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Let R be an associative ring. Given a positive integer n > 2, for ai,...,an € R we
define [a1,...,an]n = a1a2---an — anan—1---ai, the n-generalized commutator of
ai,...,an. By an n-generalized Lie ideal of R (at the (r 4+ 1)th position with » > 0)
we mean an additive subgroup A of R satisfying [z1,...,%r,a,y1,...,Ys|n € A for all
zi,y; € R and all a € A, where 7 + s = n — 1. In the paper, we study n-generalized
commutators of rings and prove that if R is a noncommutative prime ring and n > 3,
then every nonzero n-generalized Lie ideal of R contains a nonzero ideal. Therefore,
if R is a noncommutative simple ring, then R = [R,..., R],. This extends a classical
result due to Herstein [Generalized commutators in rings, Portugal. Math. 13 (1954)
137-139]. Some generalizations and related questions on n-generalized commutators and
their relationship with noncommutative polynomials are also discussed.

Keywords: Prime ring; n-generalized commutator (Lie ideal); regular ring; idempotent;
PI; GPI; noncommutative polynomial.

Mathematics Subject Classification 2020: 16N60, 16W10

1. Introduction

Throughout, R always denotes an associative ring, not necessarily with unity, with
center Z(R). Given z,y € R, let [x,y] := 2y — yx, the additive commutator (or the
Lie product) of a and b. For additive subgroups A, B of R, let AB (respectively,
[A, B]) denote the additive subgroup of R generated by all elements ab (respectively,
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[a,b]) for a € A and b € B. An additive subgroup L of R is called a Lie ideal of R
if [L, R] C L. Given two Lie ideals Ly and Ly of R, it is clear that both L; Lo and
[Ly1, Lo] are Lie ideals of R. A Lie ideal L of R is called proper if [M, R] C L for
some nonzero ideal M of R. Given a nonempty subset T of R, let Z(T') denote the
ideal of R generated by T'. A ring R is called prime if, for a,b € R, aRb = 0 implies
that either a =0 or b = 0.

Referring to [26], by a commutator ring we mean a ring R satisfying R = [R, R].
In 1956 Kaplansky proposed 12 problems in ring theory (see [16]). One of these was
whether there is a division ring D satisfying D = [D, D]. Harris constructed the
first example of division commutator rings (see [13]). Related researches are still
quite active up to now (see [3, 26, [30] et al.).

For a,b,c € R, we let [a,b,c] := abc — cba, which is called the generalized
commutator of a, b and ¢. Given additive subgroups Ay, A, A3 of R, let [A;, A, As5]
denote the additive subgroup of R generated by all elements [a1, a2, ag] for a; € A;,
i = 1,2,3. In 1954 Herstein initiated the study of generalized commutators (see
[14]). An independent work dealing with generalized commutators of matrices over
fields was due to Taussky (see [29]). Herstein proved that [R, R, R] is an ideal of R
(see [T4, Theorem 3]) and is equal to the whole ring R if R is a noncommutative
simple ring (see [I4, Theorem 4]). Further, if R is a simple Artinian ring, then
every element of R is a sum of three generalized commutators (see [I4, Theorem
6]). Generalized commutators also naturally appear in analysis. A classical analytic
result of Brown and Pearcy [4] states that in a C-algebra of bounded operators
on a Hilbert space of dimension > 2, every operator is a generalized commutator
(see also [29]). Relevant researches have been brought up again in recent years. See
[11,17] and the references therein. In the paper, we study generalized commutators
in a more generalized form.

Definition 1. Given a positive integer n > 2, for aq,...,a, € R we define
[a1, ..., ap]n i=a1a2 -+~ @y — @nan_1---ay,
which is called the n-generalized commutator of ay, ..., a,.

Given additive subgroups Ay, As, ..., A, of R, let [A1, As, ..., A,], denote the
additive subgroup of R generated by all elements [a,aq,...,a,], for a; € A;,
i=1,...,n. If n =2, then [a1,as]s = a1, a2] = a1as — azay, the ordinary additive
commutator of a; and as. If n = 3, then [ay, az,as]s coincides with [a1, az, as],
the generalized commutator of a1, as, as. The purpose of this paper is to study the
following:

Properties of n-generalized commutators (see §2 and §3).

n-Generalized commutator rings (see §4).

n-Generalized Lie ideals as a generalization of Lie ideals (see §5, §6 and §7).
Some generalizations connected to noncommutative polynomials (see §8).
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2. n-Generalized Commutators

We begin with an observation. Given an odd positive integer n > 1, the following
two equalities hold in an arbitrary ring R:

[a1,a2,...,ap)nr = [a1,a2,...,an7]n — [a1,a2,. .., Tan_1,an]n .
+ a1, a9, ..., an_or,an—1,anln — -+ [a1r,ag, . . ., an]n( :
and
rlat,ag, ... anln = la1,a2,. .., ray]n — [a1, a2, ..., an_17, anln )
+[a1,a2,. .., Tan—2,0n-1,Qn|n — -+ + [rar,az, ..., an]n. @

Therefore, the following gives a generalization of [T4], Theorem 3].

Theorem 2.1. Let R be a ring. Then [R, ..., Rlapt+1 is an ideal of R for n > 1.

Clearly, Theorem [2.1] has a more generalized form: If Iy, ..., [s,11 are ideals of
R, then [I1,...,Isn4+1]2n+1 is an ideal of R for n > 1. Theorem 2] serves as the
starting point for understanding this nature of [R,..., R],. A natural question is
to ask whether [R,..., R], is an ideal of R for even n. Clearly, it is not in general
true for n = 2. We begin with some basic observations.

Lemma 2.2. Let R be a ring with a Lie ideal L. Then the following hold:

(i) If I is an ideal of R, then IL and LI are ideals of R.
(ii) L+ LR=Z(L)=L+ RL.

Proof. (i) Clearly, RIL C IL. Also, ILR C I([L,R]+ RL) C IL+ IRL C IL.
Therefore, RL is an ideal of R. Similarly, LI is an ideal of R.

(ii) Note that RL C [L,R]+ LR C L + LR. By (i), RLR C LR. Therefore,
I(L)=L+LR+RL+RLRC L+ LR and so Z(L) = L+ LR. The other case has
the same argument. O

Proposition 2.3. Let R be a ring. Then the following hold:

(1) [R7 aR]n ([ ]) fOT n > 2.
(ii) [R,...,Rl2n—1 C [R R, R] forn > 2.
(111) [R7 R] 2n [ ]+[Ra'-'7R]2n71 QI([R7R]) fornZQ.
(iv) [R, R] +[R, R, R] = I([R, R]).
() [Ro....Rlon C [RRR.R + [R.....Rlsns C [R.R.R| + [R,R.R,E] for
n 2 3.

(Vi) If R = R, then [R,..., Rl + R, ..., Rlus1 = Z([R, R]) for k > 2.
(vii) If R = R?, then [R,R]+ [R, ..., Rlan—1 = Z([R, R]) for n > 2.

Assume that n > 3. By induction on n, we assume that [R, ..., R],—1 C Z([R, R]).

Proof. (i) The case n = 2 is trivial. In view of [I4, Lemma 1], [R, R, R] C Z([R, R)]).
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Let aq,...,a, € R. Then
[a1, ... anln = [a1,. .., an_1]n—1an — [an,an_1an_2- - a1]
€ [R,...,Rlp-1a, + [R, R] C Z([R, R]).

Therefore, [R, ..., R], CZ([R, R)]).
(ii) It is trivial for n = 2. Assume that n > 3. Applying the inductive argument,
we assume that [R, ..., R]a,—3 C [R, R, R]. Let ay,...,a2,—1 € R. Then

a1, ..., a2n—1]2n—1 = [a1a2a3, a4, . .., @2p—1]2n—3 + G2n—102n—2 " - - as]ar, a2, as]
€[R,...,Rlans + R, R, R|
since, by Theorem 2] [R, R, R] is an ideal of R. Therefore,
[R,...,Rlan_1 C[R,..., Rlan_s+[R, R, R = [R, R, R].
(iii) Applying the computation in (i), we get
[R,...,Rlon C[R,R|+[R,...,Rl2n 1RC[R,R|+[R,...,R|2n1

since, by Theorem [ZT] [R,..., R]2n—1 is an ideal of R. By (i), [R,..., R]an—1 C
Z([R, R]). Hence [R,...,R]ap, C[R,R]+ [R,...,Rlan—1 CZ(|R, R]), as desired.
(iv) By (i), it is clear that [R, R] + [R, R, R]| C Z([R, R]). Let a,b,z € R. Then

[a,b)z = [a,b, x] + [z, ba].
This means that [R, R|R C [R, R, R] + [R, R]. In view of (ii) of Lemma [2.2]
Z([R,R]) = [R,R] + [R,R|R C [R, R, R] + [R, R].

Hence Z(|R, R]) = [R, R, R] + [R, R].
(v) Let aq,...,a2, € R. Since [R, ..., R]2,—3 is an ideal of R and is contained
in [R, R, R] by (ii), we have

[a17 az, ..., a2n]2n
= [a1ag - a2n—3, G202, A2n—1, G2n]a + G2nG2n 1020 —2[a1, a2, . - ., G2n—3]2n—3
€ [R7 Ra R7 R] + [Ra teey R]2n—3 - [Ra R7 Ra R] + [R7 Ra R]

Hence [R, ..., Rlan C [R, R, R, R+ [R,..., Rlan_3 C [R, R, R] + [R, R, R, R].
(vi) Case 1. k = 2n—1, where n > 2. Let aq,...,a2, € R. Since [R, ..., R]an_1
is an ideal of R, we have

[alaz cerA2n—1, a2n]
= [a17a27 B a2n]2n - a2n[a17a27 B a2n71]2n71
S [R, .. .,R]Qn + agn[R7 .. .,R]anl - [R, .. .,R]Qn + [R, .. .,R]anl.

Therefore, [R*» 1 R] C [R,...,R]on + [R,..., Rlan_1. By R = R? we have R =
R>~'. Hence [R,R] = [R**',R| C [R. ..., Rlon + [R,. .., Rlan_1.
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We also have

[a2n; a2n—1]a2n—2 s Q201 = [a2n7 A2p—15 -+ a1]2n + [ah sy G2n—2, a2n—1a2n]2n—1
€[R,...,Rlan +[R,...,Rlon-1.

