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Let R be an associative ring. Given a positive integer n > 2, for ai,...,an € R we
define [a1,...,an]n = a1a2---an — anan—1---ai, the n-generalized commutator of
ai,...,an. By an n-generalized Lie ideal of R (at the (r 4+ 1)th position with » > 0)
we mean an additive subgroup A of R satisfying [z1,...,%r,a,y1,...,Ys|n € A for all
zi,y; € R and all a € A, where 7 + s = n — 1. In the paper, we study n-generalized
commutators of rings and prove that if R is a noncommutative prime ring and n > 3,
then every nonzero n-generalized Lie ideal of R contains a nonzero ideal. Therefore,
if R is a noncommutative simple ring, then R = [R,..., R],. This extends a classical
result due to Herstein [Generalized commutators in rings, Portugal. Math. 13 (1954)
137-139]. Some generalizations and related questions on n-generalized commutators and
their relationship with noncommutative polynomials are also discussed.

Keywords: Prime ring; n-generalized commutator (Lie ideal); regular ring; idempotent;
PI; GPI; noncommutative polynomial.

Mathematics Subject Classification 2020: 16N60, 16W10

1. Introduction

Throughout, R always denotes an associative ring, not necessarily with unity, with
center Z(R). Given z,y € R, let [x,y] := 2y — yx, the additive commutator (or the
Lie product) of a and b. For additive subgroups A, B of R, let AB (respectively,
[A, B]) denote the additive subgroup of R generated by all elements ab (respectively,
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[a,b]) for a € A and b € B. An additive subgroup L of R is called a Lie ideal of R
if [L, R] C L. Given two Lie ideals Ly and Ly of R, it is clear that both L; Lo and
[Ly1, Lo] are Lie ideals of R. A Lie ideal L of R is called proper if [M, R] C L for
some nonzero ideal M of R. Given a nonempty subset T of R, let Z(T') denote the
ideal of R generated by T'. A ring R is called prime if, for a,b € R, aRb = 0 implies
that either a =0 or b = 0.

Referring to [26], by a commutator ring we mean a ring R satisfying R = [R, R].
In 1956 Kaplansky proposed 12 problems in ring theory (see [16]). One of these was
whether there is a division ring D satisfying D = [D, D]. Harris constructed the
first example of division commutator rings (see [13]). Related researches are still
quite active up to now (see [3, 26, [30] et al.).

For a,b,c € R, we let [a,b,c] := abc — cba, which is called the generalized
commutator of a, b and ¢. Given additive subgroups Ay, A, A3 of R, let [A;, A, As5]
denote the additive subgroup of R generated by all elements [a1, a2, ag] for a; € A;,
i = 1,2,3. In 1954 Herstein initiated the study of generalized commutators (see
[14]). An independent work dealing with generalized commutators of matrices over
fields was due to Taussky (see [29]). Herstein proved that [R, R, R] is an ideal of R
(see [T4, Theorem 3]) and is equal to the whole ring R if R is a noncommutative
simple ring (see [I4, Theorem 4]). Further, if R is a simple Artinian ring, then
every element of R is a sum of three generalized commutators (see [I4, Theorem
6]). Generalized commutators also naturally appear in analysis. A classical analytic
result of Brown and Pearcy [4] states that in a C-algebra of bounded operators
on a Hilbert space of dimension > 2, every operator is a generalized commutator
(see also [29]). Relevant researches have been brought up again in recent years. See
[11,17] and the references therein. In the paper, we study generalized commutators
in a more generalized form.

Definition 1. Given a positive integer n > 2, for aq,...,a, € R we define
[a1, ..., ap]n i=a1a2 -+~ @y — @nan_1---ay,
which is called the n-generalized commutator of ay, ..., a,.

Given additive subgroups Ay, As, ..., A, of R, let [A1, As, ..., A,], denote the
additive subgroup of R generated by all elements [a,aq,...,a,], for a; € A;,
i=1,...,n. If n =2, then [a1,as]s = a1, a2] = a1as — azay, the ordinary additive
commutator of a; and as. If n = 3, then [ay, az,as]s coincides with [a1, az, as],
the generalized commutator of a1, as, as. The purpose of this paper is to study the
following:

Properties of n-generalized commutators (see §2 and §3).

n-Generalized commutator rings (see §4).

n-Generalized Lie ideals as a generalization of Lie ideals (see §5, §6 and §7).
Some generalizations connected to noncommutative polynomials (see §8).
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2. n-Generalized Commutators

We begin with an observation. Given an odd positive integer n > 1, the following
two equalities hold in an arbitrary ring R:

[a1,a2,...,ap)nr = [a1,a2,...,an7]n — [a1,a2,. .., Tan_1,an]n .
+ a1, a9, ..., an_or,an—1,anln — -+ [a1r,ag, . . ., an]n( :
and
rlat,ag, ... anln = la1,a2,. .., ray]n — [a1, a2, ..., an_17, anln )
+[a1,a2,. .., Tan—2,0n-1,Qn|n — -+ + [rar,az, ..., an]n. @

Therefore, the following gives a generalization of [T4], Theorem 3].

Theorem 2.1. Let R be a ring. Then [R, ..., Rlapt+1 is an ideal of R for n > 1.

Clearly, Theorem [2.1] has a more generalized form: If Iy, ..., [s,11 are ideals of
R, then [I1,...,Isn4+1]2n+1 is an ideal of R for n > 1. Theorem 2] serves as the
starting point for understanding this nature of [R,..., R],. A natural question is
to ask whether [R,..., R], is an ideal of R for even n. Clearly, it is not in general
true for n = 2. We begin with some basic observations.

Lemma 2.2. Let R be a ring with a Lie ideal L. Then the following hold:

(i) If I is an ideal of R, then IL and LI are ideals of R.
(ii) L+ LR=Z(L)=L+ RL.

Proof. (i) Clearly, RIL C IL. Also, ILR C I([L,R]+ RL) C IL+ IRL C IL.
Therefore, RL is an ideal of R. Similarly, LI is an ideal of R.

(ii) Note that RL C [L,R]+ LR C L + LR. By (i), RLR C LR. Therefore,
I(L)=L+LR+RL+RLRC L+ LR and so Z(L) = L+ LR. The other case has
the same argument. O

Proposition 2.3. Let R be a ring. Then the following hold:

(1) [R7 aR]n ([ ]) fOT n > 2.
(ii) [R,...,Rl2n—1 C [R R, R] forn > 2.
(111) [R7 R] 2n [ ]+[Ra'-'7R]2n71 QI([R7R]) fornZQ.
(iv) [R, R] +[R, R, R] = I([R, R]).
() [Ro....Rlon C [RRR.R + [R.....Rlsns C [R.R.R| + [R,R.R,E] for
n 2 3.

(Vi) If R = R, then [R,..., Rl + R, ..., Rlus1 = Z([R, R]) for k > 2.
(vii) If R = R?, then [R,R]+ [R, ..., Rlan—1 = Z([R, R]) for n > 2.

Assume that n > 3. By induction on n, we assume that [R, ..., R],—1 C Z([R, R]).

Proof. (i) The case n = 2 is trivial. In view of [I4, Lemma 1], [R, R, R] C Z([R, R)]).
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Let aq,...,a, € R. Then
[a1, ... anln = [a1,. .., an_1]n—1an — [an,an_1an_2- - a1]
€ [R,...,Rlp-1a, + [R, R] C Z([R, R]).

Therefore, [R, ..., R], CZ([R, R)]).
(ii) It is trivial for n = 2. Assume that n > 3. Applying the inductive argument,
we assume that [R, ..., R]a,—3 C [R, R, R]. Let ay,...,a2,—1 € R. Then

a1, ..., a2n—1]2n—1 = [a1a2a3, a4, . .., @2p—1]2n—3 + G2n—102n—2 " - - as]ar, a2, as]
€[R,...,Rlans + R, R, R|
since, by Theorem 2] [R, R, R] is an ideal of R. Therefore,
[R,...,Rlan_1 C[R,..., Rlan_s+[R, R, R = [R, R, R].
(iii) Applying the computation in (i), we get
[R,...,Rlon C[R,R|+[R,...,Rl2n 1RC[R,R|+[R,...,R|2n1

since, by Theorem [ZT] [R,..., R]2n—1 is an ideal of R. By (i), [R,..., R]an—1 C
Z([R, R]). Hence [R,...,R]ap, C[R,R]+ [R,...,Rlan—1 CZ(|R, R]), as desired.
(iv) By (i), it is clear that [R, R] + [R, R, R]| C Z([R, R]). Let a,b,z € R. Then

[a,b)z = [a,b, x] + [z, ba].
This means that [R, R|R C [R, R, R] + [R, R]. In view of (ii) of Lemma [2.2]
Z([R,R]) = [R,R] + [R,R|R C [R, R, R] + [R, R].

Hence Z(|R, R]) = [R, R, R] + [R, R].
(v) Let aq,...,a2, € R. Since [R, ..., R]2,—3 is an ideal of R and is contained
in [R, R, R] by (ii), we have

[a17 az, ..., a2n]2n
= [a1ag - a2n—3, G202, A2n—1, G2n]a + G2nG2n 1020 —2[a1, a2, . - ., G2n—3]2n—3
€ [R7 Ra R7 R] + [Ra teey R]2n—3 - [Ra R7 Ra R] + [R7 Ra R]

Hence [R, ..., Rlan C [R, R, R, R+ [R,..., Rlan_3 C [R, R, R] + [R, R, R, R].
(vi) Case 1. k = 2n—1, where n > 2. Let aq,...,a2, € R. Since [R, ..., R]an_1
is an ideal of R, we have

[alaz cerA2n—1, a2n]
= [a17a27 B a2n]2n - a2n[a17a27 B a2n71]2n71
S [R, .. .,R]Qn + agn[R7 .. .,R]anl - [R, .. .,R]Qn + [R, .. .,R]anl.

