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Abstract. Measurement data sets collected when observing epidemio-
logical outbreaks of various diseases often have specific shapes, thereby
the data may contain uncertainties. A number of epidemiological math-
ematical models formulated in terms of ODE’s (or reaction networks)
offer solutions that have the potential to simulate and fit well the ob-
served measurement data sets. These solutions are usually smooth func-
tions of time depending on one or more rate parameters. In this work
we are especially interested in solutions whose graphs are either of “de-
cay" shape or of a specific wave-like shape briefly denoted as “outbreak"
shape. Furthermore we are concerned with the numerical simulation of
measurement data sets involving uncertainties, possibly coming from one
of the simplest epidemiological models, namely the two-step exponential
decay process (Bateman chain). To this end we define a basic exponential
outbreak function and study its properties as far as they are needed for
the numerical simulations. Stepping on the properties of the basic expo-
nential decay-outbreak functions, we propose numerical algorithms for
the estimation of the rate parameters whenever the measurement data
sets are available in numeric or interval-valued form.

Keywords: Least square approximation · Numerical simulation · Decay
and outbreak data.

1 Introduction: the Exponential Decay Chain

Consider briefly the exponential (radioactive) decay chain (Bateman chain) [2]
in the special cases of one and two reaction steps. These two reaction networks
find numerous applications not only in nuclear physics and nuclear medicine,
but in biology, in particular in population dynamics, fishery research, pharma-
codynamics and mathematical epidemiology [5, 7, 12, 15, 16].
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The exponential decay function. The one-step exponential (radioactive)
decay (1SED) model is a first order reaction step transforming a species S into
another species P. The model is presented by the reaction network S k1−→ P, where
k1 is a positive rate parameter. Assuming mass action kinetics, this reaction
network translates into a system of two ordinary differential equations (ODE’s)
for the density functions s = s(t) and p = p(t), corresponding to species S and
P, resp. in t ∈ [0,∞]:

s′ = −k1s,
p′ = k1s.

(1)

Under initial values s(0) = s0 > 0; p(0) = p0 ≥ 0 the solutions to (1) can be
presented in the time interval T = [0,∞) as [5]:

s(t) = s0e
−k1t;

p(t) = c− s0e−k1t, c = s0 + p0.
(2)

Let us focus on solution s = s(t). Assume s0 = 1, then solution s from (2) is
a function of variables k and t of the form:

η(k; t) = e−kt. (3)

In reality the rate parameter k in (3) takes specific distinct values in each
particular biochemical process, however from mathematical perspective we cam
consider parameter k as a continuous function variable. So, function η(k; t) is
continuous, differentiable and monotonically decreasing with respect to both
variables k and t. Function (3) will be further referred as basic exponential decay
function, briefly basic decay function. For the derivatives of (3) with respect to t
we have (e−kt)′ = −ke−kt and (e−kt)′′ = k2e−kt > 0. The latter inequality says
that function s, resp. the basic decay function e−kt, is convex in R+.

Another characteristics of the basic decay function is:

th = ln 2/k, (4)

wherein time instant th is known in nuclear physics as “half-life time” or just
“half-life”. The half-life (4) satisfies the relation η(th) = 1/2, resp. s(th) = s0/2,
cf. Fig. 1. From (4) the rate parameter k can be expressed as:

k = ln 2/th ≈ 0.693/th. (5)

Consider two basic decay functions: e−k1t, e−k2t. For a fixed t, the following
monotonicity property takes place:

k1 ≤ k2=⇒e−k1t ≥ e−k2t. (6)

Assume that the rate parameter k in function (3) is known within an error
bound ∆ ≥ 0. As an illustration, the upper graph on Figures 2 and 3 presents
the function: e−(k−∆)t, whereas the lower graph presents the function: e−(k+∆)t.
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Fig. 1. Graph of function η(t) = e−kt for k = 3. The half-life th = ln 2/k is visualized.
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Fig. 2. Upper function e−(k−∆)t and lower function e−(k+∆)t for k = 3,∆ = 0.45
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Fig. 3. A provisional interval-valued data set visualized

Denote K = [k−∆, k+∆]. We wish to know how the error in the parameter
k influences the error in the value of function η, that is the interval hull:

η(K; t) = {η(k; t) : k ∈ K}. (7)

Proposition 1. Using the monotonicity of function (3) with respect to rate pa-
rameter k, for the interval hull (7) we have

η(K; t) = [e−(k+∆)t, e−(k−∆)t]. (8)

Proposition 1 allows for an easy computation of the interval hull (7). Fig. 2
visualises the upper function e−(k+∆)t and lower function e−(k−∆)t for k = 3,
∆ = 0.45.