Therefore, we have [R, R|R = [R, RJR*"? C [R,...,R]an+[R, ..., R]2n—1. In view
of Lemma and (i), we get

I([R,R)) = [R,R] + [R,RIRC [R, ..., Rlan + R, ..., Rlan_1 C Z([R, R)).

Hence [R, ey R]Qn + [R, ey R]2n71 = I([R, R])
Case 2. k = 2n, where n > 1. Let ay,...,a2,41 € R. Then

la1,az]as - - - a2pGont1 = [a1,. .., Gont1]ont1 — [@2a1,03, . .., Q2n, G2pnti)on

S [R,...7R]2n+1 + [R,...7R]2n.

Note that R = R? = R?*"~!. Therefore, [R,R|R C [R,...,R]an+1 + [R,..., Rlan.
Similarly, R[R,R] C [R,...,Rlant1 + [R, ..., R|2n. We then have

[R,R] = [R,R* ] CR[R,R]+ [R,RIRC |R,...,Rlans1 +[R....,Rlon.

By (ii) of Lemma 22 and (i), we have [R,..., Rlan+1 + [R, ..., Rlan = Z([R, R]).
(vii) In view of (iii) and (vi),

I([R, R]) = [R, . .7R]2n + [R, . '7R]2n71
C[R,...,Rlon +|R,R]+[R,...,Rlan_1
=[R,R]+[R,...,R]on-1 CZ(|R, R]).

This implies that [R, R] + [R, ..., Rlan—1 = Z([R, R]). O

Recall that, given a positive integer n, R™ denotes the additive subgroup of
R generated by all elements ajas---a, for a; € R. Example (1) shows that the
inclusions in (i), (ii) and (iii) of Proposition[Z3] are proper. Example (2) shows that
the assumption that R = R? is essential to (vi) of Proposition 2.3l

Given a ring R and n a positive integer, let M,,(R) denote the n X n matrix ring
over the ring R. If 1 € R, we let e;;’s, 1 < 4,7 < n, be the usual matrix units of
M, (R).

Example (1) Let R := M,,(2Z), where m > 2. Then [R,...,R],
and [R,...,R]an—1 € [R, R, R] for any n > 3. Moreover, [R,..., R]a,
[R,...,R]op—1 for any n > 2.

In view of Proposition 23] it suffices to claim that [R,R| ¢ [R,...,R], for
n > 3. Then 4ejo = [2e12,2¢e90] € [R, R] but [R,...,R], C M,,(8Z) since n > 3.
This proves our claim. The other two cases have similar arguments. (|
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(2) Given a positive integer m > 1, let ST,,(K) denote the strict upper trian-
gular subring of M,,,(K), where K is a unital ring. That is,

ST (K) =14 > aijei; € Mp(K) | ai; € K Vi, j
1<i<j<m
Set R := ST,,(K). Note that R™ =0 and for 1 < k < m — 1, we have
RF = > aiei € My (K) | ai; € K Vi, j
1<i; i+k<j<m
A direct computation shows that [R,..., R]; = R* for k > 2. Moreover, we have
{0} =R"CR™'C.--CR*CR
Therefore, for m > 4, we have
[R,R,R]+ [R,R,R,R] C [R,R] =Z([R, R]).

O
Clearly, R = R? if R is a unital ring. Continuing Proposition 23, we further
study the nature of [R, ..., R], for n > 2.

Theorem 2.4. Let R be a ring satisfying R = R%. Then the following hold:

(i) [R,...,R]on—1+[R,...,R]an—3 = [R, R, R] for n > 3.
(ii) If [R,..., R]an is an ideal of R, then [R,...,R]on = Z([R, R]) for n > 1.

Proof. (i) We first claim that [R, R, R] C [R, ..., Rlan—1+[R, ..., R]an_3 forn > 3.
Let ai,...,a2,—1 € R.In view of Theorem21] [R, ..., R]2,—_3 is an ideal of R. Then

[al, a2,a304 -+ azn—l]
=la1,a2,...,02n—2,02n—1]2n—1 + (G2n—1G2n—2 - - - a3)azas
—(azay - 'azn—l)a2a1

= [al,a2, .- -7a2n—27a2n—1]2n—1 - [a37a47 .- ~7a2n—27a2n—1]2n—3a2a1

€ [R,...,Rlan—1+[R,...,Rlan_3.

Since R = R 3, we get [R,R, R] C [R,...,Rlan_1+|[R,...,R]an_3 forn > 3. On
the other hand, by (ii) of Proposition 23] we have

[R, ey R]anl + [R, RN R]ang - [R, R, R]
for n > 3. Therefore, [R, ..., Rlon—1+ [R, ..., R]on—3 = [R, R, R].
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(ii) Tt is trivial for n = 1. Suppose that n > 1.

Step 1. R[R,R] C [R,...,R]an. Let a1,...,a2,,7 € R. Since [R,..., R]a, is an
ideal of R, we have
[ala R a2n]2nr
=la1,...,a2n7]2n — [a1, ..., a2 1,220 + -+ [a1, 027 . .., a2n ]2,

+a2na2n,1 e 0,2[7"7 (11] S [R, ey R]Qn,

implying ag,az,_1---azlr,a1] € [R,..., Rla,. That is, R*"}[R,R] C [R,..., Rlan.
Recall that R = R%. We get R>"~! = R and so R[R,R] C [R,..., R]an.

Step 2. [R,...,R]an—1 C [R,...,R]o,. Let ay,...,a2,—2,2,y € R. Then
[zy, a1, ..., a2n—2]on—1
= [z,y,a1,...,02n—2]on — G2n—2 - aa1]z,y] € [R, ..., R]an
since agy—o -+ asai[zr,y] € [R,..., R]an by Step 1. Hence we have
[R:,R,...,Rlan_1 C[R,...,Rlon.

By R = R?, we conclude that [R, R, ..., R]o,_1 C [R,..., R]2,, as desired.
It follows from both Step 2 and (vi) of Proposition 23] that

[R, .. .,R]Qn = [R, R,.. .,R]anl + [R, .. .7R]2n :I([R, R]),

as desired. O

The following is an immediate consequence of both (vi) of Proposition 23] and
(ii) of Theorem 241

Corollary 2.5. Let R be a ring satisfying R = R%, n > 2 a positive integer. Then
the following are equivalent:

(i) [R,..., Rl2n = I([R, R]).
(11) Either [R, ey R]2n71 Q [R, ey R]Qn or [R, ey R]2n+1 Q [R, ey R]Qn

Similarly, we also have the following corollary.

Corollary 2.6. Let R be a ring satisfying R = R%, n > 2 a positive integer. Then
the following are equivalent:

(1) [R7 . 'aR]2n—1 = I([R, R])
(ll) FEither [R, ey R]gn Q [R7 ey R]2n—1 or [R7 ey R]Qn_g g [R7 ey R]Qn—l-

Up to now, the following problem keeps unknown.
Problem 1. Let R be a ring satisfying R = R? and n > 2 a positive integer.

(i) Is [R,..., R]2, an ideal of R?
(ii) Is [R, ..., R]2n—1 equal to Z([R, R])?

2250221-7
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We will answer Problem 1 affirmatively for unital rings, regular rings and rings
generated by idempotents, etc. in the next section.

3. Results on Problem 1

For (i) of Problem 1, we have the following observation.

Proposition 3.1. Let R be a ring satisfying R = R?, n a positive integer n > 2.
Then the following are equivalent:

(i) [R,...,R]an is an ideal of R.
(ii) R[R,R]C[R,...,R]on.
(ifi) [R,R]R C[R,...,R]an.
Proof. “(i) < (ii)”: Set L :=[R, ..., R]a,. It follows from Theorem 2] that if L is
an ideal of R, then L = Z([R, R]) and hence R[R, R] C L. Conversely, assume that
RIR,R] C L.

Let a1, ...,a,,r € R. By the proof of Step 1 in (ii) of Theorem 24}

[ah e agn]gnr + a9na9n—1 - '(12[’1"7(11] S [R7 e R]gn = L.

Since agpa9,—1 -+ a2lr,a1] € R[R,R] C L, we have [aq,...,as,]onr € L. That is,

LR C L. Therefore, L is a right ideal of R. Since L is a Lie ideal of R, we have
RL C [R,L]+ LR C L. This proves that L is an ideal of R.

By symmetry, we also have the same argument for the equivalence “(i) < (iii)”.

O

Lemma 3.2. Let R be a ring. Suppose that [R,...,R]r C [R,...,R]k1 for all
k> 2. Then [R,...,R], =Z(|R,R]) for alln > 3.
Proof. In view of Proposition 2.3l we have

[R,R]| C[R,R,R]C[R,...,R], CI(|R,R]

for n > 3. Since [R, R, R] is an ideal of R, we get Z([R, R]) C [R, R, R] and hence
[R,...,R], =Z(|R, R]) for all n > 3. O

~—

Let R be an algebra over a field F'. If char F' # 2, then 2R = R. Before proving
the next theorem, we need the following lemma.

Lemma 3.3. Let R be a ring. If R = R? and 2R = R, then R is equal to its
additive subgroup generated by all square elements of R.

Proof. We denote by A the additive subgroup of R generated by all square elements

of R. Let z,y,2 € A. Then zy + yz = (v +y)? — 2°> — y? € A. Therefore, we have
zxy — ayz = (y(zx) + (z2)y) — (x(yz) + (y2)z) € A

This implies that 2zay = (z(xy) + (xy)z) + (zay — xyz) € A. We thus get 2R3 C A.

Since 2R = R and R = R?, we conclude that A = R, as desired. O

2250221-8
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Theorem 3.4. Let R be a ring satisfying both R = R? and 2R = R. Then
[R,...,R], =Z([R, R]) for all n > 3.