Therefore, [R*» 1 R] C [R,...,R]on + [R,..., Rlan_1. By R = R? we have R =
R>~'. Hence [R,R] = [R**',R| C [R. ..., Rlon + [R,. .., Rlan_1.
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We also have

[a2n; a2n—1]a2n—2 s Q201 = [a2n7 A2p—15 -+ a1]2n + [ah sy G2n—2, a2n—1a2n]2n—1
€[R,...,Rlan +[R,...,Rlon-1.

Therefore, we have [R, R|R = [R, RJR*"? C [R,...,R]an+[R, ..., R]2n—1. In view
of Lemma and (i), we get

I([R,R)) = [R,R] + [R,RIRC [R, ..., Rlan + R, ..., Rlan_1 C Z([R, R)).

Hence [R, ey R]Qn + [R, ey R]2n71 = I([R, R])
Case 2. k = 2n, where n > 1. Let ay,...,a2,41 € R. Then

la1,az]as - - - a2pGont1 = [a1,. .., Gont1]ont1 — [@2a1,03, . .., Q2n, G2pnti)on

S [R,...7R]2n+1 + [R,...7R]2n.

Note that R = R? = R?*"~!. Therefore, [R,R|R C [R,...,R]an+1 + [R,..., Rlan.
Similarly, R[R,R] C [R,...,Rlant1 + [R, ..., R|2n. We then have

[R,R] = [R,R* ] CR[R,R]+ [R,RIRC |R,...,Rlans1 +[R....,Rlon.

By (ii) of Lemma 22 and (i), we have [R,..., Rlan+1 + [R, ..., Rlan = Z([R, R]).
(vii) In view of (iii) and (vi),

I([R, R]) = [R, . .7R]2n + [R, . '7R]2n71
C[R,...,Rlon +|R,R]+[R,...,Rlan_1
=[R,R]+[R,...,R]on-1 CZ(|R, R]).

This implies that [R, R] + [R, ..., Rlan—1 = Z([R, R]). O

Recall that, given a positive integer n, R™ denotes the additive subgroup of
R generated by all elements ajas---a, for a; € R. Example (1) shows that the
inclusions in (i), (ii) and (iii) of Proposition[Z3] are proper. Example (2) shows that
the assumption that R = R? is essential to (vi) of Proposition 2.3l

Given a ring R and n a positive integer, let M,,(R) denote the n X n matrix ring
over the ring R. If 1 € R, we let e;;’s, 1 < 4,7 < n, be the usual matrix units of
M, (R).

Example (1) Let R := M,,(2Z), where m > 2. Then [R,...,R],
and [R,...,R]an—1 € [R, R, R] for any n > 3. Moreover, [R,..., R]a,
[R,...,R]op—1 for any n > 2.

In view of Proposition 23] it suffices to claim that [R,R| ¢ [R,...,R], for
n > 3. Then 4ejo = [2e12,2¢e90] € [R, R] but [R,...,R], C M,,(8Z) since n > 3.
This proves our claim. The other two cases have similar arguments. (|
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(2) Given a positive integer m > 1, let ST,,(K) denote the strict upper trian-
gular subring of M,,,(K), where K is a unital ring. That is,

ST (K) =14 > aijei; € Mp(K) | ai; € K Vi, j
1<i<j<m
Set R := ST,,(K). Note that R™ =0 and for 1 < k < m — 1, we have
RF = > aiei € My (K) | ai; € K Vi, j
1<i; i+k<j<m
A direct computation shows that [R,..., R]; = R* for k > 2. Moreover, we have
{0} =R"CR™'C.--CR*CR
Therefore, for m > 4, we have
[R,R,R]+ [R,R,R,R] C [R,R] =Z([R, R]).

O
Clearly, R = R? if R is a unital ring. Continuing Proposition 23, we further
study the nature of [R, ..., R], for n > 2.

Theorem 2.4. Let R be a ring satisfying R = R%. Then the following hold:

(i) [R,...,R]on—1+[R,...,R]an—3 = [R, R, R] for n > 3.
(ii) If [R,..., R]an is an ideal of R, then [R,...,R]on = Z([R, R]) for n > 1.

Proof. (i) We first claim that [R, R, R] C [R, ..., Rlan—1+[R, ..., R]an_3 forn > 3.
Let ai,...,a2,—1 € R.In view of Theorem21] [R, ..., R]2,—_3 is an ideal of R. Then

[al, a2,a304 -+ azn—l]
=la1,a2,...,02n—2,02n—1]2n—1 + (G2n—1G2n—2 - - - a3)azas
—(azay - 'azn—l)a2a1

= [al,a2, .- -7a2n—27a2n—1]2n—1 - [a37a47 .- ~7a2n—27a2n—1]2n—3a2a1

€ [R,...,Rlan—1+[R,...,Rlan_3.

Since R = R 3, we get [R,R, R] C [R,...,Rlan_1+|[R,...,R]an_3 forn > 3. On
the other hand, by (ii) of Proposition 23] we have

[R, ey R]anl + [R, RN R]ang - [R, R, R]
for n > 3. Therefore, [R, ..., Rlon—1+ [R, ..., R]on—3 = [R, R, R].
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(ii) Tt is trivial for n = 1. Suppose that n > 1.

Step 1. R[R,R] C [R,...,R]an. Let a1,...,a2,,7 € R. Since [R,..., R]a, is an
ideal of R, we have
[ala R a2n]2nr
=la1,...,a2n7]2n — [a1, ..., a2 1,220 + -+ [a1, 027 . .., a2n ]2,

+a2na2n,1 e 0,2[7"7 (11] S [R, ey R]Qn,

implying ag,az,_1---azlr,a1] € [R,..., Rla,. That is, R*"}[R,R] C [R,..., Rlan.
Recall that R = R%. We get R>"~! = R and so R[R,R] C [R,..., R]an.

Step 2. [R,...,R]an—1 C [R,...,R]o,. Let ay,...,a2,—2,2,y € R. Then
[zy, a1, ..., a2n—2]on—1
= [z,y,a1,...,02n—2]on — G2n—2 - aa1]z,y] € [R, ..., R]an
since agy—o -+ asai[zr,y] € [R,..., R]an by Step 1. Hence we have
[R:,R,...,Rlan_1 C[R,...,Rlon.

By R = R?, we conclude that [R, R, ..., R]o,_1 C [R,..., R]2,, as desired.
It follows from both Step 2 and (vi) of Proposition 23] that

[R, .. .,R]Qn = [R, R,.. .,R]anl + [R, .. .7R]2n :I([R, R]),

as desired. O

The following is an immediate consequence of both (vi) of Proposition 23] and
(ii) of Theorem 241

Corollary 2.5. Let R be a ring satisfying R = R%, n > 2 a positive integer. Then
the following are equivalent:

(i) [R,..., Rl2n = I([R, R]).
(11) Either [R, ey R]2n71 Q [R, ey R]Qn or [R, ey R]2n+1 Q [R, ey R]Qn

Similarly, we also have the following corollary.

Corollary 2.6. Let R be a ring satisfying R = R%, n > 2 a positive integer. Then
the following are equivalent:

(1) [R7 . 'aR]2n—1 = I([R, R])
(ll) FEither [R, ey R]gn Q [R7 ey R]2n—1 or [R7 ey R]Qn_g g [R7 ey R]Qn—l-

Up to now, the following problem keeps unknown.
Problem 1. Let R be a ring satisfying R = R? and n > 2 a positive integer.

(i) Is [R,..., R]2, an ideal of R?
(ii) Is [R, ..., R]2n—1 equal to Z([R, R])?

2250221-7
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We will answer Problem 1 affirmatively for unital rings, regular rings and rings
generated by idempotents, etc. in the next section.

3. Results on Problem 1

For (i) of Problem 1, we have the following observation.

Proposition 3.1. Let R be a ring satisfying R = R?, n a positive integer n > 2.
Then the following are equivalent:

(i) [R,...,R]an is an ideal of R.
(ii) R[R,R]C[R,...,R]on.
(ifi) [R,R]R C[R,...,R]an.
Proof. “(i) < (ii)”: Set L :=[R, ..., R]a,. It follows from Theorem 2] that if L is
an ideal of R, then L = Z([R, R]) and hence R[R, R] C L. Conversely, assume that
RIR,R] C L.

Let a1, ...,a,,r € R. By the proof of Step 1 in (ii) of Theorem 24}

[ah e agn]gnr + a9na9n—1 - '(12[’1"7(11] S [R7 e R]gn = L.

Since agpa9,—1 -+ a2lr,a1] € R[R,R] C L, we have [aq,...,as,]onr € L. That is,

LR C L. Therefore, L is a right ideal of R. Since L is a Lie ideal of R, we have
RL C [R,L]+ LR C L. This proves that L is an ideal of R.

By symmetry, we also have the same argument for the equivalence “(i) < (iii)”.

O

Lemma 3.2. Let R be a ring. Suppose that [R,...,R]r C [R,...,R]k1 for all
k> 2. Then [R,...,R], =Z(|R,R]) for alln > 3.
Proof. In view of Proposition 2.3l we have

[R,R]| C[R,R,R]C[R,...,R], CI(|R,R]

for n > 3. Since [R, R, R] is an ideal of R, we get Z([R, R]) C [R, R, R] and hence
[R,...,R], =Z(|R, R]) for all n > 3. O

~—

Let R be an algebra over a field F'. If char F' # 2, then 2R = R. Before proving
the next theorem, we need the following lemma.

