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Abstract. In this paper we estimate the p-rank of the points-by-lines
incidence matrix of a projective Hjelmslev plane over a chain ring with
4 or 9 elements. The proof uses a characterization of all divisible arcs
in the corresponding projective planes. Furthermore, we prove lower and
upper bounds on the p-rank of the incidence matrix of the projective
Hjelmslev plane over an arbitrary finite chain ring of nilpotency index 2.
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1 Preliminaries

In this paper we shall use the basic definitions and notations from [1,2,4,5].
A set of points X in PG(2, q) or PHG(2, R), R/RadR ∼= Fq, is said to be

linearly independent if there exists an arc K with support Supp K ⊆ X such
that every line has multiplicity 0 mod p, i.e. for every line L it holds K(L) ≡ 0
(mod p). If X is a linearly independent set of points in a finite plane (PG(2, q)
or PHG(2, R)), and A is the incidence matrix of that plane then we have the
following inequality

rkA ≥ |X|. (1)

It is known that the rank of the points-by-lines incidence matrix of PG(2, q),
q = ph, is (

p(p + 1)
2

)h

+ 1.
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The incidence matrix of AG(2, q) has rank
(
p(p + 1)

2

)h

.

In the case q = p, the rank of PG(2, p) (resp. AG(2, p)) is
(
p+1
2

)
+ 1, resp.

(
p+1
2

)
.

It is known that the neighbor classes of points in PHG(2, R), are affine planes
of order q [2]. This implies the following lemma.

Lemma 1. Let R be a finite chain ring with, |R| = q2 and R/RadR ∼= Fq. If
X is a linearly independent set of points in PHG(2, R) then for every neighbor
class of points [P ], it holds

|X ∩ [P ]| ≤
(
p(p + 1)

2

)h

.

Corollary 2. (i) If |R| = 4 then |X ∩ [P ]| ≤ 3.
(ii) If |R| = 9 then |X ∩ [P ]| ≤ 6.

Theorem 3. Let A be the incidence matrix points-by-lines of the projective
plane PHG(2, R), where R/RadR ∼= Fq. Then

rk (A) ≤
(
p(p + 1)

2

)h

(q2 + q + 1).

Proof. The theorem follows immediately by Lemma 1.

An arc in which every line has multiplicity c mod p is called a (c mod p)-
arc.

Lemma 4. Let Y be linearly independent set of points in PHG(2, R), and let K
be a (0 mod p)-arc with Supp K ⊆ Y . Then there exist a constant c such that
for every neighbor class of points [P ], it holds

K[P ] ≡ c (mod p).

Proof. Let [L] be a neighbor class of points, and let [Pi], i = 0, . . . , q, be the
neighbor classes of points incident with this class of lines. Let L1 ∈ [L] and
denote by L1, . . . , Lq all lines that contain the line segment L1 ∩ P0.

Set
xij = K([Pi] ∩ Lj), i = 0, . . . , q, i = 1, . . . , q.

Counting the multilicities of the points through the segment [P0] ∩L1, one gets

x01 + x11 + x21 + · · · + xq1 ≡ 0 (mod p)
x01 + x12 + x22 + · · · + xq2 ≡ 0 (mod p)

...
x01 + x1q + x2q + · · · + xqq ≡ 0 (mod p)
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This implies
K[P1] + K[P2] + · · · + K[Pq] ≡ 0 (mod p).

Thus we have that
K[L] − K[Pj ] ≡ 0 (mod p), (2)

for every j = 0, 1, . . . , q. This in turn implies

K[P0] ≡ K[P1] ≡ · · · ≡ K[Pq] (mod p).

Theorem 5. Let R be a finite chain ring with |R| = q2, R/RadR ∼= Fq, q = ph,
where p ≥ 3. Denote by A the points-by-lines incidence matrix of PHG(2, R).
Then

rkp A ≥
(
p + 1

2

)h

(q + 1) + 2q2 − 1.

