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n-torsion clean rings

Peter Danchev and Jerzy Matczuk

Abstract. Let n be an arbitrary natural number. The class of (strongly)
n-torsion clean rings is introduced and investigated. Abelian n-torsion clean
rings are somewhat characterized and a complete characterization of strongly
n-torsion clean rings is given in the case when n is odd. Some open questions
are posed at the end.

1. Introduction

Everywhere in the text, all rings are assumed to be associative with unity. Our
notations and notions are in agreement with those from [L]. For instance, for such
a ring R, U(R) denotes the group of units, Id(R) the set of idempotents and J(R)
the Jacobson radical of R, respectively. Besides, the finite field with m elements
will be denoted by Fm, and Mk(R) will stand for the k × k matrix ring over R;
k ∈ N. For an element u of a group G, o(u) will denote the order of u. The symbol
LCM(n1, . . . , nk) will be reserved for the least common multiple of n1, . . . , nk ∈ N.

We will say a nil ideal I of R is nil of index k if, for any r ∈ I, we have rk = 0
and k is the minimal natural number with this property. Likewise, we will say that
I is nil of bounded index if it is nil of index k, for some fixed k.

Let us recall that a ring R is said to be clean if, for every r ∈ R, there are
u ∈ U(R) and e ∈ Id(R) with r = e + u. If, in addition, the commutativity
condition ue = eu is satisfied, the clean ring R is called strongly clean. These
rings were introduced by Nicholson in [N1] and [N2]. Both clean rings and their
various specializations or generalizations are intensively studied since then (see, for
example, [BDZ], [C], [D], [DM], [Di], [M] and references within).

A decomposition r = e+ u of an element r in a ring R will be called n-torsion
clean decomposition of r if e ∈ Id(R) and u ∈ U(R) is n-torsion, i.e. un = 1. We
will say that such a decomposition of r is strongly n-torsion clean, if additionally e
and u commute.

The aim of this article is to investigate in detail the following proper subclasses
of (strongly) clean rings:

Definition 1.1. A ring R is said to be (strongly) n-torsion clean if there is
n ∈ N such that every element of R has a (strongly) n-torsion clean decomposition
and n is the smallest possible natural number with the above property.
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It is easy to see that boolean rings are precisely the rings which are (strongly)
1-torsion clean. Thus the classes introduced above can be treated as natural gen-
eralizations of boolean rings.

Let us notice that in [D] the class of (strongly) invo-clean rings was investigated.
In our terminology, (strongly) invo-clean rings are precisely rings which are either
(strongly) 1-torsion clean or (strongly) 2-torsion clean.

It is clear that every clean ring having the unit group of bounded exponent s is
n-torsion clean for some n with 1 ≤ n ≤ s. We will see below that n has to divide s,
but does not have to be equal to s. Let us also observe that a homomorphic image
of an n-torsion clean ring is always m-torsion clean, for some m ≤ n. Hoverer, it
is not clear whether n is a multiple of m. Notice that finite rings are always clean,
so they are n-torsion clean for suitable n and it would be of interest to compute n
for some classes of finite rings; for instance, for matrix rings over finite fields.

In the present paper we mainly concentrate on the case of strongly n-torsion
clean rings. Our work is organized as follows: The first short section is of intro-
ductory character and it contains some basic observations and examples. Strongly
n-torsion clean rings are investigated in Section 2. In particular, it is shown in The-
orem 3.4 that such rings have to satisfy a polynomial identity of degree 2n and that
their Jacobson radical is nil of bounded index. Theorem 3.13 offers a description of
such rings which are abelian. Surprisingly, when n is odd, strongly n-torsion clean
rings have to be commutative. Their precise description is given in the subsequent
Theorem 3.15. We close the paper with some open questions.

2. Preliminaries and Examples

We begin with the following simple but useful observation. Its proof is provided
for the sake of completeness.

Lemma 2.1. Let R be a (strongly) n-torsion clean ring. Then there exists
a finite number of elements r1, . . . , rk ∈ R with (strongly) clean decompositions
ri = ei + ui, 1 ≤ i ≤ k, such that n = LCM(o(u1), . . . , o(uk)). In particular:

(1) When the group U(R) has finite exponent s, then n divides s.
(2) When R is commutative, then U(R) contains an element of order n.

Proof. For r ∈ R, let us set

rmin = min{o(u) | r = e+ u is a (strongly) n-torsion clean decomposition of r

and o(u) divides n}.

