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On commutator fully transitive Abelian groups
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Abstract. There are two rather natural questions which arise in connection with the endo-
morphism ring of an Abelian group: when is the ring generated by its commutators, and
when is the ring additively generated by its commutators? The current work explores these
two problems for arbitrary Abelian groups. This leads in a standard way to consideration
of two improved versions of Kaplansky’s notion of full transitivity, which we call commu-
tator full transitivity and strongly commutator full transitivity. We establish, inter alia, that
these notions are strictly stronger than the classical concept of full transitivity, but there
are nonetheless many parallels between these things.

1 Introduction

Throughout the present paper, let all groups be additive Abelian groups and let all
unexplained notions and notation follow those from [19] and [23].

To simplify the notation, and to avoid any risk of confusion, we shall write E.G/
for the endomorphism ring of a group G, and End.G/ D E.G/C for the endomor-
phism group of a group G. Likewise, the endomorphism  is called commutator
if it can be represented as  D Œ˛; ˇ� D ˛ˇ � ˇ˛ for some endomorphisms ˛; ˇ
of G. Commutators of endomorphisms rings of groups and certain other questions
connected with them were studied in [5–11].

Moreover, we shall denote by Comm.G/ the subring of E.G/ containing the
same identity and generated by the commutator endomorphisms. In view of the
equality Œ˛; ˇ� D �Œˇ; ˛�, an element � 2 Comm.G/ will have the form

� D
X
finite

ci1ci2 : : : cik ;

where every cij is a commutator in E.G/ for ij 2 N and 1 � j � k 2 N.
Analogously, we let comm.G/ denote the subgroup of End.G/ generated by the

commutator endomorphisms; so ' 2 comm.G/ has the form

' D

nX
iD1

ci

Brought to you by | De Gruyter / TCS
Authenticated

Download Date | 7/2/15 9:42 AM



624 A. R. Chekhlov and P. V. Danchev

for some finite n, where each ci is a commutator in End.G/. Since 1 can be rep-
resented as a finite sum of finite products of commutators, it is immediately seen
that the same holds for ci D 1 � ci D ci � 1 and thus comm.G/ � Comm.G/.

As usual, mimicking [24, Section 27], HG.g/ denotes the height matrix of the
element g of a group G. In the case where the group G is a p-group, one may
consider the Ulm indicator UG.g/ of the element g instead ofHG.g/, while if the
groupG is torsion-free, one can consider the characteristic �G.g/. Also, o.g/will
denote the order of the element g, i.e., the least n 2 N with ng D 0 or1 if such
an n does not exist. We also define the relation � as follows: for m; n 2 N [ ¹1º
we suppose that m � n, either n j m or m D1.

Let R be an associative unital ring, let G be a group, and let f WR! E.G/
be a ring homomorphism. We shall define the action of R on G by the equality
r.g/ D f .r/.g/. Similarly to above, we denote by Comm.R/ and comm.R/ the
subring of R and the subgroup of RC, respectively, generated by all commutators
of R. So, we come to the following notion:

Main Definition. A group G is said to be R-commutator fully transitive if, given
0 ¤ x; y 2 G with HG.x/ 6 HG.y/ and o.x/ � o.y/, there exists an element
f 2 Comm.R/ with f .x/ D y. If f is chosen from comm.R/, then the group is
called R-strongly commutator fully transitive.

In what follows we will consider several times the examined group as a module
on its endomorphism ring. In particular, when R D E.G/ and RC D End.G/, one
can obtain the following two concepts:

Definition 1. A group G is said to be commutator fully transitive (briefly, a cft-
group) if, given 0 ¤ x; y 2 G with HG.x/ 6 HG.y/ and o.x/ � o.y/, there
exists an endomorphism � 2 Comm.G/ with �.x/ D y.

Definition 2. A group G is said to be strongly commutator fully transitive (briefly,
an scft-group) if, given 0 ¤ x; y 2 G with HG.x/ 6 HG.y/ and o.x/ � o.y/,
there exists an endomorphism ' 2 comm.G/ with '.x/ D y.

Note that if the group is reduced, then the condition o.x/ � o.y/ in both Def-
initions 1 and 2 can be eliminated in conjunction with [21, Proposition 2.23].
However, the later usage of that condition is basically motivated by the existence
of divisible direct factors. It is also clear that any scft-group is a cft-group.

Notice that in [16] the authors studied the so-called projectively fully transi-
tive p-groups, i.e., the p-groups G having the property that, for any x; y 2 G
with UG.x/ 6 UG.y/, there exists some ' 2 Proj.G/ such that '.x/ D y, where
Proj.G/ is the subring of E.G/ generated by the idempotents of E.G/. They also
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On commutator fully transitive Abelian groups 625

explored strongly projectively fully transitive p-groups defined in a similar way,
replacing Proj.G/ by ….G/, which is the subgroup of End.G/ additively gener-
ated by all the idempotents. In what follows we shall often cite and use results
from [16].

Once again, throughout the text, the word group will denote an additively
written Abelian group. In this context, our terminology, if not explicitly explained
herein, is standard and follows Fuchs [19] and Kaplansky [23], where all mappings
are written on the left. Another good sources on this subject are [3, 14, 15]. Like-
wise, if A;B are groups and H � A, let Hom.A;B/H D

P
f 2Hom.A;B/ f .H/.

As usual, Zn denotes the cyclic group of order n, whereas the ring of integers
modulo n is denoted by Z.n/.

Our work is motivated mainly by [16] and [17]. Here we wish to consider the
situation where the projection endomorphisms are replaced by commutator endo-
morphisms and thus to find the similarities and the discrepancies between them.
We emphasize that there is no absolute analogy in both cases.

2 Elementary results

It is clear that if Comm.G/ D E.G/ (resp., comm.G/ D End.G//, then the fully
transitive group G is a cft-group (resp., an scft-group), so we will first consider
this situation. We shall say that a group G is a commutator-generated group (or
a CG-group for short) if Comm.G/ D E.G/; similarly, we say that G is a commu-
tator-sum group (or a CS-group for short) if comm.G/D End.G/. It is self-evident
that a CS-group is a CG-group because End.G/ � E.G/. Likewise, it is appar-
ent that a group with commutative endomorphism ring is neither a CG-group nor
a CS-group; for more concrete information concerning groups with commutative
endomorphism ring, we refer the interested reader to both [26] and [2].

However, the next construction demonstrates that there exist CG-groups which
are not CS-groups.

Example 2.1. There is a CG-group that is not a CS-group.

Proof. Suppose R D ¹ m
2n
j m; n 2 Zº is the ring of the rational fractions whose

denominators are powers of 2, and let S D R˚Ri ˚Rj ˚Rk with i2 D j 2 D
k2 D �1 be the ring of quaternions for the ringR. For any element r 2 R we have
Œ r
2
i; j �D rk, soRk � comm.S/. Similarly,Ri � comm.S/ andRj � comm.S/.