Proof. Define the pointset X as follows: select a line class [L], i.e. a line in the
factor geometry, and sets of

(
p+1
2

)h points in each point class on [L]. These points
in each of the classes on [L] should form an independent set (i.e. an independent
set in AG(2, q)). Further select a point in the point class [P0] /∈ [L] and two
points in each of the remaining point classes not on [L] or different from [P0].
There are no restrictions on the point in [P0] and the remaining 2(q2 − 1) points
are selected in the following way.

Let [L′] be any line class through [P0]. Denote by [Pi], i = 0, . . . , q − 1, the
point classes on [L′]. Consider a line segment in [L] ∩ [L′] that has the direction
of L′ and denote by L′

i, i = 1, . . . , q, the lines through this segment. Now the
two points of X in each of the point classes [Pi], i = 1, . . . , q − 1, are selected
so that [Pi] contains points incident with L′

i and L′
i+1. These two points from

X ∩ [[Pi] are denoted by P ′
i and P ′′

i . The same selection is made for the points
in all line classes through [P0] (see Fig. 1).

Fig. 1. A neighborclass of lines in PG(2, 2)

Hence by construction we have that

|X| =
(
p + 1

2

)h

(q + 1) + 2q2 − 1.

We are going to prove that X is an independent set. It is enough to demonstrate
that every (0 mod p)-arc with support contained on X is the trivial zero-arc.
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Let K be a (0 mod p)-arc in PHG(2, R) with Supp K ⊆ X. By Lemma 4
every point class has the same multiplicity modulo p. Since p + 12 ≡ 0 (mod p)
we get that every point class has multiplicity 0 (mod p). This implies in partic-
ular that K([P0]) = 0.

Furthermore, since K(L′
i) ≡ 0, i = 1, . . . , q, we get that

K(P ′
i ) ≡ a (mod p),K(P ′′

i ) ≡ b (mod p),

for some constants a, b ∈ {0, . . . , p − 1}. Moreover we have

a ≡ a + b ≡ b (mod p).

This implies that a ≡ b ≡ 0 (mod p), i.e. a = b = 0. We have obtained so far
that for all points P in X \ [L] we have K(P ) = 0.

Let [L] contain the points [Q0], [Q1], . . . , [Qq]. Consider one of them, [Q0]
say. Clearly K([Q0]) ≡ 0 (mod p). All line segments in [Q0], except for those
contained in one parallel class (the one with the direction of L), have multiplicity
0 (mod P ). Now an easy counting gives that also the segment in this parallel
class have multiplicity 0 (mod P ). Hence K|[Q0] is a (0 mod p)-arc. By the fact
that X ∩ [Q0] is an independent set, K(P ) = 0 for all points P ∈ [Q0]. Similarly,
K(P ) = 0 for all points P ∈ [Qi] for all i = 1, . . . , q. Thus K is the trivial zero
arc on X. This implies that X is an independent set and

rkp A ≥ |X| =
(
p + 1

2

)h

(q + 1) + 2q2 − 1.

This theorem can be improved slightly by taking suitably a line class with a
maximal number of independent points, a line in the affine part containing one
point in each neighbour class, and sets of three points (suitably chosen) in each
of the remaining point classes.

Theorem 6. Let R be a finite chain ring with |R| = q2, R/RadR ∼= Fq, q = ph,
where p ≥ 3. Denote by A the points-by-lines incidence matrix of PHG(2, R).
Then

rkp A ≥
(
p + 1

2

)h

(q + 1) + 3q2 − 2q.

2 The Case |R| = 4

In this case the point multiplicities are contained in {0, 1, . . . , p− 1} = {0, 1}. If
X is a set that supports a (0 mod p)-arc by Lemma 4, all point classes contain
even or odd number of points. Therefore we have for all points P either |X∩[P ]| ∈
{0, 2, 4}, or else |X ∩ [P ]| ∈ {1, 3}.

