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Abstract—We (completely) determine those natural numbers n for which the full matrix ring
Mn(F2) and the triangular matrix ring Tn(F2) over the two elements field F2 are either n-torsion
clean or are almost n-torsion clean, respectively. These results somewhat address and settle
a question, recently posed by Danchev–Matczuk in Contemp. Math. (2019) as well as they
supply in a more precise aspect the nil-cleanness property of the full matrix n× n ring Mn(F2)
for all naturals n ≥ 1, established in Linear Algebra & Appl. (2013) by Breaz–Cǎlugǎreanu–
Danchev–Micu and again in Linear Algebra & Appl. (2018) by Šter as well as in Indag. Math.
(2019) by Shitov.
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1. INTRODUCTION AND FUNDAMENTAL TOOLS

Let R be a ring possessing identity different to its zero element. As usual, for any positive
integer n, the letters Mn(R) and Tn(R) will denote the full matrix ring and the (upper) triangular
matrix ring, respectively.

For an arbitrary matrix A over a commutative ring, we denote two polynomials associated
to A as follows: let χA(X) be the characteristic polynomial of A defined standardly as χA(X) =
det(X · I −A), where X is the variable of the polynomial and I represents the identity matrix –
thus χA(X) is a monic (i. e., its leading coefficient is 1) polynomial of degree n, and let µA(X) be
the minimal polynomial of A defined as the monic polynomial of the smallest possible degree such
that µA(A) = 0; so χA(X) is a multiple of µA(X). We shall hereafter designate for short χA(X)
and µA(X) just as χA and µA, respectively.

Moreover, for integers a with (a, n) = 1, let la(n) denote the multiplicative order of a(mod n). If
(a, n) > 1, let n(a) denote the largest divisor of n that is co-prime to a and let we set l∗a := la(n(a)).

In particular, if (a, n) = 1, then l∗a(n) = la(n).
As usual, for any prime integer p, the letter Fp = Zp will stand for the prime field of p elements

having characteristic p.

Letting q be a monic polynomial over F2 with q = Xn + cn−1X
n−1 + . . .+ c1X + c0, we explicitly

indicate the companion matrix associated to q as the n× n matrix

C = Cc0,c1,...,cn−1
=

















0 0 . . . 0 −c0

1 0 . . . 0 −c1
...

... · · ·
...

...

0 0 . . . 1 −cn−1

















.
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48 CÎMPEAN, DANCHEV

To avoid some inaccuracies with the exact meaning, we also denote C by Cq using the subscript q
which may vary in each of the different cases.

The following definition appeared in [15].

Definition 1.1. Let p be a prime. If the polynomial Xn − 1 over the simple field of p elements Fp

has divisors of every degree less or equal to n, then n is said to be p-practical.

The following useful technicality from number theory (see, e. g., [15]), which will be used below
without any further concrete referring, manifestly demonstrates more completely the importance
of this notion, where φ(d) standardly denotes the Euler function of the integer d: Suppose p is
a prime. An integer n is p-practical if and only if every m ∈ N with 1 ≤ m ≤ n can be written as

m =
∑

d|n l
∗
p(d)nd, where nd is an integer with 0 ≤ nd ≤

φ(d)
l∗p(d)

.

Concerning the classical theme of representing matrices as sums (and products of certain elements
such as units, idempotents, nilpotents, etc.) one may indicate the following most important
achievements like these: It was established in [11] and [12] that if K is a field, then each element
in Mn(K) is a linear combination of 3 idempotents and, in particular, if char(K) is either 2 or 3,
then every element of Mn(K) which is a sum of idempotents is actually a sum of four idempotents;
in the case of fields F2 and F3, then any matrix over these two fields is a sum of three idempotents.

On the other vein, in [3] was concluded that an arbitrary matrix from Mn(F2) is a sum of a
nilpotent and an idempotent. This fact was stated and proved in a more precise form in [14] by
establishing that the nilpotent must have an exponent not exceeding 4 – we will use the latter
strengthening for our applicable purposes.

