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Abstract. There are two natural questions which arise in connection with
the endomorphism ring of an Abelian group: when is the ring generated
by its idempotents and when is the ring generated additively by its idem-
potents? The present work investigates these two questions for Abelian
p-groups. This leads in a natural way to consideration of two strengthened
versions of Kaplansky’s notion of full transitivity, which we call projective
full transitivity and strong projective full transitivity. We establish, inter
alia, that these concepts are strictly stronger than the classical concept of
full transitivity but there are nonetheless many strong parallels between
the notions.
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1. Introduction

In 1952, Kaplansky [15] began his investigations into the fully invariant and
characteristic subgroups of an Abelian p-group. He followed this up in his
now famous “little red book”, Infinite Abelian Groups [16], and introduced the
notions of transitive and fully transitive p-groups in a natural way arising from
his investigations in [15]; these notions have been of interest in Abelian group
theory ever since. There is another notion, closely related to full invariance,
which has also been studied: projection invariance. Recall that a subgroup H
of the group G is said to be projection-invariant in G if π(H) ≤ H for all idem-
potent endomorphisms π of G. Significant work on this topic was produced by
Hausen [12] and Megibben [18], concentrating in the main in establishing when
projection-invariant subgroups are actually fully invariant; the socles of such
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subgroups have been investigated by the present authors in [8]. In this paper
we follow a somewhat different path and explore a new notion of transitivity
which we shall call projective full transitivity. Recall that a group G is said to
be fully transitive if, given x, y ∈ G with UG(x) ≤ UG(y), there is an endomor-
phism φ of G with φ(x) = y. Our modification is to say that G is projectively
fully transitive if the endomorphism φ can be chosen to be in the subring of the
full endomorphism ring generated by the idempotent endomorphisms; clearly
a projectively fully transitive group is always fully transitive.

We shall establish a number of basic properties of projectively fully tran-
sitive groups; in particular we shall show that this class of groups is properly
contained in the class of fully transitive groups. Moreover, the class is large
but is not closed under the taking of direct summands, unlike the situation
which pertains for fully transitive groups. Recent work on various types of
transitivity—see, for e.g., [7]—has revealed the role played by ‘squares’ of a
group in this connection and similar properties re-appear here.

To simplify the notation and to avoid risk of confusion, we shall write
E(G) for the endomorphism ring of G and End(G) for the endomorphism
group of G. We shall denote by Proj(G) the subring of E(G) generated by
the idempotents of E(G); thus an element φ ∈ Proj(G) will have the form
φ =

∑

finite

±πi1πi2 . . . πik , where each πij is an idempotent in E(G).

In the final section of the paper we shall examine briefly an apparently
stronger notion. Following Hausen [13], we let Π(G) denote the subgroup of the
endomorphism group End(G) generated by the idempotent endomorphisms; so
φ ∈ Π(G) has the form φ =

∑n
i=1 ±πi for some finite n, where each πi is an

idempotent endomorphism. Then a group G is said to be strongly projectively
fully transitive if, given x, y ∈ G with UG(x) ≤ UG(y), there exists φ ∈ Π(G)
with φ(x) = y; clearly a strongly projectively fully transitive group is projec-
tively fully transitive. Our results here are somewhat sketchier.

Throughout the word group will denote an additively written Abelian
p-group. In this context our notation is standard and follows Fuchs [10] and
Kaplansky [16]; mappings are written on the left.

2. Elementary Results

Since it is clear that a fully transitive group G is projectively fully transi-
tive if E(G) = Proj(G) (and similarly it is strongly projectively fully tran-
sitive if End(G) = Π(G)), we consider firstly this situation. To simplify our
terminology we shall say that a group G is an idempotent-generated group
(or IG-group) if E(G) = Proj(G); we say that G is an idempotent-sum group
(or IS-group) if End(G) = Π(G). If E(G) is commutative, then it is obvious
that Proj(G) = Π(G) so that the IG-groups are then precisely the IS-groups;
in general an IS-group is always an IG-group. However, this situation is rather
rare for a primary group: it follows from results of Szele and Szendrei—see
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Exercise 6, p. 227 in [10]—that groups with commutative endomorphism ring
are precisely subgroups of Z(p∞) and it is easy to see that any cyclic group is
an IS-group, while the quasi-cyclic group Z(p∞) is not even an IG-group.

We begin with an elementary but useful observation:

Proposition 2.1. If G = A1 ⊕ · · · ⊕An where the Ai are IG (resp. IS)-groups,
then G is an IG (resp. IS)-group. In particular,

(i) if A is an IG (resp. IS)-group, then so also is A(n) for each finite n;
(ii) if F is a finite group, then it is an IS-group.

Proof. By induction it suffices to show the result for the direct sum of two
groups, so suppose that G = A ⊕ B where each A,B is an IG (resp. IS)-
group. If φ ∈ E(G), then we can write φ in the form φ =

( α γ
δ β

)
where

α ∈ E(A), β ∈ E(B), γ ∈ Hom(B,A) and δ ∈ Hom(A,B). But then we have

φ =
(
α−1A 0

0 0

)
+

(
0 0
0 β−1B

)
+

(
1A γ
0 0

)
+

(
0 0
δ 1B

)
.

The latter two matrices represent idempotent endomorphisms of G. Since
α−1A ∈ E(A), β−1B ∈ E(B) and A,B are IG (resp. IS)-groups, the endomor-
phisms α − 1A, β − 1B may be expressed as sums of products of idempotents
(resp. sums of idempotents) and hence the matrices

(
α−1A 0

0 0

)
,
(

0 0
0 β−1B

)

have the same properties since the embeddings of E(A),E(B) into E(G) are
ring homomorphisms. The particular cases are immediate. �

Corollary 2.2. If G = A⊕B, where A is a fully invariant subgroup of G, then
G is an IG (resp. IS)-group if, and only if, both A,B are IG (resp. IS)-groups.
In particular, if G = D ⊕R, where D is divisible and R is reduced, then G is
an IG (resp. IS)-group if, and only if, both D,R are IG (resp. IS)-groups.

Proof. If A,B are IG (resp. IS)-groups, then it follows immediately from Prop-
osition 2.1 that G is an IG (resp. IS)-group; the full invariance of A is not
needed here.

Conversely suppose that G ia an IG (resp. IS)-group and that A is fully
invariant in G. Let χ denote the restriction map χ : E(G) → E(A) with
φ �→ φ � A for each φ ∈ E(G); the full invariance of A ensures that χ is
a ring homomorphism E(G) � E(A). Consequently, χ(Proj(G)) ≤ Proj(A),
χ(Π(G)) ≤ Π(A) and hence E(A) = χ(E(G)) ≤ Proj(A) ≤ E(A) if G is an
IG-group. Similarly, E(A) = Π(A) if G is an IS-group. Thus if G is an IG
(resp. IS)-group, then so also is A. �

It follows immediately from Corollary 2.2 that the study of IG (resp.
IS)-groups may be reduced to the separate study of divisible and reduced IG
(resp. IS)-groups.

In fact we can say a great deal more about IG-groups, thus generalizing
Proposition 2.1 (i).
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Proposition 2.3. If A is an arbitrary group and κ ≥ 2 is any cardinal, then
G = A(κ) is an IG-group.

