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Abstract. The present study is devoted to the stabilization of a biore-
actor model, describing an anaerobic fermentation process for biological
degradation of organic wastes with methane production. The stabiliza-
tion is realized by means of a feedback control law related to the model
output and involving a discrete time delay. We determine a nontrivial
equilibrium point of the closed-loop system and investigate its asymptotic
stability as well as the appearance of bifurcations with respect to the de-
lay parameter. We establish the existence of an attracting and invariant
region around the equilibrium such that all trajectories enter this region
in finite time for some values of the delay and remain there. An iterative
numerical extremum seeking algorithm is applied to the closed-loop sys-
tem aimed to maximize the methane flow rate in real time. Simulation
results are presented to illustrate the theoretical studies.

1 Introduction

Delayed mathematical models of bioprocesses have been extensively studied in
recent years in order to explain the appearance of different phenomena in the
real process, cf. [8], [9] and the references therein. In the same time, feedback
control of bioreactor models provides many advantages in operating a plant and
is used to increase its efficiency. In the present paper we combine the above
mentioned approaches in studying a bioprocess mathematical model, namely we
use a feedback control related to the (on-line measurable) process output for the
dynamics stabilization, and introduce a discrete time delay. The time delay is
involved in the feedback, because there is always a delay between the output
measurements and the system’s response (cf. [4]).

We consider one of the bench-mark mathematical models of the continuous
methane fermentation, the so-called “single biomass/single substrate” model. It
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is described by two nonlinear ordinary differential equations

ds

dt
= −k1µ(s)x+ u(sin − s)

dx

dt
= (µ(s)− αu)x

(1)

and one algebraic equation for the gaseous output

Q(s, x) = k2µ(s)x. (2)

The state variables x = x(t) and s = s(t) represent biomass concentration
[mg/dm3] and substrate concentration [mg/dm3] respectively, sin is influent sub-
strate concentration [mg/dm3], u is dilution rate [day−1], k1 is yield coefficient,
k2 is coefficient [(dm3)2/mg], and Q is methane gas flow rate [dm3/day]. The
parameter α ∈ (0, 1) accounts for the biomass retention. The model function
µ(s) presents the specific growth rate of the biomass.

The paper is organized as follows. The next Section 2 contains the assump-
tions imposed on the model. Section 3 is devoted to stability and bifurcation
analysis of the equilibrium points with respect to the delay parameter. In Sec-
tion 4 we proof the existence of an attracting and invariant set in the phase plane,
such that all trajectories enter it in finite time and remain there for sufficiently
small values of the delay. The last Section 5 demonstrates the applicability of
the model-based extremum seeking algorithm using a numerical example.

2 Assumptions on the model

The theoretical studies of the model (1) are carried out under several assump-
tions presented below.
Assumption 1. The function µ is defined for s ∈ [0,+∞), µ(0) = 0, µ(s) > 0
for s > 0, and µ(s) is continuously differentiable for all s ≥ 0.
Assumption 2. Lower bounds s−in and k−2 for the values of sin and k2 respec-
tively, and an upper bound k+1 for the value of k1 are known.

Denote β− =
k+1

k−2 s
−
in

and consider the feedback control law

κ(s(t), x(t)) = β k2 µ(s(t)) x(t) with β ∈
(
β−, +∞

)
. (3)

Obviously, κ(·) = βQ(·) holds true. Replacing in the model (1) the dilution rate
u by the feedback κ(s(t− τ), x(t− τ)), where τ > 0 is a discrete delay, we obtain

ds

dt
= −k1µ(s(t))x(t) + κ(s(t− τ), x(t− τ)) (sin − s(t)) (4)

dx

dt
= µ(s(t))x(t)− ακ(s(t− τ), x(t− τ)) x(t). (5)

Choose some β ∈ (β−, +∞) and define

s̄ = sin −
k1
k2β

, x̄ =
1

αβk2
, p̄β = (s̄, x̄). (6)



Model-based stabilization using output feedback with discrete time delay 3

It is straightforward to see that p̄β is an equilibrium point for (4)–(5), and s̄
belongs to the interval (0, sin).

