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Abstract. In this paper we study a nonlinear functional differential
model of a biological digestion process, involving two microbial popula-
tions and two substrates. We establish the global asymptotic stability of
the model solutions towards a previously chosen equilibrium point and
in the presence of two different discrete delays. Numerical simulation
results are also included.

1 Introduction

We consider a well-known anaerobic digestion model for biological treatment of
wastewater in a continuously stirred tank bioreactor (cf. for example [2], [3]).
Here we include discrete time delays in the equations to model the delay in
the conversion of nutrient consumed by the viable biomass. For more detailed
motivation see [13], [14] and the references therein. The model is described by
the following nonlinear differential equations:

d

dt
s1(t) = (si1 − s1(t))u− k1µ1(s1(t))x1(t)

d

dt
x1(t) = µ1(s1(t− τ1))x1(t− τ1)− αux1(t)

d

dt
s2(t) = (si2 − s2(t))u+ k2µ1(s1(t))x1(t)− k3µ2(s2(t))x2(t)

d

dt
x2(t) = µ2(s2(t− τ2))x2(t− τ2)− αux2(t).

(1)

The state variables s1, s2 and x1, x2 denote substrate and biomass concen-
trations, respectively: s1 is the organic substrate, characterized by its chemical
oxygen demand (COD), s2 denotes the volatile fatty acids (VFA), x1 and x2 are
the acidogenic and methanogenic bacteria respectively; si1 and si2 are the input
substrate concentrations. The constants τi ≥ 0, i = 1, 2, stand for the time delay
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in conversion of the corresponding substrate to viable biomass for the ith bacte-
rial population. The parameter α ∈ (0, 1) represents the proportion of bacteria
that are affected by the dilution rate u. The constants k1, k2 and k3 are yield
coefficients related to COD degradation, VFA production and VFA consumption
respectively. For biological evidence, si1 and si2 as well as all parameters in (1)
are assumed to be positive.

The functions µ1(s1) and µ2(s2) model the specific growth rates of the bac-
teria. Following [9] we impose the following assumption on µ1 and µ2:

Assumption A1: For each j = 1, 2 the function µj(sj) is defined for sj ∈
[0,+∞), µj(0) = 0, and µj(sj) > 0 for each sj > 0; the function µj(sj) is
bounded and Lipschitz continuous for all sj ∈ [0,+∞).

The equations (1) with τ1 = τ2 = 0 have been already investigated by the
authors; thereby, global stabilizability via feedback control is proposed in [4],
whereas [5] considers the case of global stabilization of the solutions using con-
stant dilution rate u. This second approach is now extended to model (1) in-
volving discrete delays τj > 0, j = 1, 2. More precisely, in this paper we define
a suitable positive constant ub and prove that for any (admissible) value of
the dilution rate u ∈ (0, ub) there exists an equilibrium point which is globally
asymptotically stable for system (1). To our knowledge, such investigations have
not been carried out for this model.

2 Global asymptotic stabilizability of the model

We set ub =
1

α
min

{
µ1(si1), µ2(si2)

}
and make the following

Assumption A2. For each point ū ∈ (0, ub) there exist points s1(ū) = s̄1 ∈(
0, si1

)
and s2(ū) = s̄2 ∈

(
0, si2

)
, such that the following equalities hold true

ū =
1

α
µ1(s̄1) =

1

α
µ2 (s̄2) .

Assumption A2 is called in [7] regulability of the system.

Let s̄1 and s̄2 be determined according to Assumption A2. Compute further

x1(ū) = x̄1 =
si1 − s̄1

αk1
, x2(ū) = x̄2 =

si2 − s̄2 + αk2x̄1

αk3
. (2)

Then the point p(ū) = p̄ = (s̄1, x̄1, s̄2, x̄2) is a nontrivial (positive) equilibrium
point for system (1).

Assumption A3. There exist positive numbers ν1 and ν2 such that the
following inequalities hold true

µ1(s−1 ) < µ1(s̄1) < µ1(s+
1 ), µ2(s−2 ) < µ2(s̄2) < µ2(s+

2 )

for each

s−1 ∈ (0, s̄1), s+
1 ∈ (s̄1, s

i
1 + ν1], s−2 ∈ (0, s̄2) and s+

2 ∈ (s̄2, s
i
2 + ν2].
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Assumption A3 is always fulfilled when the functions µj(·), j = 1, 2, are
monotone increasing (like the Monod specific growth rate). If at least one func-
tion µj(·) is not monotone increasing (like the Haldane law) then the points s̄j
have to be chosen sufficiently small in order to satisfy Assumption A3.