Moreover, some significant results in the subject, mainly attributed to Abyzov–Mukhametgaliev
(see [1] and the bibliography herewith), were substantially improved in [2] by proving that every
matrix over a field of odd cardinality k can be decomposed as a sum of a k-potent element and a
nilpotent of order at most 3.

And finally, in [5] were studied conditions on which presence there are certain decompositions of
matrices over the fields F2 and F3.

On the other side, mimicking [7], for some arbitrary fixed n ∈ N, a ring R is said to be n-torsion
clean if, for each r ∈ R, there exist a unit u with un = 1 and an idempotent e such that r = u+ e
and n being the smallest possible positive integer having this (decomposable) property. Without
the condition for minimality of u, this ring R is just called almost n-torsion clean. For n = 2 these
two notions obviously do coincide. It was shown there that Mn(F2) is m-torsion clean for some
natural number m and also it had asked in which cases the equality m = n is true.

At first look, it is seemingly that the quoted above results are somewhat irrelevant each to other.
Nevertheless, we shall demonstrate in the sequel that the presented facts are, however, closely
related. So, the goal of the present paper is to determine exactly all naturals n for which the full
n× n matrix ring Mn(F2) and the upper triangular n× n matrix ring Tn(F2) are n-torsion clean
and almost n-torsion clean, respectively, in terms of positive integers associated with the polynomial
structure (especially, by concerning the divisibility of polynomials). In the latter case our work is
successfully done as the results in a final form, whereas in the first case our results are not in a
final form. Concretely, our achievements are the following: (1) For an arbitrary natural number
n ≥ 1, to show the existence of an integer m from the segment m ∈ [2, 4] such that Mn(F2) is almost
m-torsion clean. In particular, for some special naturals n ∈ 4 + 8N, Mn(F2) is precisely 4-torsion
clean as well as M2(F2) is always 2-torsion clean. Even more generally, if n is a 2-practical integer,
then Mn(F2) is almost n-torsion clean; (2) T2(F2) is 2-torsion clean as well as for an arbitrary n ≥ 3,

Tn(F2) is almost n-torsion clean ⇐⇒ Tn(F2) is n-torsion clean ⇐⇒ n = 2l for l ∈ N with l 6= 0, 1
– see our five major Theorems 2.1, 2.2, 2.3, 2.4 and 2.5 listed below.

Some similar questions concerned with fields of greater power will also be discussed in the sequel.
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n-TORSION CLEANNESS OF MATRIX RINGS 49

2. PRELIMINARY AND MAIN RESULTS

Our further work is devoted to a comprehensive investigation of matrix presentations as sums of
bounded torsion units (for some fixed exponent) and idempotents. Here we state our chief results,
distributed into two subsections as follows:

2.1. The full matrix ring

First and foremost, we will completely settle the problem for n-torsion cleanness of matrix rings
over the two elements field. Specifically, the following is true:

Theorem 2.1. Let m,n ∈ N. Then, for each matrix size n, there exists m ∈ {2, 3, 4} such that

Mn(F2) is always almost m-torsion clean.

In addition, if n ∈ 4 + 8N, then Mn(F2) is exactly 4-torsion clean.

Proof. It was established in [3] and [14] that the ring Mn(F2) is nil-clean for any n ≥ 1 in the sense
that any matrix A with elements in F2 is presentable as a sum of an idempotent matrix E and a
nilpotent matrix N of order of nilpotence at most 4, say N4 = 0. Therefore, as the characteristic in
the matrix ring remains precisely 2, we may represent that matrix A as A = (In + E) + (In +N),
where In is the identity matrix, and so the matrix In +E remains an idempotent. But one readily
sees that (In +N)4 = In, and so we arrive at the conclusion that Mn(F2) is almost m-torsion clean
for some m ∈ N satisfying the two equalities 2 ≤ m ≤ 4, that is, m lies in the set of three elements
{2, 3, 4}, as stated.

The second part-half now follows immediately in view of the arguments stated above in
combination with the main result in [13].

Actually, the above assertion settles [7, Question 1] in the negative, provided n ≥ 5. Moreover,
in addition, whether or not it can be deduced that Mn(F2) is 2-torsion clean if and only if n = 2 as
well as that Mn(F2) is 3-torsion clean if and only if n = 3, are two still unsurmountable things at
this stage.

