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RINGS WHOSE ELEMENTS ARE SUMS OF THREE OR MINUS
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ABSTRACT. We classify up an isomorphism all rings having expressed their
elements by at most three commuting idempotents. Our main result consider-
ably extends certain important achievements established by Hirano-Tominaga
[3], Ying et al. [6] and Tang et al. [5] as well as it somewhat strengthens recent
results proved by the author in [1] and [2].
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1. INTRODUCTION AND BACKGROUND

Everywhere in the text of the present paper, all our rings R are assumed to be
associative, containing the identity element 1, which in general differs from the zero
element 0 of R, and all subrings are unital (i.e., containing the same identity as
that of the former ring). Our terminology and notations are mainly in agreement
with [1]. For instance, U(R) denotes the set of all units in R, Id(R) the set of all
idempotents in R, and Nil(R) the set of all nilpotents in R.

We here will be concerned with rings whose elements are representing by at most
three commuting idempotents. Specifically, we start with the following new notion.

Definition 1.1. We shall say that a ring R is from the class 7 if, for each element
r € R there are three commuting idempotents ey, e, e3 such that r = e; + es + e3
or r= —e; — €a.

Under the substitution r — —r, it takes the equivalent form r = —e; — es — e3
orr=e; + es.
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Immediate examples of such rings are Zj; where k = 2,3,4,5,6, whereas the
direct product Zs X Zs need not be so.

A Dbrief history of the principally known results in the current subject is as follows:
In [3] rings whose elements are sums of two commuting idempotents e; + es were
completely described. This was independently extended in both [1] and [5] to sums
of three commuting idempotents e; + ez + e3. Even something more, in [1] were
classified those rings R whose elements are of the kind e; 4+ e + e3 or e; — ea. This
is, however, a common expansion of the central statement from [, Theorem 4.4],
where the ring elements are written as e; + es or e; — es. On the other hand, it
is worthwhile noticing that the isomorphic structure of rings for which all elements
are of the type e; + e3 or —e; — eo was obtained in [2].

The goal of this article is to enlarge the aforementioned results, and especially
the stated last one, by characterizing all rings from the class T as defined in Defi-
nition 1.1.

2. MAIN REsSULTS
We first begin with the following technicality.

Lemma 2.1. Let R be a ring which belongs to the class T. Then R can be decom-
posed as the direct product Ry x Ry x Rz, where 22 =4 =01in Ry, 32 =9=10 in
Ry and 5 =0 in Rs, and all of R1, Ro, R3 belong to the class T .

Proof. For an arbitrary element x € R, we write that x = e;+es+e3 or z = —ej; —es
for some commuting idempotents e, es, e3. We assert that 302 = 0. In fact, if first
—3 = —e; — e, then —2 = (1 — e;) — €3 and hence (—2)3 = -2, i.e., 6 = 0. If now
—3 = ey + eg + e3, one writes that —4 = e; +e3 — (1 — e3) = €1 + e2 — e5. Since
ertea—es=e1+ea(l—eh)—es(l—e2) =er(l—es(l—e2))+ea(l —eh) —es(1—
e2)(1 — e1) as all of these elements in the last record are commuting idempotents
such that the first and the second ones are both orthogonal with the third one, we
may with no loss of generality assume by replacing the existing idempotents that
ereh = egel, = 0. Therefore, 6e1e5 = 0 and thus 30e; = 0 by multiplying with e;
both sides of the equality —4 = e; + e2 — 5 and the result by ez. In a way of
similarity, we get that 30e; = 0. Furthermore, squaring —4 = e; + e — €4 and
manipulated subsequently with the obtained above facts, we infer that 6ef = 60.
Hence —4 = e1 + e — ¢4 multiplied by 30 leads to 180 = 0 whence 302 = 0 and so
30 € Nil(R), as asserted. The Chinese Remainder Theorem now applies to write
that R = Ry x Ry x Rz, where 22 = 4 =0 in Ry, 32 = 9 = 0 in R, and, finally,
5 =0 in Rgs, as asserted. The final part is now immediate. ([

We next proceed by proving the following.

