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Abstract1

We completely characterize up to an isomorphism those rings whose elements x have the2

property that x or −x is a sum of two commuting idempotents. This enlarges well-known3

results in the subject due to Hirano and Tominaga (Bull Austral Math Soc 37:161–164, 1988)4

and Ying et al. (Can Math Bull 59(3):661–672, 2016).5
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1 Introduction and background8

Everywhere in the text of the present paper, all our rings R are assumed to be associative,9

containing the identity element 1, which in general differs from the zero element 0. Our10

terminology and notations are mainly in agreement with [7]. For instance, J (R) stands for11

the Jacobson radical of R, Nil(R) stands for the set of all nilpotents in R and I d(R) stands12

for the set of all idempotents in R.13

Our starting point of view here is the following one:14

Definition 1.1 We shall say that a ring R belongs to the class C if, for every r ∈ R, there15

exist two commuting e1, e2 ∈ I d(R) such that r = e1 + e2 or r = −e1 − e2.16

This amounts to the fact that, for any r ∈ R, we have r or −r is a sum of two com-17

muting idempotents. Obvious examples of such rings are Z2, Z3, Z4 and, in contrast to [8,18

Theorem 4.4], the field Z5 as well.19

The leitmotif of the current article is to describe the isomorphic structure of the above20

defined rings which lie in the class C. Our motivation is based on the following principally21

known facts:22
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In [1,2,5], the authors independently described those rings R whose elements are idem-23

potents or minus idempotents. In fact, either R ∼= B or R ∼= Z3 or R ∼= B × Z3, where B is24

a Boolean ring. Thus these rings are necessarily commutative.25

Enlarging this, in [6] the authors isomorphically characterized rings whose elements are26

sums of two idempotents. Specifically, such a ring is a subdirect product of copies of the27

fields Z2 and Z3. Thereby these rings also remain commutative.28

This was substantially improved in [8] to the class of rings whose elements are sums or29

differences of two commuting idempotents. It was proved there that such a ring is decomposed30

as R1 × R2, where R1 is a zero ring or a ring for which the quotient R1/J (R1) is Boolean31

with either J (R1) = {0} or J (R1) = {0, 2}, and R2 is either a zero ring or a ring that is a32

subdirect product of copies of the field Z3. Certainly, one observes that R1 is either zero, or33

Z4, or a Boolean ring B (and thus a subdirect product of copies of the field Z2), or Z4 × B.34

Thus these rings are commutative too.35

The last achievement was recently extended in [3] to rings whose elements are sums of36

three commuting idempotents. It was established there that such a ring is decomposed as37

R1 × R2, where either R1 = {0} or R1 is a ring for which the factor-ring R1/J (R1) is38

Boolean with J (R1) = 2I d(R1), and either R2 = {0} or R2 is a ring that is a subdirect39

product of copies of the field Z3. So these rings are commutative as well.40

Our assertions, which somewhat strengthen the quoted above corresponding ones, are41

listed in the next section.42

2 Main results43

We begin here with the following technicality.44

Lemma 2.1 In a ring R ∈ C the relation 30 ∈ Nil(R) is valid.45

Proof Writing 3 = e1 + e2 and squaring this, we deduce that 2e1e2 = 6. Thus 36 = 12, i.e.,46

24 = 0 = 24.9 = 63 giving up that 6 is a nilpotent.47

Let now we write 3 = −e1 − e2 and again square. We thereby obtain that 2e1e2 = 12.48

So, 144 = 24, that is, 120 = 0 = 120.225 = (30)3 = 0 ensuring that 30 is a nilpotent.49

Finally, in both cases, one concludes that 30 is a central nilpotent of order not exceeding50

3, as asserted. ��51

The next assertion is useful (see [4] for more details).52

Proposition 2.2 Let R be a ring of characteristic 5 whose elements satisfy the equations53

x3 = x or x3 = −x. Then R ∼= Z5.54

Proof Let P be the subring of R generated by 1, and thus note that P ∼= Z5. We claim55

that P = R, so we assume in a way of contradiction that there exists b ∈ R \ P . With no56

loss of generality, we shall also assume that b3 = b since b3 = −b obviously implies that57

(2b)3 = 2b as 5 = 0 and b /∈ P ⇐⇒ 2b /∈ P .58

Let us now (1 + b)3 = −(1 + b). Hence b = b3 along with 5 = 0 enable us that b2 = 1.59