Proof. In view of LemmaB.2] it suffices to claim that [R,...,R]; C [R,..., R]x+1
for all k > 2. Let y,x1,...,2x—1 € R, where k > 2. We have

[y271'17 ceey ‘kal]k = [ya Y, T15- -, mk*l]k‘l’l S [Ra R R]k+1-
That is,
[yQaRw"aR]k C [Rw-';R]k-‘rl

for all y € R. Since R = R? and 2R = R, it follows from Lemma B3] that R
is equal to its additive subgroup generated by all square elements of R. We get
[R,R,...,Rlr C[R,...,R]it1, as claimed. O

A ring R is said to have the property (*) if given x,y € R there exists an
element ¢ € R such that x,y € ¢R. Clearly, every unital ring has the property (*).
Moreover, if R has the property (*), then for finitely many z1,...,2, € R there
exists an element ¢ € R such that z; € cR for i = 1,...,n. A ring R is called
regular if, given a € R, there exists an element a~ € R satisfying aa~a = a. In
view of [10], Theorem 1.1] (it is true even when the ring R has no unity), any regular
ring R has the property (*). Note that every ring R having the property (*) always
satisfies R = R2.

Proposition 3.5. Let R be a ring having the property (*). Then [R,R] +
[R, R, R, R| = Z([R, R]).

Proof. In view of (i) of Proposition 23 [R,R] + [R,R,R,R] C Z([R,R]). Let
u,v,w € R. Since R satisfies the property (*), there exists a € R such that u,w €
aR. Write u = axz and w = ay for some z,y € R. Then

[u, v]w = [azx,v]ay = [a, x,va,y] + [y,vaza] € [R, R, R, R] + [R, R].

That is, [R, R]R C [R, R, R, R] + [R, R]. Therefore, it follows from (ii) of Lemma
that

I([R,R]) = [R.R] + [R,R|R C [R, R, R, R] + [R, ],
implying that Z([R, R]) = [R, R, R, R] + [R, R]. |
The following corollary is an immediate consequence of both Proposition [3.5]
and (ii) of Theorem 241

Corollary 3.6. Let R be a ring having the property (*). Then [R,R, R, R] is an
ideal of R if and only if [R, R] C [R, R, R, R].

We now answer Problem 1 for regular rings in the affirmative. A ring R is said
to have the property (f) if, for any = € R, there exists an idempotent g € R such
that = € gRg. Clearly, every ring having the property (#) satisfies R = R2.

2250221-9
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Theorem 3.7. Let R be a ring satisfying the property (t). Then [R,...,R], =
Z([R, R]) for all n > 3.

Proof. Let ay,as,...,a; € R, where k > 2. Since R is a ring satisfying the property
(%), there exists an idempotent g € R such that a; € gRg. We have

[a17a27 .. 'aak]k} = [a17a27 e 7a/kag]k}+1 S [Ra e 7R]]€+1'
Therefore, [R,...,R];x C [R,..., R|k+1 for all & > 2. In view of Lemma B2l we get
[R,...,R], =Z(|R, R]) for all n > 3. O

Clearly, every unital ring has the property (#). In view of [12, Lemma 2.4],
every regular ring also satisfies the property (). The following is an immediate
consequence of Theorem B.71

Corollary 3.8. Let R be either a unital ring or a reqular ring. Then [R, ..., R], =
Z([R, R]) for all n > 3.

We next turn to answer Problem 1 for rings, which are generated by idempotents.
Note that a ring R, which is generated by its idempotents, satisfies R = R?. Given
a nonempty subset T of R, let T denote the subring of R generated by 7. We begin
with a known result (see, for instance, [9, Fact 2]).

Lemma 3.9. Let R be a ring with an ideal I and let B be an additive subgroup of
R. Then [I,B] = [I, B].

Theorem 3.10. Let R be a ring generated by its idempotents. Then [R, ..., R], =
Z([R, R]) for n > 3.

Proof. Let E denote the additive subgroup of R generated by its all idempotents.
By assumption, we have E = R.

Step 1. [R,R] C [R,...,R]yio for k> 1. Let x € R and e = ¢? € R. Then

[x,e] =[x, e1,ea,...,CLt1]kt2,
where e; = e for all 4. This implies that [z,e] € [R,..., R|g+2. That is, [R, E] C
[R,..., R]k+2. It follows from Lemma[39 that [R, E] = [R, E] = [R, R]. Therefore,
[R,R] C [R,...,R]pt2-
Step 2. [R,RIRC [R,...,R]gi2 for k> 1. Let w,x € R and e = ¢? € R. We claim
that [w,e]z € [R,..., R|pt+2. We compute

[w,e]lz = [w, e, e]lx = [w, e, ex] — [w, ze, e] + [wx, e, €]
= [w,e1,ea,..., ek, ex]pro — [w,ze,e1,ea,. .., eL|kro
+wz, e, e, ea,. .., ekt
€ [R,...,Rlpy2,

where e; = e for all ¢. This implies that [R,E]R C [R,..., R]x+2. Recall that
[R, E] = [R, R]. Therefore, [R,R|R C [R, ..., R]k+2-
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By Steps 1 and 2, [R,R] + [R,R|R C [R, ..., R]ky2 for k > 1. By Lemma 2.2
[R,R]+ R, R|R = I([R, R]) and by (i) of Proposition[2Z3] we have [R, ..., R]jt2 =
Z([R, R)). O

Example (3) Let F be a field of characteristic 2, and let V' be the vector space
over F' with an infinitely countable basis vi,ve,...,v,,.... Let R be the algebra
generated by V' with multiplications: v;v; = v; for all 4, j > 1. Then R is generated
by all its idempotents since v? = v; for all i. Also, R = R? and a direct computation
shows that
I([R,R) = [R,...,Rls = Y F(vi+v))
1<i<y

for all k& > 2. Moreover, Z([R, R]) is nilpotent of index 2, RZ([R,R]) = 0 and
R/I(|R,R]) & F. Indeed, the map ¢: R — F defined by ¢(3>;_, Bivi) = >0, Bi
where all 3; € F is an epimorphism with kernel Z([R, R]). In particular, Z([R, R])
is the unique maximal ideal of R.

Given z,y € R, write z = Y7, ayv; and y = 23:1 Bjvj, where oy, 85 € F for
all 4,7. Then xy = (22:1 Bj)z, implying that [ry,z] = 0. This means that R is a
PIL-ring satisfying the identity [XY, X]. O

The following is well known (see, for instance, [22, Lemma 2.1] with a short
proof).

Lemma 3.11. If L is a Lie ideal of an arbitrary ring R, then Z([L,L]) C L + L?.
Corollary 3.12. Let R be a ring, and let E be the additive subgroup of R generated
by all idempotents of R. Then

[E,E| + RE,E|R[E.E)RE.E|R C [R, .., R

for alln > 3.

Proof. Let n > 3 be a positive integer. Since E is a ring generated by its idempo-
tents, it follows from Theorem [3.10] that

I5([E,E)) = [E,...,El, C[R,..., R]n,

where Z5([E, E|]) denotes the ideal of E generated by [E, E|. In view of Lemma[Z2]
I([E,E)|) = [E,E] + E[E,E] + E[E, E|E.
Note that E is both a subring and a Lie ideal of R. It follows from Lemma B.11]

that R[E,E|R C E. Hence [E,E| + R[E,E|R|E,E|R[E,E)R C [R,...,R],, as
desired. O

A ring R is called semiprime if, for a € R, aRa = 0 implies a = 0. The semiprime-
ness of a ring R is equivalent to saying that R has no nonzero nilpotent one-sided
ideal.
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Corollary 3.13. Let R be a semiprime ring, and let E be the additive subgroup
of R generated by all idempotents of R and n > 2 a positive integer. Then either
ERC Z(R) or [R,...,R]a, contains the nonzero ideal R[E, E|R[E, E|R[E, E|R.

Proof. Assume that [R, ..., R]s, does not contain any nonzero ideal of R. Suppose
first that [E, E] # 0. The semiprimeness of R implies that

0 # (R[E,E))* C R[E,E|R[E,E|R[E,E|R C |R,..., R]on.

Therefore, R[E,E|R[E,E|R[E,E|R is a nonzero ideal of R contained in
[R, ..., R]2y. This is a contradiction.

Therefore, [E,E] = 0. Let e = ¢* € R and # € R. Then e + ezx(1l — ¢) and
e+ (1—e)xe are idempotents of R. Therefore, [e,e+ex(l—e)] =0 = [e, e+ (1—e)xe],
implying that ex = we. That is, e € Z(R). Given z,y,2 € R and e = e € R, we
have

6[x7ya Z] = [61’, Y, 2,€15 -+, 62’n73]2n < [R7 (RS R]Qna

where e; = e for all i. This implies that e[R, R, R] C [R, ..., R]2,. Clearly, e[R, R, R]
is an ideal of R and hence e[R, R, R] = 0. In particular, ¢[R, R,e] = 0 and hence
e[R, R] = 0. We get eR C Z(R). This proves that ER C Z(R), as desired. O

The following example constructed in the proof of [23, Theorem 1.2] shows that
[R,...,R], =Z(|R, R]) holds for all n > 2 even when neither R has the unity nor
R is regular.

Example (4) Let F be a field, and let n > 3 be a positive integer. Let
R:=Fen+ Y  Fey CMy(F).
2<i<j<n
Clearly, R is a subring of M,,(F) and R = R?. Therefore, R is a Pl-ring. Since

eo1R =0, R is not a unital ring. A direct computation shows that

I([R7R]): [R7R]:F621+ Z Feij.

2<i<j<n
Moreover, [R,R] = [R,R,...,R]; for all & > 3, Z([R, R]) is nilpotent of index n
and R/Z([R,R]) 2 Fy & --- & F,_1, where F; =F fori=1,...,n—1. O

4. n-Generalized Commutator Rings

As followed above (see [26]), by a commutator ring we mean a ring R satisfying
R = [R, R]. We study a generalization of commutator rings as follows.

Definition 2. Given a positive integer n > 2, a ring R is called an n-generalized
commutator ring provided R = [R, ..., R],.

Therefore, a 2-generalized commutator ring just means a commutator ring (see
[26]) and a 3-generalized commutator ring means a generalized commutator ring
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due to Herstein (see [14]). Clearly, the direct sum (respectively, direct product) of
n-generalized commutator rings is also an n-generalized commutator ring.