Denote by R+ the set of all positive real numbers and by C+
τ – the nonnega-

tive cone of continuous functions ϕ : [−τ, 0]→ R+, where τ = max{τ1, τ2}, and
set C4

τ := {ϕ = (ϕs1 , ϕx1
, ϕs2 , ϕx2

) ∈ C+
τ × C+

τ × C+
τ × C+

τ }.
Let ū ∈ (0, ub) be chosen in such a way that Assumptions A2 and A3 are

satisfied. Denote by Σ the system obtained from (1) by substituting the pa-
rameter u by ū. Using the Schauder fixed-point theorem it is easy to prove
that for each ϕ ∈ C4

τ there exists % > 0 and a unique solution Φ(t, ϕ) =
(s1(t, ϕ), x1(t, ϕ), s2(t, ϕ), x2(t, ϕ)) of (1) defined on [−τ, %) such that Φ(t, ϕ) =
ϕ(t) for each t ∈ [−τ, 0] (cf. Theorem 2.1 in [8]).

We shall prove below that the equilibrium point p̄ is globally asymptotically
stable for system Σ.

Theorem 1. Let the Assumptions A1, A2 and A3 be fulfilled and let ϕ0 be an
arbitrary element of C4

τ . Then the corresponding solution Φ(t, ϕ0) is well defined
on [−τ,+∞) and converges asymptotically towards p̄.

Proof. We fix an arbitrary ϕ0 ∈ C4
τ . Then there exists % > 0 such that the corre-

sponding solution Φ(t, ϕ0) of Σ (denoted by Φ(t) := (s1(t), x1(t), s2(t), x2(t)) for
simplicity) is defined on [−τ, %). The proof uses some ideas from [13] and [14].
For the reader’s convenience we subdivide the proof in five claims.

Claim 1. The components of Φ(t) take positive values for each t ∈ [−τ, %).

Proof of Claim 1. If s1(t) = 0 for some t ∈ [0, %), then ṡ1(t) > 0. This implies
that s1(t) > 0 for each t ∈ [−τ, %). Analogously one can obtain that s2(t) > 0
for each t ∈ [−τ, %). Since

xj(t) = ϕxj
(0)e−αūt +

∫ t

0

e−αū(t−σ)µj(sj(σ − τj))xj(σ − τj)dσ, j = 1, 2,

then xj(t) > 0 for each t ∈ [−τ, %). This completes the proof of Claim 1. ♦
Claim 2. The solution Φ(t) ofΣ is defined for each t ∈ [−τ,+∞) and is bounded.

Proof of Claim 2. Denote s(t) := k2s1(t) +k1s2(t) and si = k2s
i
1 +k1s

i
2. Then

s(t) satisfies the differential equation ṡ(t) = ū(si−s(t))−k1k3µ2(s2(t))x2(t). We
set q1(t) := s(t) + k1k3x2(t+ τ2)− si/α and q2(t) := s(t) + k1k3x2(t+ τ2)− si.
Then

q̇1(t) = ū[si−s(t)−αk1k3x2(t+τ2)] ≤ ū[si−α (s(t) + k1k3x2(t+ τ2))] = −αūq1(t),

and hence
q1(t) ≤ q1(0) · e−αt ū. (3)

The latter inequality shows that q1(t) is bounded. Using the fact that the values
of s1(t), s2(t) and x2(t) are positive, it follows that s1(t), s2(t) and x2(t) are
bounded as well. Analogously one can obtain that

q2(t) ≥ q2(0) · e−t ū. (4)
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The estimates (3), (4) and the definition of s(·) imply that for each ε > 0 there
exists Tε > 0 such that for each t ≥ Tε the following inequalities hold true

si − ε < k2s1(t) + k1s2(t) + k1k3x2(t+ τ2) <
si

α
+ ε. (5)

It is easy to see (in the same way as the estimates (5)) that for each ε > 0 there
exists a finite time Tε > 0 such that for all t ≥ Tε the following inequalities hold

si1 − ε < s1(t) + k1x1(t+ τ1) <
si1
α

+ ε. (6)

The inequalities (6) imply that x1(t) is also bounded. Thus the trajectory Φ(t)
of Σ is well defined and bounded for all t ≥ −τ (cf. also Theorem 3.1 of [8]).
This completes the proof of Claim 2. ♦
Claim 3. There exists T0 > 0 such that s1(t) < si1 and s2(t) < si2 + k2s

i
1/k1 for

each t ≥ T0.