Next, treating the more complicated matrix structure of when Mn(F2) is almost n-torsion clean
for an arbitrary natural number n, we begin here with the next statement which was established
in [4]. Recall that N0 designates the union N ∪ {0}, where N is the set consisting of all naturals.

Proposition 2.1 ([4]). Let n = m+ k be a positive integer, where m ∈ N0, k ∈ N. Fix constants

c0, c1, . . . , cn−1 ∈ F2 and denote C = Cc0,c1,...,cn−1
. For every polynomial g ∈ F2[X] of degree at most

n− 2 there exist two matrices E,M ∈ Mn(F2) such that

1. C = E +M ;

2. E is a rank k idempotent

and

3. χM = Xn + (k · 1 + cn−1)X
n−1 + g.

The following technical claim is crucial for further applications.

Lemma 2.1. Suppose p is an odd prime and n = 4p. If n is 2-practical, then l2(p) ≤ 5.
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Proof. Assume that 4p is 2-practical with p an odd prime. Therefore, every integer m with

1 ≤ m ≤ 4p can be written as m =
∑

d|n l
∗
2(d)nd, where nd is an integer with 0 ≤ nd ≤ φ(d)

l∗
2
(d) .

Henceforth, to demonstrate our initial assertion, we shall compute l∗2(d)nd for every divisor d of
n. The divisors of n are 1, 2, 4, p, 2p and 4p.

Let d = 1. We have l∗2(1) = l2(1(2)) = l2(1) = 1, and since φ(1) = 1, it must be that 0 ≤ n1 ≤
1
1 ,

so n1 ∈ {0, 1}.

Let d = 2. We have l∗2(2) = l2(2(2)) = l2(1) = 1, and since φ(2) = 1, it must be that 0 ≤ n2 ≤
1
1 ,

so n2 ∈ {0, 1}.

Let d = 4. We have l∗2(4) = l2(4(2)) = l2(1) = 1, and since φ(4) = 2, it must be that 0 ≤ n4 ≤
2
1 ,

so n4 ∈ {0, 1, 2}.

Let d = p. We have l∗2(p) = l2(p(2)) = l2(p).

Let d = 2p. We have l∗2(2p) = l2((2p)(2)) = l2(p).

Let d = 4p. We have l∗2(4p) = l2((4p)(2)) = l2(p).

Consequently,
∑

d|n l
∗
2(d)nd = 1 · n1 + 1 · n2 + 1 · n4 + l2(p)np + l2(p)n2p + l2(p)n4p. But since

n1 ∈ {0, 1}, n2 ∈ {0, 1}, and n4 ∈ {0, 1, 2}, it follows at once that n1 + n2 + n4 can be only in the
set {0, 1, 2, 3, 4}. Therefore, the rest of m =

∑

d|n l
∗
2(d)nd, which is divided by l2(p), is in the set

{0, 1, 2, 3, 4}. If 5 < l2(p), then for m = 5 < n we have that the rest of m, divided by l2(p), would
be exactly 5, which is a contradiction. So, if n = 4p is 2-practical, then l2(p) ≤ 5, as required.

It is worthwhile noticing that 28 is surely a 2-practical number (p = 7 in the statement above).
In fact, over F2, the polynomial x28 − 1 factors into a product of four degree 1 polynomials and eight
degree 3 polynomials, and so it has a factor of every degree (the direct check of this fact we leave
to the interested reader for an inspection). Moreover, the calculations given above unambiguously
illustrate that l2(7) ≤ 5 and, in particular, they even show that l2(7) = 3 (also, it is just an easy
statement, which follows immediately from the fact that 22 − 1 is not divisible by 7 while 23 − 1 is
divisible by 7).

The next notation will be used in what follows rather intensively.

Notation 2.1. Let m > 2 be an integer. We shall denote by k1(m) the smallest number

k ∈ {1, 2, . . . ,m} such that the binomial
(

m
k

)

is odd.

The next lemma is well-known in the existing classical literature (see, e. g., [8]) having an
attractive and not too hard proof, so we will omit its details by leaving it to the readers for an
eventual exercise.

