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A ring R is called periodic if, for every a in R, there exist two distinct positive integers
m and n such that am = an. The paper is devoted to a comprehensive study of the
periodicity of arbitrary unital rings. Some new characterizations of periodic rings and
their relationship with strongly π-regular rings are provided as well as, furthermore,
an application of the obtained main results to a ∗-version of a periodic ring is being
considered. Our theorems somewhat considerably improved on classical results in this
direction.
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1. Introduction

All rings into consideration in the present paper are associative with identity. Let
R be a ring. The letters U(R), J(R) and Nil(R) stand for the set of all units,
the Jacobson radical and the set of all nilpotents of R, respectively. As usual, the
symbol R[t] denotes the polynomial ring over R, Z denotes the ring of integers, and
Zn denotes the ring Z modulo the ideal generated by n.

For a ring R, the inclusion 1 + Nil(R) ⊆ U(R) always holds. So, a unit u of a
ring R is called unipotent if u ∈ 1+Nil(R). Due to Cǎlugǎreanu [9], and to Danchev
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and Lam [19], R is called a UU-ring if every unit of R is unipotent, or equivalently
U(R) = 1 + Nil(R). These UU-rings are closely related to strongly nil clean rings
(herein, a ring R is strongly nil clean [20] if, for each a ∈ R, there exist e2 = e ∈ R

and b ∈ Nil(R) such that a = e + b and be = eb), and they have been extensively
investigated recently (see [19, 26, 29], etc.). In [17], Danchev introduced the notion
of a π-UU ring. A ring R is called π-UU if, for every u ∈ U(R), there exists some
positive integer n such that un = 1 + b, where b ∈ Nil(R). Recall that a ring R is
potent if, for every a ∈ R, an = a for some integer n ≥ 2; and R is called periodic if,
for every a ∈ R, there exist distinct positive integers m and n such that am = an.
Periodic rings were introduced by Chacron in [10] (see also [11]). Clearly, potent
rings are periodic and the latter are π-UU (indeed, if R is a periodic ring and u is
a unit in R, then there is a positive integer n such that un = 1). Recall that a ring
is strongly π-regular if, for every a ∈ R, there exists a positive integer m such that
am ∈ am+1R∩Ram+1. In fact, Dischinger in his PhD thesis [22] proved that a ring
R is strongly π-regular if, and only if, for each a ∈ R, there exists an integer m ≥ 1
such that am ∈ am+1R (see also [21] and [1]). As it is well known, periodic rings
are strongly π-regular.

In this article, some examples and basic properties of π-UU rings are investi-
gated. Properties such as being π-UU, strongly π-regularity and strongly nil clean-
ness are subsequently applied to characterize periodic rings as some equivalent
statements are obtained. Further, by extending periodic rings to their ∗-versions,
we introduce the notion of ∗-periodic rings. Various characterizations of ∗-periodic
rings are provided. In particular, it is shown that a ring R is ∗-periodic if, and only
if, R is periodic and idempotents of R are projections if, and only if, R is a strongly
π-regular π-UU ring and idempotents of R are projections if, and only if, R is an
abelian π-UU ring, R/J(R) is ∗-regular and J(R) is nil.

2. π-UU Rings

In this section, some examples and properties of π-UU rings are provided.

Example 2.1. (1) All periodic rings, UU rings and rings with finite units are π-UU
rings.

(2) A division ring R is a π-UU ring if and only if R is a potent field.

Proof. As point (1) is self-evident, it suffices to show only (2). To do that, assume
that R is a division π-UU ring. Then, for any nonzero a ∈ R, we have an = 1 for
some integer n as Nil(R) = 0. By the well-known Jacobson’s Theorem [30, Theorem
12.10], the ring R is commutative. So, R has to be a potent field. The converse
is clear.

It is worthwhile noticing that there exists a noncommutative π-UU ring which
is neither periodic nor UU. Motivated by [19, Example 2.5], we let p ≥ 3 be a prime
and let Zp〈x, y〉 be the free algebra over the simple p element field Zp, generated
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by noncommutative variables x and y, and set R = Zp〈x, y〉/(x2). Then, one may
calculate that Nil(R) = Zpx + xRx and U(R) = {r + Zpx + xRx | r ∈ Zp\{0}}. We
claim now that R is π-UU. Indeed, for any nonzero r ∈ Zp, rk = 1 ∈ Zp for some
k ≥ 1; so (r + Zpx+xRx)k ⊆ 1+Nil(R). Clearly, by an inspection, we deduce that
R is neither a periodic ring nor a UU-ring.

Proposition 2.2. Let R be a π-UU ring. Then the following statements hold :

(1) If S is a factor ring of R such that units of S lift to units of R, then S is π-UU.
(2) Any (unital) subring of R is π-UU.
(3) If ui ∈ U(R) for i = 1, . . . , k, then un

i ∈ 1 + Nil(R) for some integer n ≥ 1.

