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Abstract The studies of homological mirror symmetry as correspondence of Lef-
shetz pencils was initiated as part of the general theory of categorical linear systems.
In this paper, we look at the monodromy of these linear systems via a new notion of
noncommutative spectrum.
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1 Introduction

The studies of homological mirror symmetry (HMS) as correspondence of Lefshetz
pencils was initiated in [31] as part of the general theory of categorical linear systems.
In this paper, we look at the monodromy of these linear systems. We utilise these
monodromies by introducing a new notion of noncommutative spectrum. We will
use the setup and the notations from [31]. We start with a pencil where the fibers are
CY varieties and the global pencils constitute mirrors of Fano manifolds. We have
the following category diagram:
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CY Fano

F(CY ) → F(Fano)

Here F(CY ), F(Fano) are the corresponding Fukaya–Seidel categories. Im
�(F(CY )) = A is a localization category F(CY )/ ∼. (Using HMS we can use
Db(X)—the category of coherent sheaves on algebraic varieties X .)

This localization category has a filtration:

A ⊃ Fλ1 ⊃ · · · ⊃ Fλn

where:

• λi are the asymptotics of limiting stability conditions.
• Z = zλi (· · · )
• Fλi = {F s.t. Z(F) = zλi (· · · )}
• λi are also the asymptotics of the PDE

(
∂

∂u
+ u−2K + u−1G

)

The above filtration can also be seen as the monodromy of the perverse sheaf of
categories over the skeleton. Following [31] we think of the category as a perverse
sheaf of categories over lagrangian skeleton. In the diagram bellow we describe our
findings in [31].

←→
• •

• •
Homotopy
of Skeleta

dim of CAT

Monodromy
of Perverse
Sheaves

Asymptotics
of Stab

Conditions

Orlov Spectra

The main idea in current paper is to give an interpretation of the above λi filtration
as a noncommutative spectrum and a spectrum of Landau-Ginzburg (LG) models.
We use the theory of LG models as generalized theory of singularity.

The above considerations lead to birational invariants, which will appear in more
details in [29, 34]. (For definitions and general theory of LG models and HMS we
refer to [30].)
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We will base our birational considerations on the following major notions and
ideas:

(1) Quantum spectrum. The quantum spectrum is defined in [29]. Let K · be the
quantum multiplication by canonical class. It defines the following splitting of
cohomology:

H = ⊕λi Hλi .

Here λi are the eigenvalues of K ·. We call these eigenvalues quantum spectrum.
The main theorem proven in [29] is:

Main theorem: The splitting H = ⊕λi Hλi is a birational invariant.

(2) Noncommutative spectrum. The noncommutative spectrum is defined in [29].
In the current paper we extend these ideas and give some examples.

(A) We build analogues with low dimensional topology and give several new
directions for research.

(B) We extend the definition of a noncommutative spectrum to multispectra.
Possible applications are discussed.
Our considerations are only the tip of the iceberg. We propose a corre-
spondence between nonrationality over algebraically nonclosed fields and
complexity of the discriminant loci of the moduli space of LG models. We
will consider some arithmetics applications in Sect. 3. In fact one can define
several different spectra.
In addition to the quantum spectrum mentioned above, one can define
several other spectra:

• Noncommutative spectrum;
defined by the asymptotics of the quantum equation.

• Givental spectrum;
defined by the solutions of the Givental’s equation.

• Spectrum of LG model—multiplier ideal sheaf;
defined as the Steenbrink spectrum of a new singularity theory of the LG
model.

• Asymptotics of stability conditions—stability spectrum;
defined as asymptotics of limiting stability conditions.

• Serre dimension of the Kuznetsov’s component;
defined as a categorical dimension.

• Arnold-Varchenko-Steenbrink spectrum of the affine cone.
defined as the classical spectrum of the affine cone singularity over X .

• R-charges—the assymptotics of RG flow—the same as asymptotics of
Kähler-Ricci flow—see Sect. 6.
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We will discuss relations among some of them. Understanding the complete
scope of relations is an intriguing problem. We initiate the study of these
connections in this paper. We will develop this connections in upcoming
papers [27, 32].

(C) We also propose a parallel between the existence of Kähler-Einstein metrics
and the top number of the noncommutative spectra. Recall that

lct (X, G) = sup {λ ∈ Q | the log pair (X, λD) l.c.s. ∀G inv. D}
We note the following parallel:

nonrationality
of(X, G)

orbifold

∃of K.E.
metric on
(X, G)

δ > dim X − 2
X is not rational
δislctfor sing

lct (X, G)

>
dim X

dim X + 1

In the above table lct is the log canonical threshold.
We take this parallel further:

(D) We connect the noncommutative spectra with elliptic genus and conformal
field theory. We connect orbifoldization of elliptic genus with spectra of sin-
gular varieties. This leads to a categorical interpretation of Birkar’s bound-
ness theorem.Wepropose the idea of categorical resolution and “boundness”
of conformal field theories—the central charges correspond to the noncom-
mutative spectra.
As a consequence we propose a parallel between Zamolodchikov’s c-
theorem and uppersemicontinuity condition of noncommutative spectra.
We will call the monotonicity of the highest number of the spectrum
uppersemicontinuity. In other words, the highest number of the spectrum
is decreasing monotonically when moving from the boundary of Frobenius
manifold to its general point.

The paper is organized as follows. We explain the general theory in Sect. 2.
The Fano applications are considered in Sect. 2. The arithmetics applications are
considered in Sect. 3. The parallel with 3-dimensional topology are discussed in
Sect. 4. The extension to multispectra is discussed in Sect. 5. In Sect. 6, we consider
the connection of spectra with elliptic genus.Wemake a connection betweenBirkar’s
theory and the conformal field theories.
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2 Noncommutative Spectra

In this section we introduce the idea of noncommutative spectra—an idea which
belongs to M. Kontsevich. We describe new birational invariants and describe some
easy applications.

2.1 Definitions of Quantum and Nc Spectra

Let X be a projective algebraic variety over C, with a given ample line bundle.
The Gromov-Witten invariants in genus zero define a potential F0: formal series on
H •(X) with coefficients in Q[[T ]]—see e.g. [30]. We briefly recall two conjectures
(see e.g. [29]).

1. First we have:

Conjecture 2.1 F0 is convergent for a point γ ∈ H •(X) and for T ∈ C, both close
to 0.

2. Assuming �-conjecture (see e.g. [30]) we get that nc Hodge structures are
parametrized by a domain

M ⊂ H •(X,C)/H 2(X, 2π iZ),

which is a meromorphic connection on the trivial bundle over u-plane Cu with fiber
H •(X):

∇ d
du

= d

du
+ 1

u2
K + 1

u
G

(Recall that the �-conjecture gives a lattice, hypothetically compatible with Stokes
filtrations along rays at u → 0. For more details see [30].)

We define the operator K = K (γ ) as the quantum product with c1(TX ) +∑
i �=2(2 − i)γi . It depends on the point γ = (γi ∈ Hi (X))i=0,...,2 dimC X in Frobe-

nius manifold M. We also define the operator G as a constant operator given by
G |Hi (X) = i−dimC X

2 · idHi (X).
We use the example bellow to introduce and demonstrate two important def-

initions. Let X be a smooth 3-dimensional cubic in P4. Operators K , G on 4-
dimensional space H even(X) = ⊕3

i=0H 2i (X) with the basis being powers of the
hyperplane section, at point γ = 0 ∈ M, are:

K = 2 ·

⎛
⎜⎜⎝
0 6 0 36
1 0 15 0
0 1 0 6
0 0 1 0

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

− 3
2 0 0 0
0 − 1

2 0 0
0 0 1

2 0
0 0 0 3

2

⎞
⎟⎟⎠

Solutions of the quantum equation
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Fig. 1 Gabrielov paths (Red
dots correspond to
eigenvalues of quantum
multiplication)

(
d

du
+ 1

u2
K + 1

u
G

)
ψ(u) = 0 (1)

grow at u → 0 as
∼ u− 5

6 ,∼ u− 1
6 .