We can also make the following observation. If X is a (0 mod 2)-arc and if
we replace the intersection of this arc with some point class by its complement
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in the point class, the result is again a (0 mod 2)-arc. In other words, if X is a
(0 mod 2)-arc then

(X \ (X ∩ [P ])) ∪ ([P ] \ (X ∩ [P ]))

is again a (0 mod 2)-arc.
Let AR, where R = Z4 or F2[u]/(u2), be the rank of the points-by-lines

incidence matrix of the plane PHG(2, R). In both cases, we have (by Theorem 5)

rkAr ≥ 12.

Denote by V the vector space of all (0 mod 2)-arcs in PHG(2, R), |R| = 4.
This vector space can be viewed as a subspace of F28

2 . More generally, the vector
space of all (0 mod p)-arcs in PHG(2, R), |R| = q2, q = ph, can be viewed as a
subspace of Fq2(q2+q+1)

p by identifying each arc with its characteristic vector x.
If x is the characteristic vector of a (0 mod 2)-arc then xAR = 0 and x is a

solution to a homogeneous system of linear equations with a coefficient matrix
AR. Hence

rkp AR + dimV = 28.

In the general case, we have

rkp AR + dimV = q2(q2 + q + 1).

Note that all (0 mod 2)-arcs that have an even number of points in each
point class form a subspace V0 of V . Now we are going to construct all (0
mod 2) arcs from V0.

(1) Every neighbor class contains 0 or 4 points. The number of such arcs is 27.
(2) Every neighbor class with 2 points, where the two points in every class

determine all possible directions (i.e. they determine a all lines in the factor
geometry PG(2, q)). Two points P,Q are said to determine the line class [L]
if 〈P,Q〉 ∈ [L]. If B is the incidence matrix of PG(2, 2) then the number
of such arcs is per(B) · 27, i.e. this number is 24 · 27. Here per(B) is the
permanent of the of B.

(3) Four classes have 0 or four points and three classes with two points. The
classes with two point should form a triangle. The two points in each of
these classes should determine directions that point at the nucleus. Since
the number of triangles is 7 · 6 · 4

3! = 28, the total number of such arcs is
28 · 27 (see Fig. 2).

(4) Three classes have 0 or four points and the remaining four classes have two
points. The classes with 2-points form a hyperoval and the 0/4-classes are
collinear. The pairs of points in each of the 2-point classes determine a line
which points at the same point class on the line of 0/4-points (see Fig. 3).
Altogether we have 7 choices for the 0/4 line and 3 possibilities for the point
on it. So, altogether we have 21 · 27 such arcs.
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Fig. 2. An arc of type (3) in PG(2, 2)

Fig. 3. An arc of type (4) in PG(2, 2)

(5) Two classes have 0 or 4 points, and the remaining five classes have 2 points.
The two points in the class which is the third point on the line [L] defined
by the 0/4-point classes define a line in the class [L]. In the remaining four
2-point classes the directions are as introduced on Fig. 4. The point classes
[Q1] and [Q2] can be selected in

(7
2
)

= 21 ways. Furthermore, the two point
classes with two points that define a line pointing at [Qi], i = 1, 2, can be
selected in four ways. Hence the number of such arcs is equal to 84 · 27.

(6) One class with 0/4 points (see Fig. 5).
Total number of arcs: 98 · 27

Summing up, the total number of (0 mod 2) arcs with an even number of
points in each point class is:

27 + 24 · 27 + 28 · 27 + 21 · 27 + 84 · 27 + 98 · 27 = 256 · 27 = 215.
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Fig. 4. An arc of type (5) in PG(2, 2)

Fig. 5. An arc of type (6) in PG(2, 2)

Hence dimV0 = 15.
Now it remains to count the number of all (0 mod 2)-arcs with an odd

number of points in each neighbor class of points.
In the case when R = F2[u]/(u2) there exist no hyperovals and hence no (0

mod 2)-arcs with an odd number of points in each class. Hence dimV = 15.
In the case R = Z4 there exist (0 mod 2)-arcs that have an odd number

of points in each point class [3]. If we select arbitrarily four points in general
position in the point classes [U ], [U0], [U1], [U2], where