Proof. (1) Suppose that f : R → S is an epimorphism of rings. Let v ∈ U(S).
Then there exist u ∈ U(R) and an integer n such that v = f(u) and un = 1 + b ∈
1 + Nil(R). So one has vn = f(un) = 1 + f(b) ∈ 1 + Nil(S), as desired.

(2) The proof is similar to that of [19, Theorem 2.6(3)].
(3) By assumption, for each i, we may let uni

i ∈ 1 + Nil(R), where ni ≥ 1. Let
n be a common multiple of all ni. It is easy to see that un

i ∈ 1 + Nil(R).

Lemma 2.3. Let I be a nil ideal of a ring R. Then R is π-UU if and only if so is
R/I.

Proof. Assume that R/I is a π-UU ring. Let u ∈ U(R). Then u := u+I ∈ U(R/I).
So there is an integer k satisfying uk − 1 = uk − 1 ∈ Nil(R/I). As I is nil, we have
uk − 1 ∈ Nil(R), which implies R is π-UU. The converse follows with the aid of
Proposition 2.2(1).

The condition I is nil in Lemma 2.3 is necessary. For example, let Z(p) be the
localization of Z at the prime ideal (p). Then Z(p)/J(Z(p)) ∼= Zp is obviously a
π-UU ring, but Z(p) is manifestly not π-UU.

Lemma 2.4 ([17, Lemma 2.3]). If R is a π-UU ring, then so is eRe for any e2 =
e ∈ R.

Proposition 2.5. The finite direct product
∏m

i=1 Ri is π-UU if and only if each
component Ri is π-UU.

Proof. Suppose that each Ri is a π-UU ring. Let α = (u1, u2, . . . , um) ∈
U(

∏m
i=1 Ri). Then ui ∈ U(Ri) for all i. By hypothesis, there exists an integer

ni such that uni

i ∈ 1 + Nil(Ri). In view of the proof of Proposition 2.2(3), we
deduce that un

i ∈ 1 + Nil(Ri) for some integer n and i = 1, . . . , m. This implies
that αn ∈ (1, 1, . . . , 1) + (Nil(R1), Nil(R2), . . . , Nil(Rm)) = 1 + Nil(

∏m
i=1 Ri). The

converse follows by Proposition 2.2(1).

Remark 2.6. There exists an infinite product of π-UU rings that is not π-UU. In
fact, let pi be primes with p1 < p2 < p3 < · · ·. Clearly, each Ri := Zpi is π-UU.
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Let ui ∈ U(Ri)\{1} with upi−1
i = 1. As Nil(

∏∞
i=1 Ri) = {0} and any power of

(u1, u2, . . . , ui, . . .) ∈ U(
∏∞

i=1 Ri) does not equal to the identity of
∏∞

i=1 Ri, the
direct product

∏∞
i=1 Ri is not π-UU.

For a ring R, let Tn(R) be the upper triangular matrix ring over R, and Rn =
{(aij) ∈ Tn(R) | a11 = a22 = · · · = ann}.
Theorem 2.7. Let R be a ring. The following are equivalent :

(1) R is a π-UU ring.
(2) Tn(R) is π-UU for any positive integer n.
(3) Rn is π-UU for any positive integer n.
(4) R[t]/(tn) is π-UU for any integer n ≥ 2.

Proof. Note that R[x]/(xn) can be viewed as a subring of Rn. By Proposi-
tion 2.2(2), (2) ⇒ (3) ⇒ (4) follows, and (4) ⇒ (1) follows by making use of
Proposition 2.2(1).

(1) ⇒ (2). Let I(R) ⊆ Tn(R) be the set of all upper triangular matrices whose
diagonals are zeros. Then I(R) is known to be a nil ideal of Tn(R). So, the n-times
direct product, Tn(R)/I(R) ∼= R×R× · · · ×R is π-UU by Proposition 2.5 since R

is a π-UU ring. In view of Lemma 2.3, Tn(R) is π-UU.

Proposition 2.8. Let R, S be rings and N be an (R, S)-bimodule. Then the formal
triangular matrix ring

(R N
0 S

)
is a π-UU ring if and only if R and S are π-UU rings.

Proof. Assume that K :=
(R N

0 S

)
is a π-UU ring. Then by Lemma 2.4, R and S

are π-UU rings. For the converse, let I =
(0 N
0 0

) ⊆ K. Then I is a nil ideal of K,
and K/I ∼= R× S is π-UU by Proposition 2.5. So the result follows by Lemma 2.3.

It is clear that the matrix ring Mn(R) over any finite ring R is π-UU; e.g.,
Mn(Z2) is π-UU. However, there exists an infinite π-UU ring over which the matrix
ring is no longer π-UU.

