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Abstract1

We introduce and investigate the so-called D-regularly nil clean rings by showing that2

these rings are, in fact, a non-trivial generalization of the classical π -regular rings (in3

particular, of the von Neumann regular rings and of the strongly π -regular rings). Some4

other close relationships with certain well-known classes of rings such as exchange5

rings, clean rings, nil-clean rings, etc., are also demonstrated. These results somewhat6

supply a recent publication of the author in Turk J Math (2019) as well as they some-7

what expand the important role of the two examples of nil-clean rings obtained by8

Šter in Linear Algebra Appl (2018). Likewise, the obtained symmetrization supports9

that similar property for exchange rings established by Khurana et al. in Algebras10

Represent Theory (2015).11

Keywords π -regular rings · Strongly π -regular rings · Regularly nil clean rings ·12

D-regularly nil clean rings13

Mathematics Subject Classification 16U99 · 16E50 · 16W10 · 13B9914

1 Introduction and Background15

Throughout this paper, all rings are assumed to be associative and unital with identity16

element 1 different to the zero element 0. Our standard terminology and notations are17

mainly in agreement with [22]. Exactly, for such a ring R, we let U (R) denote the set18

of all units in R, I d(R) the set of all idempotents in R, Nil(R) the set of all nilpotents19

in R, J (R) the Jacobson radical of R, and C(R) the center of R. About the specific20

notions, we shall provide them in detail in the sequel.21

Referring to [13] for more information, we remember that a ring R is called von22

Neumann regular or just regular for short if, for every a ∈ R, there is b ∈ R such23
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that a = aba. If b ∈ U (R), the ring is said to be unit-regular (see, for instance, [12]24

or [32] as well). In particular, if a = a2b (with ab = ba), then R is termed strongly25

regular. Generalizing both the notions of regular rings and local rings (that are rings26

for which the quotient modulo their Jacobson radical is a division ring), it was defined27

in [24] the so-called NJ-rings classifying them in [24, Theorems 2.4] as those rings R28

for which each element not in J (R) is regular.29

In that direction, as proper generalizations of the concepts stated above, we recollect30

also that a ring R is called π -regular if, for each a ∈ R, there is n ∈ N depending on a31

and having the property an ∈ an Ran . On the same vein, we recall that a ring R is said to32

be strongly π -regular if, for each a ∈ R, there is n ∈ N depending on a and possessing33

the property an ∈ an+1 R ∩ Ran+1. It was established in [1] that strongly π -regular34

rings are themselves π -regular, whereas the converse holds for Abelian rings and for35

rings with bounded index of nilpotence. Besides, strongly π -regular rings are always36

unit-regular, provided that they are regular. Notice that π -regularity was generalized37

in two different and non-trivial ways in [7,10], respectively.38

On the other hand, in [25] it was introduced and intensively studied the class of39

clean rings R as those rings for which R = U (R)+ I d(R), that is, for any r ∈ R, there40

exist u ∈ U (R) and e ∈ I d(R) such that r = u + e. If, in addition, ue = eu, then R is41

termed strongly clean (see [26]). It was proved in [3, Theorem 1] (compare also with42

[4, Theorem 5]) that unit-regular rings are always clean, but in [27, Section 2] was43

constructed an ingenious example of a unit-regular ring which is not strongly clean.44

Likewise, two fundamental examples due to G.M. Bergman (see, for example, [15,45

Examples 1,2; pp.13-14]) are guarantors that there exists a regular ring which is not46

clean (see, for instance, [4, p.4746]) – the reader can also consult with [13, Example47

5.12] where there is an example due to Bergman of a unit-regular ring with a regular48

subring which is not unit-regular. Moreover, as showed in [26], strongly π -regular49

rings are strongly clean, while it was shown there that there is a strongly clean ring50

(with non nil Jacobson radical) which is not strongly π -regular – to specify, such an51

example is, in fact, a commutative construction.52

By a reason of similarity, a nil-clean ring R was defined in [11] to be the one for53

which R = Nil(R)+ I d(R), i.e., for any r ∈ R, there are q ∈ Nil(R) and e ∈ I d(R)54

such that r = q + e. If, in addition, qe = eq, then R is termed strongly nil-clean.55