Lemma 2.2. Let m > 2 be an integer. Then the number of odd entries in the m-th line of the
Pascal’s Triangle is 2v, where v is the number of digits 1 in the binary representation of m.

The following technicality somewhat describes the behavior of k1(m).

Lemma 2.3. Let m > 2 be an integer. Then the following two items hold:

1. m = k1(m) if and only if m is a power of 2.

2. m = k1(m) or m
2 ≥ k1(m).
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Proof. (1) Assuming m = k1(m), then the numbers of odd entries in the m-th line of the Pascal’s
Triangle is 2, so by Lemma 2.2 we have that the number of digits 1 in the binary representation of
m is 1, so m is a power of 2.

Assume now that m is a power of 2. Then the number of digits 1 in the binary representation of
m is 1, so we have exactly 2 entries in the m-th line of the Pascal’s Triangle. Therefore, k1(m) = m.

(2) Let m > k1(m). Assume m
2 < k1(m). Then 0 6= k2 = m− k1(m) < m

2 < k1(m) and
(

m
k2

)

=
(

m
k1(m)

)

, so
(

m
k2

)

is odd, which manifestly contradicts the definition of k1(m).

The next technicality is a purely number theoretic setting, which seems to the authors of the
current paper to be absolutely “new” and which could be of independent interest as well. Its proof
could also be attacked via the classical instrument in number theory called Lucas’ theorem by
pointing out a standard pattern of odd-even elements in the Pascal triangle.

Lemma 2.4. Let m > 2 be an integer. Then k1(m) = 2w, where w is a positive integer if m is even
and w = 0 if m is odd.

Proof. Write m = 2w.t for some w, t ∈ N with t odd. Firstly, if w = 0, then m = t is odd and we
just can take k1(m) = 1 = 2w, as wanted.

Secondly, given m is even, we may assume that k1(m) ≥ 2. We differ two basic cases:

Case 1. Let w = 1 and so m = 2t. Since
(

m
1

)

= m = 2t is even and
(

m
2

)

= 2t(2t−1)
2 = t(2t− 1) is

odd, we may choose k1(m) = 2 = 2w, as needed.

Case 2. Let m = 2w.t with w ≥ 2. Now, the proof can easily be separated into three simple claims
as follows:

1)
(2w .t
2w

)

is odd for w ≥ 2 and implies k1(m) ≤ 2w.

In fact, since
(

2w.t
2w

)

=
∏2w

k=1
2w(t−1)+k

k
, it is clear that the binomial

(

2w.t
2w

)

is odd. Next, if we

assume the contrary that k1(m) > 2w, then for every i ∈ {1 = 20, 2, . . . , 2w} we plainly get that all

the binomials
(2w.t

i

)

are even, which contradicts what we have shown for i = 2w.

2)
(

2w.t
2j+1

)

is even for j < 2w−1. Consequently, k1(m) is even.

In fact, if we assume in a way of contradiction that k1(m) is odd, such that k1(m) > 1, i. e.,
k1(m) = 2j + 1, where j ∈ N and j < 2w−1, then it is easily verified that

(

m

k1(m)

)

=

(

2w.t

2j + 1

)

=

(

2w.t
2j

)

.(2w.t− 2j)

2j + 1
.

Furthermore, as j < 2w−1, we will have that
(2w .t

2j

)

is also even and hence the numerator will be

even as well, thus guaranteeing that
( 2w.t
2j+1

)

is divisible by 4, which is impossible.

3)
(2w .t

2j

)

is odd implies
(2w−1.t

j

)

is odd.

In fact, one sees that the congruence
(

2w.t

2j

)

≡

(

2w−1.t

j

)

(mod 2)

holds, because of the equality
(2w.t

2j

)

.µ =
(2w−1.t

j

)

.λ, where λ, µ are odd positive integers. So, by

virtue of the previous Claim 2 and induction on w, it follows that j is a power of 2, as expected.

Furthermore, the validity of these three claims substantiates the truthfulness of the assertion in
the lemma.
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Therefore, the validity of our claim for
(2w−1.t

j

)

will force the same for
(2w.t

2j

)

as well, as desired.