Definition 2.2 Quantum spectrum is the spectrum of K , a finite subset {za} =
SpecX ⊂ C (depends on the point γ inM).

Definition 2.3 Noncommutative spectrum: The asymptotics of the
sub-exponential growth solutions of the Eq.1 above form the noncommutative
spectrum or nc spectrum.

In what follows we will denote by δ minus two times the lowest number of
noncommutative spectrum. In the above example

δ = 5

3
.

Consider a purely even affine submanifold Malg ⊂ M, given by deforma-
tions of quantum product by linear combinations of algebraic classes H alg

Q (X) ⊂
H even(X,Q).

Conjecture 2.4 For anypoint inMalg and a choice of disjoint paths from∞ to points
of the corresponding quantum spectrum (see Fig. 1), we obtain a semi-orthogonal
decomposition Db(Coh(X)) = 〈C1, . . . , Cr 〉 where r is the number of elements of
the spectrum.

All categories C1, . . . , Cr are saturated (i.e. smooth and proper), equal to local
Fukaya-Seidel categories for the mirror LG dual (Y, W : Y → C), if it exists.

Example 1 (1) X = Pn , the quantum spectrum is μn+1 = {z ∈ C | zn+1 = 1}
(for some point inM)
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This gives Db(Coh X) = 〈O, . . . ,O(n)〉.
(2) Conjectural blow-up formula: If X̃ = BlY (X) where Y ⊂ X is a smooth closed

subvariety of codimension m ≥ 2, then the quantum spectrum SpecX̃ looks
like with (m − 1) shifted copies of SpecY around one copy of SpecX . (Here the
blue dots correspond to eigenvalues of quantum multiplication added after blow
ups.)

(3) If X is a Calabi-Yau manifold or a manifold of general type the quantum spec-
trum is just a point.

(4) The above considerations lead to the following theorem proven in [29]: MAIN
THEOREM: The splittingH = ⊕λi Hλi is a birational invariant.

2.2 Dimension Theory

In this section,we introduceSerre dimensionwhich (with someexceptions) is equal to
the number δ from the noncommutative spectrum.We see that sometimes elementary
pieces Ca = Cza , za ∈ SpecX (could be combined as some points of the spectrum
collide), are themselves equivalent to derived categories of coherent sheaves on some
varieties, of certain dimensions ≤ dim X .

In general, for a saturated category C one can define its Serre dimension [49]

dimSerre C := lim|k|→+∞

{
i

k
| Exti (I dC, Sk

C) �= 0

}
⊂ R.

Here SC : C → C is the Serre functor [48]:

HomC(E, F)
 = HomC(F, SC E), ∀E, F ∈ Ob(C).

In general, Serre dimension could be an empty set, or an interval.
For categories Db(Coh(X)), it is exactly the dimension dim X ∈ Z≥0. For a frac-

tional Calabi-Yau category Sk
C ∼ [n], the Serre dimension is equal to Calabi-Yau

dimension n
k , hence fractional.
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Example 2 Fukaya-Seidel category of Y = Cx , W = xd , d ≥ 2: dimSerre = 1 − 2
d .

Let us assume that (H,∇) is a connection with second order pole and regular
singularity (i.e. all solutions have polynomial growth). Then the order of growth
defines a filtration by subbundles, preserved by connection ∇, the indices form the
subexponential growth spectrum = nc spectrum.

Essential Example
Consider the hypersurface X ⊂ Pn of Calabi-Yau/general type. The connection on
the image of H •(Pn) in H •(X) under restriction map, i.e. the span of powers of
c1(O(1)) ∈ H 2(X) :

∇ d
du

= d

du
+ 1

u2
K + 1

u
G, K = classical product with c1(TX )

The nc spectrum is

(− dim X/2,− dim X/2, . . .)

for X a manifold of general type and so

δ = dim X.

For X a Calabi-Yau manifold nc spectrum is

(− dim X/2, 1 − dim X/2, . . . ,+ dim X/2)

and δ = dim X . Similar behavior happens for Calabi-Yau when we replace the
multiplication by c1(TX ) = 0, by the multiplication by an inhomogeneous class
c1(TX ) + ∑

i �=2(2 − i)γi , γi ∈ Hi (X), i ∈ 2Z.

2.2.1 More General Example

Let us consider a weighted projective space Pω0,...,ωn and generic complete intersec-
tion X of hypersurfaces of degrees d1, . . . , dm . In what follows we investigate the
connection between nc spectrum, Givental spectrum and Steenbrink spectrum
in this example.

Recall that such a complete intersection is called well-formed iff (here unions
are understood with multiplicities)

⋃
i

{
1

ωi
, . . . ,

ωi − 1

ωi

}
⊂
⋃

j

{
1

d j
, . . . ,

d j − 1

d j

}



We call the numbers from 
 Givental spectrum.
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Well formed X is smooth, and does not meet singularities of Pω0,...,ωn . Let us
assume that X is a Fano variety, i.e.

∑
i ωi >

∑
j d j .

We define the Givental’s hypergeometric operator:

∏
i

ω
ωi
i · ∂dim X −

∏
j

d
d j
j · q ·

∏
j (∂ + 1

d j
) · · · (∂ + d j −1

d j
)∏

i (∂ + 1
ωi

) · · · (∂ + ωi −1
ωi

)
, ∂ := q

d

dq
, u = c · q

− 1∑
i ωi −

∑
j d j

The nc spectrum of the Laplace operator of the Givental’s hypergeometric oper-
ator is:

− dim X
2 + {complement in (
)} ·(∑i ωi − ∑

j d j ) → numbers s0 ≤ s1 ≤ · · · .
The adjusted Steenbrink spectrum is:
(s0, s1 + 1, s2 + 2, . . .).
The adjusted Steenbrink spectrum is symmetric with center at 0.

Example 3 Let use consider complete intersection of two hypersurfaces of degree
d1 = 2, d2 = 4 in P6 = P6(1, 1, 1, 1, 1, 1, 1).

The growth spectrum is
(

−7

4
,−6

4
,−6

4
,−5

4

)

In other words the solutions of the quantum equation grow as

u− 7
4 , log(u)u− 6

4 , u− 6
4 , u− 5

4

.
Adding (0, 1, 2, 3) to nc spectrum we obtain adjusted Steenbrink spectrum:

(
−7

4
,−1

2
,+1

2
,+7

4

)

.

2.3 Some Computational Tools

We briefly discuss some methods for calculations. We start with:

Theorem 2.5 (Saito’s Theorem) ([46]) Pf (t) = Sp f (t).

Here Pf (t) = ∑
α

(dim Jα)tα is the Poincare series and Sp f (t) = ∑
i
(ni .t i )—is the

spectrum polynomial and ni—are the multiplicity of spectral number.
Recall that for f (λw1 x1, . . . , λwn xn) = λ f (x1, . . . , xn) we define weight
wt.(xa1

1 , . . . , xan
n ) = ∑n

i=1(1 + ai )wi .
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Example 4 Let us look at the example of three dimensional cubic from a new point
of view:

f (x1, . . . , x5) = x3
1 + · · · + x3

5

Pf (t) = t
5
3 + 5t2 + 10t

7
3 + 5t3 + t

10
3

δ = 10
3 − 5

3 = 5
3 .