It is quite simple to check that nil-clean rings are always clean, while the converse56

demonstrably fails. It was shown in [10], however, that nil-clean rings of bounded57

index of nilpotence have to be strongly π -regular. Nevertheless, in [30, Example 3.1]58

was illustrated an example of a nil-clean unit-regular ring which is not strongly π -59

regular, while in [30, Example 3.2] this construction was refined to the exhibition of a60

nil-clean ring which is not π -regular. To author’s knowledge there is no a constructive61

example of a nil-clean ring that is not strongly clean. Also, it is principally well known62

that strongly nil-clean rings are always strongly π -regular rings (compare with [11])63

as well as that strongly nil-clean rings were completely characterized independently64

in [9,20]. Note that nil-cleanness was nontrivially expanded in [5,10], respectively. It65

is also worthwhile noticing that some stronger versions of cleanness and nil-cleanness66

were explored in [6,8], respectively.67

As a rather more general setting, in [33] were introduced by using module theory68

the so-termed exchange rings. However, a more suitable for ring theory application is69
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the form of Goodearl-Nicholson (see, for example, [17,25]) which states that a ring70

R is exchange if, and only if, for every r ∈ R, there exists e ∈ r R ∩ I d(R) such that71

1 − e ∈ (1 − r)R – this relation is left-right symmetric in the sense that, for each72

r ∈ R, there exists f ∈ Rr ∩ I d(R) such that 1 − f ∈ R(1 − r). This criterion73

was considerably strengthened in [19] to the following double symmetrization: A ring74

R is exchange if, and only if, for any r ∈ R, there is e ∈ r Rr ∩ I d(R) such that75

1 − e ∈ (1 − r)R(1 − r). Thus either e ∈ r R ∩ I d(R) with 1 − e ∈ R(1 − r), or76

e ∈ Rr ∩ I d(R) such that 1 − e ∈ (1 − r)R. Exchange rings contain both the classes77

of π -regular rings (see, e.g., [31, Example 2.3]) and clean rings (see, e.g., [25]), and so78

they definitely substitute a quite large class of rings. However, all Abelian exchange79

rings are clean (see [25]).80

On the other side, as a substantial extension of the aforementioned π -regular rings,81

it was recently defined in [7] the class of so-called regularly nil clean rings as those82

rings R for which, for any r ∈ R, there exists e ∈ Rr ∩ I d(R) with the property that83

r(1−e) ∈ Nil(R) (or, equivalently, (1−e)r ∈ Nil(R)). It was given in [7, Proposition84

1.3] the left-right symmetric property, namely that there exists f ∈ r R with the85

property that r(1 − f ) ∈ Nil(R) (or, in an equivalent form, (1 − f )r ∈ Nil(R)). It86

was established also in [7, Proposition 2.4] that regularly nil clean rings are themselves87

exchange and that π -regular rings are themselves regularly nil clean, thus extending88

the aforementioned result from [31]. Since in the Abelian case all regularly nil clean89

rings were strongly π -regular, there is a clean ring which is not regularly nil clean.90

So, inspired by the validity of the lastly presented facts, we arrive quite naturally at91

our basic tool, which actually was originally stated into consideration in [7, Problem92

3.1] searching for the increasing property of the existing idempotent like this e ∈ r Rr .93

Definition 1.1 A ring R is said to be double regularly nil clean or just D-regularly94

nil clean for short if, for each a ∈ R, there exists e ∈ (a Ra) ∩ I d(R) such that95

a(1− e) ∈ Nil(R) (and hence that (1− e)a ∈ Nil(R)). If, in addition, there is a fixed96

positive integer k such that [a(1 − e)]k = 0, then we shall say that the D-regularly nil97

clean ring has index at most k. (This supplies that [(1 − e)a]k+1 = 0.)98

Certainly, the requirement e ∈ (a Ra)∩ I d(R) is obviously equivalent to the relation99

e ∈ (a R)∩ (Ra)∩ I d(R) as the idempotent e ∈ a R ∩ Ra makes sense that e = e.e ∈100

a Ra.101

Clearly, D-regularly nil clean rings are always regularly nil clean. Reformulating [7,102