Example 2.9. The matrix ring Mn(Z) is not π-UU for any integer n ≥ 2.

Proof. Clearly, Z is a π-UU ring as U(Z) = {−1, 1}. By virtue of Lemma 2.4, it
suffices to show that M2(Z) is not π-UU. Assume on the contrary, let A =

(0 1
1 1

) ∈
U(M2(Z)) and Ak − I2 ∈ Nil(M2(Z)) for some integer k. Note that the minimal
polynomial of A is x2−x−1. Since Ak−I2 ∈ Nil(M2(Z)), we have that (Ak−I2)2 = 0
and hence, (xk−1)2 is a multiple of x2−x−1. But all the complex roots of (xk−1)2

have module 1, whereas the complex roots of x2 − x − 1 do not have module 1, a
contradiction.

In view of Example 2.9, one may observe that for an idempotent e ∈ R, R is
not necessarily a π-UU ring even if eRe and (1 − e)R(1 − e) are both π-UU rings.
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Proposition 2.10. The power series ring R[[t]] is not π-UU for any ring R.

Proof. In view of [30, Ex. 5.6], J(R[[t]]) = J(R) + tR[[t]]. So 1 + t ∈ U(R[[t]]).
Clearly, for any positive integer n, (1 + t)n − 1 is not nilpotent. Hence, R[[t]] is not
a π-UU ring.

Recall that a ring R is reduced if it contains no nonzero nilpotents. The following
assertion considerably extends the corresponding result from [9] established for UU-
rings.

Proposition 2.11. If R is a commutative ring, then R is π-UU if and only if so
is R[t].

Proof. Assume that R is a commutative π-UU ring. In view of [30, Theo-
rem 5.1], J(R[t]) = Nil(R[t]) = Nil(R)[t]. So, J(R[t]) is nil and R[t]/J(R[t]) =
R[t]/Nil(R)[t] ∼= (R/Nil(R))[t]. Note that R/Nil(R) is reduced. Then (R/Nil(R))[t]
is reduced. By [2, Exercise 1.2], U(R/Nil(R)) = U((R/Nil(R))[t]) (see also [25,
Corollary 1.7]). It follows that (R/Nil(R))[t] is a π-UU ring since R/Nil(R) is π-
UU. Thus, R[t]/J(R[t]) is π-UU, and therefore, R[t] is a π-UU ring by Lemma 2.3.
The other direction is clear.

We ending this section by asking if R is a π-UU ring, does it follow that J(R)
is nil (compare with [17] and [19], where some partial cases are being considered)?
If yes, some reduction to the periodicity of the factor-ring R/J(R) will be pos-
sible, which fact will considerably help us to simplify the proofs by considering
semiprimitive (i.e. Jacobson semi-simple) periodical rings.

3. Periodic Rings

Recall that an element a of a ring R is strongly nil clean [20] if there exist e2 = e

and b ∈ Nil(R) such that a = e + b and ae = ea; in this case, we say that a = e + b

is a strongly nil clean expression of a; R is strongly nil clean if all of its elements are
strongly nil clean (equivalently, a− a2 ∈ Nil(R) for each a ∈ R [35]). In [13], a ring
R is called strongly 2-nil clean if, for each a ∈ R, a−a3 ∈ Nil(R) (equivalently, a2 is
strongly nil clean in R). Recall that a unit u of a ring R is n-UU if un ∈ 1+ Nil(R)
(see [17]).

For an element a ∈ R, write comm(a) = {x ∈ R |xa = ax}.
Lemma 3.1. Let R be a ring, e2 = e ∈ R, a ∈ U(eRe) and an integer n ≥ 1. The
following are equivalent :

(1) a is n-UU in eRe.
(2) an is strongly nil clean in R.

Proof. (1) ⇒ (2). By assumption, b := an − e ∈ Nil(eRe) ⊆ Nil(R). So, an = e + b

is a strongly nil clean expression of an in R as ea = ae.
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(2) ⇒ (1). Let an = f + b with f2 = f ∈ R, b ∈ Nil(R) and anf = fan. In view
of [29, Proposition 2.4], comm(an) ⊆ comm(f). As e ∈ comm(an), one has ef = fe

is an idempotent of eRe, and whence be = eb ∈ Nil(eRe). Thus, an = efe + ebe

is a strongly nil clean expression of an in eRe. So, we have efe = an − ebe ∈
U(eRe) since an ∈ U(eRe), which implies that efe = e. This proves that a is n-UU
in eRe.

Proposition 3.2. Let R be a ring, a ∈ R and an integer n ≥ 1. The following are
equivalent :

(1) an is strongly nil clean in R.

(2) There exists e2 = e ∈ comm(a) such that a = x+y, where x is an n-UU element
in eRe and y ∈ Nil((1 − e)R(1 − e)).

