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Abstract
We define and examine a new class of rings whose elements are the sum of three
commuting idempotents or the difference of two commuting idempotents. We fully
describe them up to an isomorphism and our obtained results considerably extend
some well-known achievements due to Hirano and Tominaga (Bull Aust Math Soc
37:161–164, 1988), to Ying et al. (Can Math Bull 59:661–672, 2016) and to Tang et
al. (Lin Multilin Algebra, 2018).
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1 Introduction and Fundamentals

Everywhere in the text all our rings are assumed to be associative, containing the
identity element 1 which, in general, differs from the zero element 0. Our terminology
and notations are mainly in agreement with [8]. For instance, for such a ring R,U (R)
will always denote the unit group of R, J (R) the Jacobson radical of R, Nil(R) the
set of all nilpotents in R, and Id(R) the set of all idempotents in R.

The classical famous concept of a Boolean ring states that each of its elements is
an idempotent, that is, each element satisfies the equality x2 = x . We shall say such
a ring is of the type C1+. It is well known that these rings are subdirect products of
copies of the field Z2, and thus they are commutative of characteristic 2. Moreover,
the definition is obviously equivalent to the condition that every element is equal to
minus an idempotent, i.e., the ring classes of types C1+ and C1− do coincide. As a
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common generalization of these two types, it is rather natural to consider those rings
whose elements are either idempotents or minus idempotents, calling them weakly
Boolean. Using the terms above, we shall say that these rings are of the type C1±. We
have determined their structure in [4, Theorem 1.13] by proving for such a ring R that
it is commutative, satisfying the equality x2 = x or x2 = −x for all its elements, and
so it is isomorphic to either a Boolean ring B or to Z3 or to B × Z3.

GeneralizingBoolean rings, in [6],were examined ringswhose elements are the sum
of two commuting idempotents. These rings are established there to be commutative
satisfying the equation x3 = x and, specifically, they are a subdirect product of copies
of the fields Z2 and Z3. Besides, this is obviously tantamount to the condition that
any element is the difference of two commuting idempotents or that any element is
minus the sum of two commuting idempotents and, that is why, [10, Proposition 2.2]
is self-evident and its proof is superfluous. In fact, if r is an arbitrary element of a ring
R, then r + 1 is still in R and hence r + 1 = e + f , where e, f are idempotents with
e f = f e. Thus, r = e−(1− f ), as required. Reciprocally, if r ∈ R and r−1 = g−h,
where g, h are idempotents with gh = hg, then r = g+(1−h), as claimed. Likewise,
it follows that the identity (g−h)3 = g−h holds always. Calling these two classes of
rings to be of types C2+ and C2−, respectively, by what we have jut shown one sees
that they will coincide as well. Further, to expand the above considerations due to [6],
in [10] were investigated those rings whose elements are either a sum or a difference
of two commuting idempotents. To keep the new terminology introduced above, we
shall say that such a ring R is of the type C2±.

In [10, Theorem 4.4] the following interesting result was proved:

• A ring R is of the type C2± if, and only if, R ∼= R1 × R2,where R1 = {0} or
R1 is an abelian ring such that R1/J (R1) is a Boolean ring with J (R1) = {0} or
J (R1) = {0, 2}, and R2 = {0} or R2 is a subdirect product of copies of the fieldZ3.

Although in [10] no concrete example was given realizing this necessary and suf-
ficient condition, simple calculations show that the ring Z4 satisfies its requirements.
However, one may check that the direct product Z4 ×Z4 does not retain this property
further. As it will be shown below, any ring R of the type C2± (and, more generally,
also of the type C3+) has to be even commutative.

Our motivation is then to discover what can be said for the elements of Z4 × Z4
in terms of its idempotents. A routine verification shows that any element from that
product is the sum of three idempotents.

Therefore, we come to our basic tool, which parallels [5].

Definition 1.1 A ring R is said to be of type C3+ if all its elements are sums of three
commuting idempotents.

For subsequent applications we shall slightly reformulate this definition as follows:
a ring R is of the type C3+ if, and only if, for every r ∈ R there exist three commuting
idempotents e1, e2, e3 such that r = e1 + e2 − e3. In fact, as noticed above, we may
use the trick with the elements r + 1 and r − 1, respectively.

Also, since one writes that r = e1 + e2(1 − e3) − e3(1 − e2) as the latter two
elements are idempotents with zero product, wemaywithout loss of generality assume
additionally that e2e3 = 0 = e3e2.
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Thus, it is now clear to detect that any ring of type C2± is also of the type C3+,
itself.

