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Abstract

Introducing the notion of stabilized fundamental group for the complement of a branch curve in CP2, we
de3ne e4ectively computable invariants of symplectic 4-manifolds that generalize those previously introduced
by Moishezon and Teicher for complex projective surfaces. Moreover, we study the structure of these invariants
and formulate conjectures supported by calculations on new examples.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Using approximately holomorphic techniques 3rst introduced in [5], it was shown in [2] (see also
[1]) that compact symplectic 4-manifolds with integral symplectic class can be realized as branched
covers of CP2 and can be investigated using the braid group techniques developed by Moishezon
and subsequently by Moishezon and Teicher for the study of complex surfaces (see e.g. [13]):

Theorem 1.1 (Auroux and Katzarkov [2]). Let (X;!) be a compact symplectic 4-manifold, and let
L be a line bundle with c1(L) = 1=2�[!]. Then there exist branched covering maps fk : X →
CP2 de/ned by approximately holomorphic sections of L⊗k for all large enough values of k; the
corresponding branch curves Dk ⊂ CP2 admit only nodes (both orientations) and complex cusps as
singularities, and give rise to well-de/ned braid monodromy invariants. Moreover, up to admissible
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creations and cancellations of pairs of nodes in the branch curve, for large k the topology of fk

is a symplectic invariant.

This makes it possible to associate to (X;!) a sequence of invariants (indexed by k�0) con-
sisting of two objects: the braid monodromy characterizing the branch curve Dk , and the geometric
monodromy representation �k : �1(CP2 − Dk) → Sn (n= degfk) characterizing the n-fold covering
of CP2−Dk induced by fk [2]. These invariants are extremely powerful (from them one can recover
(X;!) up to symplectomorphism) but too complicated to handle in practical cases.

In the study of complex surfaces, Moishezon and Teicher have shown that the fundamental group
�1(CP2 − D) (or, restricting to an aFne subset, �1(C2 − D)) can be computed explicitly in some
simple examples; generally speaking, this group has been expected to provide a valuable invariant for
distinguishing di4eomorphism types of complex surfaces of general type. However, in the symplectic
case, it is a4ected by creations and cancellations of pairs of nodes and cannot be used immediately
as an invariant.

We will introduce in Section 2 a certain quotient Gk (resp. IGk) of �1(C2 − Dk) (resp. �1(CP2 −
Dk)), the stabilized fundamental group, which remains invariant under creations and cancellations
of pairs of nodes. As an immediate corollary of the construction and of Theorem 1.1, we obtain the
following.

Theorem 1.2. For large enough k, the stabilized groups Gk = Gk(X;!) (resp. IGk(X;!)) and their
reduced subgroups G0

k = G0
k (X;!) are symplectic invariants of the manifold (X;!).

These invariants can be computed explicitly in various examples, some due to Moishezon, Teicher
and Robb, others new; these examples will be presented in Section 4, and a brief overview of the
techniques involved in the computations is given in Sections 6 and 7. The new examples include
double covers of CP1 × CP1 branched along arbitrary complex curves (Theorem 4.6 and Section
7); similar methods should apply to other double covers as well, thus providing results for both
types of so-called Horikawa surfaces. The calculations described in Section 7, which rely on various
innovative tools in addition to a suitable reformulation of the methods developed by Moishezon and
Teicher, go well beyond the scope of results accessible using only the previously known techniques,
and may present interest of their own for applications in algebraic geometry.

The available data suggest several conjectures about the structure of the stabilized fundamental
groups.

First of all, it appears that in most examples the stabilization operation does not actually a4ect the
fundamental group. The only known exceptions are given by “small” linear systems with insuFcient
ampleness properties, where the stabilization is a quotient by a non-trivial subgroup (see Section 4).
Therefore we have the following.

Conjecture 1.3. Assume that (X;!) is a complex surface, and let Dk be the branch curve of a
generic projection to CP2 of the projective embedding of X given by the linear system |kL|. Then,
provided that k is large enough, the stabilization operation is trivial, i.e. Gk(X;!) � �1(C2 − Dk)
and IGk(X;!) � �1(CP2 − Dk).

An important class of fundamental groups for which the conjecture holds will be described in
Section 3.
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Moreover, the structure of the stabilized fundamental groups seems to be remarkably simple, at
least when the manifold X is simply connected; in all known examples they are extensions of a
symmetric group by a solvable group, while there exist plane curves with much more complicated
complements [4,6]. In fact these groups seem to be largely determined by intersection pairing data
in H2(X;Z). More precisely, the following result will be proved in Section 5.

De�nition 1.4. Let �k be the image of the map �k : H2(X;Z) → Z2 de3ned by �k(�)=(� ·Lk; � ·Rk),
where Lk = kc1(L) and Rk = c1(KX )+ 3Lk are the classes in H 2(X;Z) PoincarMe dual to a hyperplane
section and to the rami3cation curve, respectively.

Theorem 1.5. If the symplectic manifold X is simply connected, then there exists a natural surjec-
tive homomorphism �k : AbG0

k (X;!) → (Z2=�k) ⊗ Rnk � (Z2=�k)nk−1, where nk = degfk = Lk · Lk ,
and Rnk is the reduced regular representation of Snk (isomorphic to Znk−1).

The map �k is (Gk; Snk )-equivariant, in the sense that �k(g−1�g) = �k(g) · �k(�) for any elements
g∈Gk(X;!) and �∈AbG0

k (X;!) (cf. also Lemma 5.2).
In the examples discussed in Section 4, the group G0

k is always close to being abelian, and �k

is always an isomorphism. It seems likely that the injectivity of �k can be proved using tech-
niques similar to those described in Sections 6 and 7. Therefore, it makes sense to formulate the
following.

Conjecture 1.6. If the symplectic manifold X is simply connected and k is large enough, then
AbG0

k (X;!) � (Z2=�k) ⊗ Rnk , and the commutator subgroup [G0
k ; G

0
k ] is a quotient of (Z2)2.

Conjectures 1.3 and 1.6 provide an almost complete tentative description of the structure of fun-
damental groups of branch curve complements in high degrees. In relation with the property (∗)
introduced in Section 3, they also provide a framework to explain various observations and conjec-
tures made in [12,14].

The obtained results seem to indicate that fundamental groups of branch curve complements cannot
be used as invariants to symplectically distinguish homeomorphic manifolds. This is in sharp contrast
with the braid monodromy data, which completely determines the symplectomorphism type of (X;!)
[2]; how to introduce e4ectively computable invariants retaining more of the information contained
in the braid monodromy remains an open question.

2. Braid monodromy and stabilized fundamental groups

Let Dk be the branch curve of a covering map fk : X → CP2 as in Theorem 1.1. Braid monodromy
invariants are de3ned by considering a generic projection � : CP2 − {pt} → CP1: the pole of the
projection lies away from Dk , and a generic 3ber of � intersects Dk in d = degDk distinct points,
the only exceptions being 3bers through cusps or nodes of Dk , or 3bers that are tangent to Dk at
one of its smooth points (“vertical tangencies”). Moreover, we can assume that the special points
(cusps, nodes and vertical tangencies) of Dk all lie in di4erent 3bers of �.

By restricting ourselves to an aFne subset C2 ⊂ CP2, choosing a base point and trivializing the
3bration �, we can view the monodromy of �|Dk

as a group homomorphism from �1(C − {qi})
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(where qi are the images by � of the special points of Dk) to the braid group Bd. More precisely,
the monodromy around a vertical tangency is a half-twist (a braid that exchanges two of the d
intersection points of the 3ber with Dk by rotating them around each other counterclockwise along a
certain path); the monodromy around a positive (resp. negative) node is the square (resp. the inverse
of the square) of a half-twist; the monodromy around a cusp is the cube of a half-twist [2,13].

It is sometimes convenient to choose an ordered system of generating loops for �1(C−{qi}) (one
loop going around each qi), and to express the monodromy as a braid factorization, i.e. a decompo-
sition of the central braid �2 (the monodromy around the 3ber at in3nity, due to the non-triviality of
the 3bration � over CP1) into the product of the monodromies along the chosen generating loops.
However, this braid factorization is only well-de3ned up to simultaneous conjugation of all factors
(i.e. a change in the choice of the identi3cation of the 3bers with R2) and Hurwitz equivalence (i.e.
a rearrangement of the factors due to a di4erent choice of the system of generating loops).

The braid monodromy determines in a very explicit manner the fundamental groups �1(C2 − Dk)
and �1(CP2 −Dk). Indeed, consider a generic 3ber ‘ � C ⊂ CP2 of the projection � (e.g. the 3ber
containing the base point), intersecting Dk in d distinct points. The free group �1(‘− (‘∩Dk))=Fd

is generated by a system of d loops going around the various points in ‘ ∩ Dk . The inclusion map
i : ‘ − (‘ ∩ Dk) → C2 − Dk induces a surjective homomorphism i∗ : Fd → �1(C2 − Dk).

De�nition 2.1. The images of the standard generators of the free group Fd and their conjugates
are called geometric generators of �1(C2 − Dk); the set of all geometric generators will be denoted
by �k .

By the Zariski-Van Kampen theorem, �1(C2 − Dk) is realized as a quotient of Fd by relations
corresponding to the various special points (vertical tangencies, nodes, cusps) of Dk ; these relations
express the fact that the action of the braid monodromy on Fd induces a trivial action on �1(C2−Dk).
To each factor in the braid factorization one can associate a pair of elements �1; �2 ∈�k (small loops
around the two portions of Dk that meet at the special point), well-determined up to simultaneous
conjugation. The relation corresponding to a tangency is �1 ∼ �2; for a node (of either orientation) it
is [�1; �2] ∼ 1; for a cusp it becomes �1�2�1 ∼ �2�1�2. Taking into account all the special points of Dk

(i.e. considering the entire braid monodromy), we obtain a presentation of �1(C2 − Dk). Moreover,
�1(CP2 −Dk) is obtained from �1(C2 −Dk) just by adding the extra relation g1 : : : gd ∼ 1, where gi

are the images of the standard generators of Fd under the inclusion.
It follows from this discussion that the creation or cancellation of a pair of nodes in Dk may

a4ect �1(C2 − Dk) and �1(CP2 − Dk) by adding or removing commutation relations between geo-
metric generators. Although it is reasonable to expect that negative nodes can always be cancelled
in the branch curves given by Theorem 1.1, the currently available techniques are insuFcient to
prove such a statement. Instead, a more promising approach is to compensate for these changes in
the fundamental groups by considering certain quotients where one stabilizes the group by adding
commutation relations between geometric generators. The resulting group is in some sense more
natural than �1(C2 − Dk) from the symplectic point of view, and as a side bene3t it is often easier
to compute (see Section 7). Moreover, it also turns out that, in many cases, no information is lost
in the stabilization process (see Section 3).
In order to de3ne the stabilized group Gk , 3rst observe that, because the branching index of

fk above a smooth point of Dk is always 2, the geometric monodromy representation morphism



D. Auroux et al. / Topology 43 (2004) 1285–1318 1289

�k : �1(CP2−Dk) → Sn describing the topology of the covering above CP2−Dk maps all geometric
generators to transpositions in Sn. As seen above, to each nodal point of Dk one can associate
geometric generators �1; �2 ∈�k , one for each of the two intersecting portions of Dk , so that the
corresponding relation in �1(C2−Dk) is [�1; �2] ∼ 1. Since the branching occurs in disjoint sheets of
the cover, the two transpositions �k(�1) and �k(�2) are necessarily disjoint (i.e. they are distinct and
commute). Therefore, adding or removing pairs of nodes amounts to adding or removing relations
given by commutators of geometric generators associated to disjoint transpositions.

De�nition 2.2. Let Kk (resp. IKk) be the normal subgroup of �1(C2 − Dk) (resp. �1(CP2 − Dk))
generated by all commutators [�1; �2] where �1; �2 ∈�k are such that �k(�1) and �k(�2) are disjoint
transpositions. The stabilized fundamental group is de3ned as Gk = �1(C2 − Dk)=Kk , resp. IGk =
�1(CP2 − Dk)= IKk .

Certain natural subgroups of Gk and IGk will play an important role in the following sections.
De3ne the linking number homomorphism !k : �1(C2 − Dk) → Z by !k(�) = 1 for every �∈�k ;
similarly one can de3ne I!k : �1(CP2−Dk) → Zd. When Dk is irreducible (which is the general case),
these can also be thought of as abelianization maps from the fundamental groups to the homology
groups H1(C2 − Dk;Z) � Z and H1(CP2 − Dk;Z) � Zd.

Lemma 2.3. Ker !k � Ker I!k .

Proof. Since �1(CP2−Dk)=�1(C2−Dk)=〈g1 : : : gd〉 and !k(g1 : : : gd)=d, it is suFcient to show that
the product g1 : : : gd belongs to the center of �1(C2 − Dk). Observe that the relation in �1(C2 − Dk)
coming from a special point of Dk can be rewritten in the form g ∼ b∗g ∀g∈Fd, where b∈Bd is
the braid monodromy around the given special point, acting on Fd. In particular, if we consider the
braid monodromy as a factorization �2=

∏
bi, we obtain that g ∼ (

∏
bi)∗g=(�2)∗g for any element

g. However the action of the braid �2 on Fd is exactly conjugation by g1 : : : gd; we conclude that
g1 · · · gd commutes with any element of �1(C2 − Dk), hence the result.

The homomorphisms !k and I!k are obviously surjective. Moreover, �k is also surjective, because of
the connectedness of X : the subgroup Im �k ⊆ Sn is generated by transpositions and acts transitively
on {1; : : : ; n}, so it is equal to Sn. However, the image of �+k =(�k ; !k) : �1(C2 −Dk) → Sn ×Z is the
index 2 subgroup {(#; i) : sgn(#) ≡ imod 2}, and similarly for I�+k =(�k ; I!k) : �1(CP2−Dk) → Sn×Zd

(note that d is always even). Since Kk ⊆ Ker �+k , we can make the following de3nition.