Proposition 2.2. Suppose that R is a ring of characteristic 5. Then the following
three conditions are equivalent:

(i) 23 =z or z* =1, Vr € R.
(ii) 2> = x or 23 = —z, Vx € R.
(iii) R is isomorphic to the field Zs.

Proof. ”(i) = (ii)”. For an arbitrary but fixed y € R satisfying y* = 1 with y® # y,
considering the element y?>—1 € R, it must be that (y>—1)* = 1or (y2—1)% = y2—1.
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In the first case, we receive y?> = —1 and thus equivalently y> = —y, as required,
while in the second one, we arrive at y2 = 1 and so in an equivalent form y> = y
which is against our initial assumption.

7(ii) <= (iii)”. Let P be the subring of R generated by 1, and thus note that
P =2 Zs5. We claim that P = R, so we assume in a way of contradiction that there
exists b € R\ P. With no loss of generality, we shall also assume that b3 = b since
b3 = —b obviously implies that (2b)> =2bas5=0and b¢ P < 2b¢ P.

Let us now (1 + b)> = —(1 4+ b). Hence b = b® along with 5 = 0 enable us that
b? = 1. This allows us to conclude that (1 + 2b)3 # £(1 + 2b), however. In fact, if
(1 +2b) = 1 + 2b, then one deduces that 2b = 3 € P which is manifestly untrue.
If now (1 + 2b)3 = —1 — 2b, then one infers that 2b = 2 € P which is obviously
false. That is why, only (1 + b)3 = 1 + b holds. This, in turn, guarantees that
b?> = —b. Moreover, b3 = b is equivalent to (—b)> = —b as well as b3 = —b to
(=b)® = —(—b) and thus, by what we have proved so far applied to —b & P, it
follows that —b = b? = (—b)? = —(—b) = b. Consequently, 2b = 0 = 6b =b € P
because 5 = 0, which is the wanted contradiction. We thus conclude that P = R,
as expected.

Conversely, it is trivial that the elements of Zs = {0,1,2,3,4 | 5 = 0} are
solutions of one of the equations z® = z or 23 = —z.

7(iii) = (1)”. It is self-evident that all elements of Zs = {0,1,2,3,4 | 5 = 0}
satisfy one of the equations 2* = x or z* = 1. O

We now have all the ingredients necessary to prove our basic result.

Theorem 2.3. A ring R lies in the class T if, and only if, R is decomposable as
R1 x Ry X Rs3, where

(1) Ry = {0}, or Ry is a non-zero commutative ring such that 4 = 0 and
R1/J(R1) is a boolean ring with either J(R1) = {0} or nil J(R1) = 2Id(R1);

(2) Ry = {0}, or Rs is a subdirect product of family of copies of the field Zs;
(3) Rs = {0} (which is mandatory when J(Ry) # {0}), or Rs = Zs.

Proof. ”Necessity.” With Lemma 2.1 at hand, one writes that R = Ry X Ry X R3,
where R, is either zero or R; is a nonzero ring in which 4 = 0, where R, is either
zero or Rs is a nonzero ring in which 9 = 0, and where Rj is either zero or Rg3 is a
nonzero ring in which 5 = 0, as well as R, Ry, R3 remains in the class 7.

In order to describe the three direct factors, we distinguish three basic cases,
namely:

Case 1: Describing R;. We have 4 = 0 and 2 € Nil(R;) whence 2 € J(R;), so
that Ry/J(R1) is necessarily boolean being a factor-ring of characteristic 2 whose
elements are sums of (at most three) commuting idempotents. What remains to
prove is that J(R;) = 2Id(R;). In showing that, the case when any element from
J(Ry) is written as a sum of three commuting idempotents follows analogously to
[1] getting that J(Ry) = 2Id(R;). That is why, we will be now concerned with z =
—e — f for an arbitrary z € J(R1), where e, f € Id(R;) do commute. Multiplying
by 1 — f, we get that z(1 — f) = —e(1 — f) € J(R1) N (—=Id(R1)) = {0} whence
e = ef. Similarly, ef = f and so e = f. Finally, 2 = —2e € —2Id(R;) = 2Id(Ry),
because 4 = 0, as promised.