Lemma 3.3. Let R be a ring. If R = R? and 2R = R, then R is equal to its
additive subgroup generated by all square elements of R.

Proof. We denote by A the additive subgroup of R generated by all square elements

of R. Let z,y,2 € A. Then zy + yz = (v +y)? — 2°> — y? € A. Therefore, we have
zxy — ayz = (y(zx) + (z2)y) — (x(yz) + (y2)z) € A

This implies that 2zay = (z(xy) + (xy)z) + (zay — xyz) € A. We thus get 2R3 C A.

Since 2R = R and R = R?, we conclude that A = R, as desired. O

2250221-8
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Theorem 3.4. Let R be a ring satisfying both R = R? and 2R = R. Then
[R,...,R], =Z([R, R]) for all n > 3.

Proof. In view of LemmaB.2] it suffices to claim that [R,...,R]; C [R,..., R]x+1
for all k > 2. Let y,x1,...,2x—1 € R, where k > 2. We have

[y271'17 ceey ‘kal]k = [ya Y, T15- -, mk*l]k‘l’l S [Ra R R]k+1-
That is,
[yQaRw"aR]k C [Rw-';R]k-‘rl

for all y € R. Since R = R? and 2R = R, it follows from Lemma B3] that R
is equal to its additive subgroup generated by all square elements of R. We get
[R,R,...,Rlr C[R,...,R]it1, as claimed. O

A ring R is said to have the property (*) if given x,y € R there exists an
element ¢ € R such that x,y € ¢R. Clearly, every unital ring has the property (*).
Moreover, if R has the property (*), then for finitely many z1,...,2, € R there
exists an element ¢ € R such that z; € cR for i = 1,...,n. A ring R is called
regular if, given a € R, there exists an element a~ € R satisfying aa~a = a. In
view of [10], Theorem 1.1] (it is true even when the ring R has no unity), any regular
ring R has the property (*). Note that every ring R having the property (*) always
satisfies R = R2.

Proposition 3.5. Let R be a ring having the property (*). Then [R,R] +
[R, R, R, R| = Z([R, R]).

Proof. In view of (i) of Proposition 23 [R,R] + [R,R,R,R] C Z([R,R]). Let
u,v,w € R. Since R satisfies the property (*), there exists a € R such that u,w €
aR. Write u = axz and w = ay for some z,y € R. Then

[u, v]w = [azx,v]ay = [a, x,va,y] + [y,vaza] € [R, R, R, R] + [R, R].

That is, [R, R]R C [R, R, R, R] + [R, R]. Therefore, it follows from (ii) of Lemma
that

I([R,R]) = [R.R] + [R,R|R C [R, R, R, R] + [R, ],
implying that Z([R, R]) = [R, R, R, R] + [R, R]. |
The following corollary is an immediate consequence of both Proposition [3.5]
and (ii) of Theorem 241

Corollary 3.6. Let R be a ring having the property (*). Then [R,R, R, R] is an
ideal of R if and only if [R, R] C [R, R, R, R].

We now answer Problem 1 for regular rings in the affirmative. A ring R is said
to have the property (f) if, for any = € R, there exists an idempotent g € R such
that = € gRg. Clearly, every ring having the property (#) satisfies R = R2.

2250221-9



P. V. Danchev & T.-K. Lee

Theorem 3.7. Let R be a ring satisfying the property (t). Then [R,...,R], =
Z([R, R]) for all n > 3.

Proof. Let ay,as,...,a; € R, where k > 2. Since R is a ring satisfying the property
(%), there exists an idempotent g € R such that a; € gRg. We have

[a17a27 .. 'aak]k} = [a17a27 e 7a/kag]k}+1 S [Ra e 7R]]€+1'
Therefore, [R,...,R];x C [R,..., R|k+1 for all & > 2. In view of Lemma B2l we get
[R,...,R], =Z(|R, R]) for all n > 3. O

Clearly, every unital ring has the property (#). In view of [12, Lemma 2.4],
every regular ring also satisfies the property (). The following is an immediate
consequence of Theorem B.71

Corollary 3.8. Let R be either a unital ring or a reqular ring. Then [R, ..., R], =
Z([R, R]) for all n > 3.

We next turn to answer Problem 1 for rings, which are generated by idempotents.
Note that a ring R, which is generated by its idempotents, satisfies R = R?. Given
a nonempty subset T of R, let T denote the subring of R generated by 7. We begin
with a known result (see, for instance, [9, Fact 2]).

Lemma 3.9. Let R be a ring with an ideal I and let B be an additive subgroup of
R. Then [I,B] = [I, B].

Theorem 3.10. Let R be a ring generated by its idempotents. Then [R, ..., R], =
Z([R, R]) for n > 3.

Proof. Let E denote the additive subgroup of R generated by its all idempotents.
By assumption, we have E = R.

Step 1. [R,R] C [R,...,R]yio for k> 1. Let x € R and e = ¢? € R. Then

[x,e] =[x, e1,ea,...,CLt1]kt2,
where e; = e for all 4. This implies that [z,e] € [R,..., R|g+2. That is, [R, E] C
[R,..., R]k+2. It follows from Lemma[39 that [R, E] = [R, E] = [R, R]. Therefore,
[R,R] C [R,...,R]pt2-
Step 2. [R,RIRC [R,...,R]gi2 for k> 1. Let w,x € R and e = ¢? € R. We claim
that [w,e]z € [R,..., R|pt+2. We compute

[w,e]lz = [w, e, e]lx = [w, e, ex] — [w, ze, e] + [wx, e, €]
= [w,e1,ea,..., ek, ex]pro — [w,ze,e1,ea,. .., eL|kro
+wz, e, e, ea,. .., ekt
€ [R,...,Rlpy2,

where e; = e for all ¢. This implies that [R,E]R C [R,..., R]x+2. Recall that
[R, E] = [R, R]. Therefore, [R,R|R C [R, ..., R]k+2-
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By Steps 1 and 2, [R,R] + [R,R|R C [R, ..., R]ky2 for k > 1. By Lemma 2.2
[R,R]+ R, R|R = I([R, R]) and by (i) of Proposition[2Z3] we have [R, ..., R]jt2 =
Z([R, R)). O

Example (3) Let F be a field of characteristic 2, and let V' be the vector space
over F' with an infinitely countable basis vi,ve,...,v,,.... Let R be the algebra
generated by V' with multiplications: v;v; = v; for all 4, j > 1. Then R is generated
by all its idempotents since v? = v; for all i. Also, R = R? and a direct computation
shows that
I([R,R) = [R,...,Rls = Y F(vi+v))
1<i<y

for all k& > 2. Moreover, Z([R, R]) is nilpotent of index 2, RZ([R,R]) = 0 and
R/I(|R,R]) & F. Indeed, the map ¢: R — F defined by ¢(3>;_, Bivi) = >0, Bi
where all 3; € F is an epimorphism with kernel Z([R, R]). In particular, Z([R, R])
is the unique maximal ideal of R.

Given z,y € R, write z = Y7, ayv; and y = 23:1 Bjvj, where oy, 85 € F for
all 4,7. Then xy = (22:1 Bj)z, implying that [ry,z] = 0. This means that R is a
PIL-ring satisfying the identity [XY, X]. O

The following is well known (see, for instance, [22, Lemma 2.1] with a short
proof).

Lemma 3.11. If L is a Lie ideal of an arbitrary ring R, then Z([L,L]) C L + L?.
Corollary 3.12. Let R be a ring, and let E be the additive subgroup of R generated
by all idempotents of R. Then

[E,E| + RE,E|R[E.E)RE.E|R C [R, .., R

for alln > 3.

Proof. Let n > 3 be a positive integer. Since E is a ring generated by its idempo-
tents, it follows from Theorem [3.10] that

I5([E,E)) = [E,...,El, C[R,..., R]n,

where Z5([E, E|]) denotes the ideal of E generated by [E, E|. In view of Lemma[Z2]
I([E,E)|) = [E,E] + E[E,E] + E[E, E|E.
Note that E is both a subring and a Lie ideal of R. It follows from Lemma B.11]

that R[E,E|R C E. Hence [E,E| + R[E,E|R|E,E|R[E,E)R C [R,...,R],, as
desired. O

A ring R is called semiprime if, for a € R, aRa = 0 implies a = 0. The semiprime-
ness of a ring R is equivalent to saying that R has no nonzero nilpotent one-sided
ideal.
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Corollary 3.13. Let R be a semiprime ring, and let E be the additive subgroup
of R generated by all idempotents of R and n > 2 a positive integer. Then either
ERC Z(R) or [R,...,R]a, contains the nonzero ideal R[E, E|R[E, E|R[E, E|R.

Proof. Assume that [R, ..., R]s, does not contain any nonzero ideal of R. Suppose
first that [E, E] # 0. The semiprimeness of R implies that

0 # (R[E,E))* C R[E,E|R[E,E|R[E,E|R C |R,..., R]on.

Therefore, R[E,E|R[E,E|R[E,E|R is a nonzero ideal of R contained in
[R, ..., R]2y. This is a contradiction.