Let us denote by Cone(X) the cone over a hypersurface X and C is the Fukaya-
Seidel category associated with the most singular fiber of the LG model of X . By
Orlov’s theorem we have Db(Cone(X/G)) = C .

Denote by Sl the lowest number of the Steenbrink spectrum and by Sh the highest
number of the Steenbrink spectrum for Cone(X/G). An A-side conjectural version
of Orlov’s theorem suggests:

Conjecture 2.6 The Steenbrink spectra of Cone(X) determines noncommutative
spectrum associated with X . The following identity holds

δ = Sh − Sl .

Let C be a Calabi-Yau category s.t. Serre functor satisfies Sa = [b].
H H•(C) = ⊕H Hi (C)[δ]

Definition 2.7 The homomorphism

ε : (Q × Z2) → Aut (C)

defines a categorical covering. The covering structure is recorded by multiplication
in the A∞.

In the example 2.8 we get t
10
3 , t

5
3 define 10

3 − 5
3 , which produces degree of a

covering.

Example 5 x4
1 + · · · + x4

5 . We consider this hypersurface as an affine cone. We
compute the Poincare polynomial and obtain:

Pf = t
5
4 + · · · + t

15
4 ⇒ δ = 15

4 − 5
4 .

Example 6 x3
1 + · · · + x3

5 . We consider this hypersurface as an affine cone. Here
we can compute the Bernstein polynomial

b f (t) = (t + 1)(t + 2)(t + 3)(t + 5
3 )(t + 7

3 )(t + 8
3 )(t + 10

3 )

and obtain:
δ = 10

3 − 5
3 .

2.4 New Nonrationality Results

In this section we record the results of our method and compare them with already
known results. We use the simplest of invariants—δ. We hope that other numbers of
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the noncommutative spectrum can be used as well. In fact it seems that these numbers
mirror classical theory of multiplier ideal sheaves and characterize the stratification
of the base loci of the anticanonical system for Fano’s.

We have defined

δ = dim(X) − 2(N − d)/d

As an immediate consequence we get in [29].

Theorem 2.8 (1) Let X be a Fano smooth hypersurface of degree d in P5−1 such
that

d > 5/2.

Then X is not rational.
(2) Let X be a Fano smooth hypersurface of degree d in P6−1 such that

d ≥ 6/2

and H 2,2(X,Z) = Z. Then X is not rational.
(3) Let us assume uppersemicontinuity condition. Let X be a Fano smooth hyper-

surface of odd dimension and of degree d in PN−1 such that

d > N/2

Then X is not rational.
(4) Let X be a Fano smooth hypersurface of even dimension k = (N − 2)/2 and of

degree d such that
d > N/2

and H k,k(X,Z) = Z. Then X is not rational.

We briefly describe the idea of the proof.

Proof The above formulae is equivalent to δ > dim(X) − 2.

(1) dim(X) = 3 Assume that X is rational so it is obtained via sequence of blow
ups and blow downs with centers curves.
According to the ESSENTIAL EXAMPLE the maximal asymptotics we get
under blow ups are integers less or equal to 1.
Our MAIN THEOREM ensures that these integers do not interact. So the max-
imum δ we can get by blow up is

dim(X) − 2 = 1.

- a contradiction.
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(2) dim(X) = 4. Assume δ > 2. The fact that H 2,2(X,Z) = Z ensures that δ > 2
stays unchanged under deformations. Assume that X is rational so it is obtained
via sequence of blow ups and blow downs with centers points, surfaces, curves.
According to the ESSENTIAL EXAMPLE the maximal asymptotics we get
under blow ups are integers less or equal to 2.
The MAIN THEOREM ensures that these integers do not interact. So the max-
imum δ we can get by blow up is

dim(X) − 2 = 2.

- a contradiction.
The case d = 3, H 2,2(X,Z) = Z will be treated in [29]. Let us briefly mention
the idea. We have a splitting

H = ⊕λi Hλi .

With the exception of one all of these Hλi are one dimensional. The high dimen-
sional one has a symmetric noncommutative Hodge structure. With 20 dimen-
sional space of deformation this noncommutative Hodge structure cannot come
from a commutative surface.

(3) dim(X) = N − 2, N − 2 is odd. In this case δ > dim(X) − 2.
Assume that X is rational so it is obtained via sequence of blow ups and blow
downs.
According to the ESSENTIAL EXAMPLE the maximal asymptotics we
get under blow ups are integers less or equal to dim(X) − 2. According to
uppersemicontinuity these asymptotics can only go down. The MAIN THEO-
REM ensures that these integers do not interact. So the maximum δ we can get
by blow up is

dim(X) − 2.

- a contradiction.
(4) dim(X) = N − 2 = 2k, N − 2 is even H k,k(X,Z) = Z . In this case δ >

dim(X) − 2. The fact that H k,k(X,Z) = Z ensures that δ > dim(X) − 2 does
not go down.
Assume that X is rational so it is obtained via sequence of blow ups and blow
downs.
According to the ESSENTIAL EXAMPLE the maximal asymptotics we
get under blow ups are integers less or equal to dim(X) − 2. According to
uppersemicontinuity these asymptotics can go only down. The MAIN THEO-
REM ensures that these integers do not interact. So the maximum δ we can get
by blow up is

dim(X) − 2.
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- a contradiction.

Similarly we have [29].

Theorem 2.9 Let X be a smooth Fano complete intersection of hypersurfaces of
degrees d1, . . . , dm in PN . Denote by dt the sum d1 + · · · + dn and by dm the minimal
degree.

In this case the Arnold number (the largest number of the noncommutative spec-
trum) is equal to:

δ = dim(X) − 2((dt − dm)/dm)

.

1. Let X be 3 dimensional and δ > 1. Then X is not rational.
2. Let X be 4 dimensional, H 2,2(X,Z) = Z and δ > 2. Then X is not rational.

Let us assume uppersemicontinuity condition.

3. Let X be of odd dimension and δ > dim(X) − 2. Then X is not rational.
4. Let X be of even dimension 2k, H k,k(X,Z) = Z and δ > dim(X) − 2. Then X

is not rational.

The same result works for well formed complete intersection in weighted projec-
tive spaces. The formulae for δ is similar:

δ = dim X − 2
ωsum − dsum

dmax
, ωsum :=

∑
j

ω j for P
ω0,...,ωn

3 Application to Arithmetics

The GW invariants can be defined over algebraically nonclosed fields L . Therefore
the techniques of noncommutative spectrum can be used to investigate nonrationality
over algebraically nonclosed fields L . Of course changing the fields does not change
the GW invariants but it changes algebraic cycles. Changing algebraic cycles affects
deformations of LG models and as a result the spectrum of quantum multiplication
by the canonical class. In this case we do not need an uppersemicontinuity—the
restriction on deformation comes from algebraic cycles.

Recall the example from the introduction—the two dimensional cubic: X : X3
0 +

· · · + X3
3 = 0. Consider X over algebraically nonclosed field L s.t. Pic X L = 1. After

analyzing the Sarkisov links we conclude that X is not rational.
We will look at this example from the point of view of the spectrum. We begin

with:



384 L. Katzarkov et al.

Theorem 3.1 Let X be a Fano stack of dimension at most 4 over a field L such that
image of C H(X) in

∑
i H i (X,Z) is generated by powers of anticanonical class.

