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Abstract. An abelian p-group G is defined to be (strongly) n-simply pre-

sented if it has a (nice) pn-bounded subgroup P such that G/P is simply

presented. These notions combine and generalize both the theories of sim-

ply presented groups and pω+n-projective groups. The summands of the

(strongly) n-simply presented groups are described, which expand the con-

cept of balanced projective groups. Finally, important results of Nunke on

totally projective groups and Crawley-Hales on simply presented groups are

generalized to this new framework.

1. Introduction

Throughout, by the term “group” we will mean an abelian p-group, where p is

a prime fixed for the duration of the paper. Our terminology and notation will

be based upon [5]. For example, if α is an ordinal, then a group G will be said

to be pα-projective if pαExt(G,X) = {0} for all groups X. We will denote the

height of an element x ∈ G by |x|G. We will say G is Σ-cyclic if it is isomorphic

to a direct sum of cyclic groups.

The totally projective groups have a central position in the study of abelian

p-groups (see Chapter XII of [5] or Chapter VI of [9]). One reason for their

importance is the number of different ways they can be characterized; recall that

a group G is totally projective if any one of the following equivalent conditions is

satisfied:

(1) G is simply presented;

(2) G is balanced projective, i.e., Bext(G,X) = {0} for all groups X;

(3) G/pαG is pα-projective for every ordinal α;
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(4) G has a nice system;

(5) G has a nice composition series.

It is worth pointing out that, unlike the treatment in [5], we do not require a

simply presented group to be reduced.

In a somewhat different direction, if n is a non-negative integer (that will

be fixed for the remainder of this paper), then the group G is pω+n-projective

iff there is a subgroup P ⊆ G[pn] such that G/P is Σ-cyclic (see, e.g., [13]).

So, a group is pω-projective iff it is Σ-cyclic. It follows easily that the class of

pω+n-projectives is closed under arbitrary subgroups. In addition, if G1 and G2

are pω+n-projectives, then G1 and G2 are isomorphic iff G1[pn] and G2[pn] are

isometric (i.e., there exists an isomorphism that preserves the height functions on

the two subgroups; see [7]).

A number of papers have been written over the years that combine elements

of these two important components of the study of abelian p-groups (see, for

example, [8] and [11]). In this and a subsequent paper, we will consider several

other interesting ways to combine them. Generalizing (1), a group G will be

said to be n-simply presented if there is a subgroup P ⊆ G[pn] such that G/P

is simply presented. Such a subgroup will be called n-simply representing. It

follows, therefore, that the class of n-simply presented groups includes both the

simply presented groups and the pω+n-projective groups.

We say a short exact sequence 0→ X → Y → G→ 0 is n-balanced exact if it

represents an element of pnBext(G,X). Generalizing (2), we say G is n-balanced

projective if every such n-balanced exact sequence splits. We show that G is n-

balanced projective iff it is a summand of a group that is n-simply presented, and

that there are enough n-balanced projectives (Theorem 2.1). We also show that

a separable group G is n-simply presented iff it is n-balanced projective iff it is

pω+n-projective (Proposition 2.2).

If G is pω+n-projective and P is a subgroup of G[pn] such that G/P is Σ-cyclic,

then P will, in fact, be nice in G (i.e., every coset x+P will contain an element of

maximal height). This leads to a further generalization of (1): We say the group

G is strongly n-simply presented if it has an n-simply representing subgroup which

is nice.

We say a short exact sequence 0 → X → Y
φ→G → 0 is strongly n-balanced

exact if it is balanced and there is a height-preserving homomorphism ν : G[pn]→
Y [pn] such that φ ◦ ν is the identity on G[pn] (note that if n ≥ 1, then the

latter condition already implies that the sequence is balanced - see, for example,

Proposition 80.2 of [5]). In other words, we are requiring that the induced exact
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sequence, 0 → X[pn] → Y [pn] → G[pn] → 0, is split in the category of valuated

groups. We can, therefore, consider the class of strongly n-balanced projectives.

In parallel with the above, we next show that a group G is strongly n-balanced

projective iff it is a summand of a group that is strongly n-simply presented, and

that there are enough strongly n-balanced projectives (Theorem 2.4). We also

show that a pω+n-bounded group G is strongly n-simply presented iff it is strongly

n-balanced projective iff it is pω+n-projective (Proposition 2.5).

One of the most useful and important results in the study of totally projective

groups is a theorem of Nunke [14] which states that if λ is an ordinal, then a

group G is totally projective iff pλG and G/pλG are both totally projective (see,

for example, Theorem 74 of [9]). The same property was independently proved

by Crawley-Hales for simply presented groups (see [2] and [3]). It is not hard to

see that if G is (strongly) n-simply presented or (strongly) n-balanced projective,

then pλG and G/pλG must share the corresponding property (Theorem 3.4(a) and

Proposition 3.5(a)). The converse is more complicated. We show that if pλ+nG

and G/pλ+nG are strongly n-simply presented or strongly n-balanced projective,

then so is G (Theorem 3.4(b) and Proposition 3.5(b)). On the other hand, for

ordinals not of the form λ+n (e.g., limit ordinals), we show that this can fail for

strongly n-simply presented groups (Example 3.1).

The fourth section of the paper is devoted to showing that for an arbitrary

ordinal λ, if pλG and G/pλG are n-simply presented or n-balanced projective,

then the same can be said of G (Theorem 4.4 and Corollary 4.6). This surpris-

ingly difficult proof requires a detailed examination of the behavior of bounded

subgroups P of G for which G/P is simply presented.

These properties allow us to conclude that for any group G of length strictly

less than ω2, that G is (strongly) n-simply presented iff it is (strongly) n-balanced

projective (Corollaries 3.6 and 4.7). In other words, the (strongly) n-simply pre-

sented groups of length less than ω2 are closed under taking direct summands. In

section 5 we establish some further statements of this sort.

2. Definitions and Foundational Results

A group G is pω+n-projective iff there is a Σ-cyclic group T and a subgroup

Q ⊆ T [pn] such that T/Q ∼= G (see, e.g., [7]). The proof of this property depends

solely on the fact that T is Σ-cyclic iff pnT is Σ-cyclic. Similarly, we say G is n-co-

simply presented if there is a simply presented group T and a subgroup Q ⊆ T [pn]

such that T/Q ∼= G. Since T is also simply presented iff pnT is simply presented,

the same proof shows that G is n-simply presented iff it is n-co-simply presented.
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We begin by describing the summands of the n-simply presented groups.

Theorem 2.1. The group G is n-balanced projective iff it is a summand of a

group that is n-simply presented. There are enough n-balanced projectives.

Proof. Suppose first that G is n-simply presented, and hence n-cosimply pre-

sented, i.e. there is a simply presented (and hence balanced projective) group T

and a subgroup Q ⊆ T [pn] such that T/Q ∼= G. For any group A we have an

exact sequence

→ Hom(T,A)→ Hom(Q,A)
φ→Ext(G,A)

µ→Ext(T,A).