A parameter identification problem for the exponential decay model.
Assume that at some instances ti, i = 1, . . . , n, experimental data with interval-
valued uncertainties (t1, Xi), ..., (tn, Xn), are available, wherein Xi = [xi, xi]
are some real intervals. We wish to estimate the value of the rate parameter k
so that exponential decay solution η “fits well” the given experimental data. In
particular, we shall additionally require that the values of function η are included
in all the experimental intervals at the given time instances as shown on Fig. 3.
We shall come back to the parameter identification problem for the exponential
decay model in Section 4.
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2 The Two-step Exponential Decay-outbreak Model:
Properties

The two-step exponential (radioactive) decay-outbreak (2SED) model involves
two first-order reaction steps in the transition of three species, say S, P, Q,
into each other. More specifically, the 2SED model is presented by the reaction
network S k1−→ P k2−→ Q, or, in canonical form [13]:

S k1−→ P, P k2−→ Q, (9)

where k1, k2 are positive rate parameters. Assuming mass action kinetics, re-
action network (9) translates into a system of ODE’s for the density functions
s = s(t), p = p(t), q = q(t), corresponding to species S, P, Q, resp. in t ∈ [0,∞].
Skipping the uncoupled equation (q′ = k2p) for function q, we have:

s′ = −k1s,
p′ = k1s− k2p.

(10)

Assume initial value conditions to dynamical system (10) as follows:

s(0) = s0 > 0; p(0) = p0 = 0. (11)

The solutions s, p to initial value problem (10)–(11) can be explicitly presented
in the time interval T = [0,∞) as follows [5]:

s(k1; t) = s0e
−k1t;

p(k1, k2; t) = s0


k1

k2−k1 (e
−k1t − e−k2t), k1 6= k2,

k t e−kt, k1 = k2 = k.

(12)

In order to study analytically solution p(k1, k2; t) from (12) we define and
study a simplified function called “basic outbreak function”. As seen from (12)
the expression for function p(k1, k2; t) when k1 6= k2 makes an essential use of
the difference (e−k1t − e−k2t) of two decay functions as visualized on Fig. 4.
The graph of function p(k1, k2; t) using rate parameters k1 = 3 and k2 = 1 is
presented on Fig. 5.

2.1 A Basic Wave-like Function

Definition 1. Define function

ε(m,n; t) =


1

n−m (e−mt − e−n t), m 6= n,

t e−kt, m = n = k.
(13)

for m > 0, n > 0, t ∈ [0.∞).
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Fig. 4. Two decay functions with rate parameters k1 = 3, resp. k2 = 1; the half-life
times are visualized.
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Consider the special case m 6= n, that is function:

ε(m,n; t)|m6=n =
e−mt − e−n t

n−m
. (14)

Using (14), function ε(m,n; t) is defined in the case m = n naturally as
follows:

ε(m,n; t)|m=n = limk−→n, k 6=n ε(k, n; t)

= − limk−→n, k 6=n
e−kt−e−nt

k−n

= −∂e
−kt

∂k = te−kt.

(15)

Combining cases (14) and (15) we obtain the general definition (13).
Note that ε(m,n; t) > 0 for t ∈ R+. Note also that p(k1, k2; t) = s0k1e(k1, k2; t).

For the derivative ε(m,n; t)′ of function (13) in the case m 6= n we calculate:

ε(m,n; t)′ = (n−m)−1 d (e−mt–e−nt) /dt

= (−me−mt + ne−nt) /(n−m),

= ne−nt–me−mt

n−m .

(16)

In the case m = n we have:

ε(m,n; t)′|m=n=k = (te−kt)′ = (1− kt)e−kt. (17)

Combining cases (16), (17), we obtain:

ε(m,n; t)′ =


ne−nt–me−mt

n−m m 6= n,

(1− kt)e−kt, m = n = k.
(18)

Proposition 2. Function k1ε(k1, k2; t) satisfies the ODE initial value problem:

p′ = k1s− k2p, p(0) = 0, (19)

wherein s = s(t) = e−k1t is the basic decay function (3).