2 Main Results

We are now focussing on the classification of rings whose elements depend only on
idempotents. In what follows, we shall completely characterize their structure as well
as we simplify some arguments and methods for proof developed in [6] and [10],
respectively. Nevertheless, the situation for C3+ rings is rather more complicated than
that for C2± rings.

First, we need the following technicality:

Lemma 2.1 Suppose R is a ring and q ∈ Nil(R). The following two items are true:

1. If q = e − f , where e and f are commuting idempotents, then q = 0.
2. If q = e + f with q2 = 0 and either 3 ∈ Nil(R) or 5 ∈ Nil(R), where e and f

are commuting idempotents, then q = 0.

Proof 1. Assuming qt = 0 for some t ∈ N, it follows that q3
t = 0. Hence 0 = q3

t =
(e− f )3

t = e− f = q, because it is not too hard to check that (e− f )3 = e− f .
2. First of all, let 3 be a nilpotent. By squaring the equality q = e+ f , we deduce that

e+2e f + f = 0 and thus e(1− f ) = 0, that is, e = e f . Analogically, one obtains
that f (1− e) = 0, that is, f = f e. Since e f = f e, we may infer that e = f . We,
furthermore, write that q = 2e = 3e − e and thus e = 3e − q ∈ Nil(R) because
both q and e commute. Finally, e = 0 giving that q = 0, as stated.
The same trick also successfully works in the case when 5 is a nilpotent. In fact,

as above e = f gives that q = 2e and thus by squaring 4e = 0. This yields that
e = 5e ∈ Nil(R) which means that e = 0 = q, as expected. ��

We now arrive at our central result here, established independently also in [9,
Proposition 3.8], which states as follows:

Theorem 2.2 Let R be a ring. Then R is of the type C3+ if, and only if, R ∼= R1 × R2,
where R1 = {0} or R1 is a commutative ring for which 4 = 0 such that R1/J (R1)

is a Boolean ring with J (R1) = {0} or J (R1) = 2Id(R1), and R2 = {0} or R2 is a
subdirect product of copies of the field Z3.

Proof “Necessity” We will show first that 6 is a nilpotent in R. To that aim, writing
3 = e1 + e2 − e3 for some commuting idempotents e1, e2, e3 and assuming the
latter two ones are orthogonal. Therefore, 3e2 = e1e2 + e2, i.e., 2e2 = e1e2. Now,
2(e1e2+e2) = 6e2 = 9e2−3e2 = (3e2)2−3e2 = (e1e2+e2)2−(e1e2+e2) = 2e1e2,
that is, 2e2 = 0 and thus e1e2 = 0.

On the other hand, multiplying subsequently the relation 3 = e1 + e2 − e3 by
2(1 − e2) and 1 − e2, and taking into account that e1e2 = e2e3 = 0, we derive that
2e1−2e3 = 6(1−e2) = 9(1−e2)−3(1−e2) = (3(1−e2))2−3(1−e2) = (e1−e3)2−
(e1−e3) = −2e1e3+2e3. Comparing both sides, we detect that 2e1 = −2e1e3+4e3.
Multiplying both sides by e1, we obtain after all that 2e1 = 2e1e3.
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Moreover, since e1e2 = e3e2 = 0, one sees that 3(1 − e2) = e1 − e3 and squaring
we deduce that 9(1−e2) = e1 −2e1e3 +e3 = e1 −2e1 +e3 = e3 −e1 = −3(1−e2).
Finally, 12(1− e2) = 0. But as we have inferred above 2e2 = 0, so that 12e2 = 0 and
thereby 12 = 0. The last implies that 12.3 = 62 = 0 which substantiates our claim.