We come now to one of our main results describing when all matrices of sizes n ≥ 3 over the two
element field F2 are almost n-torsion clean. The result is closely related to [7, Question 1].

Theorem 2.2. Let n > 2 be an integer. Then the following two items hold:

1. If n is 2-practical, then Mn(F2) is almost n-torsion clean.

2. If Mn(F2) is almost n-torsion clean, then n is not necessarily 2-practical.

Proof. We will differ and prove these two statements separately as follows:

(1) Let n > 2 be an integer that is 2-practical. We will prove that any companion matrix
of order m with 1 ≤ m ≤ n is almost n-torsion clean. Then, since any matrix is similar to its
Frobenious normal form, a direct sum of companion matrices (i. e., a matrix with blocks, which
is also diagonal), and since a direct sum of almost n-torsion clean companion matrices is almost
n-torsion clean (because of the fact that a diagonal with almost n-torsion clean entries is always
almost n-torsion clean and taking into account the fact that the diagonal consisting of blocks will
keep the result), the conclusion will follow.

In fact, let m be an integer such that 1 ≤ m ≤ n. Since n is 2-practical, there exists a polynomial
r = Xm + rm−1X

m−1 + · · ·+ r1X + r0 over F2 such that r is a divisor of Xn − 1.

Let us now Cq be an order m companion matrix, Cq = Cc0,c1,...,cm−1
. We know that there exists

k ∈ {1, 2, . . . , n− 1} such that k · 1 + cm−1 = rm−1. By virtue of Proposition 2.1, we know that for
every g ∈ F2[X] of degree at most m− 2 there exist a rank k idempotent E and a unit U such that
Cq = E + U, with χU = Xm + (k · 1 + cm−1)X

m−1 + g. It is not too hard to observe that we can

choose g such that g = rm−2X
m−2 + · · ·+ r1x+ r0. Then χU = r. Since χU (U) = Om, it follows

that r(U) = Om. But r is a divisor of Xn − 1. Therefore, Un = Im and so Cq is almost n-torsion
clean.

(2) Suppose now to the contrary the implication “if Mn(F2) is almost n-torsion clean, then n is
2-practical” would be true. Next, in order to receive the desired contradiction, we will first of all
prove that the implication “if 4 ≤ k1(n), then Mn(F2) is almost n-torsion clean” is true – actually,
these two implications are independent each to other. Indeed, by what we have already shown so
far, we know that Mn(F2) is a nil-clean ring with nil-clean index less than or equal to 4 (see [14] too).
Letting A ∈ Mn(F2), then there exist an idempotent E and a nilpotent N such that A = E +N

with N4 = On. So, there will exist positive integers k1 = k1(n) < k2 < . . . < ks = n such that

(In +N)n = In +Nk1 +Nk2 + . . .+Nks . Now, if we provide that 4 ≤ k1(n), then (In +N)n = In,
and since A = (In +E) + (In +N) is a clean decomposition of A, we will have actually gotten that
A is almost n-torsion clean, as required.

Furthermore, from validity of both implications “if 4 ≤ k1(n), then Mn(F2) is almost n-torsion
clean” and “if Mn(F2) is almost n-torsion clean, then n is 2-practical”, we extract the following
implication “ if 4 ≤ k1(n), then n is 2-practical”.

What we intend to show now is that 4 ≤ k1(44) and that 44 is not 2-practical. This contradiction
will establish our desired claim as our former assumption will be wrong. To that goal, since
44 = 22 · 11, we obtain that 4 = k1(44). Furthermore, there exists p = 11 such that 44 = 4p holds.
Assume now that 44 is 2-practical. Then, by Lemma 2.1, we have that l2(11) ≤ 5. But the only odd
prime divisors of 22 − 1, 23 − 1, 24 − 1, 25 − 1 are 3, 7, 5, 31. So, l2(11) ≤ 5 is an obvious contradiction,
thus substantiating the wanted claim after all.

