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Abstract. We show that if R is a ring such that for each x ∈ R there exist
two natural numbers n(x) and m(x) of opposite parity with xn(x) = xm(x),
then R is commutative. This extends the classical famous theorem of Jacobson
[Ann. of Math. 46 (1945), p. 695–707] for commutativity of potent rings.

1. Introduction and fundamentals

Throughout, all rings considered in this paper are assumed associative and to
have an identity element. A celebrated result of Jacobson states that if a ring R
satisfies the property that for each x ∈ R there exists a natural number n(x) > 1
with xn(x) = x (such rings are called potent), then R is commutative [1]. In this
case, xn(x)+1 = x2 for every x ∈ R. This raises the question: If a ring R satisfies
the property that for each x ∈ R, there exists a natural number n(x) �= 2 with
xn(x) = x2, must R be potent or even commutative? Both questions have an easy
answer “no”. Let us say a ring R satisfies (n,m), where n > m are fixed natural
numbers, if xn = xm for all x ∈ R. Consider the four rings (1) Z2, (2) Z2[X]/(X2),
(3) Z4, and (4) T2(Z2), the ring of 2×2 upper triangular matrices over Z2. In fact,
all four rings satisfy (4, 2), but the last three ones are not potent, as, moreover,
the last one is not even commutative. However, the full 2 × 2 matrix ring M2(Z2)
over Z2 as well as the upper triangular matrix ring T2(Z4) over Z4 do not satisfy
(4, 2) because, for instance, there is an invertible matrix of order 3 and of order
4, respectively. Nevertheless, we prove in what follows that if an arbitrary ring R
satisfies the property that xn(x) = x2, with n(x) an odd integer, for all x ∈ R,
then R is potent and hence commutative. Note that such a ring is necessarily of
characteristic 2. Our proof also shows that if R satisfies (n, 2) for n odd, then
R satisfies (n − 1, 1) and hence it is potent. Of course, in this case R again has
characteristic 2. Example (3) shows that the rings satisfying (4, 2) need not have
characteristic 2 as opposed to examples (1), (2), and (4). So the requirement of
having characteristic 2 is not enough to deduce the potent property and thus the
restriction on n(x) to be odd cannot be eliminated. Moreover, we also prove that
if R is an arbitrary ring satisfying the property that xn(x) = x3 with n(x) an even
integer for all x ∈ R, then R is potent and thus commutative as well. These two
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assertions alluded to above are, actually, simple consequences of a more general
statement (see, for instance, Theorem 2.1 stated below).

On the other hand, a ring R is called periodic if for every r ∈ R there exist two
distinct naturals m,n depending on r such that the equality rm = rn holds. It is
not too hard to check that these rings are, in general, not commutative by looking
at the equation r2 = r4, which as mentioned above is always satisfied by the upper
2× 2 triangular matrix ring over Z2. Our purpose in this short paper is to extend
the previously mentioned Jacobson’s theorem in the viewpoint of periodic rings.
Specifically, we determine when certain periodic rings are, in fact, potent.

2. The main result

We are now ready to establish the following curious statement, which improves
the aforementioned fundamental theorem due to Jacobson.

Theorem 2.1. Let R be a ring. For a fixed natural number m let P (m) (resp.,
P ′(m)) be the statement:

P (m) : For each x ∈ R, there exists a natural number n(x) > m of opposite
parity of m with xn(x) = xm.

P ′(m) : For each x ∈ R, there exists a natural number n(x) of opposite parity of
m with xn(x) = xm.

Then the following conditions are equivalent:
(1) Given x ∈ R, there exist natural numbers n(x) and m(x) of opposite parity

with xn(x) = xm(x).
(2) Given x ∈ R, there exist natural numbers n(x) > m(x), n(x) even, m(x) odd

with xn(x) = xm(x).
(3) Given x ∈ R, there exist natural numbers n(x) > m(x), n(x) odd, m(x) even

with xn(x) = xm(x).
(4) R satisfies P (1), that is, R is potent and, in the presence of (1), xl(x)+1 = x,

where l(x) = |n(x)−m(x)| is odd.
(5) R satisfies P (2) and, in the presence of (1), xl(x)+2 = x2, where l(x) =

|n(x)−m(x)| is odd.
(6) R satisfies P (m) for some m.
(7) R satisfies P ′(m) for some m.
(8) R satisfies P (m) for all m.
(9) R satisfies P ′(m) for all m.

