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Abstract: We propose a new mathematical model describing a biotechnological process of
simultaneous production of hydrogen and methane by anaerobic digestion. The process is carried
out in two connected continuously stirred bioreactors. The proposed model is developed by adapting
and reducing the well known Anaerobic Digester Model No 1 (ADM1). Mathematical analysis of
the model is carried out, involving existence and uniqueness of positive and uniformly bounded
solutions, computation of equilibrium points, investigation of their local stability with respect to
practically important input parameters. Existence of maxima of the input–output static characteristics
with respect to hydrogen and methane is established. Numerical simulations using a specially
elaborated web-based software environment are presented to demonstrate the dynamic behavior of
the model solutions.
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1. Introduction

Anaerobic digestion (AD) is a multi-step biotechnological process widely applied for the treatment
of wastes and wastewater, where usually hydrogen (H2) is not accumulated as an intermediary
product [1–3]. Recently, the interest in H2 production by modifying operating conditions of the AD has
increased. This process has been denominated as dark fermentative H2 production in contrast with
light derived H2 producing processes [4–8]. In traditional AD, H2 is not detected as it is consumed
immediately e.g., by hydrogenotrophic methanogens to produce methane CH4 and carbon dioxide
CO2 [9]. Conversely, H2 can be produced as main component in biogas by engineering the process
conditions in a way that favors Clostridium and Enterobacter metabolism against the predominance
of archaeal microflora [10,11]. However, the main limitation of dark fermentative H2 production is
the rather low energy recovery, cf. [7,8,12]. In order to completely utilize the organic acids produced
during dark fermentation and improve the overall energy conversion efficiency, a two-stage AD
(TSAD) concept consisting of a hydrogenic process followed by a methanogenic process has been
suggested (see e.g., [12–14]).

A lot of models describing separately the fermentative hydrogen production (see, e.g., [15,16]) and
the AD for methane production (cf. e.g., [17–20]) are known. However, only a few models of TSAD
processes are available; see, for example, [21–24] and the references therein. In [25], both bio-hydrogen
and bio-methane productions are optimized in two bioreactors regarding two operating parameters,
organic loading rate, and dilution rate; however, the first bioreactor is running in semi-continuous
and the second—in batch operation mode because the working volumes of both bioreactors are
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equal. In [26], steady-state analysis for the TSAD process is presented using a very simple model
without hydrolysis and without taking into account the most important fact for this scheme—the
energy recovery.

In this paper, we propose a mathematical model, describing the process of simultaneous H2

and CH4 production by AD of organic wastes in a cascade of two connected continuously stirred
bioreactors. The biochemical processes in the first bioreactor include disintegration of organic wastes,
hydrolysis, and acidogenesis with hydrogen production. The methane production from acetate
(methanogenesis) is separated in the second bioreactor. The proposed model is developed by reducing
the well known Anaerobic Digester Model No 1 (ADM1) basic structure elaborated by the International
Water Association (IWA) [17]. Modeling of TSAD using ADM1 is also presented in [27], where, however,
methane is obtained from both bioreactors.

Our mathematical model is presented for the first time in the conference paper [21]. The present
article represents an extension of the latter, providing (i) more detailed assumptions used to construct
the model, which are based on practical experiments (Section 3); (ii) more precise and deeper theoretical
investigations of the model dynamics such as existence and uniqueness of positive and uniformly
bounded solutions, more precise computation of practically important equilibrium points of the model
and study of their local asymptotic stability (Section 4); (iii) more detailed investigation concerning the
optimization of hydrogen and methane production on steady state operation (Section 5), and showing
the existence of maxima, which is important for the applications; (iv) numerical simulations in Section 6,
based on a newly developed, so called one-page application “(H2,CH4) Bioreactors ver. 1.2” in the
SmoWeb platform.

The main goal of this article is to present rigorous mathematical analysis of the proposed model
dynamics, to detect and provide some model-based predictions, which could be useful in designing
and engineering real laboratory experiments. The theoretical studies are supported and complimented
by a variety of computer simulations.

2. Process Description

In the TSAD system, relatively fast growing acidogens and H2 producing microorganisms are
developed in the first-stage hydrogenic bioreactor (BR1 with working volume V1, see Figure 1) and
are involved in the production of volatile fatty acids (VFA–mainly acetate and butyrate, [8]) and
H2. Some recent studies on the microbial community in the hydrogen producing BR1 show that
dominant are microorganisms of the genus Clostridium [28]. In BR1, pH is kept in the range 5.0–5.5,
and acetate degrading methanogens are eliminated. On the other hand, the slow growing acetogens
and methanogens are developed in the second-stage methanogenic bioreactor (BR2 with working
volume V2, and pH in the range 6.5–8.5), in which the produced VFA are further converted to CH4

and CO2 by methane-forming bacteria from the genus Methanobacterium, Methanococcusect, see, for
details, [9] and the references therein.

It is known that in the two-stage H2 + CH4 system the energy yields are up to 43% more in
comparison to the traditional one-stage CH4 production process (cf. [8,25]).
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Figure 1. Two-phases process of AD with production of hydrogen (H2) and methane (CH4).

Assume that the volumes V1 and V2 of the bioreactors are constant. Let F1 and F2 be the inflows
in the first and second bioreactor, respectively, and let F1 = F2 = F be valid. It is well known that the
dilution rates D1 and D2 are defined as

D1 =
F

V1
, D2 =

F
V2

.

Then,

D2 =
V1

V2
D1 := γD1 within γ :=

V1

V2
. (1)

Later on in the paper (see Section 5), by analyzing points of maximum biogas production in both
bioreactors, biohydrogen in BR1 and biomethane in BR2, we find theoretical values for the hydraulic
retention time (HRT) 1/D1,max and 1/D2,max, which show that the volume V2 of the second bioreactor
for methane production should be larger than the volume V1 of the first bioreactor. Therefore, γ < 1
should be valid. We determine the constant γ using the proposed model equations.

3. Model Description

In this section, we present the mathematical model describing the process of simultaneous H2

and CH4 production by AD of organic wastes in a cascade of two continuously stirred bioreactors.
The model is derived on the basis of the ADM1 basic structure as well as on our experience with
the two-phase AD process with hydrogen and methane production, see [29]. The ADM1 is a
complex model, describing all known (till its creation) microbiological and biochemical reactions
occurring in AD of organic wastes. ADM1 is suitable mainly for process knowledge and simulation,
but not appropriate for theoretical studies and model-based control design due to the plenty of input
parameters which are difficult to obtain. The reduction of ADM1 is done here in order to simplify the
latter and to provide an opportunity for studying the asymptotic stability of the dynamics with respect
to two essential indicators: (i) the separation of the model equations into two groups, corresponding to
the reactions taking place in each one of the two bioreactors, and (ii) the type of the organic wastes used.

For simplification of the model, the following assumptions have been accepted:

• In BR1 only the main VFA (acetate) is formed, whereas propionate and butyrate are omitted.
In this way, the slow acetogenic phase has been omitted and consequently in BR2 only
methanogenesis occurs.

• In both bioreactors, the existence of inhibition phenomena is not taken into account.
• Balance equations of the hydrogen and methane in the liquid phases have been neglected because

they are practically not dissolved in liquids.
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• Hydrogenotrophic bacteria, producing methane from hydrogen, are eliminated previously and
do not exist in this process.

• Equations describing balances of inorganic components and some biochemical equations have
been neglected in view of simplifying the model.

• pH is considered in the range between 5.0 to 5.5 in the first bioreactor BR1, and in the interval
6.5–8.5 in the second bioreactor BR2. Within these ranges, it is assumed that the negative influence
of pH could be disregarded.

These ranges of pH were obtained during our own laboratory experiments with TSAD of waste
from maize treatment (not published yet).

The proposed models of the two bioreactors are of balancing type for continuously stirred tank
reactors (CSTR) like the original ADM1 model. For each bioreactor, the ADM1 equations are adapted
to describe the dynamics of the most important variables for the AD of organic waste.

Following the above assumptions, we present now the mathematical model for hydrogen and
methane production in the two bioreactors. The definitions of the phase variables and parameters in
the model equations are given in Tables 1 and 2 below.

The dynamics in the first bioreactor are described by the following set of 10 nonlinear ordinary
differential equations:

d
dt

Ssu(t) = D1(Sin
su − Ssu) + khyd,chXch + fsu,likhyd,liXli − µsuaa,suXsuaa (2)

d
dt

Saa(t) = D1(Sin
aa − Saa) + khyd,prXpr − µsuaa,aaXsuaa (3)

d
dt

S f a(t) = D1(Sin
f a−S f a)+ f f a,likhyd,liXli−µ f aX f a (4)

d
dt

Sac(t) = −D1Sac + (1−Ysuaa) [ fac,suµsuaa,su + fac,aaµsuaa,aa] Xsuaa

+ 0.7 (1−Yf a)µ f aX f a (5)

d
dt

Xc(t) = D1(Xin
c − Xc)− kdisXc (6)

d
dt

Xch(t) = −(D1 + khyd,ch)Xch + fch,xckdisXc (7)

d
dt

Xpr(t) = −(D1 + khyd,pr)Xpr + fpr,xckdisXc (8)

d
dt

Xli(t) = −(D1 + khyd,li)Xli + fli,xckdisXc (9)

d
dt

Xsuaa(t) = [−D1 + Ysuaa(µsuaa,su + µsuaa,aa)] Xsuaa (10)

d
dt

X f a(t) = −(D1 −Yf aµ f a)X f a, (11)

with gaseous output

Qh2 = (Yh2,su µsuaa,su + Yh2,aa µsuaa,aa)Xsuaa + Yh2, f a µ f a X f a,
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where Qh2 is the hydrogen flow rate [L/h]. In (2)–(11), the biomass specific growth rates µsuaa,su,
µsuaa,aa and µ f a are of the form

µsuaa,su = µsuaa,su(Ssu, Saa) = km,suaa
Ssu

ks,suaa + Ssu
· Ssu

Ssu + Saa
,

µsuaa,aa = µsuaa,aa(Ssu, Saa) = km,suaa
Saa

ks,suaa + Saa
· Saa

Ssu + Saa
,

µ f a = µ f a(S f a) = km, f a
S f a

ks, f a + S f a
.