Thereby comm.S/ D Ri ˚Rj ˚Rk. Since k2 D Œ1
2
i; j �2 D �1, one sees that

R � Comm.S/, i.e., S D Comm.S/. Furthermore, according to Corner’s realiza-
tion theorem [24, Theorem 29.2] there exists a countable torsion-free group G
with E.G/ Š S . Hence Comm.G/ D E.G/ and, consequently, G is a CG-group.
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626 A. R. Chekhlov and P. V. Danchev

However, it is routinely checked that 1 62 comm.S/, whence comm.G/ 6D End.G/,
and therefore G is not a CS-group, as asserted.

The following fact is rather elementary but is crucial for our purposes.

Remark. Notice also that if G D A˚ B , then any endomorphism ı 2 E.G/ such
that ı�A D f 2 Hom.A;B/ and ı�B D 0B can be represented like this:

ı D

 
0 0

f 0

!
D

 
0 0

f 0

! 
1 0

0 0

!
�

 
1 0

0 0

! 
0 0

f 0

!
:

This observation suggests the following obvious technical result which will be
used in the sequel.

Lemma 2.2. IfG D A1˚� � �˚An, where allAi are CG-groups (resp., CS-groups),
then G is a CG-group (resp., a CS-group).

The next statement is also of interest.

Lemma 2.3 ([25]). If G D A.�/, where the cardinal � is infinite, then

comm.G/ D End.G/:

We sketch here an idea of the proof only for the sake of completeness and
the reader’s convenience: In fact, one may apply [25, Theorem 13], where it was
proved that if N is a right R-module over a ring R, I is an infinite set and
M D N .I /, then the equality EndR.M/ D ŒEndR.M/;EndR.M/� holds, where
ŒS; S� is the additive subgroup in a ring S , generated by all commutators of the
elements of the ring S .

As a useful consequence, we derive:

Corollary 2.4. The following statements hold.

(1) If G D A˚ B , where the component A is a fully invariant subgroup of G,
then G is a CG-group (resp., a CS-group) if and only if both A and B are
CG-groups (resp., CS-groups). In particular, if G D D ˚R, where D is di-
visible andR is reduced, thenG is a CG-group (resp., a CS-group) if and only
if both D and R are CG-groups (resp., CS-groups).

(2) If G D
L
i Ai , where each Ai is a fully invariant subgroup of G, then G is

a CG-group (resp., a CS-group) if and only if every component Ai is a CG-
group (resp., a CS-group).

Proof. (1) Since A is a fully invariant subgroup in G, any ' 2 E.G/ can be rep-
resented as ' D . ˛ 
0 ˇ /, where ˛ 2 E.A/, ˇ 2 E.B/ and 
 2 Hom.B;A/. But we
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On commutator fully transitive Abelian groups 627

have ˛ 2 Comm.A/ and ˇ 2 Comm.B/, so the Remark before Lemma 2.2 works
to conclude that . 0 


0 0
/ 2 Comm.G/. Thus ' 2 Comm.G/ and hence we obtain

both claims, as desired.
(2) This is elementary.

It is worthwhile noting that point (2) of Corollary 2.4 reduces the study of tor-
sion CG-groups and CS-groups to the primary case.

Proposition 2.5. The following statements hold.

(1) Let G D C ˚ B , where C 6D 0 is a free group and B is a CG-group having
a direct summand isomorphic to C . Then G is a CG-group.

(2) If A is a free group, then A.�/ is a CG-group for any cardinal � > 2.

Proof. (1) Since B has a direct summand isomorphic to C , it follows that for each
˛ 2 E.C / there exist � 2 Hom.C;B/ and � 2 Hom.B; C / such that ˛ D ��. But 

˛ 0

0 0

!
D

 
0 �

0 0

! 
0 0

� 0

!
:

Thus it is easily seen that E.G/ D Comm.G/, as required.
Point (2) follows in the same manner.

It is well known that every divisible group D has the following representation:

D D D0 ˚

�M
p2…

Dp

�
;

where D0 is its torsion-free part such that D0 D 0 or D0 Š Q.m/ for some cardi-
nal m > 1, while … is a subset of the set of all prime numbers such that if … ¤ ¿
and p 2 …, then Dp Š Z.kp/p1 for some cardinal kp > 1, where m D rank.D0/
and kp D rank.Dp/.

Combining Corollary 2.4 and Proposition 2.5, we immediately deduce:

Corollary 2.6. A divisible group D is a CG-group if and only if either D0 D 0 or
rank.D0/ > 2, and if … ¤ ¿, then rank.Dp/ > 2 for any p 2 ….

Note that the papers [6, 8, 10] investigated the E-commutant G0 of a group G,
that is,G0 D hŒ˛; ˇ�G j ˛; ˇ 2 E.G/i. According to [9, Lemma 8] ifG D A˚ B ,
thenG0 D hHom.A;B/A;Hom.B;A/B;A0; B 0i. It is clear that ifG is a CG-group
or a CS-group, then we have that G D G0 whereas the converse fails. Indeed,
if G D Q˚ .Z˚ Z/, then G D G0, but by Corollary 2.4 the group G is not
a CG-group (and hence it is not a CS-group as well).
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628 A. R. Chekhlov and P. V. Danchev

Notice also that ifG D A˚ A, whereA is a group with commutative endomor-
phism ring, then G is not a CS-group. In fact, if '; 2 E.G/ with

' D

 
˛ ˇ


 ı

!
and  D

 
˛1 ˇ1


1 ı1

!
;

then

Œ';  � D

 
ˇ
1 � ˇ1
 �

� 
ˇ1 � 
1ˇ

!
:

Since the ring E.A/ is commutative, we have ˇ
1 � ˇ1
 D �.
ˇ1 � 
1ˇ/. It is
now plainly seen that the matrices of this type do not additively generate all of the
ring M.2;E.A//.

On the other hand, any bounded p-group A represents as

A D A1 ˚ � � � ˚ An; (2.1)

where each subgroup Ai is isomorphic to a direct sum of some number of the
group Zpni (i D 1; : : : ; k) and 1 6 n1 < � � � < nk .

So, we come to

Proposition 2.7. The bounded p-group from (2.1) is a CG-group if and only if
every its component Ai is a decomposable group, that is, none of its components
Ai is a cyclic group.