U = (1, 1, 1), U0 = (1, 0, 0), U1 = (0, 1, 0), U2 = (0, 0, 1),

then they can be extended uniquely to a hyperoval. Therefore the number of
the (0 mod 2)-arcs with an odd number of points in each neighbor class is
44 · 27 = 215. Thus in the case R = Z4, we get that dimV = 16.
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Thus we have proved the following theorem.

Theorem 7.
rk2 (AR) =

{
12 if R = Z4,
13 if R = F2[u]/(u2).

3 The Case |R| = 9

Since rk3 AAG(2,3) = 6, we have the upper bound

rk3 APHG(2,R) ≤ 6 · 13 = 78.

On the other hand, by Theorem 6 we get also a lower bound, which gives alto-
gether

45 ≤ rk3 APHG(2,R) ≤ 76.

Lemma 8. Let R be a chain ring with |R| = 9. Consider two lines [L1] and [L2]
in the factor geometry of PHG(2, R). Let X be an arbitrary point set containing
six points in each of the point classes in [L1] and [L2] but not in the point class
[L1] ∩ [L2]. Then X is a linearly dependent set.

Proof. Denote the nonempty point classes on [L1] by [P1], [P2], and [P3], and the
nonempty point classes on [L2] by [Q1], [Q2], and [Q3]. Without loss of generality
[Pi]∩X and [Qj ]∩X are independent sets and hence a triangle. Otherwise there
is nothing to prove.

Consider any of these six point classes. We can prescribe multiplicities to the
points in these sets in such way that all lines in the same direction have the same
multiplicity, and the multiplicities in the four directions are either (1, 1, 1, 0), or
(2, 2, 2, 0). This can be done in two ways. The two possibilities are presented on
Fig. 6.

Fig. 6. A neighbor class of points in PG(2, 3)

The same multiplicities are obtained from two line segments with points of
multiplicity 1 or 2 (see Fig. 7).
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Fig. 7. A neighbor class of points in PG(2, 3) with six non-zero points

Each of the classes [Pi], [Qj ] contains a triangle whose sides (the line segments
with three points) determine three directions. We are going to prove that no
matter how the directions of the sides of the triangle are selected we can prescribe
multiplicities to the points from X in such way that the obtained arc is a (0
mod 3)-arc.

Assume that some class [Pi] (or, [Qi]) has a triple of collinear points that
determine the line 〈[Pi], [R]〉 (or 〈[Qj ], [R]〉). Then we prescribe to these three
points multiplicity 1 if they are in some [Pi], and multiplicity 2 if they are in
some [Qj ].

If in some [Pi] (resp., [Qj ]) the sides of the triangle determine all directions
different from 〈[Pi], [R]〉 (resp., 〈[Qj ], [R]〉) then we select the multiplicities in
such way that the lines in the direction of the point [R] have multiplicities 0
mod 3 and in all other directions multiplicity 1 mod 3 (resp., 2 mod 3). Now
it is easily checked that all lines have multiplicity 0 mod 3 (Fig. 8).

Fig. 8. Two neighbor classes of lines in PG(2, 3) with three non-zero points

Corollary 9. Let X be a linearly independent set of points. Then at most seven
of the point classes can have six points. Consequently for every independent set
X, it holds |X| ≤ 72.

Proof. If there are eight neighbor classes with six points, we necessarily have
two line classes satisfying the conditions of Lemma 8 and hence the set X is
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dependent. Therefore the number of neighbor classes with 6 points is at most
seven and hence

|X| ≤ 7 · 6 + 6 · 5 = 72.

Now by Theorem 6 and Corollary 9

45 ≤ rk3 APHG(2,R) ≤ 72.
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