Then each rmin divides n. Thus LCM(rmin | r ∈ R) exists and also divides n.
Moreover, we can pick elements r1, . . . , rk ∈ R such that LCM(rmin | r ∈ R) =
LCM(r1min, . . . , rkmin). The minimality of n gives LCM(rmin | r ∈ R) = n. This
completes the proof of the main statement. Subsequently, (1) and (2) follow. �

It is well known that 1 + J(R) ⊆ U(R). In the class of rings for which the
equality holds, the notation of n-torsion clean rings boils down to rings R for which
the unit group U(R) is of finite exponent n. Indeed, we have:

Proposition 2.2. Let R be a ring and n ∈ N. Then:

(1) If r ∈ J(R), then the unit 1 + r has exactly one clean decomposition.
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(2) Suppose U(R) = 1 + J(R). Then the following two conditions are equiva-
lent:
(a) R is (strongly) n-torsion clean.
(b) R is (strongly) clean and the group U(R) is of finite exponent n.

Moreover, if one of the equivalent conditions holds, then R/J(R) is a boolean
ring.

Proof. (1) Let r ∈ J(R). Observe that if 1+r = e+u is a clean decomposition
of 1+ r, then 1− e = u− r ∈ Id(R)∩U(R) = {1}, that is, e = 0. This implies that
1 + r has the unique clean decomposition r + 1 = 0 + (1 + r).

(2) Suppose R is (strongly) n-torsion clean and u ∈ U(R) = 1 + J(R). Then,
by (1), u = 0+u is the only clean decomposition of u and un = 1 follows, i.e. U(R)
is of finite exponent s ≤ n.

Conversely suppose that R is (strongly) clean and U(R) is a group of finite
exponent s. Then it is clear that R is n-torsion clean ring, for some n ≤ s. This
yields the equivalence (a) ⇔ (b).

Since units always lift modulo the Jacobson radical, we have U(R/J(R)) = {1}.
If R is strongly n-torsion clean, then R/J(R) is m-torsion clean for some m ≤ n.
The above yields that m = 1, i.e. R/J(R) is a boolean ring. �

Notice that the ring Tm(F2) of all upper triangular m×mmatrices over the field
F2 is clean, its Jacobson radical J consists of all strictly upper triangular matrices
and U(Tm(F2)) = 1 + J . Thus, with Proposition 2.2 at hand, we deduce:

Example 2.3. Let m ∈ N and let k be the smallest nonnegative integer such
that m ≤ 2k. Then the ring Tm(F2) is (strongly) 2

k-torsion clean.

Recall that a ring R is uniquely clean if every element of R has a unique
clean presentation. Such rings were characterized in [NZ] as those abelian rings
R such that R/J(R) is boolean (whence U(R) = 1 + J(R)) and idempotents lift
modulo J(R). Notice that, as idempotents always lift modulo nil ideals, every
ring R such that R/J(R) is boolean and J(R) is nil must be clean. Therefore, the
above proposition also gives the following corollary. Its second statement generalizes
Example 2.3.

Corollary 2.4. (1) Let R be a uniquely clean ring. Then R is n-torsion
clean if and only if U(R) is of exponent n;

(2) Let R be a ring such that R/J(R) is boolean and J(R) is nil of bounded
index. Then R is n-torsion clean, where n is the exponent of U(R). More-
over, n is a power of 2.

Proof. (1) being an immediate consequence of the preceding discussion, let
the ring R be as in (2). Then R is a UU ring (i.e. all units are unipotent) and so
[DL, Theorem 3.4 (2)] implies that U(R) is a 2-group. Now the thesis is a simple
consequence of Proposition 2.2. �

Proposition 2.2 demonstrates that, from the point of view of n-torsion clean
property, rings with U(R) = 1 + J(R) are, in some sense, not too interesting. The
situation when the ring is Jacobson semisimple and has non-trivial group of units
is much more interesting. The next example is of such nature and it shows that a
ring can be n-torsion clean with n strictly smaller than the exponent of the group
U(R).
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Example 2.5. Let R = M2(F2). Then R is 2-torsion clean and strongly 6-
torsion clean.

Proof. The ring R is nil clean by virtue of [BCDM]. Since the index of
nilpotence of elements of R is at most 2, [D, Corollary 2.11] implies that R invo-
clean which is not boolean, so that it is 2-torsion clean. The above can be also

checked by direct computations. For instance, the unit r =

(
1 1
1 0

)
of order 3

has a 2-torsion clean decomposition r =

(
1 0
0 0

)
+

(
0 1
1 0

)
(but it does not

have strongly 2-torsion clean decomposition). It is also easy to make elementary
computations showing that R is strongly 6-torsion clean. �

Let us notice that the unit group of M2(F2) is isomorphic to the symmetric
group S3.

