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Abstract

Suppose F is an algebraically closed field. We prove that the ring [])~ ; M, (F') has a special
property which is, somewhat, in sharp parallel with (and slightly better than) a property
established by Ster (LAA, 2018) for the rings [0, M,,(Z2) and [0, M,,(Z4), where Zj is
the finite simple field of two elements and Z, is the finite indecomposable ring of four elements.
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All rings R are assumed here to be associative, containing the identity element 1 which differs
from the zero element 0 of R. Recall that a ring R is nil-clean provided that each its element is a
sum of a nilpotent and an idempotent, is m-regular provided that for every element r € R there is
n € N such that ™ € " Rr™, and is strongly m-reqular provided that ™ € r"T!R.

In his seminal paper [4], Ster showed that the ring [[°°, M,,(Zs) is nil-clean but not strongly
m-regular, whereas the ring [[72; M,,(Z4) is nil-clean but not w-regular. He utilizes an innovation
of the method used in [1]. Specifically, for any n € N, it was proved there that, for every n x n
matrix A over the finite field Zs, there exists an idempotent matrix E such that (A — E)* = 0,
while the index of nilpotence over the finite ring Z,4 is precisely 8. As usual, the symbol I will
stand in the sequel the standard matrix identity. Thereby, A = N + E for some N* = 0 and hence
(I — E)A = (I — E)N, but it is not clear at all whether [(I — E)A]* = 0 will hold eventually.

On the other side, in [2] we have examined rings R having the property that, for each a € R,
there is an idempotent e € aR such that (1 — e)a is nilpotent. We shall be here even rather more
precise by considering an existing idempotent e € aRa with [(1 — e)a]? = 0.

It is well known that finite fields are, surely, not algebraically closed. So, the purpose of this
very short note is to show that some (although little) improvement is possible by a strengthening
of the technique utilized in [2] in the case of algebraically closed fields.

Before proceed by proving our chief result, we need the next two technical statements.

LEMMA 1. Let R be a unital ring, n > 2, and A = Z:le E;it1 € My (R), where the E; ; denote
matriz units. Then there exits an idempotent B € AM,(R)A such that ((I — B)A)? = 0.

PROOF. First, suppose that n = 2. Then

0 1
=(00)
and hence, taking B = 0 € AM,(R)A, we have ((I — B)A)? = A2 = 0. Let us therefore assume
that n > 3, and let

n—2 n—1 n—1
B=A < Z Ei+2,z‘> A= <Z Ei,i—l) A= Z E;;.
i1 i—2 i—2

Then B € AM,,(R)A, B is clearly an idempotent, and
(([ - B)A)2 = ((El,l + En,n)A)Z = E%,Q =0,
as desired. O

LEMMA 2. Let F be a field, n > 1, and A € M,,(R) a matriz in Jordan canonical form. Then
there exits an idempotent B € AM,,(R)A such that (I — B)A)? = 0.

Proor. Write
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where each A; is a Jordan block of size n; x n;. For each A; we shall define a block B; of the same
size, such that B; € A;M,,,(F')A; is idempotent.

If A; is invertible as a matrix of M, (F'), then the identity element I, of M, (F) is in
AM,,, (F)A;, and we set B; = I,,. If A; is not invertible, then either n; = 1 and A; = (0), or
n; > 2 and A; = Z;“:_ll Ej jt1. In the first case, we let B; = (0), and in the second case, we take
B; as in Lemma 1. Then, clearly, in each case, B; € A;M,,(F)A; is idempotent, and it is easy to
see that ((I,, — B;)A;)? = 0 for each i.

It follows immediately that

By 0 0

0 DBy 0
B = . .

0 0 By,

has the desired properties. O

PROPOSITION 1. Let F be an algebraically closed field, and let R = [[,°; M,(F). Then for
each A € R there is an idempotent B € ARA such that ((I — B)A)? = 0.

PrOOF. For each n let A, denote the projection of A onto the component M, (F) in R. Since
F is algebraically closed, for each n we can find an invertible matrix C,, € M, (F) such that
D,, = C,A,C; ! is in Jordan canonical form. By Lemma 2, for each n we can find an idempotent
matrix G, € D,M,,(F)D,, such that ((I, — Gy,)D,)? = 0. Now, for each n let B, = C;; G, C,, and
let B = (B, Ba,...) € R. Since each G,, is idempotent, the same holds for each B,,, and hence also
for B. Also, since Gy, € D,M,,(F)D,, and C,, is invertible, we have for each n that

B, =C,'G,C, € C;,'D,M,(F)D,C, = A,C;;'M,,(F)Cp, A, = A,M,(F)A,,
and hence B € ARA. Finally, since ((I, — Gy,)Dy)? = 0, for each n we have
((In — Bn)An)2 = ((In — erlGnCn)An)Q = (erl(ln - Gn)CnAn)2

= (C NI, — Gn)D,Cy)* = C (I, — Gn)Dp)*C, = 0,

n

from which it follows that ((I — B)A)? = 0, as required. O
We end our work with the following challenging query:

PROBLEM 1. Ezxtend the considered above property for any field F' which is not necessarily
algebraically closed.

An intuitive idea could be the following one: It is enough to establish the claim for a given
M., (F') with the index of the nilpotent (1 — e)a bounded independent of n. Since every matrix is
the direct sum of a unit and a nilpotent (we do not need the field F' to be algebraically closed for
this), it is enough to do the assertion for units and for nilpotents. For a unit a, we take e = 1. Now
suppose a is nilpotent. It is enough to do the statement for the Weyr canonical form of a — for more
details the interested reader can see [3|. Thus assume a has Weyr structure (n1,na, ...,n,). The idea
is to get an idempotent e in aRa that is diagonal, has 0’s in the first n places and the last n,,
and such that (1 — e)a has zero blocks (relative to the partition ni,..,n,) except in the (1,2) block.
Then index of the nilpotent (1 — e)a is exactly 2.

We will illustrate in the case of a homogeneous structure (3,3,3,3) but the argument in the
nonhomogeneous case is similar although a little trickier. Thus, in terms of 3 x 3 blocks and I = I,
we will have that
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0 I 00
0 0 I O
a =
0 0 0 I
0 00O
Let us now

0000

[ 0000
"“l 1000

0 I 00

and
0 00O
B o1 00
e=ara= [ o o o
0 00O
Then, one finds that

0 I 00
0 00O
(L=e)a=1 149 0 0
0 00O

is nilpotent of index 2, as expected.
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