirror Symmetry .

Homological Mirror Symmetry is a subject with many faces from different subjects from logic to

arithmetics. In this dissertation we concentrate on the connection with birational geometry and Hodge

theory. The reason for that is the application to nonrationality questions we have in mind.

We start with simple example related to rational surfaces where it is easy to investigate mirror site

of the birational geometry.

In first part of the thesis we prove Homological Mirror Symmetry for the projective plane and for

Del Pezzo surfaces - see Theorem 1.2 and Theorem 1.4. In these two examples it becomes clear that

birational transformations lead to theory of singularities on the mirror side.

In the third part we expand this observation in any dimension. It becomes clear that birational

transformations are nothing but new singular fibers in he Landau Ginzburg models - see Theorem 1.7.

In order to go deeper in birational transformations we need to expand Hodge theoretic invariants -

see section Noncommuative Hodge Structure. We do this in the second part of the thesis. We introduce

noncommutative Hodge theory - theory of quantum D - modules. These leads to two spectra - see the

section Interpretation of spectra:

1. The eigenvalues of quantum multiplication by cannonical class - quantum spectrum.

2. The assymptotics of the solutions of the quantum differential equation.

The last part of the thesis suggests how these two spectra lead to spectacular birational applications.

Indeed we can use these spectra to show nonrationality of generic four dimetional cubic - more than

sixty years old problems in birational geometry. Many other Fano varieties are considered. Of course

this is only the tip of the iceberg. The dynamics of the other numbers in the spectra will bring new

obstruction to rationality.
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