De�nition 2.4. Let H 0
k = Ker �+k � Ker I�+k . The reduced subgroup of Gk is G0

k = H 0
k =Kk . We have

the following exact sequences:

1 → G0
k → Gk → Sn × Z → Z2 → 1;

1 → G0
k → IGk → Sn × Zd → Z2 → 1:

Theorem 1.2 is now obvious from the de3nitions and from Theorem 1.1: since creating a pair
of nodes amounts to adding a relation of the form [�1; �2] ∼ 1 where [�1; �2]∈Kk (resp. IKk), by
construction it does not a4ect the groups Gk , IGk and G0

k , which are therefore symplectic invariants
for k large enough.
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3. B̃n-groups and their stabilizations

Denote by Bn (resp. Pn, Pn;0) the braid group on n strings (resp. the subgroups of pure braids
and pure braids of degree 0), and denote by X1; : : : ; Xn−1 the standard generators of Bn. Recall that
Xi is a half-twist along a segment joining the points i and i+ 1, and that the relations among these
generators are [Xi; Xj] = 1 if |i − j|¿ 2 and XiXi+1Xi = Xi+1XiXi+1.
Let B̃n be the quotient of Bn by the commutator of half-twists along two paths intersecting trans-

versely in one point: B̃n = Bn=[X2; X−1
3 X−1

1 X2X1X3]. The maps # : Bn → Sn (induced permutation)
and ! : Bn → Z (degree) factor through B̃n, so one can de3ne the subgroups P̃n = Ker # and
P̃n;0 = Ker (#; !). The structure of B̃n and its subgroups is described in detail in Section 1 of [9];
unlike Pn and Pn;0 which are quite complicated, these groups are fairly easy to understand: P̃n;0 is
solvable, its commutator subgroup is [P̃n;0; P̃n;0] � Z2 and its abelianization is Ab(P̃n;0) � Zn−1 (it
can in fact be identi3ed naturally with the reduced regular representation Rn of Sn). More precisely,
we have:

Lemma 3.1 (Moishezon). Let xi be the image of Xi in B̃n, and de/ne s1 = x21, ( = [x21 ; x
2
2], ui =

[x−1
i ; x2i+1] for 16 i6 n − 2, and un−1 = [x2n−2; xn−1]. Then P̃n;0 is generated by u1; : : : ; un−1, and

P̃n is generated by s1; u1; : : : ; un−1.
The relations among these elements are [ui; uj] = 1 if |i − j|¿ 2, [ui; ui+1] = (, [s1; ui] = 1 if

i �= 2, and [s1; u2] = (. The element ( is central in B̃n, has order 2 (i.e. (2 = 1), and generates the
commutator subgroups [P̃n;0; P̃n;0] = [P̃n; P̃n] � Z2 (in particular, for any two adjacent half-twists
x and y we have [x2; y2] = (). As a consequence, Ab (P̃n) � Zn and Ab(P̃n;0) � Zn−1.
Moreover, the action of B̃n on P̃n by conjugation is given by the following formulas: x−1

i s1xi= s1
if i �= 2, x−1

2 s1x2 = s1u−1
2 ; x−1

i ujxi = uj if |i− j|¿ 2, x−1
i ujxi = uiuj if |i− j|=1, and x−1

i uixi = u−1
i (.

Proof. Most of the statement is a mere reformulation of De3nition 8 and Theorem 1 in Section
1.5 of [9]. The only di4erence is that we de3ne ui directly in terms of the generators of B̃n, while
Moishezon de3nes u1=(x2x21x

−1
2 )x−2

2 =x−1
1 x22x1x

−2
2 and constructs the other ui by conjugation. In fact,

ui=x2y−2 whenever x and y are two adjacent half-twists having respectively i and i+1 among their
end points and such that xyx−1 = xi; our de3nition of ui corresponds to the choice x= x−1

i xi+1xi and
y= xi+1 for i6 n− 2, and x= xn−2 and y= xn−1xn−2x−1

n−1 for i= n− 1. Also note that Moishezon’s
formula for x−1

2 s1x2 is inconsistent, due to a mistake in Eq. (1.25) of [9]; the formula we give is
corrected.

Intuitively speaking, the reason why B̃n is a fairly small group is that, due to the extra commutation
relations, very little is remembered about the path supporting a given half-twist, namely just its two
endpoints and the total number of times that it circles around the n − 2 other points. This can be
readily checked on simple examples (e.g., half-twists exchanging the 3rst two points along a path
that encircles only one of the n − 2 other points: since these di4er by conjugation by half-twists
along paths presenting a single transverse intersection, they represent the same element in B̃n). More
generally, we have the following fact:

Lemma 3.2. The elements of B̃n corresponding to half-twists exchanging the /rst two points are
exactly those of the form x1uk

1(
k(k−1)=2 for some integer k.
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Proof. Any half-twist exchanging the 3rst two points can be put in the form �x1�−1, where �∈ P̃n

can be expressed as �=s�1u
+1
1 · · · u+n−1

n−1 (
,. Using Lemma 3.1, we have x−1

1 �x1=s�1(u
−1
1 ()+1(u1u2)+2u

+3
3 · · ·

u+n−1
n−1 (

,. Since (u1u2)+2=(+2(+2−1)=2u+2
1 u+2

2 , we can rewrite this equality as x−1
1 �x1=u−2+1

1 (+1u+2
1 (+2(+2−1)=2�

= uk
1(

k(k−1)=2�, where k = +2 − 2+1. Multiplying by x1 on the left and �−1 on the right we obtain
�x1�−1 = x1uk

1(
k(k−1)=2.

Lemma 3.3. Let x; y∈ B̃n be elements corresponding to half-twists along paths with mutually dis-
joint endpoints. Then [x; y] = 1.

Proof. The result is trivial when the paths corresponding to x and y are disjoint or intersect only
once. In general, after conjugation we can assume that x = �x1�−1 for some �∈ P̃n, and y = x3.
By Lemma 3.2, x = x1uk

1(
k(k−1)=2 for some integer k. Since x1, u1 and ( all commute with x3, we

conclude that [x; y] = 1 as desired.

Lemma 3.4. Let x; y∈ B̃n be elements corresponding to half-twists along paths with one common
endpoint. Then xyx = yxy.

Proof. After conjugation we can assume that x = x1 and y = �x2�−1 for some �∈ P̃n. By the clas-
si3cation of half-twists in B̃n (Lemma 3.2), there exists an integer k such that y = x2uk

2(
k(k−1)=2 =

x2(s1u−1
2 )−ksk1 = s−k

1 x2sk1. Therefore xyx = x1s−k
1 x2sk1x1 = s−k

1 (x1x2x1)sk1 = s−k
1 (x2x1x2)sk1 = yxy.

It must be noted that Lemmas 3.3 and 3.4 have also been obtained by Robb [12].

Lemma 3.5. The group B̃n admits automorphisms ,i such that ,i(xi)= xiui and ,i(xj)= xj for every
j �= i. Moreover, ,i(ui) = ui( and ,i(uj) = uj ∀j �= i.

Proof. By Lemmas 3.3 and 3.4, the half-twists x1; : : : ; xi−1; (xiui), xi+1; : : : ; xn−1 satisfy exactly the
same relations as the standard generators of B̃n. So ,i is a well-de3ned group homomorphism
from B̃n to itself, and it is injective. The formulas for ,i(ui) and ,i(uj) are easily checked. The
surjectivity of ,i follows from the identity ,i(xiu−1

i () = xi.

The following de3nition is motivated by the very particular structure of the fundamental groups
of branch curve complements computed by Moishezon for generic projections of CP1 × CP1

and CP2 [9,10], which seems to be a feature common to a much larger class of examples (see
Section 4):

De�nition 3.6. De3ne B̃(2)
n = {(x; y)∈ B̃n × B̃n, #(x)=#(y) and !(x)= !(y)}. We say that the group

�1(C2 − Dk) satis3es property (∗) if there exists an isomorphism  from �1(C2 − Dk) to a quotient
of B̃(2)

n such that, for any geometric generator �∈�k , there exist two half-twists x; y∈ B̃n such that
#(x) = #(y) = �k(�) and  (�) = (x; y).

In other words, �1(C2 − Dk) satis3es property (∗) if there exists a surjective homomorphism
from B̃(2)

n to �1(C2 − Dk) which maps pairs of half-twists to geometric generators, in a manner
compatible with the Sn-valued homomorphisms # and �k .
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Remark 3.7. If �1(C2 − Dk) satis3es property (∗), then the kernel of the homomorphism �+k :
�1(C2 − Dk) → Sn × Z is a quotient of P̃n;0 × P̃n;0 and therefore a solvable group; in particular
its commutator subgroup is a quotient of (Z2)2, and its abelianization is a quotient of Z2 ⊗ Rn �
(Z⊕ Z)n−1.

As an immediate consequence of De3nition 3.6 and Lemma 3.3, we have:

Proposition 3.8. If �1(C2−Dk) satis/es property (∗), then the stabilization operation is trivial, i.e.
Kk = {1}, Gk = �1(C2 − Dk), and G0

k =Ker �+k .

Proof. Let �; �′ ∈�k be such that �k(�) and �k(�′) are disjoint transpositions. Consider the isomor-
phism  given by De3nition 3.6: there exist half-twists x; x′; y; y′ ∈ B̃n such that  (�) = (x; y) and
 (�′)=(x′; y′). Since �k(�)=#(x)=#(y) and �k(�′)=#(x′)=#(y′) are disjoint transpositions, x and
x′ have disjoint endpoints, and similarly for y and y′. Therefore, by Lemma 3.3 we have [x; x′] = 1
and [y; y′] = 1, so that [ (�);  (�′)] = 1, and therefore [�; �′] = 1. We conclude that Kk = {1}, which
ends the proof.

Let Dp;q be the branch curve of a generic polynomial map CP1 ×CP1 → CP2 of bidegree (p; q),
p; q¿ 2. As will be shown in Section 4, it follows from the computations in [9] that �1(C2 −Dp;q)
satis3es property (∗). This property also holds for the complement of the branch curve of a generic
polynomial map from CP2 to itself in degree ¿ 3, as follows from the calculations in [10] (see
also [15]), and in various other examples as well (see Section 4). It is an interesting question
to determine whether this remarkable structure of branch curve complements extends to generic
high-degree projections of arbitrary algebraic surfaces; this would tie in nicely with a conjecture
of Teicher about the virtual solvability of these fundamental groups [14], and would also imply
Conjecture 1.3.

4. Examples

As follows from pp. 696–700 of [5], if the symplectic manifold X happens to be KSahler, then
all approximately holomorphic constructions can actually be carried out using genuine holomorphic
sections of L⊗k over X , and as a consequence the CP2-valued maps given by Theorem 1.1 coincide
up to isotopy with projective maps de3ned by generic holomorphic sections of L⊗k ; therefore, in
the case of complex projective surfaces all calculations can legitimately be performed within the
framework of complex algebraic geometry.

The fundamental groups of complements of branch curves have already been computed for generic
projections of various complex projective surfaces. In many cases, these computations only hold for
speci3c linear systems, and do not apply to the high degree situation that we wish to consider.

Nevertheless, it is worth mentioning that, if D ⊂ CP2 is the branch curve of a generic lin-
ear projection of a hypersurface of degree n in CP3, then it has been shown by Moishezon that
�1(C2 − D) � Bn [7]. In fact, in this speci3c case there is a well-de3ned geometric monodromy
representation morphism �B with values in the braid group Bn rather than in the symmetric group
Sn as usual, because the n preimages of any point in CP2 − D lie in a 3ber of the projection
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CP3−{pt} → CP2, which after trivialization over an aFne subset can be identi3ed with C. Moishe-
zon’s computations then show that �B : �1(C2 −D) → Bn is an isomorphism. An attempt to quotient
out Bn by commutators as in the de3nition of stabilized fundamental groups yields B̃n: in this case
the stabilization operation is non-trivial. However this situation is speci3c to the linear system O(1),
and one expects the fundamental groups of branch curve complements to behave di4erently when
one instead considers projections given by sections of O(k) for k � 0.
Moishezon’s result about hypersurfaces in CP3 has been extended by Robb to the case of complete

intersections (still considering only linear projections to CP2 rather than arbitrary linear systems)
[12]. The result is that, if D is the branch curve for a complete intersection of degree n in CPm

(m¿ 4), then the group �1(C2 − D) is isomorphic to B̃n. It is worth noting that, in this example,
the stabilization operation is trivial. In fact, the groups �1(C2 − D) can be shown to have property
(∗) (observe that B̃n is the quotient of B̃(2)

n by its subgroup 1 × P̃n;0).
Conjecture 1.6 holds for k = 1 in these two families of examples: we have AbG0 � Zn−1 and

[G0; G0] � Z2 in both cases, while Z2=�1 � Z because the canonical class is proportional to the
hyperplane class which is primitive.

More interestingly for our purposes, the calculations have also been carried out in the case of
arbitrarily positive linear systems by Moishezon for two fundamental examples: CP1 ×CP1 [9], and
CP2 [10] (unpublished, see also [15] for a summary).

Theorem 4.1 (Moishezon). Let Dp;q be the branch curve of a generic polynomial map CP1 ×
CP1 → CP2 of bidegree (p; q), p; q¿ 2. Then the group �1(C2 −Dp;q) satis/es property (∗), and
its subgroup H 0

p;q = Ker �+p;q has the following structure: AbH 0
p;q is isomorphic to (Z2 ⊕ Zp−q)n−1

if p and q are even, and (Z2(p−q))n−1 if p or q is odd (here n= 2pq); the commutator subgroup
[H 0

p;q; H
0
p;q] is isomorphic to Z2 ⊕ Z2 when p and q are even, and Z2 if p or q is odd.

In fact, Moishezon identi3es �1(C2 − Dp;q) with a quotient of the semi-direct product B̃nn P̃n;0,
where B̃n acts from the right on P̃n;0 by conjugation [9]. However it is easy to observe that the
map 2 : B̃n n P̃n;0 → B̃(2)

n de3ned by 2(x; u) = (x; xu) is a group isomorphism (recall the group
structure on B̃nn P̃n;0 is given by (x; u)(x′; u′) = (xx′; x′−1ux′u′)). The factor P̃n;0 of the semi-direct
product corresponds to the normal subgroup 1× P̃n;0 of B̃(2)

n , while the factor B̃n corresponds to the
diagonally embedded subgroup B̃n = {(x; x)} ⊂ B̃(2)

n .
Moreover, by carefully going over the various formulas identifying a set of geometric generators

for �1(C2 − Dp;q) with certain speci3c elements in B̃n n P̃n;0 ([9, Propositions 8 and 10]; cf.
also [9, Section 1.4, De3nition 24 and Remarks 28–29]), or equivalently in B̃(2)

n after applying the
isomorphism 2, it is relatively easy to check that each geometric generator corresponds to a pair
of half-twists with the expected end points in B̃(2)

n (see also Section 6 for more details). Therefore,
property (∗) and Conjecture 1.3 hold for these groups.
Conjecture 1.6 also holds for CP1 × CP1. Indeed, H2(CP1 × CP1;Z) is generated by classes

� and + corresponding to the two factors; the hyperplane section class is L = p� + q+, while the
rami3cation curve is R = 3L + K = (3p − 2)� + (3q − 2)+. Therefore, the subgroup �p;q of Z2 is
generated by (� ·L; � ·R)=(q; 3q−2) and (+ ·L; + ·R)=(p; 3p−2). An easy computation shows that
the quotient Z2=�p;q =Z2=〈(q; 3q− 2); (p; 3p− 2)〉 � Z2=〈(q; 2); (p; 2)〉 is isomorphic to Z2 ⊕Zp−q

when p and q are even, and to Z2(p−q) otherwise.
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It is worth noting that this nice description for p; q¿ 2 completely breaks down in the insuFciently
ample case p= 1, where it follows from computations of Zariski [17] that �1(C2 − D1; q) � B2q. So
both Conjectures 1.3 and 1.6 require a suFcient amount of ampleness in order to hold (p; q¿ 2).