(3) There exists e2 = e ∈ comm(a) such that a = x + y, where x ∈ U(eRe) with xn

strongly nil clean in R, and y ∈ Nil((1 − e)R(1 − e)).

Proof. (1) ⇒ (2). Let an = e + b be a strongly nil clean expression of an, with
e2 = e ∈ R, b ∈ Nil(R) and eb = be. Then, we have ea = ae by [29, Proposition 2.4].
It follows that (ae)n = ane = e + ebe ∈ e + Nil(eRe) and (a(1 − e))n = b(1 − e) is
nilpotent in (1− e)R(1− e). Write x = ae and y = a(1− e). Thus, a = x+ y, where
x ∈ eRe is an n-UU element and y ∈ Nil((1 − e)R(1 − e)).

(2) ⇒ (1). By hypothesis, let xn = e + q with q ∈ Nil(eRe). Noting that
xy = yx = 0, we have an = xn + yn = e + (q + yn). Clearly, b := q + yn ∈ Nil(R).
So, an = e + b is a strongly nil clean expression of an in R.

(2) ⇔ (3) follows by Lemma 3.1.

An element a of a ring R is called strongly regular if a = eu = eu for some e2 =
e ∈ R and u ∈ U(R); R is strongly regular if every element of R is strongly regular,
or equivalently R is abelian regular (herein, a ring is abelian if every idempotent of
the ring is central).

Lemma 3.3 ([33, Theorem 2(1)]). A ring R is strongly π-regular if and only if
for each a ∈ R, a = ev + b = ve + b, where e2 = e, v ∈ U(R) and b ∈ Nil(R) with
ab = ba.

Next, we give some new characterizations of periodic rings. These will be applied
at the end of this section to exhibit some concrete examples of such rings.

Theorem 3.4. Let R be a ring. The following are equivalent :

(1) R is a periodic ring.
(2) For each a ∈ R, a = f + b, where fn = f for some integer n ≥ 2, af = fa and

b ∈ Nil(R).
(3) For each a ∈ R, a = ev + b = ve + b, where e2 = e ∈ R, vn−1 = 1 for some

integer n ≥ 2 and b ∈ Nil(R) with ab = ba.
(4) For each a ∈ R, a − an ∈ Nil(R) for some integer n ≥ 2.
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(5) For each a ∈ R, there exists an integer m ≥ 1 such that am is strongly nil clean
in R.

(6) For each a ∈ R, there exists e2 = e ∈ comm(a) such that eRe is a π-UU ring,
and a = x + y with x ∈ U(eRe) and y ∈ Nil((1 − e)R(1 − e)).

(7) R is a strongly π-regular π-UU ring.

Proof. (1) ⇒ (2) follows from [4, Lemma 1(c)].
(2) ⇒ (3). Assume that (2) holds. By [27, Lemma 2.1], let e = fn−1 and

v = 1 + f − fn−1. Then e2 = e and (1 − e)f = f(1 − e) = 0 as f = fn. So,
vn−1 = ((1 − e) + f)n−1 = 1 − e + fn−1 = 1, and f = ve = ev. Thus a = f + b =
ev + b = ve + b, where e2 = e ∈ R, vn−1 = 1 and b ∈ Nil(R) with ab = ba.

(3) ⇒ (4). Given a ∈ R in (3). Since (ev)n = evn = evvn−1 = ev and
(ev)b = b(ev), we obtain a − an = (ev + b) − (ev + b)n = (ev − (ev)n) − b(1 +∑n

i=1 Ci
n(ev)n−ibi−1) = −b(1 +

∑n
i=1 Ci

n(ev)n−ibi−1) ∈ Nil(R) as b ∈ Nil(R).
(4) ⇒ (5). By hypothesis, we may let (a − am+1)k = 0, where m, k ≥ 1. Then

we have 0 = ak(1 − am)k, which implies that 0 = akm(1 − am)k = (am(1 − am))k.

So, am − a2m ∈ Nil(R). In view of [35, Lemma 3.5], am is strongly nil clean in R.
(5) ⇒ (6). In view of Proposition 3.2, it suffices to prove that eRe is a π-UU

ring. Let u ∈ U(R). Then there is a positive integer n such that un = e + b where
e2 = e, b ∈ Nil(R) and eb = be. So, e = un−b ∈ U(R), which implies e = 1, whence
un ∈ 1 + Nil(R). This proves that R is a π-UU ring. By making use of Lemma 2.4,
eRe is a π-UU ring.

(6) ⇒ (7). By (6), let xm = e + b ∈ e + Nil(eRe) for some integer m. Note that
xy = yx = 0. So, one has am = xm+ym = e+(b+ym), where e2 = e, b+ym ∈ Nil(R)
and ae = ea. We conclude that R is a π-UU ring. Indeed, if a ∈ U(R) then e = 1,
and therefore, am ∈ 1 + Nil(R). Further, x = xe = (x + (1 − e))e = e(x + (1 − e))
is strongly regular in R since x + (1 − e) ∈ U(R). So, a = x + y is a sum of a
strongly regular element and a nilpotent that commute. By virtue of Lemma 3.3,
R is strongly π-regular.