Proof. If κ is finite then the result is immediate from Proposition 2.1 in [8]. If κ
is infinite, then write G = X⊕X, where X ∼= A(κ), so that E(G) is isomorphic
to the ring of 2 × 2 matrices over S = E(X). However, it follows again from
Proposition 2.1 in [8] that E(G) = Proj(G), so that G is an IG-group. �

Notice that it follows from Proposition 2.3 that a summand of an IG-
group need not be an IG-group: in fact, if G is any group which is not an
IG-group (for e.g., Z(p∞)), then its square is an IG-group.

We also have the simple consequence:

Corollary 2.4. A divisible group D is an IG-group if, and only if, rk(D) ≥ 2.

Proof. The sufficiency follows immediately from Proposition 2.3. However, if
rk(D) = 1, then E(D) ∼= Jp, the ring of p-adic integers which has only 0
and 1 as idempotents, and consequently the endomorphism ring of D is not
generated by idempotents. �

Note also that Proposition 2.3 does not generalize to IS-groups as the
next example shows.

Example 2.5. The group G = Z(p∞) ⊕ Z(p∞) is not an IS-group.

Proof. The endomorphism ring of G is, of course, isomorphic to the ring of
2 × 2 matrices over Jp. We claim that the trace of an idempotent 2 × 2 p-adic
matrix is one of {0, 1, 2}. To see this suppose that Δ = ( x ab y ) is an idempotent
p-adic matrix. Direct calculation gives

(i) xa+ ay = a and bx+ yb = b, so that a(x+ y − 1) = 0 = b(x+ y − 1).
(ii) x2 + ab = x and y2 + ab = y, so that (x− y)(x+ y − 1) = 0.

Since Jp is a domain, we have that either x + y − 1 = 0 or x = y. In
the first case, the trace of Δ is 1, so we may restrict our attention to the case
where x+y−1 	= 0 and x = y. From the observation in (i) above, we conclude
that a = 0 = b and this in turn forces x2 = x, y2 = y. Thus x, y take the values
0 or 1 and hence the trace of Δ is either 0, 1 or 2, as required. In particular,
we see that the trace of any idempotent matrix must be a non-zero integer in
this situation.

Suppose now, for a contradiction, that End(G) = Π(G). Choose a p-adic
integer u which is not a rational integer and consider the matrix φ = ( u 0

0 0 ). By
assumption then φ is a linear combination of idempotent matrices and hence
the trace of φ, u, is a finite sum of terms from the set {0, 1, 2}; in particular it
is a rational integer—contradiction. �

Returning to the reduced situation, it seems rather difficult to give a
satisfactory description of the class of IG (resp. IS)-groups. Since a bounded
group can be expressed in the form G = A⊕F where F is finite and each ho-
mocyclic component of A is of rank at least 2, it follows easily from Proposition
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2.1 and Proposition 2.3 that a bounded group is an IG-group. In fact Hausen
has shown, [12, Corollary 6], that every bounded group is even an IS-group.
On the other hand, it is relatively easy to exhibit reduced groups which are
not IG-groups. A simple, but useful, observation here is that if the ring E(G)
is generated as a ring (resp. additively) by idempotents, then the same is true
of E(G)/I for any two-sided ideal I. This, combined with Corner’s realization
theorems [2,3], gives the following:

Proposition 2.6. If A is a ring whose additive group is the completion of a
free p-adic module of countable rank and A is not generated as a ring (resp.
additively) by its idempotents, then there exists an unbounded separable group
GA which is not an IG (resp. IS)-group.

Proof. From Theorem 1.1 in [2], we conclude that there is an unbounded sep-
arable group GA with E(GA) = A ⊕ Es(GA), where Es(GA) is the ideal of
small endomorphisms of GA. Since E(GA)/Es(GA) ∼= A is not generated as a
ring (resp. additively) by its idempotents, we conclude that GA is not an IG
(resp. IS)-group. �

Rings of the type required for Proposition 2.6 are easy to construct: for
e.g., the ring A which is the completion (in the p-adic topology) of the poly-
nomial ring Jp[X] has the property and so also does the ring direct product
A = Jp × · · · × Jp = J

(n)
p for a finite n. In fact if A is a ring whose additive

group is the completion of a free p-adic module of countable rank and A is
commutative, then A is not generated as a ring by its idempotents: if it were, it
would follow from Bergman’s lemma [10, Lemma 97.2] that the additive group
of A would be free—contradiction.

Corollary 2.7. If G is an unbounded essentially indecomposable group, then G
is not an IG-group.

Proof. If G is an unbounded essentially indecomposable p-group, then it fol-
lows from a result of Monk [20, Corollary to Theorem 1] that the only idem-
potents in E(G)/Es(G) are 0 and 1 but these cannot generate this quotient
as a ring since the quotient must always contain a copy of the centre of E(G)
which is isomorphic to Jp as G is unbounded. �

It is also easy to construct non-separable groups which are not IG (resp.
IS)-groups; to do this we make use of Corner’s second realization theorem [3,
Theorem 10.2]. Hence we have:

Proposition 2.8. If A is a reduced separable group with basic subgroups of rank
≥ 2 and of cardinal < 2ℵ0 , then for any infinite ordinal α < ω2, there is a
group G with pαG = A and G is not an IG-group.

Proof. Using Corner’s theorem we construct a group G with pαG = A and
E(G)A = {φ � A : φ ∈ E(G)} = Φ, where Φ is any complete separable p-adic
subalgebra of E(A). Consider firstly the case where A is unbounded. Then
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the choice Φ = Jp is possible and so we have E(G)A = Jp. Since Jp is not
generated as a ring by its idempotents, the ring E(G) cannot be generated by
its idempotents since E(G)A is a ring homomorphic image of E(G).

Now suppose that A is bounded and write A = B ⊕ C, where B =
Z(pn1)⊕Z(pn2) and n1 ≤ n2; this is possible since by assumption the rank of a
basic subgroup of A is at least 2. Let Φ be the set of matrices of the form

(
φ 0
0 ψ

)
,

where φ ∈ Φ1, ψ = r1C (0 ≤ r < pe(C)) and Φ1 is a subring of E(B), which we
will define. Since E(B) is finite, Φ will be complete and separable, so we may
apply Corner’s theorem to find a group G with pαG = A and E(G)A = Φ. Now
choose Φ1 to be the subring of E(B) consisting of lower triangular matrices of
the form ( r 0

s r ), where 0 ≤ r < pn2 and s ∈ Hom(Z(pn1),Z(pn2)).
We claim that Φ is not generated as a ring by its idempotents - notice

that this suffices to show that G is not an IG-group. For if it were, then the
same would be true of any ring homomorphic image of Φ, in particular Φ1

would be generated as a ring by its idempotents. However by direct calcula-
tion we can see that any idempotent matrix in Φ1 must have entries satisfying
r2 = r, 2rs = s. Hence r = 0 or 1, which in turn implies that s = 0. Hence,
the only idempotents in Φ1 are 0, 1 and these clearly do not generate all of Φ1.
This completes the proof. �

We have already seen that a summand of an IG-group need not be an
IG-group, however we do have:

Proposition 2.9. If G is an IG (resp. IS)-group then so also is pnG for any
finite n.

