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In order to find a suitable expression of an arbitrary square matrix over an arbitrary
finite commutative ring, we prove that every such matrix is always representable as a
sum of a potent matrix and a nilpotent matrix of order at most two when the Jacobson
radical of the ring has zero-square. This somewhat extends results of ours in Linear
Multilinear Algebra (2022) established for matrices considered on arbitrary fields. Our
main theorem also improves on recent results due to Abyzov et al. in Mat. Zametki
(2017), Šter in Linear Algebra Appl. (2018) and Shitov in Indag. Math. (2019).
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1. Introduction and Fundamentals

We start the frontier of this paper by recalling that an element x of an arbitrary
ring R is said to be nilpotent if there is an integer i > 0 such that xi = 0 whereas
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an element y from R is said to be potent, or more exactly m-potent, if there is a
natural number m ≥ 2 with ym = y. In particular, all the idempotents are always
2-potent elements.

Our work is devoted for further study, first somewhat initiated in [5], of decom-
posing square matrices as a sum of a potent and a nilpotent. Concretely, a brief
retrospection of the most important results in this direction is as follows:

In [5] it was proven that each matrix from the ring Mn(F2) of n × n matrices
over the field F2 of two elements is a sum of an idempotent matrix and a nilpotent
matrix – even something more, if the matrix ring Mn(F ) over an arbitrary field F

possesses this property, then F ∼= F2. This result was substantially strengthened
by Šter in [15] who proved that every matrix in Mn(F2) is actually a sum of an
idempotent matrix and a nilpotent matrix of index at most 4. Lately, this result
was significantly improved by Shitov in [14] for certain matrix sizes n. Moreover, an
important work was done by de Seguins Pazzis in [10], where a valuable discussion
on the decomposition of a matrix as a sum of an idempotent and a square-zero
matrix is provided.

In another vein, Abyzov and Mukhametgaliev showed in [1] that, for all naturals
n ≥ 1, any element of the ring Mn(F ) is presented as a sum of a nilpotent and a q-
potent element, provided that F is a field of cardinality q-specifically, in [1, Theorem
2] was shown that some square matrix over a finite field is expressible as a sum of a
potent and a nilpotent but the order of the existing nilpotent is, in general, greater
than 2. Also, a recent paper [4] by Breaz deals with the more exact presentation
of matrices over fields of odd cardinality q as a sum of a q-potent matrix and
a nilpotent matrix of order 3. Besides, it was constructed in [4, Example 6] an
ingenious example of a 3× 3 matrix over the field F3 of three elements that cannot
be presented as the sum of a 3-potent and a nilpotent matrix of order 2 (in other
terms, the latter matrix is also called square-zero or, equivalently, zero-square).
Furthermore, improving the aforementioned results from [4], we establish in [9]
that each square matrix over any infinite field as well as each matrix over some
special finite fields can be expressed as a sum of a potent matrix and a square-zero
matrix.

So, a question which logically arises is whether or not our results in [9] could
be expanded for some kinds of (finite) commutative rings, that is, is every square
matrix over a finite commutative ring of square-prime characteristic decomposed
as a sum of a potent matrix and a square-zero matrix (for example, for rings of
the sort Zp2 for some fixed prime p)? To keep a record straight, we notice that a
similar representation of such a matrix ring over Z4 already exists in terms of a
nilpotent of order less than or equal to 8 and an idempotent (see, e.g., [15]). Even
more generally, it was established in [1, Lemma 1] and [1, Theorem 4] that, for
all n, m ∈ N, the matrices in Mn(Zpm) are presentable as the sum of a nilpotent
matrix and a p-potent matrix, whenever p is a prime. However, the exact bound
(of course, if it eventually exists) of the existing nilpotent matrix is not explicitly
calculated yet.
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So, being seriously motivated by this idea, in what follows, we shall completely
resolve [9, Problem 2] (for more account, see also [7]) even in a more general set-
ting (see, e.g., Theorem 2.6 stated and proved below where we will show that
the decomposition holds for matrices over a finite commutative ring with Jacobson
radical rad(R) of zero-square) and, besides, we shall strengthen the previously men-
tioned achievements from [1, 15, 14], respectively. Part of our results are somewhat
announced in [8].