Proposition 2.6. Let m, k ∈ N be such that m ≤ 2k. Then Mm(F2) is n-
torsion clean for some natural n ≤ 2k.

Proof. Set R = Mm(F2). It is known (cf. [BCDM, Theorem 3]) that R
is a nil-clean ring. Thus every element x of R can be written as x = e + z with
e = e2 and zm = 0, as the index of nilpotence of elements in R is bounded by
m. Now we can write x = (1 + e) + (1 + z), where 1 + e is an idempotent and

(1+ z)2
k

= 1+ z2
k

= 1, as m ≤ 2k. This enables us to conclude that every element
of R has 2k-torsion clean decomposition. In particular, R is n-torsion clean for
some n ≤ 2k. �

With the help of this proposition, we derive:

Example 2.7. The rings M3(F2) and M4(F2), in view of Proposition 2.6, are
n-torsion clean for some n ≤ 22. The rings are, however, not invo-clean by virtue
of [D, Corollary 2.11], and so n ∈ {3, 4}.

The linear group GL(3,F2) is the unit group of M3(F2). The group is known
to be simple of order 168 and exponent 84.

3. Strongly n-torsion clean rings

The following technical lemma is crucial for our further considerations.

Lemma 3.1. Suppose that R is a ring and the element a ∈ R possesses strongly
n-torsion clean decomposition. Then the equality (an − 1)((a− 1)n − 1) = 0 holds.

Proof. Let a = e+ v be a strongly n-torsion clean decomposition of a. Since
e, v commute and vn = 1, we deduce:

an − 1 = (e+ v)n − 1 =

n∑
i=0

(
n

i

)
eivn−i − 1 =

n∑
i=1

(
n

i

)
eivn−i ∈ Re.

This implies that

(3.1) (an − 1)(1− e) = 0 and, consequently, an − 1 = (an − 1)e.

Using ve = (a− 1)e, we also have 1 = vn = (a− e)n = (a− 1)ne− ane+ an. This
yields

(3.2) an − 1 = (an − (a− 1)n)e.
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Applying (3.2) and the second equation of (3.1), we get ((a−1)n−1)e = 0. This
equality and the first equation of (3.1) now give together that (an−1)((a−1)n−1) =
(an − 1)((a− 1)n − 1)(e+ (1− e)) = 0, as desired. �

The following assertion is central.

Lemma 3.2. Let n ∈ N and let R be a ring satisfying the identity (xn− 1)((x−
1)n − 1) = 0. Then:

(1) char(R) := |1 · Z | is finite and J(R) is a nil ideal;
(2) If n is odd, then R is a reduced ring of characteristic 2 and J(R) = 0;
(3) If R is an algebra over a field F , then either R is abelian (i.e. all idem-

potents of R are central) or char(F ) divides n.

Proof. Set φ(x) = (xn − 1)((x− 1)n − 1) ∈ Z[x].
(1) Substituting x = 3 · 1 in the identity φ(x) = 0, we see that there exists

0 �= m ∈ Z such that 1 ·m = 0 in R. This shows that characteristic char(R) of R
is finite.

Let r ∈ J(R). Assume that r is not nilpotent. Then the multiplicatively closed
set S = {rk | k ∈ N} does not contain 0. Let P be a maximal ideal of R in the
class of all ideals having empty intersection with S. So, P is a prime ideal of R,
the ring R̄ = R/P satisfies the same identity as R does and r̄ = r + P ∈ J(R̄).
Moreover r̄ is not nilpotent, as S ∩ P = ∅. Thus, eventually replacing R by R̄, we
may additionally assume that the ring R is prime. Then, its subring 1 · Z = F of
R is a domain. By the first part of the proof, 1 · Z is finite, so it is a field. This
means that the element r ∈ J(R) is algebraic over the field F and, as such, has to
be nilpotent (cf. [L, Proposition 4.18]). This contradicts the choice of r and shows
that every element of J(R) is nilpotent.

(2) Suppose n is odd. Then, substituting x = 0 in the identity φ(x) = 0, we
obtain 2 = 0, i.e. char(R) = 2.

Let r ∈ R be such that r2 = 0. If n = 1, then the identity φ(x) = 0 shows that
(r − 1)r = 0 and r = 0 follows immediately, as r − 1 is invertible.

Suppose now that n ≥ 3. Notice that (r − 1)2 = 1. Thus, as n is odd,
(r − 1)n = (r − 1). Therefore, r = φ(r) = 0. This shows that R has no nonzero
nilpotent elements, i.e. R is reduced. Then also J(R) = 0 as, by (1), J(R) is a nil
ideal.