Problem 3.1], an actual question is of whether or not the properties of being regularly103

nil clean and D-regularly nil clean are independent of each other, i.e., does there exist104

a regularly nil clean ring that is not D-regularly nil clean.105

Obvious examples of D-regularly nil clean rings are the strongly regular rings, that106

are, subdirect products of division rings, as well as the local rings with nil Jacobson107

radical. Even more, strongly regular rings are D-regularly nil clean with index 1; it108

is hopefully that the converse will eventually hold. In fact, a(1 − e) = 0 for some109

e = aba with b ∈ R yields that a = ae = a2ba ∈ a2 R. However, it is not obvious110

whether (or eventually not) we will have that a ∈ Ra2. Some other kinds of non-trivial111

examples of such type of rings will be given below.112

Our work is structured as follows: In the next section, we state and prove our major113

results (see, respectively, Theorem 2.8 as well as Examples 2.14 and 2.16 listed below).114
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We finish with some useful commentaries treating the more insightful exploration115

of the current subject, and we also pose some left-open problems generalizing π -116

regularity.117

2 Preliminary andMain Results118

We begin here with the following technicality, which could be useful for further appli-119

cations.120

Lemma 2.1 Suppose that R is a ring. Then R is D-regularly nil clean if, and only if,121

R/J (R) is D-regularly nil clean and J (R) is nil.122

Proof Before beginning to prove the statement, we need the following folklore fact:123

If P is a ring with a nil-ideal I and if d ∈ P with d+I ∈ I d(P/I ), then d+I = e+I124

for some e ∈ I d(P) ∩ d Pd such that de = ed.125

The left-to-right implication being valid in the same manner as in [7, Theorem 2.9],126

we will deal with the right-to-left one. So, given an arbitrary element a of R, there127

exists b+J (R) ∈ I d(R/J (R))∩(a+J (R))(R/J (R))(a+J (R)) with (a+J (R))(1+128

J (R)−(b+ J (R)) ∈ Nil(R/J (R)). Consequently, bearing in mind the above folklore129

fact, there is r ∈ R such that b + J (R) = (a + J (R))(r + J (R))(a + J (R)) =130

ara + J (R) = e + J (R) for some e ∈ I d(R) ∩ (ara)R(ara) ⊆ I d(R) ∩ a Ra.131

Furthermore,132

(a + J (R))(1 + J (R) − (e + J (R))) = (a + J (R))(1 − e + J (R))133

= a(1 − e) + J (R) ∈ Nil(R/J (R))134

and, therefore, there exists m ∈ N having the property that [a(1 − e)]m ∈ J (R) ⊆135

Nil(R). This means that a(1 − e) ∈ Nil(R), as required. ��136

Although it has been long known that the center of an exchange ring need not to be137

again exchange, the following statement is somewhat curious even in the light of [7,138

Proposition 2.7].139

Proposition 2.2 The center of a D-regularly nil clean ring is again a D-regularly nil140

clean ring.141

Proof Letting R be such a ring and given c ∈ C(R), we may write that (c(1 − e))m =142

cm(1 − e) = 0 for some e ∈ I d(R) ∩ cRc = c2 R. What suffices to prove is that143

e ∈ C(R). To do that, for all r ∈ R, it must be that er(1 − e) ∈ cm R(1 − e) =144

Rcm(1 − e) = 0 as e ∈ c2 R implies at once that e = em ∈ cm R. Thus er = ere and,145

by a reason of similarity, we also have that re = ere. Hence, it is now immediate that146

er = re, proving the claim about the centrality of e.147

What remains to be shown is just that e ∈ cC(R)c = c2C(R). Indeed, write148

e = c2b for some b ∈ R. This forces that e = c2be = c2 y, where y = be = eb as149

e is central. We claim that y ∈ C(R), as needed. In fact, for any z ∈ R, one derives150

that yz(1 − e) = (1 − e)yz = (1 − e)ebz = 0 and that (1 − e)zy = zy(1 − e) =151
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zbe(1 − e) = 0, because 1 − e ∈ C(R), which tells us that yz = yze and zy = ezy.152