Likewise, for completeness of the introductory section, we refer to the bibliog-
raphy, and we also note that some related results can be found by the interested
reader in [6, 13] along with the given references therewith, respectively.

2. Main Results and Conjecture

We begin here with the following simple but useful claim.

Lemma 2.1. Let R be a finite unital commutative ring. Then, for every invertible
matrix A ∈ Mn(R), there exists m ∈ N such that Am−1 = Id and Am = A.

Proof. Let A be an invertible matrix in Mn(R) and consider the set of matri-
ces {A0, A1, . . . , An, . . .}. Since this set is finite, there exists k < l such that
Ak = Al, and since A is invertible Id = Al−k. The claim now follows by taking
m − 1 = l − k.

The following result generalizes [9, Corollary 3.2], where it was shown that every
matrix over a finite field is a sum of a potent matrix and a zero-square matrix by
using a different approach. The result of this paper is entirely based on the primary
rational canonical form of a matrix [12, VII.Corollary 4.7(ii)], which states that
every matrix A ∈ Mn(F) where F is a field is similar to a direct sum of companion
matrices of prime power polynomials pm11

1 , . . . , p
msks
s ∈ F[x] where each pi is prime

(irreducible) in F[x]. The matrix A is uniquely determined except for the order
of the companion matrices of the p

mij

i along its main diagonal. The polynomials
pm11
1 , . . . , p

msks
s are called the elementary divisors of the matrix A.

Proposition 2.2. Let F be a finite field. For any matrix A ∈ Mn(F) there exists
k ∈ N such that A = P + N, where N2 = 0, P k = P, E = P k−1 is an idempotent
with PE = EP = P and EN = NE = N .

Proof. Let us consider the primary rational canonical form of the matrix A. Also,
let us split our argument between elementary divisors qi(x) of A with qi(0) �= 0 and
those with qi(0) = 0:

(i) Any elementary divisor qi(x) with qi(0) �= 0 gives rise to an invertible com-
panion matrix Ci. By Lemma 2.1, there exists ki ∈ N such that Cki

i = Ci and
Cki−1

i = Id. Let us denote Pi := Ci and define Ni as the zero matrix.
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(ii) Let us suppose that qi(x) is an elementary divisor (power of an irreducible
polynomial in F[x]) such that qi(0) = 0. This implies that qi(x) = xis for
certain is ∈ N and its associated companion matrix is of the form

Ci =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

1 0
...

. . . . . .

0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ ∈ Mis(F),

i.e., it is a nilpotent Jordan block.

(ii.1) If is ≥ 2, write

Pi =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 1

1 0
...

. . . . . .

0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ and Ni :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · −1

0 0
...

. . . . . .

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠.

Note that Pi is an invertible matrix and by 2.1 there exists ki ∈ N such
that P ki

i = Pi and P k−1
i = Id with Ci = Pi + Ni.

(ii.2) If is = 1, then

Ci = (0).

Let Q be the invertible matrix in Mn(F) such that Q−1AQ is decomposed into
its primary rational canonical form (suppose without loss of generality that the
blocks corresponding to (ii.2) are written together as the last zero block):

Q−1AQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 0 · · · 0 0

0 C2 · · · 0 0

...
...

. . .
...

0 0 · · · Cr 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 0 · · · 0 0

0 P2 · · · 0 0

...
...

. . .
...

0 0 · · · Pr 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
P ′

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N1 0 · · · 0 0

0 N2 · · · 0 0

...
...

. . .
...