(3) Suppose R is an algebra over a field F . By (1), char(F ) = p �= 0. If n is
odd then, using (2), R is a reduced ring, so it is abelian. Suppose now that n is
even and p does not divide n. Thus 1 · n is invertible in R. Let e = e2, r ∈ R.
Substituting x := er(1 − e) in the identity φ(x) = 0 and using the fact that n is
even, we obtain 0 = ((er(1− e))n − 1)((er(1− e)− 1)n − 1) = ner(1− e) and thus
the equality er(1− e) = 0 follows. Similarly (1− e)re = 0. The above shows that
every idempotent e of R is central, provided that char(R) does not divide n. This
completes the proof of the lemma. �

Remark 3.3. In regard to point (2) stated above, a routine argument demon-
strates that when R is an n-torsion clean ring and n is odd, then J(R) = 0 and
char(R) = 2. Indeed, let 0 = f + v be an n-torsion clean decomposition of 0.
Then −f = (−f)n = vn = 1 and char(R) = 2 follows. Now, Proposition 2.2(1)
yields that 1 = (r − 1)n =

∑n
i=0

(
n
i

)
(−1)n−iri, for any r ∈ J(R). As n is odd, this
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equation gives 0 = rw, where w =
∑n

i=1

(
n
i

)
(−1)n−iri−1 ∈ 1+ J(R) is invertible in

R, i.e. r = 0, as required.

Now we are ready to establish the following theorem.

Theorem 3.4. Let n ∈ N. Suppose R is a strongly n-torsion clean ring. Then:

(1) R is a PI-ring satisfying the polynomial identity (xn−1)((x−1)n−1) = 0;
(2) R has finite characteristic char(R) = |1 · Z |;
(3) J(R) is a nil ideal of index smaller than (char(R))n;
(4) When n is odd, then R is a reduced ring of characteristic 2 and J(R) = 0;
(5) If R is an algebra over a field F , then:

(i) J(R) is a nil ideal of index bounded by n;
(ii) either R is abelian (i.e. all idempotents of R are central) or char(F )
divides n.

Proof. The first statement is a direct consequence of Lemma 3.1. Notice that,
in virtue of Lemma 3.2, for completing the proof it remains only to show that J(R)
is nil of index bounded as indicated in the theorem.

Let r ∈ J(R). We claim that r(char(R))n = 0. By Lemma 3.2(1), r is nilpotent.
Furthermore, Proposition 2.2 (1) shows that the unit 1 + r has exactly one clean
presentation. Thus (1+r)n = 1 follows, as R is n-torsion clean. Therefore rn ∈ S =
(1 ·Z)[r] = (1 ·Z)rn−1 + . . .+ (1 ·Z). By (1), 1 ·Z is a finite ring with c := char(R)
elements. Hence the ring S is finite and has at most cn elements. As r ∈ S is
nilpotent, its index of nilpotence has to be smaller than |S| ≤ cn (to argue this,
just consider the set A ⊆ S of all powers of the element r and show that |A| is the
nilpotence index of r). This gives (3).

Suppose now that R is an algebra over a field F . Then S defined as above
is, in this case, a finite dimensional algebra over Fp = 1 · Z ⊆ F of dimension
not bigger than n. The dimension argument applied to the sequence of subspaces
S ⊇ Sr ⊇ Sr2 ⊇ . . . shows that rn = 0, when r ∈ S is nilpotent. This yields (5)(i)
and completes the proof of the theorem. �

It is an important open question (see [N2, Question 2] and [CDN]) whether
strongly clean rings are Dedekind finite. Since PI rings are Dedekind finite, the
above theorem gives immediately the following corollary:

Corollary 3.5. Strongly n-torsion clean rings are Dedekind finite.

Corollary 3.6. Let R be a strongly n-torsion clean ring. If R is a finitely
generated algebra over a central noetherian subring, then J(R) is nilpotent.

Proof. By Theorem 3.4(1), R satisfies a monic polynomial identity and J(R)
is a nil ideal. Now the thesis is a direct consequence of [B, Theorem 2.5]. �

The following example shows that, in general, Jacobson radical of strongly
n-torsion clean rings does not have to be nilpotent.

Example 3.7. Let F = Fpk and F [X] be the polynomial ring in infinitely
many commuting indeterminates from the set X. Set R = F [X]/I, where I is the
ideal of F [X] generated by all elements xp, x ∈ X. Then R is a local ring and its
Jacobson radical is not nilpotent. Making use of Propositions 2.2(1) and 3.8(1),
one can easily check that R is p(pk − 1)-torsion clean.
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In Theorem 3.15, stated in the sequel, we will present a complete characteri-
zation of strongly n-torsion clean rings in the case when n is odd. For doing so,
the following proposition, which gives a characterization of strongly n-torsion clean
rings which are subdirect products of fields, is needed.