Further, yz = yzc2 y = c2 yzy and zy = c2 yzy and, finally, yz = zy, as claimed. ��153

It was proved in [25] that the corner subring of any exchange ring is again exchange154

as well as in [7] that the corner subring of any regularly nil clean ring is again regularly155

nil clean. The next statement parallels to these two assertions, and is also in sharp156

contrast with the case of clean rings (see [29]).157

Proposition 2.3 If R is a D-regularly nil clean ring, then so is the corner ring eRe for158

any e ∈ I d(R). In particular, if Mn(R) is D-regularly nil clean, then so does R.159

Proof Choose an arbitrary element ere ∈ eRe for some r ∈ R. Since ere ∈ R, it160

follows that there is an idempotent f in R with f ∈ (ere)R(ere) such that (1− f )ere ∈161

Nil(R). But this could be written as ere − f ere = (e − f )ere = (e − f e)ere =162

q ∈ Nil(R). Thus (e − e f e)ere = eq = eqe ∈ Nil(eRe) with e f e ∈ I d(eRe) ∩163

(ere)(eRe)(ere) = I d(eRe) ∩ (ere)R(ere), because e f e = f and qe = q so that164

eq ∈ Nil(R), as expected.165

The second part-half appears to be a direct consequence of the first part-half as R166

is always isomorphic to a corner subring of Mn(R). ��167

An important but seemingly rather difficult problem is the reciprocal implication168

of the last assertion, namely if both eRe and (1 − e)R(1 − e) are D-regularly nil clean169

rings, does the same hold for R too? Note that for both exchange rings and clean170

rings this implication is true (see, e.g., [14,25], respectively), although for regular and171

unit-regular rings this is not so (see [13]).172

Let us now denote by Tn(R) the upper triangular matrix ring over a ring R, where173

n runs over N. The next result sheds some more light on the structure of this ring.174

Proposition 2.4 The ring Tn(R) is D-regularly nil clean if, and only if, the ring R is175

D-regularly nil clean.176

Proof It is principally known that177

Tn(R)/I ∼= R × · · · × R
︸ ︷︷ ︸

n−times

,178

for a proper nil-ideal I of Tn(R). So, the claim follows at once by using of standard179

arguments, leaving the check to the interested readers. ��180

The next two tricker technicalities are pivotal.181

Lemma 2.5 If R is a ring and x, y ∈ R with x = xyx, then for the element y′ := yxy182

the following two relations are fulfilled:183

(*) x = xy′x;184

(**) y′ = y′xy′.185

Proof About the first relationship, xy′x = x(yxy)x = (xyx)yx = xyx . As for the186

second one, y′xy′ = (yxy)x(yxy) = y(xyx)yxy = y(xyx)y = yxy = y′, as187

promised. ��188

123

SPI Journal: 11587 Article No.: 0577 TYPESET DISK LE CP Disp.:2021/4/4 Pages: 12 Layout: Small-Ex



R
ev

is
ed

Pr
oo

f

P. V. Danchev

It is worthwhile noticing that in [7] it was showed that if a is a π -regular element,189

that is, an is regular for some n ∈ N, then a is regularly nil clean, too. Nevertheless,190

this pleasant implication perhaps cannot be happen in the situation of D-regular nil191

cleanness. Specifically, the following critical assertion is valid:192

Proposition 2.6 If R is a ring having an element a such that an is regular for some193

n ≥ 2, then a is D-regularly nil clean of index not greater than n.194

Proof Writing an = anban for some existing b ∈ R, then with Lemma 2.5 at hand,195

we may also write that b = banb. Indeed, setting b′ = banb, by consulting with the196

cited lemma we will have that an = anb′an and that b′ = b′anb′, so that without loss197

of generality we could replace b′ via b. Furthermore, letting e := aban−1, we easily198

check that e ∈ I d(R) ∩ (a Ra). By a direct inspection, which we definitely leave to199

the reader, one verifies that [a(1 − e)]n = 0, as expected. ��200

We are now ready to proceed by proving two of the major assertions motivated the201

writing of this article.202

Theorem 2.7 Regular rings are D-regularly nil clean of index 2.203

Proof In such rings each power of an arbitrary element is always a regular element, so204

that the claim follows immediately from the crucial Proposition 2.6 by putting n = 2.205