In view of Corollary 3.8 a unital ring R is an n-generalized commutator ring
where n > 3 if and only if 1 € Z([R, R]). In particular, every unital commutator
ring is an n-generalized commutator ring for any n > 3. For commutator rings, see
[26, Propositions 7, 12 and Theorem 13|, and for algebras with a surjective inner
derivation, see [30, Example 1.1-1.6].

Given a unital ring R, let A, (R) denote the nth Weyl algebra over R (see
[26, Definition 3]). Suppose that R is a Z/pZ-algebra where p is a prime integer,
which is not a commutator ring. In view of [26, Proposition 8], A,(R) is not a
commutator ring. However, since 1 € [4,,(R), A, (R)], it follows from Corollary B8
that A, (R) is an m-generalized commutator ring for any m > 3.

Let R :=M,,,(T'), where T is a unital ring and m > 2. In view of [2I, Theorem
2.1], we have R = Z([R, R]). It follows from Corollary B:§ that R is an n-generalized
commutator ring for all n > 3. Note that [R, ..., R], contains all commutators and
generalized commutators if n > 3. Khurana and Lam proved a more strong result:
Every element of R is the sum of one commutator and a generalized commutator
(see [T, (2) of Theorem A]). In addition, if T is a PI-ring, then so is R (see [28]
Theorem 6.1.1]). In view of [2, Theorem 1], R # [R, R] (that is, R is a 3-generalized
commutator ring but is not a commutator ring, see also [26, Proposition 6]).

Example (5) Let A, B be unital rings, and let M be a unital (A, B)-bimodule.
Let R := Tri(A, M, B) be the triangular ring consisting of all elements (g ') for

a € A,m € M,b € B under the usual matrix operations. Note that (8 %z) € [R, R

0m

since [((1) 8), (8 %1)} = (0 0 ) Therefore, R is a commutator ring if and only if both

A and B are. Moreover,

cim oy (FEAAD) M
=0 s

Therefore, for a positive integer n > 3, R is an n-generalized commutator ring if
and only if both A and B are. O

(6) Given a positive integer m, let T;,,(R) denote the upper triangular sub-
ring of M,,(R), where R is a unital ring. Then, for m > 2, we have T,,,(R) =
Tri(R, M, T;,—1(R)), where M = {377, aije1; | a1; € R}. In view of Corollary B8]
and Example (4), applying the inductive argument we can prove that if n > 2, then
T (R) is an n-generalized commutator ring if and only if R is. [

(7) Let R :=Z - I, + M,,(2Z) with m > 1, where I,,, is the identity matrix
of M;;,(Z). Then R is a unital ring but I,, ¢ [R,..., R], for n > 1, in particular,
[R,...,R]. # R.

Indeed, it is clear that I,, ¢ [R, R]. Suppose that n > 3. In view of Corollary
B3 [R,...,R], = Z([R, R]). Therefore, Z([R, R]) C M,,,(4Z). In particular, I,, ¢
[R, ..., R],, as desired. O
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In a recent paper, Eroglu prove that if 1 € [R, R] then R = [R, R] (see [8]
Theorem 1.1; 22, Theorem 1.3]). As an immediate consequence of Corollary B8l we
have the following corollary.

Corollary 4.1. Let R be a unital ring, and n > 3 a positive integer. If 1 €
[R,...,R],, then R is an n-generalized commutator ring.

We continue to study Problem 1 in various ways.

Proposition 4.2. Let R be a ring, and n > 2 a positive integer. Then
[K,R,...,R]n C[R,R,...,Rlp+1,
where K = [R, R*]+ R[R, R]. Moreover, K is an ideal of R. In addition, if R = R?
then K =Z([R, R]).
Proof. Given a positive integer n > 2, we let
A:={a€R|[a,R,...,R], C[R,R,...,R]lp+1}

Clearly, A is an additive subgroup of R. We first claim that 22, 23 € A for all z € R.
Given z € R, for j = 1,2 we have

— [

[-T71'j7yla-~-;yn—1]n+1 ;y17"';yn—1]n

for all 41, ...,yn—1 € R. This proves that 22, 2> € A.
Let x,y,2 € R. Then 2y + yx = (z +y)? — 22 — y? € A. Therefore,

(zy)z + 2(xy), (z2)y + y(zz) € A
and so
[z,y2] = wyz —yze = ((xy)z + 2(xy)) — ((z2)y + y(z2)) € A.

That is, [R, R?] C A.
We next claim that R[R, R] C A. Since (2%y + yz?) + (y*z + zy?) € A and

(+y)* —a2® =y’ = (2%y +y2®) + (V’x + 2y®) +ayr +yay € A,
we get zyx + yry € A. Linearizing zyx 4+ yry at x, we get xyz + zyx € A. Then
zly, 2] = zyz — wzy = (zyz + zya:) — ((zy)z + x(zy)) € A.

That is, R[R, R] C A. Hence [R, R?| + R[R, R] C A, as desired.
Recall that K := [R, R?] + R[R, R]. Then

RK = R[R, R*] + R*|R,R] C R[R,R] C K.

In view of Lemma [Z2 R[R, R] is an ideal of R. Therefore, (R[R, R])R C R[R, R]
and so

KR =[R,R* R+ (R[R,R))R C [R* R* + R[R, R*] + (R[R,R))R C K.
This proves that K is an ideal of R. In addition, if R = R2, then it follows from
Lemma 22 that K = [R, R] + R[R, R] = Z([R, R]). O
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Corollary 4.3. Let R be a noncommutalive semiprime ring, n > 2 a positive
integer. Then [[R7 R?| + R[R,R], R, .. .,R} is a monzero ideal of R, which is
contained in [R, R, ..., Rlay.

2n—1

Proof. Set I := [[R,R*] + R[R,R],R,...,R], . Since [R,R*]+ R[R,R] is an
ideal of R (see Proposition .2)). In view of Egs. (Il) and @), I is an ideal of R,
which is contained in [R, R, ..., R]ay. It suffices to claim that I # 0. Otherwise, we
have I = 0.

Let w,z,y,z € R. Then

0= [w[z, Yz, 2, z] on = [w[a:,y], 22"_1]

for all w,z,y,z € R. In view of [I9, Theorem, p. 19], [w[m,y],z] = 0 for all
w,z,y,z € R. That is, [R[R, R], R] = 0 and so [R(R[R, R]), R] = 0. This implies
that [R, R|R[R, R] = 0. The semiprimeness of R implies that R is commutative, a
contradiction. O

As a consequence of Proposition 2] the following characterizes n-generalized
commutator rings for n > 3.

Theorem 4.4. Let R be a ring. Then the following are equivalent:

(i) R=Z([R, R]).
(ii) R is an n-generalized commutator ring for all n > 3.
(iii) R is an n-generalized commutator ring for some n > 3.

Proof. “(i) = (ii)”: Assume that R = Z([R, R]). This implies that R = R? and
hence [R, R?] = [R, R]. By (ii) of Lemma[Z2 we have [R, R?]+ R[R, R] = Z(|R, R)).
In virtue of Proposition E.2]

_ 2
[R.R,...,Rln_1 = [[R,R*| + RIR,R|,R,....R] _ C[RR,....Rl,

for all n > 3. In view of Lemma B2l we get R = Z([R,R]) = [R, R, ..., R],, as
desired.

It is trivial for (i) = (iii)”.

“(iii) = (i)”: Suppose that R is an n-generalized commutator ring for some n >
3. In particular, by (i) of Proposition 23] we have R = [R, R, ..., R], C I([R, R])
and so R =Z([R, R]). |

Since R = Z([R, R]) for any commutator ring R, the following corollary is an

immediate consequence of Theorem [£.4]

Corollary 4.5. Let R be a commutator ring. Then R is an n-generalized commu-
tator ring for all n > 3.

Taking into account what we have obtained so far, even a weaker version of
the stated above Problem 1 is still unknown: Given a ring R satisfying R = R?, if
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[R,R] =Z([R,R]),is [R,..., R], equal to Z([R, R]) for any n > 37 A closely related
question to the last corollary is of whether or not R/I being a commutator ring for
some nilpotent ideal I of nilpotence index k will imply that R is an n-generalized
commutator ring for some n > 2 depending on k7 It is not in general true. Indeed,
we choose a commutator ring S and a nilpotent ring I with nilpotence index 2
(that is, I? =0 but I #0). Let R:= S® 1. Then R/I = S, implying that R/I is a
commutator ring. Suppose on the contrary that R is an n-generalized commutator
ring for some n > 3. Then R = [R,...,R],, € R" C R? implying that R = R?.
However, R?2 = S C S@® I = R, a contradiction.

We answer the question with the necessary assumption that R = R? in the
affirmative as a generalization of Corollary 5l

Theorem 4.6. Let R be a ring satisfying R = R?. Suppose that R/I is a commu-
tator ring for some nilpotent ideal I of R. Then R is an n-generalized commutator
ring for all n > 3.

Proof. Since I is a nilpotent ideal of R, I* = 0 for some positive integer k > 1. By
assumption, R/I = [R/I, R/I]. Therefore, R = [R, R] + I. Since R = R? we get
R = R*. This implies that

R=RF=([R,R]+1)" CI(R R]) + I* = I([R, R)).

That is, R = Z([R, R]). In view of Theorem [44] R is an n-generalized commutator
ring for all n > 3. O

Let R be either a simple ring which is not a PI-ring or a commutator ring. Then
R/I is not a Pl-ring for any proper ideal I of R. The first case is clear. The latter
case is then a consequence of [2, Theorem 1].

Theorem 4.7. Let R be a ring such that R/I is not a PI-ring for any proper ideal
I of R. Then R is an n-generalized commutator ring for all n > 3.

Proof. In view of Lemma 22 I := R[R,R] is an ideal of R. Suppose that I
is a proper ideal of R. Then R/I satisfies the polynomial identity X;[Xs, X3], a
contradiction. Therefore, R[R, R] = R, implying that R = Z([R, R]). In view of
Theorem [44] R is an n-generalized commutator ring for all n > 3. O

It is worthwhile noticing that the so-constructed rings in Examples (3) and (4)
are Pl-rings that, by virtue of Theorem 4] are not n-generalized commutator rings
for any n > 1, because R is not equal to Z([R, R]).