Assume that Arnold constant ( the highest number in the spectrum) is bigger than
dim(X) − 2. Then X is not rational.

The same theorem works in the case when dimension of X is greater than four
but with the assumption of uppersemicontinuity condition.

Proof We give a proof under assumption of an isomorphism between the quantum
cohomologies and Jacobian ring proven in many cases. The quantum multiplication
by the canonical class K corresponds to multiplication of the class of W .

QH(Hr) ∼= Jac (W )
multi K mult by W

QH ∼= Jac (W )
∪ ∪

subring subring
generated by K generated by W

2 def of K P polynomial ofW
W + P (W )

all deformations
have the same critical values

as W

It follows that the spectrum of the most singular fiber of W does not go down
since this most singular fiber does not split further under deformations. So we have
δ > dim X L − 2 = 2.

From another point the main assumption and the fact that we blow up points,
curves and surfaces implies that δ = 2—a contradiction. In the case of dimension
higher than 4 the proof is the same.

We return to the case of cubic surface. We assume existence of a point in X L over
L . Its Landau–Ginzburg models is:

w = (x + y + 1)3

xy
for cubic
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If the PicX L = Z then W have only two singular fibers.
We compute:

δ = 2 − 2
4 − 3

3
= 4

3

⇒ X is not rational

Since the Pic X L = Z the deformation of W is restricted so we cannot morsify
and δ does not go down to 0. So X L is not rational. We move to considering a cubic
with Pic X L = Z + Z:

(1) In the case Pic X L = Z + Z ⇒ we get a conic bundle with 5 singular fibers. By
Noether formulae:

8 − S = k2 = 3,

so we have 5 singular fibers. (The classical Iskovskikh criteria |2KP1 + S| =
| − 4p + 5p| �= ∅ gives nonrationality.)
We will use spectrum in order to compute nonrationality. We compute the Bern-
stein polynomial for a cubic as an affine cone with a singularity at zero.
We have 8 − C = 3. C = 5 pts.
|2K + C | = | − 4 + 5| = OP1(1) �= ∅
f = a5x2 + b5y2 + c5z2

f = (s + 1)2(s + 2)2(s + 3
2 )

2 · · · (s + 3
10 )

So δ = 3
2 − 3

10 �= 0 and X L is nonrational.

5

P
1

|2KP1 + S| = | − 4p + 5p| �= ∅
existence of schg

• •

non-splitting

|2K + S| �= ∅ δ > 0

nonrationality

⇐⇒
⇒ ⇐

(2) We consider del Pezzo surface X L = of degree 4 in P3(1, 1, 1, 2) with Pic X L =
Z + Z It is a conic bundlewith 6 singular fibers. (The classical Iskovskikh criteria
|2KP1 + S| = | − 4p + 6p| �= ∅ gives nonrationality.)
As before we use the Bernstein polynomial to show that δ > 0 and X L are not
rational.
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8 − S = K2 = 2

6
|2K + S| �= ∅

2 points

δ = 2 − 25−4
4

no splitting

(3) Consider del Pezzo surface X L of degree 6 in P(1, 1, 2, 3).

8 − S = K2 = 1

S = 7

· · ·

7
|2K + 7| �= ∅

δ = 2 − 27−6
6

no splitting

As before we use the Bernstein polynomial to show that δ > 0 and X L are not
rational.

The above observations suggest the following conjecture.

Conjecture 3.2 Let X L be a conic bundle over P2 (or another rational surface).
Assume that the following holds:

|2K + S| �= ∅ nonsplitting

δ > dim(X/L) − 2

Then X L is not rational.

Let us consider a stack X/G. In this case the GW invariant of X are different from
the ones of X/G. From another point the new contributions to cohomologies do form
as twisted sectors which do not interact with the quantum span of the anticanonical
divisor.

We denote the cohomologies associated to twisted sectors by Hγ1 , ... + · · · , Hγk .
We have the following splitting of quantum cohomologies.

Q H(X)G = H + Hγ1 + · · · Hγk

It leads to the following conjecture.
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Conjecture 3.3 Let X/G be a stack defined over a field L such that the image of
C H(X) in

∑
i H i (X,Z) is generated by powers of anticanonical class.

Assume that δ > dim(X/G) − 2. Then X/G is not rational.

The proof is very similar to the proof of the previous theorem. As before we have:
QH = H + Hγ1 + · · ·Hγk −→ Jac (Wm) + Jγ1 + · · ·Jγk

< 1, K(1)1 > deformed ∼= < Wm > +P (Wm)
= no new eigenvalues

Here we denote by Wm the potential modified by the contributions of the age fac-
tors. As before we do not have further splitting of the cohomology and the inequality
δ > dim(X/G) − 2 implies nonrationality.

We will look at some examples of del Pezzo stacks.
Using this theorem we consider several examples of del Pezzo stacks—all hyper-

surfaces in weighted projective P3. Consider the case of weights: 3, 3, 5, 5 and a
hypersurface of degree 15. In this case δ = 2 − 2(16 − 15)/15 = 28/15 > 0 so we
have nonrationality. We can compute the spectrum applying theorem 5.5. Using Sin-
gular we compute the Steenbrink spectrum of Cone(X)-(0, 1), . . . , (28/15, 1). So
δ = 48/15. We obtain nonrationality.

Remark 3.4 Observe that choice of the field L and the condition I m(C H → H) =
〈1, K (1), K 2(1), · · · 〉 are essential. Without these assumptions the most singular
fiber of Wm splits to singularities A4, A2, A2 and further which makes δ = 0.

Similarly consider the weights: 3, 5, 7, 11 and a hypersurface of degree 25. The
Steenbrink spectrum ofCone(X) is (0, 1), . . . , (48/25, 1). So δ = 48/25.We obtain
nonrationality.

This methods work in all Johnson-Kollár examples as well as in higher
dimension—for more see [35].

4 Low Dimensional Topology Invariants

We explain a parallel between quantum spectrum and classical 3-dim, 4-dim invari-
ants. First we recall the classical theory. We start with theory of knots and Alexander
polynomials. Consider the singular curve:

f (z, w) = z p + wq , (z, w) ∈ C2

Sε = {|z|2 + |w|2 = ε2} ⊂ C2, 0 < ε << 1

K p,q = f −1(0) ∩ Sε a knot
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Alexander polynomial of this torus knot is:

�p,q = t− (p−1)(q−1)
2 · (t − 1)(t pq − 1)

(t p − 1)(tq − 1)

We define Sp( f ) := ∑
α∈Q n f,αtα the Steenbrink spectrum

Steen = {α1, α2, . . . , αμ}, μ = (p − 1)(q − 1)

Fact �K p,q = t− μ

2
∏μ

i=1 �αi (t), �αi (t) = (t − e2π iαi )

Example 7 ((p, q) = (2, 3))

�K2,3 = t− μ

2
(t6 − 1)(t − 1)

(t2 − 1)(t3 − 1)
= t− μ

2 (t − e2π i 5
6 )(t − e2π i 7

6 )

Steen = { 56 , 7
6 }. Also using Thom-Sebastiani theorem we get:

Steen = {Steen(z2)} + {Steen(w3)} =
{
1

2

}
+
{
1

3
,
2

3

}
=
{
5

6
,
7

6

}

Example 8 ((p, q) = (2, 5))

�K2,5 = t− μ

2
(t10 − 1)(t − 1)

(t2 − 1)(t5 − 1)

Steen = { 1
10 ,

3
10 ,

7
10 ,

9
10 }. Using Thom-Sebastiani we get:

Steen(z2 + w5) = {Steen(z2)} + {Steen(w5)} =
{
1

2

}
+
{
1

5
,
2

5
,
3

5
,
4

5

}

We move 1 dimension higher. Consider an elliptic surface E(n): an elliptic
fibration.