Furthermore, an appeal to theChinese Remainder Theoremgives that R ∼= R1×R2,
where R1 is a ring in which 2 is a nilpotent (with index of nilpotence ≤ 2) and R2
is a ring in which 3 is a nilpotent. Since a direct factor of a C3+ ring is obviously
again C3+, both R1, R2 are C3+ too. We foremost will examine R1. But 2 ∈ Nil(R1)

ensures that 3 ∈ U (R1) and thus the equality 12 = 0, which also holds in R1, gives
that 4 = 0. Since 2 ∈ J (R1) being a central nilpotent and since the quotient R1/J (R1)

is a C3+ ring of characteristic 2, it is quite elementary to verify that this factor-ring
is necessarily Boolean. Consequently, U (R1)/(1 + J (R1)) ∼= U (R1/J (R1)) = 1
which yields that U (R1) = 1 + J (R1). That is why, 1 + Nil(R1) ⊆ U (R1) which
means that Nil(R1) ⊆ J (R1). We shall now derive that J (R1) = 2Id(R1) which, in
view of 2 ∈ Nil(R1), will guarantee that J (R1) ⊆ Nil(R1) and so will allow us to
conclude that J (R1) = Nil(R1), as desired. To prove the wanted equality for J (R1),
take an arbitrary y ∈ J (R1) and write y = g1 + g2 − g3 for some three commuting
idempotents g1, g2, g3 where the last two ones are orthogonal. Multiplying both sides
on the right by g2, we infer that yg2 = g1g2 + g2. Since g1g2 remains an idempotent,
this assures that (yg2−g2)2 = yg2−g2 which is tantamount to y2g2−3yg2+2g2 = 0
or, equivalently, (yg2 − 2g2)(y − 1) = 0. As y − 1 lies in U (R1), it follows at once
that yg2 = 2g2. Next, again multiplying both sides of the initial equality by 1 − g2
on the right, we have that y(1 − g2) = g1(1 − g2) − g3. Since g1(1 − g2) is still
an idempotent, by what we have commented above, it follows that [y(1 − g2)]3 =
[g1(1 − g2) − g3]3 = g1(1 − g2) − g3 = y(1 − g2), i.e, y3(1 − g2) = y(1 − g2)
guaranteeing that y(1 − g2)[y2 − 1] = 0. As again y2 − 1 ∈ U (R1), we detect that
y(1 − g2) = 0. We finally conclude that y = yg2 = 2g2, as required.

We are now ready to prove that the ring R1 is abelian and thus commutative. To
that goal, we consider the Pierce’s decomposition of R1 represented like this:

R1 =
(

eR1e eR1 (1 − e)
(1 − e) R1e (1 − e) R1 (1 − e)

)
,

where e is an arbitrary idempotent in R1. We intend to obtain that eR1(1 − e) =
(1 − e)R1e = {0} which forces at once that all idempotents in R1 are central. To
do that, given any z ∈ eR1(1 − e), we deduce that z2 = 0 and consequently z ∈
Nil(R1) = J (R1) = 2Id(R1) by what we have already shown above. We, therefore,

write that

(
0 z
0 0

)
= 2

(
a b
c d

)
=

(
2a 2b
2c 2d

)
, where a ∈ eR1e, b ∈ eR1(1 − e), c ∈

(1− e)R1e and d ∈ (1− e)R1(1− e) with

(
a b
c d

)2

=
(
a b
c d

)
. Furthermore, one sees

that z = 2b = 2(ab + bd) = 2ab + 2bd = 0, because 2a = 2d = 0, as required. By
a way of similarity, the other pursued relationship (1 − e)R1e = {0} is true as well.
Thus R1 is really abelian and, because its elements are generated by idempotents only,
it must be commutative itself.
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As for R2, we shall first establish that Nil(R2) = {0} which enables us that 3 = 0;
actually that the equality 3 = 0 holds in R2 is an immediate consequence of the above
fact that 12 = 0 in R and 4 ∈ U (R2) because 3 ∈ Nil(R2). In fact, choosing an arbi-
trary nilpotent q ∈ R2 of index 2, we write that q = h1+h2−h3 for some commuting
idempotents h1, h2, h3 with h2.h3 = h3.h2 = 0. Consequently, qh2 = h1h2 + h2 is
a sum of two commuting idempotents and remains a nilpotent of index 2 as q and h2
commutes. Since 3 ∈ Nil(R2), we employ Lemma 2.1 (2) to get that qh2 = 0. But
q(1− h2) = h1(1− h2)− h3(1− h2) = h1(1− h2)− h3 is a difference of two com-
muting idempotents, whereas q(1− h2) remains a nilpotent. Hereafter, we just apply
Lemma 2.1 (1) to get that q(1 − h2) = 0. Resultantly, q = qh2 = 0 after all, which
substantiates the claim that R2 is reduced, indeed. We further observe that for any ele-
ment r ∈ R2, written as r = f1+ f2− f3 in the standardmanner of an element in aC3+
ring, it must be that r3 = r and therefore, as it is well-known in virtue of the comments
quoted above, R2 has to be a subdirect product of copies of the field Z3, as promised.