Table 1. Model Variables

Definition of the Model Variables

Ssu concentration of monosacharides [gCOD/L]
Saa concentration of amino acids (AA) [gCOD/L]
S f a concentration of fatty acids (LCFA) [gCOD/L]
Sac concentration of total acetate in BR1 [gCOD/L]
Sac,ch4 concentration of total acetate in BR2 [gCOD/L]
Xc concentration of composites [gCOD/L]
Xch concentration of carbohydrates [gCOD/L]
Xpr concentration of proteins [gCOD/L]
Xli concentration of lipids [gCOD/L]
Xsuaa concentration of sugar and AA degraders [g/L]
X f a concentration of LCFA degraders [g/L]
Xac concentration of acetate degraders [g/L]
D1 dilution rate in the first bioreactor [h−1]
D2 dilution rate in the second bioreactor [h−1]

Table 2. Model Parameters

Definition of the Model Parameters Values

Sin
su input concentration of Ssu [gCOD/L] 0.01

Sin
aa input concentration of Saa [gCOD/L] 0.001

Sin
f a input concentration of S f a [gCOD/L] 0.001

Xin
c input concentration of Xc [gCOD/L] 50

fch,xc stoichiometric parameter [–] 0.2
fpr,xc stoichiometric parameter [–] 0.2
fli,xc stoichiometric parameter [–] 0.3
fsu,li stoichiometric parameter [–] 0.05
f f a,li stoichiometric parameter [–] 0.95
fac,su stoichiometric parameter [–] 0.41
fac,aa stoichiometric parameter [–] 0.4
Ysuaa stoichiometric parameter [–] 0.1
Yac stoichiometric parameter [–] 27.3
Yf a stoichiometric parameter [–] 0.06
Yh2,su physicochemical parameter [L2/g] 0.7
Yh2,aa physicochemical parameter [L2/g] 0.7
Yh2, f a physicochemical parameter [L2/g] 0.7
Ych4,ac physicochemical parameter [L2/g] 75
kdis biochemical parameter [h−1] 0.0208
khyd,ch biochemical parameter [h−1] 0.417
khyd,pr biochemical parameter [h−1] 0.417
khyd,li biochemical parameter [h−1] 0.417
km,suaa biochemical parameter [h−1] 1.25
ks,suaa biochemical parameter [g/L] 0.5
km, f a biochemical parameter [h−1] 0.15
km,ac biochemical parameter [h−1] 0.0167
ks, f a biochemical parameter [g/L] 0.67
ks,ac biochemical parameter [g/L] 0.4
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We extend the model (2)–(11) by the following two equations describing the process in the second
bioreactor (cf. [30]):

d
dt

Sac,ch4(t) = D2(Sac − Sac,ch4)−Yac µac,ch4Xac (12)

d
dt

Xac(t) = (−D2 + µac,ch4)Xac (13)

with gaseous output
Qch4 = Ych4,ac µac,ch4 Xac

where Qch4 is the methane flow rate [L/h], and

µac,ch4 = µac,ch4(Sac,ch4) = km,ac
Sac,ch4

ks,ac + Sac,ch4
.

All model coefficients in the Equations (2)–(13) are assumed to be positive. The dilution rates
D1 and D2 are the decision or control variables. The numerical values in the rightmost column of
Table 2 are taken from [31]. In the model variables and parameters, the subscripts h2 and ch4 indicate
hydrogen (H2) and methane (CH4), respectively.

4. Investigation of the Model Solutions

This section presents a mathematical analysis of the dynamics (2)–(13). First, we establish existence,
positivity, uniform boundedness, and uniqueness of the model solutions. The results are presented
in Theorem 1. The interested reader can find a detailed proof of Theorem 1 in Appendix A.1 of the
Appendix A.

Theorem 1. If 0 < Ysuaa < 1 and 0 < Yf a < 1, then all solutions of the dynamics (2)–(13) are positive and
uniformly bounded, and thus exist for all time t ∈ [0,+∞).

Note that the assumptions 0 < Ysuaa < 1 and 0 < Yf a < 1 in Theorem 1 are not restrictive.
Since Ysuaa and Yf a are yield coefficients, their values are always less than 1 in practice; see last column
in Table 2.

In the next two subsections, we find the simplest solutions of the model, namely the equilibrium
points, and investigate their local asymptotic stability.

4.1. Equilibrium Points of the Model

The equilibrium points of the model are solutions of the algebraic equations obtained from (2)–(13)
by setting the right-hand sides equal to zero:

D1(Sin
su − Ssu) + khyd,chXch + fsu,likhyd,liXli − µsuaa,suXsuaa = 0 (14)

D1(Sin
aa − Saa) + khyd,prXpr − µsuaa,aaXsuaa = 0 (15)

D1(Sin
f a−S f a)+ f f a,likhyd,liXli−µ f aX f a = 0 (16)

D1Sac − (1−Ysuaa) [ fac,suµsuaa,su + fac,aaµsuaa,aa] Xsuaa − 0.7(1−Yf a)µ f aX f a = 0 (17)

D1(Xin
c − Xc)− kdisXc = 0 (18)

(D1 + khyd,ch)Xch − fch,xckdisXc = 0 (19)

(D1 + khyd,pr)Xpr − fpr,xckdisXc = 0 (20)

(D1 + khyd,li)Xli − fli,xckdisXc = 0 (21)

[D1 −Ysuaa(µsuaa,su + µsuaa,aa)] Xsuaa = 0 (22)
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(D1 −Yf aµ f a)X f a = 0. (23)

D2(Sac − Sac,ch4)−Yac µac,ch4Xac = 0 (24)

(D2 − µac,ch4)Xac = 0. (25)

We are looking for nonnegative solutions of (14)–(25) since only these equilibrium points
correspond to the physical and biological meaning of the model variables. The equilibrium points are
computed as functions of the control variables, the dilution rates D1 and D2.

Using Equation (18), we find the equilibrium component X̄c with respect to the phase variable Xc,
which is obviously positive:

X̄c =
D1Xin

c
D1 + kdis

.

Furthermore, Equations (19)–(21) imply the equilibrium components X̄ch, X̄pr and X̄li respectively:

X̄ch =
fch,xc kdis X̄c

D1 + khyd,ch
, X̄pr =

fpr,xc kdis X̄c

D1 + khyd,pr
, X̄li =

fli,xc kdis X̄c

D1 + khyd,li
. (26)

Equations (16) and (23) are used to determine the steady state components S̄ f a and X̄ f a with
respect to the phase variables S f a and X f a. Obviously, Equation (23) suggests that the trivial solution
X f a ≡ 0 always exists, but is not of practical interest. Assuming that X f a 6≡ 0 and using the expression
of µ f a, we obtain from (23) the following steady state component S̄ f a

S̄ f a =
D1ks, f a

Yf akm, f a − D1
. (27)

It is clear that S̄ f a exists and S̄ f a > 0 if and only if

D1 < Yf akm, f a. (28)

Equation (16) then delivers the equilibrium component for X f a,

X̄ f a =
D1(Sin

f a − S̄ f a) + f f a,likhyd,liX̄li

µ f a(S̄ f a)
. (29)

Obviously, X̄ f a from (29) satisfies X̄ f a > 0 if and only if

S̄ f a < Sin
f a +

1
D1

f f a,likhyd,liX̄li. (30)

Remark 1. The quantity Sin
f a +

1
D1

f f a,likhyd,liX̄li on the right-hand side of (30) can be considered as a worst-case

upper bound of the total concentration of fatty acids (LCFA) S f a, which accumulation in BR1 might occur as a
result of some imbalances in the degradation phase, leading to wash-out of the LCFA degraders X f a [32].

The inequality (30) is equivalent with

D3
1

(
ks, f a + Sin

f a

)
+ D2

1

[
(ks, f a + Sin

f a)(khyd,li + kdis)−Yf akm, f aSin
f a

]
+D1

[
f f a,likhyd,li fli,xckdisXin

c −Yf akm, f aSin
f a(khyd,li + kdis) + ks, f a + Sin

f a

]
−Yf akm, f akhyd,likdis(Sin

f a + f f a,li fli,xcXin
c ) < 0.

(31)
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The left hand-side cubic polynomial in (31) always possesses one positive real root D(1)
1 , so the

inequality (30) is satisfied if D1 ∈ (0, D(1)
1 ). Therefore, the equilibrium components S̄ f a and X̄ f a exist

and satisfy S̄ f a > 0 and X̄ f a > 0 if D1 ∈
(

0, min{Yf akm, f a, D(1)
1 }

)
holds true.

If D1 = D(1)
1 , then X̄ f a becomes equal to zero; this means that D1 = D(1)

1 is a (transcritical)

bifurcation value of the parameter D1, leading to wash-out of the biomass X f a for D1 > D(1)
1 . We shall

pay special attention to the case X̄ f a = 0 motivating our considerations later on in the paper (see
Section 5). If X̄ f a = 0, then we obtain the following steady state component for S f a

S̄0
f a = Sin

f a +
1

D1
f f a,likhyd,liX̄li, (32)

which always exists and is positive if D1 > D(1)
1 .

Here, and in what follows, the superscript 0 indicates X̄ f a = 0 in the steady state components.
Furthermore, Equations (14), (15), and (22) are used to compute the steady state components

S̄su, S̄aa, and X̄suaa in case positive solutions do exist. It is clear from Equation (22) that the trivial
solution Xsuaa ≡ 0 always exists, but we exclude this case for biological evidence. Let Xsuaa 6≡ 0. Then,
Equation (22) reduces to

D1 −Ysuaa [µsuaa,su(Ssu, Saa) + µsuaa,aa(Ssu, Saa)] = 0. (33)

Using Equation (15), we find

Xsuaa =
D1(Sin

aa − Saa) + khyd,prX̄pr

µsuaa,aa(Ssu, Saa)
. (34)

The equilibrium component with respect to Xsuaa should be positive and this will be fulfilled if

Saa < Sin
aa +

1
D1

khyd,prX̄pr. (35)

A similar remark to Remark 1 can be made to the above inequality (35) concerning the
concentrations of the amino acids Saa and of the degraders Xsuaa.