Theorem 4.2 (Moishezon). Let Dk be the branch curve of a generic polynomial map CP2 → CP2

of degree k¿ 3. Then the group �1(C2 −Dk) satis/es property (∗), and its subgroup H 0
k =Ker �+k

has the following structure: AbH 0
k is isomorphic to (Z⊕Z3)n−1 if k is a multiple of 3, and to Zn−1

otherwise (here n= k2); the commutator subgroup [H 0
k ; H

0
k ] is trivial for k even and isomorphic to

Z2 for k odd.

In this case too, Moishezon in fact identi3es �1(C2 − Dk) with a quotient of B̃nn P̃n;0 [10] (see
also [15]). Property (∗) and Conjecture 1.3 hold for CP2 when k¿ 3, but for k = 2 the group
�1(C2 − D2) is much larger.

Since H2(CP2;Z) is generated by the class of a line, �k is the subgroup of Z2 generated by
(k; 3k − 3), and Z2=�k is isomorphic to Z ⊕ Z3 when k is a multiple of 3 and to Z otherwise.
Therefore Conjecture 1.6 holds for CP2 when k¿ 3.

Results for certain projections of Del Pezzo and K3 surfaces have also been announced by Robb
in [12].

Theorem 4.3 (Robb). Let X be either a cubic hypersurface in CP3 or a (2,2) complete intersection
in CP4, and let Dk be the branch curve of a generic algebraic map X → CP2 given by sections of
O(kH), where H is the hyperplane section and k¿ 2. Then the subgroup H 0

k =Ker �+k of �1(C2−Dk)
has abelianization AbH 0

k � Zn−1.

Theorem 4.4 (Robb). Let X be a K3 surface realized either as a degree 4 hypersurface in CP3,
a (3,2) complete intersection in CP4 or a (2,2,2) complete intersection in CP5, and let Dk be the
branch curve of a generic algebraic map X → CP2 given by sections of O(kH), where H is the
hyperplane section and k¿ 2. Then the subgroup H 0

k = Ker �+k of �1(C2 − Dk) has abelianization
AbH 0

k � (Z⊕ Zk)n−1.

Although to our knowledge no detailed proofs of Theorems 4.3 and 4.4 have appeared yet, it
appears very likely from the sketch of argument given in [12] that property (∗) and Conjecture 1.3
will hold for these examples as well. In any case we can compare Robb’s results with the answers
predicted by Conjecture 1.6.

In the case of the Del Pezzo surfaces, the hyperplane class H is primitive, and K = −H (so
Rk = (3k − 1)H), so that the subgroup �k ⊂ Z2 is generated by (k; 3k − 1), and Z2=�k � Z, which
is in agreement with Theorem 4.3. In the case of the K3 surfaces, the hyperplane class H is again
primitive, but K = 0 and Rk = 3kH , so that �k is now generated by (k; 3k), and Z2=�k � Z ⊕ Zk ,
in agreement with Theorem 4.4.
The following result for the Hirzebruch surface F1=P(OCP1 ⊕OCP1(1)) is new to our knowledge;

however partial results about this surface have been obtained by Moishezon et al. [11,16], and an
ongoing project of Teicher and coworkers is expected to yield another proof of the same result.

Theorem 4.5. Let Dp;q be the branch curve of a generic algebraic map F1 → CP2 given by three
sections of the linear system O(pF + qE), where F is the class of a /ber, E is the exceptional
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section, and p¿q¿ 2. Then the group �1(C2 − Dp;q) satis/es property (∗), and its subgroup
H 0

p;q = Ker �+p;q has the following structure: AbH 0
p;q � (Z3q−2p)n−1, where n= (2p − q)q, and the

commutator subgroup [H 0
p;q; H

0
p;q] is isomorphic to Z2 if p is odd and q even, and trivial in all

other cases.

The proof relies on the observation that F1 is the blow-up of CP2 at one point. Recalling the
interpretation of a symplectic (or KSahler) blow-up as the collapsing of an embedded ball, it is easy
to check that F1 can be degenerated to a union of planes in a manner similar to CP2, only with
some components missing; most of the calculations performed by Moishezon in [10] for CP2 can
then be re-used in this context, with the only changes occurring along the exceptional curve E. More
details are given in Section 6.2.

As a consequence of property (∗), Conjecture 1.3 holds for this example. So does Conjecture 1.6:
indeed, H2(F1;Z) is generated by F and E. Recalling that F · F = 0, F · E = 1, E · E = −1, and
letting Lp;q =pF + qE and Rp;q = 3Lp;q +K = (3p − 3)F + (3q − 2)E, we obtain that �p;q ⊂ Z2 is
generated by (F · Lp;q; F ·Rp;q)= (q; 3q− 2) and (E · Lp;q; E ·Rp;q)= (p− q; 3p− 3q− 1). Therefore
Z2=�k � Z2=〈(q; 3q − 2); (p − q; 3p − 3q − 1)〉 � Z3q−2p.

A much wider class of examples, including an in3nite family of surfaces of general type, can
be investigated if one brings approximately holomorphic techniques into the picture, although this
makes it only possible to obtain results about the stabilized fundamental groups of branch curve
complements (cf. Section 2) rather than the actual fundamental groups.

Theorem 4.6. For given integers a; b¿ 1 and p; q¿ 2, let Xa;b be the double cover of CP1 ×CP1

branched along a smooth algebraic curve of degree (2a; 2b), and let Lp;q be the linear system
over Xa;b de/ned as the pullback of OP1×P1(p; q) via the double cover. Let Dp;q be the branch
curve of a generic approximately holomorphic perturbation of an algebraic map Xa;b → CP2 given
by three sections of Lp;q. Then the stabilized fundamental group Gp;q(Xa;b) = �1(C2 − Dp;q)=Kp;q

satis/es property (∗), and its reduced subgroup G0
p;q(Xa;b) = Ker �+p;q=Kp;q has the following struc-

ture: AbG0
p;q(Xa;b) � (Z2=〈(p; a− 2); (q; b− 2)〉)n−1, where n=4pq, and the commutator subgroup

[G0
p;q(Xa;b); G0

p;q(Xa;b)] is isomorphic to Z2 ⊕Z2 if a; b; p; q are all even, trivial if a or b is odd and
a+ p or b+ q is odd, and isomorphic to Z2 in all other cases.

More precisely, the setup that we consider starts with a holomorphic map from Xa;b to CP2

that factors through the double cover Xa;b → CP1 × CP1. Such a map is of course not generic in
any sense; however there is a natural explicit way to perturb it in the approximately holomorphic
category (see Section 7), giving rise to the branch curves Dp;q that we consider. The map can also
be perturbed in the holomorphic category, which at least for p and q large enough yields a branch
curve that is equivalent to Dp;q up to creations and cancellations of pairs of nodes. So, on the
level of stabilized groups, our result does give an answer that is relevant from both the symplectic
and algebraic points of view. Moreover, it is expected that, at least for p and q large enough, the
fundamental groups themselves (rather than their stabilized quotients) should satisfy property (∗).

Theorem 4.6 implies that Conjecture 1.6 holds for the manifolds Xa;b. Indeed, Xa;b can also be
described topologically as follows: in CP1 × CP1 consider 2a curves of the form CP1 × {pt}
and 2b curves of the form {pt} × CP1, and blow up their 4ab intersection points to obtain a
manifold Ya;b containing disjoint rational curves C1; : : : ; C2a (of square −2b) and C ′

1; : : : ; C
′
2b (of
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square −2a). Then Xa;b is the double cover of Ya;b branched along C1 ∪ · · · ∪ C2a ∪ C ′
1 ∪ · · · ∪ C ′

2b.
Now, consider the preimages C̃i = �−1(Ci) and C̃ ′

i = �−1(C ′
i ), and let Lp;q = p�∗� + q�∗+ and

Rp;q=3Lp;q+KXa; b =(3p+a−2)�∗�+(3q+b−2)�∗+, where � and + are the homology generators
corresponding to the two factors of CP1 ×CP1. We have (C̃i · Lp;q; C̃i · Rp;q) = (q; 3q+ b − 2) and
(C̃ ′

i · Lp;q; C̃ ′
i · Rp;q) = (p; 3p+ a − 2). It is easily shown that these two elements of Z2 generate the

subgroup �p;q; therefore Z2=�p;q =Z2=〈(q; 3q+ b− 2); (p; 3p+ a− 2)〉 � Z2=〈(p; a− 2); (q; b− 2)〉.
The techniques involved in the proof of Theorem 4.6, which will be discussed in Section 7, extend

to double covers of other examples for which the answer is known, possibly including iterated double
covers of CP1 × CP1. One example of particular interest is that of double covers of Hirzebruch
surfaces branched along disconnected curves, for which we make the following conjecture:

Conjecture 4.7. Given integers m; a¿ 1, let X2m;a be the double cover of the Hirzebruch surface
F2m branched along the union of the exceptional section �∞ and a smooth algebraic curve in
the homology class (2a − 1)[�0] (where �0 is the zero section, of square 2m). Given integers
p; q¿ 2 such that p¿ 2mq, let Lp;q be the linear system over X2m;a de/ned as the pullback
of OF2m(pF + q�∞) via the double cover. Let Dp;q be the branch curve of a generic approxi-
mately holomorphic perturbation of an algebraic map X2m;a → CP2 given by three sections of
Lp;q. Then the reduced stabilized fundamental group G0

p;q(X2m;a) =Ker �+p;q=Kp;q has abelianization
AbG0

p;q(X2m;a) � (Z2=〈(p − 2mq;m − 2); (2q; 2a − 4)〉)n−1.

5. Stabilized fundamental groups and homological data

Consider a compact symplectic 4-manifold X such that H1(X;Z)=0 and a branched covering map
fk : X → CP2 determined by three sections of L⊗k , with branch curve Dk ⊂ CP2 and geometric
monodromy representation morphism �k : �1(C2 − Dk) → Sn. The purpose of this section is to
construct a natural morphism  k : Ker �k → (Z2=�k) ⊗ IRn � (Z2=�k)n (where IRn � Zn is the
regular representation of Sn) and use its properties to prove Theorem 1.5.
Fix a base point p0 in C2 −Dk , and let p1; : : : ; pn be its preimages by fk . Let �∈ �1(C2 −Dk) be

a loop in the complement of Dk such that �k(�) = Id. Since the monodromy of the branched cover
fk along � is trivial, f−1

k (�) is the union of n disjoint closed loops in X . Denote by �i the lift of
� that starts at the point pi. Since H1(X;Z) = 0, there exists a surface (or rather a 2-chain) Si ⊂ X
such that @Si = �i. Since � ⊂ C2 −Dk , the loop �i intersects neither the rami3cation curve Rk nor the
preimage Lk of the line at in3nity in CP2. Therefore, there exist well-de3ned algebraic intersection
numbers �i = Si · Lk and 9i = Si · Rk ∈Z. However, there are various possible choices for the surface
Si, and the relative cycle [Si] is only well-de3ned up to an element of H2(X;Z). Therefore, the pair
(�i; 9i)∈Z2 is only de3ned up to an element of the subgroup �k .

De�nition 5.1. With the above notations, we denote by  k : Ker �k → (Z2=�k)n the morphism
de3ned by  k(�) = ((Si · Lk; Si · Rk))16i6n.

In fact, there is no canonical ordering of the preimages of p0, and  k more naturally takes values
in (Z2=�k) ⊗ IRn, as evidenced by Lemma 5.2 below.
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De3nition 5.1 can naturally be extended to the case H1(X;Z) �= 0 by instead considering the
morphism  ̃ k : Ker �k → H1(X − Lk − Rk;Z)n which maps a loop � to the homology classes of
its lifts �i in X − Lk − Rk . However, the properties to be expected of this morphism in general
are not entirely clear, due to the lack of available non-simply connected examples (even though
the techniques in Sections 6 and 7 could probably be applied to the 4-manifold : × CP1 for any
Riemann surface :).

We now investigate the various properties of  k .

Lemma 5.2. For every �∈Ker �k and g∈ �1(C2 −Dk),  k(g−1�g) = �k(g) ·  k(�), where Sn acts on
(Z2=�k)n by permuting the factors (i.e.  k is equivariant).

Proof. Denoting by # the permutation �k(g), observe that the lifts of g−1�g are freely homotopic
to those of �, and more precisely that the lift of g−1�g through p#(i) is freely homotopic to the lift
of � through pi. Therefore, the #(i)th component of  k(g−1�g) is equal to the ith component of
 k(�).

Lemma 5.3. Kk ⊂ Ker  k , i.e.  k factors through the stabilized group.

Proof. Recall from De3nition 2.2 that Kk is generated by commutators [�1; �2] of geometric gen-
erators that are mapped to disjoint transpositions by �k . If �1 is a geometric generator, then n − 2
of its lifts to X are contractible closed loops in X − Lk − Rk , while the two other lifts are not
closed; and similarly for �2. However, if �k(�1) and �k(�2) are disjoint, then all the lifts of [�1; �2]
are contractible loops in X − Lk − Rk ; therefore [�1; �2]∈Ker  k .

It is worth noting that, similarly, if �1 and �2 are geometric generators mapped by �k to adjacent
(non-commuting) transpositions, then (�1�2�1)(�2�1�2)−1 ∈Ker  k (only one of the lifts of this loop
is possibly non-trivial, but its algebraic linking numbers with Lk and Rk are both equal to zero).