Case 2: Describing Ry. We have 9 = 0 and 3 € J(Rz). We assert that
J(R2) = {0} and hence 3 = 0 in Ry. In fact, as in the preceding case, it follows
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that J(Rg) = £2Id(R2) = FId(R2) = {0}, as asserted. Furthermore, it is routinely
checked that o3 = x for every x € Ry and thus, the main result from [3] applies to
get our stated conclusion.

Case 3: Describing Rs. We have 5 = 0 and 2° = z for all elements z in
R3. Now, for each x € Rz, we write that x = e+ f+h or x = —e — f for
some three commuting idempotents e, f,h. For the first record, one deduces after
squaring that 222 — 22 — 2 = 2efh because 3 = 2 + ef + fh + he + efh, so that
multiplying both sides by 3 it follows that x® + 222 4+ 22 = efh is an idempotent.
This means that (23 + 222 + 22)? = 23 + 222 + 22 which, after some usual tricks,
amounts to 3z* + 223 — 222 + 2z = 0. Multiplying this by 2, we finally arrive at
z* — 23 4+ 22 — x = 0. Replacing  with  — 1 in the given last equality, one infers
that o4 = 1.

As for the second record, one derives after squaring that z3 — 222 — 3z = 23 —
222 + 22 = 0 because 23 = x — ef and so (v — 2%)? = 2 — 23. Replacing x by x — 1
in the given equation, one infers that z3 = x.

Now, since for any € R3 it must be that 23 = z or * = 1, we henceforth can
successfully apply Proposition 2.2 to conclude that R3 has to be isomorphic to the
five element field Zs, as stated.

So, finally, the full description of R over, as formulated.

”Sufficiency.” A direct consultation with [3] enables us that every element of
R, is a sum of two idempotents. Since it is pretty easy that each element in Zjy is
a sum of three idempotents (e.g., 0, 1, 2 and 3) or minus a sum of two idempotents
(e.g., 0 and 4), what remains to prove is that any element from R; is a sum of
three idempotents. It is, really, well known that if 2 = 0 in R; it must have a
sum of two idempotents or even just a single idempotent. To that purpose, taking
an arbitrary r € R;, we may write that r + J(R;) is an idempotent and thus
r—1r? € J(Ry) = 2Id(Ry). But J(Ry) is nil with J2 = {0} (as 4 = 0) and hence
there exists an idempotent g € Ry with r — g € 2Id(R;). This containment allows
us to write that r = g+ 2h = g+ h + h for some h € Id(R;), as required. O

Remark 2.4. Considering the rings Zo X Zs, Zg X Zs, Z3 X Zs or Lo X L3 X Zs,
one says that they still are in the class 7, whereas as commented above the rings
Zy X Zs and Zg X Zs are not. However, for any element x lying in the last direct
product, x or —zx is a sum of three idempotents. That is why, it will be of interest to
consider those rings having the mentioned property — see the problem posed below.

As for the direct product Z4 X Zs, consider the element (1,4) which is not
presentable neither as a sum of three idempotents nor as a minus sum of two
idempotents. Nevertheless, (1,4) = (1,0)—(0, 1). Reciprocally, the element (2,4) =
—(1,0) —(1,1), but a routine check shows that (2,4) is not neither the sum of three
idempotents nor the difference of two idempotents, as expected. Resuming, (1,4)
lies in K\ T as opposite to (2,4) which lies in T \ K.

Meanwhile, surprisingly, against this element-wise discrepancy, the present class
T from Definition 1.1 coincides with the class I from [1]. Likewise, the class C
from [2] is contained in the class K from [1]. As a matter of fact, if z = e; + e
or x = —e; — eg for any element x, then one can write that © — 1 = e; + e or
x — 1= —e; — ey and thus one gets that z = e; + e + 1 or x = (1 —e1) — €9, as
required.

So, we end our work with the following well-motivated problem:
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Problem 2.5. Describe the isomorphic structure of those rings whose elements are
sums or minus sums of three commuting idempotents, that is, for any element a of
a ring R it is fulfilled that a = e; + ey + e3 or a = —e; — eg — e3 for some three
commuting idempotents ey, es, e3 of R. In other words, Ya € R: a or —a is a sum
of three commuting idempotents.

Here the ring Z; arose quite naturally, which however not occurred in the state-
ments above, so that some new techniques should be exploited.
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