Proof. The mapping χ : E(G) → E(pnG) given by χ(φ) = φ � pnG is a ring
homomorphism. However, if θ ∈ E(pnG) then it follows easily from Proposi-
tion 113.3 in [10] that there is an endomorphism φ ∈ E(G) with φ � pnG = θ.
Hence the mapping χ is onto and E(pnG) is a ring epimorphic image of E(G).
The result follows now immediately. �

This assertion may be extended to subgroups pαG provided the quotient
G/pαG is totally projective: the proof is essentially identical but the ontoness
property of the mapping χ now comes from Hill’s result on totally projective
groups [13]. So, we have:

Proposition 2.10. If G is an IG (resp. IS)-group and the quotient G/pαG is
totally projective, then pαG is an IG (resp. IS)-group.

We close this section with the following question:

Problem 1. If A is an IS-group and κ ≥ 1 is any cardinal, does it follow that
A(κ) is also an IS-group?
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3. Projectively Fully Transitive Groups

In the classical theory of transitive and fully transitive groups, it is usual to
restrict consideration to reduced groups. However, it is not difficult to extend
the theory to non-reduced groups. This is normally achieved by modifying
the definition of an Ulm sequence for an element of a divisible group—see
[16, p.57]—so that if D is divisible and x ∈ D, then UD(x) = (0, . . . 0,∞, . . . )
where the symbol ∞ occurs at precisely the (n+ 1)st place if x has order pn;
with this understanding it is easy to show that divisible groups are fully tran-
sitive—see, for e.g., [16, Exercise 71] or [1, Proposition 2.1]. In fact, we can
show even that any divisible group is necessarily a projectively fully transitive
group. Recall once again from the introduction that a group G is said to be
projectively fully transitive if, given x, y ∈ G with UG(x) ≤ UG(y), there exists
φ ∈ Proj(G) with φ(x) = y; clearly a projectively fully transitive group is fully
transitive.

Theorem 3.1. If D is a divisible group, then D is a projectively fully transitive
group.

Proof. Since a divisible group is fully transitive and any divisible group of
rank ≥ 2 is an IG-group (by Proposition 2.3), we deduce immediately that
the result is true provided rk(D) ≥ 2. Suppose then that D is divisible with
rk(D) = 1. Note that, in this situation, we have for x, y ∈ D that o(x) ≥ o(y)
if, and only if, UD(x) ≤ UD(y).

Clearly, if o(x) = pn ≥ o(y) = pm we can write x = ua, y = pn−mva where
a is the generator of the Z(p∞)[pn] and (u, p) = 1 = (v, p). Let λpn + μu = 1
so that a = μua and then observe that the mapping φ = μvpn−m : x �→
vpn−mμua = y. Since φ is an integer multiple of the identity map, it certainly
belongs to Proj(Z(p∞)). This completes the proof. �

Recall [9, Definition 1] that the groups G1, G2 form a fully transitive pair
if, for every x ∈ Gi, y ∈ Gj(i, j ∈ {1, 2}) with UG(x) ≤ UG(y), there exists
α ∈ Hom(Gi, Gj) with α(x) = y. Note that {G1, G2} is a fully transitive pair
if, and only if, G1 ⊕G2 is fully transitive—see [9, Proposition 1].

Proposition 3.2. If A,B are projectively fully transitive groups and {A,B} is
a fully transitive pair, then A⊕B is a projectively fully transitive group.

Proof. Let G = A ⊕ B and suppose that x, y ∈ G with UG(x) ≤ UG(y).
We proceed by induction on the order of y. In fact, we claim that if there is
always an endomorphism φ ∈ Proj(G) mapping x to y when o(y) = p, then
the proposition follows: for suppose we have shown the result for o(y) = pn

and consider the situation where o(y) = pn+1. Then, arguing exactly as in [11,
Lemma 2.2], UG(px) ≤ UG(py) and o(py) ≤ pn. So there is a θ ∈ Proj(G) with
θ(px) = py. Set y′ = y − θ(x) so that y′ ∈ G[p] and clearly UG(x) ≤ UG(y′).
Hence there is ϕ ∈ Proj(G) with ϕ(x) = y′. But then θ + ϕ ∈ Proj(G) and
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(θ + ϕ)(x) = θ(x) + (y − θ(x)) = y. So the claim is established and it remains
only to verify the result when o(y) = p.

Let x = (a, b), y = (a1, b1) ∈ A⊕B with py = 0. By re-labelling if neces-
sary, we may assume htG(x) = htA(a). Now we have UA(a) ≤ UG(y) ≤ UB(b1).
In particular, since {A,B} is a fully transitive pair, there is a homomorphism
γ : A → B with γ(a) = b1. However, UA(a) ≤ UA((a1 − a) since p(a1 − a) =
−pa. Since by hypothesis A is a projectively fully transitive group, there is
an endomorphism ϕ ∈ Proj(A) with ϕ(a) = a1 − a. Now if Δ =

(
ϕ 0
0 0

)
and

Γ =
(

1 γ
0 0

)
, then Δ and Γ are endomorphisms of G and Δ + Γ maps (a, b) to

(a1, b1) as required. It remains to show that Δ,Γ ∈ Proj(G). Since the embed-
ding of E(A) into E(G) is a ring homomorphism, it is clear that Δ ∈ Proj(G),
but a direct calculation shows that Γ is idempotent also and so we have the
result. �

We note for later use that the proof of Proposition 3.2 carries over to
the situation where the groups A,B are strongly projectively fully transitive
groups.

We have a partial converse in the situation where one of the groups is
divisible.

Proposition 3.3. Suppose that D is a divisible group and R is reduced. If G =
D ⊕R is projectively fully transitive, then so also is R.

Proof. Suppose that x, y ∈ R and that UR(x) ≤ UR(y). Then UG((0, x)) ≤
UG((0, y)) and so there is a ϕ ∈ Proj(G) with ϕ(0, x) = (0, y), say ϕ =

( α γ
0 β

)

is the matrix representation. Now an idempotent matrix in E(G) necessarily
has diagonal entries which are idempotents in E(D) and E(R) respectively.
Consequently any product of idempotent matrices must also have idempo-
tent diagonal entries. Since ϕ can be expressed as a sum (or difference) of
such products, it follows that its diagonal entry β has the same property, i.e.
β ∈ Proj(R). Since β(x) = y, R is projectively fully transitive. �

Summarizing these results we have:

Theorem 3.4. If G = D ⊕R, where D is divisible and R is reduced, then G is
projectively fully transitive if, and only if, R is projectively fully transitive.

Proof. The necessity follows from Proposition 3.3 and the sufficiency follows
from Proposition 3.2 since R, being projectively fully transitive, is certainly
fully transitive and then the divisibility of D ensures that {D,R} is a fully
transitive pair. �

It follows immediately that we may restrict our attention to reduced
groups when we are considering projective full transitivity. Hence for the
remainder of this section we shall assume that all groups discussed are reduced.

Until this point we have not given an example of a fully transitive group
which is not projectively fully transitive. We remedy this in the next result:
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Proposition 3.5. The class of projectively fully transitive groups is strictly con-
tained in the class of fully transitive groups.

Proof. In fact we will exhibit three examples of groups with this phenomenon;
the first having an infinite elementary first Ulm subgroup, the second a finite
elementary first Ulm subgroup and the third a finite non-elementary first Ulm
subgroup.