Lemma 5.4. For any �∈Ker �k , the n-tuple  k(�)=((�i; 9i))16i6n has the property that (
∑

�i;
∑

9i)
≡ (0; !k(�))mod�k .

Proof. �∈ �1(C2 − Dk) is homotopically trivial in C2, so there exists a topological disk � ⊂ C2

such that @� = �. Now observe that @(f−1
k (�)) =

∑
�i; therefore (

∑
�i;

∑
9i) is equal (mod �k)

to the algebraic intersection numbers of f−1
k (�) with Lk and Rk . We have f−1

k (�) · Lk = 0 since
f−1
k (�) ⊂ f−1

k (C2) = X − Lk , and f−1
k (�) · Rk = � · Dk = !k(�).

Lemma 5.5. For any geometric generator �∈�k ,  k(�2)=((�i; 9i))16i6n is given by (�i; 9i)=(0; 1)
if i is one of the two indices exchanged by the transposition �k(�), and (�i; 9i) = (0; 0) otherwise.

Proof. All lifts of �2 are homotopically trivial, except for two of them which are freely homotopic
to each other and circle once around the rami3cation curve Rk .

Lemma 5.6. There exist two geometric generators �1; �2 ∈�k such that �k(�1)=�k(�2) and  k(�1�2)=
((−1; 0); (1; 2); (0; 0); : : : ; (0; 0)).



1298 D. Auroux et al. / Topology 43 (2004) 1285–1318

Proof. Consider a generic line ‘ ⊂ CP2 intersecting Dk transversely in d = degDk points, and let
:= f−1

k (L). The restriction fk|: : : → ‘ = CP1 is a connected simple branched cover of degree n
with d branch points, with monodromy described by the morphism �k ◦ i∗ : �1(‘−{d points}) → Sn.
It is a classical fact that the moduli space of all connected simple branched covers of CP1 with
3xed degree and number of branch points is connected, i.e. up to a suitable reordering of the branch
points we can assume that the monodromy of fk|: is described by any given standard Sn-valued
morphism.

So we can 3nd an ordered system of generators �1; : : : ; �d of the free group �1(‘ ∩ (C2 − Dk))
such that �k(�1) = �k(�2) = (12) and all the other transpositions �k(�i) for i¿ 3 are elements of
Sn−1 =Aut {2; : : : ; n}. The loop �1�2 then belongs to Ker �k , and admits only two non-trivial lifts g1
and g2 in :, those which start in the 3rst two sheets of the branched cover. The loops g1 and g2 bound
a topological annulus A which intersects Rk in two points (projecting to the 3rst two intersection
points of ‘ with Dk). This annulus separates : into two components, a “large” component consisting
of the sheets numbered from 2 to n, and a disk � corresponding to the 3rst sheet of the cover,
which does not intersect Rk but contains one of the n preimages of the intersection point of ‘ with
the line at in3nity in CP2. The lift g1 bounds � with reversed orientation; since � · Rk = 0 and
� · Lk =1, the 3rst component of  k(�1�2) is (−1; 0). The lift g2 bounds �∪A; since A ·Rk =2 and
A · Lk = 0, the second component of  k(�1�2) is (1; 2).

Proof of Theorem 1.5. By Lemma 5.4,  k maps the kernel of �+k : �1(C2 − Dk) → Sn × Z into
the subgroup � = {(�i; 9i);

∑
�i =

∑
9i = 0} � (Z2=�k) ⊗ Rn of (Z2=�k)n. By Lemma 5.3,  k

factors through the quotient Ker �+k =Kk = G0
k (X;!), and gives rise to a map �k : G0

k (X;!) → � �
(Z2=�k) ⊗ Rn � (Z2=�k)n−1. Since � is abelian, [G0

k ; G
0
k ] ⊂ Ker �k , so �k factors through the

abelianization AbG0
k (X;!), as announced in the statement of Theorem 1.5.

We now show that �k is surjective, i.e. that  k maps Ker �+k onto �. First, let � and �′ be two geo-
metric generators of �1(C2−Dk) corresponding to adjacent transpositions in Sn: then �2�′−2 ∈Ker �+k ,
and Lemma 5.5 implies that  k(�2�′−2) has only two non-zero entries, one equal to (0,1) and the
other equal to (0;−1). Recalling from Section 2 that �k is surjective, and using Lemma 5.2, by
considering suitable conjugates of �2�′−2 we can 3nd elements gij of Ker �+k such that  k(gij) has
only two non-zero entries, (0,1) at position i and (0;−1) at position j.

Next, consider the geometric generators �1; �2 given by Lemma 5.6: the element �1�−1
2 belongs to

Ker �+k , and  k(�1�−1
2 ) = ((−1;−1); (1; 1); (0; 0); : : : ; (0; 0)). Therefore  k(g12�1�−1

2 ) = ((−1; 0); (1; 0);
(0; 0); : : : ; (0; 0)). So, using the surjectivity of �k and Lemma 5.2, we can 3nd elements g′

ij of Ker �
+
k

such that  k(g′
ij) has only two non-zero entries, (1,0) at position i and (−1; 0) at position j. We now

conclude that  k(Ker �+k )=� by observing that the 2n−2 elements  k(gin) and  k(g′
in), 16 i6 n−1,

generate �.

We 3nish this section by mentioning two conjectures related to Conjecture 1.6. First of all,
we mention that Conjecture 1.6 implies a result about the fundamental groups of Galois covers
associated to branched covers of CP2. More precisely, given a complex surface X and a generic
projection X → CP2 of degree n with branch curve Dk , the associated Galois cover X̃ k is obtained
by compacti3cation of the n-fold 3bered product of X with itself above CP2: the complex surface
X̃ k is a degree n! cover of CP2 branched along Dk . Moishezon and Teicher have constructed many
interesting examples of complex surfaces by this method, and computed their fundamental groups
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(see e.g. [11,13,16]). Given an ordered system of geometric generators �1; : : : ; �d of �1(C2 −Dk), the
fundamental group �1(X̃ k) is known to be isomorphic to the quotient of Ker(� : �1(C2 −Dk) → Sn)
by the subgroup generated by �21; : : : ; �

2
d, and

∏
�i (see e.g. [16, Section 4]).

By Lemma 5.5, the elements �2i and their conjugates map under  k to elements of (Z2=�k)n with
only two non-trivial entries (0,1); therefore, assuming Conjecture 1.6, quotienting by all squares of
geometric generators leads to quotienting the image of  k by {(0; 9i),

∑
9i is even} ⊂ (Z2=�k)n.

Because of Lemma 5.4, and observing that !k takes only even values on Ker �k , we are left
with only the 3rst factor in each summand Z2=�k . Moreover, one easily checks that  k(

∏
�i) =

((1; 0); (1; 0); : : : ; (1; 0)) ≡ ((1; 0); : : : ; (1; 0); (1 − n; d))mod�k ; and by Lemma 5.4, the sum of the
3rst factors is always zero, so we end up with a group isomorphic to (Zks)n−2, where ks is the
divisibility of Lk in H2(X;Z). Moreover, if we also assume that property (∗) holds in addition to
Conjecture 1.6, it can easily be checked that the commutator subgroup [G0

k ; G
0
k ] is contained in the

subgroup generated by the �2i . Therefore, we have the following conjecture, satis3ed by the examples
in Section 4.

Conjecture 5.7. If X is a simply connected complex surface and k is large enough, then the funda-
mental group of the Galois cover X̃ k associated to a generic projection fk : X → CP2 de/ned by
sections of L⊗k is �1(X̃ k)= (Zks)nk−2, where ks is the divisibility of Lk in H2(X;Z) and nk =degfk .

Also, a careful observation of the examples in Section 4 suggests the following possible structure
for the commutator subgroup [G0

k ; G
0
k ], which is worth mentioning in spite of the rather low amount

of supporting evidence:

Conjecture 5.8. If the symplectic manifold X is simply connected and k is large enough, then the
commutator subgroup [G0

k ; G
0
k ] is isomorphic to �1×�2, where �1=Z2 if X is spin and 1 otherwise,

and �2 = Z2 if Lk ≡ KX mod 2 and 1 otherwise.

6. Moishezon–Teicher techniques for ruled surfaces

6.1. Overview of Moishezon–Teicher techniques

Moishezon and Teicher have developed a general strategy, consisting of two main steps [8,9,13],
in order to compute the group �1(C2 − D) when D is the branch curve of a generic projection
to CP2 of a given projective surface X ⊂ CPN . First, one computes the braid factorization (see
Section 2) associated to the curve D. This calculation involves a degeneration of the surface X to
a singular con3guration X0 consisting of a union of planes intersecting along lines in CPN , and a
careful analysis of the “regeneration” process which produces the generic branch curve D out of the
singular con3guration [8]. As explained in Section 2, the braid factorization explicitly provides, via
the Zariski-Van Kampen theorem, a (rather complicated) presentation of the group �1(C2 − D). In
a second step, one attempts to obtain a simpler description by reorganizing the relations in a more
orderly fashion and by constructing morphisms between subgroups of �1(C2 −D) and groups related
to B̃n. This process is carried out in [9] for the case X � CP1 ×CP1, and in subsequent papers for
other examples.
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6.1.1. Degenerations and braid monodromy calculations
The starting point of the calculation is a degeneration of the projective surface X ⊂ CPN to an

arrangement X0 of planes in CPN intersecting along lines. The degeneration process in the case
of manifolds like CP1 × CP1 and CP2 is described in detail in [8]. For example, in the case of
CP1 × CP1 embedded by the linear system O(p; q), one 3rst degenerates the surface X of degree
2pq to a sum of q copies of CP1×CP1 embedded by O(p; 1) (each of degree 2p) inside CPN ; then
each of these surfaces is degenerated into p quadric surfaces (CP1 × CP1 embedded by O(1; 1));
3nally, each of the pq quadric surfaces is degenerated into a union of two planes intersecting along
a line. The resulting arrangement can be represented by the diagram in Fig. 1.

Each triangle in the diagram represents a plane. Each edge separating two triangles represents
an intersection line Li between the corresponding planes; note that the outer edges of the diagram
are not part of the con3guration. The branch curve for the projection X0 → CP2 is an arrangement
of lines in CP2 (the projections of the various intersection lines Li); however, in the regeneration
process each of these lines acquires multiplicity 2, and the vertices where two or more lines intersect
in X0 turn into certain standard local con3gurations.
Therefore the braid factorization for D can be computed by looking at the local contributions of

the various vertices in the diagram. Since the regeneration process turns a local con3guration into
a branch curve of degree 2m, where m is the number of edges meeting at the given vertex, the
local contribution of a vertex is naturally described by a word in the braid group B2m. Moreover,
because projecting X0 to CP2 creates extra intersection points between the projections of the lines
Li whenever they do not intersect in X0 (i.e. when they do not correspond to edges with a common
vertex in the diagram), the branch curve D contains a number of additional nodes besides the local
vertex con3gurations.

The major diFculty is to arrange the various local con3gurations and the additional nodes into a
single braid factorization describing the curve D: given a linear projection � : CP2 − {pt} → CP1,
one needs to 3x a base point in CP1 and to choose an ordered system of loops in CP1 − crit �|D
in order to obtain a braid factorization. This choice determines in particular how the local braid
monodromy (in B2m) for each vertex of the grid is embedded into the braid monodromy of D (in
Bd, d=degD). A careless setup leads to local embeddings B2m ,→ Bd that may be extremely diFcult
to determine.

An important observation of Moishezon is that the construction has suFcient Wexibility to allow
the images in CP2 of the various lines and intersection points to be chosen freely. This makes it
possible to use the following very convenient setup [8]. First choose an ordering of the vertices in
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the diagram describing X0; for example, for CP1×CP1 Moishezon chooses an ordering 3rst by row,
then by column, starting from the lower-left corner of the diagram: 00, 10, 20; : : : ; 01, 11; : : : ; pq.
This determines a lexicographic ordering of the edges of the diagram: observing that each line Li

passes through two vertices vi and v′
i (vi ¡ v′

i), the ordering is given by Li ¡Lj i4 either v′
i ¡ v′

j ,
or v′

i = v′
j and vi ¡ vj. It is then possible to choose a con3guration where the projections of the

lines Li are given by equations with real coeFcients, with slopes increasing according to the chosen
lexicographic ordering, so that the intersection of the arrangement of lines in CP2 with a real slice
R2 looks as in Fig. 2.

The choice of the slopes of the lines ensures that the intersection points of D with the reference
3ber of � (chosen to be {x= A} for some real number A�0) are ordered in the natural way along
the real axis, thus yielding a natural set of geometric generators {�i; �′

i} for �1(C2 − D), as shown
on the right of Fig. 2; recall that each line Li has multiplicity 2 and hence yields two generators,
and note that the correct ordering of these generators counterclockwise around the base point is
�′
d=2; �d=2; : : : ; �

′
1; �1. Moreover, the various vertices of the diagram describing X0 appear, in sequence,

for increasing values of x (from left to right).
Since all the contributions to the braid monodromy of D are now localized along the real x-axis,

it is a fairly straightforward task to choose a set of generating loops in the base CP1 of the 3bration
� and enumerate accordingly the various contributions to the braid monodromy of D (standard
con3gurations at the vertices of the diagram and extra nodes coming from pairs of edges without
a common vertex). Going through the list of vertices in decreasing sequence (“from right to left”)
yields the simplest formula [8, Proposition 1]:

Proposition 6.1 (Moishezon). With the above setup, the braid monodromy of D is given by the
factorization

∏1
i=@ (Ci · Fi), where @ is the number of vertices in the diagram, Ci is a product of

contributions from nodal intersections between parts of D corresponding to non-adjacent edges, and
Fi is the braid monodromy corresponding to the ith vertex, obtained as the image of a standard
local con/guration under the embedding B2mi ,→ Bd which maps the standard half-twists generating
B2mi to half-twists along arcs that remain below the real axis.

Proposition 6.1 makes it fairly simple to obtain a presentation of �1(C2 − D) in terms of the
“global” generators {�i; �′

i}: the nature of the local embeddings B2m ,→ Bd implies that the relations
coming from each vertex are obtained from standard “local” relations (determined by the local braid
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monodromy) simply by renaming each of the 2m local geometric generators into the corresponding
global generator. Additionally, the extra nodes yield various commutation relations among geometric
generators.