“Sufficiency” Since it is an easy exercise to establish that the direct product of two
rings of the type C3+ is again a ring of the type C3+, and since the nonzero ring R2 is
known to be of the type C2+ (and thus of the type C3+), it is enough to show only that
the ring R1 is of the typeC3+. To this purpose, given x ∈ R1, itmust be that x+J (R1) ∈
Id(R/J (R1)) and so x2 − x ∈ J (R1) = 2Id(R1). But J (R1) is nil and hence there
exists h ∈ Id(R1) with the property h − x ∈ 2Id(R1). Finally, it is mandatory for x to
be the sumof three commuting idempotents, bearing inmind that R1 is commutative.��

The following sheds some light on the concrete exhibition of sorts of C3+ rings.

Remark 2.3 As an alternative simpler or at least different proof, without the usage of
Piercematrix representation of rings, wemay process as follows:writing 4 = e+ f +g
for some three commuting idempotents e, f , g from a ring R we get 4e = e + e f +
eg, so that 3e = e f + eg and hence 3e f = e f + e f g, so that 2e f = e f g is an
idempotent. Thismeans that 4e f = 2e f , whence 2e f = 0. Similarly, 2eg = 2 f g = 0.
Furthermore, bywhatwe have shown so far, 42 = (e+ f +g)2 = e+ f +g = 4 leading
to 12 = 0. Therefore, we may decompose R into its 2 and 3 primary components like
this: R = I ⊕ J , where I = {r ∈ R | 4r = 0} and J = {r ∈ R | 3r = 0}. Therefore,
we may assume either 4R = {0} or 3R = {0}.

Assume 3R = {0}. Then, for any x ∈ R, wewrite x = e+ f +g as usual and deduce
x3 = x . Thus, it is principally known that R has to be commutative and reduced. Now,
if P is a prime ideal in R, then the quotient R/P only has trivial idempotents. Since
each element of R is a sum of three idempotents, the factor-ring R/P must be the
field of order 3. Consequently, the natural map R → ∏

P R/P , with P running over
all prime ideals of R, has kernel equal to the intersection of all prime ideals, which is
Nil(R) = {0}, and hence embeds R into a direct product of fields of order 3, as required.

Now, assume that 4R = {0}. Put T = 2R. Thus, a simple check shows that B =
R/T is a Boolean ring. Fix an idempotent e and consider the element x ∈ eR(1− e).
Then, because of the commutativity of B, x maps to 0 in B, i.e., x ∈ T so that x = 2y
for some y ∈ R. We write the standard decomposition of the element y thus

y = eye + ey (1 − e) + (1 − e) ye + (1 − e) y (1 − e) .
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One observes that both ey(1 − e), (1 − e)ye map to 0 in B as it is commutative,
and hence they belong to 2R. That is why, the elements 2ey(1− e), 2(1− e)ye are in
4R and thus they are zero. Therefore, we have x = 2y = 2eye + 2(1 − e)y(1 − e)
and hence x = ex(1− e) = 0 meaning that eR(1− e) = {0} and, by analogy, so also
(1− e)Re = {0}. Finally, R = eRe + (1− e)R(1− e) and so e is central. Since R is
generated by idempotents only, it has to be commutative, as asserted.

Returning again to the original proof alluded to above, it is also worthwhile noticing
that, since J (R1) is nil and R1/J (R1) is Boolean, it follows from [3] (see, [7], too)
that the ring R1 is strongly nil-clean.

On the other vein, we once again show now that the ring R = Z4 × Z4
satisfies the conditions in Theorem 2.2. Indeed, J (Z4) = Nil(Z4) = 2Z4 =
2Id(Z4) = {0, 2} and hence immediately J (R) = Nil(R) = J (Z4) × J (Z4) =
2Id(R). Likewise, Z4/J (Z4) = Z4/2Z4 ∼= Z2, so that the isomorphism R/J (R) ∼=
Z2 × Z2 is directly valid.

We can now slightly enlarge Definition 1.1 in the following way:

Definition 2.4 A ring R is called weakly C3+ if, for each r ∈ R, there exist three
idempotents e1, e2, e3 such that e2 commutes with both e1, e3 and r = e1 + e2 + e3.