This allows us to conclude that (1+2b)3 �= ±(1+2b), however. In fact, if (1+2b)3 = 1+2b,60

then one deduces that 2b = 3 ∈ P (and so b = −1 = 4 ∈ P) which is, certainly, manifestly61

untrue. If now (1 + 2b)3 = −1 − 2b, then one infers that 2b = 2 ∈ P which is, of course,62

obviously false as well. That is why, (1 + b)3 = 1 + b must hold. This, in turn, guarantees63

that b2 = −b. Moreover, b3 = b is equivalent to (−b)3 = −b and, by what we have proved64
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so far applied to −b /∈ P , it follows that −b = b2 = (−b)2 = −(−b) = b. Consequently,65

2b = 0 = 6b = b ∈ P because 5 = 0, which is the wanted contradiction. We thus conclude66

that P = R, as expected. ��67

It is plainly checked that both x3 = x and x3 = −x imply x5 = x and along with 5 = 068

these two conditions guaranteed that R is either zero or a subdirect product of copies of69

the field Z5 (see, e.g., [7, Exercise 12.11, p. 200]). The above assertion can be somewhat70

considered as a refinement to this fact.71

Lemma 2.3 Let R be a ring in which either 3 or 5 is a nilpotent such that q = e + f or72

q = −e − f for some two commuting idempotents e, f ∈ R and q2 = 0. Then q = 0.73

Proof Assume that 5 ∈ Nil(R). Squaring the equality q = e + f , we obtain that q = −2e f .74

Therefore, again by squaring, we have 4e f = 0 and so e f = 5e f ∈ I d(R) ∩ Nil(R) = {0}75

which forces at once that q = 0, as promised. Similarly, by squaring, the equality q = −e− f76

enables us that q = 2e f and that 4e f = 0, as needed to get q = 0.77

The same trick also works in the case when 3 ∈ Nil(R). ��78

We have now all the ingredients necessary to establish our chief result, which substantially79

extends the corresponding ones from [6] and [8], respectively.80

Theorem 2.4 A non-zero ring R is from the class C if, and only if, R ∼= R1 × R2 × R3, where81

R1, R2, R3 are rings satisfying the next three conditions:82

(1) R1 = {0}, or otherwise R1 is a commutative ring in which 4 = 0, R1/J (R1) is Boolean83

and either J (R1) = {0} or J (R1) = {0, 2}. Actually, R1 = {0}, or R1 ∼= B is Boolean84

(and so a subdirect product of copies of the field Z2), or R1 ∼= Z4, or R1 ∼= B × Z4.85

(2) R2 = {0}, or R2 is a subdirect product of isomorphic copies of the field Z3 otherwise.86

(3) R3 = {0} (which is mandatory when J (R1) is non-zero), or R3 is isomorphic to the field87

Z5 otherwise.88

Proof (Necessity) The Chinese Remainder Theorem allows us to decompose R as R1 × R2 ×89

R3, where 2 ∈ Nil(R1), 3 ∈ Nil(R2) and 5 ∈ Nil(R3). Evidently, R1, R2, R3 remain rings90

from the class C.91

Firstly, we consider the ring R1: Given x ∈ R1. Suppose that x = e1 +e2 or x = −e1 −e292

for some commuting idempotents e1, e2 from R1. In the first case, x + J (R1) = (e1 +93

J (R1)) + (e2 + J (R1)) ∈ I d(R1/J (R1)) as 2 ∈ J (R1) which can also be written as94

(x + J (R1))
2 = x + J (R1). In the second case, one writes that x = e1 + e2 − 2(e1 + e2) ∈95

e1 + e2 + J (R1) and so the previous trick applies to get that each element in R1/J (R1) is96

an idempotent, as formulated. Next, we assert 4 = 0. Write 3 = e + f or −3 = e + f for97

two commuting idempotents e, f in R1. Squaring the first record, we have 6 = 2e f . Also,98

2 f = e f and thus 2e f = e f = 0. Hence 6 = 0 and so 2 = 0 as 3 ∈ U (R1). By the99

same token, the second record insures that 12 = 2e f . Likewise, −4 f = e f and, again by100

squaring, 16 f = e f = −4 f , whence 20 f = 0, i.e., 4 f = e f = 0 since 5 ∈ U (R1). Hence101