The local con3gurations for the various types of vertices have been analyzed by Moishezon in [8],
leading to explicit formulas for the local contributions to the braid factorization. The easiest case is
that of “2-points” such as the corner points 00 and pq in the diagram for CP1 × CP1. The only
line that passes through the vertex locally regenerates to a conic in C2, presenting a single vertical
tangency near the origin; hence the local braid monodromy is a single half-twist in B2, giving rise
to an equality relation between the two corresponding geometric generators of �1(C2 − D).

The next case is that of “3-points” such as those occurring on the boundary of the diagram for
CP1 × CP1. During the 3rst step of “regeneration”, which turns X0 into a union of pq quadric
surfaces, the lines corresponding to the diagonal edges are replaced by conics (the branch curve of
a bidegree (1; 1) map from CP1 × CP1 to CP2). For the vertices along the top and right sides of
the diagram (labeled pj or iq), the partially regenerated con3guration in CP2 therefore consists of a
portion of conic tangent to a line, with the line having the greatest slope; after further regeneration,
the line acquires multiplicity 2 and the tangent intersection is replaced by three cusps. The local
contribution to braid monodromy can therefore be expressed by the product Z̃3

1′2 · Z3
1′2′ · Z3

1′2 · Ẑ11′ ,
where the various factors are powers of half-twists along the paths represented in Fig. 3 (cf. [8]
and [9, Eq. (2.4)]). The 3rst three factors correspond to cusps arising from the tangent intersection
between the conic and the line, while the last factor corresponds to the vertical tangency of the
conic.

The 3-points on the bottom and left sides of the diagram give rise to a very similar local con-
3guration, except for the ordering of the various components. Finally, the interior vertices of the
diagram for CP1 ×CP1 are all of the same type (“6-points” in Moishezon’s terminology); a careful
analysis of their regeneration yields a certain braid factorization in B12, accounting for the 6 vertical
tangencies, 24 nodes and 24 cusps in the local model, as described in [8]. The local contributions to
the relations de3ning �1(C2 −D) have also been calculated by Moishezon for these various standard
models in Section 2 of [9] (see also below).

6.1.2. Fundamental group calculations
The setup described in Section 6.1.1 provides an explicit presentation of �1(C2 − D) in terms of

geometric generators {�i; �′
i}, i = 1; : : : ; d=2. By Proposition 6.1, the relations consist on one hand

of standard relations given by local models for the various vertices of the diagram describing the
degenerated surface X0, and on the other hand of commutation relations coming from non-adjacent
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edges of the diagram. The goal is then to simplify this presentation and ultimately identify �1(C2−D)
with a certain quotient of B̃(2)

n (or B̃nnP̃n;0). In the remainder of this section, we describe the recipes
used by Moishezon for the case X = CP1 × CP1, following Section 3 of [9]; these methods also
apply to other complex surfaces admitting similar degenerations, such as X = CP2 [10] or X = F1
(Section 6.2).

A 3rst observation of Moishezon is that, after a slight change in the choice of generators, many
of the local relations at the vertices can be expressed in terms of half of the generators only. More
precisely, for each value of i, de3ne a twisting action 9i on the two generators �i; �′

i by the formula
9i(�i) = �′

i and 9i(�′
i) = �′

i�i�
′
i
−1. Choose integers li satisfying the following compatibility conditions:

if i¡ j are the labels of the two diagonal edges meeting at a 6-point vertex of the diagram, then
lj = li − 1; if i¡ j are the labels of the two vertical edges meeting at a 6-point, then lj = li + 1;
3nally, if i¡ j are the labels of the two horizontal edges meeting at a 6-point, then lj = li. Now
let ei = 9li

i (�i) and e′
i = 9li

i (�
′
i). Because of the invariance properties of the local models [8], the

local relations corresponding to 2-points and 3-points have the same expressions in terms of {ei; e′
i}

as in terms of {�i; �′
i}, independently of the amount of twisting, and those for 6-points are also

independent of the li as long as the compatibility relations hold. On the other hand, if i1 ¡ · · ·¡i6
are the labels of the edges meeting at a 6-point (i1 and i6 are the two diagonal edges), then it is
possible to eliminate either ei1 or ei6 from the list of generators, because the local relations imply
that

ei6 = (ei3ei2e
−1
i4 e−1

i5 )−1ei1(ei3ei2e
−1
i4 e−1

i5 ): (6.1)

The second important observation of Moishezon is that, in many cases (assuming the diagram is
“large enough”, i.e. in the case of a bidegree (p; q) linear system on CP1 ×CP1 that p; q¿ 2), the
relations coming from cusps and nodes of D can all be reformulated into a very nice pattern (cf.
[9, Lemma 14]). If the two edges i and j bound a common triangle in the diagram, then the local
relations at their common vertex imply that

eiejei = ejeiej; eie′
jei = e′

jeie
′
j; e′

ieje
′
i = eje′

iej; and e′
ie

′
je

′
i = e′

je
′
ie

′
j: (6.2)

Otherwise, if there is no triangle having i and j as edges, or equivalently if the two transpositions
�(ei) = �(e′

i) and �(ej) = �(e′
j)∈ Sn are disjoint, then we have

[ei; ej] = [ei; e′
j] = [e′

i ; ej] = [e′
i ; e

′
j] = 1: (6.3)

Looking at e1; : : : ; ed=2, among which there are only n−1 independent generators (by (6.1), many of
the ei corresponding to diagonal edges can be expressed in terms of the others), a 3rst consequence
of relations (6.2)–(6.3) is the following [9, Proposition 8]:

Lemma 6.2 (Moishezon). In the case of the linear system O(p; q) on CP1 × CP1 (p; q¿ 2), the
subgroup B of �1(C2 − D) generated by e1; : : : ; ed=2 is isomorphic to a quotient of B̃n (n = 2pq).
More precisely, there exists a surjective morphism �̃ : B̃n → B with the property that each ei is
the image of a half-twist in B̃n, and � ◦ �̃= # (i.e. the end points of the half-twists agree with the
transpositions �(ei)).

We now need to add to this description the other generators e′
i , or equivalently the elements

ai = e′
ie

−1
i . In the case of CP1 × CP1, we relabel these elements as dij for the diagonal edge in
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position ij (16 i6p, 16 j6 q, see Fig. 1), vij for the vertical edge in position ij (16 i¡p,
16 j6 q), and hij for the horizontal edge in position ij (16 i6p, 16 j¡q). We are especially
interested in a2=v11. Moishezon’s next observation is that, as a consequence of relations (6.2)–(6.3)
and of the local relations of the lower-left-most 6-point in the diagram, the subgroup generated by
v11 and the conjugates g−1v11g, g∈B, is naturally isomorphic to a quotient of P̃n;0 ([9, De3nition
5 and Lemma 17]). Moreover, the subgroup of �1(C2 − D) generated by the ei and by v11 is
similarly isomorphic to a quotient of the semi-direct product B̃n n P̃n;0, or equivalently (as seen in
Section 4) B̃(2)

n .
The most important relations in �1(C2 − D) are those coming from the vertical tangencies of D,

which we now list for the various types of vertices. If the edge labeled i passes through a 2-point,
then the local relation ei = e′

i can be rewritten in the form ai = 1. If i¡ j are the labels of the two
edges meeting at a 3-point, then we have e′

i=e−1
j e′

j
−1eie′

jej, or equivalently e′
j=e−1

i e′
i
−1eje′

iei. Using
(6.2) this relation can be rewritten as

aj = e−1
i eje′

ie
−1
j eie−1

j = e−2
i (eiej)ai(e−1

j e−1
i )eje2i e

−1
j : (6.4)

Finally, if i1 ¡ · · ·¡i6 are the labels of the edges meeting at a 6-point (according to the ordering
rules, i1 and i6 are diagonal, i2 and i5 are vertical, and i3 and i4 are horizontal), then, besides (6.1),
we also have

ai6 = (ei3ei2e
−1
i4 e−1

i5 )−1ai1(ei3ei2e
−1
i4 e−1

i5 );

ai5 = (e−1
i1 ei3e

−1
i4 ei6)

−1ai2(e
−1
i1 ei3e

−1
i4 ei6);

ai4 = (e−1
i1 ei2e

−1
i5 ei6)

−1ai3(e
−1
i1 ei2e

−1
i5 ei6): (6.5)

ai3 = (ei3ei1)
−1ai2ai1(ei1a

−1
i2 e−1

i1 )(ei3ei1);

ai2 = (ei2ei1)
−1 ai3ai1(ei1a

−1
i3 e−1

i1 )(ei2ei1): (6.6)

A 3rst consequence of relations (6.4)–(6.6) is that, going inductively through the various vertices
of the grid, all ai can be expressed in terms of the e1; : : : ; ed=2 and of a2 = v11. Therefore �1(C2 −D)
is generated by the ei and by v11; hence it is isomorphic to a quotient of B̃(2)

n . In other words, we
have a surjective homomorphism � : B̃(2)

n → �1(C2 − D), extending the morphism �̃ : B̃n → B of
Lemma 6.2.

From this point on, the results in Section 3 make it possible to present Moishezon’s argument
in a simpler and more illuminating way. Observe that by Lemma 6.2 each ei is the image by
� of a half-twist in the diagonally embedded subgroup B̃n ⊂ B̃(2)

n . Moreover, it is a general fact
about irreducible plane curves that all geometric generators are conjugate to each other in �1(C2 −
D); therefore each of the geometric generators ei; e′

i is the image of a pair of half-twists in B̃(2)
n .

Alternately this can be seen directly from the above-listed relations; these relations also imply that
each ai belongs to the normal subgroup of pure degree 0 elements �(P̃n;0 × P̃n;0), and therefore that
the half-twists corresponding to the geometric generators e′

i have the correct end points as prescribed
by the Sn-valued monodromy representation morphism �. Therefore �1(C2 −D) has the property (∗)
de3ned in Section 3.
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In view of Lemmas 3.3 and 3.4, at this point in the argument we can discard all the relations in
�1(C2 − D) coming from nodes and cusps of D since they automatically hold in quotients of B̃(2)

n ,
and focus on relations (6.4)–(6.6) instead.
By Lemma 3.2, pairs of half-twists in B̃(2)

n with 3xed end points can be classi3ed by two integers.
More precisely, 3x an ordering of the n sheets of the branched cover f, e.g. from left to right and
from bottom to top in the diagram. This provides an ordering of the end points of the half-twists
corresponding to ei and e′

i; we can 3nd an element g∈ B̃(2)
n such that ei = �(g−1(x1; x1)g), with

ordering of the end points preserved. Then by Lemma 3.2 there exist integers k and l such that
e′
i = �(g−1(x1u−k

1 (−k(−k−1)=2; x1u−l
1 (−l(−l−1)=2)g), i.e. ai = �(g−1(uk

1(
k(k−1)=2; ul

1(
l(l−1)=2)g). One easily

checks by Lemma 3.1 that reversing the ordering of the end points changes k into −k and l
into −l.
Since � is a priori not injective, the integers k and l are not necessarily unique, and there

may exist another pair of integers (k ′; l′) = (k + 2; l + �) with the same property, i.e. such that
D = (u2

1(
k′(k′−1)=2−k(k−1)=2; u�

1(
l′(l′−1)=2−l(l−1)=2)∈Ker �. If 2 is odd, then the normal subgroup gen-

erated by D contains the commutator of D with (u2; 1), which is equal to ((; 1); so ((; 1)∈Ker �.
If 2 is even, then (k′(k′−1)=2−k(k−1)=2 = (2=2 = (2(2−1)=2 (recall that (2 = 1). Similarly, if � is odd
then (1; ()∈Ker �, otherwise (l′(l′−1)=2−l(l−1)=2 = (�(�−1)=2. In both cases we arrive to the conclusion
that D̃ = (u2

1(
2(2−1)=2; u�

1(
�(�−1)=2)∈Ker �. In fact, D and D̃ generate the same normal subgroups, so

we also have the converse implication.
Therefore the set of all possible values for (2; �) forms a subgroup � ⊂ Z2; in fact � =

{(2; �); (u2
1(

2(2−1)=2; u�
1(

�(�−1)=2)∈Ker �}, and the pair of integers (k; l) is only de3ned mod �.
So, to ei and e′

i we can associate an element Iai = (k; l)∈Z2=�. This element Iai contains all the
relevant information about ei and e′

i apart from the end points. Indeed, because of Lemma 3.5, up to
composition of � with an automorphism of B̃(2)

n we can assume ei to be the image by � of any given
pair of half-twists with the correct end points. And, by Lemma 3.2, if two half-twists x; y∈ B̃n have
the same end points, then x2y−2 ∈ {1; (}, so up to a factor of ( the product e′

iei =aie2i is determined
by Iai; that ambiguity can in fact be lifted by arguing that ei and e′

i are images of half-twists.
The subgroup � can be determined by looking at the relations in �1(C2−D) coming from vertical

tangencies of D, which determine the kernel of �. We now reformulate these relations in terms of
the Iai. First, at a 2-point, the relation ai =1 becomes Iai =(0; 0). What happens at a 3-point depends
on the ordering of the sheets of f (i.e., of the triangles of the diagram): relation (6.4) becomes

± Iai + ± Iaj = (1; 1); (6.7)

where the 3rst sign is + if the triangle T which has both i and j among its edges comes after the
other triangle bounded by the edge i and − otherwise, and the second sign is + if T comes after
the other triangle bounded by the edge j and − otherwise. In the case of a 6-point with the standard
ordering used by Moishezon, (6.5) and (6.6) become

Iai6 = Iai1 ; Iai5 = Iai2 ; Iai4 = Iai3 ; Iai1 − Iai2 + Iai3 = 0: (6.8)

In the case of CP1 ×CP1, denoting by Idij, Ivij and Ihij the elements of Z2=� corresponding to dij,
vij and hij, the relations become (listing the vertices from left to right and bottom to top): Id1;1=(0; 0),
Ivi;1 − Idi+1;1 = (1; 1), Ih1; j + Id1; j+1 = (1; 1); Idi+1; j+1 = Idi; j, Ivi; j+1 = Ivi; j, Ihi+1; j = Ihi; j, Idi; j − Ivi; j + Ihi; j =0;
− Idp;j − Ihp;j =(1; 1), Idi;q − Ivi;q =(1; 1), Idp;q =(0; 0). Moreover, by construction Iv11 = (0; 1) (because
v11 was identi3ed to a generator of P̃n;0).
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Working inductively from the lower-left corner of the diagram, these equations yield the formulas