Assumption 3. There exist points s− and s+ such that s− < s̄ < s+ < sin and
(i) the function µ is strictly increasing on the interval (s−, s+];
(ii) µ(s) < µ(s−) < µ(sin) for each s ∈ [0, s−);
(iii) there exists ε > 0 such that µ(s+) < µ(s) for each s ∈ (s+, s+ + ε).

Denote
u− = µ(s−)/α, u+ = µ(s+)/α. (7)

Assumption 3 implies that u− < u+.

Assumption 4. Each point from the interval [u−, u+] is an admissible value for
the control function u.

Denote further ū = κ(s̄, x̄) = µ(s̄)/α; obviously ū ∈ (u−, u+) holds true.

3 Stability and bifurcations of the equilibrium point

We shall investigate the local asymptotic stability of the equilibrium point p̄β
from (6) with respect to the parameters of the system (4)–(5).

The characteristic equation of system (4)–(5) evaluated at the equilibrium
point p̄β has the form (cf. [5], [7])

λ2 + aλ+ b+ (cλ+ d)e−λτ = 0, (8)

where λ is a complex number, and

a = a(β) = k1x̄µ
′(s̄) + 1

αµ(s̄), b = b(β) = k1x̄µ(s̄)µ′(s̄),

c = c(β) = µ(s̄)− k1x̄µ′(s̄), d = d(β) = µ(s̄)
(
1
αµ(s̄)− k1x̄µ′(s̄)

)
.

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied. (i) If b ≥ d then the
equilibrium point p̄β is locally asymptotically stable for any value of the delay
τ ≥ 0. (ii) If b < d then there exists τ0 > 0 such that the equilibrium point p̄β is
locally asymptotically stable for all values τ such that 0 < τ < τ0; the equilibrium
is locally unstable if τ ≥ τ0, and a Hopf bifurcation occurs for τ = τ0.

Proof. First we shall show that if τ = 0 then the characteristic equation does
not possess roots λ with nonnegative real part. For τ = 0 equation (8) takes the
form

λ2 + (a+ c)λ+ b+ d = 0. (9)

Assumption 3(i) implies a > 0 and b > 0. Since a + c =
(
1 + 1

α

)
µ(s̄) > 0 and

b+ d = 1
αµ

2(s̄) > 0 it follows that the roots of the quadratic equation (9) have
negative real parts.

Let τ > 0. We are looking for purely imaginary roots λ = ±iω of (8) with
ω > 0. We obtain consecutively:

−ω2 + aiω + b+ (ciω + d)e−iωτ = 0,

−ω2 + aiω + b+ (ciω + d)(cos(ωτ)− i sin(ωτ)) = 0.
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Separating the real and the imaginary parts of the last equation leads to

−ω2 + b = −c ω sin(ωτ)− d cos(ωτ)
a ω = −c ω cos(ωτ) + d sin(ωτ).

(10)

Squaring both sides of the equations (10) and adding them together implies

ω4 − (c2 − a2 + 2b)ω2 + b2 − d2 = 0.

With v := ω2 we obtain the quadratic equation

v2 − (c2 − a2 + 2b)v + b2 − d2 = 0. (11)

It is straightforward to see that the discriminant ∆ = (c2−a2)(c2−a2+4b)+4d2

of (11) is strongly positive, i. e. the quadratic equation (11) possesses two real
roots v1 and v2, say v1 < v2, satisfying the relations v1 + v2 = c2 − a2 + 2b < 0,
v1v2 = b2 − d2 = (b− d)(b+ d).
Case 1: 0 < b = d. In this case v1 = c2 − a2 + 2b < 0 and v2 = 0, thus
the characteristic equation (8) does not possess purely imaginary roots for any
τ > 0. However, λ = 0 is not a root of (8) since b + d = 2b > 0 holds. Hence,
there is no stability switch of the equilibrium point p̄β for any τ > 0.
Case 2: b > d. Now the two real roots v1 and v2 are strongly negative, so the
characteristic equation (8) does not have purely imaginary roots for any τ > 0.
The equilibrium point p̄β is locally asymptotically stable for any τ > 0.
Case 3: 0 < b < d. Equation (11) has one negative and one positive root; the

positive root is v2 = 1
2

(
c2 − a2 + 2b+

√
∆
)

