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Аннотация

Предположим, что 𝐹 - алгебраически замкнутое поле. Докажем, что кольцо∏︀∞
𝑛=1 M𝑛(𝐹 ) обладает специальным свойством, которое несколько параллельно (и немного

лучше) свойству, установленному Šter (LAA, 2018) для колец
∏︀∞

𝑛=1 M𝑛(Z2) и
∏︀∞

𝑛=1 M𝑛(Z4),
где Z2 - конечное простое поле из двух элементов и Z4 является конечным неразложимым
кольцом из четырех элементов.
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Abstract

Suppose 𝐹 is an algebraically closed field. We prove that the ring
∏︀∞

𝑛=1 M𝑛(𝐹 ) has a special
property which is, somewhat, in sharp parallel with (and slightly better than) a property
established by Šter (LAA, 2018) for the rings

∏︀∞
𝑛=1 M𝑛(Z2) and

∏︀∞
𝑛=1 M𝑛(Z4), where Z2 is

the finite simple field of two elements and Z4 is the finite indecomposable ring of four elements.
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All rings 𝑅 are assumed here to be associative, containing the identity element 1 which differs
from the zero element 0 of 𝑅. Recall that a ring 𝑅 is nil-clean provided that each its element is a
sum of a nilpotent and an idempotent, is 𝜋-regular provided that for every element 𝑟 ∈ 𝑅 there is
𝑛 ∈ N such that 𝑟𝑛 ∈ 𝑟𝑛𝑅𝑟𝑛, and is strongly 𝜋-regular provided that 𝑟𝑛 ∈ 𝑟𝑛+1𝑅.

In his seminal paper [4], Šter showed that the ring
∏︀∞

𝑛=1M𝑛(Z2) is nil-clean but not strongly
𝜋-regular, whereas the ring

∏︀∞
𝑛=1M𝑛(Z4) is nil-clean but not 𝜋-regular. He utilizes an innovation

of the method used in [1]. Specifically, for any 𝑛 ∈ N, it was proved there that, for every 𝑛 × 𝑛
matrix 𝐴 over the finite field Z2, there exists an idempotent matrix 𝐸 such that (𝐴 − 𝐸)4 = 0,
while the index of nilpotence over the finite ring Z4 is precisely 8. As usual, the symbol 𝐼 will
stand in the sequel the standard matrix identity. Thereby, 𝐴 = 𝑁 +𝐸 for some 𝑁4 = 0 and hence
(𝐼 − 𝐸)𝐴 = (𝐼 − 𝐸)𝑁 , but it is not clear at all whether [(𝐼 − 𝐸)𝐴]4 = 0 will hold eventually.

On the other side, in [2] we have examined rings 𝑅 having the property that, for each 𝑎 ∈ 𝑅,
there is an idempotent 𝑒 ∈ 𝑎𝑅 such that (1 − 𝑒)𝑎 is nilpotent. We shall be here even rather more
precise by considering an existing idempotent 𝑒 ∈ 𝑎𝑅𝑎 with [(1 − 𝑒)𝑎]2 = 0.

It is well known that finite fields are, surely, not algebraically closed. So, the purpose of this
very short note is to show that some (although little) improvement is possible by a strengthening
of the technique utilized in [2] in the case of algebraically closed fields.

Before proceed by proving our chief result, we need the next two technical statements.

Lemma 1. Let 𝑅 be a unital ring, 𝑛 ≥ 2, and 𝐴 =
∑︀𝑛−1

𝑖=1 𝐸𝑖,𝑖+1 ∈ M𝑛(𝑅), where the 𝐸𝑖,𝑗 denote
matrix units. Then there exits an idempotent 𝐵 ∈ 𝐴M𝑛(𝑅)𝐴 such that ((𝐼 −𝐵)𝐴)2 = 0.