Substituting Xsuaa from (34) into Equation (14) and using Equation (33), we obtain the following
nonlinear algebraic system with respect to Saa and Ssu:[

D1(Sin
su − Ssu) + khyd,chX̄ch + fsu,likhyd,liX̄li

]
µsuaa,aa(Ssu, Saa)

−
[

D1(Sin
aa − Saa) + khyd,prX̄pr

]
µsuaa,su(Ssu, Saa) = 0

D1 −Ysuaa [µsuaa,su(Ssu, Saa) + µsuaa,aa(Ssu, Saa)] = 0.

(36)

It is straightforward to see that system (36) is equivalent to the following one:

A1Saa(Saa + Ssu)− A2S2
su(1 + Saa)− A3SaaSsu(Saa + Ssu) = 0

B1(S2
aa + S2

su) + B2SaaSsu(Saa + Ssu)− B3SaaSsu − B4(Saa + Ssu) = 0,
(37)
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where

A1 = D1Sin
su +

D1kdisXin
c

D1 + kdis

[
khyd,ch fch,xc

D1 + khyd,ch
+

fsu,likhyd,li fli,xc

D1 + khyd,li

]
,

A2 = D1Sin
aa +

D1khyd,pr fpr,xckdisXin
c

(D1 + kdis)(D1 + khyd,pr)
, A3 = D1ks,suaa;

B1 = ks,suaa(Ysuaakm,suaa − D1), B2 = Ysuaakm,suaa − D1,

B3 = 2D1ks,suaa, B4 = D1k2
s,suaa.

All coefficients Ai, i = 1, 2, 3, and Bj, j = 1, 2, 3, 4, depend on D1 (the dilution rate in the first

bioreactor BR1). Assume that there exists a value D(2)
1 > 0 of D1 such that system (37) possesses

positive solutions S̄aa and S̄su for all D1 ∈ (0, D(2)
1 ). Denote by D(3)

1 a third possible upper bound for
D1, defined by

D(3)
1 = min{D1 > 0 : S̄aa < Sin

aa +
1

D1
khyd,prX̄pr}. (38)

Then, the equilibrium component X̄suaa will exist and will be positive for D1 ∈(
0, min{D(2)

1 , D(3)
1 }

)
:

X̄suaa =
D1(Sin

aa − S̄aa) + khyd,prX̄pr

µsuaa,aa(S̄su, S̄aa)
. (39)

Note that an equality S̄aa = Sin
aa +

1
D1

khyd,prX̄pr for some value of D1 will lead to X̄suaa = 0 and

may cause wash-out of the biomass Xsuaa, which is practically undesirable, and we shall exclude
this case.

Equation (17) is used to find the steady state component

S̄ac =
1

D1
[(1−Ysuaa) ( fac,suµsuaa,su(S̄su, S̄aa) + fac,aaµsuaa,aa(S̄su, S̄aa)) X̄suaa

+ 0.7(1−Yf a)µ f a(S̄ f a)X̄ f a

]
.

(40)

The latter is positive if Ysuaa < 1 and Yf a < 1 are fulfilled.
If X̄ f a = 0, then the equilibrium component with respect to Sac becomes

S̄0
ac =

1
D1

(1−Ysuaa) ( fac,suµsuaa,su(S̄su, S̄aa) + fac,aaµsuaa,aa(S̄su, S̄aa)) X̄suaa; (41)

S̄0
ac exists and is positive if Ysuaa < 1 and D1 ∈

(
D(1)

1 , min{D(2)
1 , D(3)

1 }
)

hold true.
The above calculations deliver the following equilibrium points of the model (2)–(11):

E1(D1) = (S̄su, S̄aa, S̄ f a, S̄ac, X̄c, X̄ch, X̄pr, X̄li, X̄suaa, X̄ f a)

if 0 < D1 < min{Yf akm, f a, D(1)
1 , D(2)

1 , D(3)
1 };

E0
1(D1) = (S̄su, S̄aa, S̄0

f a, S̄0
ac, X̄c, X̄ch, X̄pr, X̄li, X̄suaa, X̄ f a = 0)

if D(1)
1 < D1 < min{D(2)

1 , D(3)
1 }.

Consider now Equations (12) and (13) to compute the equilibrium components with respect to
Xac and Sac,ch4. Thereby, we assume that S̄ac and S̄0

ac are known; see (40) and (41), respectively.
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Equation (25) has the obvious solution Xac ≡ 0, which is not of practical interest. Assuming that
Xac 6≡ 0, the equality µac,ch4(Sac,ch4) = D2 delivers the following steady state component for Sac,ch4

S̄ac,ch4 =
ks,acD2

km,ac − D2
. (42)

Obviously, there exists S̄ac,ch4 > 0 if D2 < km,ac holds true. Then, the corresponding equilibrium
component X̄ac is

X̄ac =
1

Yac
(S̄ac − S̄ac,ch4). (43)

The latter is positive if
S̄ac > S̄ac,ch4. (44)

If we consider S̄0
ac instead of S̄ac we obtain

X̄0
ac =

1
Yac

(S̄0
ac − S̄ac,ch4), (45)

which is positive if
S̄0

ac > S̄ac,ch4. (46)

The inequalities (44) and (46) give relationships between D1 and D2 because S̄ac and S̄0
ac depend

also on D1; see (40) and (41), respectively.
Therefore, the extended model (2)–(13) can possess the following two equilibrium points,

parameterized on D1 and D2:

E(D1, D2) = E1(D1) ∪ (S̄ac,ch4, X̄ac),

E0(D1, D2) = E0
1(D1) ∪ (S̄ac,ch4, X̄0

ac).

We summarize the above calculations in the following theorem.

Theorem 2. Let 0 < Ysuaa < 1 and 0 < Yf a < 1 be fulfilled in the model Equations (2)–(13). Assume that there

exists a value D(2)
1 > 0 such that positive solutions S̄aa and S̄su of system (37) do exist for D1 ∈ (0, D(2)

1 ). Then,

(i) the equilibrium point E(D1, D2) exists if 0 < D1 < min{Yf akm, f a, D(1)
1 , D(2)

1 , D(3)
1 } and 0 < D2 <

min{km,ac, min{D2 > 0 : S̄ac > S̄ac,ch4}};
(ii) the equilibrium point E0(D1, D2) exists if D(1)

1 < D1 < min{D(2)
1 , D(3)

1 } and 0 < D2 <

min{km,ac, min{D2 > 0 : S̄0
ac > S̄ac,ch4}}.

Theorem 2 can be specified using the coefficient values in Table 2. Numerical calculations produce
the following values:

Ym km, f a = 0.009, D(1)
1 ≈ 0.00843, D(2)

1 ≈ 0.0942. (47)

The left plot in Figure 2 visualizes the equilibrium component S̄aa, which exists for D1 ∈ (0, D(2)
1 ),

as well as the upper bound Sin
aa +

1
D1

khyd,prX̄pr of S̄aa according to (35). Obviously, (35) is satisfied

for D1 ∈ (0, D(2)
1 ) so that D(2)

1 ≤ D(3)
1 . The right plot in Figure 2 shows the equilibrium component

X̄suaa(D1), which vanishes at D1 = D(2)
1 .
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Figure 2. Left plot: the equilibrium point S̄aa (solid line) and the upper bound of S̄aa (dash line)
according to (35) as functions of D1. Right plot: the graph of the equilibrium point X̄suaa. The vertical

dash-dot lines pass through D(2)
1 .

Furthermore, we have km,ac = 0.0167 and

S̄ac > S̄ac,ch4 ⇐⇒ D2 ∈ (0, 0.0156) =: (0, D(2)
2 ). (48)

This relation is demonstrated in the left plot of Figure 3. The steady state component S̄ac = S̄ac(D1)

(solid line) exists for D1 ∈ (0, D(1)
1 ). The dash line represents the equilibrium component S̄ac,ch4 =

S̄ac,ch4(D2). The horizontal dot line passes through the points (D(1)
1 , S̄ac(D(1)

1 )) and (D(2)
2 , S̄ac,ch4(D(2)

2 ).

The vertical dash-dot lines pass through D(1)
1 and D(2)

2 . This implies the following relation:

E(D1, D2) exists ⇐⇒ D1 ∈ (0, D(1)
1 ) = (0, 0.00843), D2 ∈ (0, D(2)

2 ) = (0, 0.0156).

Similarly, the right plot in Figure 3 visualizes the relation

S̄0
ac > S̄ac,ch4 ⇐⇒ D2 ∈ (0, 0.0152) =: (0, D(1)

2 )

because the horizontal dot line passes through the points (D(1)
1 , S̄0

ac(D(1)
1 )) and (D(1)

2 , S̄ac,ch4(D(1)
2 ).

This leads to the following relation:

E0(D1, D2) exists ⇐⇒ D1 ∈ (D(1)
1 , D(2)

1 ) = (0.00843, 0.0942), D2 ∈ (0, D(1)
2 ) = (0, 0.0152).

Figure 3. Existence of the equilibrium component S̄ac,ch4 for D2 ∈ (0, D(2)
2 ) (left plot) and for D2 ∈

(0, D(1)
2 ) (right plot).
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The equilibrium E(D1, D2) corresponds to coexistence of all microorganisms in both bioreactors
BR1 and BR2, whereas E0(D1, D2) is related to wash-out of the LCFA degrader X f a in BR1 for
hydrogen production.