As shown above, this amounts to the condition that for every r ∈ R, there are three
idempotents e1, e2, e3 such that e2 commutes with both e1, e3 and r = e1 + e2 − e3.
Certainly, as we have already illustrated, we may with no harm of generality assume
that e2 and e3 are orthogonal.

To simplify the terminology, we shall say that a ring is of the type weakly C2+, pro-
vided that all its elements are sums of two idempotents. This is exactly Definition 2.4
with the extra limitation e2 = 0.

The next significantly strengthens [10, Proposition 6.1] as well as it somewhat
naturally continues Theorem 2.2.

Proposition 2.5 The ring R is weakly C3+ if, and only if, R ∼= R1 × R2, where R1
is either {0} or otherwise is a ring of even characteristic ≤ 4 for which the quotient
R1/J (R1) is of the type weakly C2+, and R2 is either {0} or is a ring which is a
subdirect product of copies of the field Z3 otherwise.

Proof Writing 3 = e1 + e2 − e3, where e1, e2, e3 are idempotents as stated above,
one observes that e1 and e3 also commute, and so we just appeal the method used in
Theorem 2.2 to conclude that 6 is a nilpotent and even that 12 = 0 in R. Furthermore,
the Chinese Remainder Theorem works to get the desired decomposition for R into
the direct product of two rings R1 and R2 again of the type weakly C3+ such that
2 ∈ Nil(R1) and 3 ∈ Nil(R2).

Concerning R1, it is clear that R1/J (R1) remains of the type weakly C3+ having
characteristic 2. Thus, it plainly follows then that this factor-ring is necessarily weakly
C2+, because the sum of two orthogonal idempotents is again an idempotent as well
as the sum of two commuting idempotents in a ring of characteristic 2 is an idempotent
too.

As for R2, we once again may apply the scheme for proof from Theorem 2.2 to get
that 3 = 0. We now intend to prove that R2 is a reduced ring and hence it will be of
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necessity an abelian one. But then it has to be commutative being (weakly) C3+. This
will imply, in turn, that R2 is aC2+ ring obviously satisfying the equation x3 = x . And
so, givenq ∈ Nil(R2)withq2 = 0,wewrite thatq−1 = e1+e2−e3,where e1, e2, e3 ∈
Id(R2) such that e2 commutes with e1 and e3 along with e2 and e3 being orthogonal.
Therefore, q = (e1+1)+e2−e3 and so [q−(e1+1)]3 = q−(e1+1). Standard com-
putations show that the last is tantamount to the equality e1qe1−qe1q+qe1+e1q = q.
Multiplying by q on the right, we detect that e1qe1q = −qe1q and multiplying this
on the left by e1, we deduce that e1qe1q = 0 = qe1q. Thus, the initial equality takes
the form e1qe1 + qe1 + e1q = q. Again multiplying by e1 on the left, it follows that
e1qe1 = 0. Finally, the explored equality is of the kind q = qe1 + e1q.

On the other side, [q−(e1+1)]2 = (e2−e3)2 which is pretty equal to−q(e1+1)−
(e1 + 1)q + 1 = e2 + e3. Summing this with q − (e1 + 1) = e2 − e3, and taking into
account thatq = qe1+e1q,which relationwasderived above,we infer thatq = e1−e2.
Consequently, 0 = q3 = q which is a guarantor that Nil(R2) = {0}, as asked for. ��
Remark 2.6 As previously indicated, the last statement is a substantial strengthening of
Proposition 6.1 from [10] by taking e2 = 0. Interestingly, a note concerning its proof,
is that if we directly choose q = e1 + e2 − e3, where q and these three idempotents
are as above, it will follow that e2 = 0 and so q = e1 − e3. But since these two
idempotents may not commute, it is hereafter difficult to approach. That is why, the
idea to consider q − 1 was successful.

The next reduction statement is somewhat surprising.

Proposition 2.7 Every C3+ ring in which 6 = 0 is a C2+ ring.

Proof For such a ring R and any r ∈ R, it suffices to prove that the identity r3 = r is
fulfilled. And therefore, writing r = e1+e2−e3 which all are commuting idempotents
as e2 and e3 are both orthogonal, we calculate that

r3 = e1 + 3e1(e2 − e3) + 3e1(e2 − e3)
2 + (e2 − e3)

3

= e1 + 3e1(e2 − e3) + 3e1(e2 + e3) + (e2 − e3)

= e1 + 3e1e2 − 3e1e3 + 3e1e2 + 3e1e3 + e2 − e3 = r + 6e1e2 = r ,

and so the assertion sustained. ��
A reasonably adequate question is then to know what can be said for ring R whose

elements satisfy one of the equations x3 = x or x3 = −x? It is readily seen by a
direct check that the ring Z4, which is of the type C2± (and so of the type C3+), does
not possess that property, however, which is in sharp contrast with our expectation—
compared also with the two problems posed at the end of the paper.