The following lemma will play a key role in the sequel.

Lemma 4.8. Let R be a ring and n > 3 a positive integer. Then the following hold:
(i) "L, R C[R,...,R], for all z € R.
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(i) 2" Y[R, R] C [R,...,R], for all z € R.
(iii) Y ,cp Rz Hz""1,RIRC [R,...,R],.

Proof. Let L :=[R,..., R],, where n > 3. It is known that L is a Lie ideal of R.
Given z,y, 2z € R, we have

[z,2" Y = [z,21,..., 202, Zn_1]n € L, (3)
where z; = z for all i. Moreover,
['Ia Y, Znil] = xyzn71 - Znilyx - ['Ia Y, 215+, 2n—4,2n-3, ZQ]TL S La (4)

where z; = z for all 4. It follows from Eqs. @) and (@) that
eyl = " ay] + 2y, 2" € L

Up to now, we have proved that [R,2" '] C L and 2" ![R,R] C L for all z € R.
Therefore, we have established (i) and (ii).
We now prove (iii). Given z € R, applying (i) and (ii) we have

L RIRC 2V IR R+ (22" R,R| C L
and hence
RN RIRC [R, 2" '[z" ' RIR] + 2" '[z""",RIR* C [R,L] + L C L.
Therefore, Y-, p Rz""[z" "', RIR C [R, ..., R],, as desired. O
Let R be a noncommutative simple ring, and & a fixed positive integer. Applying
[B, Theorem 2] (i.e. Theorem [H]), we can show that the subring of R generated

by all elements z* for z € R is equal to the whole ring R. The following theorem
answers Problem 1 affirmatively for rings of such type.

Theorem 4.9. Let R be a ring, n > 3 a positive integer. Suppose that the ring R
is generated by all elements 2"~ for z € R. Then [R,...,R], = Z(|R, R]).

Proof. Set L :=[R, ..., R],. We let A denote the additive subgroup of R generated
by all elements 2"~! for z € R. By assumption, we have A = R. By (i) of Lemma

L8 we get [A, R] C L. It follows from LemmaB9that [R, R] = [A,R] = [A,R] C L.
Let z € R. In view of (ii) of Lemma[L8 we have 2" ~![R, R] C L. Therefore,

2", RIRC 2" '[R,R|+ [¢" 'R,R]C L+ [R,R] = L.

That is, [A, R]JR C L and so [R, R]R = [A,R]R = [A, R]R C L. By (ii) of Lemma
and (i) of Proposition [2Z3] we have

I([R, R]) = [R, R] + [R, RIR C L C I([R, R]).
This proves that Z([R, R]) = L, as desired. O
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Example (8) Let R := M, (2Z). Any nonzero ideal of R where n > 2 is not a
k-generalized commutator ring for k& > 2. Moreover, R 2 2R 2 2°R D --- is an
infinite descending chain of ideals of R.

Indeed, let N be a nonzero ideal of M, (2Z). Choose a nonzero element z :=
doi<ij<n @ij€ij € N, where a;; € Z for all 4, j. Clearly, there exists a positive
integer m such that x € M,,(2™Z) but z ¢ M,,(2™*'Z). Suppose on the contrary
that NNV is a k-generalized commutator ring for some k > 2. In particular, N = N?
and so N = N™*+1 This implies that N C M,,(2m!Z) and so € M,,(2™'Z), a
contradiction. The final assertion is then clear. (]

Motivated by Example (8), a ring R is said to satisfy the descending chain
condition (d.c.c.) on ideals if every nonempty set of ideals of R contains a minimal
element. It is equivalent to saying that each descending chain of ideals I; O I, O
I3 O --- must be stationary.

Before proving our next theorem, we need the following technical lemma.

Lemma 4.10. Let R be a semiprime ring with a right ideal p. If [a,p] C Z(R)
where a € R, then pla, R] = 0.

Proof. Since [a, pla = [a, pa] C [a,p] C Z(R), we get [[a, pla, R] = 0. This implies
that [a, p][a, R] = 0. In particular, [a, p][a, R?] = 0, implying that [a, p]R[a, R] = 0.
Therefore, [a, p]|R[a, p] = 0. The semiprimeness of R implies that [a, p] = 0 and so

[a, pR] = 0. We thus get p[a, R] = 0, as desired. O

Theorem 4.11. Let R be a noncommutative semiprime ring, and let

K=Y Iz"'[z" L I)I
zel

for an ideal I of R, where n > 3 is a positive integer. Then the following hold:

(i) Given an ideal I of R, K1 is an ideal of R and Ky C [I,...,I]n, and if [I,1] #0
then [K], K[] 7é 0.

(ii) If R satisfies the d.c.c. on ideals, then there exists a nonzero ideal N of R such
that N is an n-generalized commutator ring for all n > 3.

Proof. (i) Fix a positive integer n > 3. Denote by @ the Martindale symmetric
ring of quotients of I (see [I] for its definition). Since R is a semiprime ring, so is
I. It follows from the proof of Lemma that

K=Y " 'L NIClL. . T
zel

Clearly, K7 is also an ideal of R. We claim that if I is noncommutative, so is
K. Otherwise, we have [K, K] = 0. Since K is an ideal of I, this implies that
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K; C Z(I). Therefore,
[:z:z”fl[znfl,y]v,w} =0 (5)

for all v, w, z,y, z € I. In view of [Il, Theorem 6.4.1], I and Q; satisfy the same GPIs.
Hence Eq. () holds for all v, w,x,y,z € Q1. Replacing x,v by 1 in Eq. (@), we get
2"zt yl € Z(I) for all y, z € 1. That is, [z" 1, 2" 1] C Z(I) for all z € I. In
view of Lemma[LI0, 2" 1I[z" !, R] = 0 for all z € I. Hence [z"~}, I]I[z" "1, 1] =0
for all z € I. The semiprimeness of I asserts that [z, I] = 0 for all z € I. In
view of [19, Theorem, p. 19], [z,I] = 0 for all z € I. Therefore, I is commutative,
a contradiction. This proves (i).
(ii) We let

lp:=Kpr and [, :=K;, , for n=1,2,....

Then I; is an ideal of R for all j > 0 and Iy 2 Iy 2 I, 2 I3 O ---. Moreover, by
[R, R] # 0, we have [I;,I;] # 0 for all j > 0. Since R satisfies the d.c.c. on ideals,
there exists a positive integer k such that I = I, for all s > k. We let N := I},.
Then

0#AN=Iy=Iy1 =K, = Y L2" '[2" L LI C [Tk, Il = [N, N,
zely

implying that N = [N,...,N],, as desired. In view of Theorem 4 N =

[N,...,N], for all n > 3. m|

Corollary 4.12. Let R be a noncommutative semiprime ring, n > 3 a positive
integer. Then [R, ..., R], contains a nonzero ideal W of R such that [W, W] # 0.

Proof. Welet W := 3" _p Rz""'[z""', R]R. In view of (i) of Theorem ELTT] W is
a nonzero ideal of R and [W, W] # 0, as desired. |

Clearly, every noncommutative simple ring satisfies the d.c.c. on ideals. Applying
(ii) of Theorem Il we have the following corollary, which is a generalization of
[I4, Theorem 4] for n = 3. Of course, it is also a consequence of Corollary E.T2

Corollary 4.13. Let R be a moncommutative simple ring. Then R 1is an n-
generalized commutator ring for all n > 3.

Applying Theorem 4], we give an alternative proof for (ii) of Theorem LTIl
Indeed, let ¥ :={I < R | [I,I] # 0}, where by I < R we mean that I is an ideal of
R. By assumption [R, R] # 0, we have R € 3. Since R satisfies the d.c.c. on ideals,
there exists a minimal element, say N, in 3. Then [N, N] # 0. The semiprimeness
of R implies that [[N,N],[N,N]] # 0 (see Lemma [3). By the semiprimeness of
the ring N again, we have [N[N, N|N, N[N, N]N| # 0. Since N[N, N|N is also
an ideal of R, it follows that N[N, N]N € X. The minimality of N in ¥ implies
that N = N[N, N]N and so N = Zy([N, N]), the ideal of N generated by [N, N].
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In view of Theorem B4l N is an n-generalized commutator ring for all n > 3, as
desired.

We end this section with an example. In view of Corollary[B.8 and Theorem 3.7,
the existence of idempotents in the considered rings seems to play an important
role for answering Problem 1 affirmatively. The following, however, shows that the
existence of idempotents is not essential to Problem 1.

A ring R is said to satisfy the ascending chain condition (a.c.c.) on ideals if
every nonempty set of ideals of R contains a maximal element. It is equivalent to
saying that each ascending chain of ideals Iy C I» C I3 C --- must be stationary.

Example (9) There exists a nil Pl-ring R such that R = R?, R # [R,R] and R
is a k-generalized commutator ring for all £ > 3. Moreover, neither R satisfies the
a.c.c. on ideals nor R satisfies the d.c.c. on ideals.

Let T be the commutative algebra over a field F' with the symbols v,’s, where
0 < a < 1, as a basis. The multiplications of these elements v,’s for 0 < a < 1 are
defined by vavg = Va4 if o+ 3 < 1 and vovg = 0 if a + 3 > 1. Clearly, T is a
nil commutative algebra over F. Let R := M,,(T), where n > 2. Note that, for any
x € R, there exists 0 < a < 1 such that o € v, R. Therefore, x € R? and 2™ = 0 if
ma > 1. This proves that R = R? and R is a nil ring. Since T is commutative, R
is a PI-ring (see |28, Theorem 6.1.1]). In view of [2| Theorem 1], R # [R, R].

Let ay,...,ar € R, where k > 2. There exists 0 < a < 1 such that ar € v, R.
Write ap = vqa),, where aj, € R. We have

[ah ey ak]k = [ah ey ak_l,v%ang%];ﬂ_l S [R, ey R]k+1.

Therefore, [R,...,R];y C [R,..., R|k+1 for all & > 2. In view of Lemma B2] we get
[R,...,R]r =Z(|R, R]) for all k > 3. To prove that R is a k-generalized commutator
ring for all k > 3, it suffices to claim that R = Z([R, R]).