4.2. Local Asymptotic Stability of the Equilibrium Points

We shall first investigate the local asymptotic stability of the coexistence equilibrium E1(D1)

for D1 ∈
(

0, D(1)
1

)
and of the wash-out steady state (within X̄ f a = 0) E0

1(D1) for D1 ∈
(

D(1)
1 , D(2)

1

)
,

i.e., of the equilibrium points corresponding to the model (2)–(11) of the first bioreactor BR1 for
hydrogen production.

It is well known that an equilibrium point is locally asymptotically stable, if all eigenvalues of the
Jacobi matrix evaluated at this equilibrium have negative real parts, cf. e.g., [33]. The eigenvalues of
this Jacobi matrix coincide with the roots of the corresponding characteristic polynomial.

Detailed calculations of the characteristic polynomials P(E1; λ) and P(E0
1; λ) with respect to the

equilibrium points E1 = E1(D1) and E0
1 = E0

1(D1) are given in Appendix A.2 of the Appendix A.
We present them here for reader’s convenience:

P(E1; λ) = (−D1 − λ)(−D1 − kdis − λ)(−D1 − khyd,ch − λ)

× (−D1 − khyd,pr − λ)(−D1 − khyd,li − λ)

×
[

λ2 +

(
D1 +

dµ f a

dS f a
(S̄ f a)X̄ f a

)
λ + D1

dµ f a

dS f a
(S̄ f a)X̄ f a

]

× R(E1; λ), D1 ∈ (0, D(1)
1 );

P(E0
1 ; λ) = (−D1 − λ)2(−D1 − kdis − λ)(−D1 − khyd,ch − λ)

× (−D1 − khyd,pr − λ)(−D1 − khyd,li − λ)(−D1 + Yf aµ f a(S̄0
f a)− λ)

× R(E0
1 ; λ), D1 ∈ (D(1)

1 , D(2)
1 ),

where R(E1; λ) is the characteristic polynomial of the sub-matrix ∆(3) evaluated at the steady state
components (S̄su, S̄aa, X̄suaa) for D1 ∈ (0, D(1)

1 ), and R(E0
1; λ) is the characteristic polynomial of the

sub-matrix ∆(3) evaluated at the steady state components (S̄su, S̄aa, X̄suaa) for D1 ∈ (D(1)
1 , D(2)

1 ),
see Appendix A.2 in the Appendix A.

The linear quantities in P(E1; λ) = 0 and P(E0
1; λ) = 0 produce negative real eigenvalues of the

Jacobi matrices. In the first polynomial P(E1; λ), the quadratic equation

λ2 +

(
D1 +

dµ f a

dS f a
(S̄ f a)X̄ f a

)
λ + D1

dµ f a

dS f a
(S̄ f a)X̄ f a = 0

possesses two real negative roots. The multiplier −D1 + Yf aµ f a(S0
f a)− λ in the second polynomial

P(E0
1; λ) delivers a negative root λ = −D1 + Yf aµ f a(S̄0

f a) because, in this case, D1 > Yf aµ f a(S̄0
f a)

holds true.
It remains to show that R(E1; λ) = 0 and R(E0

1; λ) = 0 have roots with negative real parts.
These two problems are solved numerically using the coefficient values in Table 2. The real parts of
the eigenvalues are presented graphically in Figures 4 and 5, and are obviously negative. Therefore,
the steady states E1 = E1(D1), D1 ∈ (0, D(1)

1 ) and E0
1 = E0

1(D1), D1 ∈ (D(1)
1 , D(2)

1 ), are locally
asymptotically stable.
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Figure 4. Eigenvalues of ∆(3) evaluated at (S̄su, S̄aa, X̄suaa) for D1 ∈ (0, D(1)
1 ). The solid box on the

horizontal axis denotes D(1)
1 .

Figure 5. Eigenvalues of ∆(3) evaluated at (S̄su, S̄aa, X̄suaa) for D1 ∈ (D(1)
1 , D(2)

1 ). The solid box and

solid circle on the horizontal axis denote D(1)
1 and D(2)

1 , respectively.

Consider again the polynomial P(E1; λ). We know that at D1 = D(1)
1 the equilibrium component

X̄ f a becomes equal to zero, and thus P(E1; λ) = 0 has a root λ = 0. This means that a transcritical

bifurcation at D1 = D(1)
1 occurs, leading to wash-out of the LCFA degraders X f a. As a result, the steady

state E1(D1) no longer exists for D1 > D(1)
1 , and E0

1(D1) remains the locally asymptotically stable

equilibrium for D1 ∈ (D(1)
1 , D(2)

1 ).
The equilibrium points of the model (12)–(13) of the second bioreactor BR2 for methane production

are known to be locally asymptotically stable for any admissible value of D2 (see, e.g., [20]). Indeed,
the characteristic polynomials of the Jacobi matrices of (12)–(13) evaluated at the equilibrium points
(S̄ac,ch4, X̄ac) and (S̄ac,ch4, X̄0

ac), have the form

λ2 + A λ + B = 0 and λ2 + A0 λ + B0 = 0,

where

A = D2 + Yac
dµac,ch4

dSac,ch4
(S̄ac,ch4)X̄ac > 0, B = Yacµac,ch4(S̄ac,ch4)

dµac,ch4

dSac,ch4
(S̄ac,ch4)X̄ac > 0,

A0 = D2 + Yac
dµac,ch4

dSac,ch4
(S̄ac,ch4)X̄0

ac > 0, B0 = Yacµac,ch4(S̄ac,ch4)
dµac,ch4

dSac,ch4
(S̄ac,ch4)X̄0

ac > 0.
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The positive signs of A, B and A0, B0 imply that the above quadratics possess two roots with
negative real parts. This proves the local asymptotic stability of the equilibrium points E(D1, D2) for
D1 ∈ (0, D(1)

1 ), D2 ∈ (0, D(2)
2 ) and E0(D1, D2) for D1 ∈ (D(1)

1 , D(2)
1 ), D2 ∈ (0, D(1)

2 ).

5. Optimization of Hydrogen and Methane Flow Rates

In this section, we shall find values of the dilution rates D1 and D2, so that the hydrogen and
methane flow rates Qh2 and Qch4 evaluated at the model equilibrium points achieve maximal values.

We compute Qh2 on the two sets of steady states E1(D1), D1 ∈ (0, D(1)
1 ) and E0

1(D1), D1 ∈
(D(1)

1 , D(2)
1 ):

Qh2 = Qh2(D1) = Yh2,su µsuaa,su(S̄su, S̄aa)X̄suaa

+ Yh2,aaµsuaa,aa(S̄su, S̄aa)X̄suaa + Yh2, f a µ f a(S̄ f a)X̄ f a, D1 ∈
(

0, D(1)
1

)
;

Q0
h2 = Q0

h2(D1) = Yh2,su µsuaa,su(S̄su, S̄aa)X̄suaa

+ Yh2,aaµsuaa,aa(S̄su, S̄aa)X̄suaa, D1 ∈
(

D(1)
1 , D(2)

1

)
Recall that the superscript 0 in the equilibrium E0

1(D1) indicates X̄ f a = 0.
The functions Qh2(D1) and Q0

h2(D1) depend on the decision (manipulated) input D1 and are
called input–output static characteristics with respect to the hydrogen production.

The important (from practical point of view) question is whether the functions Qh2(D1) and
Q0

h2(D1) are unimodal with respect to D1 in the admissible intervals for D1. For example, the function
Qh2(D1) is called unimodal if there exists a unique (admissible) point D1,max, such that Qh2(D1)

possesses maximum Qh2,max = Qh2(D1,max), Qh2(D1) is strongly increasing if D1 < D1,max and
Qh2(D1) is strongly decreasing if D1 > D1,max.

Figure 6 (left plot) presents the graphs of the input–output static characteristics Qh2(D1) for
D1 ∈ (0, D(1)

1 ) (solid line) and Q0
h2(D1) for D1 ∈ (D(1)

1 , D(2)
1 ) (dash line). The function Qh2(D1)

achieves its maximum at D1,max ≈ 0.0072 ∈ (0, D(1)
1 ) and Qh2,max ≈ 0.115 [L/h]. The maximum

of Q0
h2(D1) is achieved at D0

1,max ≈ 0.0439 ∈ (D(1)
1 , D(2)

1 ) and Q0
h2,max ≈ 0.169 [L/h]. Therefore,

the absolute maximum of Qh2(D1)∪Q0
h2(D1), D1 ∈ (0, D(2)

1 ) coincides with the maximum of Q0
h2(D1).

From a practical point of view, this means that the maximal flow rate of H2 could be achieved at a
operation mode, related to wash-out of the LCFA degraders X f a in BR1.

Figure 6. The input–output static characteristics Qh2(D1) ∪ Q0
h2(D1) for D1 ∈ (0, D(2)

1 ) (left) and

Q0
ch4(D0

1,max, D2) for D2 ∈ (0, D(1)
2 ) (right). The vertical dash-dot lines in the left plot pass through

D(1)
1 (solid box) and D(2)

1 (solid circle). In the right plot, D(1)
2 is marked by a sold box.
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A similar question of maximizing the biogas production at steady states has been discussed in [34]
for the well known four-dimensional AM2 model. There, two maxima of the input–output static
characteristics with respect to methane flow rate have also been determined, related to coexistence or
wash-out of the acidogenic bacteria in the bioreactor.

Using the methane flow rate Qch4, we compute further the input–output static characteristics Qch4
and Q0

ch4 on the set of the steady states E(D1, D2) and E0(D1, D2) respectively, namely:

Qch4 = Qch4(D1, D2) = Ych4,ac µac,ch4(S̄ac,ch4) X̄ac,

Q0
ch4 = Qch4(D1, D2) = Ych4,ac µac,ch4(S̄ac,ch4) X̄0

ac.

The latter are parameterized on the two inputs D1 and D2, since X̄ac and X̄0
ac depend on both D1

and D2; see (43) and (45), respectively.
With D1 = D0

1,max ≈ 0.0439, we compute the equilibrium components S̄ac,ch4 and X̄0
ac according

to (42) and (45), as well as Q0
ch4, all of them as functions of D2.