Proof. We will concentrate on the most difficult implication, (1)⇒ (4): to that goal,
notice that char(R) = 2 since (−1)n(−1) = (−1)m(−1). Next note that J(R) = 0.
In fact, let x ∈ J(R). Suppose that (1 + x)n(x+1) = (1 + x)m(x+1), where n(x+ 1)
is odd and m(x+ 1) is even. So

1 + x+

(
n(x+ 1)

2

)
x2 + · · ·+ xn(x+1) = 1 +

(
m(x+ 1)

2

)
x2 + · · ·+ xm(x+1).

Thus x(1 + (
(
n(x+1)

2

)
−

(
m(x+1)

2

)
)x+ · · ·+ xn(x+1)−1 − xm(x+1)−1) = 0, and hence

x = 0 since the expression in the outer parentheses is invertible because x lies in
J(R). Consequently, R is a subdirect product of primitive rings each of which has
characteristic 2 satisfying the condition that xn(x) = xm(x), where n(x) and m(x)
have opposite parity. Note that a division ring satisfying this condition is always
potent and hence is a field. If we assume the contrary that the given primitive
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ring is not commutative, then there is a matrix ring Mn(F ), where F is a field and
n > 1 is an integer, such that the matrix ring also has characteristic 2 and satisfies
the same equation xn(x) = xm(x). Setting 0 �= A ∈ Mn(F ) with A2 = 0, one easily
obtains for n(A) odd and m(A) even that

I +A = (I +A)n(A) = (I +A)m(A) = I,

whence A = 0, which is the desired contradiction. So R must be commutative too.
To substantiate our claim that R is potent, let M be a maximal ideal of R. Take
x ∈ R so that xn(x) = xm(x), where n(x) and m(x) have opposite parity. Letting

l(x) = |n(x) − m(x)|, we observe that l(x) ≥ 1 is odd. Now xn(x) = xm(x) in

R = R/M . Suppose x �= 0. Then xl(x) = 1, so xl(x)+1 = x where l(x) + 1 ≥ 2 is

even. Likewise, if x = 0, it is obvious that xl(x)+1 = x. Therefore, xl(x)+1−x ∈ M .
Hence xl(x)+1 − x ∈

⋂
M∈Max(R) M = J(R) = 0. Consequently, xl(x)+1 = x where

l(x) + 1 is even, assuring that R is potent, as claimed.
As for validity of the remaining implications, one clearly sees that (9) ⇒ (7) ⇒

(6) ⇒ (1) and (9) ⇒ (8) ⇒ (6). Also, (4) ⇒ (9) as for if xn(x) = x with n(x) even,
xn(x)+n−1 = xn, where n(x)+n− 1 has the opposite parity of n. By what we have
already shown above, that (1) implies (4), one deduces that points (1), (4), (6), (7),
(8), and (9) are all equivalent. Evidently, (4) ⇒ (2) ⇒ (1) and (4) ⇒ (5) ⇒ (3) ⇒
(1), so as we just have that (1) ⇒ (4), the other points (1), (2), (3), (4), and (5)
are also equivalent, which finishes the proof. �

As an immediate consequence, we yield the following.

Corollary 2.2. Let R be a ring satisfying (n,m) where n and m are naturals having
opposite parity. Then R satisfies (n−m+ 1, 1).

Remark. This relationship is rather optimal since surprisingly there exists a com-
mutative ring of characteristic 2 which satisfies (4, 2) but, however, does not satisfy
neither of (3, 2) and (3, 1). In fact, a direct inspection shows that such a ring is the
group ring R = B[G], where B is a Boolean ring possessing more than two elements
(and thus it has non-trivial idempotents), and G is a torsion abelian group with
elements of order at most 2.
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