(i) Suppose that G is a group in which pωG is elementary of infinite rank and
G is fully transitive but not transitive—such groups exist, for example,
the groups constructed by Corner in §3 of [4]. Then, as shown in Lemma
1.6 of [8], every subgroup of pωG is a projection-invariant subgroup of G.
We claim that G is not projectively fully transitive: to show this choose
basis elements a, b of pωG and note that UG(a) = (ω,∞, . . . ) = UG(b).
However, if φ ∈ Proj(G), then φ(〈a〉) ≤ 〈a〉 since 〈a〉 is projection invari-
ant in G; in particular there cannot be a φ ∈ Proj(G) with φ(a) = b, so
that G is not projectively fully transitive, as claimed.

Our construction of the second and third examples is based on Cor-
ner’s Theorem 6.1 in [3] and we make use of Lemma 3.12 below.

(ii) Let H = Z(p) ⊕ Z(p) = 〈a〉 ⊕ 〈b〉 and define the endomorphism φ by
φ : a �→ b, b �→ a+ b; note that φ2 = I + φ, where I is the identity on H.
Let Φ be the subring of E(G) generated by I, φ. Then Φ consists of the
elements {rI + sφ : 0 ≤ r, s ≤ p− 1}.

Suppose that p 	= 2 and we make the additional assumption that
p is a prime of the form p = 5n + 2; note that it follows from Dirich-
let’s theorem on primes in arithmetic progression that there are infinitely
many primes of this form. Consider an idempotent rI + sφ ∈ Φ. Then it
follows immediately that (r2 + s2 − r)I + (2rs+ s2 − s)φ = 0. Applying
this expression to the element a, we deduce that

r2 + s2 − r ≡ 0 mod p (1)

and that 2rs+ s2 − s ≡ 0 mod p.
Consider now the situation where s 	= 0; the last congruence may

then be simplified to

2r + s− 1 ≡ 0 mod p. (2)

Now multiply the relation (1) by 4 and substitute for 2r, to obtain
(1 − s)2 + 4s2 − 2(1 − s) ≡ 0 mod p. Simplifying, we get

5s2 ≡ 1 mod p. (3)

Since s 	= 0, the congruence (3) has a solution if, and only if, 5 is a
quadratic residue mod p, i.e., employing the standard Legendre symbol
notation, if, and only if, ( 5

p ) = −1. Now it follows from the Quadratic
Reciprocity theorem that ( 5

p )(
p
5 ) = (−1)(5−1)(p−1)/4 = 1 and hence we

conclude that ( 5
p ) = (p5 ), since the Legendre symbol is ±1 in each case.
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We claim that (p5 ) = −1; for suppose not, then we have p ≡ x2 mod 5
for some x and from this it follows that x2 ≡ 2 mod 5. This latter is
impossible since the only squares mod 5 are 0, 1, 4. Hence the only id-
empotents in Φ must have s = 0 and it follows from a straightforward
calculation that then r = 0, 1 and so the only idempotents in Φ are 0, I.

Note that as a consequence of ( 5
p ) = −1, we have that the expression

t2 + t− 1 	≡ 0 mod p for any 0 ≤ t ≤ p− 1: for if t2 + t− 1 ≡ 0 mod p
then 4t2 + 4t− 4 = (2t+ 1)2 − 5 ≡ 0 mod p, contradicting ( 5

p ) = −1.
Now construct, using Corner’s theorem, a group G such that pωG =

H and E(G) � H = Φ. Since Proj(Φ) consists only of the multiples of the
identity, it is clear that E(G) does not act projectively fully transitively
on pωG and so G is certainly not projectively fully transitive by Lemma
3.12 below. However, Φ acts fully transitively on pωG: to see this observe
that the Ulm sequences of H are only of two types, viz., (∞,∞, . . . )
and (0,∞, . . . ) and these correspond respectively to the sets of elements
{0}, {ra+ sb : 0 ≤ r, s ≤ p− 1; r, s not both 0}. Since it is trivial to find
a map in Φ taking a to ra+ sb, (0 ≤ r, s ≤ p− 1), it will suffice to show
that for an arbitrary element ra+sb, with not both of r, s = 0, that there
is a mapping in yI + zφ taking ra+ sb to a.

We consider a number of cases:
(a) if s = 0, choose y = r−1 and x = 0;
(b) if s 	= 0, let t = rs−1 and note that multiplication by s−1 maps

ra + sb �→ ta + b. Thus it will suffice to show that we can map
an arbitrary element of the form (ta + b) to a. Applying the map
yI + xφ to (ta+ b) we get (yt+ x)a+ (y + xt+ x)b, so we need to
choose y, x in order that (yt + x) ≡ 1 mod p and simultaneously
that (y + xt + x) ≡ 0 mod p. If we set x = 1 − yt then certainly
the first congruence is satisfied. Substituting we see that the second
congruence reduces to y(1 − t− t2) + (1 + t) ≡ 0 mod p. As noted
above, our choice of p ensures that (1−t−t2) 	≡ 0 mod p and hence
the choice y = (1+ t)/(t2 + t−1), x = 1−yt guarantees that yI+xφ
maps (ta+ b) �→ a, as required.
It follows from Lemma 2.1 in [4] that G is fully transitive.

(iii) The proof of the final part is similar to that of (ii). Let H = Z(2)⊕Z(4) =
〈a〉 ⊕ 〈b〉 and define the endomorphism φ by φ : a �→ a + 2b, b �→
a + b; note that φ2 = 3I and 2φ = 2I, where I is the identity on
H. Let Φ be the subring of E(G) generated by I, φ. A routine check
using the identities noted above shows that Φ has order 8 and con-
sists of the elements {0, I, 2I, 3I, φ, I + φ, 2I + φ, 3I + φ}; observe that
the only idempotents in Φ are 0, I. Now construct, utilizing Corner’s
theorem, a group G such that 2ωG = H and E(G) � H = Φ. Since
Proj(Φ) consists only of the multiples of the identity, it is clear that
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E(G) does not act projectively fully transitively on 2ωG and so G is cer-
tainly not projectively fully transitive by Lemma 3.12 below. However, Φ
acts fully transitively on 2ωG: to see this observe that the Ulm sequences
of H form a chain with four nodes consisting of the elements with Ulm
sequences (0, 1,∞, . . . ), (0,∞, . . . ), (1,∞, . . . ) and (∞,∞, . . . ). The four
types consist respectively of the sets of elements {b, 3b, a+b, a+3b}, {a, a+
2b}, {2b}, {0}. A straightforward check shows that 3I interchanges b, 3b
and also a + 3b, a + b while φ : b �→ a + b, 2I + φ : a + b �→ b; thus
the elements of Ulm sequence (0, 1,∞, . . . ) lie in a single orbit under the
action of Φ. Since 2I + φ : b �→ a, 3I + φ : a �→ 2b and 2I : 2b �→ 0,
we can establish that Φ acts fully transitively on H if we can show that
a, a+ 2b are in the same orbit of Φ; but this is immediate since a simple
calculation assures that φ interchanges a, a+ 2b. It follows from Lemma
2.1 in [4] that G is fully transitive. �

Remark 3.6. The choice of the prime p = 5n + 2 in Proposition 3.5 (ii) was
made purely to simplify the calculations; it is not a necessary condition. For
example, it is straightforward to demonstrate that in the case p = 2, the only
idempotents in the subring Φ are 0, I and that Φ acts fully transitively on H.