Proof. First, suppose that 𝑛 = 2. Then

𝐴 =

(︂
0 1
0 0

)︂
,

and hence, taking 𝐵 = 0 ∈ 𝐴M𝑛(𝑅)𝐴, we have ((𝐼 − 𝐵)𝐴)2 = 𝐴2 = 0. Let us therefore assume
that 𝑛 ≥ 3, and let

𝐵 = 𝐴

(︂ 𝑛−2∑︁
𝑖=1

𝐸𝑖+2,𝑖

)︂
𝐴 =

(︂ 𝑛−1∑︁
𝑖=2

𝐸𝑖,𝑖−1

)︂
𝐴 =

𝑛−1∑︁
𝑖=2

𝐸𝑖,𝑖.

Then 𝐵 ∈ 𝐴M𝑛(𝑅)𝐴, 𝐵 is clearly an idempotent, and

((𝐼 −𝐵)𝐴)2 = ((𝐸1,1 + 𝐸𝑛,𝑛)𝐴)2 = 𝐸2
1,2 = 0,

as desired. 2

Lemma 2. Let 𝐹 be a field, 𝑛 ≥ 1, and 𝐴 ∈ M𝑛(𝑅) a matrix in Jordan canonical form. Then
there exits an idempotent 𝐵 ∈ 𝐴M𝑛(𝑅)𝐴 such that ((𝐼 −𝐵)𝐴)2 = 0.

Proof. Write

𝐴 =

⎛⎜⎜⎜⎝
𝐴1 0 . . . 0
0 𝐴2 . . . 0
...

...
. . .

...
0 0 . . . 𝐴𝑚

⎞⎟⎟⎟⎠ ,
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where each 𝐴𝑖 is a Jordan block of size 𝑛𝑖 × 𝑛𝑖. For each 𝐴𝑖 we shall define a block 𝐵𝑖 of the same
size, such that 𝐵𝑖 ∈ 𝐴𝑖M𝑛𝑖(𝐹 )𝐴𝑖 is idempotent.

If 𝐴𝑖 is invertible as a matrix of M𝑛𝑖(𝐹 ), then the identity element 𝐼𝑛𝑖 of M𝑛𝑖(𝐹 ) is in
𝐴𝑖M𝑛𝑖(𝐹 )𝐴𝑖, and we set 𝐵𝑖 = 𝐼𝑛𝑖 . If 𝐴𝑖 is not invertible, then either 𝑛𝑖 = 1 and 𝐴𝑖 = (0), or
𝑛𝑖 ≥ 2 and 𝐴𝑖 =

∑︀𝑛𝑖−1
𝑗=1 𝐸𝑗,𝑗+1. In the first case, we let 𝐵𝑖 = (0), and in the second case, we take

𝐵𝑖 as in Lemma 1. Then, clearly, in each case, 𝐵𝑖 ∈ 𝐴𝑖M𝑛𝑖(𝐹 )𝐴𝑖 is idempotent, and it is easy to
see that ((𝐼𝑛𝑖 −𝐵𝑖)𝐴𝑖)

2 = 0 for each 𝑖.
It follows immediately that

𝐵 =

⎛⎜⎜⎜⎝
𝐵1 0 . . . 0
0 𝐵2 . . . 0
...

...
. . .

...
0 0 . . . 𝐵𝑚

⎞⎟⎟⎟⎠
has the desired properties. 2

Proposition 1. Let 𝐹 be an algebraically closed field, and let 𝑅 =
∏︀∞

𝑛=1M𝑛(𝐹 ). Then for
each 𝐴 ∈ 𝑅 there is an idempotent 𝐵 ∈ 𝐴𝑅𝐴 such that ((𝐼 −𝐵)𝐴)2 = 0.

Proof. For each 𝑛 let 𝐴𝑛 denote the projection of 𝐴 onto the component M𝑛(𝐹 ) in 𝑅. Since
𝐹 is algebraically closed, for each 𝑛 we can find an invertible matrix 𝐶𝑛 ∈ M𝑛(𝐹 ) such that
𝐷𝑛 = 𝐶𝑛𝐴𝑛𝐶