Proof. Necessity. Assume that some subgroup Ai is indecomposable, i.e., it is
a cyclic group of order pni (note that its endomorphism ring is commutative).
ThereforeA D Ai˚B , whereB D B1˚B2,B1 D

Li�1
jD1Aj ,B2 D

Lk
jDiC1Aj

(B1 D 0 or B2 D 0 if, resp., i D 1 or i D k). If '; 2 E.A/ with

' D

 
˛ ˇ


 ı

!
and  D

 
" �

� �

!
;

then in view of commutativity of the ring E.Ai / we obtain that

Œ';  � D

 
� �

� �

!
; (2.2)

where � is a composition of homomorphisms from Hom.Ai ; B/ and Hom.B;Ai /,
respectively, � 2 Hom.B;Ai /, � 2 Hom.Ai ; B/, � 2 E.B/. It is easy to check
that any finite product of commutators is of the form of (2.2). However,

Hom.Ai ; B2/Ai � pniC1�niB2; Hom.B1; Ai /B1 � pni�ni�1Ai ;

where niC1�ni > 1 and ni�ni�1 > 1. Hence Im � � pAi , which ensures thatA
is not a CG-group.

Sufficiency. This follows directly from Lemma 2.2 and Proposition 2.5.
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On commutator fully transitive Abelian groups 629

Now we will exhibit separable p-groups which are not CG-groups (and, conse-
quently, are not CS-groups).

Example 2.8. Suppose R is a commutative ring whose additive group is the com-
pletion of a free p-adic module of at most countable rank. Then there exists an
unbounded separable p-group GR which is not a CG-group.

Proof. With Corner’s realization theorem from [13] at hand (see also [12] and [24,
Theorem 28.11]), we conclude that there is an unbounded separable p-group GR
with E.GR/ D R˚ES .GR/, whereES .GR/ is the ideal of small endomorphisms
of GR. Since E.GR/=ES .GR/ Š R is a commutative ring, we deduce that GR is
not a CS-group, because if we assume that the ring E.GR/ is generated as a ring
(resp., additively) by its commutators, then the same is true for E.GR/=ES .GR/,
which is obviously false.

Such a ring R, for instance, can be taken to be bZp � � � � �bZp D bZ.n/p , for
a finite n, where bZp is the ring of all p-adic integers. Notice that if R D bZp,
then with the aid of [24, Proposition 28.12] the group GR has to be an essentially
indecomposable p-group.

Proposition 2.9. If A is a reduced separable p-group with a basic subgroup of
2 6 rank 6 2@0 , then for any infinite ordinal ˛ < !2 there is a p-group G with
p˛G D A such that G is not a CG-group.

Proof. Again using Corner’s realization theorem from [13], we construct a group
G with p˛G D A and E.G/A D ¹'�A j ' 2 E.G/º Dˆ, whereˆ is any complete
separable p-adic subalgebra of E.A/. If A is unbounded, then the choice ˆ D bZp
is possible, too. Since bZp is commutative, the ring E.G/ cannot be generated
by its commutators since E.G/A is a ring homomorphic image of E.G/.

Suppose, instead, that the group A is bounded, and write A D B ˚ C , where
B D Zpn1 ˚ Zpn2 and n1 6 n2. Let ˆ be the algebra of matrices of the form
. r 00 s /, where r 2 Z.pn1 / and s 2 Z.pn2 /; because of finiteness ˆ is complete and
separable. Once again in view of the commutativity of ˆ, the ring E.G/ cannot be
generated by its commutators. Consequently, in either case, G is not a CG-group,
as expected.

Proposition 2.10. The following statements hold.

(i) If a p-group G is a CG (resp., a CS)-group, then so is pnG for any finite n.

(ii) If a p-groupG is a CG (resp., a CS)-group and the quotientG=p˛G is totally
projective for some ordinal ˛, then p˛G is a CG (resp., a CS)-group.
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630 A. R. Chekhlov and P. V. Danchev

Proof. (i) This follows from the fact that the mapping �WE.G/! E.pnG/,
defined by �.f / D f �pnG, is a ring epimorphism in accordance with [19, Pro-
position 113.3].

(ii) This can be verified similarly by referring to [22].

To give an example of a splitting group which is not a CG (resp., a CS)-group,
say G D A˚ T , where A is a torsion-free group and T is a torsion group, it is
enough to choose either A or T to be not a CG (resp., a CS)-group.

Standardly, the letters Gt D t .G/ stand for the torsion part of any group G.

Proposition 2.11. The following statements hold.

(1) If R is a countable commutative ring, the additive group RC of which is
reduced torsion-free, then there exists a countable reduced mixed group GR
such that the factor-group GR=t.GR/ is divisible and GR is not a CG-group.
Moreover, if RC has rank n, then the torsion-free rank of GR is equal to 2n.

(2) For any infinite cardinalm there are 2m reduced mixed non-isomorphic groups
G such that G=t.G/ is divisible and G is not a CG-group.

Proof. (1) According to [24, Corollary 30.5], there exists a group G such that
E.G/ D R˚ Et .G/, where Et .G/ is an ideal of E.G/. If Comm.G/ D E.G/,
then the factor-ring E.G/=Et .G/ also possesses this property that contradicts its
commutativity.

(2) Referring to [24, Corollary 30.6], we can take R D Z.

It is well known that any completely decomposable torsion-free group G can
uniquely be decomposed up to isomorphism as G D

L
s2�Gs , where Gs are

homogeneous completely decomposable groups called homogeneous components
of G, and � is some set of types.

Proposition 2.12. The following statements hold.

(1) A completely decomposable torsion-free group G is a CG-group if and only if
each of its homogeneous component has rank > 2.

(2) A vector torsion-free group G D
Q
s2�Gs , where Gs is a direct product of

groups of rank 1 and type s (� is some set of types), is a CG-group if and only
if rank.Gs/ > 2 for each s 2 �.

Proof. (1) Necessity. The subgroup G.s/ D
L
�>s G� D Gs ˚ .

L
�>s G� / is

a fully invariant direct summand of G. So, by Corollary 2.4, both G.s/ and Gs
are CG-groups. Consequently, rank.Gs/ > 2.
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On commutator fully transitive Abelian groups 631

Sufficiency. LetG D G1 ˚G2, whereG1 is the direct sum of thoseGs that have
either infinite rank or finite rank that is even, and G2 is the direct sum of those Gs
that have odd rank. According to Lemma 2.2, it is enough to show that G1 and G2
are CG-groups. The group G1 is a direct sum of two mutually isomorphic direct
summands and thus Proposition 2.5 allows us to conclude that G1 is a CG-group.
The group G2 can be presented in the form G2 D A1 ˚ A2 ˚ A3 ˚ B , where
A1 Š A2 Š A3 and each homogeneous component ofB (ifB ¤ 0) has even rank,
so G2 is also a CG-group.

(2) This can be verified similarly.

3 Basic results

This section is devoted to the exploration of the two new classes of groups named
(strongly) commutator fully transitive groups. So, the main results will be divided
into two corresponding subsections as follows.

3.1 Commutator fully transitive groups

We begin with a trivial but useful assertion.

Lemma 3.1. The following statements hold.

(1) LetG D A˚ B be a cft-group and let A be a direct summand such that either
Hom.A;B/ D 0 or Hom.B;A/ D 0. Then A is also a cft-group.