RUSSIAN MATHEMATICS Vol. 65 No. 1 2021



n-TORSION CLEANNESS OF MATRIX RINGS 53

Some more comments comparing the present case of n-torsion cleanness with that of nil-cleanness
could be of some interest and importance. In fact, it is not known if a nil-clean matrix over a field
has all the companion matrices in its Frobenious normal form also nil-clean – actually, it is a known
fact only that if all companion matrices in the Frobenious normal form of a matrix A are nil-clean,
then A is nil-clean (for more details, see the construction in [4, Remark 9]). About the almost
n-torsion clean case it is not known yet if an n-torsion clean matrix over a field (in particular,
we are currently working over F2) has all the companion matrices in its Frobenious normal form
also almost n-torsion clean. So, we are very interested if we can relate the almost n-torsion clean
case with the problem of n-torsion cleanness of Mn(F2) by asking of whether or not if A ∈ Mn(F2)
is almost n-torsion clean, then it is not necessarily that any companion matrix in the Frobenious
normal form of A is also almost n-torsion clean.

2.2. The triangular matrix ring

Let us recall the standard notation of the matrix units Eij , where i, j are indices running over
N, as the matrix whose entries are all zeros except (i, j)-cell, where it is exactly one (see, e. g., [9]

and [10]). For example, E12 =











0 1 0

0 0 0

0 0 0











∈ T3(F2) is a nilpotent of order 2.

Our next basic result, pertaining to the triangular matrix ring, asserts the following:

Lemma 2.5. Let n ∈ N. Then the nilpotency index of the nil-clean ring Tn(F2) is at least n.

Proof. Consider the matrix A = E12 + · · · + En−1,n ∈ Tn(F2). It is quite clear that An−1 6= On

and the representation A = E +N for some idempotent matrix E ∈ Tn(F2) and nilpotent matrix
N ∈ Tn(F2) implies E = On, as required.

We recollect once again with accordance with Notation 2.1 above that k1(m) stands for the least
integer k ∈ {1, 2, . . . ,m} such that

(

m
k

)

is odd.

The following technical claim is pivotal for our further development of results.

Lemma 2.6. Let n > 2 and m > 2 be two integers. Then Tn(F2) is almost m-torsion clean if and
only if n ≤ k1(m).

Proof. We first deal with the “left-to-right” implication. Given A ∈ Tn(F2), we know that A is
almost m-torsion clean, so that there exist an idempotent matrix E ∈ Tn(F2) and a unit matrix
U ∈ Tn(F2) such that A = E +U with Um = In. Since U is a unit of Tn(F2), then the entries in the
main diagonal of U are only ones and, therefore, there exists a nilpotent matrix N ∈ Tn(F2) such
that U = In +N . So, (In +N)m = In. Let us now k1 < k2 < · · · < ks = m be the integers in the set

{1, 2, . . . ,m} such that
(

m
ki

)

is odd for every i ∈ {1, 2, . . . , s}. Therefore, Nk1 +Nk2 + · · ·+Nks = On

and from here we derive that Nk1(In +Nk2−k1 + · · ·+Nks−k1) = On. Since Nk2−k1 , . . . , Nks−k1 are

commuting nilpotents, their sum is again a nilpotent, and hence In +Nk2−k1 + · · · +Nks−k1 is a
unit. Consequently, Nk1 = On. With A = (E + In) +N at hand, we will obtain some nil-clean

decomposition of A with Nk1 = On. Using now Lemma 2.5, it follows that n ≤ k1, as desired.
Conversely, assume that A ∈ Tn(F2). Knowing that A is clean, there exist an idempotent

matrix E ∈ Tn(F2) and a unit matrix U ∈ Tn(F2) such that A = E + U . Since U is a unit of
Tn(F2), then the entries in the main diagonal of U are only ones and, therefore, there exists
N ∈ Tn(F2) such that U = In +N . We will now compute the power (In +N)m. To that purpose,
let k1 < k2 < · · · < ks = m be the integers in the set {1, 2, . . . ,m} such that

(

m
ki

)

is odd for every

i ∈ {1, 2, . . . , s}. Furthermore, (In +N)m = In +Nk1 +Nk2 + · · ·+Nks , as wanted. But we know

that n ≤ k1 and since Nn = On, it follows that Nk1 = Nk2 = · · · = Nks = On. So, (In +N)m = In,
whence A is almost m-torsion clean, as required.
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We now come to our first main result in this subsection.