Our next result illustrates the close connection between the various types
of transitivity that we have discussed:

Theorem 3.7. Suppose κ > 1. Then the following are equivalent:
(i) G is fully transitive;
(ii) G(κ) is fully transitive;
(iii) G(κ) is transitive;
(iv) G(κ) is projectively fully transitive.

Proof. The equivalence of (i) and (ii) follows from Corollary 1 in [9], while the
equivalent statement of (ii) and (iii) follows from Corollary 4 of the same paper.
We show the equivalence of (ii) and (iv). Since projectively fully transitive
groups are always fully transitive, it is immediate that (iv) ⇒ (ii). Conversely,
if G(κ) is fully transitive, then, since we are assuming that κ > 1, it follows
from Proposition 2.3 that G(κ) is a fully transitive IG-group and so necessarily
is a projectively fully transitive group. �
Corollary 3.8. If G is projectively fully transitive, then for every cardinal κ,
G(κ) is projectively fully transitive.

Corollary 3.9. A direct summand of a projectively fully transitive group is not
necessarily a projectively fully transitive group.

Proof. Choose a group G as in Proposition 3.5 above, so that G is fully tran-
sitive but not projectively fully transitive. If H = G⊕G, then it follows from
Theorem 3.7 that H is projectively fully transitive while its summand G is
not. �
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Remark 3.10. The role of transitivity in this connection is not clear. In The-
orem 3.7 it is not possible to replace condition (i) with the statement “G is
projectively fully transitive”: for if G is chosen as in the proof of Corollary 3.9,
thenG is not projectively fully transitive but its squareG⊕G is transitive, since
G is fully transitive—see Corollary 3 in [9]. It would be interesting to know if
a transitive, fully transitive group is necessarily projectively fully transitive.
In fact, it was shown in [8] that Cλ-groups of length λ are both transitive and
fully transitive; however whether or not they are projectively fully transitive
is not obvious (compare also with Corollary 3.19 (ii)). Moreover, note that it
is well known that there exist transitive 2-groups which are not fully transi-
tive (see, for example, §4 in [4]) and hence, a fortiori, not projectively fully
transitive.

In the classical notions of transitivity a key observation due to Corner [4]
is that the transitivity property depends on the action of the endomorphism
ring on the first Ulm subgroup. A similar phenomenon occurs here; let us say
that a subring Φ of E(G) acts projectively fully transitively on a subgroup
X of G if, given x, y ∈ X with UG(x) ≤ UG(y), there is an endomorphism
φ ∈ Φ such that φ(x) = y and φ belongs to the subring of Φ generated by the
idempotents in Φ.

The following extremely simple assertion has been used previously by
both Hausen [12] and Megibben [18]; we include the short proof for
completeness.

Lemma 3.11. If G = A⊕H and ψ ∈ End(G) with ψ(A) ≤ H,ψ(H) = 0, then
ψ ∈ Π(G).

Proof. The standard matrix representation for ψ is ψ = ( 0 0
δ 0 ) =

(
0 0
δ 1H

) −(
0 0
0 1H

)
. Since there last two matrices are clearly idempotent, ψ ∈ Π(G). �

Our next result is a careful re-working of Lemma 2.1 in [3]. We were faced
here with the dilemma of whether to simply tell the reader that the necessary
changes can be made to Corner’s original proof or of reworking the proof in
detail. We have chosen the latter since it enables us to point out the more
substantial changes needed to extend the proof to strongly projectively fully
transitive groups, which we will discuss in the next section.

Lemma 3.12. A group G is projectively fully transitive if, and only if, E(G)
acts projectively fully transitively on pωG.

Proof. The sufficiency is trivial; so assume that E(G) acts projectively fully
transitively on pωG and consider x, y ∈ G with UG(x) ≤ UG(y). Let r, s be the
least natural numbers such that prx, psy ∈ pωG; if r = 0, then both x, y ∈ pωG
and the result follows immediately, so we may assume that r 	= 0. Note that
s ≤ r, so that in any case pry ∈ pωG and UG(prx) ≤ UG(pry). By hypothesis
there is an endomorphism φ0 ∈ Proj(G) with φ0(prx) = pry. Since r 	= 0, we
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may choose an integer m > max{htG(pr−1x), htG(ps−1y)}—if s−1 is negative
we simply omit the final term htG(ps−1y).

So we can choose x0 ∈ G with prx = pr+mx0; then pry = φ0(prx) =
pr+my0 where y0 = φ0(x0). Thus x = x1 + pmx0, y = y1 + pmy0 where prx1 =
pry1 = 0. Note that o(x1) = pr for otherwise ptx = pt+mx0 for some t < r, con-
tradicting the choice ofm. Also htG(pr−1x1) = htG(pr−1x) since x1 = x−pmx0

and so htG(pr−1x1) < m. Thus 〈x1〉 ∩ pmG = 0 and so there is a pmG-high
subgroup A such that x1 ∈ A. It follows that A is necessarily a bounded pure
subgroup and so we may write G = A⊕H for some complement H; note that
pmG ≤ H. Let π denote the projection of G onto H with kernel A.

Let y1 = a1+h1, where a1 ∈ A, h1 ∈ H. Since the decomposition is direct,
UG(y1) = UG(a1) ∧ UG(h1) and so UG(x1) ≤ UG(a1) and UG(x1) ≤ UG(h1).
Now x1, a1 ∈ A, a bounded group, and UG(x1) = UA(x1) and UG(a1) =
UA(a1). Since bounded groups are fully transitive there is an endomorphism θ
of A with θ(x1) = a1. But, as observed earlier, a bounded group is an IG-group
and so we can extend θ to an endomorphism θ1 of G with θ1 ∈ Proj(G). (It is
even possible to choose a suitable θ1 ∈ Π(G) by using Corollary 6 in [12]).

Since A is a bounded summand we can certainly find an endomorphism
φ′ of G with φ′(x1) = h1. Set ψ = πφ′(1 − π) and observe that ψ(x1) = h1.
Moreover, ψ(A) ≤ π(G) = H while ψ(H) = 0, so by Lemma 3.11, ψ is in
Π(G); in particular ψ ∈ Proj(G). Set φ1 = θ1 + ψ and note that φ1(x1) =
θ1(x1) + ψ(x1) = a1 + h1 = y1; also observe that φ1 ∈ Proj(G). (In fact it is
even in Π(G)).

Finally set φ = φ0π + φ1(1 − π) so that φ ∈ Proj(G). (Note that this
construction is not possible if one wants to stay within Π(G).) Now φ(x) =
φ0π(x)+φ1(1−π)(x) and, since x = x1 +pmx0, we have φ0π(x) = φ0π(pmx0)
as x1 ∈ A. So φ0π(x) = φ0(pmx0), since pmG ≤ H, as noted above. Thus
φ0π(x) = pmφ0(x0) = pmy0. We also have φ1(1 − π)(x) = φ1(1 − π)(x1 +
pmx0) = φ1(1 − π)(x1) because pmx0 ∈ H, and this gives φ1(1 − π)(x) =
φ1(x1) = y1. Therefore φ(x) = y1 + pmy0 = y with φ ∈ Proj(G), as required.

�

Corollary 3.13. (i) A separable group is projectively fully transitive;
(ii) if pωG ∼= Z(pn) for some finite n, then G is projectively fully transitive;
(iii) if A is projectively fully transitive and B is separable, then A ⊕ B is

projectively fully transitive.