, i. e. the characteristic equation

(8) possesses a purely imaginary root when τ takes certain values. Denoting
ω+ =

√
v2, these values of τ can be determined from system (10):

sin(ω+τ) =
ω+(cω+ + ad− bc)

c2ω2
+ + d2

, cos(ω+τ) =
(d− ac)ω2

+ − bd
c2ω2

+ + d2
. (12)

If c < 0 then ad− bc > 0; if c > 0 then ad− bc > d(a− c) > 0 holds. Therefore,
we have sin(ω+τ) > 0. Denote θ = ω+τ , 0 < θ < π. If cos(θ) > 0, then we take
0 < θ < π/2, otherwise we take π/2 < θ < π. Hence,

θ = arccot
(d− ac)ω2

+ − bd
ω+(cω2

+ + ad− bc)
.

Denote τ0 =
θ

ω+
> 0. We shall see whether a Hopf bifurcation occurs at τ = τ0.

To check the transversality condition for a Hopf bifurcation (cf. [5], [7]), we need
to determine the sign of the derivative of Reλ(τ) at the point where λ(τ) is
purely imaginary. Differentiating implicitly (8) with respect to τ we obtain

dλ

dτ
=

(cλ+ d)λe−λτ

2λ+ a+ (c− (cλ+ d)τ)e−λτ
.
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For convenience, we shall study the sign of

(
dλ

dτ

)−1
. We have

(
dλ

dτ

)−1
=

2λ+ a+ (c− (cλ+ d)τ)e−λτ

(cλ+ d)λe−λτ
=

(2λ+ a)eλτ + c

λ(cλ+ d)
− τ

λ

= − 2λ+ a

λ(λ2 + aλ+ b)
+

c

λ(cλ+ d)
− τ

λ
,

and further

sign

(
d (Re λ)

dτ

)
λ=iω+

= sign

{
Re

(
dλ

dτ

)−1}
λ=iω+

= sign

{
Re

(
− 2λ+ a

λ(λ2 + aλ+ b)

)
+ Re

(
c

λ(cλ+ d)

)}
λ=iω+

= sign

{
Re

(
−

(2iω+ + a)(−aω2
+ − iω+(b− ω2

+))

ω2
+(a2ω2

+ + (b− ω2
+)2)

)
+ Re

(
cω+(−cω+ − id)

ω2
+(c2ω2

+ + d2)

)}
= sign

{
a2 − 2(b− ω2

+)

a2ω2
+ + (b− ω2

+)2
− c2

c2ω2
+ + d2

}
= sign

{
2ω2

+ − (c2 − a2 + 2b)
}

= +1.

The last result means that all roots that cross the imaginary axis at iω+, cross
this axis from left to right as τ increases. The proof is completed.

4 Asymptotic stabilization of the model solutions

In practice, the dilution rate u is proportional to the speed of the input me-
chanism which feeds the bioreactor with substrate. Thus u is always lower- and
upper-bounded [3]. Let u− and u+ be determined according to (7).

Define the set
Ω = {ζ = (s, x) : s > 0, x > 0}.

Let τ > 0 and ζ0 = (s0, x0) ∈ Ω be an arbitrary point such that s(t) = s0 > 0,
x(t) = x0 > 0 for each t ∈ [−τ, 0]. Consider the following closed-loop system Σ

ṡ(t) = −k1µ(s(t))x(t) + χ(t)(sin − s(t)) (13)

ẋ(t) = (µ(s(t))− αχ(t))x(t), (14)

where χ(t) is defined in the following way:

χ(t) =


u−, if κ(s(t− τ), x(t− τ)) ≤ u−,
κ(s(t− τ), x(t− τ)), if u− ≤ κ(s(t− τ), x(t− τ)) ≤ u+,
u+, if κ(s(t− τ), x(t− τ)) ≥ u+.