(2) IfG D
L
i2I Ai is a reduced torsion-free group and either Hom.Ai ; Aj / D 0

or Hom.Aj ; Ai / D 0 for any i; j 2 I with i ¤ j , then G is a cft-group if
and only if pAi ¤ Ai implies pAj D Aj for each prime p and all i; j 2 I
with i ¤ j .

Proof. Point (1) is obvious. Since each cft-group is fully transitive, the necessity
of (2) follows from the corresponding result for fully transitive groups (see, for
example, [21, Theorem 3.20]). As for the sufficiency, we make the elementary
observation that these groups are of necessity fully transitive and hence we refer
to Lemma 3.5 below.

We are now able to prove the following:

Proposition 3.2. A divisible group D is a cft-group if and only if D0 D 0 or
rank.D0/ > 2, and if … ¤ ¿, then rank.Dp/ > 2 for any p 2 ….

Proof. Necessity follows from Lemma 3.1, whereas to treat the sufficiency we
employ the fact that any divisible group is a fully transitive group and since by
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632 A. R. Chekhlov and P. V. Danchev

Corollary 2.6 such a group is a CG-group, it follows immediately that it must be
a cft-group.

It is worthwhile noticing that neither Q nor Zp1 are cft-groups. In fact, [26]
and [2] show that these two divisible groups have commutative endomorphism
rings, as the first one is the only divisible torsion-free group having this property
(for any set … of prime numbers, the group

L
p2…Zp1 also has commutative

endomorphism ring). Since these two groups are fully transitive, we thus obtain
two examples of fully transitive groups that are not cft-groups.

It is well known that any separable p-group is a fully transitive group. But
each fully transitive group with commutative endomorphism ring is obviously not
a cft-group; for instance, owing to [26], Zpn is a separable (and even apn-bounded)
p-group that is not cft.

So it is interesting to find a concrete example of a reduced inseparable fully
transitive group which is not a cft-group. This is subsumed by the following two
constructions:

Example 3.3. There exist two types of non-separable fully transitive p-groups
which are not cft-groups.

Proof. (i) Using Corner’s realization theorem from [13], we construct a p-group
G such that p!G D Zpn and E.G/�p!G D Z.pn/. Since E.G/ acts fully transi-
tively on p!G, the group G is fully transitive. However, E.G/�p!G is commuta-
tive and p!G is fully invariant in G. Therefore, Comm.G/�p!G D 0, i.e., G is
not a cft-group, as expected.

(ii) Let H D Zp ˚ Zp D hai ˚ hbi and � 2 E.H/ such that �.a/ D b and
�.b/ D aC b; ˆ is a subring in E.H/ generated by I; �, where I is the identity
onH and p is a prime of the form p D 5nC2. IfG is a group such that p!G D H
and E.G/�H D ˆ, it was shown in [16, Proposition 3.5 (ii)] that G is a fully tran-
sitive group. Arguing as in (i), we detect thatG is not a cft-group, as promised.

The next statement illustrates that cft-groups are not closed under the formation
of direct summands.

Corollary 3.4. A direct summand of a cft-group need not necessarily be a cft-group.

Proof. By virtue of Proposition 3.2, the two sums Zp1 ˚ Zp1 and Q ˚ Q are
cft-groups, but as we commented above neither Zp1 nor Q are cft-groups.

On the other hand, concerning the reduced inseparable case, let G be one
of the non-cft-groups exhibited in Example 3.3. Then G ˚G is a cft-group by
Theorem 3.8 below, as needed.
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On commutator fully transitive Abelian groups 633

It is clear that the direct sum
L
i2I Ai of cft-groups Ai (i 2 I ) with infinite I

is a cft-group if and only if for each finite subset J � I there is a finite S � I
such that J � S and

L
i2S Ai is a cft-group.

Lemma 3.5. Let A D
L
i2I Ai be a fully transitive group, where every compo-

nent Ai is a cft-group for i 2 I . Then A is a cft-group.

Proof. Assume that HA.a/ 6 HA.b/ for some 0 ¤ a; b 2 A. It is necessary to
show that there exists an ˛ 2 Comm.A/ with the property that ˛.a/ D b. Since a
and b can be written as a finite sum of elements of someAi , it is possible to assume
that I is finite and, in particular, that jI j D 2; whence we writeA D A1 ˚ A2. But
by assumption ˛.a/ D b for some ˛ 2 E.A/. Given �i WA! Ai are projections
for i D 1; 2, we have that a D a1 C a2, b D b1 C b2, where ai ; bi 2 Ai such that

.�1 C �2/˛.a/ D �1˛.a1/C �2˛.a1/C �1˛.a2/C �2˛.a2/ D b1 C b2;

�1˛.a1/C �1˛.a2/ D b1 and �2˛.a1/C �2˛.a2/ D b2:

However,
�i˛�i 2 E.Ai / D Comm.Ai / � Comm.A/;

and
�1˛�2; �2˛�1 2 Comm.A/

by the Remark stated before Lemma 2.2, as required.

As two helpful consequences, we yield:

Proposition 3.6. If G D D ˚R is a group, where D is a divisible subgroup
and R is a reduced subgroup, then G is a cft-group if and only if D and R are
cft-groups.

Proof. Necessity follows from Lemma 3.1. As for the sufficiency, any divisible
group is fully transitive and by hypothesis R is also fully transitive. So G is fully
transitive, and it remains only to apply Lemma 3.5.

Corollary 3.7. Let G be either a p-group or a homogeneous torsion-free group.
If G is a cft-group, then so is G.�/ for any cardinal �.

Proof. Every commutator fully transitive group is obviously fully transitive and
hence we apply either [18] or [24] to get that G.�/ is fully transitive. Henceforth,
Lemma 3.5 applies to infer that G.�/ is, in fact, a cft-group, as required.
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634 A. R. Chekhlov and P. V. Danchev

The last assertion can be somewhat refined like this:

Theorem 3.8. Let � > 1 and let G be either a p-group or a torsion-free homoge-
neous group. Then the following condition are equivalent:

(a) G is fully transitive,

(b) G.�/ is fully transitive,

(c) G.�/ is cft.

Proof. Firstly, assume that G is a p-group. The equivalence between (a) and (b)
was proved in [18]. The implication (c)) (b) is obvious. Now, to show (b)) (c),
we employ Proposition 2.5 to get that G.�/ is a CG-group, so that G.�/ as a fully
transitive CG-group must be a cft-group.

Next, assume thatG is a torsion-free group. The same method as in the primary
case also works, as the equivalence of (a) and (b) was noted in [24, Section 25,
Exercise 12].

With Proposition 2.5 (2) at hand we can deduce the following statement.

Proposition 3.9. Let � > 1. Then the group G.�/ is cft if and only if G.�/ is fully
transitive.

Now, we need the following preliminary technical claim.