It follows that µ(Bext(G,A)) ⊆ Bext(T,A) = {0}, so that Bext(G,A) ⊆
φ(Hom(Q,A)). Since pnHom(Q,A) = {0}, we can conclude that pnBext(G,A) =

{0}, so that G is n-balanced projective. Therefore, any direct summand of a

group that is n-simply presented is also n-balanced projective.

We now show the converse, and at the same time we show that there are enough

n-balanced projectives. Let 0 → X → Y → G → 0 be a balanced projective

resolution of G (i.e., it is balanced and Y is simply presented). Consider the

pull-back diagram

0 0

↓ ↓
G[pn] = G[pn]

↓ ↓
0 → X −→ Z −→ G → 0

‖ ↓ γ ↓ pn
0 → X −→ Y −→ G → 0

↓ ↓
G/pnG = G/pnG

↓ ↓
0 0

Obviously, the upper short exact row is n-balanced exact. We claim that Z is

n-simply presented: Note that Y is simply presented and pn(Y/γ(Z)) = {0}.
It follows from general properties of simply presented groups, therefore, that

γ(Z) is simply presented (or see Lemma 3.2(a) below). Since the middle column

determines an isomorphism Z/G[pn] ∼= γ(Z), we can infer that G[pn] is an n-

simply representing subgroup of Z, i.e., Z is n-simply presented, as claimed.

By the first part of the proof, we can deduce that Z is n-balanced projective;

and since 0→ X → Z → G→ 0 is n-balanced exact, there are enough n-balanced

projectives.
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Finally, if G is n-balanced projective, then there is a splitting Z ∼= G⊕X, so

that G is a summand of a group which is n-simply presented, as required. �

Proposition 2.2. If G is a separable (i.e., pω-bounded) group, then the following

are equivalent:

(a) G is n-simply presented;

(b) G is n-balanced projective;

(c) G is pω+n-projective.

Proof. We begin by showing that (a) and (c) are equivalent. Observe first that

if G is pω+n-projective, then there is a subgroup P ⊆ G[pn] such that G/P is

Σ-cyclic, and hence totally projective. It follows immediately that G must be n-

simply presented (this argument does not use the separability of G). Conversely,

suppose P is an n-simply representing subgroup of G. If P is the closure of P

in the p-adic topology of G, then P ⊆ G[pn] and P/P = pω(G/P ). Therefore,

G/P ∼= (G/P )/pω(G/P ) will also be Σ-cyclic, so that G is pω+n-projective.

Next, observe that since the collection of pω+n-projective groups is closed under

direct summands, by Theorem 2.1, the equivalence of (a) and (b) follows from

the equivalence of (a) and (c). �

We will extensively employ concepts related to valuated groups and valuated

vector spaces which can be found, for example, in [15] and [6], and which we

briefly review. Let O be the class of ordinals and O∞ = O ∪ {∞}, where we

agree that α <∞ for all α ∈ O∞. A valuation on a group V is a function which

assigns to every x ∈ V an element |x|V ∈ O∞ such that for every x, y ∈ V ,

|x± y|V ≥ min{|x|V , |y|V } and |px|V > |x|V . As a result, for all α ∈ O∞,

V (α) = {x ∈ V : |x|V ≥ α} is a subgroup of V with pV (α) ⊆ V (α+ 1).

A homomorphism between two valuated groups will be said to be valuated if it

does not decrease values and an isometry if it is bijective and preserves values. If

Vi, i ∈ I, is a collection of valuated groups, then the usual direct sum V =
⊕

i∈I Vi
has a natural valuation, where V (α) =

⊕
i∈I Vi(α) for every α ∈ O∞.

If W is any subgroup of V , then restricting | |V to W turns W into a valuated

group with W (α) = W ∩ V (α) for all α ∈ O∞. A valuated vector space W is a

p-bounded valuated group, so each W (α) will be a subspace of W ; further, we say

W is free if it is isometric to a valuated direct sum of cyclic groups (of order p).

If V is a valuated group, then its socle V [p] is a valuated vector space. Clearly,

any group is a valuated group, using the height function as its valuation.

If V is a valuated group, then in [15] a functorial group G(V ) was defined such

that
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(a) V is a nice subgroup of G(V );

(b) the valuation on V agrees with the height valuation on G(V );

(c) G(V )/V is simply presented;

(d) V (α) = {0} iff pαG(V ) = {0}.
It follows that if V is pn-bounded, then G(V ) is strongly n-simply presented.

We extend this construction in the following way: If G is a group and n ≥ 1,

then let H(G) = G(G[pn]).

Lemma 2.3. Suppose G is a group and n ≥ 1.

(a) The identity map G[pn]→ G[pn] extends to a homomorphism π : H(G)→
G;

(b) If K(G) is the kernel of π, then 0 → K(G) → H(G) → G → 0 is strongly

n-balanced exact.

Proof. (a) This follows from the fact that G[pn] is nice in H(G), H(G)/G[pn]

is simply presented and the identity map clearly does not decrease heights (see,

for example, Corollary 81.4 of [5]).

(b) Observe first that if x ∈ G[p], then |x|G = |x|H(G) ≤ |x|π(H(G)) ≤ |x|G,

so that |x|π(H(G)) = |x|G. It follows that π(H(G)) is an isotype subgroup of G

containing G[p], so that π(H(G)) = G and π is surjective.

Next, the identity map G[pn]→ G[pn] induces a valuated splitting

H(G)[pn] ∼= K(G)[pn]⊕G[pn],

and (b) follows. �

We have the following analogue of Theorem 2.1.

Theorem 2.4. The group G is strongly n-balanced projective iff it is a summand

of a group that is strongly n-simply presented. There are enough strongly n-

balanced projectives.

Proof. Note that if n = 0, the result is well known, so assume n ≥ 1. If G is

strongly n-simply presented, then it has a nice n-simply representing subgroup

N . Suppose E : 0 → X → Y → G → 0 is strongly n-balanced exact and

φ is the right homomorphism; by definition, then, there is a valuated splitting

ν : G[pn]→ Y [pn]. Again referring to Corollary 81.4 of [5], the restriction of ν to

N → Y [pn] extends to a homomorphism h : G→ Y such that φ◦h is the identity

on N . It follows that 1G − φ ◦ h is zero on N , so it induces a homomorphism

G/N → G. However, since G/N is simply presented and E is balanced, there is

a homomorphism G/N → Y such that if h′ is the composition G → G/N → Y ,
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then 1G − π ◦ h = π ◦ h′. Since 1G = π ◦ (h+ h′), it follows that E splits, so that

G is strongly n-balanced projective.

Therefore, any summand of a strongly n-simply presented group is strongly n-

balanced projective, and by Lemma 2.3(b), there are enough strongly n-balanced

projectives.