0 0 · · · Nr 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
N ′

.
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Since each Pi satisfies P ki−1
i = Id, we have that (P ′)k = P ′ for k = 1+

∏r
i=1(ki−1)

and, therefore, E′ := P ′k−1 is an idempotent of Mn(F) (as E′2 = (P ′k−1)2 =
P ′kP ′k−2 = P ′k−1 = E′). By construction, N ′2 = 0 and, since P k−1

i = Id, in each
block it must be that E′N ′ = N ′E′ = N ′, as asked for.

Finally, for P := QP ′Q−1, N := QN ′Q−1 and E := QE′Q−1 we have that E is
an idempotent of Mn(F) satisfying the properties E = P k−1, A = P + N , P k = P ,
N2 = 0, EN = NE = N and EP = PE = P . In particular, P = EPE is invertible
in the subring EMn(F)E (note that EMn(F)E is a unital ring with unit E). This,
in turn, implies that P is strongly regular, as required.

The next property of lifting idempotents is well known, but we list the statement
here only for the sake of completeness and for the convenience of the readers.

Lemma 2.3 ([2, 27.1]). Let R be a ring and let I be a nilpotent ideal of R. Then
any idempotent of R/I lifts to an idempotent of R.

The following two technicalities on lifting special elements are the key for the
establishment of our further results.

Lemma 2.4. Let R be a ring and let I be a nilpotent ideal of R. Let us suppose
that a ∈ R/I has zero-square and that ā is a von Neumann regular element in R/I.
Then the element a lifts to an element of R with zero-square.

Proof. Since a is a von Neumann regular element of zero square, there exists
b ∈ R/I such that āb̄ā = ā, b̄āb̄ = b̄ and b̄2 = 0 (see [11, Lemma 2.4]). Let
us consider the idempotent ē = āb̄ ∈ R/I. Notice that ēā(1 − ē) = ā, because
āē = 0̄. By [2, 27.1], the element ē lifts to an idempotent e ∈ R. If now we take
any representant a of ā in R, we will have that ea(1 − e) ∈ R has zero-square and
ea(1 − e) = ēā(1 − ē) = ā, as claimed.

For completeness of the exposition, let us recall now that a unital commutative
ring is said to be a local ring if it contains a unique maximal ideal, say M . In that
case, the factor ring R/M is a field, called the residue field of R – cf. [3, Definition
1.2.9]. Moreover, any finite commutative ring with identity R can be expressed as
a direct sum of local rings and the decomposition is unique up to a permutation of
the direct summands (see, e.g., [3, Theorem 3.1.4]).

Lemma 2.5. Let R be a unital finite commutative local ring such that its unique
maximal ideal M possesses the property that M2 = 0. Let S = Mn(R). Take P, E ∈
S such that E is an idempotent of S and P = EPE and suppose that there exists
k ∈ N such that P

k−1
= E ∈ S/rad(S). Then there exists a prime p > 1 such that

P (k−1)p = E. In particular, P (k−1)p+1 = P and P is invertible in ESE.

Proof. Since P
k−1

= E, there exists U ∈ rad(S) = Mn(M) such that E = P k−1 +
U . Multiplying on the left and on the right by E, we replace U by EUE. We know
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that R/M is a finite field of certain prime characteristic p. Thus p · 1 ∈ M , so we
have that pM ⊂ M2 = 0. We, consequently, calculate that

P (k−1)p = (E − U)p = E +
p∑

i=1

(−1)i

(
p

i

)
U i = E,

as expected.

So, we arrive at our central result on decomposing any matrix over special finite
commutative rings into a potent matrix and a zero-square matrix.

Theorem 2.6. Let R be a finite commutative ring such that its Jacobson radical
has zero-square. Then every matrix A in Mn(R) can be expressed as P + N, where
P is a potent matrix and N is a nilpotent matrix with N2 = 0.