1212

E(2) = K3

12 singular fibers

E(1) = P
2
p1,...,p9

We describe fibered knot surgery and its connections with Seiberg Witten invari-
ants SW.
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S2

S1×

S1 × (
∑

g ×S1) into E(n)

Under surgery:

SWEK (n) =
∑
K∈Z

SW (K [F])t K = SWE(n)(t)�K (t), SWE(n) = (t − t−1)n−2

where F is the fiber of EK (n).

Theorem 4.1 (Gr=SW) Coefficients of �K count holomorphic curves g = 1 in the
class K [F] in EK (n).

We explore the connection with spectra. Recall that:
∑

g → S3 − K

S1

� the monodromy of the surgery (char polynomial of �k(t)) produces an endo-
functor on Fuk(

∑
g) and Fuk(Symk

∑
g) (or F S(

∑
g)?).

Conjecture 4.2 � defines filtration on H H(Fuk(
∑

g))which corresponds to Steen.

Conjecture 4.3 Db
sing( f ) has a filtration

Db
sing( f ) ⊃ Fα1 ⊃ Fα2 · · ·

given by the spectra.

Let F be mirror of Db
sing( f ). Consider the quantum differential Eq.1

{asymptotics of 2.1} ↔ {Spectrum of f }

Conjecture 4.4 Entropy of �: η(�) is the first coefficient of �K (t).
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These simple observations suggest the following questions:

Question 4.5 Does the spectrum define canonical filtration on Floer homology?

Question 4.6 What is the symplectic meaning of this filtration? We expect it is
connected with the structures of the Lagrangian skeleta.

We discuss further applications. We define modular spectrum of a link M - link
of singularity X f ← Y1,q as the Steenbrink Steen(Y1,q). We give a brief example to
fix notations.

Example 9 M = �(2, 3, 5)
Y1,q − E8

W RT (M) ↔ (1, 7, 11, 13, 17, 19, 23, 29)

Here W RT (M) is the Witten-Reshetikhin-Turaev (WRT) invariant of the 3-
manifold M .

We pose the following:

Question 4.7 Is there a categorical meaning of WRT?

We will discuss some of these questions in the next section.

4.1 Spectra and WRT

Let M be a smooth 3-manifoldwhich is a link of an isolated normal surface singularity
in C3. In the following sections, we study topological invariants of M and their
relation to spectra. GPPV invariants1 Ẑb(q) [37, 38] are q-series that refine theWRT
invariants.

Series Zb(q) canbe expressed as a linear combination of false theta functions in the
case of Seifert manifolds with 3 singular fibres. Corresponding theta functions can be
conjecturally written as components of a vector-valuedmodular form, which is know
for someexamples, including links of ADE singularities [37]. Induced representation
of SL(2,Z) is a subrepresentation of 2m-dimensional Weil representation for some
integerm and θ functions are labelled by residue classesmodulo2m.Weare interested
in these residue classes for all components of the modular form, not just those that
correspond to Ẑb. We call this set Modular spectrum for convenience. A precise
definition depends on the conjectural existence of a natural vector-valued modular
form. It was posed as a question in [37] what is a deeper meaning of these residue
classes.

1 also called BPS q-series or homological blocks.



Interpretations of Spectra 391

Example 10 The relation with the spectrum started with an observation about
E8 singularity, defined by the equation x2 + y3 + z5 = 0. Its link is a Poincar-
ÃƒÆ’Ã‚Â©homology sphere, Seifertmanifold M(−2, 1/2, 2/3, 4/5).WRT invari-
ants of this manifold have been studied in [40]. Lawrence and Zagier defined two
functions holomorphic inside the unit circle:

θ+(τ ) = q1/120(1 + 11q + 19q3 + 29q7 − 31q8 − 41q14 − . . .

θ−(τ ) = q49/120(7 + 13q + 17q2 + 23q4 − 37q11 − 43q15 − . . .

The first function gives WRT as the radial limits at the roots of unity. Both functions
together form a vector-valued modular form for SL(2,Z).

Those functions can be written as a linear combination of theta functions assigned
to residue classes modulo 60 (see Sect. 2):

θ+(τ ) = θ1
30,1(τ ) + θ1

30,11(τ ) + θ1
30,19(τ ) + θ1

30,29(τ ) + . . .

θ−(τ ) = θ1
30,7(τ ) + θ1

30,13(τ ) + θ1
30,17(τ ) + θ1

30,23(τ ) + . . .

The spectrum of E8 singularity is

{1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30}

and we can see that the numerators of the elements of spectrum correspond to residue
classes of the theta functions while the denominator corresponds to the modulus.

This example can be generalized in two ways. One is the class of Brieskorn
homology spheres x p1 + y p2 + z p3 = 0 for a0, a1, a2 pairwise coprime. An analog-
ical relation of theta functions and spectrum is true for them as described in Sect. 3.
It is remarkable since the spectrum contains negative numbers and this is reflected
in topology.

Theorem 4.8 Let M be a Brieskorn homology sphere, i.e. the link of the singularity
X given by the equation x p1 + y p2 + z p3 = 0 Then

Modular spectrum of M = Steenbrink spectrum of X.

Another generalization is the class of ADE singularities. Here we need to take a
spectrum of a different but related singularity—universal Abelian cover.

Theorem 4.9 Let M be a link of ADE singularity X and Y be the corresponding
maximal Abelian cover. Then

Modular spectrum of M = Steenbrink spectrum of Y.

This phenomenon can be certainly generalized to Seifert manifolds, where Ẑb

have been explicitly computed recently. For more general plumbed 3-manifolds, the
singularities to consider are splice-quotients and their universal covers, where the
spectrum is difficult to compute, however much can be said about the topology itself
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using ideas from singularity theory and simpler invariants than spectrum. For these
generalizations, see [32]. On the topology side, since the description of Ẑb using
false theta functions is limited to 3 singular fibres of Seifert fibration on M , we need
to replace theta function labels by something more general. The poles of Borel plane
[43] seem to be a good candidate.

4.1.1 Theta Functions

Wewill follow the notation in [37]. In particular we denote q = e2π iτ and y = e2π i z .

Definition 4.10 Let m be a positive integer and r a residue class mod 2m. We
define weight 1/2 theta function and weight 3/2 unary theta function as (respectively)

θm,r (τ, z) =
∑
�∈Z

�≡r (mod 2m)

q�2/4m y�; θ1
m,r (τ ) =

∑
�∈Z

�≡r (mod 2m)

� q�2/4m, (2)

Unary theta functions form a (rank 2m) vector-valued modular form of weight
3/2. Its matrices S and T define Weil representation of S̃L(2,Z), the double cover
of SL(2,Z).

Definition 4.11 False theta function (or Eichler integral) of θm,r is

�m,r (τ ) =
∑
�∈Z

�≡r (mod 2m)

sgn(�) q�2/4m . (3)

False theta functions keep a weaker modular property—quantummodularity [41].
Note also the obvious relations:

�m,r (τ ) = �m,−r (τ ) (4)

�m,r+2m(τ ) = �m,r (τ ) (5)

The basic idea is the correspondence r
m as an element of the spectrum of certain

singularity related to the 3-manifold and �m,r (τ ) as an Eichler integral of a certain
theta function assigned to a 3-manifold.