Proposition 3.8. (1) Let F be a field. Then F is n-torsion clean if and
only if F is finite and n = |F | − 1.

(2) A product of fields F
p
k1
1

× . . . × F
p
kt
t

is n-torsion clean, where n is equal

to LCM(pk1
1 − 1, . . . , pkt

t − 1);
(3) A product

∏
i∈I Fi of fields is n-torsion clean if and only if all fields Fi,

i ∈ I, are finite, LCM(|Fi| − 1 | i ∈ I) exists and is equal to n;
(4) Let R be a subdirect product of fields Fi, i ∈ I. Then R is n-torsion clean

if and only if
∏

i∈I Fi is n-torsion clean.

Proof. (1) Notice that any finite field F is n-torsion clean for some divisor n
of |F | − 1. On the other hand, if F is any field which is n-torsion clean then, by
Theorem 3.4, every element of F is a root of the polynomial (xn−1)((x−1)n−1) ∈
F [x], so |F | is finite and |F | ≤ 2n. Suppose that F is a finite n-torsion clean field and

let |F |−1 = l ·n. By what we have just shown it follows that l = |F |−1
n ≤ 2− 1

n < 2
and so l = 1 holds, i.e. s = |F | − 1, as required.

(2) Let T = F
p
k1
1

× . . . × F
p
kt
t

and let n be as defined in (2). Notice that

n = max{o(u) | u ∈ U(T )} and the order of any u ∈ U(T ) divides n. Therefore, T
is m-torsion clean for some m ≤ n.

For showing that n = m, it suffices to show that ni = pki
i − 1 divides n, for

any 1 ≤ i ≤ t. Note that, by (1), Fi = F
p
ki
i

is ni-torsion clean. Furthermore, using

Lemma 2.1, we can pick elements r1, . . . , rs ∈ T and their clean decompositions
rj = ej + uj , 1 ≤ j ≤ s, such that m = LCM(u1, . . . , us). For a fixed 1 ≤ i ≤ t
consider the set {πi(r1), . . . , πi(rs)} ⊆ Fi, where πi denotes the canonical projection
of R onto Fi. Then, for every a ∈ Fi, a can be presented as e + u with uzi = 1,
where zi = LCM(o(πi(u1)), . . . , o(πi(us))). Thus ni ≤ zi. As zi is a LCM of orders
of elements in a cyclic group U(Fi) of order ni, we also deduce that zi ≤ ni, i.e.
zi = ni. This implies that ni divides m, for any 1 ≤ i ≤ t, as desired.

(3) Suppose the product
∏

i∈I Fi is n-torsion clean. Then every field Fi is a
homomorphic image of

∏
i∈I Fi. Thus, owing to (1), each Fi is a finite field. If

LCM(|Fi|− 1 | i ∈ I) would not exist, then there would exist indexes i1, . . . , ik ∈ I
such that m = LCM(|Fi1 | − 1, . . . , |Fik | − 1) > n. However, in virtue of (2),
T = Fi1 × · · · ×Fik is m-torsion clean and m ≤ n, as T is a homomorphic image of
R. Thus LCM(|Fi| − 1 | i ∈ I) do exist and we can assume that LCM(|Fi| − 1 |
i ∈ I) = LCM(|Fi1 | − 1, . . . , |Fik | − 1) = m. Then it is clear that n ≤ m. Notice
also that m ≤ n, as T is a homomorphic image of R, i.e. n = m. This gives (3).

(4) Let R be a subdirect product of fields Fi, i ∈ I. Suppose R is m-torsion
clean. For every i ∈ I, Fi is a homomorphic image of R so, with the aid of (1), the
field Fi is ni-torsion clean, where ni = |Fi| − 1. We also have ni ≤ m. Therefore,
LCM(|Fi| − 1 | i ∈ I) exists and the statement (3) shows that

∏
i∈I Fi is n-torsion

clean, where n = LCM(|Fi| − 1 | i ∈ I). In particular, the order of any unit of R
divides n and thus m ≤ n follows.

Let us fix i ∈ I and let F = Fi with s = ni. Then, any a ∈ F can be presented
as a = e+ u with um = 1. Let k1, . . . ks be orders of units in such presentations of
all elements of F . Then, by construction, k = LCM(k1, . . . , ks) divides m and also
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divides s = |F | − 1 (as s is equal to the order of the group U(F )). In particular
k ≤ s. On the other hand, appealing to (1), F is s-torsion clean and this forces
that s ≤ k. However, this shows that k = s = ni divides m. This means that, for
any i ∈ I, ni = s divides n. Consequently, n = LCN(ni | i ∈ I) divides m. By the
first part of the proof m ≤ n, so n = m really follows.