��206

We continue with the second statement of this branch.207

Theorem 2.8 Strongly π -regular rings are D-regularly nil clean.208

Proof For an arbitrary a ∈ R, where R is strongly π -regular, we may write in accor-209

dance with [1] (see [26] too) that an = a2n x = an xan for some n ∈ N and some210

x ∈ R with xa = ax . So, an x = e ∈ I d(R) and by squaring we deduce that211

e = a2n x2 = an x2an ∈ a Ra. Furthermore, a(1 − e) = a(1 − an x) ∈ Nil(R) since212

[a(1 − e)]n = [a(1 − an x)]n = an(1 − an x)n = an(1 − an x)(1 − an x)n−1
213

= (an − a2n x)(1 − an x)n−1 = 0,214

as expected. ��215

As a valuable consequence, we yield the following partial answer to [21, Question216

3.17]:217

Corollary 2.9 Let R be a ring and let n ≥ 2 be a fixed positive integer. If all elements218

of R satisfy the equation xn − x ∈ Nil(R), then R is D-regularly nil clean.219

Proof It is not too hard to verify that such a ring R is strongly π -regular, and so220

Proposition 2.8 applies to get the claim. ��221

Next, the utilization of a simple but an ingenious trick allows us to deduce the222

following central statement, which increases both Theorems 2.7 and 2.8.223
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Theorem 2.10 All π -regular rings are D-regularly nil clean.224

Proof For such a ring R, letting r ∈ R, if r2 is a regular element, we are set applying225

Proposition 2.6. However, if not, since r2 ∈ R, there is an integer k > 1 such that226

(r2)k = r2k is a regular element. As 2k > 2, again Proposition 2.6 is applicable to227

conclude the claim. ��228

Now, we will treat the case of vector spaces which results could be of independent229

interest and which will be also applied in the examples stated below.230

Lemma 2.11 Let V be a vector space over an arbitrary field K , let R = EndK (V )231

whose elements are being written to the left of elements of V , and let a ∈ R. Then232

there exists an idempotent e ∈ a Ra such that (a(1 − e))2 = 0.233

Proof Let V1 = (kera) ∩ (ima), let V2 be a complement of V1 in ima, let V3 be a234

complement of V1 in kera, and let V4 be a complement of (kera) ⊕ (ima) in V .235

Then, we elementarily see that the decomposition holds:236

(1) V = V1 ⊕ V2 ⊕ V3 ⊕ V4.237

Suppose now B1, B2, B3, B4 are the corresponding K -bases of V1, V2, V3, V4,238

respectively.239

We claim that one can find an element r ∈ R such that240

(2) ∀ v ∈ B2 : arav = v; ∀ v ∈ B4 : rav = 0.241

To see this, note that in view of point (1), one has that V2 ⊕ V4 is disjoint from242

kera = V1 ⊕ V3, hence a is one-to-one on the direct sum V2 ⊕ V4, whence it maps243

linearly independent elements of V2 ⊕ V4 to linearly independent elements of V .244

Therefore, one can choose an element of the ring R which maps the elements av for245

v ∈ B2 ∪ B4 to arbitrarily chosen elements of the space V . Now, since V2 lies in ima,246

every v ∈ V2 has a pre-image under the action of a in V , and we thereby can choose r247

to map each element av (v ∈ V2) to such a pre-image, whereas mapping the elements248

av for v ∈ B4 to 0. (We let it behave arbitrarily on a complement to the subspace that249

these elements span.) Thus, (2) will hold.250

Note that ara annihilates elements of both B1 and B3, because these lie in kera;251

and by the second condition of (2) it also annihilates elements of B4; while by the first252

condition of (2), it fixes elements of B2. Hence253

(3) ara is the projection e of V to the summand V2 in the equality (1).254

We now consider the element a(1 − e). By virtue of (3), this annihilates V2, while255

acting on the other Vi as a does. By definition of the Vi ’s, the element a annihilates256

both V1 and V3, and sends V4 into ima, the direct sum of V1 and V2, so we come to257

the conclusion that258

(4) a(1 − e) annihilates V1, V2, V3 and sends V4 into V1 ⊕ V2.259
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In particular, this shows that the image of a(1 − e) is contained in its kernel, thus260

proving the wanted equality (a(1 − e))2 = 0 after all. ��261

As an immediate consequence, we yield:262

Corollary 2.12 If Vi (i ∈ I ) are a family of vector spaces over fields Ki , and we let263