(15)

Obviously, p̄β = (s̄, x̄) is an equilibrium point of Σ, i. e. of (13)–(14). Denote by
ϕ(·, ζ0) = (s(·), x(·)) the solution of Σ starting from ζ0. Important properties of
ϕ(·, ζ0) are given in the next Lemma 1. Similar assertions can be found e. g. in
[3], [8], [9] for various bioreactor models.
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Lemma 1. For each point ζ0 = (s0, x0) ∈ Ω the solution ϕ(t, ζ0) = (s(t), x(t))
of Σ is defined for each t > 0, and

(i) for each ε1 > 0 there exists T1 > 0 such that for each t > T1 the inequa-
lities sin − ε1 < s(t) + k1x(t) < sin/α+ ε1 hold true.

(ii) there exist ε2 > 0 and T2 > 0 such that for each t > T2 the estimates
s(t) < sin and x(t) ≥ ε2/k1 =: xmin > 0 hold true.

For the proof of the next theorem we need the following lemma.

Barbălat’s Lemma (cf. [2]). If f : (0,∞) → R is Riemann integrable and
uniformly continuous, then lim

t→∞
f(t) = 0.

Theorem 2. Let Assumptions 1, 2, 3 and 4 be fulfilled. Then there exists τ̄ > 0
such that for each τ ∈ (0, τ̄) and for each point ζ0 = (s0, x0) ∈ Ω the solution
ϕ(t, ζ0) of Σ has the following property: there exists T > 0 such that for each
t > T ,

ϕ(t, ζ0) ∈ Ωs−,s+ := {(s, x) : s ∈ [s−, s+], x > 0}.

Proof. Let us fix an arbitrary τ > 0 and assume that s(t) ≤ s− for each t ≥ 0.
Then Assumption 3(ii) and (7) imply that µ(s(t)) ≤ µ(s−) = αu−. The definition
of χ(·) implies χ(t) ≥ u− for each t ≥ 0. Then µ(s(t))−αχ(t) ≤ µ(s(t))−αu− ≤ 0
for each t ≥ 0, and hence ẋ(t) = (µ(s(t)) − αχ(t))x(t) ≤ 0. Thus the function
x(·) is non increasing and there exists x̃ = limt→∞ x(t). According to Barbălat’s
Lemma, we obtain that ẋ(t)→ 0 as t→ +∞. Since x(t) ≥ xmin > 0 (see Lemma
1(ii)), equation (14) implies that (µ(s(t))−αu−)+α(u−−χ(t))→ 0 as t→ +∞.
The last relation leads to

µ(s(t))→ αu− and χ(t)→ u− as t→ +∞.

Applying again Assumption 3(ii) we obtain that s(t)→ s− as t→ +∞. It follows
from Barbălat’s Lemma that ṡ(t) = χ(t)(sin−s(t))−k1µ(s−)x(t)→ 0 as t→∞,
and hence

u−(sin − s−)− k1µ(s−)x̃ = 0, i. e. u−(sin − s−)− αk1u−x̃ = 0.

Therefore, sin = s−+αk1x̃. We also have χ(t)→ u− as t→ +∞. This is possible
iff for each ε > 0 there exists Tε > 0 such that κ(s(t− τ), x(t− τ)) < u− + ε for
each t > Tε for which κ(s(t − τ), x(t − τ)) > u− (if κ(s(t − τ), x(t − τ)) ≤ u−,
then χ(t) = u−). Then for each t > Tε we have

u− + ε > κ(s(t− τ), x(t− τ)) = βk2µ(s(t− τ))x(t− τ) =
µ(s(t− τ))x(t− τ)

αx̄
.

Taking a limit in the latter inequality we obtain
µ(s−)x̃

αx̄
≤ u−, i. e.