Therefore, [E,E] = 0. Let e = ¢* € R and # € R. Then e + ezx(1l — ¢) and
e+ (1—e)xe are idempotents of R. Therefore, [e,e+ex(l—e)] =0 = [e, e+ (1—e)xe],
implying that ex = we. That is, e € Z(R). Given z,y,2 € R and e = e € R, we
have

6[x7ya Z] = [61’, Y, 2,€15 -+, 62’n73]2n < [R7 (RS R]Qna

where e; = e for all i. This implies that e[R, R, R] C [R, ..., R]2,. Clearly, e[R, R, R]
is an ideal of R and hence e[R, R, R] = 0. In particular, ¢[R, R,e] = 0 and hence
e[R, R] = 0. We get eR C Z(R). This proves that ER C Z(R), as desired. O

The following example constructed in the proof of [23, Theorem 1.2] shows that
[R,...,R], =Z(|R, R]) holds for all n > 2 even when neither R has the unity nor
R is regular.

Example (4) Let F be a field, and let n > 3 be a positive integer. Let
R:=Fen+ Y  Fey CMy(F).
2<i<j<n
Clearly, R is a subring of M,,(F) and R = R?. Therefore, R is a Pl-ring. Since

eo1R =0, R is not a unital ring. A direct computation shows that

I([R7R]): [R7R]:F621+ Z Feij.

2<i<j<n
Moreover, [R,R] = [R,R,...,R]; for all & > 3, Z([R, R]) is nilpotent of index n
and R/Z([R,R]) 2 Fy & --- & F,_1, where F; =F fori=1,...,n—1. O

4. n-Generalized Commutator Rings

As followed above (see [26]), by a commutator ring we mean a ring R satisfying
R = [R, R]. We study a generalization of commutator rings as follows.

Definition 2. Given a positive integer n > 2, a ring R is called an n-generalized
commutator ring provided R = [R, ..., R],.

Therefore, a 2-generalized commutator ring just means a commutator ring (see
[26]) and a 3-generalized commutator ring means a generalized commutator ring
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due to Herstein (see [14]). Clearly, the direct sum (respectively, direct product) of
n-generalized commutator rings is also an n-generalized commutator ring.

In view of Corollary 3.8 a unital ring R is an n-generalized commutator ring
where n > 3 if and only if 1 € Z([R, R]). In particular, every unital commutator
ring is an n-generalized commutator ring for any n > 3. For commutator rings, see
[26, Propositions 7, 12 and Theorem 13|, and for algebras with a surjective inner
derivation, see [30, Example 1.1-1.6].

Given a unital ring R, let A, (R) denote the nth Weyl algebra over R (see
[26, Definition 3]). Suppose that R is a Z/pZ-algebra where p is a prime integer,
which is not a commutator ring. In view of [26, Proposition 8], A,(R) is not a
commutator ring. However, since 1 € [4,,(R), A, (R)], it follows from Corollary B8
that A, (R) is an m-generalized commutator ring for any m > 3.

Let R :=M,,,(T'), where T is a unital ring and m > 2. In view of [2I, Theorem
2.1], we have R = Z([R, R]). It follows from Corollary B:§ that R is an n-generalized
commutator ring for all n > 3. Note that [R, ..., R], contains all commutators and
generalized commutators if n > 3. Khurana and Lam proved a more strong result:
Every element of R is the sum of one commutator and a generalized commutator
(see [T, (2) of Theorem A]). In addition, if T is a PI-ring, then so is R (see [28]
Theorem 6.1.1]). In view of [2, Theorem 1], R # [R, R] (that is, R is a 3-generalized
commutator ring but is not a commutator ring, see also [26, Proposition 6]).

Example (5) Let A, B be unital rings, and let M be a unital (A, B)-bimodule.
Let R := Tri(A, M, B) be the triangular ring consisting of all elements (g ') for

a € A,m € M,b € B under the usual matrix operations. Note that (8 %z) € [R, R

0m

since [((1) 8), (8 %1)} = (0 0 ) Therefore, R is a commutator ring if and only if both

A and B are. Moreover,

cim oy (FEAAD) M
=0 s

Therefore, for a positive integer n > 3, R is an n-generalized commutator ring if
and only if both A and B are. O

(6) Given a positive integer m, let T;,,(R) denote the upper triangular sub-
ring of M,,(R), where R is a unital ring. Then, for m > 2, we have T,,,(R) =
Tri(R, M, T;,—1(R)), where M = {377, aije1; | a1; € R}. In view of Corollary B8]
and Example (4), applying the inductive argument we can prove that if n > 2, then
T (R) is an n-generalized commutator ring if and only if R is. [

(7) Let R :=Z - I, + M,,(2Z) with m > 1, where I,,, is the identity matrix
of M;;,(Z). Then R is a unital ring but I,, ¢ [R,..., R], for n > 1, in particular,
[R,...,R]. # R.

Indeed, it is clear that I,, ¢ [R, R]. Suppose that n > 3. In view of Corollary
B3 [R,...,R], = Z([R, R]). Therefore, Z([R, R]) C M,,,(4Z). In particular, I,, ¢
[R, ..., R],, as desired. O
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In a recent paper, Eroglu prove that if 1 € [R, R] then R = [R, R] (see [8]
Theorem 1.1; 22, Theorem 1.3]). As an immediate consequence of Corollary B8l we
have the following corollary.

Corollary 4.1. Let R be a unital ring, and n > 3 a positive integer. If 1 €
[R,...,R],, then R is an n-generalized commutator ring.

We continue to study Problem 1 in various ways.

Proposition 4.2. Let R be a ring, and n > 2 a positive integer. Then
[K,R,...,R]n C[R,R,...,Rlp+1,
where K = [R, R*]+ R[R, R]. Moreover, K is an ideal of R. In addition, if R = R?
then K =Z([R, R]).
Proof. Given a positive integer n > 2, we let
A:={a€R|[a,R,...,R], C[R,R,...,R]lp+1}

Clearly, A is an additive subgroup of R. We first claim that 22, 23 € A for all z € R.
Given z € R, for j = 1,2 we have

— [

[-T71'j7yla-~-;yn—1]n+1 ;y17"';yn—1]n

for all 41, ...,yn—1 € R. This proves that 22, 2> € A.
Let x,y,2 € R. Then 2y + yx = (z +y)? — 22 — y? € A. Therefore,

(zy)z + 2(xy), (z2)y + y(zz) € A
and so
[z,y2] = wyz —yze = ((xy)z + 2(xy)) — ((z2)y + y(z2)) € A.

That is, [R, R?] C A.
We next claim that R[R, R] C A. Since (2%y + yz?) + (y*z + zy?) € A and

(+y)* —a2® =y’ = (2%y +y2®) + (V’x + 2y®) +ayr +yay € A,
we get zyx + yry € A. Linearizing zyx 4+ yry at x, we get xyz + zyx € A. Then
zly, 2] = zyz — wzy = (zyz + zya:) — ((zy)z + x(zy)) € A.

That is, R[R, R] C A. Hence [R, R?| + R[R, R] C A, as desired.
Recall that K := [R, R?] + R[R, R]. Then

RK = R[R, R*] + R*|R,R] C R[R,R] C K.

In view of Lemma [Z2 R[R, R] is an ideal of R. Therefore, (R[R, R])R C R[R, R]
and so

KR =[R,R* R+ (R[R,R))R C [R* R* + R[R, R*] + (R[R,R))R C K.
This proves that K is an ideal of R. In addition, if R = R2, then it follows from
Lemma 22 that K = [R, R] + R[R, R] = Z([R, R]). O
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Corollary 4.3. Let R be a noncommutalive semiprime ring, n > 2 a positive
integer. Then [[R7 R?| + R[R,R], R, .. .,R} is a monzero ideal of R, which is
contained in [R, R, ..., Rlay.

2n—1

Proof. Set I := [[R,R*] + R[R,R],R,...,R], . Since [R,R*]+ R[R,R] is an
ideal of R (see Proposition .2)). In view of Egs. (Il) and @), I is an ideal of R,
which is contained in [R, R, ..., R]ay. It suffices to claim that I # 0. Otherwise, we
have I = 0.

Let w,z,y,z € R. Then

0= [w[z, Yz, 2, z] on = [w[a:,y], 22"_1]

for all w,z,y,z € R. In view of [I9, Theorem, p. 19], [w[m,y],z] = 0 for all
w,z,y,z € R. That is, [R[R, R], R] = 0 and so [R(R[R, R]), R] = 0. This implies
that [R, R|R[R, R] = 0. The semiprimeness of R implies that R is commutative, a
contradiction. O

As a consequence of Proposition 2] the following characterizes n-generalized
commutator rings for n > 3.

Theorem 4.4. Let R be a ring. Then the following are equivalent:

(i) R=Z([R, R]).
(ii) R is an n-generalized commutator ring for all n > 3.
(iii) R is an n-generalized commutator ring for some n > 3.

Proof. “(i) = (ii)”: Assume that R = Z([R, R]). This implies that R = R? and
hence [R, R?] = [R, R]. By (ii) of Lemma[Z2 we have [R, R?]+ R[R, R] = Z(|R, R)).
In virtue of Proposition E.2]

_ 2
[R.R,...,Rln_1 = [[R,R*| + RIR,R|,R,....R] _ C[RR,....Rl,

for all n > 3. In view of Lemma B2l we get R = Z([R,R]) = [R, R, ..., R],, as
desired.

It is trivial for (i) = (iii)”.

“(iii) = (i)”: Suppose that R is an n-generalized commutator ring for some n >
3. In particular, by (i) of Proposition 23] we have R = [R, R, ..., R], C I([R, R])
and so R =Z([R, R]). |

Since R = Z([R, R]) for any commutator ring R, the following corollary is an

immediate consequence of Theorem [£.4]

Corollary 4.5. Let R be a commutator ring. Then R is an n-generalized commu-
tator ring for all n > 3.