Conversely, if G is strongly n-balanced projectives, then it must be a summand

of H(G), which is strongly n-simply presented. �

The following is an analogue of Proposition 2.2:

Proposition 2.5. If G is a pω+n-bounded group, then the following are equiva-

lent:

(a) G is strongly n-simply presented;

(b) G is strongly n-balanced projective;

(c) G is pω+n-projective.

Proof. Note that if n = 0, all these statements simply say that G is Σ-cyclic,

so assume n ≥ 1. As in Proposition 2.2, the result will follow once we show the

equivalence of (a) and (c). Note if (c) holds, then there is a subgroup P ⊆ G[pn]

such that G/P is Σ-cyclic. If follows that this P will necessarily be nice in G, so

that G is strongly n-simply presented.

Conversely, suppose P is a nice n-simply presenting subgroup of G and A =

G/P . Note pωG ⊆ G[pn], so that P ′ = pωG+ P is pn-bounded. In addition,

G/P ′ = G/[pωG+ P ] ∼= (G/P )/[pωG+ P ]/P = A/pωA

is Σ-cyclic, and it follows that G is pω+n-projective, as required. �

We say G is strongly n-co-simply presented if there is a simply presented group

T and a nice subgroup Q ⊆ T [pn] such that G ∼= T/Q. Though a group is n-simply

presented iff it is n-cosimply presented, we make the following observation:

Example 2.1. There is a group G which is strongly 1-co-simply presented, which

is not strongly 1-balanced projective (and so not strongly 1-simply presented).

Proof. Let M be some separable non-Σ-group with basic subgroup B, and let

0 → Y → X → M → 0 be a pure-projective resolution of M , where we as-

sume Y ⊆ X and X/Y = M . Let P = Y [p], so that Z = X/P is a separable

pω+1-projective group which is not Σ-cyclic. Next, let D be the subgroup of X

containing Y such that D/Y = B. There is a splitting, D ∼= Y ⊕ B, hence

E = D/P ∼= (Y/P )⊕B ∼= pY ⊕B will also be Σ-cyclic. Note that D is pure and

dense in X, so that E is pure and dense in Z.
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Let C be a group such that pωC is a direct sum of cyclic groups of order p for

which C/pωC can be identified with X such that D = [D′ + pωC]/pωC for some

high subgroup D′ of C. [For example, if K = X/D, we may let C = {(x, k) ∈
X ⊕ K : x + D = pk}.] If P ′ ⊆ D′ satisfies P = [P ′ + pωC]/pωC, then we let

G = C/P ′.

The following can now be checked:

(a) C is a dsc-group of length ω + 1 (since C/pωC = X is Σ-cyclic).

(b) P ′ is nice in C (since P ′ ∩ pωC = {0} and [P ′ + pωC]/pωC = P is nice in

X = C/pωC).

(c) G is strongly 1-co-simply presented (by (a) and (b)).

(d) E′ = D′/P ′ is a high subgroup of G (since D′ is a maximal subgroup of C

containing P ′ intersecting pωC trivially, we have E′ is a maximal subgroup of G

intersecting pωG = [pωC + P ′]/P ′ trivially).

(e) G[p] is a free valuated vector space (E′ = D′/P ′ ∼= D/P = E is Σ-cyclic

and there is an isometry G[p] = E′[p] ⊕ pωG where both terms are, in fact, free

as valuated vector spaces).

(f) G is not strongly 1-balanced projective: If G were strongly 1-balanced

projective, then by Proposition 2.5, it would be pω+1-projective. In this case, (e)

would imply that G is totally projective (since G[p] will be isometric to the socle

of a totally projective group and pω+1-projective groups with isometric socles are,

in fact, isomorphic). However, this contradicts the fact that

G/pωG = [C/P ′]/[(pωC + P ′)/P ′]
∼= C/(pωC + P ′)
∼= [C/pωC]/[(pωC + P ′)/pωC] = X/P = Z

is not Σ-cyclic. �

Since the group in this example is strongly 1-co-simply presented, it is also 1-

co-simply presented and hence 1-simply presented and 1-balanced projective, i.e.,

the classes of 1-simply presented and 1-balanced projective groups properly con-

tain the classes of strongly 1-simply presented and strongly 1-balanced projective

groups, respectively. In other words, though “0-simply presented” = “strongly 0-

simply presented” = “0-balanced projective” = “strongly 0-balanced projective”

= “simply presented,” for n ≥ 1 the containments “strongly n-simply presented”
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⊂ “n-simply presented” and “strongly n-balanced projective” ⊂ “n-balanced pro-

jective” are proper. This also implies that for n ≥ 1, there are strongly n-balanced

short exact sequences that are not n-balanced short exact.

3. Nunke-esque Results

We collect a number of routine observations in the following:

Lemma 3.1. Suppose λ is an ordinal, G is a group with a subgroup P ⊆ G[pn],

A = G/P and X is the subgroup of G containing P such that X/P = pλ+nA.

Then

(a) pλ+nG+ P ⊆ X ⊆ pλG+ P ;

(b) there is a short exact sequence

0→ pλ+nG/[pλ+nG ∩ P ]→ pλ+nA→ B1 → 0

where B1 is bounded;

(c) there is a short exact sequence

0→ B2 → A/pλ+nA→ G/[pλG+ P ]→ 0

where B2 ⊆ pλ(A/pλ+nA) is bounded.

Proof. (a) Clearly [pλ+nG+ P ]/P ⊆ pλ+nA, so that pλ+nG+ P ⊆ X. On the

other hand, there is a short exact sequence

0→ [pλG+ P ]/pλG→ G/pλG→ G/[pλG+ P ]→ 0.

Since pλ(G/pλG) = {0} and pn([pλG+ P ]/pλG) = {0}, we have pλ+n(G/[pλG+

P ]) = {0}.
Now, there is another short exact sequence

0→ [pλG+ P ]/P → A→ G/[pλG+ P ]→ 0.

It therefore follows that pλ+nA ⊆ [pλG+P ]/P , giving X ⊆ pλG+P , as required.

(b) There is a short exact sequence

0→ [pλ+nG+ P ]/P → X/P → X/[pλ+nG+ P ]→ 0.

Clearly, the first two terms agree with those in (b), and we let B1 be the third

term. By (a), pnX ⊆ pn(pλG+ P ) ⊆ pλ+nG+ P , showing that B1 is bounded.

(c) There is a short exact sequence

0→ [pλG+ P ]/X → G/X → G/[pλG+ P ]→ 0.



1036 PATRICK W. KEEF AND PETER V. DANCHEV

There is also an isomorphism G/X ∼= (G/P )/(X/P ) = A/pλ+nA. Finally,

B2 = [pλG+ P ]/X = [pλG+X]/X ⊆ pλ(G/X) ∼= pλ(A/pλ+nA)

is pn-bounded. �

The following well-known technicality is even more straightforward.

Lemma 3.2. Let λ be an ordinal and Z be a group.

(a) Suppose Y is a subgroup of Z such that Z/Y is bounded. Then Z is simply

presented iff Y is simply presented.