Proof. Part (i) follows immediately from Lemma 3.12. For (ii) observe that if
x, y ∈ pωG with UG(x) ≤ UG(y), then it is easy to see that an integer multiple
of the identity (and hence an endomorphism which is even in Π(G)) maps x
to y; the result then follows from Lemma 3.12. For the final part, note that
both A,B are fully transitive and the direct sum A⊕B is also fully transitive
by [1, Proposition 2.6]. Hence {A,B} is a fully transitive pair and the result
follows from Proposition 3.2. �
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Note that it is not possible to extend part (ii) of Corollary 3.13 even to
the situation where pωG = Z(p)⊕Z(p); indeed, Megibben [19] has constructed
an example of such a group which is not even fully transitive.

Recall that the notions of socle-regularity, strong socle-regularity have
been introduced in [5,6]; these concepts were generalizations of full transitiv-
ity and transitivity respectively. In [8], a group G was said to be projectively
socle-regular if for all projection-invariant subgroups P of G, there is an ordi-
nal α (depending on P ) such that P [p] = (pαG)[p]. Our next result shows
that projective socle-regularity is likewise a generalization of projective full
transitivity.

Proposition 3.14. If G is projectively fully transitive, then G is projectively
socle-regular; if p 	= 2, then G is strongly socle-regular.

Proof. Suppose P is an arbitrary projection-invariant subgroup of G and α =
min{htG(z) : z ∈ P [p]}, so that P [p] ≤ (pαG)[p]. Choose x ∈ P [p] of height
exactly α so that UG(x) = (α,∞, . . . ). Let y ∈ (pαG)[p] be arbitrary; then
UG(y) = (β,∞, . . . ) where β ≥ α. Since G is projectively fully transitive
there is a φ ∈ Proj(G) such that φ(x) = y. But because φ is a linear com-
bination of products of idempotents and P is projection invariant, we have
that y = φ(x) ∈ P [p]. Since y was arbitrary in (pαG)[p], we deduce that
(pαG)[p] ≤ P [p] and hence we have the desired equality. The final conclu-
sion follows immediately from Proposition 1.5 in [8] once we have that G is
projectively socle-regular. �

We now consider subgroups of projectively fully transitive groups. We
begin with the elementary:

Proposition 3.15. If G is projectively fully transitive, then pβG is projectively
fully transitive for all ordinals β.

Proof. Let H = pβG and observe that if x, y ∈ H with UH(x) ≤ UH(y), then
UG(x) ≤ UG(y). So there is a φ ∈ Proj(G) with φ(x) = y. However, as H
is fully invariant in G, it is easy to see that if φ ∈ Proj(G), then φ � H ∈
Proj(H). �

For finite ordinals β it is easy to establish the converse:

Proposition 3.16. If pnG is projectively fully transitive for some finite n, then
G is projectively fully transitive.

Proof. By induction it suffices to establish the result for pG, so let H = pG.
Furthermore, by Lemma 3.12 it suffices to show that E(G) acts projectively
fully transitively on pωG. So let x, y ∈ pωG with UG(x) ≤ UG(y). Note
that x, y ∈ pωG = pωH since pωH = p1+ωG = pωG. Consider UH(x) =
(α0, α1, . . . ), say. Since x ∈ pωH, each αi ≥ ω and then pαi H = pαi G, so that
UH(x) ≤ UH(y). Since H is, by assumption, projectively fully transitive there
is a φ ∈ Proj(H) with φ(x) = y. It follows from Theorem 1.11 in [8] that every
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idempotent in E(H) lifts to an idempotent in E(G) and so every element of
Proj(H) lifts to an element of Proj(G). In particular, φ lifts to an element
ψ ∈ Proj(G) with ψ(x) = y. �

If we wish to extend Proposition 3.16 to ordinals β ≥ ω, it seems inevita-
ble that we must introduce some restriction on the quotient G/pβG: we know
from the proof of Proposition 3.5 that there is a group G such that pωG is an
elementary group of infinite rank (and hence projectively fully transitive) but
G is not projectively fully transitive. An obvious restriction is to assume that
the quotient G/pβG is totally projective. We begin by examining the situation
when β = ω.

Lemma 3.17. If G/pωG is a direct sum of cyclic groups and pωG is projectively
fully transitive, then G is projectively fully transitive.

Proof. We show that E(G) acts projectively fully transitively on pωG. Let
x, y ∈ pωG with UG(x) ≤ UG(y). Since for any g ∈ pωG,htG(g) = ω+htpωG(g),
we have UpωG(x) ≤ UpωG(y). By assumption there is a φ ∈ Proj(pωG) with
φ(x) = y. It follows from Theorem 11 in [14] that every idempotent in E(pωG)
lifts to an idempotent in E(G), so the mapping φ lifts to a mapping ψ ∈
Proj(G) and ψ(x) = y. Thus E(G) acts projectively fully transitively on pωG
and, in virtue of Lemma 3.12, G is projectively fully transitive as required. �
Theorem 3.18. Suppose that α is an ordinal strictly less than ω2 and G/pαG
is totally projective. If pαG is projectively fully transitive, then so also is G.

Proof. The proof is by induction; if α ≤ ω we have already established the
result in Proposition 3.16 and Proposition 3.17. So suppose that the result is
true for all ordinals < α. There are two possibilities: either α is a limit of
cofinality ω or α = β + 1 for some β.

Consider firstly the case α = β+1 for some β. Set X = pβG and note that
pX = pαG is projectively fully transitive. It follows from Proposition 3.16 that
X is projectively fully transitive. Moreover, G/pβG ∼= (G/pαG)/(pβG/pαG) ∼=
(G/pαG)/pβ(G/pαG) and hence G/pβG is totally projective by a well-known
result of Nunke—see, e.g., [10, Exercise 82.3]. So by our induction hypothesis
we conclude that G is projectively fully transitive.

In the limit case α = β+ω for some β. Set X = pβG so that pωX = pαG
is projectively fully transitive. Now X/pωX ∼= pβG/pαG is totally projective
again by the aforementioned Nunke’s result. It follows from Proposition 3.17
that X = pβG is projectively fully transitive. Since G/pβG is totally projec-
tive and β < α, the induction hypothesis gives us that G is projectively fully
transitive. �
Corollary 3.19. (i) If G is totally projective of length ≤ ω2, then G is pro-

jectively fully transitive;
(ii) if λ is cofinal with ω and G is a Cλ-group of length λ ≤ ω2, then G is

projectively fully transitive.



1124 P. Danchev and B. Goldsmith Results. Math.

Proof. (i) If G is totally projective of length < ω2, then the result follows
immediately from Theorem 3.18 above. If G has length ω2, then G is actu-
ally a direct sum of totally projective groups of length < ω2, say G =⊕

i∈I
Gi where l(Gi) < ω2 for each i ∈ I. If x, y ∈ G and UG(x) ≤ UG(y),

then there is a finite set {i1, . . . , in} ⊆ I such that x, y ∈ H =
n⊕

j=1

Gin ;

moreover, UH(x) = UG(x) ≤ UG(y) = UH(y). If we can show that H is
projectively fully transitive, then we have a mapping φ ∈ Proj(H) with
φ(x) = y. If G = H ⊕ K and we set ψ = φ ⊕ 0K , then it is easy to see
that ψ ∈ Proj(G) and ψ(x) = y. Thus to establish part (i) it suffices to
show that H is projectively fully transitive.