Lemma 3.10. Let G be a separable p-group and let B D
L1
iD1Bi be its basic

subgroup, where Bi Š
L
mi

Zpni and n1 < n2 < � � � . Then G is a cft-group if
and only if mi > 1 for every i such that Bi ¤ 0.

Proof. Necessity. This can be proved in the same manner as Proposition 2.7.
Sufficiency. Assuming that UG.a/ 6 UG.b/, we can embed a and b in a finite

direct summand A of G, say G D A˚ B , because G is separable (see [19]). By
adding to A, if necessary, a cyclic direct summand from B , we can derive that A
is a CG-group by Proposition 2.5. Since A is also fully transitive, it follows that
˛.a/ D b for some ˛ 2 Comm.A/ � Comm.G/, as desired.

Remember that the n-th invariant fn.A/ of Ulm–Kaplansky of a p-group A
is the cardinal number fn.A/ D rank..pnA/Œp�=.pnC1A/Œp�/. From this point of
view, Lemma 3.10 confirms that a separable p-group G is a cft-group if and only
if fn.B/ ¤ 0 implies that fn.B/ > 1 for each n, where B is its basic subgroup
(see [19, Section 37, Exercise 9]). Since by [19, Section 34, Exercise 2] we know
that fn.G/ D fn.B/, we get the following useful consequences:
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On commutator fully transitive Abelian groups 635

Corollary 3.11. The following statements hold.

(1) Suppose G is a separable p-group. Then G is cft if and only if for each natu-
ral n, fn.G/ 6D 0 implies that fn.G/ > 1.

(2) A separable p-group is cft if and only if its basic subgroup is cft.

We shall say that E.G/ acts commutator fully transitively on the first Ulm
subgroup p!G of a p-group G (resp., a torsion-free group) if, given x; y 2 p!G
with UG.x/ 6 UG.y/ (resp., �G.x/ 6 �G.y/), there exists some � 2 Comm.G/
with �.x/ D y.

The following is a key technical instrument for our further applications.

Lemma 3.12. A p-group G is a cft-group if and only if G=p!G is a cft-group and
E.G/ acts commutator fully transitively on p!G.

Proof. Since G is cft, it readily follows that the ring E.G/ should act commutator
fully transitively on p!G and that the basic subgroup B is cft. In fact, the latter
follows directly from the proof of Proposition 2.7 because the bounded direct
summands Bi of B are also direct summands of G, and thus they must be decom-
posable, and hence Lemma 3.10 applies to get the pursued claim. Next, according
to Corollary 3.11, a separable p-group is a cft-group if and only if its basic sub-
group is a cft-group. Since any basic subgroup of G=p!G is isomorphic to a basic
subgroup of G (see, e.g., [19]), the necessity is proved.

[Correction added after online publication 21 May 2015: In the second line of
the proof of Lemma 3.12 the text passage has been added from “and that the basic
subgroup B is” to “the pursued claim”.]

In order to prove sufficiency, we use the idea of the proofs of [13, Lemma 2.1]
and [16, Lemma 3.11]; in fact, it is necessary only to make some small changes in
the argument. To that end, consider x; y 2 G with UG.x/ 6 UG.y/. Let r; s be the
least non-negative integers such that prx; psy 2 p!G; if r D 0, then x; y 2 p!G
and we are done, so let r > 0. We may choose an integer

m > max¹htG.pr�1x/; htG.ps�1y/ºI

if s � 1 < 0, we omit the final term htG.ps�1y/.
Furthermore, if prx D prCmx0, then x D x1 C pmx0, where prx1 D 0. Note

that o.x1/ D pr since ptx D ptCmx0 for t < r is a contradiction to the choice
of m and htG.pr�1x1/ D htG.pr�1x/. Thus hx1i \ pmG D 0. Now let A be
a pmG-high subgroup with x1 2 A, and hence A, being a bounded pure subgroup
of G, is its direct summand, say G D A˚H for some complement H � pmG.
Let � WG ! H be the projection corresponding to this decomposition. Since A is
isomorphic to a direct summand of G=p!G, by what we have shown in the proof
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636 A. R. Chekhlov and P. V. Danchev

of Lemma 3.10, A is a cft-group. Note that s 6 r , prx; pry 2 p!G � H and
UG.p

rx/ 6 UG.pry/, so �0.prx/ D pry for some �0 2 Comm.G/; moreover
we consider that �0�A D 0, i.e., �0 D �0� . If y0 D �0.x0/, then

pry D �0.p
rx/ D prCmy0

and y D y1 C pmy0 for certain y1 with the property pry1 D 0.
Let y1 D a1 C h1, where a1 2 A, h1 2 H . Then

UG.y1/ D UG.a1/ \ UG.h1/ > UG.x1/

and so UG.x1/ 6 UG.a1/; UG.h1/. Thus �.x1/ D a1 for some � 2 Comm.A/, so
that � 2 Comm.G/ with ��H D 0.

SinceA is a bounded summand ofG, we can certainly find an endomorphism �0

ofG with �0.x1/ D h1. Set  D ��0.1 � �/ and observe that  .x1/ D h1. Since
 .H/ D 0 and  .A/ � H , it follows from the Remark before Lemma 2.2 that
 2 Comm.G/. Set �1 D � C  and note that

�1.x1/ D a1 C h1 D y1; �1 D �1.1 � �/:

Finally, we set � D �0 C �1, so that � 2 Comm.G/. Now

�.x/ D �0.x/C �1.x/

and, because x D x1 C pmx0, we obtain

�0.x/ D �0�.x/ D �0.p
mx0/ D p

m�0.x0/ D p
my0

and
�1.x/ D �1.1 � �/.x/ D �1.x1/ D y1:

Thus �.x/ D y1 C pmy0 D y.

As two immediate consequences, we derive the following:

Corollary 3.13. The following statements hold.

(1) Let the p-groups A and B be cft-groups. If B is separable, then A˚ B is
a cft-group.

(2) LetA be a cft p-group andB be its basic subgroup. ThenA˚B is a cft-group.

(3) If A is a separable p-group, then A.�/ is a cft-group for any cardinal � > 1.

Proof. (1) It is enough to check that the separable p-group .A=p!A/˚ B satisfies
condition (1) of Corollary 3.11, but this follows immediately from Lemma 3.12
because A=p!A and B are cft-groups. Points (2) and (3) follow from (1) and
Lemma 3.12.

Brought to you by | De Gruyter / TCS
Authenticated

Download Date | 7/2/15 9:42 AM



On commutator fully transitive Abelian groups 637

Corollary 3.14. Let G be a p-group such that p!G Š Zp� , where 1 6 � 61.
Then G is not a cft-group.

Using Corollaries 3.11 and 3.14 it is not difficult to construct a totally pro-
jective p-group which is not a cft-group satisfying a specific condition of its
Ulm–Kaplansky invariants. In fact, construct a group G as in Example 3.3 (ii)
such that the factor-group G=p!G is a direct sum of cyclic groups which is cft.
Thus we get a fully transitive p-group G, which is necessarily totally projective
and which is not cft, with the property that if the � -th invariant of Ulm–Kaplansky
f� .G/ ¤ 0, then f� .G/ > 1, where 1 6 � 6 !.