Figure 6 (right plot) visualizes the graph of Q0
ch4(D0

1,max, D2) for D2 ∈ (0, D(1)
2 ); the latter

is a unimodal function, taking its maximum at D0
2,max ≈ 0.00991 [1/h] with Q0

ch4,max =

Qch4(D0
1,max, D0

2,max) ≈ 0.0388 [L/h].
The latter results are theoretical and predicted by the model studies. Experimental data that

confirm these results by considering H2 and CH4 volumetric production under similar conditions for
which our model was developed (i.e., two bioreactors in a cascade with a similar ratio of working
volumes and operating in continuous mode) can be found in [35].

Using the presentation (1), we define and compute the constant γ and in this way the relationship
between the volumes V1 and V2 of the two bioreactors:

γ =
D0

2,max

D0
1,max

≈ 0.226 =⇒ V2 ≈ 4.42 V1.

The last relation implies that the volume of the second bioreactor BR2 for methane production
should be at least 4.4 times greater than the volume of the first bioreactor BR1 for hydrogen production.

6. Dynamic Behavior of the Model Solutions

The dynamic model has been implemented as one-page application “(H2,CH4) Bioreactors ver. 1.2”
in a web-based simulation software SmoWeb, see http://platform.sysmoltd.com/. SmoWeb is an
open computational platform in Python and a library of applications is built on top of this platform.
It does not require installation of any software by the user, since all computations are performed in a
web cloud. Python is used as the implementation language because it is a powerful modern general
purpose object-oriented language. Nowadays, Python has become an inseparable part of the scientific
computing due to the vast abundance of open source libraries and interfaces to major software tools.
A number of one-page applications have already been and are continuously being developed on top of
the functionality provided by the platform, including bioprocess Modeling as well.

All figures below are developed using the one-page application “(H2,CH4) Bioreactors ver. 1.2”.
The plots illustrate the dynamic behavior of the model solutions when D1, D2 and the input
concentration of the composites Xin

c take different values from Tables 3 and 4, respectively.

Table 3. Values of D1 and D2.

Time [h] 0–5000 5000–10,000 10,000–15,000 15,000–20,000

D1 [1/h] 0.005 0.01 0.015 0.02

D2 [1/h] 0.00113 0.00226 0.00339 0.00452

http://platform.sysmoltd.com/
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Figure 7 presents the time evolution of the flow rates Qh2(t) and Qch4(t) when D1 and D2 take
values from Table 3. Figures 8 and 9 display the model solutions by variable D1 and D2 given in
Table 3. It is seen that, if D1 ∈ (0, D(1)

1 ) = (0, 0.00843) and D2 ∈ (0, D(2)
2 ) = (0, 0.0156), then the

model solutions tend to the corresponding components of the locally stable coexistence equilibrium
E(D1, D2). When D1 ∈ (D(1)

1 , D(2)
1 ) = (0.00843, 0.0942) and D2 ∈ (0, D(1)

2 ) = (0, 0.0152), then the
solutions approach the locally stable wash-out equilibrium (with X̄ f a = 0) after sufficiently large time
t [h]; in particular, one can see in the left plot of Figure 9 that X f a(t) approaches 0 for sufficiently large
time t [h].

Figure 7. Time evolution of Qh2 and Qch4 with variable D1 and D2 from Table 3.

Figure 8. Dynamic behavior of the model solutions with variable D1 from Table 3.

Figure 9. Dynamic behavior of the model solutions with variable D1 from Table 3.

Table 4. Values of Xin
c .

Time [h] 0–5000 5000–10,000 10,000–15,000 15,000–20,000

Xin
c [gCOD/L] 40 50 75 60
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Figures 10–12 demonstrate the dynamics of Qh2(t), Qch4(t) as well as of the model solutions,
when D1 and D2 are fixed, D1 = 0.005 [1/h], D2 = 0.00113 [1/h], but the input concentration of
composites Xin

c varies taking values from Table 4. The model solutions tend to the corresponding
components of the coexistence equilibrium E(D1, D2), which is the locally stable steady state.
These numerical simulations demonstrate the fact that uncertainties in the input Xin

c do not affect the
stability of the model dynamics.

Figure 10. Time evolution of Qh2 and Qch4 with variable Xin
c from Table 4.

Figure 11. Dynamic behavior of the model solutions with variable Xin
c from Table 4.

Figure 12. Dynamic behavior of the model solutions with variable Xin
c from Table 4.

7. Discussion

In this paper, we propose a mathematical model describing the process of simultaneous production
of hydrogen and methane by anaerobic digestion of organic wastes in a cascade of two connected
continuously stirred bioreactors with different volumes. The proposed model is developed by adapting
and reducing the universal Anaerobic Digester Model No 1 (ADM1). The equations in our model are
separated in two groups, corresponding to the processes in the two bioreactors, for hydrogen and
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for methane production, respectively. The simplifications made in the two models naturally lead to
some limitations compared to the original ADM1. However, as already shown, the latter also does
not cover all possible reactions, e.g., possible inclusion in the model of the activity of the so called
syntrophicacetate oxidizers [36]. Some new, more complex models have also been developed [37],
which however have the same main disadvantage as ADM1—great complexity and thus impossibility
to carry out some mathematical analytical studies.

The investigation of the hydrogen and methane flow rates, Qh2 and Qch4 respectively, on steady
state operation, shows existence of maxima for some values of the dilution rates D1 and D2 in the
two bioreactors BR1 and BR2. The local maximum for D1 in BR1 reflects the maximal yield of
hydrogen from lipids at very long hydraulic retention time HRT = 1/D1,max ≈ 1/0.0072 ≈ 139 [hours]
≈ 5.8 [days]. This maximum is much less than the maximum yield of hydrogen derived from
monosaccharides and aminoacids (proteins) for the accepted combination of coefficients and initial
conditions reflecting the biodegradation of organic wastes. In [35] under similar conditions, results
close to our theoretical model-based predictions are obtained.

The model also allows us to find the optimal ratio between the volumes V1 and V2 of the two
bioreactors subject to the same optimization goal. Many studies in the literature report on TSAD
processes; however, most of them are operated manually and the ratio of working volumes of CSTRs is
not discussed. In some references, a ratio of 10 is accepted without comments. In [38], a TSAD system
consisting of two CSTRs operating at mesophilic conditions are used to investigate the effect of HRT
on hydrogen and methane production; the ratio of working volumes of the bioreactors is equal to 8
(without comments). In [39], optimization of TSAD of separately collected municipality bio-waste
is carried out in pilot scale CSTRs at thermophilic temperature, using recirculation of the digestate
in the second bioreactor to maintain pH in the first bioreactor at optimal value. There, the ratio of
working volumes of the bioreactors is equal to 3.8 (without comments). In [40], optimal loading rate
is obtained providing maximum H2 and CH4 productions in TSAD of cassava wastewaters using
specific thermophilic bioreactors and constant recycling ratio of 1:1 with automatic control of pH in
the hydrogenic bioreactor. The ratio of working volumes of both bioreactors is equal to 6 (without
explanations). The review article [41] is the first one that combines optimization approaches for three
possible products from AD—methane, hydrogen and volatile fatty acids (VFA), taking into account
different process parameters and types of bioreactors, including acidogenesis and methanogenesis
separation in two different bioreactors. However, the ratio of the bioreactors working volumes is not
given and discussed.

Using the adapted values of the coefficients in our model, we obtain an optimal ratio of
the working volumes of both bioreactors equal to 4.42 using a criterion for maximizing the
bioenergy production. This value falls into the range of the above reported values; however, it
is theoretically derived.

8. Conclusions

In this paper, we consider a mathematical model describing a biotechnological process of
hydrogen and methane production by anaerobic digestion. The process is carried out in two connected
continuously stirred bioreactors, thus the model equations are separated in two groups, describing the
processes in each bioreactor. We establish existence and uniqueness of positive and uniformly bounded
solutions of the model dynamics. Two equilibrium points of the model are computed and their local
asymptotic stability is studied with respect to the practically important input parameters, the dilution
rates D1 and D2 in the two bioreactors. The first equilibrium point corresponds to coexistence of
substrates and biomass, and the second one is related to wash-out of the LCFA degraders in the
first bioreactor. We show that there exists a value of the dilution rate D1, at which the coexistence
equilibrium disappears as a result of bifurcation of the steady state and the wash-out equilibrium
remains the only locally asymptotically stable equilibrium. The investigation of the hydrogen and
methane flow rates, Qh2 and Qch4, on steady state operation, shows existence of maxima at some
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values of the dilution rates D1 and D2. It is worth noting that the maximal hydrogen flow rate is
achieved at the steady state where the LCFA degrader X f a is washed out. This is established here by
taking numerical values for the model parameters from the literature [31]. Nevertheless, this fact could
help in the design of an AD process to achieve maximal production of either hydrogen and methane.
The future work envisages extending the model of the second bioreactor by equations describing
an acetogenesis phase, where other VFA (propionate, butyrate and valeriate) will be transformed
into acetate, as well as including inhibitory kinetics of the microorganisms growth. The elaborated
web-based software will allow us to check different model-based optimization and control strategies
that will contribute to designing and engineering a real process.
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Appendix A

Appendix A.1. Proof of Theorem 1

Equation (6) is linear with respect to Xc and can be solved explicitly:

Xc(t) = Xc(0)e−(D1+kdis)t +
D1Xin

c
D1 + kdis

.

The solution Xc(t) obviously exists for all t ≥ 0, is positive, and is uniformly bounded. In practice,
it is reasonable to consider only positive initial conditions Xc(0) > 0.

Assume that Xch(0) = 0. Then, Equation (7) implies Ẋch(0) = fch,xckdisXc(0) > 0 and so there
exists ε > 0 such that Xch(t) > 0 for each t ∈ (0, ε). Let Xch(0) ≥ 0 and suppose that there exists
t̄ch > 0 such that Xch(t) > 0 for each t ∈ (0, t̄ch) and Xch(t̄ch) = 0. Then, Ẋch(t̄ch) ≤ 0, but it follows
from (7) that Ẋch(t̄ch) > 0, a contradiction. Thus, Xch(t) > 0 for all t ≥ 0.