Let 0<a<1land1<i,j<n with i # 5. Then

Vaij = [U%eii,v%eij] € [R, R).

On the other hand, we have v,e; = [v%eii,v%eij]v%eﬁ € [R,R]R. Hence R =
[R,R] + [R, R|R = Z([R, R]), as desired.

Finally, we have

T({o,) ST({vy ) STy ) S -
and
T ) 2T D 2T({n 4} 2.

This proves that neither R satisfies the a.c.c. on ideals nor R satisfies the d.c.c. on
ideals. O

5. n-Generalized Lie Ideals

Let n > 3 be a positive integer. We have proved that if R is a noncommutative prime
ring, [R, ..., R], contains a nonzero ideal of R (see Corollary f12]). In particular,
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if R is a noncommutative simple ring, then R is an n-generalized commutator ring
(see Corollary EET3)).

Let L := [R,...,R],. Then [L,R,...,R], C [R,...,R], = L. We will study
these results above from this viewpoint. Our present study is also motivated by
[15, 18]. Precisely, in 1955 Herstein determined the Lie structure of simple rings
(see [I5]). In 1972 Lanski and Montgomery extended Herstein’s theorem to the
context of prime rings (see [I8, Theorem 13] and the references therein).

We define n-generalized Lie ideals of rings for n > 2, which will coincide with
Lie ideals if n = 2.

Definition 3. By an n-generalized Lie ideal of a ring R (at the (r + 1)th
position with » > 0) we mean an additive subgroup A of R satisfying
(1, Ty @, Y1, ..., Ys|n € A for all z;,y; € Rand all @ € A, where r +s=n—1.

Clearly, every ideal of R is an n-generalized Lie ideal of R. Moreover, [R, ..., R],
is also an n-generalized Lie ideal of R. Note [R, R] is a Lie ideal of R but it does
not in general contain a nonzero ideal of R. We are now ready to state the main
theorem.

Theorem 5.1. Let R be a noncommutative prime ring andn > 3 a positive integer.
Then every nonzero n-generalized Lie ideal of R contains a nonzero ideal.

The following assertion gives a generalization of Corollary E.12] for prime rings.

Corollary 5.2. Let R be a noncommutative prime ring and n > 3 a positive inte-
ger. If A is a nonzero n-generalized Lie ideal of R (at the (r + 1)th position with
r>0), sois [R1,...,Rr, A, Ry,..., Rg], where R; = R for all i.

Proof. We let K := [Ry,...,R., A, Ry,...,Rg|n. Since A is a nonzero n-
generalized Lie ideal of R (at the (r 4+ 1)th position with r > 0), we have K C A.
Therefore,

[Rla"'aRT7K7R17"'7RS]’n - [Rla"'aRT7A7R17"'7RS]n:K7

implying that K is a nonzero n-generalized Lie ideal of R (at the (r + 1)th position
with r > 0). In view of Theorem Bl A contains a nonzero ideal, say I, of R.
Then [I,...,I], € K. The primeness of R implies that I is also a prime ring.
Since R is noncommutative, so is the prime ring . In view of Theorem Bl we get
[I,...,I], # 0 and hence K # 0, as desired. O

The proof of Theorem [5.1] will be given in the next two sections. Some related
questions on generalized commutators and their relationship with noncommutative
polynomials are also discussed in the final section.

6. A Special Case: [R,A,R]| C A

Throughout this section and the next one, unless specially stated, R always denotes
a prime ring with extended centroid C, and let @ be the Martindale symmetric ring
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of quotients of R. Recall that @ is also a prime ring and that C' is a field. We refer
the reader to the book [I] for details.

The aim of this section is to prove the following proposition, which is a special
case of Theorem [5.]]

Proposition 6.1. Let R be a noncommutative prime ring and let A be a nonzero
additive subgroup of R. If [R, A, R] C A then A contains a nonzero ideal of R.

We begin with the following lemma (see [24, Lemma 2.10; [7, Lemma 3]).

Lemma 6.2. Let A be an additive subgroup of an arbitrary ring R. If [R, A, R] C A,
then

Z R(axb — bxa)R C A.
a,beA,z€R

Proof. Let a,b € A and z,y,z € R. Then
y(axb — bra)z = (yax)bz — zb(yax) + (zby)ax — xa(zby) + (xaz)by — yb(xaz)
= [yax,b, z] + [2by, a, x| + [xaz,b,y] € A. O

Let X = {X1, X5,...} be an infinitely countable set. We denote by C{X} the
free C-algebra in noncommutative indeterminates in the set X. We let @ xc C{X}
stand for the free product over C' of C-algebras @ and C{X}. By a generalized
polynomial (GP for short) with coefficients in @) we just mean an element in @ *¢
C{X}. For f(X1,...,Xn) € QxcC{X}, we just mean that X, ..., X,, are the only
indeterminates occurring in f. A polynomial f(X7,...,X,) € Q x¢c C{X} is called
a generalized polynomial identity (GPI for short) for A, an additive subgroup of @,
if f(x1,...,2,) =0 for all ; € A.

In order to simplify the following proof, we need the following lemma.

Lemma 6.3 ([20, Lemma 2.3]). Let h(Xy,...,X;) € Q ¢ C{X}\{0}. For a

nonzero ideal I of R we let
A={h(z1,...,2) | z; € Q} and Ar = {h(x1,...,2) | m; € I},
Then dimc AC < oo if and only if dimg A;C < 0o. In this case, AC = A;C.

Lemma 6.4. If xay — yax € Ca for all x,y € R, where 0 # a € R, then R is
commutative.

Proof. In view of Lemma [6.3] zay — yax € Ca for all z,y € Q. By taking z = 1,
we have ay — ya € Ca for all y € Q. Therefore, [a, [a,y]] = 0 for all y € Q.

Case 1. char R # 2. It follows from [27, Theorem 1] that a € C. Then zay —yazx =
alz,y] € Ca = C for all x,y € Q. Therefore, [z,y] € C for all z,y € Q. This implies
that @ is commutative. In particular, R is commutative.
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Case 2. charR = 2. Then a? € C. If a € C, then we are done as given in Case
1. Assume that a ¢ C. Choose an element y € @ such that [a,y] # 0. Therefore,
[a,y] = Ba for some nonzero 3 € C. Then ala,y] = [a,ay] € Ca. That is, Ba® = aa
for some a € C. Since a*> € C but a ¢ C, we get « = 0 and so a®> = 0. So
alay — ya) € Ca® = {0} for all y € Q, implying that aya = 0 for all y € Q. The
primeness of ) implies that a = 0, a contradiction. |

We are now ready to prove the main proposition in this section.

Proof of Proposition Suppose that [R, A, R] C A. In view of Lemma [6.2]
Z R(azxb — bxa)R C A.
a,beA,xeR
Therefore, either A contains a nonzero ideal of R or axb = bxa for all a,b € A and
all x € R. Tt suffices to consider the latter case. By [25] Theorem 1], there exists

0 # a € A such that A C Ca. In particular, [z,a,y] = zay — yax € Ca for all
xz,y € R. It follows from Lemma [6.4] that R is commutative, a contradiction. O

7. Proof of Theorem [5.1]

Recall that, unless specially stated, R always denotes a prime ring with extended
centroid C.

Lemma 7.1. If R is noncommutative and 0 # a € R, then [R,z]xa # 0 for some
T e R.

Proof. Otherwise, [R,z]za = 0 for all x € R. Let y, z,z € R. Then [yz, z]za = 0.
Since y[z, z]xa = 0, we have [y, z]zxza = 0. That is, [R, z|Rza = 0. The primeness
of R implies that [R,z] = 0 or xza = 0. Hence R is the union of its two additive
subgroups Z(R) and {x € R | za = 0}. Since R is not commutative, R = {x € R |
za = 0} and so Ra = 0. Therefore, a = 0 follows, a contradiction. O

Lemma 7.2. If [w,z]x € Z(R) for all w,x € R, then R is commutative.

Proof. Since R and @ satisfy the same GPIs (see [I, Theorem 6.4.1)), [w,x]z €
C for all w,x € Q. Replacing « by = + 1, we get [w,x + 1](x + 1) € C for all
w,x € Q. Therefore, [w,z] € C for all w,z € Q, implying that @ is commutative.
In particular, R is commutative. O

The following is well-known, but is listed here only for completeness of the
exposition.

Lemma 7.3. Let I be a nonzero ideal of a semiprime ring R. Suppose that
[a,[I,I]] = 0, where a € R. Then [a,I] = 0. In addition, if either a € I or R
is a prime ring, then a € Z(R).
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Proof. Let z,y € I. Then za € I and so

0= [a,[za,y]] = [a,z[a,y] + [z, y]a] = [a,z]a,y]].

Therefore, [a, zR[a,z]] = 0 and so [a, 2] R[a, 2] = 0. The semiprimeness of R implies
that [a, 2] = 0. That is, [a, I] = 0, as desired. It is clear that a« € Z(R) ifa € I. O

Lemma 7.4. Let Ly and Lo be two proper Lie ideals of R. If R is noncommutative,
then [Lh LQ] 7é 0.

Proof. Since the intersection of two nonzero ideals of R is also a nonzero ideal,
we can choose a nonzero ideal I of R such that [I,I] C L; for ¢ = 1,2. Suppose
on the contrary that [Li, Lo] = 0. Then [[I,I],[I,1]] = 0, implying [I,I] C Z(R)
by Lemma [73l This implies that [R, [I,I]] = 0 and hence R C Z(R). That is, R is

commutative, a contradiction. O
Let f(Xi,...,X,) be a multilinear polynomial over Z, the ring of integers, in
non-commuting indeterminates X1, ..., X,,. Then

[y,f(aj17...7xm)] = Zf(m17...7[y7xk]7...,mm)
k=1

for all x;,y € R. Therefore, the additive subgroup of R generated by all elements
fz1,...,xm) for ; € R is a Lie ideal of R. We will use the basic fact in the
following proof.

For f € C{X1,...,X,} and I an ideal of R, let Add;(I) denote the additive
subgroup of RC generated by all elements f(x1,...,2,) for a; € I. We say that
f is central-valued on RC if f(xy,...,2,) € C for all z; € RC. We also need the
following theorem in our proof.