Suppose now that
∏

i∈I Fi is n-torsion clean and R is a subdirect products
of fields Fi, i ∈ I. To complete the proof, it is enough to show R is m-torsion
clean for some m. The statement (3) implies that the group U(R) is of finite
exponent, say k is the exponent. Then, for any r ∈ R, e = rk is an idempotent, and
r = (1−e)+((e−1)+r) is a clean decomposition of a with ((e−1)+r)k = 1. This
allows us to conclude that R is m-torsion clean, for some m ≤ k, as required. �

The following result, which is needed later in the text, is also of some indepen-
dent interest. Before stating it, let us recall that idempotents lift modulo an ideal
J of R if, for any a ∈ R such that a2 − a ∈ J , there exists an idempotent e ∈ R
such that e− a ∈ J . If the idempotent e is uniquely determined by the element a,
then we say that idempotents lift uniquely modulo I.

It is known that idempotents lift modulo nil ideals, thus the following lemma
applies when J is a nil ideal of a ring R.

Lemma 3.9. Let J ⊆ J(R) be an ideal of R. Suppose that idempotents lift
modulo J . Then the following conditions are equivalent:

(1) R is an abelian ring;
(2) R/J is an abelian ring and idempotents lift uniquely modulo J .

Proof. Let π : R → R/J denotes the canonical homomorphism.
(1) ⇒ (2). Suppose the ring R is abelian. Since idempotents lift modulo J ,

Id(R/J) = π(Id(R)). Thus the ring R/J is abelian, as R is such. Let e, f ∈ Id(R)
be such that e − f ∈ J ⊆ J(R). Then, by [KLM, Corollary 11], e and f are
conjugate in R, i.e. there exists u ∈ U(R) such that e = ufu−1. However, all
idempotents of R are central, so e = f . This, together with the assumption that
idempotents lift modulo J yield that idempotents lift uniquely modulo J .

(2) ⇒ (1). The commutator of elements a, b ∈ R will be denoted by [a, b] :=
ab−ba. Suppose (2) holds and let e ∈ Id(R), r ∈ R. Then f = e+er(1−e) is also an
idempotent and [f, e] = er(1− e). By assumption R/J is abelian, so π([f, e]) = 0.
This shows that er(1− e) ∈ J . Since π(e) = π(f) and, by assumption, idempotents
lift uniquely modulo J , we obtain e = f , i.e. er(1 − e) = 0. Now, replacing e by
1− e, we also have (1− e)re = 0, for any r ∈ R. This means that every idempotent
e of R is central, i.e. R is abelian, as required. �

We will need in the sequel the following direct application of [DL, Theorem
3.2.].

Lemma 3.10. Let R be a ring and u ∈ R. Suppose that m := char(R) is finite
and J(R) is a nil ideal of index s+1, where s ≥ 0. If ut−1 ∈ J(R), then utms

= 1.

Proof. [DL, Theorem 3.2.] states that if R is a ring satisfying assumptions
of the lemma, then (1 − r)m

s

= 1, for any r ∈ J(R). Now, if ut − 1 ∈ J(R), then
there exists r ∈ J(R) such that ut = 1− r and utms

= 1 follows. �
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The above lemma gives immediately the following corollary:

Corollary 3.11. Let R be a ring of such that char(R) is finite and J(R) is nil
of bounded index. If the group U(R/J(R)) is of finite exponent, then so is U(R).
If additionally R/J(R) is clean (so R is also clean, as units and idempotents lift
modulo nil ideals), then R is n-torsion clean, for some n ∈ N.

Corollary 3.12. Let R be a ring of finite characteristic and J a nil ideal of
R of bounded index. Then the following conditions are equivalent:

(1) R is an n-torsion clean ring, for some n ∈ N.
(2) R/J is an t-torsion clean ring, for some t ∈ N.

Proof. Suppose R/J is an m-torsion clean ring, for some m ∈ N. Let r ∈ R.
Since units and idempotents lift modulo J we can find e ∈ Id(R) and u ∈ U(R)
such that r̄ = ē+ ū is an t-torsion clean decomposition of r̄ in R/J , where r̄ denotes
the natural image of r in R/J . By Lemma 3.10, u = 1, where m = char(R) and
s+1 is the nil index of the ideal J . This implies that R is n-torsion clean, for some
n ≤ tms.

The reverse implication is clear. �
The following theorem offers a characterization of strongly n-torsion clean

abelian rings (compare with Theorem 3.4).