Idi; j = (j − i; 0); Ivi; j = (1 − i; 1); Ihi; j = (1 − j; 1) (6.9)

(compare with Proposition 10 of [9], recalling that the identi3cation between B̃n n P̃n;0 and B̃(2)
n

is given by (x; u) �→ (x; xu)). Moreover, we are left with the relations (p − 1;−1) = (1; 1) and
(q− 1;−1)= (1; 1). In other words, � is the subgroup of Z2 generated by (2−p; 2) and (2− q; 2).
Because all relations in �1(C2−D) coming from vertical tangencies correspond to equality relations

between pairs of half-twists in B̃(2)
n , by the above remarks Ker � is the normal subgroup of B̃(2)

n

generated by a certain number of elements of the form (u2
1(

2(2−1)=2; u�
1(

�(�−1)=2), and therefore it is
completely determined by the subgroup � ⊂ Z2. In our case, Ker � is the normal subgroup of B̃(2)

n

generated by (u2−p
1 ((2−p)(1−p)=2; u21() and (u2−q

1 ((2−q)(1−q)=2; u21(). We can now 3nish the proof of
Theorem 4.1, observing that H 0

p;q = (P̃n;0 × P̃n;0)=Ker �. Recalling from Lemma 3.1 that P̃n;0 has
commutator subgroup {1; (} � Z2 and that Ab P̃n;0 � Zn−1, we have two cases to consider. First, if,
e.g. p is odd, then by considering the commutator of (u2−p

1 ((2−p)(1−p)=2; u21() with (u2; 1) we obtain
that ((; 1)∈Ker � (and similarly if q is odd); but one easily checks that (1; () �∈ Ker �. On the other
hand, if p and q are both even, then no non-trivial element of C = {1; (} × {1; (} belongs to Ker �.
Therefore, [H 0

p;q; H
0
p;q] � C=(C∩Ker �) is isomorphic to Z2 if p or q is odd, and to Z2×Z2 if p and

q are even. Moreover, we have AbH 0
p;q � (P̃n;0 × P̃n;0)=〈C;Ker �〉 � (Z2=�)n−1, which one easily

shows to be isomorphic to (Z2 ⊕Zp−q)n−1 or (Z2(p−q))n−1 depending on the parity of p and q. This
completes the proof of Theorem 4.1. The computations for CP2 (Theorem 4.2) and other algebraic
surfaces admitting similar degenerations can be carried out by the same method; for example, the
case of the Hirzebruch surface F1 is treated in Section 6.2 below.

6.2. The Hirzebruch surface F1

In this section, we prove Theorem 4.5 using the method outlined in the preceding section. Consider
the projective embedding of F1 de3ned by sections of the linear system O(pF + qE), p¿q¿ 2
(recall F is the 3ber and E is the exceptional section). This projective surface can be degenerated
in the same manner as the Veronese surface of which it is a blow-up (the projective embedding
of CP2 de3ned by sections of O(p)), following the procedure described in Section 3 of [8]. This
surface of degree n = (2p − q)q can be 3rst degenerated into a sum of q Hirzebruch surfaces, of
degrees respectively 2p− 1; 2p− 3; : : : ; 2(p− q)+ 1. Each of these Hirzebruch surfaces can then be
degenerated into the union of a plane and a certain number of quadric surfaces, which in turn can
each be degenerated to two planes. The resulting diagram is pictured in the right half of Fig. 4.
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One uses the same setup as in Section 6.1.1, ordering the vertices from left to right and bottom
to top, and the edges accordingly. The braid monodromy is given by Proposition 6.1. It follows
from Moishezon’s work that all vertices correspond to well-known con3gurations: the two vertices
qq and pq are 2-points, while the other boundary vertices are 3-points and the interior vertices are
6-points.

As in Section 6.1.2, one replaces the natural set of geometric generators {�i; �′
i} by twisted gener-

ators ei = 9li
i (�i) and e′

i = 9li
i (�

′
i), where the integers li satisfy the required compatibility conditions,

in order to have (6.1) at all 6-points. Moreover, relations (6.2) and (6.3) hold for all pairs of edges
((6.2) if the edges bound a common triangle, (6.3) otherwise), by the same argument as for CP2:
the proof of Lemma 1 of [10] (see also [9, Lemma 14]) applies almost without modi3cation.

Eliminating redundant diagonal edges as allowed by (6.1), we are left with exactly n − 1 inde-
pendent generators among the ei. As in the case of CP1 ×CP1, relations (6.2) and (6.3) imply that
the subgroup B generated by the ei is isomorphic to a quotient of B̃n, and Lemma 6.2 extends to
the case of the Hirzebruch surface F1.

As previously, we let ai = e′
ie

−1
i , and we relabel these elements as dij, vij and hij. We are now

interested in a1 = v11: one can again show that the subgroup generated by v11 and the conjugates
g−1v11g, g∈B is isomorphic to a quotient of P̃n;0, by Lemma 5 of [10] (the argument is the same
for F1 as for CP2); the subgroup of �1(C2 − D) generated by the ei and by a1 is again isomorphic
to a quotient of B̃n n P̃n;0 � B̃(2)

n .
Relations (6.4)–(6.6) imply that, going through the various 3-points and 6-points of the diagram,

all the ai can be expressed in terms of e1; : : : ; ed=2 and a1 = v11; therefore �1(C2 − D) is generated
by e1; : : : ; ed=2 and a1, so that we again obtain a surjective morphism � : B̃(2)

n → �1(C2 − D). As in
the case of CP1 × CP1, the various geometric generators are images by � of pairs of half-twists
with correct end points, so that property (∗) holds once more. Using the classi3cation of half-twists
in B̃n (Lemma 3.2), we can consider pairs of integers Iai instead of the elements ai; once again,
the Iai are only de3ned modulo a certain subgroup � ⊂ Z2.
The various relations between the Iai are now the following: Ivi;1− Idi+1;1=(1; 1), Ivi; i− Ihi+1; i=(1; 1);

Idi+1; j+1= Idi; j, Ivi; j+1= Ivi; j, Ihi+1; j= Ihi; j, Idi; j − Ivi; j+ Ihi; j=0; − Idp;j − Ihp;j=(1; 1), Ivq;q=(0; 0), Idi;q− Ivi;q=
(1; 1), Idp;q=(0; 0). Moreover, Iv1;1 =(0; 1). Therefore, Idi; j=(2j−2i+1; j− i+1), Ivi; j=(2−2i; 2− i)
and Ihi; j = (1 − 2j; 1 − j) (compare with Proposition 4 of [10]), and we are left with two additional
relations: (2p − 2; p − 2) = (1; 1) and (2 − 2q; 2 − q) = (0; 0). Therefore, � is the subgroup of Z2

generated by (2p−3; p−3) and (2q−2; q−2), and Ker � is the normal subgroup of B̃(2)
n generated

by (u2p−3
1 ((2p−3)(2p−4)=2; up−3

1 ((p−3)(p−4)=2) and (u2q−2
1 ((2q−2)(2q−3)=2; uq−2

1 ((q−1)(q−2)=2).
Considering the commutator of the 3rst generator with (u2; 1), we obtain that ((; 1)∈Ker �. More-

over, if either p is even or q is odd, then considering the commutator of one of the generators with
(1; u2), we obtain that (1; ()∈Ker �. On the contrary, if p is odd and q is even then (1; () �∈ Ker �.
We conclude that [H 0

p;q; H
0
p;q] � C=(C∩Ker �) is trivial or isomorphic to Z2 depending on the parity

of p and q, and that AbH 0
p;q � (Z2=�)n−1 � (Z2=〈(p; 3); (q; 2)〉)n−1 � (Z3q−2p)n−1.

7. Double covers of CP1 × CP1

In this section, we sketch the proof of Theorem 4.6, which combines the methods described in
Section 6 with ideas similar to those in [3].
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7.1. Generic perturbations of iterated branched covers

Let C be a smooth algebraic curve of degree (2a; 2b) in Y = CP1 × CP1, and let Xa;b be the
double cover of Y branched along C. Then one can construct a map f0 :Xa;b → CP2 simply by
composing the double cover � :Xa;b → Y with a generic projective map g :Y → CP2 determined by
sections of O(p; q). The map f0 is not generic: its rami3cation curve is the union of the rami3cation
curve of � and the preimage by � of the rami3cation curve of g, and so the branch curve D0 of f0

is the union of g(C) (with multiplicity 1) and the branch curve Dg of g (with multiplicity 2).
This situation is extremely similar to that considered in [3] for the composition of a generic map

from a symplectic 4-manifold to CP2 with a quadratic map from CP2 to itself. The local behavior of
the map f0 is generic everywhere except at the intersection points of C with the rami3cation curve
of g; assuming that C and g are chosen generically, a local model for f0 near these points is (x; y) �→
(−x2 +y;−y2), for which a generic local perturbation is given, e.g. by (x; y) �→ (−x2 +y;−y2 + ,x)
where , is a small non-zero constant (cf. also [3]). There are several ways in which the map f0

can be perturbed and made generic. If the linear system �∗O(p; q) is suFciently ample, then f0

can be deformed within the holomorphic category into a generic projective map which no longer
factors through the double cover �. Another possibility, if p and q are suFciently large, is to use
approximately holomorphic methods (Theorem 1.1) to deform f0 into a map with generic local
models (cf. [3]).

In both cases, the e4ect of the perturbation on the topology of the branch curve of f0 is pretty
much the same. First, the local model near an intersection point of C with the rami3cation curve of
g is perturbed as described above (up to isotopy), which transforms a tangent intersection of g(C)
with the branch curve of g in CP2 into a standard con3guration with three cusps [3]. Secondly,
the two copies of the branch curve of g, which make up the multiplicity two component of D0,
are separated and made transverse to each other; this deformation of Dg is performed either within
the holomorphic category or resorting to approximately holomorphic perturbations. In the second
case, the perturbation process can be performed in a very Wexible manner, which in some cases
may create negative intersections; restricting oneself to algebraic perturbations is a convenient way
to avoid this phenomenon, but makes the global perturbation harder to describe explicitly. In any
case, up to isotopy and creation or cancellation of pairs of intersections between the two deformed
copies of the branch curve of g, the topology of the resulting generic branch curve D is uniquely
determined and can be computed easily from that of D0. In fact, the approximately holomorphic
perturbation process can always be carried out, even for small values of p and q for which neither
the holomorphic construction nor Theorem 1.1 are able to yield generic projective maps; in this
situation, we can still study the topology of the curve D, but Theorem 4.6 only describes a “virtual”
generic projective map.

As in Section 6, the study of the curve D relies on a degeneration process: one 3rst degenerates
the curve C in Y = CP1 × CP1 into a union of two sets of parallel lines, 2a along one factor and
2b along the other factor. Parallel lines are then merged, so that the resulting con3guration C0 ⊂ Y
consists of only two components, a (1; 0)-line of multiplicity 2a and a (0; 1)-line of multiplicity 2b.
Finally, one degenerates the projective embedding of Y given by the linear system O(p; q) into an
arrangement Y0 of planes intersecting along lines, as in Section 6.1. The fully degenerated branch
curve is a union of lines, some of which correspond to the intersections between the planes in Y0

(each contributing with multiplicity 4, since the branch curve of g is counted with multiplicity 2),
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Fig. 5.

while the others are the images of the p+ q components into which C0 degenerates (some of these
components contribute with multiplicity 2a, others with multiplicity 2b).

The curve D can be recovered from this arrangement of lines by the converse “regeneration”
process, which 3rst yields the union Dg ∪ g(C0) (by deforming Y0 into the smooth surface Y ), then
Dg ∪ g(C) = D0 (by separating the multiple components of C0 and smoothing the resulting curve),
and 3nally D (by performing the prescribed local perturbation at the intersection points of the two
rami3cation curves and by perturbing the two copies of Dg in a generic way).

7.2. Braid monodromy calculations

The braid monodromy for the curve Dg ∪ g(C0) (and for the subsequent regenerations D0 and D)
can be computed using the same methods as in Section 6.1.1. The diagram describing the degenerated
con3guration is as represented in Fig. 5, which di4ers from Fig. 1 only by the addition of edges
corresponding to C0 along the top and right boundaries of the diagram.

Thanks to Proposition 6.1, we only need to understand the local behavior of the curves Dg∪g(C0),
D0 and D near the various vertices of the diagram. At all vertices except those through which C0

passes (top and right sides of the diagram), the local description of Dg ∪ g(C0) and D0 is exactly
the same as that of Dg, which has already been discussed in Section 6.1: the various vertices are
standard 2-points, 3-points and 6-points as in Moishezon’s work [9].

Moreover, the local con3guration for D at such a vertex simply consists of two copies of the local
con3guration for Dg, shifted apart from each other by a generic translation. The two components,
which correspond to the two preimages of the rami3cation curve of g under the branched cover �,
may intersect at nodal points of either orientation; we won’t be overly concerned by the details of
these intersections, since the various possible con3gurations only di4er by isotopies and creations or
cancellations of pairs of nodes, which do not a4ect the stabilized fundamental group in any way.

We now consider a vertex along the top boundary of the diagram, at position iq with 16 i6p−1.
The local con3guration for Dg ∪ g(C0) at such a point is as shown in Fig. 6. The parts labeled
1; 1′; 2; 2′ correspond to Dg, and form a standard 3-point (cf. Section 6.1.1 and Fig. 3), presenting
three cusp singularities near the point A. The parts labeled 3 and 4 correspond to g(C0), obtained
by “regeneration” of the two lines associated to the horizontal edges of the diagram passing through
the vertex. The curve g(C0) presents tangent intersections with the two lines 2 and 2′ near the point
B, and with the conic 1; 1′ at the point C. The two intersections of the line labeled 4 with the conic
1; 1′ in CP2 remain as nodes since the corresponding curves fail to intersect in Y .
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Fig. 6.

Fig. 7.

The local description of the curve D0=Dg∪g(C) is obtained from that of Dg∪g(C0) by separating
C0 into 2b parallel components; this yields 2b copies of the lines labeled 3 and 4 in Fig. 6, and
the local con3guration near the points B and C becomes as shown in the right half of Fig. 6 (the
pictures correspond to the case b = 2). Finally, in order to obtain D we must perturb D0 in the
manner explained in Section 7.1: the multiplicity two component Dg ⊂ D0 (corresponding to the
parts labeled 1; 1′; 2; 2′ in Fig. 6) is separated into two distinct copies (in particular the point A is
duplicated), while each tangent intersection of g(C) with Dg (such as those near points B and C)
gives rise to three cusps. It is then possible to write explicitly the local braid monodromy for D,
with values in B4b+8 by enumerating carefully the 4b + 2 vertical tangencies, 18b + 6 cusps, and
nodes of the local model (the exact number of nodes depends on the choice of boundary values for
the local perturbation of D0).