Proof. Using definition (13) and equations (12), (18) the proof follows.

According to Proposition 2 function k1ε(k1, k2) satisfies the 2SED reaction
network in the case s0 = 1, p0 = 0. This property allows us to name function
ε(m,n) a basic outbreak function (using “epidemiological" terminology). We next
give some more properties of function ε(m,n).
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2.2 The basic outbreak function: maximum value and inflection
point

Let us compute the time instant t∗ε when the outbreak function ε(m,n) attains
its maximum. Using (e−kt)′ = −ke−kt, and (18), we have for case m 6= n:

ε(m,n; t)′ =
−me−mt + ne−nt

n−m
. (20)

To compute t∗ε we need to solve equation ε(m,n; t)′ = 0 with respect to t.
We obtain that t = t∗ε satisfies equation −me−mt + ne−nt = 0, or

e−mt

e−nt
= e−(m−n)t. (21)

From (21) we obtain:

e−(m−n)t
∗
ε =

n

m
,

hence (for n 6= m ):

t∗ε = ln
( n
m

)
/(n−m) =

ln n− ln m

n−m
= ln

( n
m

) 1
n−m

.

To compute inflection point t∗ε for the case k1 = k2 = k we solve equation:

ε(k1, k2; t)
′|k1=k2=k = (te−kt)′ = (1− kt)e−kt = 0,

for t = t∗ε to obtain t∗ε = 1/k. In the general case m > 0, n > 0 we obtain the
following

Proposition 3. The basic outbreak function attains its maximum at time in-
stant

t∗ε =


lnn−lnm
n−m = ln

(
n
m

) 1
n−m , n 6= m,

1/k. n = m = k.

(22)

We next compute the (maximum) value of the outbreak function ε(k1, k2; t)
at point t = t∗ε. Using (13) we compute

ε(k1, k2; t
∗
ε) =


e−k1t∗ε–e−k2t∗ε

k2−k1 , k1 6= k2,

t∗ε e
−kt∗ε , k1 = k2 = k.

(23)

We have for k1 6= k2 and i = 1, 2:

e−ki t
∗
ε = e

−ki ln
(

k2
k1

) 1
k2−k1

= e
ln

(
k2
k1

) −ki
k2−k1

=

(
k2
k1

) −ki
k2−k1

.

Thus formula (23) becomes
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ε(k1, k2; t
∗
ε) =

[
(
k2
k1

) −k1
k2−k1 –

(
k2
k1

) −k2
k2−k1

]/(k2 − k1), k1 6= k2,

1
ke , k1 = k2 = k.

(24)

Let us now compute the time instant t∗∗ε , when the outbreak function ε(m,n)
attains its inflection point. To this end we have to solve equation ε(m,n; t)′′ = 0
for t = t∗∗ε , or

(−mη(m; t) + nη(m; t))
′
= m2η(m; t)− n2η(n; t) = 0,

or

η(m; t)

η(n; t)
=

n2

m2
=
( n
m

)2
.

We obtain

η(m− n; t∗∗ε ) =
( n
m

)2
,

or

−(m− n)t∗∗ε = 2 ln
n

m
,

hence

Proposition 4. The outbreak function ε(m,n) attains its inflection point at

t∗∗ε = 2
lnn− lnm

n−m
= 2 t∗ε. (25)

The outbreak function plays an important role in a number of epidemiological
and pharmacokinetic models.

3 Least-square approximations: fitting the exponential
decay function

3.1 Fitting the exponential decay function to a numeric data set

Consider the exponential function

x(t) = aebt, (26)

wherein a > 0 and b < 0 are unknown parameters. Let (ti, xi), i = 1, 2, ..., n, be
a given (numeric) measurement data set observed from some decay process, to
be briefly denoted as a “decay data set". To determine the optimum parameter
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values of function (26), a and b, using least-square approximation, we minimize
the functional

Φ(a, b) =

n∑
i=1

(
xi − aebti

)2
, (27)

with respect to a and b.