(7) ⇒ (1). Let a ∈ R. Since R is strongly π-regular, by [32, Proposition 1], there
exists an integer n ≥ 1 such that an = eu = ue, where e2 = e and u ∈ U(R).
By assumption, let uk = 1 + b ∈ 1 + Nil(R) for some k ≥ 1. It follows that
ank = euk = e + eb and a2nk = eu2k = e + (2e + eb)b as eb = be. Since b ∈ Nil(R),
ank − a2nk = −(e + eb)b ∈ Nil(R). So, one has al = al+1f(a) for some integer l ≥ 1
and f(t) ∈ Z[t]. By virtue of [5, Theorem 1], R is a periodic ring.

We note that the equivalence “(1) ⇔ (4)” in Theorem 3.4 can also be deduced
by the main theorem in [11] (see also [12, Theorem 1.1]). Moreover, in [28, Ques-
tion 3.17], the authors asked what can be said about rings such that an − a is
nilpotent for all a and a fixed integer n. By Theorem 3.4(4), these rings are obvi-
ously periodic. However, the converse need not be true and so, at this stage, the
posed question is not completely settled.
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Remark 3.5. Note that it is easy to see that the direct product of two strongly
π-regular rings is a strongly π-regular ring, and the direct product of two π-UU
rings is a π-UU ring in accordance with Proposition 2.5. Hence, by Theorem 3.4,
the direct product of two periodic rings R and S is a periodic ring. This is also easy
to be seen by [11, Proposition 1].

Nevertheless, the infinite direct product of periodic rings need not be again a
periodic ring (indeed, this can be infered from Remark 2.6).

The following result somewhat addresses the main question of whether or not
periodicity is retained by the full matrix ring if the former ring is periodic (the
same question appeared to be actual for strongly π-regular rings as well – compare
with [7] and [24]).

Corollary 3.6. Let R be a ring such that am = a, for all a ∈ R and a fixed integer
m > 1. Then, for any positive integer n, the matrix ring Mn(R) is periodic.

Proof. Since R is commutative strongly π-regular, it follows from [7] that Mn(R)
is strongly π-regular.

We shall prove that Mn(R) is a π-UU ring. By the arguments on [30, p. 197],
R is a subdirect product of its left primitive homomorphic images Ri (i ∈ I) and
every Ri is a field such that am

i = ai, for all ai ∈ Ri. Therefore, |Ri| ≤ m, for all i.
Now, to prove that Mn(R) is a π-UU ring, by Proposition 2.2, it is enough to prove
that the product Mn(

∏
i∈I Ri) ∼= ∏

i∈I Mn(Ri) is a π-UU ring. Let t = mn2
! and

let U = (Ui)i∈I ∈ ∏
i∈I Mn(Ri) be a unit. Note that U t

i = In, for all i ∈ I, because
Ui is a unit in Mn(Ri) and |Mn(Ri)| ≤ mn2

. Thus, we have that U t = 1. Hence,
Mn(R) is a π-UU ring. By Theorem 3.4, one concludes that Mn(R) is a periodic
ring, as asserted.

On the other side, imitating the proof of the above characterization theorem,
one directly deduces the following:

Corollary 3.7. Let I be a nil-ideal of a ring R. Then R is periodic if and only if
R/I is periodic. In particular, R is periodic if and only if J(R) is nil and R/J(R)
is periodic.

The next technicality is useful, and it will be applied in the sequel.

Lemma 3.8 ([3, Lemma 5]). If R is an abelian strongly π-regular ring, then
Nil(R) = J(R).

In the abelian case, when all idempotents are central, one can say even something
more as follows:

Corollary 3.9. Let R be an abelian ring. The following are equivalent :

(1) R is a periodic ring.
(2) R/J(R) is potent and J(R) is nil.
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Proof. (1) ⇒ (2). Clearly, R is an abelian strongly π-regular ring. So, J(R) =
Nil(R) by Lemma 3.8. Combining this with Corollary 3.7, we have R/J(R) is
a reduced periodic ring. Let x ∈ R/J(R). In view of Theorem 3.4, x − xn ∈
Nil(R/J(R)) = 0 for some integer n ≥ 2. Therefore, R/J(R) is potent.

(2) ⇒ (1). For any a ∈ R, write a = a + J(R) ∈ R/J(R). Then there is an
integer n ≥ 2 such that a = an. So, a − an ∈ J(R) ⊆ Nil(R). Thus, R is periodic
employing Theorem 3.4.