Proposition 3.15. IfG is a cft p-group, then pˇG is a cft-group for all ordinals ˇ.

Proof. This follows directly from the facts that the inequality

UpˇG.x/ 6 UpˇG.y/

holds precisely when UG.x/ 6 UG.y/ holds for any x; y 2 pˇG, and that pˇG
is a fully invariant subgroup of G.

Proposition 3.16. Suppose that G is a p-group, B is its basic subgroup and n is
a natural number. If both pnG and B are cft-groups, then G is a cft-group, and
vice versa.

[Correction added after online publication 21 May 2015: In the second line of
the statement of Proposition 3.16 the text “and vice versa” has been added after
“then G is a cft-group”.]

Proof. Set H D pnG. In view of Lemma 3.12, it suffices to show that E.G/ acts
commutator fully transitively on the subgroup p!G D p!H . If x; y 2 p!G, then
we have UG.x/ 6 UG.y/ uniquely when UH .x/ 6 UH .y/, and so ˛.x/ D y for
some ˛ 2 Comm.H/. According to [19, Proposition 113.3], every endomorphism
of H is induced by some endomorphism of G, which ensures that each element
of Comm.H/ is induced by some element of Comm.G/.

The converse follows immediately from Lemma 3.12 and Proposition 3.15.

[Correction added after online publication 21 May 2015: The last sentence of
the proof of Proposition 3.16 has been added.]

Recall that the p-groups G1 and G2 form a fully transitive pair if for every
non-zero x 2 Gi , y 2 Gj (i; j 2 ¹1; 2º), with UGi .x/ 6 UGj .y/, there exists an
˛ 2 Hom.Gi ; Gj / such that ˛.x/ D y. In [18], it was proved that if ¹Giºi2I is
a family of p-groups such that for each i; j 2 I the pair ¹Gi ; Gj ºi;j2I is fully
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638 A. R. Chekhlov and P. V. Danchev

transitive, then
L
i2I Gi is a fully transitive group. Notice that in [21], in order

to describe direct sums of fully transitive groups, the notion of systems of groups
with condition of monotonicity for height matrix was introduced. Likewise, in [4]
some sufficient conditions were specified under which any system of torsion-free
groups satisfied the condition of monotonicity.

Note also that it can be proved as in [20, Lemma 2.2] that the p-group G is
a cft-group if and only if for all 0 ¤ x; y 2 G with py D 0 and UG.x/ 6 UG.y/
there is an ˛ 2 E.G/ such that ˛.x/ D y (the statement holds by induction on the
order of y thus: supposing o.y/D pnC1 andUG.x/6 UG.y/, if '.px/D py and
 .x/D y � '.x/, then .' C  /x D y; it is similarly seen that if G is a p-group,
then for all a 2 A, b 2 G with HA.a/ 6 HG.b/ there exists an f 2 Hom.A;G/
with the property that f .a/ D b if and only if such a homomorphism f exists for
all a 2 A, b 2 GŒp� with HA.a/ 6 HG.b/).

The following somewhat strengthens [20, Theorem 1.1].

Proposition 3.17. For every i 2 I , letGi be a cft p-group. Then the torsion group
H D t .

Q
i2I Gi / is a cft p-group if and only if for each i; j 2 I the pair .Gi ; Gj /

is fully transitive.

Proof. Necessity is obvious.
Sufficiency. Suppose that

UH .x/ 6 UH .y/

for x D .: : : ; xi ; : : : /; y D .: : : ; yi ; : : : / 2 H and py D 0 (see the remark in the
previous paragraph). Since htH .x/ D inf¹htGi .xi / j i 2 I º, there exists an i 2 I
such that htH .x/ D htGi .xi /, so we consider that i D 1. Since py D 0, it follows
that UG1.x1/ 6 UH .y/ 6 UGi .yi / for all i and so there are ˛i WG1 ! Gi such
that ˛i .x1/ D yi , i 2 I .

For the matrix

' D

0B@ 0 0 : : :

˛2 0 : : :

: : : : : : : : :

1CA

D

0B@ 0 0 : : :

˛2 0 : : :

: : : : : : : : :

1CA
0B@ 1 0 : : :

0 0 : : :

: : : : : : : : :

1CA �
0B@ 1 0 : : :

0 0 : : :

: : : : : : : : :

1CA
0B@ 0 0 : : :

˛2 0 : : :

: : : : : : : : :

1CA
we have ' 2 comm.

Q
i2I Gi /. Henceforth ˛1 2 Comm.G1/� Comm.

Q
i2I Gi /,

.˛1 C '/x D y and the restriction ˛1 C ' to H is an endomorphism of H .
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On commutator fully transitive Abelian groups 639

Since any two separable or totally projective p-groups form a fully transitive
pair, we have the following:

Corollary 3.18. For every i 2 I let Gi be a cft separable or totally projective
p-group. Then the torsion group H D t .

Q
i2I Gi / is cft.

Proposition 3.19. Let G D A˚ T , where A is a torsion-free reduced group and
T is a torsion reduced group. Then G is a cft-group if and only if both A and T
are cft-groups.

Proof. Necessity. Follows from Lemma 3.1.
Sufficiency. Assume thatH.x/ 6 H.y/ for some x D aCb, y D cCd , where

a; c 2 A and b; d 2 T . Then H.x/ 6 H.c/, H.x/ 6 H.d/. It is enough to show
that there exist such ˛; ˇ 2 Comm.G/ that ˛.x/ D c, ˇ.x/ D d .

To that end, let H.aC b/ 6 H.c/. Notice that we have H.a/ 6 H.c/. In fact,
if hp.b/ D1, then Hp.aC b/ D Hp.a/; but if hp.b/ <1, then hp.pkb/ D1
for some natural k, whence hp.pk.aC b// D hp.pka/ 6 hp.pkc/ gives

hp.a/ 6 hp.c/ and Hp.a/ 6 Hp.c/:

So ˛.a/ D c for some ˛ 2 Comm.A/ � Comm.G/.
Suppose nowH.aC b/ 6 H.d/. Then d D d1 C � � � C dk , where di 2 tpi .T /

and H.d/ 6 H.di / for each i D 1; : : : ; k, so we can consider that d 2 tp.T / for
some p. According to the comments before Proposition 3.17, we may assume
that d 2 T Œp�.