Taking into account what we have obtained so far, even a weaker version of
the stated above Problem 1 is still unknown: Given a ring R satisfying R = R?, if
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[R,R] =Z([R,R]),is [R,..., R], equal to Z([R, R]) for any n > 37 A closely related
question to the last corollary is of whether or not R/I being a commutator ring for
some nilpotent ideal I of nilpotence index k will imply that R is an n-generalized
commutator ring for some n > 2 depending on k7 It is not in general true. Indeed,
we choose a commutator ring S and a nilpotent ring I with nilpotence index 2
(that is, I? =0 but I #0). Let R:= S® 1. Then R/I = S, implying that R/I is a
commutator ring. Suppose on the contrary that R is an n-generalized commutator
ring for some n > 3. Then R = [R,...,R],, € R" C R? implying that R = R?.
However, R?2 = S C S@® I = R, a contradiction.

We answer the question with the necessary assumption that R = R? in the
affirmative as a generalization of Corollary 5l

Theorem 4.6. Let R be a ring satisfying R = R?. Suppose that R/I is a commu-
tator ring for some nilpotent ideal I of R. Then R is an n-generalized commutator
ring for all n > 3.

Proof. Since I is a nilpotent ideal of R, I* = 0 for some positive integer k > 1. By
assumption, R/I = [R/I, R/I]. Therefore, R = [R, R] + I. Since R = R? we get
R = R*. This implies that

R=RF=([R,R]+1)" CI(R R]) + I* = I([R, R)).

That is, R = Z([R, R]). In view of Theorem [44] R is an n-generalized commutator
ring for all n > 3. O

Let R be either a simple ring which is not a PI-ring or a commutator ring. Then
R/I is not a Pl-ring for any proper ideal I of R. The first case is clear. The latter
case is then a consequence of [2, Theorem 1].

Theorem 4.7. Let R be a ring such that R/I is not a PI-ring for any proper ideal
I of R. Then R is an n-generalized commutator ring for all n > 3.

Proof. In view of Lemma 22 I := R[R,R] is an ideal of R. Suppose that I
is a proper ideal of R. Then R/I satisfies the polynomial identity X;[Xs, X3], a
contradiction. Therefore, R[R, R] = R, implying that R = Z([R, R]). In view of
Theorem [44] R is an n-generalized commutator ring for all n > 3. O

It is worthwhile noticing that the so-constructed rings in Examples (3) and (4)
are Pl-rings that, by virtue of Theorem 4] are not n-generalized commutator rings
for any n > 1, because R is not equal to Z([R, R]).

The following lemma will play a key role in the sequel.

Lemma 4.8. Let R be a ring and n > 3 a positive integer. Then the following hold:
(i) "L, R C[R,...,R], for all z € R.
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(i) 2" Y[R, R] C [R,...,R], for all z € R.
(iii) Y ,cp Rz Hz""1,RIRC [R,...,R],.

Proof. Let L :=[R,..., R],, where n > 3. It is known that L is a Lie ideal of R.
Given z,y, 2z € R, we have

[z,2" Y = [z,21,..., 202, Zn_1]n € L, (3)
where z; = z for all i. Moreover,
['Ia Y, Znil] = xyzn71 - Znilyx - ['Ia Y, 215+, 2n—4,2n-3, ZQ]TL S La (4)

where z; = z for all 4. It follows from Eqs. @) and (@) that
eyl = " ay] + 2y, 2" € L

Up to now, we have proved that [R,2" '] C L and 2" ![R,R] C L for all z € R.
Therefore, we have established (i) and (ii).
We now prove (iii). Given z € R, applying (i) and (ii) we have

L RIRC 2V IR R+ (22" R,R| C L
and hence
RN RIRC [R, 2" '[z" ' RIR] + 2" '[z""",RIR* C [R,L] + L C L.
Therefore, Y-, p Rz""[z" "', RIR C [R, ..., R],, as desired. O
Let R be a noncommutative simple ring, and & a fixed positive integer. Applying
[B, Theorem 2] (i.e. Theorem [H]), we can show that the subring of R generated

by all elements z* for z € R is equal to the whole ring R. The following theorem
answers Problem 1 affirmatively for rings of such type.

Theorem 4.9. Let R be a ring, n > 3 a positive integer. Suppose that the ring R
is generated by all elements 2"~ for z € R. Then [R,...,R], = Z(|R, R]).

Proof. Set L :=[R, ..., R],. We let A denote the additive subgroup of R generated
by all elements 2"~! for z € R. By assumption, we have A = R. By (i) of Lemma

L8 we get [A, R] C L. It follows from LemmaB9that [R, R] = [A,R] = [A,R] C L.
Let z € R. In view of (ii) of Lemma[L8 we have 2" ~![R, R] C L. Therefore,

2", RIRC 2" '[R,R|+ [¢" 'R,R]C L+ [R,R] = L.

That is, [A, R]JR C L and so [R, R]R = [A,R]R = [A, R]R C L. By (ii) of Lemma
and (i) of Proposition [2Z3] we have

I([R, R]) = [R, R] + [R, RIR C L C I([R, R]).
This proves that Z([R, R]) = L, as desired. O
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Example (8) Let R := M, (2Z). Any nonzero ideal of R where n > 2 is not a
k-generalized commutator ring for k& > 2. Moreover, R 2 2R 2 2°R D --- is an
infinite descending chain of ideals of R.

Indeed, let N be a nonzero ideal of M, (2Z). Choose a nonzero element z :=
doi<ij<n @ij€ij € N, where a;; € Z for all 4, j. Clearly, there exists a positive
integer m such that x € M,,(2™Z) but z ¢ M,,(2™*'Z). Suppose on the contrary
that NNV is a k-generalized commutator ring for some k > 2. In particular, N = N?
and so N = N™*+1 This implies that N C M,,(2m!Z) and so € M,,(2™'Z), a
contradiction. The final assertion is then clear. (]

Motivated by Example (8), a ring R is said to satisfy the descending chain
condition (d.c.c.) on ideals if every nonempty set of ideals of R contains a minimal
element. It is equivalent to saying that each descending chain of ideals I; O I, O
I3 O --- must be stationary.

Before proving our next theorem, we need the following technical lemma.

Lemma 4.10. Let R be a semiprime ring with a right ideal p. If [a,p] C Z(R)
where a € R, then pla, R] = 0.

Proof. Since [a, pla = [a, pa] C [a,p] C Z(R), we get [[a, pla, R] = 0. This implies
that [a, p][a, R] = 0. In particular, [a, p][a, R?] = 0, implying that [a, p]R[a, R] = 0.
Therefore, [a, p]|R[a, p] = 0. The semiprimeness of R implies that [a, p] = 0 and so

[a, pR] = 0. We thus get p[a, R] = 0, as desired. O

Theorem 4.11. Let R be a noncommutative semiprime ring, and let

K=Y Iz"'[z" L I)I
zel

for an ideal I of R, where n > 3 is a positive integer. Then the following hold:

(i) Given an ideal I of R, K1 is an ideal of R and Ky C [I,...,I]n, and if [I,1] #0
then [K], K[] 7é 0.

(ii) If R satisfies the d.c.c. on ideals, then there exists a nonzero ideal N of R such
that N is an n-generalized commutator ring for all n > 3.

Proof. (i) Fix a positive integer n > 3. Denote by @ the Martindale symmetric
ring of quotients of I (see [I] for its definition). Since R is a semiprime ring, so is
I. It follows from the proof of Lemma that

K=Y " 'L NIClL. . T
zel

Clearly, K7 is also an ideal of R. We claim that if I is noncommutative, so is
K. Otherwise, we have [K, K] = 0. Since K is an ideal of I, this implies that
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K; C Z(I). Therefore,
[:z:z”fl[znfl,y]v,w} =0 (5)

for all v, w, z,y, z € I. In view of [Il, Theorem 6.4.1], I and Q; satisfy the same GPIs.
Hence Eq. () holds for all v, w,x,y,z € Q1. Replacing x,v by 1 in Eq. (@), we get
2"zt yl € Z(I) for all y, z € 1. That is, [z" 1, 2" 1] C Z(I) for all z € I. In
view of Lemma[LI0, 2" 1I[z" !, R] = 0 for all z € I. Hence [z"~}, I]I[z" "1, 1] =0
for all z € I. The semiprimeness of I asserts that [z, I] = 0 for all z € I. In
view of [19, Theorem, p. 19], [z,I] = 0 for all z € I. Therefore, I is commutative,
a contradiction. This proves (i).
(ii) We let

lp:=Kpr and [, :=K;, , for n=1,2,....

Then I; is an ideal of R for all j > 0 and Iy 2 Iy 2 I, 2 I3 O ---. Moreover, by
[R, R] # 0, we have [I;,I;] # 0 for all j > 0. Since R satisfies the d.c.c. on ideals,
there exists a positive integer k such that I = I, for all s > k. We let N := I},.
Then

0#AN=Iy=Iy1 =K, = Y L2" '[2" L LI C [Tk, Il = [N, N,
zely

implying that N = [N,...,N],, as desired. In view of Theorem 4 N =

[N,...,N], for all n > 3. m|

Corollary 4.12. Let R be a noncommutative semiprime ring, n > 3 a positive
integer. Then [R, ..., R], contains a nonzero ideal W of R such that [W, W] # 0.