In general, (1) cannot imply (2) in Corollary 3.9 if R is not abelian. For instance,
to see that, let R = M2(Z2). Then R is a periodic ring with J(R) = 0. However,
R/J(R) ∼= R is obviously not potent.

As a consequence of [19, Theorem B] or [29, Theorem 2.7], which both say that
a ring R is strongly nil clean if, and only if, R/J(R) is boolean and J(R) is nil,
accomplishing this with Theorem 3.4, we have the following result immediately.

Corollary 3.10. A ring R is strongly nil clean if and only if R is periodic and
R/J(R) is boolean.

According to [18], a ring R is called strong regularly nil clean if, for every a ∈ R,

there exists e2 = e ∈ Ra such that ae = ea and a − ae is nilpotent. It was shown
in [18, Proposition 2.2] that these are actually strongly π-regular rings. So, the
next statement is immediate as periodic rings are always strongly π-regular. We,
however, will give a more transparent proof.

Proposition 3.11. Every periodic ring is strong regularly nil clean.

Proof. Suppose that R is a periodic ring. Let a ∈ R. Utilizing Theorem 3.4(4),
a − an is nilpotent for some integer n ≥ 2. Assume that (a − an)m = 0. So one
has (an−1 − (an−1)2)m = (an−1)m(1 − an−1)m = 0. Then by [35, Lemma 3.5], we
can find an idempotent e ∈ Z[a] such that an−1 = e + w, where w ∈ Nil(R). Hence
(a(1 − e))n−1 = an−1(1 − e) = w(1 − e) ∈ Nil(R), whence a − ae is nilpotent.

A ring R is nil clean [20] if every element of R is a sum of an idempotent and
a nilpotent; if these two elements commute, the ring is called strongly nil clean. As
strongly nil clean rings are strongly π-regular, Diesl asked whether there is a nil
clean ring that is not strongly π-regular [20]. Note that Šter gave an affirmative
answer (see [34]) to that question, but a detailed analysis shows that the constructed
ring is manifestly not π-UU. So, it arises here the following natural and rather
difficult problem:

Question. Is a nil clean π-UU ring also strongly π-regular (and hence periodic)?

We just mention that it follows from [19, Theorem 4.3] that nil clean UU rings
are strongly nil clean (and hence strongly π-regular and thus periodic). Likewise,
if B is a boolean ring, then it was shown in [7] and [8] that, for any n ≥ 1, the
matrix ring Mn(B) is simultaneously strongly π-regular and nil-clean, respectively.
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Besides, it is not too hard to verify that Mn(B) is also a π-UU ring (see, for more
details, Corollary 3.6 alluded to above). Therefore, point (7) in Theorem 3.4 applies
to get that Mn(B) is periodic.

4. ∗-Periodic Rings

The results established in the previous section will be now applied to a ∗-version of
periodicity. A ring R is called a ∗-ring (or, more precisely, a ring with involution)
if there exists a map ∗ : R → R such that (x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and
(x∗)∗ = x for all x, y ∈ R. Recall that an element p of a ∗-ring R is said to be a
projection if p2 = p = p∗ (see [6]). This section focuses on the study of ∗-periodic
rings which can be viewed as ∗-versions of periodic rings.

Lemma 4.1 ([31, Lemma 2.1]). Let R be a ∗-ring. If every idempotent of R is
a projection, then R is abelian.

Lemma 4.2. Let R be a ∗-ring, f ∈ R and an integer n ≥ 2. Then fn = f and
fn−1 is a projection if and only if f = pv = vp, where p2 = p∗ = p ∈ R and
vn−1 = 1.

Proof. Assume that f = pv = vp, where p2 = p∗ = p ∈ R and vn−1 = 1. Then
p = vn−1p = (vp)n−1 = fn−1. So, fn−1 is a projection, and fn = vnp = vp = f .

Conversely, let v = 1 + f − fn−1 and p = fn−1. Then p2 = p = p∗. As shown in
the proof [27, Lemma 2.1], f = vp = pv and vn−1 = 1.

Notice that Lemma 4.2 leads us to the following statements.

Lemma 4.3. Let R be a ∗-ring and a ∈ R. The following are equivalent :

(1) a = f + b, where fn = f and fn−1 is a projection for some integer n ≥ 2,

b ∈ Nil(R) and af = fa.
(2) a = pv + b = vp + b, where p2 = p∗ = p ∈ R, vn−1 = 1 for some integer n ≥ 2

and b ∈ Nil(R) with ab = ba.

Definition 4.4. A ∗-ring R is called ∗-periodic if every element of R satisfies the
conditions in Lemma 4.3.

Let R be a ∗-ring. Then (J(R))∗ ⊆ J(R). In particular, R/J(R) is still a ∗-ring.