4.1.2 GPPV Invariants

A plumbed 3-manifold M admits GPPV invariants [38], which are q-series Ẑb(q)

defined using plumbing graph of M and labeled by elements of H1(M) or spinc

structures. These invariants can be computed by an explicit integral formula [37].
It is an intriguing question whether the series Zb can be written as components of
(quantum) modular forms.
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The vector-valuedmodular forms described in [37] have usuallymore components
than is the number of Zb(q) (as in the example E8 in the introduction). It is not clear
what is the meaning of these components for the 3-manifold and how to get an
intrinsic definition of them.

4.1.3 Example of Brieskorn Homology Sphere �(3, 4, 5)

Here we give an example of theorem 4.8. Homology sphere �(3, 4, 5) is the link
of x3 + y4 + z5 = 0. This case has been studied in [37], p. 67. They describe a
representation of S̃L(2,Z) given by theta functions θ1

m,r and corresponding false
theta functions �m,r . The number m is 3 · 4 · 5 = 60.

False theta functions:

�60,1 − �60,31 − �60,41 − �60,49

�60,2 + �60,22 + �60,38 + �60,58

�60,7 + �60,17 + �60,23 − �60,47

�60,11 + �60,19 + �60,29 − �60,59

�60,13 − �60,37 − �60,43 − �60,53

�60,14 + �60,26 + �60,34 − �60,46

If we use the relation �m,2m+r = �m,r and multiply first and fifth row by -1 (change
of the basis of the representation) we obtain

�60,−1 + �60,31 + �60,41 + �60,49

�60,2 + �60,22 + �60,38 + �60,58

�60,7 + �60,17 + �60,23 + �60,73

�60,11 + �60,19 + �60,29 + �60,61

�60,−13 + �60,37 + �60,43 + �60,53

�60,14 + �60,26 + �60,34 + �60,46

Now the labels r of �m,r are exactly the numerators of the elements of Steenbrink
spectrum of x3 + y4 + z5 = 0. The terms in each sum correspond to the orbits of a
natural action of Z2

2 on the spectrum. Note that since the theta functions only depend
on r (mod 2m) the relevant spectrum is spectrum modulo 2 (we cannot hope to
recover the full Hodge-theoretic information from topology).

The series Z0(q) is at the fifth row. It contains the term labelled by the smallest
number in the spectrum: −13/60.

Remark 4.12 As conjectured in [37], components of the representation should cor-
respond to non-abelian SL(2,C) connections (it is true for Brieskorn spheres). If
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Table 1 Labels of false theta functions for M , the link of singularity X, correspond to the spectrum
of the universal Ab. cover Y of X
Manifold M X Y False thetas of M Spectrum of Y

Lens space An C2 No thetas Empty

M(−2; 1
2 , 1

2 , n−3
n−2 ) Dn An−3 �1,n−2, �2,n−2, . . . , �n−3,n−2 (1, 2, . . . , n − 3)/(n − 2)

M(−2; 1
2 , 2

3 , 2
3 ) E6 D4 �6,1 + �6,5, 2�6,3 (1, 3, 3, 5)/6

M(−1; 1
2 , 2

3 , 3
4 ) E7 E6 �12,1 + �12,7, �12,4+

�12,8, �12,5 + �12,11

(1, 4, 5, 7, 8, 11)/12

�(2, 3, 5) E8 E8 10, [40] (1, 7, 11, 13, 17, 19, 23, 29)/30

we use this identification and restrict it to real connections, we recover the classi-
cal relation of the signature of Milnor fiber of the Brieskorn singularity and Casson
invariant of M [44].

4.1.4 ADE Singularities

Beforeweget to the relation ofGPPVand the spectrum,weneed to recall the notion of
universal Abelian cover of an isolated singularity (see, for example, [42]). Recall that
a closed oriented 3-manifold M is aQ-homology sphere if H∗(M,Q) = H∗(S3,Q).

Definition 4.13 Let X be a germ of an isolated normal surface singularity whose
link M is a Q-homology sphere. The universal Abelian cover Y of X is a maximal
Abelian cover of the germ ramified at the singular point.2

Ẑb and modular forms of the links of ADE singularities were computed in [37],
see also [39]. Using their results, we obtain Theorem 4.9. All ADE singularities,
their Abelian covers and invariants are summarized in Table 1.

4.2 Topological Invariants of Plane Curve Singularity

We give some ideas of the categorical origin of these topological invariants. Let
C = { f (x, y) = 0} be a germ of a plane curve having an isolated singularity at the
origin p and LC,p be an algebraic link of the plane curve singularity. There have been
lots of works studying relations between algebraic geometry of C and topology of
LC,p. For example, the Alexander polynomial of LC,p can be computed via the ring
of functionsOC thanks to the works of Campillo-Delgado-Gusein-Zade (cf. [5]) and
the HOMFLY-PT polynomial of LC,p can be expressed in terms of Hilbert schemes
of the plane curve singularity thanks to the works of Oblomkov-Shende (cf. [45])
and Maulik (cf. [21]). On the other hand, there have been lots of interests in mirror

2 The covering group is then H1(M,Z).
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symmetry of hypersurface singularities these days (see [15] and references therein
for more details) and plane curve singularities again have provided natural testing
grounds for mirror symmetry conjecture. Takahashi conjectured that for an invert-
ible polynomial f, the category of graded matrix factorization HMSL f ( f ) will be
equivalent to the Fukaya-Seidel category Fuk→( f T ) of the Berglund-Hübsch mirror
polynomial f T and recently there have been lots of works in this direction and both
categories have been intensively studied. For example, it turns out that HMSL f ( f )

has a full exceptional collection and admits a Gepner type stability condition when
f is of ADE type. Here, we will discuss the relation between Hilbert schemes of
plane curve singularities, certain topological data of some algebraic links, andmatrix
factorizations.

To be more precise, we will consider the images of ideals which belong to certain
Hilbert scheme C [∗]

p in the category HMFL f ( f ) when f = x2 + y3. Then we can
check that the images have interesting properties. For example, a natural stratifica-
tion on (some parts of) the Hilbert scheme C [∗]

p corresponds to an indecomposable
object in HMSL f ( f ). We can also verify that the difference between the Alexander
polynomial and the HOMFLY-PT polynomial of LC,p can be expressed in terms of
HMFL f ( f ).

4.2.1 Hilbert Schemes

Let C = { f (x, y) = 0} be the germ of a plane curve with an isolated singularity at
the origin at p = (0, 0).

Definition 4.14 Let C [l]
p be the Hilbert scheme of length l zero dimensional sub-

schemes of C which are set-theoretically supported at p. And let C [∗]
p := ⋃

l C [l]
p .

The normalization induces an embeddingOC → C[[t]].And the natural valuation
induces a valuationOC → N. Let� = ν(O) be the semigroup. Let I ⊂ OC be a L f -

graded ideal. Then OC/I gives an element in D
L f
sg (R f ).

Proposition 4.15 Let f be a weighted homogeneous polynomial. Then there is a
C∗-action on C [∗]

p . A C∗-invariant ideal gives an Z-graded ideal.

Proof The obviousC∗-action on f induces an action on C [∗]
p and having aC∗-action

is equivalent to having a Z-grading.