If H.b/ 6 H.d/, then the condition on T forces that such a ˇ can be found.
Assume now that H.a/ 6 H.d/. If hp.d/ D1, then H.b/ 6 H.d/, so let

hp.d/ <1. Set hp.a/ D n. Since T is reduced, in tp.T / there exists a cyclic
direct summand hzi such that o.z/ > pn. ThusH.a/ 6 H.pnz/ 6 H.d/. Conse-
quently, there exists a homomorphism f W hai�!hzi � T defined by f .a/D pnz,
where hai� is the pure subgroup in A containing a. Since hzi as a bounded group
is algebraically compact, the homomorphism f extends to a homomorphism
' 2 Hom.A; T /. But 
.pnz/ D d for some 
 2 E.T /, so that 
'.a/ D d and,
according to the Remark before Lemma 2.2, we obtain that 
' 2 comm.G/.

Finally, note that since hq.d/ D1 for any prime q ¤ p and

Hp.d/ D .hp.d/;1; : : : /;

the inequalities H.a/ 6 H.d/, H.b/ 6 H.d/ are impossible.

We conclude this subsection with the following observation: Imitating [5] or [9],
a subgroup C of a group G is said to be commutator invariant if f .C / � C for
every f 2 E.G/ which is of the form f D Œ�;  �, where �; 2 E.G/. Moreover,
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640 A. R. Chekhlov and P. V. Danchev

following [17], a p-group G is said to be commutator socle-regular if, for each
commutator invariant subgroupC ofG, there exists an ordinal ˛ (depending onC )
such that the equality C Œp� D .p˛G/Œp� holds.

What we now offer is the following property of cft-groups:

Proposition 3.20. Every cft p-group is commutator socle-regular.

Proof. Suppose that C is an arbitrary commutator invariant subgroup of G and
˛ D min¹htG.z/ j z 2 C Œp�º, whence C Œp� 6 .p˛G/Œp�. Next, choose x 2 C Œp�
with htG.x/ D ˛, so that UG.x/ D .˛;1; : : : /. Letting now y 2 .p˛G/Œp� be
an arbitrary element, we deduce that UG.y/ D .ˇ;1; : : : /, where ˇ > ˛. Since
G is a cft-group, there is � 2 Comm.G/ such that �.x/ D y. But, because � is
a linear combination of products of commutators and C is commutator invari-
ant in G, we have that y D �.x/ 2 C Œp�. Since y was arbitrary, we infer that
.p˛G/Œp� 6 C Œp� and hence we obtain the desired equality.

3.2 Strongly commutator fully transitive groups

Many of the results from Section 3.1 can be proved for scft-groups as well. In fact,
this can be said for Lemma 3.1, Proposition 3.2, Lemma 3.5, Proposition 3.6,
Corollary 3.7 and Proposition 3.15 – see the corresponding statements below,
formulated for scft-groups.

The next lemma shows that there exists an scft-group which is not a CS-group
(compare with remarks after Corollary 2.6 too).

Lemma 3.21. The following statements hold.

(1) If G D .Zpn/.�/, where � > 1, then G is an scft-group.

(2) If G is a homogeneous torsion-free separable group and rank.G/ > 1, then G
is an scft-group.

Proof. (1) Let UG.a/ 6 UG.b/ for 0 ¤ a; b 2 G and write a D a1 C � � � C an,
b D b1 C � � � C bm, where ai 2 Aji , bs 2 Ajs and Aji ; Ajs Š Zpn . If

ht.ai0/ D min¹ht.a1/; : : : ; ht.an/º;

then UG.ai0/ D UG.a/ 6 UG.bs/ for each s D 1; : : : ; m. If i0 ¤ s for some s,
then according to the Remark before Lemma 2.2 we have �.a0/ D bs for some
� 2 comm.G/. But if s0 D i0 for some 1 6 s0 6 m, then since the additional
direct summand B contains a direct summand isomorphic to Ai0 , as in Propo-
sition 2.5 there exist � 2 Hom.Ai0 ; B/ and � 2 Hom.B;Ai0/ such that

bs0 D ˛.as0/ D ��.as0/:
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If now

' D

 
0 �

0 0

! 
0 0

� 0

!
�

 
0 0

� 0

! 
0 �

0 0

!
;

then '.ai0/ D bi0 , as required.
(2) If �.a/ 6 �.b/, then a can be embedded in a direct summand of rank 1. So

the proof is similar to that in (1).

If G is a separable torsion-free group, then according to [1, Corollary 7.12] it
is fully transitive if and only if for all its direct summands A and B of rank 1,
if type t .A/ ¤ t .B/, then the condition pA ¤ A implies pB D B for each prime
number p. According to [24, Section 19, Exercise 7] any fully transitive separable
group G can be presented as G D

L
i2I Gi , where all Gi are homogeneous sep-

arable groups and the condition pGi ¤ Gi implies pGj D Gj for each i; j 2 I
with i ¤ j .

So, we come now to the following result.

Corollary 3.22. The following statements hold.

(1) Let G be a separable p-group and let B D
L1
iD1Bi be its basic subgroup,

where Bi Š
L
mi

Zpni and n1 < n2 < � � � . Then G is an scft-group if and
only if mi > 1 for every i such that Bi ¤ 0.

(2) Let A be an scft p-group and let B be its basic subgroup. Then A˚ B is an
scft-group.

(3) If G is a separable p-group or a torsion-free fully transitive separable group
(in particular, G is a homogeneous separable group), then the group G.�/ is
scft for any cardinal � > 1.

(4) A separable torsion-free group G is scft if and only if G D
L
i2I Gi , where

all Gi are decomposable homogeneous separable groups and the condition
pGi ¤ Gi implies pGj D Gj for each i; j 2 I with i ¤ j .

(5) A vector non-zero torsion-free group G is scft if and only if G D
Q
i2I Gi ,

where each component Gi is a direct product of groups of rank 1 and same
type, rank.Gi / > 1 and the condition pGi ¤ Gi implies pGj D Gj for each
i; j 2 I with i ¤ j .

Proof. Points (1) and (2) have similar proof to that of Lemma 3.10. Point (3)
follows from (1) and Lemma 3.21. To show the validity of clause (4), it is necessary
to use certain well-known facts about fully transitive torsion-free groups (see, for
instance, [4, Theorem 11]). Finally, point (5) can be proved similarly to (4).
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Proposition 3.23. LetA be a homogeneous torsion-free group and � be an infinite
cardinal. Then A.�/ is an scft-group if and only if A is fully transitive.

Proof. The statement follows from Lemma 2.3 and from the fact that the group
A.�/ is fully transitive if and only if the group A is fully transitive.

Recall that if p is a prime number, then the p-rank rankp.A/ of the group A
is identified as the rank of its factor-group A=pA. In conjunction with [19], any
reduced algebraically compact torsion-free group G ¤ 0 can be represented as
G D

Q
p2…Gp, where Gp ¤ 0 is a p-adic algebraically compact group and … is

a certain set of prime numbers.

Corollary 3.24. The reduced algebraically compact torsion-free group

G D
Y
p2…

Gp

is scft if and only if rankp.Gp/ > 1 for each p 2 ….