Theorem 3.13. For a ring R, the following conditions are equivalent:

(1) There exists n ∈ N such that R is an n-torsion clean abelian ring.
(2) (a) char(R) is finite;

(b) J(R) is nil of bounded index;
(c) Idempotents lift uniquely modulo J(R);
(d) R/J(R) is a subdirect product of finite fields Fi, where i ranges over

some index set I, such that LCM(|Fi| − 1 | i ∈ I) exists.
(3) R is an abelian clean ring such that U(R) is of finite exponent.

Proof. (1) ⇒ (2). Suppose R is an n-torsion clean abelian ring. Then,
Theorem 3.4 guarantees that char(R) is finite and J(R) is nil of finite index. In
particular, R has properties (a) and (b). Since J(R) is a nil ideal, idempotents lift
modulo J(R) and, by Lemma 3.9, they lift uniquely, so (c) holds.

Finally, by Theorem 3.4(1), R/J(R) satisfies the polynomial identity φ(x) = 0,
where φ(x) = (xn−1)((x−1)n−1) ∈ Z[x]. Therefore, R/J(R) is a subdirect product
of primitive PI-rings, say R/J(R) is a subdirect product of primitive rings {Ri}i∈I ,
for some index set I. Let us fix i ∈ I. Then Ri, as a homomorphic image of R, also
satisfies the identity φ(x) = 0. Consequently, by the classical Kaplansky’s theorem
(cf. [R]), each Ri has to be a central simple algebra, finite dimensional over its
center C. Notice that, as char(R) is finite, C is a field of nonzero characteristic, say
Fp ⊆ C. Observe also that, by Lemma 3.9, Ri is an abelian ring. This implies that
Ri has to be a division algebra over Fp. It is known (cf. [F, Corollary from page
48]) that every division algebra which is algebraic over a finite field is necessarily
commutative. In particular, Ri has to be a field. In fact, it is a finite field, as Ri

is contained in the spitting field of φ(x) ∈ Fp[x]. The above shows that R/J(R) is
a subdirect product of finite fields. Moreover, R/J(R) is also, as a homomorphic
image of R, strongly n′-torsion clean, for some n′ ≤ n. Therefore, making use of
Proposition 3.8, we see that R satisfies the property (d). This completes the proof
of the implication.
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(2) ⇒ (3). Suppose (2) holds. We know, by (d) and Proposition 3.8, that
R/J(R) is a clean ring with the unit group U(R) of finite exponent. The property
(b) guarantee that J(R) is a nil ideal and Corollary 3.11 yields that R is a clean
ring with the unit group U(R) is of finite exponent. Finally, properties (d), (c)
together with Lemma 3.9 imply that R is an abelian ring.

The implication (3) ⇒ (1) is obvious. �

In parallel to Theorem 3.13, one can state the following:

Theorem 3.14. For a ring R, the following conditions are equivalent:

(1) R is strongly n-torsion clean, for some n ∈ N.
(2) R is strongly clean and U(R) is of finite exponent.

Proof. (1) ⇒ (2). Suppose R is strongly n-torsion. Then clearly R is strongly
clean. Next, observe that Theorem 3.4 implies that R is a PI-ring satisfying an
identity of degree 2n and J(R) is a nil ideal of bounded index. Using similar
arguments as in the proof of Theorem 3.13, one can see that the quotient R/J(R)
is a subdirect product of a matrix rings, say Ri = Mmi

(Fi), over finite fields Fi.
Notice that, as char(R) is finite, the set of characteristics of fields from the set
F = {Fi | i ∈ I} is finite and also the number of fields of a given characteristic p
is finite, as every such field is contained in the splitting field of a given polynomial
of degree 2n. Thus there are only finitely many classes of isomorphic fields in
the set F . Moreover, by the classical Amitsur-Levitzki’s theorem (cf. [R]), each
mi is not grater than n, as every Ri satisfies a polynomial identity of degree 2n.
Therefore, the unit group of the product

∏
i∈I Ri is a group of finite exponent. By

Theorem 3.4, char(R) is finite and J(R) is a nil ideal of bounded index. Now, we
can apply Lemma 3.10 to obtain that the group U(R) is of finite exponent.

The implication (2) ⇒ (1) is clear. �

We now have at our disposal all the necessary information to present a satis-
factory structural characterization of strongly n-torsion clean rings, for all odd n.

Theorem 3.15. Suppose n ∈ N is odd. For a ring R, the following conditions
are equivalent:

(1) R is a strongly n-torsion clean ring;
(2) There exist integers k1, . . . , kt ≥ 1 such that n = LCM(2k1−1, . . . , 2kt−1)

and R is a subdirect product of copies of fields F2ki , 1 ≤ i ≤ t;
(3) R is a clean ring in which orders of all units are odd, bounded by n and

there exists a unit of order n.