Theorem 7.5 ([5, Theorem 2]). Let R be a prime ring and I a nonzero ideal
of R. Suppose that f(X1,...,X,) € C{X1,..., X}, which is not central-valued
on RC. Then [M,R] C Add¢(I) for some nonzero ideal M of R except when R =
MQ(GF(2)) and Addf(R) == {07 612+€21, 1+612, 1+621} or {0, 17 611+€12+€217 €22+
ei2 + e}

We are now ready to prove Theorem .11

Proof of Theorem 5.9l Let A be an n-generalized Lie ideal of R at the (r+ 1)th
position, where 0 < r < n. That is,

['Ila sy Ty Ay Y1y e 7ys]n = (151932 cee zr)a(yl cee ys)
7(ys"'y1)a($r$r71"'zl) €A (6)

for all z;,y; € R and all a € A, where r +s =n — 1. In view of Proposition [6.I] we
are done if n = 3 and r = s = 1. Therefore, we can always assume that either r > 1
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or s > 1. By symmetry, we may assume that r > 1. In view of Eq. (@), we have

[mlwam2'"7xTaa7y1a"'7yS]n_ [mlﬂwx27'"7xTaa7y1a"'7yS]n
=Y Y10T,Tp_1 - -+ T3[w, Tow1] € A (7)
for all z;,y;,w € R and all a € A.

Case 1. s > 1 and r > 3. In this case, let L be the additive subgroup of R
generated by all elements 2,1 - - - x3[w, xaxq] for x1,...,2,,w € R. Recall that
R is a noncommutative prime ring. Clearly, L is both a Lie ideal and a nonzero left
ideal of R. In view of Lemma [2.2] RL is a nonzero ideal of R and RL C L. By Eq.
(@), we have 0 # R°ARL C A, where R*ARL is an ideal of R, as desired.

Case 2. s > 1 and r = 2. In view of Eq. (@), we get ys - - - y1a[w, x221] € A for all
yj, 21, T2, w € R. That is, A := R*A[R, R?] C A. By Eq. (@), we have

z122a(Y1 - Ys) — (Ys -+ y1)azazy € A (8)

for all z1,x2,y; € R and all a € A. Choose z1 € A C A. Then (ys - - y1)azozs € A
and so, by Eq. @), z1zea(y; - - ys) € A. This implies that ARAR® C A. Clearly,
ARAR?®is a nonzero ideal of R, as desired.

Case 3. s = 0. Suppose first that » > 3. We have
(z122 - 2r)a — a(xpxp_y - 21) € A

for all x1,29,...,2, € R and all a € A. We keep L as given in Case 1. Then L
contains a nonzero ideal, say M, of R. Moreover, 0 # AM C A. Choose x1 € M and
by the fact that s = 0, we get a(z,x,_1---21) € AM C Aand hence MR"1A C A.
Then

MR ™'AM C AM C A.

Clearly, M R"~'AM is a nonzero ideal of R.
Suppose next that r = 2. Then

[Trw, z2,a] — [x1,wre, 0] = alw, xoz1] € A

for all 71,22 € R and all a € A. Therefore, AL; C A, where L, := [R, R?]. Let
w,xrs € R and a € A. We also compute

Hw, :1:2],9527(1] = [w, z2|x2a — axa|w, 23] € A.

Note that axs[w, r2] = alrew, x2] € A[R?, R] = ALy C A. Therefore, [w, x2]z2A C
A for all zo,w € R.

Let N be the additive subgroup of R generated by all elements [w, zo]xe for
w,x3 € R. Then NA C A. In view of Lemmall2l N ¢ Z(R). In view of [6, Theorem,
p. 98], there exists a proper Lie ideal Ly of R contained in N unless R = M (GF(2)).
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For the latter case, it follows from Theorem [.5] that either
N ={0,e12 +ea1,1 +e12,1 +ea1} or N ={0,1,e11 + €12 + ea1, €20 + €12 + ea1}.

Moreover, [w,zs + 1](22 + 1) — [w, 223]22 = [w, 23] € N for all w,zo € R. That is,
[R,R] C N. In particular, e;o € N. This is a contradiction.

Up to now, we have proved that Ly C N. Therefore, we get LoA C A and
AL, C A, where L, and Lo are proper Lie ideals of R. It follows that

(Lo + L2)A C A and A(L; + L?) C A.

Set I, := R[L;, L;]R for i = 1,2. In view of Lemma [(4] I[; and I, are nonzero. By
Lemma 311 I; C L; + L? for i = 1,2. Therefore, [;A C A and AI; C A. Hence,
0 # I, AI; C A, where I3 Al is an ideal of R. as desired. O

8. Some Generalizations

Let R be a prime ring with extended centroid C', and let @ denote the Martindale
symmetric ring of quotients of R. Recall that @ is a prime ring with center C.
Therefore, @ is an algebra over the field C. It is also known that, given 8 € C,
there exists a nonzero ideal I of R such that I C R (see [I, Chap. 2.3] for details).
Therefore, if R is a simple ring, then R = RC.

Definition 4. Given a positive integer n > 2 and an element 0 # § € C, for
ai,...,a, € R we define

[a1,...,6p]np = ai02- - Gy — BanGn_1--- a1,
which is called the (n, 8)-generalized commutator of aq, ..., a,.
Therefore, [a1,...,anln = [a1,.. ., an]n1. We set

fn”/j = [)(17 e 7Xn]n,[3 = X1X2 N Xn — /BXan,1 N 'X1

for n > 2. It is particularly interesting when 0 = 1 or 8 = —1. First, we can actually
extend Theorem [5.1] as follows.

Theorem 8.1. Let R be a noncommutative prime ring, and let A be a nonzero
additive subgroup of R and 0 # [ € C, n > 3 a positive integer. Suppose that
(1, .. Tr, @, Y15, Yslnpg € A for all z;,y; € R and alla € A, wherer+s=mn—1.
Then A contains a nonzero ideal of R.

We can prove this theorem in a similar way proving Theorem [5.Il Some appro-
priate modifications are of course necessary. For instance, we need to prove the gen-
eralization of Proposition [6] (i.e. Theorem Bl with n = 3 and r = 1 = s): Given a
nonzero additive subgroup A of a noncommutative prime ring R, if [R, A, R]3 3 C A
then A contains a nonzero ideal of R. The necessary modification is the following
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key identity. Let a,b € A and z,y,z € R. Then
y(axb — pbra)z = (yax)bz — Bzb(yax) + f(zby)ax — xa(zby) + (zaz)by — Byb(zaz)
= [yaz,b, 23,3 — [z, a, 2byls g + [xaz,b,y|3 3 € A.

The next step is to prove the following generalization of Lemma [6.4t Let R be
a prime ring with extended centroid C. If zay — Byax € Ca for all z,y € R, where
0#a€ Rand 0# (€ C, then R is commutative. We will omit all details in order
to keep this paper concise.

Recall that, for f € C{X1,..., X, }, let Add;(R) denote the additive subgroup
of RC generated by all elements f(x1,...,x,) for z; € R. We say that f is central-
valued on RC' if f(x1,...,x,) € C for all x; € RC. Motivated by Corollaries 112
and [£13], it is natural to raise the following.

Problem 2. Given a prime ring R, characterize polynomials f € C{Xy,..., X;}
such that either Add;(R) = R or Add(R) contains a nonzero ideal of R.

Although we do not understand the general situation, the following theorem
provides a partial answer to Problem 2.

Theorem 8.2. Let R be a prime ring, and let
F= gr(Xa, ., Xp) Xihi(Xa, ..., Xn),
k=1

where g, hy € C{Xa,...,X,} for k = 1,...,s. Suppose that f is not central-
valued on RC' and that Y, _; hi(Xa, ..., Xn)gk(Xo, ..., Xy) is not a PI for R.
Then Addf(R) contains a nonzero ideal of R except when R = M>(GF(2)) and

Addf(R) = {0,612+€21,1+612,1+621} or

{0,1,e11 + e12 + €21, €22 + €12 + €21 }.

Proof. We assume that the exceptional case is excluded. In view of Theorem [5]
there exists a nonzero ideal M of R such that [M,R] C Add;(R). Note that,
given a nonzero element p € C, there exists a nonzero ideal I of R such that
ul C R. Therefore, we can choose a nonzero ideal I of R contained in M such that
Add,, (I)UAddy,, (I) S Mfork=1,...,s.

Let x1,...,2, € I. Then

S
1 Z hi(za, ... xn)gr(z2, ... xp)
k=1

s s
= ng(gj27 s 7$n)l'1hk(l'27 s 793”) + [zlhk(’r27 v 7xn)7gk(gj27 s 793”)]
k=1 k=1

= f(z1,...,Tn) + Z [mlhk(mg, ey ), g2, . ,mn)} (9)
k=1
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Note that, in Eq. @), Yp_; [t1he(ze, ... 2n), gk(22,...,20)] € [M,M] C
Adds(R). Therefore, x1Y ;_; hp(za,...,20)gk(22,...,2n) € Addy(R) for
Z1,...,2n € I. That is,

Add,(I) € Add;(R),
where ¢(Xa, ..., X)) :=> 1 (X, ..o, X0n)gk(Xa, ..., X,,) and
p(Xl, e 7Xn) = qu(Xg, ceey Xn)

Since ¢(Xa,...,X,) is not a PI for R and R and I satisfy the same PIs over C
(see [, Theorem 6.4.1]), it follows that ¢(Xs,...,X,) is not a PI for I. Clearly, I
is itself a prime ring with extended centroid C'. In view of [5, Lemma 5], Add,(I)
contains a nonzero ideal, say J, of the prime ring I. Then IJI is an ideal of R and

0+#1JICJC Add,(I) C Add;(R),

as desired. O

Corollary 8.3. Let R be a simple ring, and let
X1, Xn) =Y ge(Xay o, Xo) Xahi(Xa, ., Xo),

where gi,hy € C{Xa,...,X,} for k = 1,...,s. Suppose that f is not central-
valued on R and that 22:1 hi(Xa, ..., Xn)g (Xg, ..., X,,) is not a PI for R. Then
Adds(R) = R except when R = MQ(G (2)) a

Adds(R) = {0,e12 +e21,1 +e12, 1 +ea1} or {0,1,e11 + €12 + €21, 22 + €12 + €21}
We next give the following application to Theorem

Theorem 8.4. Let R be a noncommutative prime ring andn > 3 a positive integer,
and let L be a Lie ideal of R with [L,L] # 0. Then [R1,...,Ry,L,Ry,...,Rs]n
contains a nonzero ideal of R, where R; = R for all i andr+s=n —1.