Now each Gij is totally projective of length < ω2, so each Gij is
projectively fully transitive. Moreover, given any i1, i2, the sum Gi1 ⊕Gi2
is totally projective and hence fully transitive, i.e. {Gi1 , Gi2} is a fully
transitive pair and hence it follows from Proposition 3.2 that Gi1 ⊕ Gi2
is projectively fully transitive. A simple induction now yields the desired
result that H is projectively fully transitive. (This argument is presented
in a more formalized way in Corollary 4.7 below).

(ii) If G is a Cλ-group of length λ cofinal with ω and x, y ∈ G with UG(x) ≤
UG(y), let H = 〈x, y〉. Since H is a finite group and λ is a limit ordinal,
there is an ordinal α < λ such that H ∩ pαG = {0}. Then it follows from
[17, Proposition 4] that G decomposes as G = A⊕K where A is totally
projective of length < λ and x, y ∈ A. Since UA(x) = UG(x) ≤ UG(y) =
UA(y) and A is projectively fully transitive by part (i), we have an endo-
morphism φ ∈ Proj(A) with φ(x) = y. But then an identical argument to
that in the proof of part (i) gives a mapping ψ ∈ Proj(G) with ψ(x) = y.
Thus G is projectively fully transitive as required. �

4. Strongly Projectively Fully Transitive Groups

Recall from the introduction that a group G is said to be strongly projectively
fully transitive if, given x, y ∈ G with UG(x) ≤ UG(y), there exists φ ∈ Π(G)
with φ(x) = y; clearly a strongly projectively fully transitive group is projec-
tively fully transitive. We pointed out in the final paragraph of the proof of
Lemma 3.12 the difficulty in extending that result to strongly projectively fully
transitive groups. We can, however, obtain the corresponding result by taking
a little more care. The notion of acting strongly projectively fully transitively
on pωG is analogous to that acting projectively fully transitively: specifically, a
subgroup Φ of End(G) acts strongly projectively fully transitively on a subgroup
X ofG if, given x, y ∈ X with UG(x) ≤ UG(y), there is an endomorphism φ ∈ Φ
such that φ(x) = y and φ belongs to the subgroup of Φ additively generated
by the idempotents in Φ.
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Lemma 4.1. A reduced group G is strongly projectively fully transitive if, and
only if, End(G) acts strongly projectively fully transitively on pωG.

Proof. The sufficiency is trivial, so assume that End(G) acts strongly projec-
tively fully transitively on pωG. Our arguments follow exactly those described
in the proof of Lemma 3.12 and we use the same notation as in that lemma.
Observe firstly that the hypothesis that End(G) acts strongly projectively
fully transitively on pωG means that φ0 can be chosen to be in Π(G). Now
consider the endomorphism θ of the bounded group A. As noted in the proof of
Lemma 3.12, we may use Hausen’s result [12, Corollary 6] to choose θ ∈ Π(A).
We now extend θ to an endomorphism of G taking a little more care than in
the previous proof.

If ε is an idempotent endomorphism of the direct summand A, where
G = A⊕H, then we can extend ε to an endomorphism ε∗ by setting ε∗ = ε⊕0H .
Note that ε∗ is then an idempotent endomorphism of G and, if π is the canon-
ical projection of G onto H along A, we have ε∗(1−π)(H) = 0 = ε∗(H), while
(ε∗(1−π))(a) = ε∗(a) for all a ∈ A. Consequently ε∗(1−π) = ε∗. Applying this
method of extension to the map θ ∈ Π(A) we get an endomorphism θ1 ∈ Π(G)
and θ1(1 − π) = θ1.

Returning to the proof of Lemma 3.12, we note that the mapping ψ, where
ψ(x1) = h1, belongs to Π(G) and by construction it satisfies ψ = ψ(1 − π).
Therefore the map φ1 = θ1 + ψ also belongs to Π(G) and satisfies φ1 =
φ1(1 − π).

In the final paragraph of the proof of Lemma 3.12 it is shown that the
map φ = φ0π + φ1(1 − π) has the desired property that φ(x) = y. However, if
we now define a new map φ∗ = φ0 + φ1, then certainly φ∗ ∈ Π(G) since both
φ0, φ1 ∈ Π(G). But G = A ⊕ H and A is bounded, so pωG ≤ H and hence
φ0π(x) = φ0(x) as x ∈ pωG.

Moreover, as we noted above, φ1 = φ1(1 − π) and so φ∗(x) = φ(x) = y,
as required. �

Corollary 4.2. (i) If B is a separable group, then B is strongly projectively
fully transitive;

(ii) if A is strongly projectively fully transitive and B is separable, then A⊕B
is strongly projectively fully transitive;

(iii) if pωG ∼= Z(pn) for some finite n, then G is strongly projectively fully
transitive.

Proof. Point (i) is immediate from the previous result, and (ii) follows imme-
diately from part (i) and Proposition 3.2—recall our observation at the end of
the proof of Proposition 3.2. The final part follows by an identical argument
to that used in Corollary 3.13 (ii). �

We remark that it is possible to prove directly (i.e. without invoking
Lemma 4.1) that a separable group is strongly projectively fully transitive:
the argument utilizes Lemma 65.5 in [10].
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Although a separable group is necessarily strongly projectively fully tran-
sitive, it does not follow that it is an IS-group; recall from Corollary 2.7 that
a separable essentially indecomposable group need not be even an IG-group.

Since Proposition 3.2 and Proposition 3.3 carry over unchanged to strongly
projectively fully transitive groups, we see that a group G = D ⊕ R, with D
divisible and R reduced, is strongly projectively fully transitive if, and only if,
D,R are both strongly projectively fully transitive.

In fact we derive:

Theorem 4.3. A group G = D ⊕ R, where D is divisible and R is reduced, is
strongly projectively fully transitive if, and only if, R is strongly projectively
fully transitive.

Proof. By the preceding observation it is clearly enough to show that any
divisible group is strongly projectively fully transitive. If D is of rank one then
the result follows from the proof of Theorem 3.1: just observe that the map-
ping used to send the element x to y was an integer multiple of the identity.
If D is of finite rank then the result follows from Proposition 2.1 (ii) and the
fact that a divisible group is always fully transitive. Finally, if D has infinite
rank, the result follows from Proposition 4.6 below. �

Corollary 4.4. A divisible group is strongly projectively fully transitive.

The following somewhat combines Corollaries 4.2 (iii) and 4.4 into a more
general case.

Proposition 4.5. Let G be a group such that pωG is the direct sum of a divisi-
ble group and a cyclic group of order pn for some n ∈ N. Then G is strongly
projectively fully transitive.

Proof. One may decompose G = D⊕C where D is divisible and pωC ∼= Z(pn).
In fact, pω+nG is the maximal divisible part in pωG, so that pωG = pω+nG⊕R
where R ∼= Z(pn). But G = pω+nG ⊕ C for some group C, and hence C ∼=
G/pω+nG and pωC ∼= pω(G/pω+nG) = pωG/pω+nG ∼= R. This substantiates
our claim. Furthermore, we apply a combination of Theorem 4.3 and Cor-
ollary 4.2 (iii) to deduce that G is strongly projectively fully transitive, as
asserted. �

Proposition 4.6. If the group G(n) is strongly projectively fully transitive for
every finite n, then H = G(κ) is strongly projectively fully transitive for any
infinite cardinal κ.