Similar arguments as above can be applied to Xpr and Xli from Equations (8) and (9), respectively,
so that Xpr(t) > 0 and Xli(t) > 0 for all t ≥ 0.

Equation (10) implies that, if Xsuaa(0) = 0, then Xsuaa(t) = 0 for all t ∈ [0, ∞) due to the
uniqueness of solutions of Cauchy problems. Assuming that Xsuaa(0) > 0, we obtain

Xsuaa(t) = Xsuaa(0) e
∫ t

0 [−D1+Ysuaa(µsuaa,su(Ssu(ξ),Saa(ξ))+µsuaa,aa(Ssu(ξ),Saa(ξ)))]dξ > 0 for all t ≥ 0.

Similarly, if X f a(0) = 0, then it follows from Equation (11) that X f a(t) = 0 for all t ∈ [0, ∞). Thus,
it is reasonable to consider only positive initial conditions X f a(0) > 0. Then, we have

X f a(t) = X f a(0) e−
∫ t

0 [D1−Yf aµ f a(S f a(ξ))]dξ > 0 for all t ≥ 0.

Assume now that X f a(0) > 0, Xsuaa(0) > 0 and Xj(0) ≥ 0 for j ∈ {c, ch, pr, li}.
If Ssu(0) = 0, then it follows from Equation (2) that

Ṡsu(0) = D1Sin
su + khyd,chXch(0) + fsu,likhyd,liXli(0) > 0,
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thus there exists ε > 0 with Ssu(t) > 0 for t ∈ (0, ε). Let Ssu(0) ≥ 0. Assume that there exists t̄su > 0
such that Ssu(t) > 0 for t ∈ (0, t̄su) and Ssu(t̄su) = 0. Then, Ṡsu(t̄su) ≤ 0, but, from (2), it follows that
Ṡsu(t̄su) > 0, a contradiction. Therefore, Ssu(t) > 0 for all t > 0. Using Equations (3) and (4), one can
show in a similar way that Saa(t) > 0 and S f a(t) > 0 for all t ≥ 0.

Denote
Σ1 = Xch + fch,xcXc, Σin

1 = fch,xcXin
c .

Since Xch(t) > 0 for all t ≥ 0, it follows from Equations (6) and (7) that

Σ̇1 = Ẋch + fch,xcẊc = D1

(
fch,xcXin

c − (Xch + fch,xcXc)
)
− khyd,chXch ≤ D1

(
Σin

1 − Σ1

)
.

Multiplying both sides of the inequality by eD1t > 0, we obtain eD1tΣ̇1 + D1eD1tΣ1 ≤ eD1tD1Σin
1 ,

which is equivalent to
d
dt
(
eD1tΣ1

)
≤ eD1tD1Σin

1 , and further

∫ t

0

d
dξ

eD1ξΣ1(ξ)dξ ≤ D1Σin
1

∫ t

0
eD1ξdξ,

thus finally
Σ1 ≤ e−D1tΣ1(0) + Σin

1

(
1− e−D1t

)
.

The latter inequality means that lim supt→∞ Σ1(t) ≤ Σin
1 . Since Xc(t) is positive and bounded,

and Xch(t) is positive, this implies that Xch(t) is uniformly bounded and exists for all t ∈ [0, ∞).
Denote Σ2 = Xpr + fpr,xcXc, Σin

2 = fpr,xcXin
c . Then, using the fact that Xch(t) ≥ 0 for all t ≥ 0, we

obtain from Equations (6) and (9)

Σ̇2 = D1

(
fpr,xcXin

c − Xpr − fpr,xcXc

)
− khyd,prXpr ≤ D1

(
Σin

2 − Σ2

)
,

which means that lim supt→∞ Σ2(t) ≤ Σin
2 . Since Xc(t) is positive and bounded, the latter inequality

implies that Xpr(t) is also uniformly bounded, and exists for all t ∈ [0, ∞).
Define Σ3 = Xli + fli,xcXc and Σin

3 = fli,xcXin
c . Then, using Equations (6) and (9) and the fact that

Xli(t) ≥ 0 for all t ≥ 0, we obtain

Σ̇3 = D1

(
fli,xcXin

c − Xli − fli,xcXc

)
− khyd,liXli ≤ D1

(
Σin

3 − Σ3

)
,

which implies lim supt→∞ Σ3(t) ≤ Σin
3 . Since Xc(t) is positive and bounded, the latter inequality

means that Xli(t) is also uniformly bounded, and exists for all t ∈ [0, ∞).
Consider now

Σ4 = S f a +
1

Yf a
X f a + f f a,liXli + f f a,li fli,xcXc, Σin

4 = Sin
f a + f f a,li fli,xcXin

c .

Then, we obtain from Equations (6), (9), and (11)

Σ̇4 = D1

(
Σin

4 − Σ4

)
, thus Σ4(t) = Σ4(0)e−D1t + Σin

4

(
1− e−D1t

)
> 0.

Since Xc(t) and Xli(t) are positive and bounded, S f a(t) and X f a(t) are positive, the latter
inequality implies that S f a(t) and X f a(t) are uniformly bounded and exists for all t ∈ [0, ∞).
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Further consider

Σ5 = Ssu + Saa +
1

Ysuaa
Xsuaa + Xch + Xpr + fsu,liXli

+
(

fch,xckdis + fli,xc fsu,li + fpr,xc
)

Xc,

Σin
5 = Sin

su + Saa,in +
(

fch,xckdis + fli,xc fsu,li + fpr,xc
)

Xin
c .

Then, we obtain

Σ̇5 = D1

(
Σin

5 − Σ5

)
⇒ Σ5(t) = Σ5(0)e−D1t + Σin

5

(
1− e−D1t

)
.

Since Xc(t), Xch(t), Xli(t) and Xpr(t) are positive and bounded, the above presentation implies
that Ssu(t), Saa(t) and Xsuaa(t) are also uniformly bounded, and exist for all t ∈ [0, ∞).

Consider now Equation (5). Since Sac(t) serves as input into the second bioreactor, see Equation (12),
it is reasonable to consider only positive initial values Sac(0) > 0. The positivity of the phase
variables included on the right-hand side of Equation (5) imply that Ṡac(t) ≥ −D1Sac(t) and thus
Sac(t) ≥ Sac(0)e−D1t > 0 for all t ∈ [0, ∞).

Furthermore, the boundedness of the specific growth rate functions imply that there exists a
constant Γ1 > 0 such that Ṡac(t) ≤ −D1Sac(t) + Γ1 for each t ≥ 0. Then, we have consecutively

d
dt

(
eD1tSac(t)

)
≤ Γ1eD1t

eD1tSac(t) ≤ Sac(0) + Γ1

∫ t

0
eD1ξdξ

Sac(t) ≤ e−D1tSac(0) +
Γ1

D1

(
1− e−D1t

)
,

which means that lim supt→∞ Sac(t) ≤
Γ1

D1
.

Therefore, all solutions of the model (2)–(11) are positive, uniformly bounded, and thus exist for
all t ≥ 0.

Consider now the models (12) and (13). Obviously, if Xac(0) = 0, then Xac(t) = 0 for all t ≥ 0.
Therefore, it is reasonable to consider only positive initial conditions Xac(0) > 0. Then,

Xac(t) = Xac(0)e
∫ t

0 [−D2+µac,ch4(Sac,ch4(ξ))]dξ > 0 for all t ≥ 0.

If Sac,ch4(0) = 0, then Ṡac,ch4(0) = D2Sac(0) > 0. Assume that there exists t̂ > 0 such that
Sac,ch4(t) ≥ 0 for t ∈ (0, t̂) but Sac,ch4(t̂) = 0. Then, there exists ε > 0 such that Ṡac,ch4(t) > 0 for each
t ∈ (t̂− ε, t̂), and so

Sac,ch4(t̂) = Sac,ch4(t) +
∫ t̂

t
Ṡac,ch4(ξ)dξ > 0,

which is a contradiction. Thus, Sac,ch4(t) > 0 for all t ≥ 0.
Finally, denote Σ6 = Sac,ch4 + YacXac. Since Sac(t) is positive and uniformly upper bounded,

there exists a constant Γ2 > 0 such that Sac(t) ≤ Γ2 for all t ≥ 0. Then, it is straightforward to see that

Σ̇6 = D2(Sac − Σ6) ≤ D2(Γ2 − Σ6),

which means that Σ6(t) ≤ Σ6(0)e−D2t + Γ2(1− e−D2t). Thus, lim supt→∞ Σ6(t) ≤ Γ2. Since Sac,ch4 and
Xac are positive, it follows that they are bounded as well. This proves Theorem 1.
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Appendix A.2. Characteristic Polynomials of the Equilibrium Points E1(D1) and E0
1(D1)

We introduce the following notations for simplicity and better readability:

g1 = D1(Sin
su − Ssu) + khyd,chXch + fsu,likhyd,liXli − µsuaa,suXsuaa

g2 = D1(Sin
aa − Saa) + khyd,prXpr − µsuaa,aaXsuaa

g3 = D1(Sin
f a − S f a) + f f a,likhyd,liXli − µ f aX f a

g4 = −D1Sac + (1−Ysuaa) [ fac,suµsuaa,su + fac,aaµsuaa,aa] Xsuaa + 0.7(1−Yf a)µ f aX f a

g5 = D1(Xin
c − Xc)− kdisXc

g6 = −(D1 + khyd,ch)Xch + fch,xckdisXc

g7 = −(D1 + khyd,pr)Xpr + fpr,xckdisXc

g8 = −(D1 + khyd,li)Xli + fli,xckdisXc

g9 = [−D1 + Ysuaa(µsuaa,su + µsuaa,aa)] Xsuaa

g10 = −(D1 −Yf aµ f a)X f a.