Proof. We know with the aid of the comments alluded to above that R is a direct
sum R =

⊕
Ri, where each Ri is a local ring. Then one finds that the decomposition

Mn(R) =
⊕

i Mn(Ri) holds, so that we can express A as a direct sum of matrices
over local rings.

Suppose without loss of generality that R is a local ring. Let us denote S :=
Mn(R) and let us decompose A ∈ Mn(R) into the sum of a potent and a zero-square
matrix. Let I be the unique maximal ideal of R. By hypothesis, one calculates
that I2 = 0 because I coincides with the Jacobson radical rad(R) of R. Clearly,
J := rad(Mn(R)) = Mn(rad(R)) = Mn(I) and hence J2 = 0.

Let us consider the residue class of A modulo J : In fact, Ā ∈ S/J ∼= Mn(R/I).
Since R/I is a finite field, by virtue of Proposition 2.2 there exists k ∈ N such
that Ā = P̂ + N̂ with P̂ k = P̂ , N̂2 = 0, and Ê := P̂ k−1 is an idempotent with
Ê N̂ = N̂ Ê = N̂ and Ê P̂ = P̂ Ê = P̂ .

Now, with Lemma 2.3 at hand, there exists an idempotent E of S such that
E = Ê. Let us consider P ∈ S such that P = P̂ . Since ÊP̂ = P̂ Ê = P̂ , we have that
EP = PE = P and we can suppose (by replacing P by EPE) that EP = PE = P .
Applying Lemma 2.4 to the zero-square von Nemann-regular matrix N̂ ∈ S/J , there
exists N ∈ S such that N2 = 0 with N = N̂ .

Let us take V ∈ J such that A = P + N + V , and write

A = P + EV E + (1 − E)V E + EV (1 − E)︸ ︷︷ ︸+ N + (1 − E)V (1 − E)︸ ︷︷ ︸ . (∗)

(1) Let us show that P + EV E + (1 − E)V E + EV (1 − E) is a potent element of
S: In fact, notice that for any n ∈ N

((P + EV E) + (1 − E)V E + EV (1 − E))n

= (P + EV E)n + (1 − E)V E(P + EV E)n−1

+ (P + EV E)n−1EV (1 − E),

because EV E, (1−E)V E, EV (1−E) and (1−E)V (1−E) belong to an ideal
of zero-square. Moreover, since P is invertible in ESE, the matrix P + EV E
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is invertible and, therefore, it is potent (alternatively, since EV E lies in J =
Mn(I), we have P = P + EV E). Furthermore, P +EV E satisfies the conditions
of Lemma 2.5, so we detect that (P +EV E)(k−1)p = E for some prime number
p, so (P + EV E)(k−1)p+1 = P + EV E. Then

((P + EV E) + (1 − E)V E + EV (1 − E))(k−1)p+1

= (P + EV E)(k−1)p+1 + (1 − E)V E(P + EV E)(k−1)p

+ (P + EV E)(k−1)pEV (1 − E)

= P + EV E + (1 − E)V E + EV (1 − E).

(2) Let us show that N +(1−E)V (1−E) has zero-square: Indeed, since N(1−E)
and (1 − E)N belong to J and J2 = 0, we have that

(N + (1 − E)V (1 − E))2 = N2 + N(1 − E)V (1 − E) + (1 − E)V (1 − E)N

+ ((1 − E)V (1 − E))2 = 0.

Therefore, equality (∗) provides the desired decomposition of A into a potent
matrix and a zero-square matrix, as wanted.

Since Zp2 is a unital commutative local ring whose Jacobson radical has zero-
square, we immediately obtain the following consequence, which completely resolves
[9, Problem 2] when p = 2, i.e., for the ring Z4.

Corollary 2.7. For all natural numbers n and primes p, every matrix in Mn(Zp2)
can be expressed as P + N, where P is a potent matrix and N is a matrix with
N2 = 0.

The next construction sheds a further light on the more concrete decomposition
of such a type.