We are now classifying when direct products of C2± rings are again rings of this
type, thus explaining the previously discussed fact why Z4 × Z4 is not a C2± ring.

Proposition 2.8 Suppose R = R1 × R2 is a ring. Then R is of the type C2± if, and
only if, R1 and R2 are of the type C2± and one of them is of the type C2+.
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Proof “⇒”. As above in the case of C3+ rings, it is readily checked that the direct
factor of a C2± ring is again a C2± ring. What is sufficient to be proved now is that
one of the two factors has to be a C2+ ring. To see that, assume the contrary that
neither of them need not be of the type C2+. This means that, for example, there
are r1 ∈ R1 which cannot be written as the sum of two commuting idempotents and
r2 ∈ R2 which cannot be written as the difference of two commuting idempotents.
Letting now r = (r1, r2) ∈ R = R1 × R2, it follows immediately that r cannot be
written as either the sum or the difference of two commuting idempotents.

“⇐”. Given r ∈ R, one writes that r = (r1, r2), where r1 ∈ R1 and r2 ∈ R2.
With no harm in generality, we may assume that R2 is a C2+ ring. Thus, since r2 can
be written simultaneously as the sum of two commuting idempotents, as well as the
difference of two commuting idempotents, it is an easy technical matter to show that
r is either the sum or the difference of two commuting idempotents, because the same
property has the element r1. This manifestly demonstrates that R is a C2± ring, as
asserted. ��

We now intend to considerably extend the listed above Theorem 2.2 and, thereby,
the aforementioned [9, Proposition 3.8] as well as [10, Theorem 4.4] to a new point of
view by considering certain rings whose elements depend on commuting idempotents
only.

Definition 2.9 We shall say that a ring R belongs to the class K if, for every r ∈ R,
there exist commuting e1, e2, e3 ∈ Id(R) such that r = e1 + e2 + e3 or r = e1 − e2.

The leitmotif here is to describe the isomorphic structure of all of the rings lying in
the class K since there exist some sorts of rings, e.g., Z5, which lie in the class K but
are definitely totally different from these lying in the foregoing examined class C3+.

Lemma 2.10 In a ring R ∈ K the containment 30 ∈ Nil(R) holds.

Proof Consider the element −2 of R. First, if −2 = e1 − e2 with e1e2 = e2e1, one
checks that (−2)3 = −2 giving up that 6 = 0. This implies that 30 = 0 is a nilpotent,
as required.

Second, we write that −2 = e1 + e2 + e3 with e1e2 = e2e1, e2e3 = e3e2 and
e1e3 = e3e1. Hence −3 = e1 + e2 − (1 − e3) = e1 + e2 − e′

3 putting e′
3 = 1 − e3.

But e2 − e′
3 = e2(1 − e′

3) − e′
3(1 − e2) and the latter two idempotents are obviously

orthogonal, so that with no harm in generality we shall hereafter assume that e2e′
3 =

0, whence e′
3e2 = 0 owing to their commutativity. Furthermore, multiplying the

equality −3 = e1 + e2 − e′
3 by e2, we deduce that 4e2 = −e1e2 and multiplying

this by e1, we derive that 5e1e2 = 0. Thus, multiplying 4e2 = −e1e2 by 5, we
infer that 20e2 = 0. Now, squaring the equation −3 = e1 + e2 − e′

3, we detect
that 12 = 2e′

3 − 2e1e′
3 + 2e1e2 which assures that 12e1 = 2e1e2 and, consequently,

60e1 = 0. Likewise, 12e1 = 2e1e2 enables us that e1e2 = 6e1e2 = 36e1 which,
in turn, forces that 36e1e′

3 = 0. That is why, under the multiplication by 18.5 of the
relation 12 = 2e′

3−2e1e′
3+2e1e2, we get that 180e′

3 = 60.18.We, therefore, multiply
−3 = e1 + e2 − e′

3 by 180 to conclude that 3.180 = 0. However, this immediately
allows us to write that (30)3 = 3.180.50 = 0 which means that 30 is a nilpotent, as
expected. ��
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The next technicality is useful (see, [1], for more details).