Proof. (1) ⇒ (2). Suppose R is a strongly n-torsion clean ring. Then, by
Theorem 3.4 (4), R is a reduced ring of characteristic 2 and J(R) = 0. Thus, as
every reduced ring is abelian, we can apply Theorem 3.13 to obtain that R is a
subdirect product of finite fields Fi of characteristic 2, where i ∈ I, for some index
set I. Now, Proposition 3.8 completes the proof of the implication.

The reverse implication (2) ⇒ (1) is a direct consequence of Proposition 3.8.
The implication (2) ⇒ (3) is a tautology.

(3) ⇒ (1). Let R be as in (3). Then, as (−1)2 = 1 and R has no units of even
order, −1 = 1, i.e., char(R) = 2. Let us observe that R has to be reduced. Indeed,
if r2 = 0 for some r ∈ R, then (1 + r)2 = 1 + r2 = 1. Using again the fact that
R has no units of even order, we get r = 0. It is known that in a reduced ring
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all idempotents are central. Moreover, by assumption, R is a clean ring and, as
every unit of R is of finite order bounded by n, the ring must be strongly m-torsion
clean, for some m ≤ n!. Now, because orders of units are odd, m has to be odd
(as u2k = 1 yields uk = 1, when o(u) is odd). Furthermore, bearing in mind the
equivalence of statements (1) and (2), we conclude that n = m, as required. �

It is worth to mention certain slightly unexpected, non-trivial consequences of
the above theorem. Namely, not every odd natural number n can serve as torsion
degree of strongly n-torsion clean rings and, for odd, n-torsion clean rings are always
commutative.

Notice that, because every finite ring is clean, Theorem 3.15 forces the following:

Corollary 3.16. For a finite ring R the following conditions are equivalent:

(1) R is strongly n-torsion clean for some odd n;
(2) R has no units of even order;
(3) R is isomorphic to a finite direct product of fields of characteristic 2.

Proof. By the Chinese Remainder Theorem, any subdirect product of finite
number of fields is isomorphic to a direct product of fields. Now, the corollary is a
straightforward consequence Theorem 3.15. �

We close the paper with some problems of interest.

Question 1. The matrix ring Mn(F2k) is always m-torsion clean for some m.
Compute m in terms of n and k; is m = n if k = 1?

Recall that some basic observations related to the above problem can be found
in Proposition 2.6 and Examples 2.5 and 2.7. In particularM2(F2) is 2-torsion clean
and, when n ∈ {3, 4} then Mn(F2) is m-torsion clean, where 2 < m ≤ 4. Christian
Lomp checked for us, with the help of SageMath, that n = m in the above cases.

We have seen in Theorem 3.14 that strongly n-torsion clean rings have unit
groups U(R) of finite exponent. For odd n, by Theorem 3.15, n = exp(U(R)).
Example 2.5 shows also such equality in the case of the ringM2(F2). We were kindly
informed by Pace Nielsen, that such equality also holds for M3(F2), i.e. M3(F2) is
strongly 84-torsion clean. Notice also that Example 3.7 offers yet another instance
of equality n = exp(U(R)).

Thus we pose the following two questions.

Question 2. Let R be a strongly n-torsion clean ring. Is it true that n =
exp(U(R))?

Question 3. Let R be an n-torsion clean ring. Is then necessary U(R) of finite
exponent?

In regard to both questions, are clean rings with cyclic units also strongly
clean? For odd n, strongly n-torsion clean rings were characterized in Theorem 3.15.
Besides, Theorem 3.13 offers a description of strongly n-torsion clean rings with
extra assumption that the considered rings are abelian. So, we come to

Question 4. Characterize strongly n-torsion clean rings, for even n ∈ N.

If R is not abelian, then Theorem 3.4 (5) and arguments used in the proof
of Theorem 3.14 show that, modulo the Jacobson radical (which is nil of bounded
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index), Question 4 essentially reduces to the investigation of matrix rings over finite
fields of characteristic dividing n.

It is also worthwhile noticing that (strongly) 2-torsion clean rings were classified
in [D] under the name (strongly) invo-clean rings by using another approach. In
fact, R is strongly invo-clean if and only if R ∼= R1 × R2, where R1 is a ring for
which R1/J(R1) is boolean with z2 = 2z for every z ∈ J(R1), and R2 is a ring
which can be embedded in a direct product of copies of the field F3.

Acknowledgments. We would like to thank Christian Lomp and Pace Nielsen
for helpful discussion and support in computations.
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