The Jacobi matrix J related to gj, j = 1, 2, . . . , 10, with respect to (Ssu, Saa, S f a, Sac, Xc, Xch, Xpr,
Xli, Xsuaa, X f a) has the form

J =



∂g1
∂Ssu

∂g1
∂Saa

∂g1
∂S f a

∂g1
∂Sac

∂g1
∂Xc

∂g1
∂Xch

∂g1
∂Xpr

∂g1
∂Xli

∂g1
∂Xsuaa

∂g1
∂X f a

∂g2
∂Ssu

∂g2
∂Saa

∂g2
∂S f a

∂g2
∂Sac

∂g2
∂Xc

∂g2
∂Xch

∂g2
∂Xpr

∂g2
∂Xli

∂g2
∂Xsuaa

∂g2
∂X f a

...
∂g10
∂Ssu

∂g10
∂Saa

∂g10
∂S f a

∂g10
∂Sac

∂g10
∂Xc

∂g10
∂Xch

∂g10
∂Xpr

∂g10
∂Xli

∂g10
∂Xsuaa

∂g10
∂X f a


Using the explicit dependance of gj, j = 1, 2, . . . , 10, on the above variables, we obtain

J =



∂g1
∂Ssu

∂g1
∂Saa

0 0 0 ∂g1
∂Xch

0 ∂g1
∂Xli

∂g1
∂Xsuaa

0
∂g2
∂Ssu

∂g2
∂Saa

0 0 0 0 ∂g2
∂Xpr

0 ∂g2
∂Xsuaa

0

0 0 ∂g3
∂S f a

0 0 0 0 ∂g3
∂Xli

0 ∂g3
∂X f a

∂g4
∂Ssu

∂g4
∂Saa

∂g4
∂S f a

∂g4
∂Sac

0 0 0 0 ∂g4
∂Xsuaa

∂g4
∂X f a

0 0 0 0 ∂g5
∂Xc

0 0 0 0 0

0 0 0 0 ∂g6
∂Xc

∂g6
∂Xch

0 0 0 0

0 0 0 0 ∂g7
∂Xc

0 ∂g7
∂Xpr

0 0 0

0 0 0 0 ∂g8
∂Xc

0 0 ∂g8
∂Xli

0 0
∂g9
∂Ssu

∂g9
∂Saa

0 0 0 0 0 0 ∂g9
∂Xsuaa

0

0 0 ∂g10
∂S f a

0 0 0 0 0 0 ∂g10
∂X f a


The characteristic polynomial corresponding to the Jacobi matrix J is defined by det(J − λI10),

where λ is any complex number and I10 is the (10× 10)–identity matrix.
We note that the Jacobian J = (Jij), i, j = 1, 2, . . . , 10, is a sparse matrix, whose fourth column

and fifth row contain only one nonzero element, i.e., J44 = ∂g4
Sac

= −D1 and J55 = ∂g5
Xc

= −D1 − kdis,
respectively. Then, we obtain
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det(J − λI10) = (−D1 − λ)(−D1 − kdis − λ)×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1
∂Ssu
−λ

∂g1
∂Saa

0 khyd,ch 0 fsu,likhyd,li −µsuaa,su 0

∂g2
∂Ssu

∂g2
∂Saa
−λ 0 0 khyd,pr 0 −µsuaa,aa 0

0 0 ∂g3
∂S f a
−λ 0 0 f f a,likhyd,li 0 −µ f a

0 0 0 −D1−khyd,ch−λ 0 0 0 0
0 0 0 0 −D1−khyd,pr−λ 0 0 0
0 0 0 0 0 −D1−khyd,li−λ 0 0

∂g9
∂Ssu

∂g9
∂Saa

0 0 0 0 ∂g9
∂Xsuaa

−λ 0

0 0 ∂g10
∂S f a

0 0 0 0 ∂g10
∂X f a
−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−D1−λ)(−D1−kdis−λ)(−D1−khyd,ch−λ)(−D1−khyd,pr−λ)(−D1−khyd,li−λ)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1
∂Ssu
−λ

∂g1
∂Saa

0 −µsuaa,su 0

∂g2
∂Ssu

∂g2
∂Saa
−λ 0 −µsuaa,aa 0

0 0 ∂g3
∂S f a
−λ 0 −µ f a

∂g9
∂Ssu

∂g9
∂Saa

0 ∂g9
∂Xsuaa

− λ 0

0 0 ∂g10
∂S f a

0 ∂g10
∂X f a
−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−D1−λ)(−D1−kdis−λ)(−D1−khyd,ch−λ)(−D1−khyd,pr−λ)(−D1−khyd,li−λ)

× det(∆(5) − λI5),

where I5 is the (5× 5)-identity matrix and ∆(5) denotes the matrix

∆(5) =



∂g1
∂Ssu

∂g1
∂Saa

0 −µsuaa,su 0

∂g2
∂Ssu

∂g2
∂Saa

0 −µsuaa,aa 0

0 0 ∂g3
∂S f a

0 −µ f a

∂g9
∂Ssu

∂g9
∂Saa

0 ∂g9
∂Xsuaa

0

0 0 ∂g10
∂S f a

0 ∂g10
∂X f a


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Furthermore, we obtain

det(∆(5) − λI5) = −µ f a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1
∂Ssu
− λ

∂g1
∂Saa

0 −µsuaa,su

∂g2
∂Ssu

∂g2
∂Saa
− λ 0 −µsuaa,aa

∂g9
∂Ssu

∂g9
∂Saa

0 ∂g9
∂Xsuaa

− λ 0

0 0 ∂g10
∂S f a

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

(
∂g10

∂X f a
− λ

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1
∂Ssu
− λ

∂g1
∂Saa

0 −µsuaa,su

∂g2
∂Ssu

∂g2
∂Saa
− λ 0 −µsuaa,aa

0 0 ∂g3
∂S f a
− λ 0

∂g9
∂Ssu

∂g9
∂Saa

0 ∂g9
∂Xsuaa

− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[
µ f a

∂g10

∂S f a
+

(
∂g10

∂X f a
− λ

)(
∂g3

∂S f a
− λ

)]
× det(∆(3) − λI3),

where I3 is the (3× 3)-identity matrix and ∆(3) denotes the matrix

∆(3) =


∂g1
∂Ssu

∂g1
∂Saa

−µsuaa,su

∂g2
∂Ssu

∂g2
∂Saa

−µsuaa,aa

∂g9
∂Ssu

∂g9
∂Saa

∂g9
∂Xsuaa

 .

Replacing the derivatives ∂g10
∂S f a

, ∂g10
∂X f a

and ∂g3
∂S f a

by their corresponding explicit expressions,

the characteristic polynomial det(J − λI10) is presented by

det(J − λI10) = (−D1 − λ)(−D1 − kdis − λ)(−D1 − khyd,ch − λ)(−D1 − khyd,pr − λ)

× (−D1 − khyd,li − λ)

[
µ f aYf aX f a

dµ f a

dS f a
+
(
−D1 + Yf aµ f a − λ

)(
−D1 − X f a

dµ f a

dS f a
− λ

)]
× det(∆(3) − λI3).

The corresponding partial derivatives in ∆(3) are as follows:

∂g1

∂Ssu
= −D1 −

∂µsuaa,su

∂Ssu
X̄suaa

∂g1

∂Saa
= −∂µsuaa,su

∂Saa
X̄suaa

∂g2

∂Ssu
= −∂µsuaa,aa

∂Ssu
X̄suaa

∂g2

∂Saa
= −D1 −

∂µsuaa,aa

∂Saa
X̄suaa

∂g9

∂Ssu
= YsuaaX̄suaa

(
∂µsuaa,su

∂Ssu
+

∂µsuaa,aa

∂Ssu

)
∂g9

∂Saa
= YsuaaX̄suaa

(
∂µsuaa,su

∂Saa
+

∂µsuaa,aa

∂Saa

)
∂g9

∂Xsuaa
= −(D1 −Yf aµ(S̄ f a).

(i). The characteristic polynomial of the coexistence equilibrium

E1 = E1(D1) = (S̄su, S̄aa, S̄ f a, S̄ac, X̄c, X̄ch, X̄pr, X̄li, X̄suaa, X̄ f a) > 0 for D1 ∈
(

0, D(1)
1

)
.
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Denote by P(E1; λ) the characteristic polynomial det(J − λI10) evaluated at the equilibrium E1,
and by R(E1; λ) the characteristic polynomial det(∆(3)− λI3) evaluated at the equilibrium components
(S̄su, S̄aa, X̄suaa) for D1 ∈

(
0, D(1)

1

)
. Taking into account that −D1 + Yf aµ f a(S̄ f a) = 0, we obtain for

P(E1; λ) the presentation

P(E1; λ) = (−D1 − λ)(−D1 − kdis − λ)(−D1 − khyd,ch − λ)

×(−D1 − khyd,pr − λ)(−D1 − khyd,li − λ)

×
[

λ2 +

(
D1 +

dµ f a

dS f a
(S̄ f a)X̄ f a

)
λ + D1

dµ f a

dS f a
(S̄ f a)X̄ f a

]
× R(E1; λ).

(ii). The characteristic polynomial of the equilibrium

E0
1 = E0

1(D1) = (S̄su, S̄aa, S̄0
f a, S̄0

ac, X̄c, X̄ch, X̄pr, X̄li, X̄suaa, X̄ f a = 0) for D1 ∈
(

D(1)
1 , D(2)

1

)
.