Theorem 4.5. Let R be a ∗-ring. The following are equivalent :

(1) R is a ∗-periodic ring.
(2) R is a periodic ring and every idempotent of R is a projection.
(3) For each a ∈ R, there exists an integer n ≥ 1 such that an = p + b, where

p2 = p∗ = p, b ∈ Nil(R) and pb = bp.
(4) R is a periodic ring and Re = Re∗ for every idempotent e ∈ R.

(5) R is abelian, and for each a ∈ R there exists an integer n ≥ 2 such that
a − an ∈ Nil(R) and an−1 − (an−1)∗ ∈ Nil(R).
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Proof. (1) ⇒ (2). Clearly, R is periodic. Let e2 = e ∈ R. Then e = f + b,
where fn = f , fn−1 is a projection for some integer n ≥ 2, b ∈ Nil(R) and
ef = fe. It follows that e(1 − fn−1) = b(1 − fn−1) ∈ Nil(R). So, e = efn−1 as
e(1 − fn−1) is an idempotent. Moreover, 0 = (1 − e)e = (1 − e)f + (1 − e)b, and
then (1− e)fn−1 = −(1− e)bfn−2 ∈ Nil(R). Since (1− e)fn−1 is an idempotent, it
must be that fn−1 = efn−1. Thus, e = fn−1 is a projection.

(2) ⇒ (3). Let a ∈ R. Owing to Theorem 3.4, an is strongly nil clean for some
integer n ≥ 1. As idempotents coincide with projections, the result follows.

(3) ⇒ (4). According to Theorem 3.4, R is a periodic ring. For any e2 = e ∈ R,

e = p + b for some p2 = p∗ = p ∈ R, b ∈ Nil(R) and pe = ep. Then (e − p)3 =
e − p = b ∈ Nil(R), which yields that e = p. Thus, Re = Rp = Re∗.

(4) ⇒ (1). In view of Lemma 4.3, it suffices to show that every idempotent of
R is a projection. Let e2 = e ∈ R. From Re = Re∗, we obtain e = ee∗ as e∗ is also
an idempotent. So, e = (ee∗)∗ = e∗ is a projection, as desired.

(2) ⇒ (5). By Lemma 4.1, R is abelian. So, J(R) = Nil(R) by applying
Lemma 3.8. Let a ∈ R. Then there exists b ∈ Nil(R) such that a = f + b, where
af = fa, fn = f and fn−1 is a projection for some integer n ≥ 2. So, a − an =
(f + b) − (f + b)n = (f + b) − (fn +

∑n
i=1 Ci

nfn−ibi) = b(1 − ∑n
i=1 Ci

nfn−ibi−1) ∈
Nil(R). Notice that an−1 = (f + b)n−1 = fn−1 + b

∑n−1
i=1 Ci

n−1f
n−1−ibi−1. As both

b and b∗ are contained in Nil(R) = J(R) and fn−1 = (fn−1)∗, it follows that
an−1 − (an−1)∗ = b

∑n−1
i=1 Ci

n−1f
n−1−ibi−1 − b∗(

∑n−1
i=1 Ci

n−1f
n−1−ibi−1)∗ ∈ Nil(R).

(5) ⇒ (2). Assume (5) holds. Then, by Theorem 3.4, R is periodic. We only need
to show that every idempotent of R is a projection. For any e2 = e ∈ R, e∗ = (e∗)2.
So, the hypothesis implies that e − e∗ ∈ Nil(R). Since R is abelian, ee∗ = e∗e and
(e − e∗)3 = e − e∗. It follows that e − e∗ = 0, whence e = e∗, as required.

For a ∗-ring R, the matrix ring Mn(R) has a natural involution inherited from
R: if A = (aij) ∈ Mn(R), A∗ equals (a∗

ji) (i.e. A∗ = (a∗
ij)

T = (a∗
ji)). So we consider

Mn(R) as a ∗-ring with respect to this natural involution.

Corollary 4.6. Let R be a ∗-ring. Then Mn(R) is not ∗-periodic for any n ≥ 2.

For a ∗-ring R and p2 = p∗ = p ∈ R. Let S = pRp. Then the restriction of ∗ on
S will be an involution of S, which is also denoted by ∗.

Corollary 4.7. If R is a ∗-periodic ring, then so is eRe for any e2 = e ∈ R.

Proof. Let S = eRe. By Theorem 4.5, every idempotent of R is a projection. Thus,
S is a ∗-ring. Note that S is a subring of R. So S is periodic, and therefore, S is a
∗-periodic ring since every idempotent of S is a projection.

A ∗-ring R is called π-∗-regular [16] if, for each a ∈ R, there exists p2 = p∗ =
p ∈ R such that anR = pR for some integer n ≥ 1; and further, R is called ∗-regular
[6] if aR = pR.
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Proposition 4.8. Let R be a ∗-ring. The following are equivalent :

(1) R is a ∗-periodic ring.
(2) R is a strongly π-regular π-UU ring and idempotents of R are projections.
(3) R is an abelian π-∗-regular π-UU ring.