Proof. By LemmaBI1l R[L,L]R C L+ L2 Set I := R[L, L|R, which is a nonzero
ideal of R. Let z1,22 € L and r € R. Then [x1292,7] = —[rzy,x2] — [xor, x1].
Therefore,

[L?,R] C [RL,L]+ [LR,L] C L.

This implies that [I, R] C [L + L?, R] C L. Note that I itself is a noncommutative
prime ring with extended centroid C' and [[I, I, [I,1]] # 0 (see Lemma[Z4]). More-
over, every nonzero ideal of I always contains a nonzero ideal of R. Therefore, it
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suffices to prove that
[I,.... I, [I,I],I1,.. .,Is}nﬁ
contains a nonzero ideal of I, where I; = I for all i. Set

f = [Xla v 7X7“a [U7 V]7Y17 e 7Y5]n,ﬁ’

where X1,..., X,.,U,V, Yy, ..., Y, are distinct noncommutative indeterminates over
C. We may assume without loss of generality that » > 1. Our aim is to prove that
Addy(I) contains a nonzero ideal of I. We now apply Theorem to the present
case.

First, we claim that f is not central-valued on IC'. Otherwise, we have

[ml,...,mm[uw],yl,...,ys}nﬂEC (10)

for all zq,...,2,u,v,91,...,ys € I. Since I and @ satisfy the same GPIs (see
[, Theorem 6.4.1]), replacing z; = 1 for ¢ > 1 and y; = 1 for all j in Eq. ([I0) we
get

x1[u,v] — Blu, vz, € C (11)

for all x1,u,v € Q. If 8 # 1, replacing 1 = 1 we get (6 — 1)[Q, Q] C C, implying

that @ is commutative. This is a contradiction. Hence we get 8 = 1. By Eq. ()

we get [Q, @, QH C C, implying that @ is commutative. This is a contradiction.
Rewrite f as

f=X1Xo - X, [UVIV1Ys- Y, = YY1 - VI [U, VX, X g - - X7
We claim that
g:=Xp X, UVINY, Y - BYYeor - ViU VI Xy Xy
is not a PI for I. Otherwise, we have
To Lo, VY1Y2  Ys — BYsYs—1 - Yiu, v]@pz 122 =0 (12)

for all xo, ..., xr, U, v, Y1,...,Ys € Q.

Replacing all x;,y; by 1 in Eq. (I2), we get (8 — 1)[Q, Q] = 0, implying that
B =1.1f r > 2, then replacing x; = 1 = y; for i > 2 and j > 1 we get [z2, [u,v]] =0
for all zo,u,v € @, implying that ) is commutative, a contradiction. Suppose next
that 7 = 1. Then s > 1. Replacing y; = 1 for j > 1, we get [y1, [u,v]] = 0 for all
Y2, u, v € Q. As above, we get a contradiction.

In view of Theorem B2 Add;(I) contains a nonzero ideal of I except when
I =2 M5(GF(2)) and

Adds(I) ={0,e12 + ea1,1 + e12,1 +ear} or {0,1,e11 + e12 + €21, €22 + €12 + €21 }.
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We are done if Addy(I) contains a nonzero ideal of I. Hence we assume that the
latter case occurs.

Case 1. 7 > 2 or s > 2. We may assume that » > 2. The case that s > 2 has
the same argument. Replacing X1, X» by e11, e12, respectively, and X;,Y; by 1 for
i>2and all j, U by egs and V by ea1, we get e11 € Add (1), a contradiction.

Case 2. r =1 = s. In this case, we have
f(X1, U, V. Yh) = Xh[U, VY1 = YU, V] Xy,

Then f(e11,e11, €12, €22) = e12 € Adds(I), a contradiction. O

Recall that f, 5 := [X1,...,Xn]ng for n > 2. As an immediate consequence of
Theorem Bl we have the following corollary.

Corollary 8.5. Let R be a noncommutative prime ring and n > 3. Then
Addy, ,(R) contains a nonzero ideal of R. In addition, if R is a simple ring, then
Addy, ,(R) = R.

Corollary 8.6. Let R be a noncommutative prime ring and n > 4 a positive
integer, and let L be a nonzero Lie ideal of R. Then [Ri,...,R.,L,R1,..., Rs|n3
contains a nonzero ideal of R, where R; = R for all i and r 4+ s = n — 1, except
when char R = 2 and dimcRC = 4.

Proof. We exclude the exceptional case. By Theorem[B4], we are done if [L, L] # 0.
Suppose next that [L, L] = 0. In view of [I8, Lemma 7], L C Z(R). Therefore,

[Ry,...,Re,L,Ry,...,Ry|n3=L[R,...,Rln_15.

Note that n — 1 > 3. It follows from Corollary 83l that [R, ..., R],—1,3 contains a
nonzero ideal of R, so does L[R, ..., R],_1,, as desired. O

Acknowledgments

The authors are grateful to the referee for reading the paper carefully. The work
of P. V. Danchev was supported in part by the Bulgarian National Science Fund
under Grant KP-06 No. 32/1 of December 07, 2019, and that of T.-K. Lee was
supported in part by the Ministry of Science and Technology of Taiwan (MOST
109-2115-M-002-014).

References

[1] K. I. Beidar, W. S. Martindale, IIT and A. V. Mikhalev, Rings with Generalized
Identities, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 196
(Marcel Dekker, New York, 1996), xiv+522 pp.

2250221-30



On n-generalized commutators and Lie ideals of rings

A. Ya. Belov, No associative Pl-algebra coincides with its commutant, Sibirsk. Mat.
Zh. 44(6) (2003) 1239-1254 (in Russian); translation in Siberian Math. J. 44(6)
(2003) 969-980.

M. Bresar, Commutators and images of noncommutative polynomials, Adv. Math.
374 (2020) 107346.

A. Brown and C. Pearcy, Operators of the form PAQ — QAP, Canadian J. Math.
20 (1968) 1353-1361.

C.-M. Chang and T.-K. Lee, Additive subgroups generated by polynomial values on
right ideals, Commun. Algebra 29(7) (2001) 2977-2984.

C.-L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math.
59(1) (1987) 98-106.

C.-L. Chuang and T.-K. Lee, A note on certain subgroups of prime rings with deriva-
tions, Commun. Algebra 30(7) (2002) 3259-3265.

M. P. Eroglu, On the subring generated by commutators, J. Algebra Appl. (2022):
doi:10.1142/S0219498822500591.

M. P. Eroglu, T.-K. Lee and J.-H. Lin, On Asano’s theorem, J. Algebra Appl. 18(3)
(2019) 1950045.

K. R. Goodearl, von Neumann Regular Rings, 2nd edn., ed. E. Robert (Krieger
Publishing Company, Malabar, FL, 1991), xviii+412 pp.

R. N. Gupta, A. Khurana, D. Khurana and T. Y. Lam, Rings over which the transpose
of every invertible matrix is invertible, J. Algebra 322(5) (2009) 1627-1636.

J. Hannah and K. C. O’Meara, Products of idempotents in regular rings. 11, J. Alge-
bra. 123(1) (1989) 223-239.

B. Harris, Commutators in division rings, Proc. Amer. Math. Soc. 9 (1958) 628-630.
I. N. Herstein, Generalized commutators in rings, Portugal. Math. 13 (1954) 137-139.
I. N. Herstein, On the Lie and Jordan rings of a simple, associative ring, Amer. J.
Math. 77 (1955) 279-285.

I. Kaplansky, Problems in the theory of rings revisited, Amer. Math. Monthly 77
(1970) 445-454.

D. Khurana and T. Y. Lam, Generalized commutators in matrix rings, Linear Mul-
tilinear Algebra 60(7) (2012) 797-827.

C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific
J. Math. 42 (1972) 117-136.

T.-K. Lee, Power reduction property for generalized identities of one-sided ideals,
Algebra Collog. 3 (1996) 19-24.

T.-K. Lee, Finiteness properties of differential polynomials, Linear Algebra Appl. 430
(2009) 2030-2041.

T.-K. Lee, Bi-additive maps of £-Lie product type vanishing on zero products of xy
and yz, Commun. Algebra 45(8) (2017) 3449-3467.

T.-K. Lee, On higher commutators of rings, J. Algebra Appl. (2022):
doi:10.1142/S0219498822501183.

T.-K. Lee, A note on right-left symmetry of aR® bR = (a + b)R in rings, J. Algebra
Appl. (2022): doi:10.1142/S0219498822501456.

T.-K. Lee and T. C. Quynh, Centralizers and Jordan triple derivations of semiprime
rings, Commun. Algebra 47(1) (2019) 236-251.

W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J.
Algebra 12 (1969) 576-584.

Z. Mesyan, Commutator rings, Bull. Austral. Math. Soc. 74(2) (2006) 279-288.

E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093-1100.

2250221-31



P. V. Danchev & T.-K. Lee

[28] L. H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics,
Vol. 84 (Academic Press, New York, 1980).

[29] O. Taussky, Generalized commutators of matrices and permutations of factors in a
product of three matrices, in Studies in Mathematics and Mechanics: Presented to
Richard von Mises (Academic Press, New York, 1954), pp. 67-68.

[30] D. Vitas, Multilinear polynomials are surjective on algebras with surjective inner
derivations, J. Algebra 565 (2021) 255-281.

2250221-32



	Introduction
	bold0mu mumu nnRawnnnn-Generalized Commutators
	Results on Problem 1
	bold0mu mumu nnRawnnnn-Generalized Commutator Rings
	bold0mu mumu nnRawnnnn-Generalized Lie Ideals
	A Special Case:bold0mu mumu [R, A, R]A[R, A, R]ARaw[R, A, R]A[R, A, R]A[R, A, R]A[R, A, R]A
	Proof of Theorem 5.1
	Some Generalizations


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