12 = 0 and, therefore, 4 = 0 as 3 ∈ U (R1). This sustained the assertion. Moreover, one102

asserts that J (R1) = 2I d(R1). To that aim, given z ∈ J (R1), we have z = e1 + e2 is a sum103

of two commuting idempotents, and hence z(1− e1) = e2(1− e1) ∈ J (R1)∩ I d(R1) = {0}.104

Thus e2 = e2e1. Similarly, by symmetry, e1e2 = e1. Therefore, e1 = e2 and so z = 2e1 ∈105

2I d(R1). Analogously, the same trick works for the other equality z = −e1 − e2 to get that106

J (R1) ⊆ 2I d(R1) as 4 = 0. But since 2 ∈ J (R1), the converse containment also holds,107

as desired. That is why, the asserted equality is true. But, by what we have already shown,108
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R1/J (R1) being Boolean yields that U (R1/J (R1)) ∼= U (R1)/(1 + J (R1)) is the identity,109

whence U (R1) = 1 + J (R1) = 1 + 2I d(R1). We thereby may write that −1 = 1 + 2 f for110

some f ∈ I d(R1). This means that −2 = 2 f and, by multiplying both sides subsequently111

with f and with 2, we derive once again that 4 = −4 f = 0. We furthermore claim that112

either J (R1) = {0} or J (R1) = {0, 2}, i.e., for every e ∈ I d(R1) we will have 2e = 0113

or 2e = 2 (the latter amounts to 2(1 − e) = 0). To this purpose, consider eR1(1 − e) and114

(1 − e)R1e. Since eR1(1 − e) ⊆ Nil(R1) ⊆ J (R1) and (1 − e)R1e ⊆ Nil(R1) ⊆ J (R1),115

it follows that eR1(1 − e) + (1 − e)R1e ⊆ J (R1) = 2I d(R1). For any r ∈ R1 one sees116

that 2er(1 − e) = 2(1 − e)re = 0 and thus 2er = 2ere = 2re which allows us to117

conclude that J (R1) = 2I d(R1) is commutative and even much more—its elements commute118

with these of R1. We shall show now that even R1 is abelian and so commutative, that is,119

eR1(1 − e) = (1 − e)R1e = {0}. In fact, for each r ∈ R1 we have the representation r =120

ere+(1−e)r(1−e)+er(1−e)+(1−e)re = ere+(1−e)r(1−e)+2h for some h ∈ I d(R1).121

Consequently, (r −2h)2 = [ere+(1−e)r(1−e)]2 and r2 = erere+(1−e)r(1−e)r(1−e)122

giving that er2 = erere = r2e. But r2 − r ∈ J (R1) for any r ∈ R1 and, finally, one deduces123

that er = re, as expected, because as we have just observed the ideal J (R1) commutes with124

the elements of R1. And so, e being a central idempotent implies the direct decomposition125

for R1 = K × L , where K = R1e and L = R1(1 − e). Let now we assume that 2e �= 0126

and 2(1 − e) �= 0; otherwise 2e = 0 or 2e = 2. We therefore can find x ∈ K which127

is not a sum of two commuting idempotents (otherwise J (K ) = {0} which is impossible128

because 0 �= 2e ∈ J (K )) as well as y ∈ L such that −y is not a sum of two commuting129

idempotents (otherwise J (L) = {0} which is impossible because 0 �= 2(1− e) ∈ J (L)). But130

then the two component vector (x, y), being an element in R1, is neither of the type a sum of131

two commuting idempotents nor minus a sum of two commuting idempotents, which is an132

obvious contradiction. So, our assumption is wrong guaranteeing that at least one of 2e = 0133

or 2(1 − e) = 0 is valid, and thus we are set after all.134

Secondly, we consider the ring R2: We claim that Nil(R2) = {0} and hence 3 = 0. But,135

with Lemma 2.3 at hand, this follows immediately because any element of R2 is either the136

sum or minus the sum of two commuting idempotents and because 3 is nilpotent in R2. Thus,137

it is now obvious that all elements in R2 satisfy the equation x3 = x and, in accordance with138

the main result from [6], we can conclude that R2 is a subdirect product of family of copies139