Proof. If x, y ∈ H with UH(x) ≤ UH(y), then there exists a finite integer m
such that x, y ∈ Hm = G(m). Now UHm

(x) = UH(x) and similarly for y, so
there is a mapping φ ∈ Π(Hm) with φ(x) = y. However φ can be expressed
as a linear combination of idempotents in E(Hm) and each of these may be
extended trivially to an idempotent of H by acting as the zero map on the
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canonical complement. The resulting sum is a map ψ ∈ Π(H) with ψ(x) = y.
Thus H is strongly projectively fully transitive, as required. �

In fact the argument in Proposition 4.6 easily generalizes to give:

Corollary 4.7. If Gi(i ∈ I) is a collection of groups with the property that
⊕

i∈J
Gi

is strongly projectively fully transitive (respectively projectively fully transitive)
for every finite subset J ⊆ I, then we have that

⊕

i∈I
Gi is strongly projectively

fully transitive (respectively projectively fully transitive).

Next, we record some crucial properties of strongly projectively fully tran-
sitive groups; the proofs of these results follow by identical arguments to those
used for the corresponding results on projectively fully transitive groups; the
proof of part (v) follows from part (iv) and Proposition 4.6.

Theorem 4.8. (i) If G is strongly projectively fully transitive, then pβG is
strongly projectively fully transitive for all ordinals β;

(ii) if pnG is strongly projectively fully transitive for some finite n, then G is
strongly projectively fully transitive;

(iii) if α is an ordinal strictly less than ω2 and G/pαG is totally projective,
then if pαG is strongly projectively fully transitive, so also is G;

(iv) if A,B are strongly projectively fully transitive and {A,B} is a fully tran-
sitive pair, then A⊕B is strongly projectively fully transitive;

(v) if G is strongly projectively fully transitive, then G(κ) is strongly projec-
tively fully transitive for any cardinal κ;

(vi) if G is totally projective of length ≤ ω2, then G is strongly projectively
fully transitive;

(vii) if λ is cofinal with ω and G is a Cλ-group of length λ ≤ ω2, then G is
strongly projectively fully transitive.

An easy consequence of Corollary 4.7 is the following result which gener-
alizes Proposition 3.2:

Proposition 4.9. If G is a fully transitive group which is an arbitrary direct
sum of (strongly) projectively fully transitive groups, then G is (strongly) pro-
jectively fully transitive.

In light of Theorem 3.7, one might expect a similar result with strongly
projectively fully transitive groups replacing projectively fully transitive groups.
This seems to be difficult and the best we can offer is the following.

Proposition 4.10. If pωG is an elementary group, then G is fully transitive if,
and only if, G⊕G is strongly projectively fully transitive.

Proof. Sufficiency is immediate since summands of fully transitive groups are
fully transitive; in fact there is no need for the additional hypothesis on pωG
for this argument. Conversely suppose that G is fully transitive and pωG is
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elementary. Let H = G ⊕ G and consider any elements (a, b), (c, d) in pωH.
Consider firstly the situation where a, b 	= 0. Since all the elements of pωG have
the same Ulm sequence (ω,∞, . . . ) in G, there are endomorphisms γ : b �→ c
and δ : a �→ d. The matrix Δ =

(
0 γ
δ 0

)
represents an endomorphism of H which

maps (a, b) to (c, d), but Δ =
(

1 γ
0 0

)
+ ( 0 0

δ 1 ) − ( 1 0
0 1 ) and each of these matrices

is idempotent, so that Δ ∈ Π(H).
If one of a, b = 0 (the situation where both are zero is trivial), then we

may assume without loss that a 	= 0, b = 0. As before, we have the endomor-
phisms of G that are α : a �→ c, δ : a �→ d. Now the matrix Δ = ( α α

δ 1−α )
represents an endomorphism of H and maps (a, 0) to (c, d). However, Δ =
( α α

1−α 1−α ) +
(

1 0
δ+α−1 0

) − ( 1 0
0 0 ) and direct calculation gives that each of these

matrices is idempotent. Thus Δ ∈ Π(H).
It follows immediately from Lemma 4.1 that H = G ⊕ G is strongly

projectively fully transitive. �
Remark 4.11. The condition that pωG be elementary in Proposition 4.10 is far
from necessary. For instance, if C is a bounded group and G is a group with
pωG = C constructed via Corner’s Theorem 6.1 in [3], with E(G) acting on
pωG in the same manner as the full endomorphism ring E(C), then G is cer-
tainly fully transitive and H = G⊕G is strongly projectively fully transitive. To
see the latter, observe that if (x, y), (u, v) ∈ pωH with UH((x, y)) ≤ UH((u, v)),
then we can assume without loss that UG(x) ≤ UG(y) and UG(u) ≤ UG(v). By
the full transitivity of G we have endomorphisms γ : x �→ u, δ : x �→ v and
γ � pωG ∈ E(C). However, ( 0 0

δ 1 ) and ( 0 0
0 1 ) are both idempotents and so the

sum Δ1 = ( 0 0
δ 1 ) − ( 0 0

0 1 ) ∈ Π(H). Since γ � pωG can be written as a sum of id-
empotents in E(C), say γ � pωG = π1 + · · ·+πn, then we obtain from Corner’s
construction that there are idempotents e1, . . . , en ∈ E(G) with ei � pωG = πi
and γ = e1 + · · ·+en. The matrices

(
ei 0
0 0

)
are again idempotents in E(H) and

if Δ2 =
(
e1 0
0 0

)
+ · · · + (

en 0
0 0

)
, then it is immediate that Δ = Δ1 + Δ2 ∈ Π(H)

and Δ maps (x, y) �→ (u, v), as required.

Finally, we note that, similar to the situation for projectively fully tran-
sitive groups, a summand of a strongly projectively fully transitive group need
not be strongly projectively fully transitive, even when the first Ulm subgroup
is elementary.

Proposition 4.12. There is a non-strongly projectively fully transitive group G,
with elementary first Ulm subgroup, such that G ⊕ G is strongly projectively
fully transitive.

Proof. Let G be a fully transitive group as constructed in either part (i) or
part (ii) of Proposition 3.5 above; note that in either case the first Ulm sub-
group of G is an elementary group. It follows immediately from Proposition
4.10 that G ⊕ G is strongly projectively fully transitive. However, as pointed
out in the proof of Proposition 3.5, neither group G is even projectively fully
transitive. �
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The reader will have noted that we have not shown that the classes of
projectively fully transitive and strongly projectively fully transitive groups
are distinct. This seems to be reasonably difficult, so we pose:

Problem 2. Find a projectively fully transitive group which is not strongly
projectively fully transitive.

We finish the paper with a further question; we believe that an answer
to this question will shed further light on the nature of projective and strong
projective full transitivity.

Problem 3. Are reduced totally projective groups (in particular, reduced count-
able groups) necessarily (strongly) projectively fully transitive?

In closing we also state the following specification:

Remark. Question 2.2 from [7] has obviously a negative solution. In fact, every
Krylov transitive group G such that all elements of pωG have comparable Ulm
sequences, is fully transitive. To show that, we apply subsequently the first
part of Theorem 2.13 and Corollary 2.8 again from [7]. Thus G⊕G has to be
fully transitive, whence so is G as being a direct summand, as asserted.
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