Example 2.8. Let us check in an example how this decomposition successfully
works. Suppose S = M8(Z4) and consider the following matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

1 0 0 0 0 0

0 1 1

0 0

0 1 0 0 0 0

0 1 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ā

+2B,
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where B is any matrix in S,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b c d

e f g h

i j k l

m n p q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a, b, . . . , q denote matrices of the appropriate sizes.
If we regard A as a matrix over Z2, we will obtain Ā, whose elementary divisors

are x3 + x2 + 1, x3, x, x. As in the proof of Proposition 2.2 and Theorem 2.6, we
add and subtract the element 1 in the adequate position of the second diagonal box
in order to transform the companion matrix of x3 into an invertible matrix plus a
zero-square matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

1 0 0 0 0 0

0 1 1

0 1

0 1 0 0 0 0

0 1 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
P̂=Ā+e4,7

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

3

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
N̂=3e4,7

+2B.

The matrix P̂ = Ā + e4,7 satisfies

P̂ 42 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 0

1

1

1

1

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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(it is worthwhile noticing that the first diagonal box to the 7th-power is the identity
when regarded as a matrix over Z2, the second diagonal box to the 3rd-power is
the identity when regarded as a matrix over Z2, so globally we need 7 × 3 × 2 to
get a common identity over Z4).

Following the proof of the theorem, let us denote E = P̂ 42, which is clearly an
idempotent of S.

Now,

A = P̂ + E(2B)E + (1 − E)(2B)E + E(2B)(1 − E)︸ ︷︷ ︸
P

+ N̂ + (1 − E)(2B)(1 − E)︸ ︷︷ ︸
N

,

where we have

•

P = P̂ + E(2B)E + (1 − E)(2B)E + E(2B)(1 − E)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

1 0 0 0 0

0 1 1

0 1

0 1 0 0 0

0 1 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b c d

e f g h

i j 0 0

m n 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

•

N = N̂ + (1 − E)(2B)(1 − E)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

3

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 k l

0 0 p q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and P 43 = P along with N2 = 0.
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The following construction unambiguously illustrates that the square-prime
characteristic of the ring is an essential condition and cannot be dropped off.

Remark 2.9. There are matrices over Z23 that do not admit a decomposition into
potent + zero-square. For example, the matrix

A = 2 Id ∈ Mn(Z23 ),

does not admit such a decomposition. Otherwise, since A2 �= 0 there would exist
a non-zero potent matrix P and a zero-square matrix N such that A = P + N .
Then P 4 = ((A − N)2)2 = (4 Id−4N)2 = 0, which is not possible if P is potent
and non-zero, thus establishing our claim.

On the other side, Theorem 2.6 remains no longer true for finite commutative
rings of characteristic p2 for some arbitrary but fixed prime p. In fact, it suffices
to find a finite commutative ring R of characteristic p2 having an element a with
a3 = 0 and a2 �= 0. For example, consider the ring R = Z4[x]/I where I is the ideal
generated by the polynomial (x2 +x+1)3. The characteristic of R is then exactly 4.
Choose a = (x2 + x + 1) + I ∈ R, and let us consider similarly to above the matrix
A = a Id ∈ Mn(R) for some n ∈ N. This matrix A has the properties A2 �= 0 and
A3 = 0, whence with the help of the same argument as above it surely cannot be
decomposed into the sum of a potent and a zero-square nilpotent. This concludes
our arguments.

In order to generalize Theorem 2.6 to commutative rings of the form Zpr for
some natural number r ≥ 2, we first show that potent elements lift modulo a
nilpotent ideal. Our proof follows the ideas of the classical lifting of idempotents
(see, for instance, [2, Proposition 27.1]).

Proposition 2.10. Let R be a finite ring and let I be a nilpotent ideal of R of
index n. Let us suppose A ∈ R is such that A ∈ R/I is a potent element of R/I.
Then there exists B ∈ R such that A = B and B is potent in R.