R =
∏

i∈I

EndKi Vi ,264

then, for every a ∈ R, there exists an idempotent e ∈ a Ra such that (a(1 − e))2 = 0.265

It was shown in [7, Proposition 2.5] that regularly nil clean rings R (and thus,266

in particular, D-regularly nil clean rings as well) are Utumi rings in the sense that,267

for every x ∈ R, there exists y ∈ R depending on the element x such that x −268

x2 y ∈ Nil(R). It was also asked in the introductional section are these Utumi’s rings269

symmetric in the sense that x − yx2 ∈ Nil(R). In what follows, we will give a positive270

solution to that question.271

Theorem 2.13 The rings of Utumi are left-right symmetric.272

Proof Let x ∈ R be an arbitrary element. Hence, by definition, there is y ∈ R depend-273

ing on x such that x − x2 y ∈ Nil(R). We claim that x − yx2 ∈ Nil(R) which274

will show the desired symmetry. In fact, note firstly that for all n ∈ N one has that275

(x − x2 y)n = [x(1 − xy)]n = x(x − xyx)n−1(1 − xy). Thus, if (x − x2 y)n = 0,276

then one observes that (x − xyx)n+1 = (1 − xy)(x − x2 y)n x = 0. Since we can277

analogously write that (x − yx2)n+2 = (1 − yx)(x − xyx)n+1x , we elementarily see278

that this is zero too, i.e., (x − yx2)n+2 = 0, as required. ��279

Now, in order to support Definition 1.1, we continue with a series of examples280

showing unambiguously the abundance and the complicated structure of D-regularly281

nil clean rings as well as that the converse implication in Theorem 2.8 is not fulfilled.282

Example 2.14 There exists a D-regularly nil clean ring of index 2, which is unit-regular,283

strongly clean and nil-clean, but is not strongly π -regular.284

Proof Consider the example of a nil-clean, unit-regular ring R as constructed in [30,285

Example 3.1], which ring is not strongly π -regular. In fact, it is of the form R =286
∏∞

n=1 Mn(Z2), and on p.345 from [30] it was mentioned only that R is regular, but287

this can be plainly strengthened to unit-regularity thus: Since Mn(Z2) is finite, and288

hence artinian, with zero Jacobson radical, it is both unit-regular and strongly π -289

regular (see [12]). Now, it readily follows by coordinate-wise arguments that R is also290

unit-regular, too, as claimed.291

Next, what we intend to show is that this ring is D-regularly nil clean, which will292

be substantiated by illustrating of two different ideas:293

First approach This follows at once from Theorem 2.7, as asserted.294

Second approach In particular to Corollary 2.12, this holds when the index set I is295

the set of all natural numbers, and each Vi = K i = K × · · · × K (i times) for a296
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common field K = Ki , so that we will have R = ∏

i∈I Mi (K ), taking into account297

the classical facts that EndK (K ) ∼= K and that EndK (K i ) ∼= Mi (K ). If we now just298

substitute K = Z2, the initial statement will be true, as desired, and the proof of the299

example is completed. ��300

Remark 2.15 We have proven even something more than we have claimed, namely, for301

any positive integer n and any field K , the ring Mn(K ) and its infinite direct product302

on n, where n ranges over all naturals N, are D-regularly nil clean of index 2; when303

n = 0 we just have at once that the index is 1 for the field K . However, still left-open304

remain the question of whether or not Mn(R) is D-regularly nil clean for any n ≥ 1,305

whenever R is D-regularly nil clean (the reverse was obtained in Proposition 2.3).306