of the field Z3 (see [8, Proposition 3.9] too).140

Thirdly, we consider the ring R3: We assert that Nil(R3) = {0} whence 5 = 0. But, as141

above in the second case, with Lemma 2.3 in hand, this follows immediately. Now, given142

x ∈ R3. If x − 1 = −e1 − e2, then x = (1 − e1) − e2 and thus it is pretty easy to check that143

x3 = x . However, if now x − 1 = e1 + e2, then x − 2 = e1 − (1 − e2) and we again easily144

verify that (x −2)3 = x −2 amounting to x3 − x2 + x −1 = 0. On the other side, let y ∈ R3145

with y3 �= y, that is, (−y)3 �= −y. Hence one deduces as above that y3 − y2 + y − 1 = 0146

yielding, applied to −y, that −y3 − y2 − y −1 = 0. Comparing the last two central equalities147

for y, we infer that 2y3 + 2y = 0 and hence 6y3 = −6y assuring that y3 = −y as 5 = 0.148

Finally, all requirements in Proposition 2.2 are manifestly fulfilled to get that R3 is the five149

element field, as stated.150

(Sufficiency) It is pretty easy to establish that a (finite) direct product of rings from the151

class C is also a ring from the class C. A direct consultation with [6] enables us that every152

element of R2 is a sum of two idempotents. Since it is pretty easy that each element in Z5 is153

a sum of two idempotents (e.g., 0, 1, 2) or minus a sum of two idempotents (e.g., 0, 3 and154

4), what remains to prove is that any element from R1 has the same property. It is, really,155

very obvious that if 2 = 0 in R1, then each its element is a sum of two idempotents. To that156

purpose, taking an arbitrary r ∈ R1, we may write that r + J (R1) is an idempotent and thus157
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r − r2 ∈ J (R1) = 2{0, 1}. But J (R1) is nil with J (R1)
2 = {0} (as 4 = 0) and hence there158

exists an idempotent g ∈ R1 with r − g ∈ 2{0, 1}. This containment allows us to write that159

r = g or that r = 2 + g = −1 − (1 − g) (as 2 = −2), as required. ��160

The next general comments could be helpful.161

Remark 2.5 In the case when 2e = 0 or 2e = 2 = −2 holds for any idempotent e of a ring R,162

the conditions from our Definition are equivalent to these from the corresponding result from163

[8] cited above. In fact, x = e1 − e2 = −e1 − e2 = e1 + e2 provided 2e1 = 0 = 2e2, and164

x = e1 − e2 = −(1 − e1) − (1 − e2) = (1 − e1) + (1 − e2) provided 2e1 = 2 = −2 = 2e2.165

Moreover, our presented above proof of Theorem 2.4 is rather more conceptual and easy166

than that from [8, Theorem 4.4] and gives a new strategy for further useful generalizations.167

Indeed, the Pierce’s matrix representation is not used here instead of [8].168

Besides, [8, Proposition 2.2] is self-evident and its very complicated proof is superfluous.169

In fact, if r is an arbitrary element of a ring R, then r +1 is still in R and hence r +1 = e+ f ,170

where e, f are idempotents with e f = f e. Thus r = e − (1 − f ) is a difference of two171

commuting idempotents, as required. Reciprocally, if r ∈ R and r − 1 = g − h, where g, h172

are idempotents with gh = hg, then r = g+(1−h) is a sum of two commuting idempotents,173

as needed.174

Example 2.6 Surprisingly, the rings Z4 × Z4 and Z4 × Z5 do not meet the condition in175

Theorem 2.4. Indeed, for the first direct product, the element (1, 3) cannot be presented as176

a sum of two idempotents nor as minus a sum of two idempotents. As for the second direct177

product, we may consider the element (1, 4) and use similar arguments to get our claim.178

We end our work with the following three problems of some interest and importance:179

Problem 2.7 Find the equations satisfied by the elements of rings from the class C.180

For rings of characteristic 5 we may consult with Proposition 2.2.181

Problem 2.8 Describe the structure of those rings R for which there exist four commuting182

idempotents e, f , g, h such that r = e + f − g − h holds for any r ∈ R.183

Problem 2.9 Describe the structure of those rings R for which there exist four commuting184

idempotents e, f , g, h such that r = e + f + g + h holds for any r ∈ R.185
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