In fact, since we only aim to compute stabilized fundamental groups of branch curve complements,
we shall not concern ourselves with the nodes of D, since these only yield commutation relations
which by de3nition always hold in the stabilized group.

Moreover, for reasons that will be apparent later in the argument, the cusp points are also of lim-
ited relevance for our purposes; those which will play a role in the argument, namely the six cusps
near point A and one of the 12b cusps near point B of Fig. 6, give rise to braid monodromies equal
to the cubes of the half-twists represented in Fig. 7. Actually, the truly important information is con-
tained in the vertical tangencies, which correspond to the half-twists F′

1; : : : ; F
′
2b; F

′′
1 ; : : : ; F

′′
2b; t; t̃ ∈B4b+8

represented in Fig. 8. As in Section 6.1, the reference 3ber of � is {x=A} for A a large positive real
constant, and the chosen generating paths in the base (x-plane) remain under the real axis except
near their end points; the labels 1; 1′; 2; 2′; 1̃; 1̃′; 2̃; 2̃′ and 31; : : : ; 32b; 41; : : : ; 42b correspond respectively
to the two copies of Dg and to g(C).
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Fig. 8.

Fig. 9.

We now turn to vertices along the right boundary of the diagram, at positions pj with 16j6q−1.
The local geometric con3guration is very similar to that for the vertices along the top boundary,
except for the local description of the curve g(C) which now involves 2a parallel copies of g(C0)
instead of 2b. Another di4erence is that, due to the ordering of the vertices and edges of the diagram,
the slope of some of the line components to which g(C) degenerates becomes smaller than that of
some of the components to which Dg degenerates, so that the braid monodromy has to be calculated
again, with results very similar to those above. In fact, it can easily be checked that, up to a
Hurwitz equivalence, the only e4ect of the change of ordering on the local braid monodromy is the
simultaneous conjugation of all contributions by a braid that exchanges the groups of points labeled
2; 2̃; 2′; 2̃′ and 31; : : : ; 32a by moving them around each other counterclockwise.

The last vertex that remains to be investigated is the corner vertex at position pq. The local
con3guration for D0 = Dg ∪ g(C) is obtained from that represented in Fig. 9 (left) by smooth-
ing the 4ab mutual intersections between the lines labeled 21; : : : ; 22a and 31; : : : ; 32b. Indeed, the
local con3guration for Dg is simply a conic (labeled 1; 1′ in Fig. 9), while g(C0) consists of
two lines tangent to that conic, and g(C) is obtained by “thickening” these two lines into re-
spectively 2a and 2b components (21; : : : ; 22a corresponding to the vertical edge of the diagram,
and 31; : : : ; 32b corresponding to the horizontal edge of the diagram) and smoothing their mutual
intersections. The curve D is then obtained from D0 by separating the multiplicity 2 component
Dg into two distinct copies, while each tangent intersection of Dg with g(C) gives rise to three
cusps.

The braid monodromy for the corner vertex can be deduced explicitly from this description. We
are particularly interested in the 8ab + 2 vertical tangencies of the local model, for which the
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corresponding half-twists Fij (16 i6 2a, 16 j6 2b, each appearing twice), t and t̃ in B2a+2b+4 are
represented in Fig. 9 (right).

7.3. Fundamental group calculations

As in Section 6, the Zariski-Van Kampen theorem provides an explicit presentation of �1(C2 −D)
in terms of the braid monodromy. The main di4erence is that there are now four generators for each
interior edge of the diagram (Fig. 5), because the regeneration process involves two copies of the
branch curve of g; we denote by �i; �′

i and �̃i; �̃′
i the four generators corresponding to the ith interior

edge. Moreover, each edge along the top boundary of the diagram contributes 2b generators (denoted
by zi;1; : : : ; zi;2b for the horizontal edge in position iq, where 16 i6p), and similarly each edge
along the right boundary contributes 2a generators (yj;1; : : : ; yj;2a for the vertical edge in position
pj, where 16 j6 q).

We are in fact interested in the stabilized quotient G of �1(C2 − D) (see De3nition 2.2), which
can be expressed in terms of the same generators by adding suitable commutation relations. Let �
be the subgroup of G generated by the �i; �′

i, and let �̃ be the subgroup generated by the �̃i; �̃′
i. By

de3nition, the elements of � always commute with those of �̃, because the images by the geometric
monodromy representation � of the geometric generators �i; �′

i and �̃i; �̃′
i act on two disjoint sets of

n=2 = 2pq sheets of the branched cover f.
As in Section 6, we introduce twisted generators ei; e′

i and ẽ i; ẽ′
i for � and �̃, by choosing integers

li satisfying the same compatibility conditions at the inner vertices as in Section 6, and setting as
previously ei = 9li

i (�i), e′
i = 9li

i (�
′
i), ẽ i = 9̃li

i (�̃i) and ẽ′
i = 9̃li

i (�̃
′
i), with the obvious de3nition for 9i

and 9̃i. Even though this could be avoided by proving a suitable invariance property, we will assume
that li = 1 for every diagonal edge in the top-most row or in the right-most column of the diagram
(so ei = �′

i, ẽ i = �̃′
i), and lj = 0 for every vertical edge in the top-most row and every horizontal

edge in the right-most column (so ej = �j, ẽ j = �̃j). Finally, as in Section 6.1 we let ai = e′
ie

−1
i and

ãi = ẽ′
iẽ

−1
i , and we relabel these elements as dij; vij; hij (resp. d̃ij; ṽij; h̃ij) according to their position

in the diagram.

Lemma 7.1. The subgroup B� ⊂ � generated by the ei and the subgroup B�̃ ⊂ �̃ generated
by the ẽ i are naturally isomorphic to quotients of B̃n=2. Moreover, the subgroups � and �̃ of G
are naturally isomorphic to quotients of B̃(2)

n=2, with geometric generators corresponding to pairs of
half-twists. Furthermore, � is generated by the elements of B� and v11, and �̃ is generated by the
elements of B�̃ and ṽ11.

Proof. We 3rst look at relations corresponding to the interior vertices of the diagram (Fig. 5) and to
the vertices along the bottom and left boundaries. Since the local description of D at these vertices
simply consists of two superimposed copies of Dg, and since the generators of � commute with
those of �̃, one easily checks that the local con3gurations yield relations among the ei; e′

i that are
exactly identical to those discussed in Section 6 in the case of CP1 ×CP1; additionally, an identical
set of relations also holds among the ẽ i; ẽ′

i.
Next we consider the local con3guration at a vertex along the top boundary of the diagram, and

more precisely the cusp singularities present near the point labeled A in Fig. 6, as pictured in Fig. 7.
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Denoting by i and j respectively the labels of the diagonal and vertical edges meeting at the given
vertex, the relations corresponding to these six cusps are

�′
i�j�

′
i = �j�′

i�j; �′
i�

′
j�

′
i = �′

j�
′
i�

′
j; �′

i(�
−1
j �′

j�j)�
′
i = (�−1

j �′
j�j)�

′
i(�

−1
j �′

j�j);

�̃′
i �̃j�̃

′
i = �̃j�̃′

i �̃j; �̃′
i �̃

′
j�̃

′
i = �̃′

j�̃
′
i �̃

′
j; �̃′

i(�̃
−1
j �̃′

j�̃j)�̃
′
i = (�̃−1

j �̃′
j�̃j)�̃

′
i(�̃

−1
j �̃′

j�̃j): (7.1)

It can easily be checked that these relations satisfy a property of invariance under twisting similar
to that of 3-points. In fact, replacing the various generators by their images under arbitrary powers
of the twisting actions 9i; 9̃i; 9j; 9̃j amounts to a conjugation of relations (7.1) by braids belonging
to the local monodromy (either the entire local monodromy, or two of the six cusps near A, or
combinations thereof), and thus always yields valid relations.

Therefore, the twisted generators ei; e′
i ; ej; e

′
j of � satisfy relations (6.2), and similarly for ẽ i; ẽ′

i ; ẽ j; ẽ′
j

in �̃. One easily checks that a similar conclusion holds for pairs of inner edges meeting at a ver-
tex along the right boundary of the diagram (recall that the local braid monodromy only di4ers
by a simple conjugation). Finally, because we are looking at the stabilized fundamental group, the
commutation relations discussed in Section 6 automatically hold in � and �̃.

So, except for the equality relations arising from vertical tangencies at the vertices along the
top and right boundaries of the diagram, all the relations described in Section 6.1 for the case of
CP1 ×CP1 simultaneously hold in � and in �̃. Therefore, the structure of � and �̃ can be studied
by the same argument as in the case of CP1 × CP1 ([9], see also Section 6), which yields the
desired result.

Lemma 7.2. The equality zr; i = zr;1 holds for every 16 r6p, 16 i6 2b; similarly, yr; i = yr;1 for
every 16 r6 q, 16 i6 2a. Moreover, the yr; i and the zr; i are all conjugates of yq;1 under the
action of elements of B� and B�̃.

Proof. First consider the corner vertex at position pq, and more precisely the half-twists Fij arising
from the vertical tangencies of the local model near this vertex (Fig. 9). Denoting by D the label
of the diagonal edge in position pq, the half-twist F1i yields the relation (y−1

q;1 : : : y
−1
q;2az

−1
p;1 : : : z

−1
p; i−1)zp; i

(zp; i−1 : : : zp;1yq;2a : : : yq;1) = �̃′
D�

′
Dyq;1�−1

D′ �̃−1
D′ . It follows that the quantity (z−1

p;1 : : : z
−1
p; i−1)zp; i(zp; i−1

: : : zp;1) is independent of i, which by an easy induction on i implies that zp; i = zp;1 for all i.
Observing that yq;1; : : : ; yq;2a and zp;1; : : : ; zp;2b are mapped by � to disjoint transpositions and hence
commute in G, we in fact have zp; i = �̃′

D�
′
Dyq;1�−1

D′ �̃−1
D′ for all i. Since by assumption the twisting

parameter lD is equal to 1, the generators �′
D = eD and �̃′

D = ẽ D belong to B� and B�̃, respectively.
This proves the claims made about the zp; i.
Similarly comparing the relations corresponding to the half-twists Fi1, it can be seen immediately

that the quantity (y−1
q;1 : : : y

−1
q; i−1)yq; i(yq; i−1 : : : yq;1) is independent of i, which implies that yq; i = yq;1

for all i.
We now proceed by induction: assume that zr+1; i = zr+1;1 for all i, and that zr+1;1 is a conjugate

of yq;1 under the action of B� and B�̃. Let D and @ be the labels of the diagonal and vertical edges
meeting at the vertex in position rq, and let  r = �̃′

@�
′
@�̃@�@�̃

′
D�

′
D�

−1
@ �̃−1

@ �′
@
−1�̃′

@
−1. De3ne Jr =  r�@ −1

r ,
J′
r= r�′

@ 
−1
r , J̃r= r�̃@ −1

r , and J̃′
r= r�̃′

@ 
−1
r . Recalling that the elements of � commute with those of

�̃, relations (7.1) imply that J′
r = �′

@�@�
′
D(�

−1
@ �′

@�@)�
′
D
−1�−1

@ �′
@
−1 = �′

@�@(�
−1
@ �′

@�@)
−1�′

D(�
−1
@ �′

@�@)�
−1
@ �′

@
−1=
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�@�′
D�

−1
@ = �′

D
−1�@�′

D. Similar calculations for the other elements yield that

Jr = �′
D
−1(�−1

@ �′
@�@)�

′
D; J̃r = �̃′

D
−1(�̃−1

@ �̃′
@�̃@)�̃

′
D; J′

r = �′
D
−1�@�′

D; J̃′
r = �̃′

D
−1�̃@�̃′

D: (7.2)

Due to the choice of twisting parameters lD = 1 and l@ = 0, J′
r ∈B� and J̃′

r ∈B�̃.
Since the zr; i commute with the zr+1; i in G (they are mapped to disjoint transpositions by �), and

since by assumption zr+1; i = zr+1;1 for all i, we have

(z−1
r;1 : : : z−1

r; i z
−1
r+1;1 : : : z

−1
r+1; i−1)zr+1; i(zr+1; i−1 : : : zr+1;1zr; i : : : zr;1) = zr+1;1

for all i. Therefore, the relation arising from the vertical tangency F′
i (Fig. 8) at the vertex rq can

be written in the form

zr+1;1 = J̃′
rJ

′
r(z

−1
r;1 : : : z−1

r; i−1)zr; i(zr; i−1 : : : zr;1)J′
r
−1J̃′

r
−1:

In particular, the value of (z−1
r;1 : : : z−1

r; i−1)zr; i(zr; i−1 : : : zr;1) does not depend on i, which implies that

zr; i= zr;1 for all i. Moreover, we have zr; i=J′
r
−1J̃

′
r
−1zr+1;1J̃′

rJ
′
r . So, by induction on decreasing values

of r, we obtain the desired results about zr; i. The case of yr; i is handled using exactly the same
argument, going inductively through the vertices along the right boundary of the diagram. Indeed,
observe that the local braid monodromy at one of these vertices simply di4ers from that at a vertex
along the top boundary by a conjugation which exchanges the positions of two groups of geometric
generators; however, because the corresponding transpositions in Sn are disjoint, these generators
commute with each other in G, so that the relations induced by the local braid monodromy can be
expressed in exactly the same form.

Lemma 7.3. The element ṽ11 belongs to the subgroup of G generated by �, B�̃, and yq;1.

Proof. Consider the local relations for the vertex at position 1q, and more precisely the equality
relation corresponding to the half-twist labeled F′′

1 in Fig. 8: with the same notations as in the proof
of Lemma 7.2, we have z2;1=J−1

1 J̃−1
1 z1;1J̃1J1. Moreover, the cusp point with monodromy 2B

1 pictured
in Fig. 7 yields the relation J̃1z1;1J̃1 = z1;1J̃1z1;1. It follows that z2;1 = J−1

1 z1;1J̃1z−1
1;1J1. Therefore, using

formula (7.2) for J̃1, we obtain �̃′
@ = �̃@�̃′

Dz
−1
1;1J1z2;1J

−1
1 z1;1�̃′

D
−1�̃−1

@ , where D and @ are the labels of
the two interior edges meeting at the considered vertex.