(b) Suppose Y is a bounded subgroup of pλZ. Then pλZ is bounded and Z is

simply presented iff pλ(Z/Y ) is bounded and Z/Y is simply presented.

Proof. (a) Suppose Z is simply presented. Then pωY = pωZ is simply pre-

sented, and Y/pωY embeds in Z/pωZ, which is Σ-cyclic. Therefore, Y/pωY is

Σ-cyclic, and Y is simply presented.

Conversely, if Y is simply presented, then for some k, pkZ ⊆ Y , so that by

the first part of the proof, pkZ is simply presented, implying that Z is simply

presented, as well.

(b) Note that pλZ is bounded iff pλ(Z/Y ) = pλZ/Y is bounded. In this

case, it follows that Z is simply presented iff Z/pλZ is simply presented iff

(Z/Y )/pλ(Z/Y ) is simply presented iff Z/Y is simply presented. �

We put these together in the following:

Lemma 3.3. Suppose λ is an ordinal, G is a group with a subgroup P such that

pnP = {0} and A = G/P . Then

(a) If m < ω, then P is an n-simply representing subgroup of G iff pmG ∩ P
is an n-simply representing subgroup of pmG;

(b) A is simply presented iff both pλG/[pλG ∩ P ] and G/[pλG+ P ] are simply

presented.

Proof. In can be checked that (a) is a consequence of Lemma 3.2(a). As to

(b), by Lemma 3.1(b) and Lemma 3.2(a), it follows that pλ+nA is simply pre-

sented iff pλ+nG/[pλ+nG ∩ P ] is simply presented, and by (a) this is equiva-

lent to pλG/[pλG ∩ P ] being simply presented. Again, by Lemma 3.1(c) and

Lemma 3.2(b), A/pλ+nA is simply presented iff G/[pλG+P ] is simply presented.

Since A is simply presented iff pλ+nA and A/pλ+nA are simply presented, the

result follows. �

Theorem 3.4. Suppose λ is an ordinal and G is a group.
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(a) If G is (strongly) n-simply presented, then both pλG and G/pλG are

(strongly) n-simply presented.

(b) If both pλ+nG and G/pλ+nG are (strongly) n-simply presented, then G is

(strongly) n-simply presented.

Proof. Suppose first that G is n-simply presented. Let P be an n-simply rep-

resenting subgroup of G. By Lemma 3.3(b),

(G/pλG)/([pλG+ P ]/pλG) ∼= G/[pλG+ P ]

and pλG/[pλG ∩ P ] are simply presented. In addition, since

pn[pλG ∩ P ] = {0} = pn
(
[pλG+ P ]/pλG

)
,

we can conclude that pλG and G/pλG are n-simply presented.

Observe that if G were actually strongly n-simply presented, then we could

assume P is nice in G, and it would follow that P ∩ pλG is nice in pλG and

[pλG + P ]/pλG is nice in G/pλG, so that these two groups are, in fact, strongly

n-simply presented, as well.

Turning to (b), suppose that P1 is a subgroup of G containing pλ+nG for which

P1/p
λ+nG is an n-simply representing subgroup of G/pλ+nG. Let Y be a maximal

pn-bounded summand of pλG, so that there is a decomposition pλG = X⊕Y . Let

H be a pλ+n-high subgroup of G containing Y (i.e., H is maximal with respect

to intersecting pλ+nG trivially).

We next claim that (G/pλ+nG)[pn] = (X ⊕H[pn])/pλ+nG: Note that X[p] =

(pλ+nG)[p], so that X ∩H = {0}; this means that X ⊕H[pn] really is an internal

direct sum. Since pnX ⊆ pλ+nG and pnH[pn] = {0}, inclusion in one direction is

clear. So assume z ∈ G and pnz ∈ pλ+nG; we need to show that z ∈ X ⊕H[pn].

If x ∈ X is chosen so that pnx = pnz, then replacing z by z − x, we may

assume pnz = 0. Next, since G[p] = (pλ+nG)[p] ⊕ H[p], H is pure in G and

(pλ+nG) = pnX, it follows that G[pn] = X[pn] ⊕ H[pn]. Therefore, z = x′ + h,

where x′ ∈ X[pn] ⊆ X and h ∈ H[pn], as required.

It follows from the last paragraph that P1 ⊆ X ⊕H[pn]. Let

P2 = (X + P1) ∩H[pn] ⊆ G[pn].

Clearly, P2 ⊆ H implies that P2 ∩ pλ+nG = {0}. In addition, P1 ⊆ X ⊕ H[pn]

also implies that

X + P1 = X + [(X + P1) ∩H[pn]] = X + P2.

We can therefore conclude that pλG+ P1 = pλG+ P2.
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Next, let P3 be an n-simply representing subgroup of (pλ+nG)[pn]. We then

let P = P2 + P3, so that P ⊆ G[pn]. We clearly have pλ+nG ∩ P = P3, so that

pλ+nG/[pλ+nG∩P ] is simply presented. By Lemma 3.3(a), we also can conclude

that pλG/[pλG ∩ P ] is simply presented. In addition, pλG + P = pλG + P2 =

pλG+ P1.

Note that G/P1
∼= (G/pλ+nG)/(P1/p

λ+nG) is simply presented; and since

pn(P1/p
λ+nG) = {0}, it follows that pλ(G/P1) is bounded (by p2n). Therefore,

[pλG + P1]/P1 is a bounded subgroup of pλ(G/P1). Applying Lemma 3.2(b) to

G/P1, we can deduce that

G/[pλG+ P ] = G/[pλG+ P1] ∼= (G/P1)/([pλG+ P1]/P1)

is simply presented. Therefore, by Lemma 3.3(b), we have that G/P is simply

presented, as desired.

Suppose pλ+nG and G/pλ+nG are actually strongly n-simply presented. In this

case, we can choose P3 = pλ+nG ∩ P to be nice in pλ+nG and P1/p
λ+nG to be

nice in G/pλ+nG. If, as above, P = P2 + P3, then P ∩ pλ+nG = P3 being nice

in pλ+nG and pλG/pλ+nG being bounded readily imply that P ∩ pλG is nice in

pλG. In addition,

[pλG+ P ]/pλG = [pλG+ P1]/pλG
∼= [(pλG/pλ+nG) + (P1/p

λ+nG)]/(pλG/pλ+nG)

is nice in G/pλG ∼= (G/pλ+nG)/pλ(G/pλ+nG). Together, these assure that P is

nice in G, hence G is strongly n-simply presented. �

We can easily extend the last result to summands.

Proposition 3.5. Suppose C is a group and λ is an ordinal.

(a) If C is (strongly) n-balanced projective, then both pλC and C/pλC are

(strongly) n-balanced projective.

(b) If pλ+nC and C/pλ+nC are (strongly) n-balanced projective, then C is

(strongly) n-balanced projective.

Proof. For (a), note that if C is (strongly) n-balanced projective, then C is a

summand of a (strongly) n-simply presented group G. It follows that pλC and

C/pλC are summands of pλG and G/pλG, respectively, and since the latter two

groups are (strongly) n-simply presented, it follows that pλC and C/pλC are

(strongly) n-balanced projectives.