Denote by P(E0
1; λ) the characteristic polynomial det(J − λI10) evaluated at the equilibrium E0

1,
and by R(E0

1 ; λ) the characteristic polynomial det(∆(3)− λI3) evaluated at the equilibrium components

(S̄su, S̄aa, X̄suaa) for D1 ∈
(

D(1)
1 , D(2)

1

)
. Taking into account that X̄ f a = 0 and that−D1 +Yf aµ f a(S̄0

f a) 6=
0 in this case, we obtain for P(E0

1 ; λ) the presentation

P(E0
1 ; λ) = (−D1 − λ)2(−D1 − kdis − λ)(−D1 − khyd,li − λ)(−D1 − khyd,pr − λ)

×(−D1 − khyd,li − λ)(−D1 + Yf aµ f a(S̄0
f a)− λ)× R(E0

1; λ).
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3. Musa Egieya, J.; Čuček, L.; Zirngast, K.; Isafiade, A.J.; Pahor, B.; Kravanja Z. Synthesis of biogas supply

networks using various biomass and manure types. Comput. Chem. 2019, 122, 129–151.
4. Aceves-Lara, C.-A.; Latrille, E.; Steyer, J.-P. Optimal control of hydrogen production in a continuous anaerobic

fermentation bioreactor. Intern. Jrn. Hydrog. Energy 2010, 35, I0710–I0718.
5. Ausiello, A.; Micoli, L.; Turco, M.; Toscano, G.; Florio, C.; Pirozzi, D. Biohydrogen production by

dark fermentation of Arundo donax using a new methodology for selection of H2-producing bacteria.
Intern. Jrn. Hydrog. Energy 2017, 42, 30599–30612.

6. Guo, X.M.; Trably, E.; Latrille, E.; Carrere, H.; Steyer, J.-P. Hydrogen production from agricultural waste by
dark fermentation: a review. Int. Jrn. Hydrog. Energy 2010, 36, 10660–10673.

7. Pakarinen, O.M.; Kaparaju, P.L.N.; Rintala, J.A. Hydrogen and methane yields of untreated, water-extracted
and acid (HCl) treated maize in one- and two-stage batch assays. Int. Jrn. Hydrog. Energy 2011, 36,
14401–144407.

8. Ruggeri, B.; Tommasi, T.; Sanfilippo, S. BioH2 & BioCH4 through Anaerobic Digestion (From Research to Full-Scale
Applications); Springer: London, England, 2015.

9. Gerardi, M.H. The Microbiology of Anaerobic Digesters; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003.
10. Cárdenas, E.L.M.; Zapata-Zapata, A.D.; Kim, D. Hydrogen Production from Coffee Mucilage in Dark

Fermentation with Organic Wastes. Energies 2019, 12, 71.
11. Xu, L.; Wang, Y.; Shah, S.A.A.; Zameer, H.; Solangi, Y.A.; Walasai, G.D.; Siyal, Z.A. Economic viability

and environmental efficiency analysis of hydrogen production processes for the decarbonization of energy
systems. Processes 2019, 7, 494.

12. Prapinagsorn, W.; Sittijunda, S.; Reungsang, A. Co-Digestion of Napier Grass and Its Silage with Cow Dung
for Bio-Hydrogen and Methane Production by Two-Stage Anaerobic Digestion Process. Energies 2018, 11, 47.



Processes 2020, xx, 5 26 of 27

13. Al-Rubaye, H.; Karambelkar, S.; Shivashankaraiah, M.M.; Smith, J.D. Process simulation of two-stage
anaerobic digestion for methane production. Biofuels 2019, 10, 181–191.

14. Farhat, A.; Miladi, B.; Hamdi, M.; Bouallagui, H. Fermentative hydrogen and methane co-production from
anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch
digesters. Environ. Sci. Pollut. Res. 2018, 25, 27945–27958.

15. Nasr, N.; Hafez, H.; Naggar, M.H.E.; Nakhla, G. Application of artificial neural networks for modeling of
biohydrogen production. Int. Jrn. Hydrog. Energy 2013, 38, 3189–3195.

16. Wang, J.; Wan, W. Kinetic models for fermentative hydrogen production: A review. Int. Jrn. Hydrog. Energy
2009, 34, 3313–3323.

17. Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.;
Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No. 1 (ADM1). Water Sci. Technol. 2002, 45,
65–73.

18. Dochain, D.; Vanrolleghem, P.A.V. Dynamical Modeling and Estimation in Wasterwater Treatement Process; IWA
Publishing: London, UK, 2001.

19. Neba, F.A.; Asiedu, N.Y.; Addo, A.; Morken, J.; Østerhus, S.W.; Seidu, R. Biodigester rapid analysis and
design system (B–RADeS): A candidate attainable region-based simulator for the synthesis of biogas reactor
structures. Comput. Chem. 2020, 132, 106607.

20. Simeonov, I. Dynamical modeling and estimation in wasterwater treatement process. In Contemporary
Approaches to Modeling, Optimisation and Control of Biotechnological Processes; Tzonkov, S., Ed.; Prof. M. Drinov
Acad. Publ. House: Sofia, Bulgaria, 2010.

21. Borisov, M.; Dimitrova, N.; Simeonov, I. Mathematical Modeling of anaerobic digestion with hydrogen and
methane production. In Proceedings of the 6th IFAC Conference on Foundations of Systems Biology in
Engineering, the International Federation of Automatic Control, Magdeburg, Germany, 9–12 October 2016;
IFAC–PapersOnLine (TuPP.2: 1–8); Volume 49, pp. 231–238.

22. Chorukova, E.; Simeonov, I. Mathematical modeling of the anaerobic digestion in two-stage system with
production of hydrogen and methane including three intermediate products. Int. Jrn. Hydrog. Energy 2020,
45, 11550–11558.

23. Simeonov, I.; Chorukova, E. Mathematical Modeling of the Anaerobic Digestion with Production of
Hydrogen and Methane. In Proceedings of the 4th International Conference on Water, Energy and
Environment (ICWEE), Burgas, Bulgaria, 1–3 June 2016; pp. 32–38.

24. Guellout, Z.; Clion, V.; Benguerba, Y.; Dumas, C.; Ernst, B. Study of the dark fermentative hydrogen
production using modified ADM1 models. Biochem. Eng. J. 2018, 132, 9–19.

25. Schievano, A.; Tenca, A.; Lonati, S.; Manzini, E.; Adani, F. Can two-stage instead of one-stage anaerobic
digestion really increase energy recovery from biomass? Appl. Energy 2014, 124, 335–342.

26. Donoso-Bravo, A.; Gajardo, P.; Sebbah, M.; Vicencio, D. Comparison of performance in an anaerobic digestion
process: one-reactor vs two-reactor configurations. Math. Biosci. Eng. 2019, 16, 2447–2465.

27. Blumensaat, F.; Keller, J. Modeling of two-stage anaerobic digestion using the IWA Anaerobic Digestion
Model No. 1 (ADM1). Water Res. 2005, 39, 171–183.

28. Najdenski, H.; Ilyin, V.; Angelov, P.; Hubenov, V.; Korshunov, D.; Kussovski, V.; Dimitrova, L.; Simeonov, I.
Laboratory biodegradation of potential cellulose wastes generated during long-term manned space missions.
Ecol. Eng. Env. Prot. 2019, 1, 71–78.

29. Denchev, D.; Hubenov, V.; Simeonov, I.; Kabaivanova, L. Biohydrogen production from lignocellulosic
waste with anaerobic bacteria. In Proceedings of the 4th International Conference on Water, Energy and
Environment (ICWEE), Burgas, Bulgaria, 1–3 June 2016; pp. 7–12.

30. Simeonov, I. Mathematical modeling and parameters estimation of anaerobic fermentation process. Bioprocess
Eng. 1999, 21, 377–381.

31. Rosen, C.; Jeppsson, U. Aspects on ADM1 Implementation within the BSM2 Framework; Preprint
CODEN:LUTEDX/(TEIE-7224); Department of Industrial Electrical Engineering and Automation, Lund
University: Lund, Sweden, 2006; pp. 1–35.

32. Hess, J.; Bernard, O. Design and study of a risk management criterion for an unstable anaerobic wastewater
treatment process. J. Process. Control 2008, 18, 71–79.

33. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos; Springer: New York, NY, USA, 1990.



Processes 2020, xx, 5 27 of 27

34. Bayen, T.; Gajardo, P. On the steady state optimization of the biogas production in a two-stage anaerobic
digestion model. Jrn. Math. Biol. 2019, 78, 1067–1087.

35. Li, Q.; Li, Y. Coproduction of hydrogen and methane in a CSTR-IC two-stage anaerobic digestion system
from molasses wastewater. Water Sci. Technol. 2019, 79, 270–277.

36. Simeonov, I.; Karakashev, D. Mathematical Modeling of the anaerobic digestion including the syntrophic
acetate oxidation. In Proceedings of the 7th Vienna International Conference on Mathematical Modeling
(MATHMOD), Vienna, Austria, 14–17 February 2012; Volume 7, pp. 304–309.

37. Borisov, M.; Denchev, D.; Simeonov, I. Mathematical Modeling of a two-stage anaerobic digestion process
with hydrogen and methane production using ADM1. Ecol. Eng. Environ. Prot. 2020, 1, 18–29.

38. Dareioti, M.A.; Kornaros, M. Effect of hydraulic retention time (HRT) on the anaerobic co-digestionof
agro-industrial wastes in a two-stage CSTR system. Bioresour. Technol. 2014, 167, 407–415.

39. Cavinato, C.; Bolzonella, D.; Faton, F.; Cecchi, F.; Pavan, P. Optimization of two-phase thermophilic
anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation.
Bioresour. Technol. 2011, 102, 8605–8611.

40. Intanoo, P.; Rangsanvigit, P.; Malakul, P.; Chavadej, S. Optimization of separate hydrogen and methane
production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB)
system under thermophilic operation. Bioresour. Technol. 2014, 173, 256–265.

41. Khan, M.A.; Ngo, H.H.; Guo, W.S.; Liu, Y.; Nghiem, L.D.; Hai, F.I.; Deng, L.J.; Wang, J.; Wu, Y. Optimization of
process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion.
Bioresour. Technol. 2016, 219, 738–748.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Process Description
	Model Description
	Investigation of the Model Solutions
	Equilibrium Points of the Model
	Local Asymptotic Stability of the Equilibrium Points

	Optimization of Hydrogen and Methane Flow Rates
	Dynamic Behavior of the Model Solutions
	Discussion
	Conclusions
	
	Proof of Theorem 1
	Characteristic Polynomials of the Equilibrium Points E1(D1) and E10(D1)

	References