αu−x̃

αx̄
≤ u−

or x̃ ≤ x̄. But this is impossible because x̃ =
sin − s−

αk1
>
sin − s̄
αk1

= x̄.

Assuming that s(t) ≥ s+ for each t ≥ 0, we obtain a contradiction in a similar
way.
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If τ > 0 is sufficiently small, one can easily apply the Lyapunov functions
approach to prove that (s(t), x(t)) tends to (s̄, x̄) as t→∞. This completes the
proof of Theorem 2.

Remark 1. It follows from Theorem 2 that the feedback (15) ensures attractivity
and invariance of the region Ωs−,s+ for some values of the time delay τ ≥ 0. If
s− and s+ are sufficiently close to each other and p̄β = (s̄, x̄) is locally asymp-
totically stable, then the trajectories remain close to p̄β because s̄ ∈ (s−, s+)
holds true. The existence of Ωs−,s+ is important for the practical applications
(cf. [3]) and we shall exploit it in the next section.

5 Numerical extremum seeking

Consider the Haldane model function for the specific growth rate (cf. [6])

µ(s) =
m1s

ks + s+ s2/ki
,

where m1 is the maximum specific growth rate of the microorganisms [1/day],
ks and ki are the saturation and inhibition constants respectively. We use the
following values for the model coefficients (cf. [6]):

k1 = 3, sin = 2, m1 = 0.35, ks = 0.7, ki = 0.6, α = 0.5, k2 = 5.6.

With k+1 = 3.1, s−in = 1.95 and k−2 = 5.59 we obtain β− ≈ 0.2844.
The function µ(s) achieves its maximum at the point sµmax

=
√
kski ≈ 0.6481

and µ(s) is strongly increasing for s ∈ (0, sµmax
). Solving the equation s̄ = sµmax

with respect to β implies β = βµmax
≈ 0.3963. Since s̄ is an increasing function of

β, it suffice to consider β ∈ (β−, βµmax
) in order to have Assumption 3 satisfied.

Consider equation (2) describing the process output, and evaluate the func-
tion Q on the set of all equilibrium points p̄β , parameterized with respect to β.
The so obtained function Q(β) is called input-output static characteristic of the
model. It is straightforward to see that Q(β) is strongly unimodal, i. e. there
exists a unique point βmax ≈ 0.3411 < βµmax

, where Q(β) takes a maximum,
Qmax = Q(βmax), the function strongly increases in the interval (β−, βmax) and
strongly decreases in (βmax, βµmax). Denote by pβmax = (smax, xmax) the steady
state where Qmax is achieved. We have smax ≈ 0.4294, xmax ≈ 1.047, and
Qmax = Q(pβmax

) ≈ 0.6134. Our goal is to stabilize in real time the system
(13)–(14) towards this (unknown) equilibrium point pβmax

and therefore to the
maximum methane flow rate. This is realized by applying a numerical model-
based extremum seeking algorithm (ESA). The ESA is described in details in
[1] for the same model (1) with another feedback and without delay. Now ESA
is adopted to Σ and implemented in the programme language Python.

In the simulation process we consider β ∈ (0.29, 0.39) and take s− = 0.1527,
u− = 0.1199, s+ = 0.6264 < sµmax

, u+ = 0.2214; obviously smax ∈ (s−, s+). We
choose β = 0.37. According to Theorem 1(ii) a stability switch of p̄β may occur
at τ0 = 121 [days], and p̄β is locally asymptotically stable if τ < τ0. The delay



8 M. K. Borisov, N. S. Dimitrova, M. I. Krastanov

Fig. 1. A trajectory in the (s, x) phase plane for τ = 4 (left); time evolution of s(t),
x(t), Q(t) towards smax, xmax, Qmax respectively for τ = 7 (right)

τ0 = 121 [days] is however rather large and not feasible in actual practice. The
numerical results from ESA are visualized in Figure 1 for τ = 4 and τ = 7.
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