Proof. Welet W := 3" _p Rz""'[z""', R]R. In view of (i) of Theorem ELTT] W is
a nonzero ideal of R and [W, W] # 0, as desired. |

Clearly, every noncommutative simple ring satisfies the d.c.c. on ideals. Applying
(ii) of Theorem Il we have the following corollary, which is a generalization of
[I4, Theorem 4] for n = 3. Of course, it is also a consequence of Corollary E.T2

Corollary 4.13. Let R be a moncommutative simple ring. Then R 1is an n-
generalized commutator ring for all n > 3.

Applying Theorem 4], we give an alternative proof for (ii) of Theorem LTIl
Indeed, let ¥ :={I < R | [I,I] # 0}, where by I < R we mean that I is an ideal of
R. By assumption [R, R] # 0, we have R € 3. Since R satisfies the d.c.c. on ideals,
there exists a minimal element, say N, in 3. Then [N, N] # 0. The semiprimeness
of R implies that [[N,N],[N,N]] # 0 (see Lemma [3). By the semiprimeness of
the ring N again, we have [N[N, N|N, N[N, N]N| # 0. Since N[N, N|N is also
an ideal of R, it follows that N[N, N]N € X. The minimality of N in ¥ implies
that N = N[N, N]N and so N = Zy([N, N]), the ideal of N generated by [N, N].
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In view of Theorem B4l N is an n-generalized commutator ring for all n > 3, as
desired.

We end this section with an example. In view of Corollary[B.8 and Theorem 3.7,
the existence of idempotents in the considered rings seems to play an important
role for answering Problem 1 affirmatively. The following, however, shows that the
existence of idempotents is not essential to Problem 1.

A ring R is said to satisfy the ascending chain condition (a.c.c.) on ideals if
every nonempty set of ideals of R contains a maximal element. It is equivalent to
saying that each ascending chain of ideals Iy C I» C I3 C --- must be stationary.

Example (9) There exists a nil Pl-ring R such that R = R?, R # [R,R] and R
is a k-generalized commutator ring for all £ > 3. Moreover, neither R satisfies the
a.c.c. on ideals nor R satisfies the d.c.c. on ideals.

Let T be the commutative algebra over a field F' with the symbols v,’s, where
0 < a < 1, as a basis. The multiplications of these elements v,’s for 0 < a < 1 are
defined by vavg = Va4 if o+ 3 < 1 and vovg = 0 if a + 3 > 1. Clearly, T is a
nil commutative algebra over F. Let R := M,,(T), where n > 2. Note that, for any
x € R, there exists 0 < a < 1 such that o € v, R. Therefore, x € R? and 2™ = 0 if
ma > 1. This proves that R = R? and R is a nil ring. Since T is commutative, R
is a PI-ring (see |28, Theorem 6.1.1]). In view of [2| Theorem 1], R # [R, R].

Let ay,...,ar € R, where k > 2. There exists 0 < a < 1 such that ar € v, R.
Write ap = vqa),, where aj, € R. We have

[ah ey ak]k = [ah ey ak_l,v%ang%];ﬂ_l S [R, ey R]k+1.

Therefore, [R,...,R];y C [R,..., R|k+1 for all & > 2. In view of Lemma B2] we get
[R,...,R]r =Z(|R, R]) for all k > 3. To prove that R is a k-generalized commutator
ring for all k > 3, it suffices to claim that R = Z([R, R]).

Let 0<a<1land1<i,j<n with i # 5. Then

Vaij = [U%eii,v%eij] € [R, R).

On the other hand, we have v,e; = [v%eii,v%eij]v%eﬁ € [R,R]R. Hence R =
[R,R] + [R, R|R = Z([R, R]), as desired.

Finally, we have

T({o,) ST({vy ) STy ) S -
and
T ) 2T D 2T({n 4} 2.

This proves that neither R satisfies the a.c.c. on ideals nor R satisfies the d.c.c. on
ideals. O

5. n-Generalized Lie Ideals

Let n > 3 be a positive integer. We have proved that if R is a noncommutative prime
ring, [R, ..., R], contains a nonzero ideal of R (see Corollary f12]). In particular,
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if R is a noncommutative simple ring, then R is an n-generalized commutator ring
(see Corollary EET3)).

Let L := [R,...,R],. Then [L,R,...,R], C [R,...,R], = L. We will study
these results above from this viewpoint. Our present study is also motivated by
[15, 18]. Precisely, in 1955 Herstein determined the Lie structure of simple rings
(see [I5]). In 1972 Lanski and Montgomery extended Herstein’s theorem to the
context of prime rings (see [I8, Theorem 13] and the references therein).

We define n-generalized Lie ideals of rings for n > 2, which will coincide with
Lie ideals if n = 2.

Definition 3. By an n-generalized Lie ideal of a ring R (at the (r + 1)th
position with » > 0) we mean an additive subgroup A of R satisfying
(1, Ty @, Y1, ..., Ys|n € A for all z;,y; € Rand all @ € A, where r +s=n—1.

Clearly, every ideal of R is an n-generalized Lie ideal of R. Moreover, [R, ..., R],
is also an n-generalized Lie ideal of R. Note [R, R] is a Lie ideal of R but it does
not in general contain a nonzero ideal of R. We are now ready to state the main
theorem.

Theorem 5.1. Let R be a noncommutative prime ring andn > 3 a positive integer.
Then every nonzero n-generalized Lie ideal of R contains a nonzero ideal.

The following assertion gives a generalization of Corollary E.12] for prime rings.

Corollary 5.2. Let R be a noncommutative prime ring and n > 3 a positive inte-
ger. If A is a nonzero n-generalized Lie ideal of R (at the (r + 1)th position with
r>0), sois [R1,...,Rr, A, Ry,..., Rg], where R; = R for all i.

Proof. We let K := [Ry,...,R., A, Ry,...,Rg|n. Since A is a nonzero n-
generalized Lie ideal of R (at the (r 4+ 1)th position with r > 0), we have K C A.
Therefore,

[Rla"'aRT7K7R17"'7RS]’n - [Rla"'aRT7A7R17"'7RS]n:K7

implying that K is a nonzero n-generalized Lie ideal of R (at the (r + 1)th position
with r > 0). In view of Theorem Bl A contains a nonzero ideal, say I, of R.
Then [I,...,I], € K. The primeness of R implies that I is also a prime ring.
Since R is noncommutative, so is the prime ring . In view of Theorem Bl we get
[I,...,I], # 0 and hence K # 0, as desired. O

The proof of Theorem [5.1] will be given in the next two sections. Some related
questions on generalized commutators and their relationship with noncommutative
polynomials are also discussed in the final section.

6. A Special Case: [R,A,R]| C A

Throughout this section and the next one, unless specially stated, R always denotes
a prime ring with extended centroid C, and let @ be the Martindale symmetric ring
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of quotients of R. Recall that @ is also a prime ring and that C' is a field. We refer
the reader to the book [I] for details.

The aim of this section is to prove the following proposition, which is a special
case of Theorem [5.]]

Proposition 6.1. Let R be a noncommutative prime ring and let A be a nonzero
additive subgroup of R. If [R, A, R] C A then A contains a nonzero ideal of R.

We begin with the following lemma (see [24, Lemma 2.10; [7, Lemma 3]).

Lemma 6.2. Let A be an additive subgroup of an arbitrary ring R. If [R, A, R] C A,
then

Z R(axb — bxa)R C A.
a,beA,z€R

Proof. Let a,b € A and z,y,z € R. Then
y(axb — bra)z = (yax)bz — zb(yax) + (zby)ax — xa(zby) + (xaz)by — yb(xaz)
= [yax,b, z] + [2by, a, x| + [xaz,b,y] € A. O

Let X = {X1, X5,...} be an infinitely countable set. We denote by C{X} the
free C-algebra in noncommutative indeterminates in the set X. We let @ xc C{X}
stand for the free product over C' of C-algebras @ and C{X}. By a generalized
polynomial (GP for short) with coefficients in @) we just mean an element in @ *¢
C{X}. For f(X1,...,Xn) € QxcC{X}, we just mean that X, ..., X,, are the only
indeterminates occurring in f. A polynomial f(X7,...,X,) € Q x¢c C{X} is called
a generalized polynomial identity (GPI for short) for A, an additive subgroup of @,
if f(x1,...,2,) =0 for all ; € A.

In order to simplify the following proof, we need the following lemma.

Lemma 6.3 ([20, Lemma 2.3]). Let h(Xy,...,X;) € Q ¢ C{X}\{0}. For a

nonzero ideal I of R we let
A={h(z1,...,2) | z; € Q} and Ar = {h(x1,...,2) | m; € I},
Then dimc AC < oo if and only if dimg A;C < 0o. In this case, AC = A;C.

Lemma 6.4. If xay — yax € Ca for all x,y € R, where 0 # a € R, then R is
commutative.

Proof. In view of Lemma [6.3] zay — yax € Ca for all z,y € Q. By taking z = 1,
we have ay — ya € Ca for all y € Q. Therefore, [a, [a,y]] = 0 for all y € Q.

Case 1. char R # 2. It follows from [27, Theorem 1] that a € C. Then zay —yazx =
alz,y] € Ca = C for all x,y € Q. Therefore, [z,y] € C for all z,y € Q. This implies
that @ is commutative. In particular, R is commutative.
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Case 2. charR = 2. Then a? € C. If a € C, then we are done as given in Case
1. Assume that a ¢ C. Choose an element y € @ such that [a,y] # 0. Therefore,
[a,y] = Ba for some nonzero 3 € C. Then ala,y] = [a,ay] € Ca. That is, Ba® = aa
for some a € C. Since a*> € C but a ¢ C, we get « = 0 and so a®> = 0. So
alay — ya) € Ca® = {0} for all y € Q, implying that aya = 0 for all y € Q. The
primeness of ) implies that a = 0, a contradiction. |

We are now ready to prove the main proposition in this section.