Proof of Claim 3. First let us assume that there exists t̄ > 0 such that s1(t) ≥
si1 for all t ≥ t̄. Then we have

ṡ1(t) = ū(si1 − s1(t))− k1µ1(s1(t))x1(t) < 0.

Since s1(·) and x1(·) are bounded differentiable functions defined on [−τ,+∞),
then ṡ1(·) is an uniformly continuous function. Barbălat’s Lemma (cf. [6]) leads
to

0 = lim
t→∞

ṡ1(t) = lim
t→∞

[ū(si1 − s1(t))− k1µ1(s1(t))x1(t)].

Because si1 − s1(t) ≤ 0 and x1(t) > 0, the above equalities imply that s1(t) ↓ si1
and x1(t) ↓ 0 as t ↑ ∞. On the other hand, if we set (cf. Lemma 2.2 of [14])

z1(t) := x1(t) +

∫ t

t−τ1
µ1(s1(σ))x1(σ)dσ,

we obtain according to Assumption 3 that ż1(t) = x1(t)(µ1(s1(t)) − αū) >
0 for all t ≥ t̄, and so z1(t) ↑ z∗1 > 0 as t ↑ ∞. But this is impossible according
to the definition of z1(·) and because we have already shown that x1(t) ↓ 0 as
t ↑ ∞.

Hence, there exists a sufficiently large T0 > 0 with s1(T0) ≤ si1. Moreover, if
the equality s1(t̄) = si1 holds true for some t̄ ≥ T0, then we have

ṡ1(t̄) = ū(si1 − s1(t̄))− k1µ1(s1(t̄))x1(t̄) = −k1µ1(s1(t̄))x1(t̄) < 0.

The last inequality shows that s1(t) < si1 for each t > T0.
Further with s(t) = k2s1(t) + k1s2(t) and si = k2s

i
1 + k1s

i
2 we obtain

ṡ(t) = ū(si − s(t))− k1k3µ2(s2(t))x2(t).

One can show in the same way as above that s(t) < si for each t ≥ T0 (if
necessary T0 can be enlarged). This establishes Claim 3. ♦
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Claim 4. Denote

γj := lim supt↑∞ xj(t), δj := lim inft↑∞ xj(t), j = 1, 2

v1(t) := s1(t) + k1x1(t+ τ1), v2(t) := k2s1(t) + k1s2(t) + k1k3x2(t+ τ2),

αj := lim supt↑∞ vj(t), βj := lim inft↑∞ vj(t), j = 1, 2.

Then the following relations hold true: δ1 > 0, α1 = β1 and γ1 = δ1, α2 = β2

and γ2 = δ2.

Proof of Claim 4. Let us assume that δ1 = 0. Choose an arbitrary ε ∈ (0, (si1−
s̄1)/(1 + k1)). According to Claim 2 (see (6)) there exists Tε > 0 such that for
all t ≥ Tε the following inequalities hold true

si1 − ε < s1(t− τ1) + k1x1(t) <
si1
α

+ ε. (7)

Since δ1 = 0 there exists t0 > max(Tε, T0) such that x1(t0) < ε. We set (cf.
Lemma 3.5 of [14])

σ := min{x1(t) : t ∈ [t0 − τ1, t0]}

t̄ := sup{t ≥ t0 − τ1 : x1(τ) ≥ σ for all τ ∈ [t0 − τ1, t]}.

Clearly σ ∈ (0, ε], t̄ ∈ [t0 − τ1,+∞), x1(t) ≥ σ for all t ∈ [t0 − τ1, t̄] and

x1(t̄) = σ, ẋ1(t̄) ≤ 0. (8)

Taking into account (7) and the choice of ε, we obtain consecutively

si1 > s1(t̄− τ1) ≥ si1 − k1x1(t̄)− ε ≥ si1 − (1 + k1)ε > s̄1,

ẋ1(t̄) = µ1(s1(t̄− τ1))x1(t̄− τ1)− αūx1(t̄) > αūσ − αūσ = 0.

The last inequality contradicts (8), which means that δ1 > 0.

The proof of the equalities αj = βj and γj = δj , j = 1, 2, is based on similar
ideas used in the proofs of Lemma 4.3 of [14] and Theorem 3.1 of [13], so we
omit it here due to the limited paper length. ♦
Claim 5. The equilibrium point p̄ is locally asymptotically stable for all values
of the delays τ1 ≥ 0 and τ2 ≥ 0.