Observe that, since l@=0 and lD=1, the generators �̃@= ẽ @ and �̃′
D= ẽ D belong to B�̃. Moreover, it

is obvious from (7.2) that J1 ∈�. Using the result of Lemma 7.2 to express z1;1 and z2;1 in terms of
yq;1, it follows that �̃′

@ = ẽ′
@ belongs to the subgroup of G generated by �, B�̃, and yq;1. Therefore,

ṽ1; q = ẽ′
@ẽ

−1
@ also belongs to this subgroup. Finally, the local relations analogous to (6.5) for the ẽ i

and ãi at the vertex in position 1r imply that ṽ1; r and ṽ1; r+1 are conjugates of each other under
the action of elements of B�̃. Therefore, by induction ṽ1;1 can be expressed in terms of ṽ1; q and
elements of B�̃, which completes the proof.

Lemma 7.4. The subgroup B of G generated by B�, B�̃ and yq;1 is naturally a quotient of B̃n,
with geometric generators corresponding to half-twists.

Proof. We construct a surjective map � : B̃n → B as follows (recall that n = 4pq). First observe
that the subgroup of B̃n generated by the half-twists x1; : : : ; x2pq−1 is naturally isomorphic to B̃n=2,
which by Lemma 7.1 admits a surjective homomorphism to B� mapping half-twists to geometric
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generators. We use this homomorphism to de3ne �(xi) for 16 i6 2pq − 1. Any two half-twists
in B̃n=2 are conjugate to each other; therefore, after a suitable conjugation we can assume that
�(x2pq−1) = eD, where D is the label of the diagonal edge at position pq in the diagram, and that
the other �(xi) (i6 2pq − 2) are geometric generators mapped by � to transpositions disjoint from
�(yq;1). Because of the stabilization process, this last requirement implies that �(xi) commutes with
yq;1 for i6 2pq − 2.

Similarly, the subgroup of B̃n generated by x2pq+1; : : : ; xn−1 is naturally isomorphic to B̃n=2 and
admits a surjective homomorphism to B�̃, which we use to de3ne �(xi) for 2pq + 16 i6 n − 1.
Once again, without loss of generality we can assume that �(x2pq+1) = ẽ D and that the other �(xi)
commute with yq;1. Finally, we de3ne �(x2pq) = yq;1.

All that remains to be checked is that � can be made into a group homomorphism (obviously
surjective by construction), i.e. that the relations de3ning B̃n are also satis3ed by the chosen images
�(xi) in B. Since � is built out of two group homomorphisms and since the elements of B� commute
with those of B�̃, the only relations to be checked are those involving x2pq.

Consider the corner vertex at position pq in the diagram: the cusp singularities arising from
the regeneration of the rightmost tangent intersection of Dg with g(C) in Fig. 9 imply the rela-
tions �′

Dyq;1�′
D = yq;1�′

Dyq;1 and �̃′
Dyq;1�̃′

D = yq;1�̃′
Dyq;1. Since lD = 1, we have �′

D = eD and �̃′
D = ẽ D,

so that these relations can be rewritten as �(x2pq−1)�(x2pq)�(x2pq−1) = �(x2pq)�(x2pq−1)�(x2pq) and
�(x2pq+1)�(x2pq)�(x2pq+1)=�(x2pq)�(x2pq+1)�(x2pq). Finally, for all i such that |i−2pq|¿ 2, the rela-
tion [�(x2pq); �(xi)]=1 holds by construction. Therefore, � de3nes a surjective group homomorphism
from B̃n to B, mapping half-twists to geometric generators.

Proposition 7.5. The morphism � extends to a surjective group homomorphism from B̃(2)
n � B̃n n

P̃n;0 to G mapping pairs of half-twists to geometric generators. In particular, the group G has
property (∗).

Proof. Lemma 7.2 implies that G is generated by �, �̃, and yq;1. Therefore, by Lemma 7.1, G is
generated by B, v11 and ṽ11, while Lemma 7.3 implies that ṽ11 can be eliminated from the list of
generators. Since Lemma 7.4 identi3es B with a quotient of B̃n, the main remaining task is to check
that the subgroup P generated by the g−1v11g, g∈B, is naturally isomorphic to a quotient of P̃n;0.
This can be done by proving that P is a primitive B̃n-group ([9, De3nition 5]), as it follows from
the discussion in Section 1 of [9] that every such group is a quotient of P̃n;0 (compare Propositions
1, 2, 3 of [9] with the presentation of P̃n;0 given in Lemma 3.1).
As stated in Lemma 7.1, the arguments of [9] show that the subgroup generated by the g−1v11g,

g∈B�, is a primitive B̃n=2-group (and hence a quotient of P̃n=2;0). The desired result about P then
follows simply by observing that v11 commutes with yq;1 and with the generators of B�̃ and using a
criterion due to Moishezon ([9, Proposition 6]); indeed, an obvious corollary of this criterion is that,
upon enlarging the conjugation action from B̃n=2 to B̃n, it is suFcient to check that the additional
half-twist generators act trivially on the given prime element (v11).
Since G is obviously generated by its subgroups B and P, and since P is normal, it is naturally

a quotient of B̃nn P̃n;0 � B̃(2)
n . Moreover, the geometric generators of G are all mutually conjugate

(because the curve D is irreducible), and by construction the ei (and ẽ i) correspond to pairs of
half-twists in B̃(2)

n , so the same is true of all geometric generators. Finally, by going carefully over
the construction, it is not hard to check that the end points of the half-twists (x; y) corresponding
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to a given geometric generator � are always the natural ones, in the sense that #(x) = #(y) = �(�).
Therefore, G has property (∗).

At this point, the only remaining task in the proof of Theorem 4.6 is to characterize the kernel
of the surjective morphism � : B̃(2)

n → G given by Proposition 7.5. As a consequence of Lemmas
3.3 and 3.4, the commutation relations induced either by nodes in the branch curve D or by the
stabilization process, as well as the relations induced by the cusp points of D, automatically hold,
so that Ker � is generated by equality relations between pairs of half-twists induced by the vertical
tangencies of D. Moreover, as in Section 6.1.2 the classi3cation of half-twists in B̃n (Lemma 3.2)
allows us to associate to every ai (resp. ãi) a pair of integers Iai (resp. Ĩai), well-de3ned modulo
the subgroup �={(2; �); (u2

1(
2(2−1)=2; u�

1(
�(�−1)=2)∈Ker �} ⊂ Z2. Recall however from Section 6.1.2

that this construction requires us to choose an ordering of the n=4pq sheets of the branched cover;
in our case, these split into two sets of 2pq sheets, the 3rst one on which the �(ei); �(e′

i) act by
permutations, and the second one on which the �(ẽ i); �(ẽ′

i) act by permutations. The ordering we will
consider is obtained by enumerating 3rst the 3rst set of 2pq sheets, and then the second one. In each
set, the sheets are naturally in correspondence with the 2pq triangles of the diagram in Fig. 5: the
ordering we choose for each of the two sets of 2pq sheets is obtained as in the case of CP1 ×CP1

[9] by enumerating the 2pq triangles of the diagram from left to right and from bottom to top.
We have seen above that the relations coming from the vertical tangencies at the inner vertices of

the diagram and at those along the lower and left boundaries are exactly the same as in the case of
CP1 ×CP1, except they simultaneously apply to the generators of � and to those of �̃. Therefore,
as in Section 6.1.2, these relations do not contribute to Ker � by themselves, but they translate into
equalities between the Iai (and similarly between the Ĩai), which yield the following formulas (with the
obvious notations): Idi; j= Ĩdi; j=(j−i; 0), Ivi; j= Ĩvi; j=(1−i; 1), Ihi; j= Ĩhi; j=(1−j; 1) (compare with (6.9)).
Next, we consider the corner vertex at position pq, for which the braid monodromy contribution

of the vertical tangencies is represented in Fig. 9. Recall that some of the half-twists Fij were used
in the proof of Lemma 7.2 to eliminate yq;2; : : : ; yq;2a and zp;1; : : : ; zp;2b from the list of genera-
tors by expressing them in terms of yq;1; however, since these relations imply that yq; i = yq;1 and
zp; i = zp;1 (cf. Lemma 7.2), all the other relations coming from the Fij become redundant. There-
fore these equality relations do not make any contributions to the kernel of �. We are left with
the two half-twists t; t̃ of Fig. 9. Denote by D the label of the diagonal edge passing through the
corner vertex. Because G has property (∗), and using the results of Section 3, we can 3nd an ele-
ment g∈ B̃(2)

n such that zp;1 = �(g−1(x1; x1)g), eD = �′
D = �(g−1(x2; x2)g), and yq;1 = �(g−1(x3; x3)g).

Recalling that Idp;q = (q − p; 0) and observing that the conjugation by g preserves the ordering
of the end points for eD, by de3nition of Idp;q we have e′

D = �(g−1(x2u
p−q
2 ((p−q)(p−q−1)=2; x2)g),

and therefore �D = e−1
D e′

DeD = �(g−1(x2u
q−p
2 ((q−p)(q−p−1)=2; x2)g). The half-twist t yields the rela-

tion �D = z2bp;1y
2a
q;1�

′
Dy

−2a
q;1 z−2b

p;1 ; an easy computation shows that the right-hand side of this relation
is equal to �(g−1(x2ua−b

2 ((a−b)(a−b−1)=2; x2ua−b
2 ((a−b)(a−b−1)=2)g). Comparing the two formulas for

�D, we conclude that the relation introduced by the half-twist t is equivalent to the property that
(a− b+p− q; a− b)∈�. A similar calculation shows that the relation introduced by t̃ can also be
rewritten in the form (a − b+ p − q; a − b)∈�.
We now consider the vertex at position rq (16 r6p − 1), and investigate in the same manner

the equality relations coming from the vertical tangencies F′
i ; F

′′
i ; t; t̃ represented in Fig. 8. Recall that
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the relations induced by F′
i were used in the proof of Lemma 7.2 to show that zr; i=J′

r
−1J̃

′
r
−1zr+1;1J̃′

rJ
′
r

and consequently eliminate the zr; i from the list of generators; these relations are therefore already
accounted for. Next, we turn to the relation induced by F′′

i , which taking into account that zr; i = zr;1
and zr+1; i = zr+1;1 can be written in the form zr+1;1 = J−1

r J̃−1
r zr;1J̃rJr . Using the expression of zr;1 in

terms of zr+1;1, this identity can also be expressed by the commutation relation [zr+1;1; J̃′
rJ

′
r J̃rJr] = 1.

By (7.2), we have J̃′
rJ

′
r J̃rJr = e−1

D ẽ−1
D ẽ′

@ẽ @e′
@e@ẽDeD, where D and @ are the labels of the two interior

edges meeting at position rq. Since zr+1;1 commutes with eD and ẽ D, the relation can then be rewritten
as [zr+1;1; ẽ′

@ẽ @e′
@e@] = 1. Taking into account the ordering of the sheets of the branched cover, an

easy calculation in B̃(2)
n shows that this relation automatically holds as a consequence of the equality

Ivr;q = Ĩvr;q.
The relation induced by the half-twist t (Fig. 8) can be expressed as �D = z2br;1�

′
@�@�

′
D�

−1
@ �′

@
−1z−2b

r;1 .
Using property (∗) and recalling that Idr;q = (q − r; 0) and Ivr;q = (1 − r; 1), we can 3nd g∈ B̃(2)

n ,
preserving the ordering of the end points for eD and e@, such that zr;1 = �(g−1(x1; x1)g), �′

D =
eD = �(g−1(x2; x2)g), �D = e−1

D e′
DeD = �(g−1(x2u

q−r
2 ((q−r)(q−r−1)=2; x2)g), �@ = e@ = �(g−1(x3; x3)g), and

�′
@ = e′

@ = �(g−1(x3ur−1
3 ((r−1)(r−2)=2; x3u−1

3 ()g). So z2br;1�
′
@�@�

′
D�

−1
@ �′

@
−1z−2b

r;1 is equal to �(g−1(x2u2−r−b
2

((2−r−b)(1−r−b)=2; x2u2−b
2 ((2−b)(1−b)=2)g). Comparing this with the expression for �D, it becomes appar-

ent that the relation induced by t is in fact equivalent to the condition (q + b − 2; b − 2)∈�. A
similar calculation for the half-twist t̃ shows that the relation it induces can also be expressed in the
form (q+ b − 2; b − 2)∈�.
Finally, the case of the vertices along the right boundary of the diagram can be studied by exactly

the same argument; the relations corresponding to the vertical tangencies of the local model can be
expressed by the single requirement that (p+ a − 2; a − 2)∈�.
Therefore, � ⊂ Z2 is the subgroup generated by (p+a−2; a−2) and (q+b−2; b−2), and Ker �

is the normal subgroup of B̃(2)
n generated by the two elements g1=(up+a−2

1 (�(p+a−2); ua−2
1 (�(a−2)) and

g2 = (uq+b−2
1 (�(q+b−2); ub−2

1 (�(b−2)), where �(i) = i(i − 1)=2. Observe that G0
p;q = (P̃n;0 × P̃n;0)=Ker �,

and recall from Lemma 3.1 that [P̃n;0; P̃n;0] = {1; (} � Z2 and Ab P̃n;0 � Zn−1.
We 3rst consider the commutator subgroup [G0

p;q; G
0
p;q] � C=(C∩Ker �), where C={1; (}×{1; (}.

First of all, if a + p is odd, then considering the commutator of g1 with (u2; 1) we obtain that
((; 1)∈Ker �, and similarly if b+q is odd; otherwise, one easily checks that ((; 1) �∈ Ker �. Moreover,
if a is odd, then considering the commutator of g1 with (1; u2) we obtain that (1; ()∈Ker �, and
similarly if b is odd; when a and b are both even, (1; () �∈ Ker �. Also, it is easy to check that
Ker � only contains ((; () if it also contains ((; 1) and (1; (). The claim made in the statement of
Theorem 4.6 about the structure of [G0

p;q; G
0
p;q] follows.

Finally, we have AbG0
p;q � (P̃n;0 × P̃n;0)=〈C;Ker �〉 � (Z2=�)n−1. Observing that Z2=�=Z2=〈(p+

a−2; a−2); (q+b−2; b−2)〉 � Z2=〈(p; a−2); (q; b−2)〉, this completes the proof of Theorem 4.6.
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