Fitting the one-parameter exponential decay function. Let the param-
eter a be known as a = 1, so that the function to be fitted is of the form

x(t) = ebt, (28)

then functional (27) obtains the form:

Φ1(b) =

n∑
i=1

(
xi − ebti

)2
. (29)

For the derivative of (29) with respect to b we obtain:

dΦ1(b)

db
= −2

n∑
i=1

(
xi − eb ti

)
tie

b ti = 0. (30)

Equation (30) can be written as:

n∑
i=1

tixie
bti −

n∑
i=1

tie
2bti = 0. (31)

To solve equation (31) with respect to b we shall need to use a numeric
procedure, such as the Newton-Raphson method. An important part of such an
iteration procedure is to determine an initial approximation for the parameter
b. This can be done by a visual inspectation of the shape of the decay data
set (ti, xi), i = 1, 2, ..., n, in order to establish approximately the half-life time
instant th. Using expression (4) we can determine an initial approximation for
the rate parameter b, namely b ≈ ln 2/th.

The two-parameter exponential decay function. Consider now the case
when both parameters a, b in (27) are unknown. From equation:

∂Φ(a, b)

∂a
= −2

n∑
i=1

eb ti
(
xi − aeb ti

)
= 0, (32)

we calculate:

a =

∑n
i=1 xie

b ti∑n
i=1 e

2 b ti
=
S1

S2
. (33)



Numerical Simulation of Decay and Outbreak Data 11

The condition for minimization of functional (27) with respect to b obtains
the form:

∂Φ(a, b)

∂b
= −2

n∑
i=1

(
xi − aebti

)(da
db
eb ti + atie

bti

)
= 0. (34)

We now need to solve equation

n∑
i=1

(
xi − aebti

)(da
db
ebti + atie

bti

)
= 0, (35)

wherein

da

db
=

1

S2
2

(
S2
dS1

db
− S1

S2

db

)
,
dS1

db
=

n∑
i=1

tixie
bti ,

dS2

db
= 2

n∑
i=1

xie
bti . (36)

We can use a numerical iterative procedure for solving problem (35)–(36). In
practice, the two-parameter setting can be avoided via a suitable normalization
of the decay data set, so that the parameter a can be set to 1 (possibly by visual
inspectation of the data set).

3.2 Fitting the exponential decay function to an interval-valued
data set

In the literature there are a number of research papers dealing with numerical
simulation of the exponential decay models. Many authors focus on the case
when imprecise/uncertain input data sets are available. Such data sets can be
considered under various statistical assumptions, see e.g. [8, 9, 11]. A number of
researchers assume that the input data are available in the form of intervals,
that is the data are “interval-valued", see e.g. [1, 3, 4, 6, 10, 14].

For the exponential decay model let us assume that an interval-valued decay
data set is available, (ti, Xi), i = 1, 2, ..., k, Xi = [xi, xi], as mentioned at the
end of Section 1 and depicted in Fig. 3.

A numerical algorithm. For the solution of the interval-valued optimization
problems we propose the following algorithm:

Step 1. Find an initial numeric value for the parameter k, such that the
solution e−kt is included in all interval-valued data (ti, Xi), i = 1, 2, ..., k. To
this end a visual inspectation of the decay data set can be performed aiming
at finding an approximation of the half-life time th, resp. the rate parameter
k = ln 2/th.

Step 2. Choose a sufficiently small value for ∆ > 0. Check if the interval
enclosure (7): e−Kt for K = [k −∆, k+∆], ∆ > 0, for the chosen ∆ is included
in the interval-valued decay data set, if so, then increase ∆ and repeat the
procedure. If the interval enclosure is not included in the interval-valued data
set, then STOP. The final result of this procedure is the last ∆, resp, last interval
K = [k −∆, k +∆].
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4 Numerical simulations involving the basic exponential
decay-outbreak model

Consider next a biological process based on reaction network (9) involving two
species S and P, resp. the two rate parameters k1 and k2 in the induced dynam-
ical system (10). In reality such a situation appears in a number of areas, e.g. in
epidemiology, where researchers collect information simultaneously for the de-
cay of the susceptible and for the outbreak of the infected/infectious individuals.
Since the decay part does not depend on the outbreak part of the process, we
shall assume that the decay part has been solved using the methods presented
in the previous Section 3 and thus the decay rate parameter (k1) has been com-
puted. Hence we can concentrate on the numerical computation of the outbreak
rate parameter (k2) using an available outbreak data set for the decay-outbreak
process.