Proof. (1) ⇒ (2). Using Theorem 4.5, R is periodic and every idempotent of R is
a projection. The rest of this implication follows from Theorem 3.4.

(2) ⇒ (3). In view of Lemma 4.1, R is abelian. Let a ∈ R. Since R is strongly
π-regular, by [32, Proposition 1] am = eu = ue for some integer m ≥ 1, e2 = e and
u ∈ U(R). So, amR = eR, and therefore, R is π-∗-regular since every idempotent
of R is a projection.

(3) ⇒ (1). For any a ∈ R, there exist a projection p ∈ R and an integer
n ≥ 1 such that anR = pR. Then an = pan and p = anr with r ∈ R. As R is
abelian, an = pan = anp = a2nr ∈ an+1R. So, R is strongly π-regular. By virtue
of Theorem 3.4, R is periodic. Further, we show that all idempotents of R are
projections. Let e2 = e ∈ R. Since R is π-∗-regular, eR = qR for q2 = q∗ = q ∈ R.

So, e = qe = eq = q. Therefore, R is ∗-periodic.

We say that a ∗-ring R is ∗-potent if, for each a ∈ R, there exists an integer
n ≥ 2 such that an = a and an−1 is a projection. By Theorem 4.5, every ∗-potent
ring is necessarily ∗-periodic.

Theorem 4.9. Let R be a ∗-ring. The following are equivalent :

(1) R is a ∗-periodic ring.
(2) R is abelian, R/J(R) is ∗-potent and J(R) is nil.
(3) R is abelian, R/J(R) is ∗-periodic and J(R) is nil.
(4) R is an abelian π-UU ring, R/J(R) is ∗-regular and J(R) is nil.

Proof. (1) ⇒ (2). Clearly, R is an abelian periodic ring. By Lemma 3.8, J(R) =
Nil(R) is nil. Let a ∈ R. Applying Theorem 4.5, there exists an integer n ≥ 2 such
that a − an ∈ J(R) and an−1 − (an−1)∗ ∈ J(R), which implies that a = an = an

and an−1 = (an−1)∗ = an−1
∗

is a projection of R/J(R). Thus, R/J(R) is ∗-potent.
(2) ⇒ (3) is an obviously weakened implication.
(3) ⇒ (4). Since R/J(R) is periodic and J(R) is nil, by Corollary 3.7 R is

a periodic ring. Thus, R is π-UU by Theorem 3.4. To show that R/J(R) is ∗-
regular, we only need to verify that a ∗-periodic ring R with J(R) = 0 is ∗-regular.
Under this assumption, R is abelian strongly π-regular, and so Nil(R) = J(R) = 0.
By Lemma 3.3, R is strongly regular. Since all idempotents are projections, R is
∗-regular, as required.

(4) ⇒ (1). With [3, Theorem 4] at hand, R is strongly π-regular. Since J(R)
is nil, every idempotent of R/J(R) can be lifted to an idempotent of R. It follows
from R is abelian that so is R/J(R). Then, by Proposition 4.8, it suffices to show
that every idempotent of R is a projection. Let e2 = e ∈ R. It is clear that e is
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an idempotent of R/J(R). Note that R/J(R) is an abelian ∗-regular ring. By [15,
Theorem 2.10], idempotents coincide with projections in R/J(R). So, e = e∗ = e2,

whence e − e∗ ∈ J(R). As ee∗ = e∗e, (e − e∗)3 = (e − e∗) ∈ J(R), which implies
that e = e∗ is a projection. Therefore, R is ∗-periodic, as stated.

Based on the established above results, one may expect that all ∗-periodic rings
are commutative, but this is not true in general which can be substantiated via the
construction in point (2) below.

Example 4.10. (1) Let R = Zp ⊕ Zp, where p is a prime. An involution ∗ of R

is given by (a, b) �→ (b, a). Then R is a commutative periodic ring, but it is not
∗-periodic since idempotents do not coincide with projections.

(2) Let R = Z4 with involution ∗ = 1R, and let G be quaternion group of
order eight. Then the group ring RG is periodic as it is finite. Now, the map
∗ : RG → RG given by (

∑
g agg)∗ =

∑
g agg

−1 is an involution of RG, and it is
denoted by ∗ again. In view of [14, Lemma 11], the idempotents in RG are same as
these in R. So, every idempotent of RG is a projection. By Theorem 4.5, RG is a
∗-periodic ring. However, the ring RG is demonstrably not commutative.

We close with the simple but useful observation that if R is a ∗-periodic ring and
J(R) is central, then R is commutative. Indeed, by Proposition 4.8, R is an abelian
strongly π-regular ring. In view of Lemma 3.8, one derives that Nil(R) = J(R) is
central. Thus R is commutative by the chief result in [23] (see [5, Theorem 2] too).
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