Turning to (b), suppose pλ+nC and C/pλ+nC are (strongly) n-balanced pro-

jective. Observe first that there are groups Z and Y such that pλ+nC ⊕ Z and

(C/pλ+nC) ⊕ Y are (strongly) n-simply presented. It follows that pλ+nY ∼=
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pλ+n((C/pλ+nC) ⊕ Y ) is (strongly) n-simply presented. Construct a group X

such that pλ+nX ∼= Z and X/pλ+nX is simply presented (see, for instance, [9]).

The proof will be complete if we can show C ⊕X ⊕ Y is (strongly) n-simply

presented. Note that pλ+n(C ⊕ X ⊕ Y ) ∼= (pλ+nC ⊕ Z) ⊕ pλ+nY is (strongly)

n-simply presented. In addition, since X/pλ+nX is simply presented,

(C ⊕X ⊕ Y )/pλ+n(C ⊕X ⊕ Y ) ∼=
((C/pλ+nC)⊕ Y )/pλ+n((C/pλ+nC)⊕ Y )⊕ (X/pλ+nX)

is (strongly) n-simply presented. Therefore, by Theorem 3.4, C ⊕ X ⊕ Y is

(strongly) n-simply presented, as required. �

Corollary 3.6. Suppose G is a group of length strictly less than ω2. Then the

following conditions are equivalent:

(a) G is strongly n-simply presented;

(b) G is strongly n-balanced projective;

(c) For every non-negative integer m, the factor group pω·m+nG/pω·(m+1)+nG

is pω+n-projective.

Proof. Note that there are only a finite number of non-zero factor groups

pω·m+nG/pω·(m+1)+nG, and it follows from Theorem 3.4 that G is strongly n-

simply presented (respectively, strongly n-balanced projective) iff each of these

factor groups share that property. Finally, by Proposition 2.5, these two condi-

tions are equivalent on each of these factors, and further, they are equivalent to

condition (c). �

We now illustrate that the full Nunke property does not hold for strongly n-

simply presented groups.

Example 3.1. There is a group G for which pωG and G/pωG are strongly 1-

simply presented, but G itself is not strongly 1-simply presented (or even strongly

1-balanced projective).

Proof. Consider the group G of Example 2.1. In discussing this example, it

was noted that G′ = G/pωG is pω+1-projective, and hence strongly 1-simply

presented. Since G is pω+1-bounded, we also can conclude that pωG is Σ-cyclic,

and hence strongly 1-simply presented. We know, however, that G is not strongly

1-balanced projective. �

In fact, in the last example, we really could be more general. If G is any

group of length ω+ 1 which is not pω+1-projective, but for which G/pωG is pω+1-

projective, then G will satisfy our requirements.
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4. The Nunke Property for n-Simply Presented Groups

The purpose of this section is to verify that, as opposed to the case of strongly

n-simply presented groups, the full Nunke property holds for the larger class of n-

simply presented groups. Before doing so, however, we first take a fairly extended

detour into the realm of valuated vector spaces. A valuated vector space is said

to be subfree if it embeds as an isometric subspace of a free valuated vector space.

The following property is well known.

Lemma 4.1. If H is a totally projective group, then H[p] is subfree.

Proof. We verify this by induction on the length of H, which we denote by γ. If

γ is a limit, then H is isomorphic to a direct sum
⊕

α<γ Hα, where pαHα = {0}.
By induction, each (Hα)[p] is subfree, hence the same holds for H. Assuming

γ = β + 1 is isolated, if H ′ is a pβ-high subgroup of H, then there is an isometry

H[p] = H ′[p]⊕pβH. Clearly pβH is free. In addition, H ′[p] embeds isometrically

in (H/pβH)[p]. Since H/pβH is totally projective of length β, by induction, its

socle is subfree. Hence H ′[p] is also subfree, so that H[p] is subfree, establishing

the result. �

By a graded vector space, we will mean a collection of vector spaces indexed

by the ordinals, U = [Uα]α<∞, such that there is an ordinal λ with Uα = {0}
for all α ≥ λ; the smallest such ordinal λ we call the length of U . The definition

of a graded homomorphism or isomorphism follows naturally and the resulting

category of graded vector spaces clearly has direct sums. We say x ∈ U if there

is an α such that x ∈ Uα and if x 6= 0 we write |x|U = α. We say U is admissible

if its Ulm function fU (α) = r(Uα) is admissible in the usual sense. Let R(U) =∑
α<∞ r(Uα), and if β is an ordinal, let Rβ(U) =

∑
β≤α<β+ω r(Uα).

Our motivating example is where V is a valuated vector space (e.g., the socle

of some group) and U(V ) is the graded vector space [Uα(V )]α<∞ = [V (α)/V (α+

1)]α<∞. We let R(V ) = R(U(V )) and Rβ(V ) = Rβ(U(V )). If L is a subset of a

valuated vector space V , then for each ordinal α we let Lα = {x ∈ L : |x|V = α}
and we let span(L) be the graded vector space [span(Lα)]α<∞ (where we are

identifying each element of Lα with its image in Uα(V )). We say L is linearly

independent if Lα is linearly independent in Uα(V ) for every α, and a basis if,

in addition, U(V ) = span(L). If L is linearly independent, let R(L) = |L| =

R(span(L)), and if β is an ordinal, let Rβ(L) = |{x ∈ L : β ≤ |x|V < β + ω}| =

Rβ(span(L)). We say L is admissible if the function fL(α) = |Lα| is an admissible

function.
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Lemma 4.2. If V is a subfree valuated vector space and V (∞) = {0}, then

R(V ) = r(V ).

Proof. Suppose V is a valuated subspace of the free valuated vector space W

and λ is the length of V . We induct on λ, so assume the result holds for all

subfree valuated vector spaces of smaller length. Replacing W by W/W (λ), we

may assume W (λ) = {0}.
Fix a decomposition W = ⊕α<λBα, where |x|W = α for all 0 6= x ∈ Bα. For

γ ≤ λ, let Wγ = ⊕α<γBα ⊆W and Vγ = V ∩Wγ .

Case 1 - λ is a limit ordinal:

Using the induction hypothesis, it can be seen that

r(V ) = sup{r(Vγ) : γ < λ} = sup{R(Vγ) : γ < λ} = R(V ).

Case 2 - λ = γ + 1 is an isolated ordinal:

Again, there is a valuated decomposition V ∼= V (γ)⊕(V/V (γ)), where the first

term is already free and the second term is sub-free of smaller length. Applying

the induction hypothesis to the second term gives the result. �

We now verify an important technical observation.