The following remark tells us that not all ideals ofOC give nontrivial elements in
HMFL f ( f ).

Remark 4.16 Let g be a nonzero divisor in OC . Then O/(g) is a perfect complex.

Proof We have the following short exact sequence.

0 → OC → OC → OC/(g) → 0

Therefore O/(g) is a perfect complex.
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4.2.2 Example f = x2 + y3

We can compute L f as follows.

L f = Z
−→x ⊕ Z

−→y ⊕ Z
−→
f /(

−→
f − 2−→x − 3−→y ) ∼= Z

R f = OC = C[[x, y]]/(x2 + y3) = C[[t2, t3]]

There is a stratification on the Hilbert scheme as follows.

(1)

(t i + uti+1), i ≥ 2, u ∈ C

(t i , t i+1), i ≥ 2

The C∗-invariant parts of the Hilbert scheme are as follows.

(1)

(t i ), i ≥ 2

(t i , t i+1), i ≥ 2

The semigroup � is {0, 2, 3, 4, 5, 6, 7, · · · }.

The Koszul resolution of C[[x, y]]/(x, y) induces an L f -graded matrix factor-

ization F = (F0, F1, f0, f1) of f where P(
−→
f ) := S(−−→x ) ⊕ S(−−→y ) and

F0 := S ⊕ ∧2P(
−→
f ), F1 := P(

−→
f ).

Proposition 4.17 The matrix factorizations correspond to the ideal (t i , t i+1) is the

image of the above matrix factorization under the autoequivalence (
−→
l ) for some−→

l ∈ L f .

Proof Let M = C[[x, y]]/(x, y). Let M stab be the above matrix factorization. Note
that (t i , t i+1) is isomorphic to (t2, t3) as an R f -modules. The only difference between
them is grading and hence we obtain the desired conclusion.

Proposition 4.18 The ideal (t i , t i+1) is an exceptional object in HMFL f ( f ).

Proof Because C[[x, y]]/(x, y) is an exceptional object (cf. [16]), we see that
(t i , t i+1) is also exceptional.

Then we have the following.
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Corollary 4.19 The ideal (t i , t i+1) is an indecomposable object in HMFL f ( f ).

It is well-known that there are only finitely many indecomposable objects in
HMFL f ( f ) up to autoequivalences.

Theorem 4.20 The difference between the Alexander polynomial and the HOMFLY-
PT polynomial is a categorical invariant.

Proof Thedifference between theAlexander polynomial and theHOMFLY-PTpoly-
nomial of LC,p is the integration over ideals of type (t i , t i+1). And every element of
the form (t i , t i+1) can be obtained from (t2, t3) by applying translations. From the
above discussion, we see that these ideals give nontrivial elements in HMFL f ( f ).

Therefore, one can see that the difference can be written in terms of HMFL f ( f ).

5 Generalization of Spectra

We extend the connection of spectra with Alexander polynomial initiated in the
previous section. We extend the correspondence:

Multivariable Alexander Polynomials ←→ multispectra

Theorem of Libgober [26] says that we can associate to spectrum of f1, f2, . . . ↔
faces of quasiadjunction. We will give a categorical version of this process:

5.1 Splitting of a Potential

Consider a Landau–Ginzburg model with a potential W = W1 + W2 We consider
the associated Fukaya-Seidel categories F S(W1), F S(W2), F S(W ).

We start with the tower:

FS(W1 + W2) FS(W1)

FS(W1) FS(W1 ∩ W2)

Example 11 (X5
3 ⊂ P6 5-dim cubic)

Db(X5
3)

∼= F S(W1 + W2)

Db(X4
6)

∼= F S(W1)

Db(X4
6)

∼= F S(W2)
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Conjecture 5.1 The NC spectra of X5
3 is a superposition of X4

6 and X4
6.

We have the P.D.E.

∇ d
du

= d

du
+ 1

u2
K + 1

u
G

Conjecture 5.2 The P.D.E. of X4
6 and P.D.E. of X4

6 produce the P.D.E. of X5
3 via

convolution.
P DE(X4

6) ∗A P DE(X4
6)

∼= P DE(X5
3)

We see that asymptotics are superposition of asymptotics.

Corollary 5.3 Let P̃N
X is a blow-up of PN along X. Then the faces of quasiadjuction

contain
(−(dim X)/2, . . . ,−(dim X)/2)

In general, we have
Spec({Ai }) � Spec({K })

Here the algebra {K } is the algebra generated by canonical bundle. {Ai } is the algebra
generated by algebraic cycles. The above epimorphism defines a deeper filtration.

Question 5.4 Is this new filtration a birational invariant?

Question 5.5 Does the algebra defined by splitting produce birational invariants?

We consider the example of 5-dim cubics.

Db(X5
3 )

Db(X4
3,2) Db(X4

3,2)

δ1(X5
3 ) =

7
3

δ1(X5
3,2) = 4 − 2

6 − 3 − 2
3

=
10
3

δ1(X5
3) = 7

3

δ1(X5
3,2) = 4 − 2

6 − 3 − 2

3
= 10

3

We compute the quasiadjunction of the above splitting.
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−10
3

−10
3

quasiadjunction faces

Observation
We notice that in the above spliting −(dim X)/2, . . . , (dim X)/2 do not belong to
quasiadjunction faces of the polygon. This suggest a different proof of the nonra-
tionality 3-dimensional cubic.

5.2 Category Filtrations

For a category C and A, B and a noncommutative Hodge structureH,∇, Herm > 0,
we define a sequence of stability conditionsJ1, . . . ,Jk corresponding to asymptotics
of stability spectrum.

We consider the asymptotics of integral
∫
�′(0) α(0) ∼ Asymptotics at z = 0. These

asymptotics define

stability spectrum.

Example 12 Consider the category An—1 dimensional Fukaya-Seidel categories.
So we have x j e

p
u dx is a stability condition. Here p is a polynomial of degree <

(n − 1).

Step 1 We have α = dx .
Step 2 We move to define Kähler metric on moduli space of stability conditions.

We begin with Ki j (u, ū) = ∫∫
C

xi x j e
p
u − p̄

ū dxd x̄

� : |u| ≤ 1 → GL(n + 1,C)

∀|u| = 1,�(u)�t (u) = Ki j

We define Hermitian form
H(u) = �(u)�t (u)

Asymptotics
∫

xi e
p
u dx

define asymptotics and the noncommutative spectrum.

As we saw the asymptotics of the integral lim
n→0

Zn = ∑
uαi define stability and nc

spectra. We move in to investigate the connection with analysis.
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We have the following:

Theorem 5.6 The stability conditions J1, . . . ,Jk define a filtration on C:

F≤i (C) = semistable Obj(E)

such that
ZJi (E) ≤ O(|J | j )

This theorem will be discussed in detail in [29]. We will make some use of this
filtration in what follows. We consider a Fano X and a splitting of a canonical divisor
K X = D1 + D2.

X − Fano

K X = D1 + D2

On the mirror side we have spitting of the potential W = W1 + W2.

FS(W1) FS(W )

Fuk(CY ) FS(W2)

Monodromy of W1 gives a filtration:

F S(W1) ⊃ Fλ1 ⊃ · · · ⊃ Fλn

Monodromy of W2 gives a filtration:

F S(W2) ⊃ Fμ1 ⊃ · · · ⊃ Fμn

giving a double filtration
F S(W ) ⊃ Fμ1,λ1 ⊃ · · ·

F S(W ) ⊃ Fν1 ⊃ · · ·

The behavior of λi , μ j is of Thom Sebastiani type generalized

νi
T homSebastiani= (λi , μi )

In fact, we have a correspondence:
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⎧⎨
⎩

Choices
of

W1, W2, ...