−1
𝑛 is in Jordan canonical form. By Lemma 2, for each 𝑛 we can find an idempotent

matrix 𝐺𝑛 ∈ 𝐷𝑛M𝑛(𝐹 )𝐷𝑛 such that ((𝐼𝑛−𝐺𝑛)𝐷𝑛)2 = 0. Now, for each 𝑛 let 𝐵𝑛 = 𝐶−1𝑛 𝐺𝑛𝐶𝑛, and
let 𝐵 = (𝐵1, 𝐵2, . . . ) ∈ 𝑅. Since each 𝐺𝑛 is idempotent, the same holds for each 𝐵𝑛, and hence also
for 𝐵. Also, since 𝐺𝑛 ∈ 𝐷𝑛M𝑛(𝐹 )𝐷𝑛 and 𝐶𝑛 is invertible, we have for each 𝑛 that

𝐵𝑛 = 𝐶−1𝑛 𝐺𝑛𝐶𝑛 ∈ 𝐶−1𝑛 𝐷𝑛M𝑛(𝐹 )𝐷𝑛𝐶𝑛 = 𝐴𝑛𝐶
−1
𝑛 M𝑛(𝐹 )𝐶𝑛𝐴𝑛 = 𝐴𝑛M𝑛(𝐹 )𝐴𝑛,

and hence 𝐵 ∈ 𝐴𝑅𝐴. Finally, since ((𝐼𝑛 −𝐺𝑛)𝐷𝑛)2 = 0, for each 𝑛 we have

((𝐼𝑛 −𝐵𝑛)𝐴𝑛)2 = ((𝐼𝑛 − 𝐶−1𝑛 𝐺𝑛𝐶𝑛)𝐴𝑛)2 = (𝐶−1𝑛 (𝐼𝑛 −𝐺𝑛)𝐶𝑛𝐴𝑛)2

= (𝐶−1𝑛 (𝐼𝑛 −𝐺𝑛)𝐷𝑛𝐶𝑛)2 = 𝐶−1𝑛 ((𝐼𝑛 −𝐺𝑛)𝐷𝑛)2𝐶𝑛 = 0,

from which it follows that ((𝐼 −𝐵)𝐴)2 = 0, as required. 2

We end our work with the following challenging query:

Problem 1. Extend the considered above property for any field 𝐹 which is not necessarily
algebraically closed.

An intuitive idea could be the following one: It is enough to establish the claim for a given
M𝑛(𝐹 ) with the index of the nilpotent (1 − 𝑒)𝑎 bounded independent of 𝑛. Since every matrix is
the direct sum of a unit and a nilpotent (we do not need the field 𝐹 to be algebraically closed for
this), it is enough to do the assertion for units and for nilpotents. For a unit 𝑎, we take 𝑒 = 1. Now
suppose 𝑎 is nilpotent. It is enough to do the statement for the Weyr canonical form of 𝑎 – for more
details the interested reader can see [3]. Thus assume 𝑎 has Weyr structure (𝑛1, 𝑛2, ..., 𝑛𝑟). The idea
is to get an idempotent 𝑒 in 𝑎𝑅𝑎 that is diagonal, has 0’s in the first 𝑛1 places and the last 𝑛𝑟,
and such that (1− 𝑒)𝑎 has zero blocks (relative to the partition 𝑛1, .., 𝑛𝑟) except in the (1, 2) block.
Then index of the nilpotent (1 − 𝑒)𝑎 is exactly 2.

We will illustrate in the case of a homogeneous structure (3, 3, 3, 3) but the argument in the
nonhomogeneous case is similar although a little trickier. Thus, in terms of 3×3 blocks and 𝐼 = 𝐼3,
we will have that



404 П. В. Данчев

𝑎 =

⎛⎜⎜⎝
0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼
0 0 0 0

⎞⎟⎟⎠ .

Let us now

𝑟 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
𝐼 0 0 0
0 𝐼 0 0

⎞⎟⎟⎠ ,

and

𝑒 = 𝑎𝑟𝑎 =

⎛⎜⎜⎝
0 0 0 0
0 𝐼 0 0
0 0 𝐼 0
0 0 0 0

⎞⎟⎟⎠ .

Then, one finds that

(1 − 𝑒)𝑎 =

⎛⎜⎜⎝
0 𝐼 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
is nilpotent of index 2, as expected.
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