Lemma 4.3. Suppose U is a graded vector space whose length is a limit ordinal

λ, κ ≥ |λ| is a cardinal and Rβ(U) = κ for all β < λ (so that R(U) = κ as well,

and U is admissible). Let I be a set of cardinality κ, and for each i ∈ I, let Wi

be a graded subspace of U with R(Wi) = κ. Then U is an (internal) direct sum,⊕
i∈I Vi, where each Vi is admissible of length λi < λ, and Vi ∩Wi 6= {0}.

Proof. Identify I with κ. Suppose we have defined si and ti for all i < ` < κ

satisfying

(a1) si ∈Wi for all i < `;

(b1) if L` = {si : i < `} and M` = {ti : i < `}, then L` ∪ M` is linearly

independent;

(c1) for each i < `, |si|U ≤ |ti|U < |si|U + ω.

To define s`, note that R(W`) = κ and |L` ∪M`| < κ, so we can find an s` ∈W`

which is not in span(L` ∪M`). Since R|s`|U (U) = κ, we can therefore find a t`
so that (b1) and (c1) are valid for `′ = ` + 1. Therefore, by induction, we can

define these elements so that (a1), (b1) and (c1) hold for all i < ` = κ, and we

let L = {si : i < κ} and M = {ti : i < κ} .

Note that if β < λ is an ordinal, then (c1) implies that Rβ(L) ≤ Rβ(M).

Expand M to a set P such that P ∩ L = ∅ and L ∪ P is a basis for U . Observe
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that (c1) implies that for all β < λ, Rβ(L) ≤ Rβ(P); and Rβ(U) = κ implies

that Rβ(P) = κ. This means that we can decompose P into the disjoint union of

admissible subsets Pi, for i < κ, of length λi, where |si|U ≤ λi < λ (just construct

them such that Rβ(Pi) = κ for all β < λi). Letting Wi = span(Pi ∪ {si}) proves

the result. �

This brings us to the objective of this section.

Theorem 4.4. Suppose G is a group and λ is any ordinal. Then G is n-simply

presented iff pλG and G/pλG are n-simply presented.

Proof. By Theorem 3.4(a), if G is n-simply presented, then pλG and G/pλG are

n-simply presented. On the other hand, if pλG andG/pλG are n-simply presented,

then clearly pλ+nG = pn(pλG) is n-simply presented. If we let G′ = G/pλ+nG, it

follows from Theorem 3.4(b) that G is n-simply presented iff G′ has that property.

If λ = µ+m, where µ is a limit ordinal and m < ω, then

G′/pµG′ = (G/pλ+nG)/pµ(G/pλ+nG) ∼= (G/pλG)/pµ(G/pλG)

is n-simply presented. In addition, pµG′ = pµG/pµ+m+nG is bounded. Our

result, therefore, can be reduced to the following special case. Because of its

importance, we formulate it separately. �

Theorem 4.5. If G is a group and λ is a limit ordinal such that pλG is bounded

and G/pλG is n-simply presented, then G is n-simply presented.

Proof. We begin with some simplifying assumptions. Consider a subgroup Q

of G containing pλG such that Q/pλG is an n-simply representing subgroup of

G/pλG. As in the proof of Proposition 2.2, it is easily checked that if Q is the

closure of Q in the pλ-topology of G (which uses the subgroups pαG for α < λ as a

neighborhood basis of 0), then Q/pλG is also an n-simply representing subgroup

of G/pλG. We may therefore assume that Q is closed, so that pλ(G/Q) = {0}.
Next, observe that if α < λ is an ordinal, then by Theorem 3.4,

G/pα+nG ∼= (G/pλG)/pα+n(G/pλG)

is n-simply presented, and so G is n-simply presented iff pα+nG is n-simply pre-

sented. This means that we may replace G by pα+nG, if necessary. For example,

the λ-final rank of G is the infimum of the set {r(pαG) : α < λ}, and we may

clearly assume that G has rank and λ-final rank equal to some infinite cardinal

κ. Note also that if κ = ℵ0, then G is countable, and hence trivially n-simply

presented. We may therefore assume that κ is uncountable.

In fact, we can refine these conditions.
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Assumption: If πQ : G → G/Q is the natural homomorphism, then for some

positive integer k we have

r(πQ(G[pk−1])) < κ and r(πQ((pαG)[pk])) = κ

for all α < λ.

To verify that we can make this Assumption, for any ordinal α and integer

k ≥ 1, let ρ(α, k) = r(πQ((pαG)[pk])). Since pλG and Q/pλG are bounded, there

is an m < ω such that pmQ = {0}. For k > m, the fact that the rank and

λ-final rank of G both equal κ implies that ρ(α, k) = κ for all α < λ. For each

k ≤ m, we can find an αk < λ such that ρ(α, k) is constant for all αk < α < λ.

If β = max{αk : k ≤ m}, we then replace G by pβ+nG and Q by pβ+nG ∩Q and

we can let k be the smallest integer such that ρ(β + n, k) = κ.

For the rest of the proof, Q and k will be defined as in the Assumption. The

next definition is the key concept in verifying the full Nunke property for n-simply

presented groups. A subgroup P of G containing pλG is an (n, λ, κ)-subgroup if

P/pλG is an n-simply representing subgroup of G/pλG, and if πP : G→ G/P is

the usual homomorphism, then there is a decomposition

HP = G/P =
⊕
i∈I

Yi

where |I| = κ, such that

(a2) Yi has length strictly less than λ;

(b2) If K ⊆ I with |K| < κ, and α < λ, then there is an x ∈ (pαG)[p]−P such

that πP (x) = y + z, where 0 6= y ∈
⊕

i∈I−K Yi, z ∈
⊕

i∈K Yi and |y|HP ≤ |z|HP .

Intuitively, an (n, λ, κ) subgroup is one where, for all α < λ, HP [p] has

“enough” elements of the form xP = πP (x), where x ∈ (pαG)[p]; we are es-

sentially demanding that they are “spread widely” among the summands of some

decomposition. The next statement is a refinement of a construction that ap-

peared in [10].

Claim A: G has an (n, λ, κ)-subgroup.

Clearly, |λ| ≤ κ, so if I is a set of cardinality κ there is a function φ : I → λ

such that for all α < λ, the set of i ∈ I such that φ(i) = α also has cardinality κ.

Denote φ(i) by αi. Consider the graded vector space U = U(HQ[p]), where for

each i ∈ I we let

Wi = U(HQ[p] ∩ πQ((pαiG)[pk])) ⊆ U.
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By Lemma 4.1, U , and hence Wi, is subfree. So, by Lemma 4.2 and our Assump-

tion, we know that

R(Wi) = r(HQ[p] ∩ πQ((pαiG)[pk])) = κ.

Consequently, in view of Lemma 4.3, we can conclude that there is a decomposi-

tion U =
⊕

i∈I Vi where each Vi is an admissible graded space of length λi < λ,

and an element si ∈ (pαiG)[pk] such that sQ,i = πQ(si) represents a non-zero

element of Vi.