In that aspect, combining a series of principally known facts, we may collect the307

following establishments (see, for more information, also [28]):308

• it was proved in [23] that, for any n ∈ N and any ring R, the ring Mn(R) is regular309

if, and only if, R is regular.310

• it was proved in [16] that, for any n ∈ N and any ring R, the ring Mn(R) is311

unit-regular if, and only if, R is unit-regular.312

• it was proved in [2] that, for any n ∈ N and any commutative ring R, the ring313

Mn(R) is strongly π -regular if, and only if, R is strongly π -regular.314

It is still unknown whether these equivalencies hold for noncommutative (strongly)315

π -regular rings. The situation with matrix rings over noncommutative π -regular rings316

seems to be rather complicated.317

• it was proved in [25] that, for any n ∈ N and any ring R, the ring Mn(R) is318

exchange if, and only if, R is exchange.319

• it was proved in [14] that, for any n ∈ N and any ring R, the ring Mn(R) is clean320

if, and only if, R is clean.321

For the case of strongly clean rings, this equivalence is no longer fulfilled, however322

(see, for consultation, [2]).323

The last construction in the Example 2.14 above can be improved a bit more to the324

following one:325

Example 2.16 There exists a D-regularly nil clean ring of index at most 4, which is326

both nil-clean and strongly clean, but is not π -regular.327

Proof We put into consideration the ring R = ∏∞
n=1 Mn(Z4) from [30, Example 3.2].328

It was established there that it is nil-clean but not π -regular. According to Remark 2.15,329

Mn(Z4) is strongly π -regular as so is Z4. Consequently, R is strongly clean (see, e.g.,330

[26]).331

Further, what needs to prove is that R is D-regularly nil clean, which we will show332

by demonstrating two independent methods:333

First approach As showed in Example 3.2 of [30] there is a nil-ideal I ⊆ J (R) such334

that R/I is (unit-)regular being isomorphic to the ring R = ∏∞
n=1 Mn(Z2) from the335

preceding Example 2.14. We, therefore, apply Lemma 2.1 to get our pursued claim.336

Second approach To that goal, by utilizing the next trick, we shall reduce the required337

proof to that of the previous example. Specifically, the following preliminary technical338

claim is true:339
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Lemma 2.17 Let A be a commutative ring containing an element ε such that ε2 =340

0, and let R be an A-algebra containing an element e which is an “approximate341

idempotent” in the sense that the following equality is fulfilled:342

(∗) e2 − e = εb, ∃b ∈ R.343

Then the element e′ = e − 2e(εb) + εb is, in fact, an idempotent in R.344

Proof Note that under the presence of (*), the element εb will commute with e, which345

can be routinely verified by a direct check. Hence the condition (*) and the equality346

above for e′ can be regarded as equations in the commutative A-subalgebra of R,347

generated by e and εb. The calculation showing that e′2 − e′ = 0, based on the348

truthfulness of the equalities stated above, is now really straightforward. ��349

Now, we manage to prove the whole example. So, given any commutative ring A350

with a square-zero element ε such that the factor-ring A/ε A is a field (e.g., such as351

Z4 with ε = 2), if we let R be the endomorphism algebra of a free A-module M ,352

then R/εR will surely be the endomorphism ring of the (A/ε)-vector space M/εM ,353

and so given a ∈ R, we can successfully apply the internal Lemma 2.11 to the image354

of a in R/εR to get an appropriate idempotent there. Therefore, Lemma 2.17 allows355

us to approximate this by an idempotent e of R, which will approximately have the356

desired property, namely that the square (a(1 − e))2 will lie in εR. This will give that357

(a(1 − e))4 = 0, as required, completing the proof of the example. ��358

3 Concluding Discussion and Open Questions359

In closing, we state into consideration the following six questions of some interest and360

importance to the subject:361

It is pretty easy to infer that finite direct products of (strongly) π -regular rings are362

(D-)regularly nil clean (it cannot be expected that these finite direct products will be363

again (strongly) π -regular even in the case of two direct components – see, e.g., [32]).364

However, in regard to Examples 2.14 and 2.16, one may ask the following:365

Problem 3.1 Does it follow that an infinite direct product of (strongly) π -regular rings366

is a (D-)regularly nil clean ring?367

The solution to the next three queries will increase all the picture about the rela-368

tionships between the classes of rings examined above.369

Problem 3.2 Does there exist a D-regularly nil clean ring which is not strongly clean370