Proposition 2.11 Let R be a ring of characteristic 5 whose elements satisfy the equa-
tions x3 = x or x3 = −x. Then R ∼= Z5.

We now have all the ingredients to prove our next chief result which considerably
improved the listed above Theorem 2.2 (and thus Proposition 3.8 from [9]) as well as
[10, Theorem 4.4].

Theorem 2.12 A non-zero ring R is from the classK if, and only if, R ∼= R1×R2×R3,
where R1, R2, R3 are rings satisfying the next three conditions:

1. R1 = {0}, or otherwise R1 is a commutative ring in which 4 = 0, R1/J (R1) is
Boolean and either J (R1) = {0} or J (R1) = 2Id(R1).

2. R2 = {0}, or R2 is a subdirect product of family of copies of the fieldZ3 otherwise.
3. R3 = {0} (which is mandatory when J (R1) is non-zero), or R3 is isomorphic to

the field Z5 otherwise.

Proof “Necessity”. With the aid of Lemma 2.10, the Chinese Remainder Theorem
allows us to decompose R as R1 × R2 × R3, where 2 ∈ Nil(R1), 3 ∈ Nil(R2) and
5 ∈ Nil(R3). Certainly, R1, R2, R3 remain rings from the class K.

First, we consider the ring R1: Suppose that x = e1+e2+e3 or x = e1−e2 for some
commuting idempotents e1, e2, e3 from R1. In the first case, by squaringwe obtain that
x2−x ∈ J (R1) as 2 ∈ J (R1)which can bewritten as (x+J (R1))

2 = x+J (R1). In the
second case, one writes that x = e1+e2−2e2 and so x+ J (R1) = e1+e2+ J (R1) =
[e1 + J (R1)] + [e2 + J (R1)] ∈ Id(R1/J (R1)) because 2e1e2 ∈ J (R1). Finally, in
both cases, it must be that R1/J (R1) is a Boolean quotient. Next, in virtue of the
proof of Lemma 2.10, we know that 3 × 180 = 4 × 135 = 0. Since (4, 135) = 1
and 2 ∈ J (R1) yield together that 135 ∈ 1 + J (R1) ≤ U (R1), we derive that 4 = 0,
as stated. The further facts that either J (R1) = {0} or J (R1) = 2Id(R1) follow in
the same manner as in Theorem 2.2. Indeed, if z = e1 − e2 for any z ∈ J (R1), it
follows that z3 − z = z(z2 − 1) = 0 implying that z = 0 as z2 − 1 inverts in R1.
When z is a sum of three commuting idempotents, the technique used in Theorem 2.2
or Remark 2.3 could be successfully adapted.

Second, we consider the ring R2: We claim that Nil(R2) = {0} and hence 3 = 0.
In fact, given a nilpotent q in R2 with q2 = 0, we write q + 1 = e + f + g or
q+1 = e− f for some commuting idempotents e, f , g of R2. In the latter possibility,
we have −q = (1− e)+ f and with Lemma 2.1 (2) at hand we deduce that q = 0, as
expected. In the first possibility, we have q = e+ f − (1− g). So, qg = eg+ f g and
again Lemma 2.1 (2) implies that qg = 0. Since q = e + f g − (1 − f )(1 − g), we
deduce that q(1− g) = e(1− g)− (1− f )(1− g) is a nilpotent which is a difference
of two commuting idempotents. Therefore, it is easily verified invoking Lemma 2.1
(1) that q(1 − g) = 0 and, finally, q = qg = 0, as claimed. Thus, it is now obvious
that all elements in R2 satisfy the equation x3 = x and, in accordance with [6], we
can conclude that R2 is a subdirect product of isomorphic copies of the field Z3.

Third, we consider the ring R3: We assert that Nil(R3) = {0} whence 5 = 0. But
with Lemma 2.1 (2) in hand, wemay copy the idea presented above to infer the wanted
reduced property of R3.
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Now, given a, b, c are three commuting idempotents, we write a + b − c = b(1−
c) + a(1 − c(1 − b)) − c(1 − b)(1 − a), where all b(1 − c), a(1 − c(1 − b)) and
c(1 − b)(1 − a) retain the idempotent property as the first and the second ones are
both orthogonal with the third one, so that, without loss of generality, we may assume
that ac = bc = 0. That is why, (a + b− c)3 = a + b− c+ d for some idempotent d.
Consequently, the equality [(a+b− c)3 − (a+b− c)]2 = (a+b− c)3 − (a+b− c)
is fulfilled.