Let Ti be a simply presented group such that U(Ti) is isomorphic to Vi. If

T =
⊕

i∈I Ti, then the usual approach to the classification of totally projective

groups (see, for example, Lemma 77.1 of [5]) implies these isomorphisms are

induced by a group isomorphism T → HQ which we interpret as an equality. All

of this work has the following consequence:

(a3) If i ∈ I and we consider si ∈ (pαiG)[pk] − Q, then sQ,i ∈ HQ[p] is a

non-zero element whose ith coordinate has minimal value in our decomposition

HQ =
⊕

i∈I Ti.

If J ⊆ I, we let ΣJ =
⊕

i∈J Ti. By our Assumption, πQ(G[pk−1])) has

rank strictly less than κ, so there is a subset J ⊆ I such that |J | < κ and

πQ(G[pk−1])) ⊆ ΣJ . We let R be the subgroup of G containing Q such that

R/Q = (ΣJ)[pk−1]; clearly G[pk−1] ⊆ R. The proof of Claim A will be completed

by the next observation.

Claim B: P = pk−1R is an (n, λ, κ)-subgroup of G.

We break this into a sequence of statements.

Subclaim B1: pnP = pn+k−1R ⊆ pλG.
Note that pk−1R ⊆ Q, so that pn+k−1R ⊆ pnQ ⊆ pλG, as required.

Subclaim B2: pk−1G/P ∼= (
⊕

i∈I−J Ti)⊕ (
⊕

j∈J p
k−1Tj).

We have a sequence of isomorphisms,

pk−1G/pk−1R ∼= (G/G[pk−1])/(R/G[pk−1]) ∼= G/R ∼= (G/Q)/(R/Q)
∼= (ΣI)/(ΣJ)[pk−1] ∼= (ΣI−J)⊕ (pk−1ΣJ),

which clearly gives the Subclaim.

Note that pk−1(G/P ) = pk−1G/P , so that G/P is simply presented. It follows

that for all i ∈ I, we can construct a group Yi such that
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(a4) there is an isomorphism
⊕

i∈I Yi
∼= G/P such that

(b4) it restricts to an isomorphism of pk−1Yj and pk−1Tj whenever j ∈ J ;

(c4) it restricts to an isomorphism of pk−1Yi and Ti whenever i ∈ I − J .

Again, interpret this isomorphism as an equality. Since (a2) apparently holds,

the following completes the proof of Claims A and B.

Subclaim B3: (b2) holds.

Given K ⊆ I with |K| < κ and α < κ, find an ` ∈ I − (J ∪ K) such that

α` = α. Let x = pk−1s` ∈ pαG[p]. Note that in the isomorphism of Subclaim B2

we have

G/Q → G/R ∼= pk−1G/P ⊆ G/P

| | | |⊕
i∈I Ti → (

⊕
i∈I−J Ti)⊕ (

⊕
j∈J p

k−1Tj) ∼=
⊕

i∈I p
k−1Yi ⊆

⊕
i∈I Yi

It follows from (a3) that the `th coordinate of sQ,` = s` + Q has the minimum

height in HQ =
⊕

i∈I Ti. This shows that the `th coordinate of xP = x + P has

minimum height in HP =
⊕

i∈I Yi. Therefore, (b2) must hold for this x.

All of the above work was intended to establish the following, from which we

can conclude that Theorem 4.5 holds by inducting on n.

Claim C: There is a subgroup S ⊆ G[p] such that if G′ = G/S, then G′/pλG′ is

n− 1-simply presented.

By Claim A, there is an (n, λ, κ)-subgroup P of G, and we continue to use the

notation given there; so, for example, if x ∈ G, we let xP = x + P ∈ HP . In

addition, if J ⊆ I, we now let ΣJ =
⊕

i∈J Yi ⊆ HP . Let P1 = {w ∈ P : pw ∈
pλG} and (wγ , αγ) for γ < κ be an enumeration of P1 × λ (where we just repeat

terms if |P1 × λ| < κ). We inductively define elements xγ ∈ (pαγG)[p] − P and

uγ ∈ pαγG with the following properties:

(a5) If Kγ ⊆ I is the union of the supports of xP,δ = xδ +P and uP,δ = uδ +P

for all δ < γ, then xP,γ = yγ + zγ , where 0 6= yγ ∈ ΣI−Kγ and zγ ∈ ΣKγ , and

|yγ |HP ≤ |zγ |HP ;

(b5) puγ = pwγ ∈ pλG;

(c5) |uγ |G > |xP,γ |HP ;

(d5) supp(uP,γ) ∩ supp(xP,γ) = ∅.
The existence of a xγ that satisfies (a5) follows from (b2). Having chosen xγ ,

let β < λ be chosen large enough so that pβYi = {0} for any i ∈ supp(xP,γ). If we
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then choose uγ ∈ G satisfying (b5) such that |uγ |G > β, then it is easy to check

that (c5) and (d5) will hold, as well.

For γ < κ, let rγ = xγ − uγ + wγ . Note that prγ = pxγ − p(uγ − wγ) = 0, so

that if S = 〈rγ : γ < κ〉, then S ⊆ G[p].

Claim D: [P1 + S]/S ⊆ pλ(G/S) = pλG′.

Let w ∈ P1, so that w + S ∈ G/S = G′. For any α < λ, let γ < κ be chosen

such that w = wγ , α = αγ . Then

w + S = uγ − xγ + S ∈ [pαG+ S]/S ⊆ pα(G/S) = pαG′.

Since this holds for all α < λ, we can conclude that w + S ∈ pλG′.
Observe that Claim D implies that pn−1[P + S]/S ⊆ [P1 + S]/S ⊆ pλG′.

Therefore, Claim C, and hence the entire result, will follow once we establish our

next statement.

Claim E: G′/([P + S]/S) ∼= G/[P + S] is simply presented.

Note first that G/[P + S] ∼= (G/P )/([P + S]/P ). For each γ ≤ κ, let Kγ ⊆ I

again denote the union of the supports of xP,δ and uP,δ for all δ < γ, so that

[P + S]/P ⊆ ΣKκ . Next, define

Sγ = 〈rP,δ : δ < γ〉 = 〈xP,δ − uP,δ : δ < γ < λ〉 ⊆ ΣKγ ⊆ ΣI = HP = G/P.

If Hγ = ΣKγ/Sγ , then G/[P + S] ∼= Hκ ⊕ ΣI−Kκ . Since Hκ is the direct limit of

the Hγ , for γ < κ, Claim E, and hence the entire result, will once again follow

from our next statement.

Claim F: For every γ < κ, there is a split short exact sequence

0→ Hγ → Hγ+1 → Lγ → 0

where

Lγ = Σ(Kγ+1−Kγ)/〈yγ〉
is a pλ-bounded simply presented group.

To verify this, note that in moving from γ to γ + 1, by (a5) and (d5), we

have added two types of summands Yi; those corresponding to elements i ∈
supp(uP,γ) − Kγ , and those corresponding to elements i ∈ supp(yγ). Also, in

going from Sγ to Sγ+1 we included exactly one more relator,

rP,γ = xP,γ − uP,γ = yγ + zγ − uP,γ .