Proof of Proposition Suppose that [R, A, R] C A. In view of Lemma [6.2]
Z R(azxb — bxa)R C A.
a,beA,xeR
Therefore, either A contains a nonzero ideal of R or axb = bxa for all a,b € A and
all x € R. Tt suffices to consider the latter case. By [25] Theorem 1], there exists

0 # a € A such that A C Ca. In particular, [z,a,y] = zay — yax € Ca for all
xz,y € R. It follows from Lemma [6.4] that R is commutative, a contradiction. O

7. Proof of Theorem [5.1]

Recall that, unless specially stated, R always denotes a prime ring with extended
centroid C.

Lemma 7.1. If R is noncommutative and 0 # a € R, then [R,z]xa # 0 for some
T e R.

Proof. Otherwise, [R,z]za = 0 for all x € R. Let y, z,z € R. Then [yz, z]za = 0.
Since y[z, z]xa = 0, we have [y, z]zxza = 0. That is, [R, z|Rza = 0. The primeness
of R implies that [R,z] = 0 or xza = 0. Hence R is the union of its two additive
subgroups Z(R) and {x € R | za = 0}. Since R is not commutative, R = {x € R |
za = 0} and so Ra = 0. Therefore, a = 0 follows, a contradiction. O

Lemma 7.2. If [w,z]x € Z(R) for all w,x € R, then R is commutative.

Proof. Since R and @ satisfy the same GPIs (see [I, Theorem 6.4.1)), [w,x]z €
C for all w,x € Q. Replacing « by = + 1, we get [w,x + 1](x + 1) € C for all
w,x € Q. Therefore, [w,z] € C for all w,z € Q, implying that @ is commutative.
In particular, R is commutative. O

The following is well-known, but is listed here only for completeness of the
exposition.

Lemma 7.3. Let I be a nonzero ideal of a semiprime ring R. Suppose that
[a,[I,I]] = 0, where a € R. Then [a,I] = 0. In addition, if either a € I or R
is a prime ring, then a € Z(R).
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Proof. Let z,y € I. Then za € I and so

0= [a,[za,y]] = [a,z[a,y] + [z, y]a] = [a,z]a,y]].

Therefore, [a, zR[a,z]] = 0 and so [a, 2] R[a, 2] = 0. The semiprimeness of R implies
that [a, 2] = 0. That is, [a, I] = 0, as desired. It is clear that a« € Z(R) ifa € I. O

Lemma 7.4. Let Ly and Lo be two proper Lie ideals of R. If R is noncommutative,
then [Lh LQ] 7é 0.

Proof. Since the intersection of two nonzero ideals of R is also a nonzero ideal,
we can choose a nonzero ideal I of R such that [I,I] C L; for ¢ = 1,2. Suppose
on the contrary that [Li, Lo] = 0. Then [[I,I],[I,1]] = 0, implying [I,I] C Z(R)
by Lemma [73l This implies that [R, [I,I]] = 0 and hence R C Z(R). That is, R is

commutative, a contradiction. O
Let f(Xi,...,X,) be a multilinear polynomial over Z, the ring of integers, in
non-commuting indeterminates X1, ..., X,,. Then

[y,f(aj17...7xm)] = Zf(m17...7[y7xk]7...,mm)
k=1

for all x;,y € R. Therefore, the additive subgroup of R generated by all elements
fz1,...,xm) for ; € R is a Lie ideal of R. We will use the basic fact in the
following proof.

For f € C{X1,...,X,} and I an ideal of R, let Add;(I) denote the additive
subgroup of RC generated by all elements f(x1,...,2,) for a; € I. We say that
f is central-valued on RC if f(xy,...,2,) € C for all z; € RC. We also need the
following theorem in our proof.

Theorem 7.5 ([5, Theorem 2]). Let R be a prime ring and I a nonzero ideal
of R. Suppose that f(X1,...,X,) € C{X1,..., X}, which is not central-valued
on RC. Then [M,R] C Add¢(I) for some nonzero ideal M of R except when R =
MQ(GF(2)) and Addf(R) == {07 612+€21, 1+612, 1+621} or {0, 17 611+€12+€217 €22+
ei2 + e}

We are now ready to prove Theorem .11

Proof of Theorem 5.9l Let A be an n-generalized Lie ideal of R at the (r+ 1)th
position, where 0 < r < n. That is,

['Ila sy Ty Ay Y1y e 7ys]n = (151932 cee zr)a(yl cee ys)
7(ys"'y1)a($r$r71"'zl) €A (6)

for all z;,y; € R and all a € A, where r +s =n — 1. In view of Proposition [6.I] we
are done if n = 3 and r = s = 1. Therefore, we can always assume that either r > 1
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or s > 1. By symmetry, we may assume that r > 1. In view of Eq. (@), we have

[mlwam2'"7xTaa7y1a"'7yS]n_ [mlﬂwx27'"7xTaa7y1a"'7yS]n
=Y Y10T,Tp_1 - -+ T3[w, Tow1] € A (7)
for all z;,y;,w € R and all a € A.

Case 1. s > 1 and r > 3. In this case, let L be the additive subgroup of R
generated by all elements 2,1 - - - x3[w, xaxq] for x1,...,2,,w € R. Recall that
R is a noncommutative prime ring. Clearly, L is both a Lie ideal and a nonzero left
ideal of R. In view of Lemma [2.2] RL is a nonzero ideal of R and RL C L. By Eq.
(@), we have 0 # R°ARL C A, where R*ARL is an ideal of R, as desired.

Case 2. s > 1 and r = 2. In view of Eq. (@), we get ys - - - y1a[w, x221] € A for all
yj, 21, T2, w € R. That is, A := R*A[R, R?] C A. By Eq. (@), we have

z122a(Y1 - Ys) — (Ys -+ y1)azazy € A (8)

for all z1,x2,y; € R and all a € A. Choose z1 € A C A. Then (ys - - y1)azozs € A
and so, by Eq. @), z1zea(y; - - ys) € A. This implies that ARAR® C A. Clearly,
ARAR?®is a nonzero ideal of R, as desired.

Case 3. s = 0. Suppose first that » > 3. We have
(z122 - 2r)a — a(xpxp_y - 21) € A

for all x1,29,...,2, € R and all a € A. We keep L as given in Case 1. Then L
contains a nonzero ideal, say M, of R. Moreover, 0 # AM C A. Choose x1 € M and
by the fact that s = 0, we get a(z,x,_1---21) € AM C Aand hence MR"1A C A.
Then

MR ™'AM C AM C A.

Clearly, M R"~'AM is a nonzero ideal of R.
Suppose next that r = 2. Then

[Trw, z2,a] — [x1,wre, 0] = alw, xoz1] € A

for all 71,22 € R and all a € A. Therefore, AL; C A, where L, := [R, R?]. Let
w,xrs € R and a € A. We also compute

Hw, :1:2],9527(1] = [w, z2|x2a — axa|w, 23] € A.

Note that axs[w, r2] = alrew, x2] € A[R?, R] = ALy C A. Therefore, [w, x2]z2A C
A for all zo,w € R.

Let N be the additive subgroup of R generated by all elements [w, zo]xe for
w,x3 € R. Then NA C A. In view of Lemmall2l N ¢ Z(R). In view of [6, Theorem,
p. 98], there exists a proper Lie ideal Ly of R contained in N unless R = M (GF(2)).
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For the latter case, it follows from Theorem [.5] that either
N ={0,e12 +ea1,1 +e12,1 +ea1} or N ={0,1,e11 + €12 + ea1, €20 + €12 + ea1}.

Moreover, [w,zs + 1](22 + 1) — [w, 223]22 = [w, 23] € N for all w,zo € R. That is,
[R,R] C N. In particular, e;o € N. This is a contradiction.

Up to now, we have proved that Ly C N. Therefore, we get LoA C A and
AL, C A, where L, and Lo are proper Lie ideals of R. It follows that

(Lo + L2)A C A and A(L; + L?) C A.

Set I, := R[L;, L;]R for i = 1,2. In view of Lemma [(4] I[; and I, are nonzero. By
Lemma 311 I; C L; + L? for i = 1,2. Therefore, [;A C A and AI; C A. Hence,
0 # I, AI; C A, where I3 Al is an ideal of R. as desired. O

8. Some Generalizations

Let R be a prime ring with extended centroid C', and let @ denote the Martindale
symmetric ring of quotients of R. Recall that @ is a prime ring with center C.
Therefore, @ is an algebra over the field C. It is also known that, given 8 € C,
there exists a nonzero ideal I of R such that I C R (see [I, Chap. 2.3] for details).
Therefore, if R is a simple ring, then R = RC.

Definition 4. Given a positive integer n > 2 and an element 0 # § € C, for
ai,...,a, € R we define

[a1,...,6p]np = ai02- - Gy — BanGn_1--- a1,
which is called the (n, 8)-generalized commutator of aq, ..., a,.
Therefore, [a1,...,anln = [a1,.. ., an]n1. We set

fn”/j = [)(17 e 7Xn]n,[3 = X1X2 N Xn — /BXan,1 N 'X1

for n > 2. It is particularly interesting when 0 = 1 or 8 = —1. First, we can actually
extend Theorem [5.1] as follows.

Theorem 8.1. Let R be a noncommutative prime ring, and let A be a nonzero
additive subgroup of R and 0 # [ € C, n > 3 a positive integer. Suppose that
(1, .. Tr, @, Y15, Yslnpg € A for all z;,y; € R and alla € A, wherer+s=mn—1.
Then A contains a nonzero ideal of R.