Proof. Suppose that A
t

= A ∈ R/I. Then At − A ∈ I and, therefore, one can
calculate that

0 = (At − A)n =
n∑

k=0

(−1)n−k

(
n

k

)
AktA(n−k)

= (−1)nAn −
n∑

k=1

(−1)n−k+1

(
n

k

)
An+(t−1)k

= (−1)nAn − An+(t−1)

(
n∑

k=1

(−1)n−k+1

(
n

k

)
A(k−1)(t−1)

)
.

Let T :=
∑n

k=1(−1)2n−k+1
(
n
k

)
A(k−1)(t−1). Therefore, An = An+(t−1)T . Define E :=

An(t−1)T n. Note that EA = AE. Let us show that E is an idempotent of R. In



February 18, 2022 7:51 WSPC/S0218-1967 132-IJAC 2250012

Decompositions of matrices into potent and square-zero matrices 261

fact, one sees that

E = An(t−1)T n = An(t−1)+(t−1)T n+1 = An(t−1)+2(t−1)T n+2 = · · ·
= An(t−1)+n(t−1)T n+n = E2.

From the above calculations, we may write that

E = (EA)(EAn(t−1)−1T n),

and so we get that EA is an invertible element in ERE (note that ERE is a
unital ring with identity element E). Decompose A = EA + (1 − E)A. Since An =
An+(t−1)T = · · · = An+n(t−1)T n = AnAn(t−1)T n = AnE = EAn, it must be that
((1 − E)A)n = 0. On the other hand, if we choose k such that tk ≥ n and taking
into account that Ā is t-potent, it follows that

Ā = Āt = . . . = Ātk

= (EA + (1 − E)A)tk

= EA
tk

+ (1 − E)A
tk

] = EA
tk

∈ ER,

so Ā = EA + (1 − E)A ∈ ER, and hence Ā = EA.
To conclude that EA is potent, it suffices to consider the finite set

{EA, (EA)2, . . . , (EA)r , . . .},
to get that (EA)l = (EA)m for some l < m ∈ N, and from the invertibility of EA

we get that (EA)m−l = E, so (EA)m−l+1 = EA, as asserted.

So, we are ready to proceed by proving the promised generalization of the chief
Theorem 2.6.

Corollary 2.11. Let n, r be two natural numbers. Then every matrix A in Mn(Zpr )
can be expressed as P +N, where P is a potent matrix and N is a matrix such that
N2 ∈ Mn(p2

Zpr ).

Proof. Let R = Mn(Zpr ) and let us consider the nilpotent ideal I of R generated
by p2 Id, i.e., I = Mn(p2

Zpr ). Then R/I ∼= Mn(Zp2 ) and thus R/I satisfies the
hypothesis of Theorem 2.6. Consequently, there exist P, N ∈ R/I such that Ā =
P̄ + N̄ , where P is potent and N

2
= 0. By making use of Proposition 2.10, we can

lift P̄ to a potent matrix P of R. Take any matrix N ∈ R such that N modulo I

equals N̄ (in particular we have that N2 ∈ I). Finally, there exists V ∈ I such that
A = P + N + V , where

• P is potent
• (N + V )2 = N2 + NV + V N + V 2 ∈ I = Mn(p2

Zpr ).

It is worth noticing that this result extends Corollary 2.7 (note that when r = 2,
the ideal Mn(p2

Zp2) of the former ring Mn(Zp2) is zero and so it is immediate that
N has zero-square).
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We finish off our work with the following conjecture which addresses Remark 2.9
quoted above.

Conjecture. Suppose m ≥ 2, n ≥ 2 are natural numbers and p is a prime. Then
every matrix in Mn(Zpm) is a sum of a potent and of a nilpotent of order at most m.

Note that our results stated above (especially Corollary 2.7) completely settled
the problem for m = 2. In this aspect, can we refine our machinery and results for
finite commutative rings of characteristic pm?
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