Proposition 3.25. A divisible group D is an scft-group if and only if D0 D 0 or
rank.D0/ > 2, and if … ¤ ¿, then rank.Dp/ > 2 for any p 2 ….

Proof. Necessity follows from Lemma 3.1.
Sufficiency. As in Lemma 3.21,D0 andDp are scft-groups, so that

L
pDp is an

scft-group. Since any divisible group is fully transitive, by Lemma 3.5 we obtain
that D D D0 ˚ .

L
pDp/ is an scft-group.

By a simple combination of the methods in the proofs of Corollary 3.22 and
Lemma 3.12, one can prove the following.

Lemma 3.26. A p-group G is an scft-group if and only if G=p!G is an scft-group
and E.G/ acts strongly commutator fully transitively on p!G.

Corollary 3.27. If A is a bounded scft p-group, then there is an scft p-group G
with p!G D A.

Proof. As in Proposition 2.9, we use Corollary 3.14 to construct a group G with
the properties that p!G D A and ¹'�A j ' 2 E.G/º D E.A/ such that G=p!G
is an scft-group.

It follows from Lemma 3.10 and Corollary 3.22 (1) that a separable p-group
is cft if and only if it is scft. Under certain additional circumstances on the endo-
morphism ring of the group, this can be slightly extended to the following:
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Proposition 3.28. Let G be a p-group and let E.G/�p!G D E.p!G/. Then the
following two points hold:

(1) G is cft if and only if G=p!G and p!G are cft.

(2) G is scft if and only if G=p!G and p!G are scft.

Proof. (1) Combining both Lemma 3.12 and Proposition 3.15, the necessity
follows at once.

As for the sufficiency, one sees that E.p!G/ and thus E.G/ both act commuta-
tor fully transitively on p!G. So, again Lemma 3.12 applies to show that G is cft,
as claimed.

(2) This equivalence follows by the same token with the aid of Lemma 3.26
accomplished with a similar statement for Ulm subgroups of scft-groups as that of
Proposition 3.15.

As a consequence, we get the following.

Corollary 3.29. Suppose G is a p-group of length � ! � 2 such that

E.G/�p!G D E.p!G/:

Then G is cft if and only if G is scft.

Proof. Since p!G is separable, we just apply Proposition 3.28 and the comments
on separable groups stated before it.

It seems, at present, to be extremely difficult if not impossible to construct
a cft-group that is not scft. It is worthwhile noting that the same problem is cur-
rently unresolved for projectively fully transitive and strongly projectively fully
transitive p-groups, respectively (cf. [16]).

Nevertheless, we can show the following:

Example 3.30. There exists a ring S such that there is an S -commutator fully
transitive group which is not S -strongly commutator fully transitive.

Proof. Let p be a prime number and set T D ¹m
n
j m; n 2 Z; n ¤ 0; .n; p/ D 1º;

it is obvious that T is a subring of the ring Q consisting of all rational numbers.
Putting S D T ˚ T i ˚ Tj ˚ T k with i2 D j 2 D k2 D �1 as the ring of quater-
nions of the ring T , it is not too hard to verify that the group SC is homoge-
neous completely decomposable of rank 4. Therefore, SC is strongly commutator
fully transitive by Lemma 3.21. Further, as in Example 2.1, one may infer that
Comm.S/ D S . It is well known that S Š ES .SS /. Since any endomorphism of
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the module SS acts as left multiplicand on elements of the ring S and since for each
non-zero element of S there is an integer multiple invertible, all non-zero endo-
morphisms of SS are monomorphisms. In addition, the group SC is torsion-free.

Let now 0 ¤ a; b 2 SC and �.a/ 6 �.b/. Then ua D pn � 1 and vb D pm � 1
for some invertible elements u; v 2 S , where n 6 m. Thus b D .pm�nv�1u/a,
i.e., b 2 Comm.ES .SC//a. But b … comm.ES .SC//a for any 0 ¤ a 2 SC since
only 1 2 S sends a to a. So, we obtain the construction of a group which is
S -commutator fully transitive but not S -strongly commutator fully transitive,
where S Š ES .SS / and idWES .SS /! E.SC/ is the identical embedding.

In contrast to fully transitive groups, for projectively fully transitive groups not
every direct summand is projectively fully transitive (see [16, Corollary 3.9]). The
same appears for scft-groups, so the direct summand of an scft-group is also not
an scft-group; for a proof we use ideas from [16, Propositions 4.10 and 4.11].

Proposition 3.31. If p!G is an elementary group for a p-groupG, thenG is fully
transitive if and only if G ˚G is an scft-group.

Proof. The sufficiency is immediate since direct summands of fully transitive
groups are fully transitive.

Suppose now that G is fully transitive. Set H D G ˚G and consider the
elements .a; b/; .c; d/ 2 p!H . Assume first that a; b ¤ 0. Since all non-zero ele-
ments of p!G have the same Ulm sequence .!;1; : : : /, there are endomorphisms

; ı 2 E.G/ with the property 
.b/ D c and ı.a/ D d . The matrix

� D

 
0 


0 0

!
C

 
0 0

ı 0

!

maps .a; b/ to .c; d/. According to the Remark before Lemma 2.2, one sees that
� 2 comm.H/. Let now a ¤ 0, b D 0 and ˛.a/ D c, ı.a/ D d , where ˛ 2 E.G/.
Then the matrix

ƒ D

 
˛ 0

0 0

!
C

 
0 0

ı 0

!
maps .a; 0/ to .c; d/. Here as in Lemma 3.21 we observe that 

˛ 0

0 0

!
2 comm.H/ and

 
0 0

ı 0

!
2 comm.H/:

Proposition 3.32. There is a non-scft p-group G with elementary first Ulm sub-
group such that G ˚G is an scft-group.
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Proof. It is enough to take any group from Example 3.3 (thus n D 1 if consider
point (i)) and then we refer to Proposition 3.31.

We close the work with some questions of interest.

4 Open results

Problem 1. Find conditions on a (torsion-free) fully transitive group A under
which A is a cft (resp., an scft)-group.

Problem 2. Construct, if possible, a cft-group which is not an scft-group.

Problem 3. Find conditions on a totally projective p-group G such that it is a cft
(resp., an scft)-group.

Problem 4. Find conditions on a CG-group (resp., a CS-group) such that it is a cft
(resp., an scft)-group.

Problem 5. To what extent do there exist indecomposable torsion-free CG-groups
which are not CS-groups?

Problem 6. Let Ai (i 2 I ) be a system of reduced groups, and let K be an ideal of
the Boolean algebra of all subsets of I . Find a suitable necessary and/or sufficient
condition for the K-direct sum

L
KAi (in particular, the direct product

Q
i2I Ai )

to be a cft-group (resp., an scft-group).

Remark. In the proof of [16, Proposition 3.3] on lines 5–6 the word “idempotent”
should be “product of idempotents”.
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