Proof of Claim 5. Denote for simplicity a = k1µ
′
1(s̄1)x̄1 and b = k3µ

′
2(s̄2)x̄2. It

follows from Assumption A3 that a > 0 and b > 0 hold true. The characteristic
equation of Σ corresponding to the equilibrium point p̄ has the form

0 = P (λ; τ1, τ2) = P1(λ; τ1)× P2(λ; τ2),

where λ is a complex number and

P1(λ; τ1) = λ2 + (ū+ a+ αū)λ+ αū(ū+ a)− αū(ū+ λ)e−λτ1 ,

P2(λ; τ2) = λ2 + (ū+ b+ αū)λ+ αū(ū+ b)− αū(ū+ λ)e−λτ2 .
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First it is straightforward to see that if τ1 = τ2 = 0 then there exist no roots
λ of P (λ; τ1, τ2) = 0 with Re(λ) ≥ 0. Let τ1 > 0 and τ2 > 0. We are looking
for purely imaginary roots λ = iω of Pj(λ; τj) = 0 with ω > 0, j = 1, 2. For
P1(iω; τ1) = 0 we obtain

−ω2 + (ū+ a+ αū)iω + αū(ū+ a)− αū(ū+ iω)e−iωτ1 = 0,

−ω2 + (ū+ a+ αū)iω + αū(ū+ a)− αū(ū+ iω)(cos(τ1ω)− i sin(τ1ω)) = 0.

Separating the real and the imaginary parts of the last equation implies

−ω2 + αū(ū+ a) = αū2 cos(τ1ω) + αūω sin(ωτ1)

(ū+ a+ αū)ω = −αū2 sin(τ1ω) + αūω cos(ωτ1).
(9)

Squaring both sides of the equations (9) and adding leads to

ω4 + (ū+ a)2ω2 + α2ū2a(2ū+ a) = 0.

Obviously, the latter equation does not possess positive real roots since a > 0.
The same conclusion holds true for P2(iω; τ2) = 0. Therefore, P (λ; τ1, τ2) = 0
does not have purely imaginary roots for any τ1 > 0 and τ2 > 0. Applying
Theorem 3 and Corollary 4 from [10] (see also [11], [12] for similar results) to the
exponential polynomial P (λ; τ1, τ2) we obtain that the characteristic equation
does not have roots with nonnegative real parts. This means that for any τ1 ≥ 0
and τ2 ≥ 0 the equilibrium p̄ is locally asymptotically stable. ♦

The local asymptotic stability of the equilibrium p̄ together with the conver-
gence of the solution Φ(t) and the attractivity of p̄, proved above throughout
Claims 1 to 4, imply that p̄ is globally asymptotically stable.

The proof of Theorem 1 is completed. �

3 Computer simulation

Consider the following specific growth rate functions in the model (1), taken
from [1], [2] and [3]:

µ1(s1) =
m1s1

ks1 + s1
(Monod law), µ2(s2) =

m2s2

ks2 + s2 + (s2/kI)2
(Haldane law).

In the simulation process we shall use the following numerical values for the
model coefficients, which are obtained by real experiments and given in [1]:

k1 = 10.53 k2 = 28.6 k3 = 1074 si1 = 7.5 si2 = 75 α = 0.5
m1 = 1.2 ks1 = 7.1 m2 = 0.74 ks2 = 9.28 kI = 16

Within the above coefficient values we compute the admissible upper bound
ub = 1.044 for u, thus u ∈ (0, 1.044).

As an example let us take ū = 0.85. Then the corresponding internal equilib-
rium is p̄ = (3.893548387, 0.6849860613, 13.47803015, 0.1328068353). Using the
initial conditions ϕs1(t) = 2, ϕx1

(t) = 0.1 for t ∈ [−τ1, 0], and ϕs2(t) = 10,
ϕx2

(t) = 0.05 for t ∈ [−τ2, 0], we consider different values for the delays τ1 ≥ 0
and τ2 ≥ 0. The numerical outputs are visualized in the next Figure 1.
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Fig. 1. Time evolution of s1(t), s2(t) (left) and x1(t), x2(t) (right)

4 Conclusion

In this paper we investigate a bioreactor model for wastewater treatment by
anaerobic digestion. The model equations (1) involve discrete delays, describ-
ing the time delay in nutrient conversion to viable biomass. Using a properly
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chosen admissible value for the dilution rate ū we prove the global convergence
of the solutions towards an equilibrium point, corresponding to ū. To authors’
knowledge, such kind of investigations have not been yet fulfilled for this delay
bioreactor model. Numerical simulation is included to confirm the theoretical
results.
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