⎫⎬
⎭ →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

generali zed
T homSebastiani

λi μi νi
...

...
...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Question 5.7 Can one produce out of λi , μi , νi new birational invariants?

We discuss briefly a couple of examples.

Example 13 (Polytope of quasiadjunction (x2 + y3)(x3 + y2))

2u + 3v = 1
2
3
2
5
2

3u + 2v = 1
2
3
2
5
2

(x2 + y3)(x3 + y2)

The Alexander polynomial is:

(t21 t32 + 1)(t31 t22 + 1)

Example 14 (3-dim cubic)
−K X = 2H

f = Q′
3Q′

3 two cubics

λ1 =
5
3

λ2 =
5
3

δ =
5
3

→

local Alexander
polynomials

⇓
5
3Q′

3

Q′
3

Mirror
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W = W1 + W2

| |
Q′′

3 Q′′
3

5
3

5
3

no deformations

KX = Q′
3 + Q′′

3

jumping local systems

λi

H i(Lλ �= 0)

W = W1 + W2

FS(W1) FS(W2)
∪ ∪

Fλ1 Fν1

∪ ∪
...

...

6 Spectrum, Orbifoldization and Conformal Field Theory

In this section we propose a new point of view of noncommutative spectra. Details
will appear elsewhere see e.g. [27, 32].

Our approach is based on the parallel between:

• Birkar’s proof [1] of boundness of Fano’s.
• Zamolodchikov’s [7] c-theorem.

We combine these two directions with categorical resolution of singularities.
The final outcome is creating theory of noncommutative spectra similar to Arnold-
Varchenko-Steenbrink spectrum.

We will describe a procedure of computing noncommutative spectrum as equiv-
ariant part of Steenbrink spectrum of the corresponding affine cone.

Steenbrink Spectrum
Elliptic−−−−−−−→

Equivariant
Noncommutative Spectrum.

We consider the following examples.
1. Let X be a hypersurface (Fermat) of degree d in PN

xd
0 + · · · xd

N

by Steenbrink (y
1
d + · · · + y

d−1
d )N+1.

This is the fixed part of the Elliptic genus when applied to 5-dim. cubic.
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Recall that
x3
0 + · · · x3

6 = 0

has Steenbrink Spectrum
(y

1
3 + y

2
3 )7

We orbitalize using action of Z3

1

3
y− 7

2

⎛
⎝ ∑

0≤a≤3

(
y

1
3 − yω−a

y
1
3 − ω−a

)7

+
∑(

y
6
3

)7⎞⎠

So after that, we get
−21(y− 7

2 + y
1
2 ) + y− 7

6 + y
7
6

⇒
(

−7

6
,
7

6

)
- noncommutative spectrum

2. Similarly for 2-dim. cubic y− 2
3 + 2 + y

2
3 .

For K3 (x4
0 + · · · + x4

3 = 0), we have 2y−1 + 20 + 2y.

Proposition 6.1 For CY, the procedure gives − dim X
2 , . . . , dim X

2 .

Proposition 6.2 For general type, the procedure gives − dim X
2 , . . . , dim X

2 .

Proposition 6.3 The uppersemicontinuity for Steenbrink spectrum brings upper-
semicontinuity for noncommutative spectrum.

We consider the Berglund-Hübsch Mirror Symmetry.

X∨ = Cn+1/�
f−→ C

where X∨ is the mirror of X ⊂ PN . So we have:

Conjecture 6.4 Db
sing(X∨, f )eq = Fuk0(X).

Now we present a program which not only explains Conjecture 6.1 but suggests
a far going program of categorical resolutions. We begin by:

Conjecture 6.5 Let r : X → Xsing be a resolution of singularity. There exists a
category C0 which does not depend on r.

In the case of orbifold we can be more precise:

Conjecture 6.6 There exists a piece H0 ⊂ Hi (X) which does not depend on r .
Then H0

∼= I H(Xsing).
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We have:

HString(Xsing) = I H(Xsing) + TS1 + · · · TSw

Here I H are the intersection cohomologies of X . The noncommutative spectrum
is defined over I H(Xsing).We can combine above conjecturewith our orbifoldization
procedure. We observe that the twisted sectors we need to take are precisely the ones
on which the group acts with determinant equal to one. The above considerations
can be lifted to categorical level.

Conjecture 6.7 Consider a resolution S′ res←− S of terminal singularities. Assume
S − Ssing has a volume form. Then

(1) H0 is independent of r ;
(2) C0 is a CY-category, subcategory of Per f (X) is independent of r .

We would like to make a parallel between Birkar’s theory and category theory.

S − SsingSsing

Ht Ct

resolutions

H0 C0

In the above setting S − Ssing determinesH0 and Ssing the rest of semi-orthogonal
decomposition.

We have a correspondence between classical and categorical notions:

K X , B ←→ Ssing

B ′
complement ←→ S/Ssing

volumes ←→ Categorical Entropy h

Let Cd
E be a log Calabi-Yau category. (We fix the biggest number in the spectra and

d is the categorical dimension.)

Question 6.8 � is a functor of Cd
E . Are h(�) bounded?

Question 6.9 Is Aut(Cd
E) of Jordan type? (Here Aut(Cd

E) is the group of autoequiv-
alences).

Question 6.10 Is F(Cd
E) a bounding family? (Here F(Cd

E) is the family parametrizing
the categories with dimension d and bounded the biggest number of the spectra from
below. Proper definition will take effort.)
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Question 6.11 Consider the splitting

C =
λ(E,d)⋃

i≥0

Ci

H =
λ(E,d)⋃

i≥0

Hi

Show that λ(E, d) is finite.

Question 6.12 Are categorical dimensions of Cλi
E,d bounded?

The above considerations suggest the following parallels.

Fano Category CFT

Birkar’s Theory E, d Boundness σ, d Boundness of log CY theory Behavior of σ, d theory
Jordan Property of Birational Aut Jordan Property of Aut Db

uppersemicontinuity of Spectra Zamolodchikov Theorem

The Zamolodchikov’s c theorem suggests semicontinuity of the noncommutative
spectra—see [6, 8]. This correspondence will be discussed elsewhere.

Our findings in the previous sections suggest that in the case of X , an algebraic
surface, we have the following correspondence.

The above findings suggest that new (A, B) structures can be used to define new
invariants, A side invariants for the B side.

We have the following parallel:

Resolution of singularity Surgery
Creation of Spectra Creation of Spectra

Conjecture 6.13 Log transform (rational blow down) creates nontrivial δ > 0.

This suggests the following questions.

Question 6.14 Can we have symplectic 4-fold with the same basic classes but dif-
ferent spectra?

We have a connectionwith k-spectra of CFT. This observations lead to: symplectic
Poincare conjectures.
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– Find a 4-dim symplectic manifold s.t. X
homeo∼= P2 and δ(X) > 0.

– Find a 4-dim symplectic manifold s.t. X
homeo∼= P1 × P1 and δ(X) > 0.

– Find a 2n-dim symplectic manifold s.t. X ∼= Pn and δ(X) > 0.

The parallel between RG flow and Kaehler Ricci flow suggests that the other
R-charges can also lead to birational invariants.

Renormalisation group flow and defects lines in the LGmodel could lead to higher
invariants. We investigate these phenomena further in [33].
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