Theorem 2.3. Let n > 2 be an integer. Then Tn(F2) is almost n-torsion clean if and only if n = 2l,
where l ∈ N \ {0, 1}.

Proof. If we set m = n in Lemma 2.6, we shall obtain that Tn(F2) is almost n-torsion clean if and
only if n ≤ k1(n). However, we have simultaneously that n ≤ k1(n) and k1(n) ≤ n. So, n = k1(n).

But such integers n are, with the aid of Lemma 2.3, only 2l with l ∈ N \ {0, 1}. Finally, Tn(F2) is

almost n-torsion clean if and only if n = 2l, l ∈ N \ {0, 1}, as claimed.

The following lemma somewhat restate Lemma 2.6 in a more convenient for us form of m-torsion
clean rings like this:

Lemma 2.7. Let n > 2 and m > 2 be two integers. Then Tn(F2) is m-torsion clean if and only if
the following two points hold:

1. n ≤ k1(m).

2. n > k1(u) for every integer u ∈ {2, 3, . . . ,m− 1}.

Proof. We just use Lemma 2.6 accomplished with the definition of m-torsion cleanness.

Arguing as above, we continue with a more precise description of m-torsion cleanness of triangular
matrix rings.

Lemma 2.8. Let n > 2 and m > 2 be two integers. If Tn(F2) is m-torsion clean, then m ≥ n.

Proof. Assume in a way of contradiction m < n. Since k1(m) ≤ m, we have that k1(m) < n, which
contradicts (1) from Lemma 2.7, as expected.

The next lemma somewhat strengthens the previous one.

Lemma 2.9. Let n > 2 and m > 2 be two integers. If Tn(F2) is m-torsion clean, then m is even.

Proof. We use the inequality k1(m) ≥ n > 2 established above. So, k1(m) cannot be 1, hence n
cannot be odd. Thus m is necessarily even, as promised.

We now have all the ingredients necessary to arrive at our other basic achievement of this
subsection.

Theorem 2.4. Let n > 2 and m > 2 be two integers and let t ≥ 1 be an other integer such that

2t < n ≤ 2t+1. Then Tn(F2) is m-torsion clean if and only if m = 2t+1.

Proof. Let n > 2 and m > 2 be two integers, t ≥ 1 an other integer such that 2t < n ≤ 2t+1 and
Tn(F2) is m-torsion clean. Applying Lemma 2.7, we obtain that

1. n ≤ k1(m);

2. n > k1(u) for every integer u ∈ {2, 3, . . . ,m− 1}.
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So, by the usage of points (1) and (2), it follows that k1(u) < k1(m) for every integer u ∈
{2, 3, . . . ,m− 1}.

Assuming now that m is not a power of 2, then there exists a positive integer t′ such that

2t
′
< m < 2t

′+1. Since 2t
′+1 > m, it follows that 2t

′
> m

2 . But m
2 ≥ k1(m), because m is not

a power of 2 according to Lemma 2.3. Hence, for u = 2t
′
< m, we have owing to Lemma 2.3

that m
2 ≥ k1(m), and so k1(u) = u > m

2 ≥ k1(m), which is a contradiction. Therefore, m = 2t
′
,

t′ ∈ N \ {0, 1}. If, however, t′ ≤ t, then m = 2t
′
≤ 2t < n which contradicts Lemma 2.8. Assume

t′ > t+ 1. We have n ≤ 2t+1 < 2t
′
= m and since k1(2

t+1) = 2t+1, one obtains that n ≤ k1(2
t+1).

Hence for u = 2t+1 < m we derive that k1(u) ≥ n, contradicting point (2).

Conversely, letting n > 2 and m > 2 be two integers, t ≥ 1 an other integer such that 2t <
n ≤ 2t+1 and m = 2t+1, it follows by m = 2t+1 that k1(m) = m ≥ n, so n ≤ k1(m). Let us now
u ∈ {2, 3, . . . ,m− 1}. Assume k1(u) > 2t. By application of Lemma 2.4, there exists a positive

integer du such that k1(u) = 2t+du ≥ 2t+1 = m. So, k1(u) ≥ m > u, which is demonstrably false
as by definition k1(u) ≤ u. Consequently, k1(u) ≤ 2t < n, whence k1(u) < n. In conclusion, by
Lemma 2.7, we have that Tn(F2) is m-torsion clean, as required.