The numeric problem for the decay-outbreak process . Mathematically,
consider the basic outbreak function (13). Assume that the decay rate parameter
m is already available, as computed from a given decay data set (ti, xi), i =
1, 2, ..., k, according to instructions given in Section 3. Assume that an “outbreak
data set” (tj , yj), j = 1, 2, ..., l, is available from experimental observations on
the decay-outbreak process. Then, we have to minimize the functional

Ψ(m,n) =

l∑
j=1

(yi − ε(m,n; ti))2 , (37)

with respect to rate parameter n. Expression (37) leads to the following

Proposition 5. To minimize functional (37) with respect to rate parameter n
we need to solve equation

∂Ψ(m,n)

∂n
= −2

l∑
j=1

(yi − ε(m,n; ti)) .
∂ε(m,n)

∂n
|ti = 0, (38)

wherein

∂ε(m,n)

∂n
|ti =

m

n−m
[
(n−m)te−nt − (e−mt − e−nt)

]
|t=ti . (39)

Problem (38)-(39) can be solved numerically using appropriate numerical
methods.

Initial conditions for the rate parameter n. By visual inspectation on
the outbreak data set one can find approximately an initial condition for the
outbreak maximum time t∗ε. Using expression (13) we have

ln k2 − k2t∗ε = ln k1 − k1t∗ε. (40)
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Equation (40) can be solved for k2 using appropriate numerical method. If the
available data set does not provide a good (visual) approximation for the value
t∗ε, then one may try to inspect visually the inflection point 2t∗ε, cf. expression
(25) for t∗∗ε .

The interval-valued problem for the decay-outbreak process can be for-
mulated and treated in similar lines as done for the decay function, see previous
Section 3. For the relevant numerical procedure the following condition may be
applied.

Consistency condition. Using (13) we have for K1 = [k1−∆, k1+∆], ∆ > 0,
resp. for interval enclosure

ε(K1, k2; t) = {ε(k1, k2; t) : k1 ∈ K1}, (41)

the following expression:

ε(K1, k2; t) =


e−K1t–e−k2t

k2−K1
, k2 /∈ K1,

t e−K1t, k2 ∈ K1.
(42)

The consistency condition now reads: ε(K1, k2; tj) ∈ (tj , Yj), j = 1, 2, ..., l.
Two basic decay functions with interval-valued rates k1 = 3, ∆1 = 0.45, k2 =

1, ∆2 = 0.15 are visualised on Fig. 6. A basic exponential outbreak function
with interval valued rates: k1 = 3, ∆1 = 0.45, k2 = 1, ∆2 = 0.15 is presented on
Fig. 7. A basic exponential outbreak function fitted to interval-valued data set;
k1 = 3, ∆1 = 0.45, k2 = 1, ∆2 = 0.15 visualized graphically on Fig. 8.

5 Concluding remarks

In the present work we focus on a nonlinear least-squares approximation prob-
lem related to decay-outbreak biological processes. In particular we consider the
two-step exponential decay chain (2SED) model, that has numerous applications
in epidemiology, pharmacokinetics, nuclear medicine etc. This model is of con-
siderable interest when analysing experimental measurement data sets coming
from various decay-outbreak processes. Such data sets may or may not be fitted
well by solutions of a 2SED model due to different mechanisms of the decay-
outbreak process. For example, the SIR and SEI epidemiological models possess
different shapes of the outbreak data, due to the presence of catalytic actions,
e.g. an autocatalytic action on the first reaction in the SIR model, and a catalytic
action from a third species on the first reaction in the case of the SEI model.
Such catalytic actions model specific patterns of the disease transmission. So,
discovering the underlying mechanism of the decay-outbreak process is as im-
portant as is the establishment of a linear mechanism in the familiar linear case
(linear regression).
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1,∆2 = 0.15
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Fig. 7. A basic exponential outbreak function with interval valued rates: k1 = 3,∆1 =
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Fig. 8. A basic exponential outbreak function fitted to interval-valued data set; k1 =
3,∆1 = 0.45, k2 = 1,∆2 = 0.15

In addition, we are concerned with the situation of uncertainties in the data
sets, focusing on the so-called interval-valued decay and outbreak data sets. In
order to offer a precise definition of the term “numerical simulation” in such a
setting, we begin with basic outbreak functions. In the course of the discussion it
becomes necessary to provide a mathematical analysis of the decay and outbreak
functions. This analysis turns to be useful when the data sets are inspected for
specific peculiarities in their shapes, which can produce initial approximations
for the induced numerical problems.
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