(and even not clean)?371

In regard to Theorems 2.7 and 2.10, one may state the following query:372

Problem 3.3 Does there exist a (π -)regular element which is not D-regularly nil clean?373

Strengthening [7, Problem 3.4], one may ask the following:374
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Problem 3.4 Does there exist a nil-clean ring which is not D-regularly nil clean?375

In conjunction with [10] and Theorem 2.8 such a ring, if it eventually exists, would376

be of unbounded index of nilpotence, because nil-clean rings of bounded index of377

nilpotence are always strongly π -regular.378

In [18] was proved the remarkable fact that in regular rings all strongly π -regular379

elements (and, in particular, all nilpotent elements) are always unit-regular. In addition,380

if a ring is simultaneously regular and strongly π -regular, then it is unit-regular.381

So, as a final query, it is reasonably adequate to be searching for the following382

expansion of the last affirmation in case that Problem 3.3 holds in the affirmative:383

Problem 3.5 In D-regular nil clean rings are all π -regular elements strongly π -regular?384

In addition, is a D-regularly nil clean ring (strongly) π -regular, provided that it is of385

bounded index of nilpotence?386

We are now ending up our considerations with the following variation of Defini-387

tion 1.1:388

Problem 3.6 Describe the structure of those rings R such that, for every a ∈ R, there389

exist n ∈ N and e ∈ (an Ran)∩ I d(R) possessing the property that [a(1 − e)]n+1 = 0390

and this natural n is somewhat the minimal/maximal one equipped with that property.391
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21. Koşan, M.T., Yildirim, T., Zhou, Y.: Rings with xn − x nilpotent. J. Algebra Appl. 19 (2020)429

22. Lam, T.-Y.: A First Course in Noncommutative Rings, Second Edition, Graduate Texts in Mathematics,430

vol. 131. Springer-Verlag, Berlin-Heidelberg-New York (2001)431

23. Lam, T.-Y.: Exercises in Classical Ring Theory, Problem Books in Mathematics, 2nd edn. Springer-432

Verlag, New York (2003)433

24. Nicholson, W.K.: Rings whose elements are quasi-regular or regular. Aequat. Math. 9, 64–70 (1973)434

25. Nicholson, W.K.: Lifting idempotents and exchange rings. Trans. Am. Math. Soc. 229, 269–278 (1977)435

26. Nicholson, W.K.: Strongly clean rings and Fitting’s lemma. Commun. Algebra 27, 3583–3592 (1999)436

27. Nielsen, P.P., Šter, J.: Connections between unit-regularity, regularity, cleanness, and strong cleanness437

of elements and rings. Trans. Am. Math. Soc. 370, 1759–1782 (2018)438

28. Rowen, L.H.: Polynomial Identities in Ring Theory, Pure and Applied Mathematics, vol. 84, Academic439

Press, Inc. (Harcourt Brace Jovanovich, Publishers), New York-London (1980)440

29. Šter, J.: Corner rings of a clean ring need not be clean. Commun. Algebra 40, 1595–1604 (2012)441

30. Šter, J.: On expressing matrices over Z2 as the sum of an idempotent and a nilpotent. Linear Algebra442

Appl. 544, 339–349 (2018)443

31. Stock, J.: On rings whose projective modules have the exchange property. J. Algebra 103, 437–453444

(1986)445

32. Tuganbaev, A.: Rings Close to Regular, Mathematics and Its Applications, vol. 545. Kluwer Academic446

Publishers, Dordrecht (2002)447

33. Warfield Jr., R.B.: Exchange rings and decompositions of modules. Math. Ann. 199, 31–36 (1972)448

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps449

and institutional affiliations.450

123

SPI Journal: 11587 Article No.: 0577 TYPESET DISK LE CP Disp.:2021/4/4 Pages: 12 Layout: Small-Ex


	A symmetric generalization of π-regular rings
	Abstract
	1 Introduction and Background
	2 Preliminary and Main Results
	3 Concluding Discussion and Open Questions
	Acknowledgements
	References