Note that including rP,γ has the effect of identifying yγ ∈ Σsupp(yγ) with

uP,γ − zγ ∈ ΣKγ∪supp(uP,γ).
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In more detail, observe that |yγ |HP = |xP,γ |HP ≤ |zγ − uP,γ |HP . Since the

subgroup 〈yγ〉 of Σsupp(yγ) has order p, it is nice and Σsupp(yγ)/〈yγ〉 is simply

presented. Therefore, the assignment yγ 7→ zγ − uγ extends to a homomorphism

φ : Σsupp(yγ) → ΣKγ∪supp(uP,γ). It follows that

(a, b) 7→ (a+ φ(b), b)

is an automorphism of

ΣKγ+1
∼= ΣKγ∪supp(uP,γ) ⊕ Σsupp(yγ)

(where φ−1(a, b) = (a− φ(b), b)), which takes Sγ ⊕ 〈yγ〉 to Sγ+1. Therefore,

ΣKγ+1/Sγ+1
∼= (ΣKγ/Sγ)⊕ (Σ(Kγ+1−Kγ)/〈yγ〉).

This proves Claim F, and hence the entire result. �

Our next statement follows as in the proof of Proposition 3.5.

Corollary 4.6. If C is a group and λ is an ordinal, then C is n-balanced projective

iff both pλC and C/pλC are n-balanced projective.

And as in the proof of Corollary 3.6 we have

Corollary 4.7. Suppose G is a group of length strictly less than ω2. Then the

following conditions are equivalent:

(a) G is n-simply presented;

(b) G is n-balanced projective;

(c) For every non-negative integer m, the Ulm factor pω·mG/pω·(m+1)G is

pω+n-projective.

5. Summands of n-Simply Presented Groups

We begin with the following quite natural question:

Problem 1. Is a group G (strongly) n-simply presented iff it is (strongly) n-

balanced projective?

It seems plausible that this is true, at least for groups of countable length.

It is also plausible that it holds for one class of groups, but not for the other.

It is worthwhile restating that, according to Theorems 2.1 and 2.4, Problem 1

is tantamount to asking whether the (strongly) n-simply presented groups are

closed under summands.

The following generalizes Corollaries 3.6 and 4.7.
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Proposition 5.1. Suppose G is a group such that pλG is (strongly) n-simply

presented for some λ < ω2. Then G is (strongly) n-balanced projective iff it is

(strongly) n-simply presented.

Proof. One direction being an immediate consequence of Theorems 2.1 and 2.4,

we consider the converse. If pλG is (strongly) n-simply presented, then by Theo-

rem 3.4(a), pλ+nG is (strongly) n-simply presented. If, in addition, G is (strongly)

n-balanced projective, then by Proposition 3.5(a) we can conclude G/pλ+nG is

(strongly) n-balanced projective. Since λ+n < ω2, by Proposition 3.6 and Corol-

lary 4.7, G/pλ+nG is (strongly) n-simply presented. An appeal to Theorem 3.4(b)

completes the argument. �

A homomorphism f : G→ A is said to be ω1-bijective if its kernel and cokernel

are countable. This condition has proven useful in a number of contexts (see, for

example, [1], [4], and [12]). The following applies this idea to our investigation.

Proposition 5.2. Suppose f : G→ A is an ω1-bijective homomorphism.

(a) If G is n-simply presented, then A is n-simply presented.

(b) If G is n-balanced projective, then A is n-balanced projective.

Proof. (a) Suppose K is the kernel of f , P is an n-simply representing subgroup

of G and Q = f(P ) ⊆ A[pn]. If f ′ : G/P → A/Q is the induced homomorphism,

then the kernel of f ′ is [P +K]/P , which is countable. In addition, the cokernels

of f and f ′ are isomorphic, and hence they are both countable. Therefore, f ′

is also an ω1-bijection. It follows from Theorem 2.4 of [4] that A/Q is simply

presented, so that Q is an n-simply representing subgroup of A.

(b) If X is a group such that G ⊕X is n-simply presented, then the induced

homomorphism f ⊕ 1X shows that A ⊕X is also n-simply presented, so that A

is n-balanced projective. �

In Example 2.3 of [4], a group G which is not (0-)simply presented was con-

structed with a countable (and, in fact, pure) subgroup K such that G/K is (0-

)simply presented. It follows that the converses of both parts of Proposition 5.2

fail. On the other hand, we do have the following partial result in this direction.

Proposition 5.3. Suppose G is a group, pωG is countable, and K is a count-

able and nice subgroup of G. If G/K is n-simply presented, then G is n-simply

presented.

Proof. The niceness of K in G implies that there is a short exact sequence

0→ K/[pωG ∩K]→ G/pωG→ (G/K)/pω(G/K)→ 0.
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Since G/K is n-simply presented, so is (G/K)/pω(G/K); and since it is separable,

we can infer from Proposition 2.2 that it is pω+n-projective. Since the left-hand

group is countable, by Theorem 4.2 of [4], we can conclude that G/pωG is pω+n-

projective, i.e., n-simply presented. Since pωG is clearly n-simply presented, by

Theorem 4.4, so is G. �

Corollary 5.4. Suppose K is a countable subgroup of G. If G/K is separable

and n-simply presented, then G is n-simply presented.

Proof. Since K is nice in G and pωG ⊆ K is countable, the conclusion follows

directly from Proposition 5.3. �

The analogue of the last corollary fails for strongly n-simply presented groups.

As noted previously, there are many pω+n-bounded groups G for which K = pωG

is countable, G/pωG is pω+n-projective (and so strongly n-simply presented), such

that G is not pω+n-projective (and hence not strongly n-simply presented).

In parallel with the above, a homomorphism f : G → A is ω-bijective if its

kernel and cokernel are finite. It is easy to check that in this case, G is simply

presented iff A is simply presented. The proof of Proposition 5.2(a) then shows

that G is n-simply presented iff A is n-simply presented. Since finite subgroups

are always nice, that argument also shows that if G is strongly n-simply presented,

then the same is true of A. On the other hand, in the examples mentioned in the

last paragraph, pωG can easily be chosen to be finite, showing that the converse

of this statement fails.

Proposition 5.5. If A = B ⊕ C is n-simply presented, where pλC is countable

for some λ < ω2, then B is n-simply presented.

Proof. Since pλA is n-simply presented, pλC is countable and pγB ∼= pλA/pλC,

it follows from Proposition 5.2(a) that pλB is n-simply presented. Since B is

clearly n-balanced projective, the result follows from Proposition 5.1. �

A similar argument gives our last observation.

Proposition 5.6. If A = B⊕C is strongly n-simply presented, where pλC = {0}
for some λ < ω2, then B is strongly n-simply presented.

We close the present work with the following special case of Problem 1, which

is parallel to Proposition 5.5:

Problem 2 If A = B⊕C is strongly n-simply presented and C is countable, does

it follow that B is also strongly n-simply presented?
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