We can prove this theorem in a similar way proving Theorem [5.Il Some appro-
priate modifications are of course necessary. For instance, we need to prove the gen-
eralization of Proposition [6] (i.e. Theorem Bl with n = 3 and r = 1 = s): Given a
nonzero additive subgroup A of a noncommutative prime ring R, if [R, A, R]3 3 C A
then A contains a nonzero ideal of R. The necessary modification is the following
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key identity. Let a,b € A and z,y,z € R. Then
y(axb — pbra)z = (yax)bz — Bzb(yax) + f(zby)ax — xa(zby) + (zaz)by — Byb(zaz)
= [yaz,b, 23,3 — [z, a, 2byls g + [xaz,b,y|3 3 € A.

The next step is to prove the following generalization of Lemma [6.4t Let R be
a prime ring with extended centroid C. If zay — Byax € Ca for all z,y € R, where
0#a€ Rand 0# (€ C, then R is commutative. We will omit all details in order
to keep this paper concise.

Recall that, for f € C{X1,..., X, }, let Add;(R) denote the additive subgroup
of RC generated by all elements f(x1,...,x,) for z; € R. We say that f is central-
valued on RC' if f(x1,...,x,) € C for all x; € RC. Motivated by Corollaries 112
and [£13], it is natural to raise the following.

Problem 2. Given a prime ring R, characterize polynomials f € C{Xy,..., X;}
such that either Add;(R) = R or Add(R) contains a nonzero ideal of R.

Although we do not understand the general situation, the following theorem
provides a partial answer to Problem 2.

Theorem 8.2. Let R be a prime ring, and let
F= gr(Xa, ., Xp) Xihi(Xa, ..., Xn),
k=1

where g, hy € C{Xa,...,X,} for k = 1,...,s. Suppose that f is not central-
valued on RC' and that Y, _; hi(Xa, ..., Xn)gk(Xo, ..., Xy) is not a PI for R.
Then Addf(R) contains a nonzero ideal of R except when R = M>(GF(2)) and

Addf(R) = {0,612+€21,1+612,1+621} or

{0,1,e11 + e12 + €21, €22 + €12 + €21 }.

Proof. We assume that the exceptional case is excluded. In view of Theorem [5]
there exists a nonzero ideal M of R such that [M,R] C Add;(R). Note that,
given a nonzero element p € C, there exists a nonzero ideal I of R such that
ul C R. Therefore, we can choose a nonzero ideal I of R contained in M such that
Add,, (I)UAddy,, (I) S Mfork=1,...,s.

Let x1,...,2, € I. Then

S
1 Z hi(za, ... xn)gr(z2, ... xp)
k=1

s s
= ng(gj27 s 7$n)l'1hk(l'27 s 793”) + [zlhk(’r27 v 7xn)7gk(gj27 s 793”)]
k=1 k=1

= f(z1,...,Tn) + Z [mlhk(mg, ey ), g2, . ,mn)} (9)
k=1
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Note that, in Eq. @), Yp_; [t1he(ze, ... 2n), gk(22,...,20)] € [M,M] C
Adds(R). Therefore, x1Y ;_; hp(za,...,20)gk(22,...,2n) € Addy(R) for
Z1,...,2n € I. That is,

Add,(I) € Add;(R),
where ¢(Xa, ..., X)) :=> 1 (X, ..o, X0n)gk(Xa, ..., X,,) and
p(Xl, e 7Xn) = qu(Xg, ceey Xn)

Since ¢(Xa,...,X,) is not a PI for R and R and I satisfy the same PIs over C
(see [, Theorem 6.4.1]), it follows that ¢(Xs,...,X,) is not a PI for I. Clearly, I
is itself a prime ring with extended centroid C'. In view of [5, Lemma 5], Add,(I)
contains a nonzero ideal, say J, of the prime ring I. Then IJI is an ideal of R and

0+#1JICJC Add,(I) C Add;(R),

as desired. O

Corollary 8.3. Let R be a simple ring, and let
X1, Xn) =Y ge(Xay o, Xo) Xahi(Xa, ., Xo),

where gi,hy € C{Xa,...,X,} for k = 1,...,s. Suppose that f is not central-
valued on R and that 22:1 hi(Xa, ..., Xn)g (Xg, ..., X,,) is not a PI for R. Then
Adds(R) = R except when R = MQ(G (2)) a

Adds(R) = {0,e12 +e21,1 +e12, 1 +ea1} or {0,1,e11 + €12 + €21, 22 + €12 + €21}
We next give the following application to Theorem

Theorem 8.4. Let R be a noncommutative prime ring andn > 3 a positive integer,
and let L be a Lie ideal of R with [L,L] # 0. Then [R1,...,Ry,L,Ry,...,Rs]n
contains a nonzero ideal of R, where R; = R for all i andr+s=n —1.

Proof. By LemmaBI1l R[L,L]R C L+ L2 Set I := R[L, L|R, which is a nonzero
ideal of R. Let z1,22 € L and r € R. Then [x1292,7] = —[rzy,x2] — [xor, x1].
Therefore,

[L?,R] C [RL,L]+ [LR,L] C L.

This implies that [I, R] C [L + L?, R] C L. Note that I itself is a noncommutative
prime ring with extended centroid C' and [[I, I, [I,1]] # 0 (see Lemma[Z4]). More-
over, every nonzero ideal of I always contains a nonzero ideal of R. Therefore, it
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suffices to prove that
[I,.... I, [I,I],I1,.. .,Is}nﬁ
contains a nonzero ideal of I, where I; = I for all i. Set

f = [Xla v 7X7“a [U7 V]7Y17 e 7Y5]n,ﬁ’

where X1,..., X,.,U,V, Yy, ..., Y, are distinct noncommutative indeterminates over
C. We may assume without loss of generality that » > 1. Our aim is to prove that
Addy(I) contains a nonzero ideal of I. We now apply Theorem to the present
case.

First, we claim that f is not central-valued on IC'. Otherwise, we have

[ml,...,mm[uw],yl,...,ys}nﬂEC (10)

for all zq,...,2,u,v,91,...,ys € I. Since I and @ satisfy the same GPIs (see
[, Theorem 6.4.1]), replacing z; = 1 for ¢ > 1 and y; = 1 for all j in Eq. ([I0) we
get

x1[u,v] — Blu, vz, € C (11)

for all x1,u,v € Q. If 8 # 1, replacing 1 = 1 we get (6 — 1)[Q, Q] C C, implying

that @ is commutative. This is a contradiction. Hence we get 8 = 1. By Eq. ()

we get [Q, @, QH C C, implying that @ is commutative. This is a contradiction.
Rewrite f as

f=X1Xo - X, [UVIV1Ys- Y, = YY1 - VI [U, VX, X g - - X7
We claim that
g:=Xp X, UVINY, Y - BYYeor - ViU VI Xy Xy
is not a PI for I. Otherwise, we have
To Lo, VY1Y2  Ys — BYsYs—1 - Yiu, v]@pz 122 =0 (12)

for all xo, ..., xr, U, v, Y1,...,Ys € Q.

Replacing all x;,y; by 1 in Eq. (I2), we get (8 — 1)[Q, Q] = 0, implying that
B =1.1f r > 2, then replacing x; = 1 = y; for i > 2 and j > 1 we get [z2, [u,v]] =0
for all zo,u,v € @, implying that ) is commutative, a contradiction. Suppose next
that 7 = 1. Then s > 1. Replacing y; = 1 for j > 1, we get [y1, [u,v]] = 0 for all
Y2, u, v € Q. As above, we get a contradiction.

In view of Theorem B2 Add;(I) contains a nonzero ideal of I except when
I =2 M5(GF(2)) and

Adds(I) ={0,e12 + ea1,1 + e12,1 +ear} or {0,1,e11 + e12 + €21, €22 + €12 + €21 }.
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We are done if Addy(I) contains a nonzero ideal of I. Hence we assume that the
latter case occurs.

Case 1. 7 > 2 or s > 2. We may assume that » > 2. The case that s > 2 has
the same argument. Replacing X1, X» by e11, e12, respectively, and X;,Y; by 1 for
i>2and all j, U by egs and V by ea1, we get e11 € Add (1), a contradiction.

Case 2. r =1 = s. In this case, we have
f(X1, U, V. Yh) = Xh[U, VY1 = YU, V] Xy,

Then f(e11,e11, €12, €22) = e12 € Adds(I), a contradiction. O

Recall that f, 5 := [X1,...,Xn]ng for n > 2. As an immediate consequence of
Theorem Bl we have the following corollary.

Corollary 8.5. Let R be a noncommutative prime ring and n > 3. Then
Addy, ,(R) contains a nonzero ideal of R. In addition, if R is a simple ring, then
Addy, ,(R) = R.

Corollary 8.6. Let R be a noncommutative prime ring and n > 4 a positive
integer, and let L be a nonzero Lie ideal of R. Then [Ri,...,R.,L,R1,..., Rs|n3
contains a nonzero ideal of R, where R; = R for all i and r 4+ s = n — 1, except
when char R = 2 and dimcRC = 4.

Proof. We exclude the exceptional case. By Theorem[B4], we are done if [L, L] # 0.
Suppose next that [L, L] = 0. In view of [I8, Lemma 7], L C Z(R). Therefore,

[Ry,...,Re,L,Ry,...,Ry|n3=L[R,...,Rln_15.

Note that n — 1 > 3. It follows from Corollary 83l that [R, ..., R],—1,3 contains a
nonzero ideal of R, so does L[R, ..., R],_1,, as desired. O
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