The next example concretes somewhat the computations given above (compare also with the
proof of Theorem 2.2).

Example. 1. T3(F2) is 4-torsion clean.

2. T3(F2) is not 28-torsion clean but is almost 28-torsion clean.

Proof. It follows at once by the usage of Theorem 2.4 that T3(F2) is m-torsion clean if and only
if m = 4, substantiating the first claim. The second part-half follows from Lemma 2.6 and the
computations given above.

One finally gets that the following statement is valid:

Theorem 2.5. Let n > 2 be an integer. Then Tn(F2) is n-torsion clean if and only if n = 2l, where
l ∈ N \ {0, 1}.

Proof. If we set m = n in Theorem 2.4, we conclude that Tn(F2) is n-torsion clean if and only if

n = 2l, l ∈ N \ {0, 1}.

Comparing Theorems 2.3 and 2.5, one deduces the following rather curious consequence.

Corollary. Suppose n ≥ 3 is an integer. Then Tn(F2) is n-torsion clean if and only if Tn(F2) is
almost n-torsion clean.

The next comments could be of some interest and importance:

Remark. Another proof of Theorem 2.5 may be drawn as follows: If we put m = n in Lemma 2.7,
we shall obtain that Tn(F2) is n-torsion clean if and only if the following two statements are fulfilled:

1. n ≤ k1(n).

2. n > k1(u) for every integer u ∈ {2, 3, . . . , n− 1}.

Notice that the second statement is always true since n > u ≥ k1(u), while the first one is true if

and only if n = k1(n) if and only if n = 2l, l ∈ N \ {0, 1}. So, in conclusion, Tn(F2) is n-torsion clean

if and only if n = 2l, l ∈ N \ {0, 1}.

Concerning the case n = 2, it was proved in [7, Examples 2.3, 2.5] that T2(F2) and M2(F2) are
both 2-torsion clean. Moreover, [7, Example 2.7] accomplished with the discussion after Question 1
from there demonstrate that M3(F2) is 3-torsion clean as well as that M4(F2) is 4-torsion clean.
These two facts are also immediate consequences of our Theorem 2.2 alluded to above.
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We close with two left-open questions of some interest and importance. The first one is a common
generalization to the already obtained results.

Problem 2.1. Determine those natural numbers n for which Mn(F2n) is n-torsion clean, respec-
tively almost n-torsion clean, by finding a necessary and sufficient condition.

Now, mimicking [6], we will say that the element r of a ring R is weakly n-torsion clean decomposed

if r = u+ e or r = u− e, where u ∈ R with un = 1 for some n ≥ 1 and e ∈ R with e2 = e. So, a
ring R is called weakly n-torsion clean if there is n ∈ N such that every element of R has a weakly
n-torsion clean decomposition and n is the minimal possible natural in these two equalities. Without
the limitation on minimality, R is just called almost weakly n-torsion clean.

For instance, one deduces that Z7 = F7 is both 6-torsion clean and weakly 6-torsion clean. In
general, if R is a ring with only trivial idempotents, the natural n should be even in the case of
n-torsion clean rings, since 0 = (−1) + 1 is the unique presentation. In the weak case we may,
however, have that 0 = 1− 1, so that things differ each to other.

Concerning Z8, it is both 2-torsion clean and weakly 2-torsion clean. However, Z10 being
isomorphic to Z2 × Z5 is 4-torsion clean but weakly 2-torsion clean.

In that way, we end our work with the following challenging problem which is relevant to the
discussion above by considering the more complicated version of (almost) weak n-torsion cleanness.

Problem 2.2. Let F be a (possibly finite) field. Describe explicitly those naturals n for which
Mn(F ), respectively Tn(F ), is (almost) weakly n-torsion clean.

The concrete examination of that query could begin by considering the three elements field
F3 = Z3.
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