With this simple but helpful observation in mind, choose an arbitrary x ∈ R3.
Hence x = e − f for some two commuting idempotents e, f of R3 and thus it is
easily checked that x3 = x . However, if x = g + h + j for some three commuting
idempotents g, h, j of R3, we can write x − 1 = g + h − (1 − j) and, by what we
have shown in the preceding paragraph, we deduce that

[
(x − 1)3 − (x − 1)

]2 = (x − 1)3 − (x − 1) ,

which amounts to x4− x3+ x2− x = 0, taking into account that 5 = 0 and so x5 = x .
Let us now consider the element −x . If −x is a difference of two commuting

idempotents, then again x3 = x holds since (−x)3 = −x . If, however, −x is a sum of
three commuting idempotents, then in the same manner as above, replacing x by −x
in x4 − x3 + x2 − x = 0, we get that x4 + x3 + x2 + x = 0. Combining them, we
extract that 2x3 + 2x = 0 implying that 6x3 = −6x and that x3 = −x , as required,
because 5 = 0. Finally, consulting with Proposition 2.11, we get that R3 has exactly
five elements, as desired.

“Sufficiency”. A direct consultation with [6] enables us that every element of R2
is a sum of two idempotents. Since it is pretty easy that each element in Z5 is a sum of
three idempotents (e.g., the elements 0, 1, 2 and 3) or a difference of two idempotents
(e.g., the elements 0, 1 and 4), what remains to prove is that any element from R1
is a sum of three idempotents. It is, really, well known that if 2 = 0 in R1 it must
have a sum of two idempotents or even just a single idempotent. To that purpose,
taking an arbitrary r ∈ R1, we may write that r + J (R1) is an idempotent and thus
r − r2 ∈ J (R1) = 2Id(R1). But J (R1) is nil with J 2(R1) = {0} (as 4 = 0) and hence
there exists an idempotent g ∈ R1 with r − g ∈ 2Id(R1). This containment allows us
to write that r = g + 2h = g + h + h for some h ∈ Id(R1), as required. ��

The following constructions shed some more light on the formulation of the pre-
ceding theorem and, especially, on point (3).

Example 2.13 Various examples of rings satisfying the statement of the previous the-
orem are Z2, Z3, Z4 and Z5 as well as the direct products Z2 ×Z3, Z2 ×Z5, Z3 ×Z5
and Z2 ×Z3 ×Z5. In fact, in Z2 the signs “+” and “-” are tantamount, in Z3 we have
that 0 = 0 − 0 = 0 + 0, 1 = 1 + 0 = 1 − 0 and 2 = 1 + 1 = 0 − 1, whereas in Z4 it
is impossible to represent all elements simultaneously as a sum of three idempotents
and a difference of two idempotents; e.g., the element 2 which is a nilpotent of order
2 cannot be presented in this aspect, while the other elements can, because 3 = 0− 1.
That is why, contrasting with the above, the ring Z4 × Z5 does not satisfy it. In fact,
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by what we have already commented, the element (2, 4) will work, since 4 = 0 − 1
in Z5.

We finish off the work with a brief discussion and two questions of interest. First,
we pose the following:

Problem 2.14 Letn ∈ N.Describe all ringswhose elements satisfy oneof the equalities
xn = x or xn = −x .

It is worthwhile noticing that the cases n = 2, n = 3 and n = 4 were successfully
settled in [4], [1] and [2], respectively.

Our comments alluded to above, and especially that all elements of the rings of
the type C1± are solutions of one of the equations x2 = x or x2 = −x , lead rather
logically that the rings of the type C2± should have satisfied the equations x3 = x or
x3 = −x . But, however, this is not so, since it is rather easily verified that the ring Z4
does not inherited this property, while the ringsZ2,Z3 andZ5 do. In fact, it follows that
x5 = x and so such a ring must be commutative regular (and hence reduced), whence
it is a subdirect product of fields. Two questions which immediately arise are to find
the kind of these fields as well as to compute their number (of repetations) being finite
or infinite. Nevertheless, the determination of the exact ones in this decomposition
will be the theme of some other subsequent research article.

In closing, we state:

Problem 2.15 Describe Cn+ rings for each n ∈ N.

It is worthwhile noticing that in [5] these rings were somewhat called n-thin.
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