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ABSTRACT
In order to find a suitable expression of an arbitrary square matrix
over an arbitrary field, we prove that every square matrix over an
infinite field is always representable as a sum of a diagonalizable
matrix and a nilpotent matrix of order less than or equal to two. In
addition, each 2 × 2 matrix over any field admits such a representa-
tion. We, moreover, show that, for all natural numbers n ≥ 3, every
n × n matrix over a finite field having no less than n+ 1 elements
also admits such a decomposition. The latter completes a recent
example due to Breaz [Matrices over finite fields as sums of periodic
and nilpotent elements. Linear Algebra Appl. 2018;555:92–97]. As a
consequence of these decompositions, we show that every nilpo-
tent matrix over a field can be expressed as the sum of a potent
matrix and a square-zero matrix. This somewhat improves on recent
results due to Abyzov et al. [On some matrix analogues of the lit-
tle Fermat theorem. Mat Zametki. 2017;101(2):163–168] and Shitov
[The ring M8k+4(Z2) is nil-clean of index four. Indag Math (N.S.).
2019;30:1077–1078].
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1. Introduction and preliminaries

As both nilpotent and potent elements will play a key role in our further explorations, let us
start our article with recalling that an element x of an arbitrary ring R is said to be nilpotent
if there is a positive integer i such that xi = 0, and an element y from R is said to be potent,
or more exactly m-potent, if there is a natural number m ≥ 2 with ym = y. In particular,
the idempotents are always 2-potent elements.

After defining the notion of nil-clean rings by Diesl in [1], this type of rings became of
great interest. In fact, in [2] was proven that each matrix from the ring Mn(F2) of n × n
matrices over the field F2 consisting of two elements is nil-clean, that is, a sum of an idem-
potent matrix and a nilpotent matrix. This result was strengthened by Šter in [3] proving
that Mn(F2) is actually a nil-clean ring of index at most 4. Lately, this result was signifi-
cantly improved by Shitov [4]. Likewise, an important work was done by de Seguins Pazzis
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in [5], where a valuable discussion on the decomposition of a matrix as a sum of an idem-
potent and a square-zeromatrix is provided.We also refer to [17] for some related nilpotent
decompositions.

On the other vein, Abyzov and Mukhametgaliev showed in [6] that, for all naturals
n ≥ 1, any element of the ring Mn(F) is presented as a sum of a nilpotent and a q-potent
element, provided that F is a field of cardinality q. Also, a recent paper by Breaz [7] deals
with themore exact presentation ofmatrices over fields of odd cardinality q as a sum of a q-
potent matrix and a nilpotent matrix of order 3. Besides, it was constructed in [7, Example
6] an ingenious example of a 3 × 3 matrix over the field F3 of three elements that cannot
be presented as the sum of a 3-potent and a nilpotent matrix of order 2 (in other terms,
the latter matrix is also called a square-zero matrix or just 2-nilpotent matrix). However,
the given construction illustrates something more general, namely that such a matrix can-
not be presented as a sum of a diagonalizable matrix and a 2-nilpotent matrix. As here a
crucial role is played by the finiteness of the field, we ask what can be said for such type of
presentations, provided the field is infinite or even if the field is finite containing enough
elements of number greater than the size of the matrix.

So, we quite naturally come to the study of the following intriguing and non-trivial
question, which motivates the writing up of the present paper.

Question:When can every square matrix over a field K be expressed as

D + Q

where D is a diagonalizable matrix and Q is a nilpotent matrix with Q2 = 0?
Let us notice that diagonalizable matrices over finite fields are q-potent, with q the size

of the field. In this sense, our question is related to the work in [7], but our requirements
about the order of nilpotence are stronger. In fact, in [6, Theorem 2] it was shown that
some square matrices over finite fields are expressible as a sum of a potent and a nilpotent
but the order of the existing nilpotent is, in general, greater than 2. So we will provide the
matrix expressions with a more precise treating of possible nilpotent elements.

In what follows we shall give an almost complete solution to that query by using
some different decompositions which entirely rely on the rational normal form of matri-
ces. Our work is organized as follows: In the current first section, we shall address the
previously mentioned example from [7] to the most elementary 2 × 2 case by giving a
more detailed thought to it. In the second section, we explore in detail the general case
of possible decompositions of the required form as we will demonstrate that the afore-
mentioned Breaz’s example is just a simple consequence of deeper facts (see Remark 2.2,
Lemma 2.4 and Theorem 2.6). The next third section pertains to the special decompo-
sition of matrices into semi-simple and 2-nilpotent ones (see Proposition 3.1). Our final
fourth section is devoted to showing that our question also has a positive answer for a
special class of matrices that do no fit the hypothesis of Theorem 2.6: 4 × 4 matrices
over the field with 3 elements (see Proposition 4.4). We also put there two challeng-
ing problems which being answered will contribute substantially to the object of our
investigation.

And so, we foremost start with the following useful observations for such decomposi-
tions of 2 × 2 matrices, addressing also the aforementioned [7, Example 6].

Given any field K, every matrix in A in M2(K) admits such a decomposition. Indeed,
A is either diagonalizable itself, or it is similar to the companion matrix of a degree two
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polynomial p(x) = x2 + ax + b in K[x]:

C(p(x)) =
(
0 −b
1 −a

)
.

As soon as a �= 0, the matrix C(p(x)) can be written as

C(p(x)) =
(
0 0
1 −a

)
︸ ︷︷ ︸

D

+
(
0 −b
0 0

)
︸ ︷︷ ︸

Q

where D is diagonalizable because it has two different eigenvalues.
If a = 0 then p(x) = x2 + b:

(i) If K �= F2 then

C(p(x)) =
(
0 −b
1 0

)
=

(
0 1
1 0

)
︸ ︷︷ ︸

D

+
(
0 −b − 1
0 0

)
︸ ︷︷ ︸

Q

where D is diagonalizable because it has two different eigenvalues ±1.
(ii) If K = F2 and p(x) = x2 then C(p(x)) is nilpotent of order 2.
(iii) If K = F2 and p(x) = x2 + 1 then

C(p(x)) =
(
0 1
1 0

)
=

(
1 0
0 1

)
︸ ︷︷ ︸

D

+
(
1 1
1 1

)
︸ ︷︷ ︸

Q

.

Nevertheless, there are matrices in M3(F3) that do not admit such a decomposition,
as was shown in [7, Example 6]: Let K = F3 and consider the companion matrix of the
irreducible polynomial p(x) = x3 + 2x2 + 2x + 2 ∈ K[x]

A =
⎛
⎝0 0 1
1 0 1
0 1 1

⎞
⎠ .

By construction the characteristic (minimal) polynomial of A is irreducible and its trace is
non-zero. Suppose that A = D+Q where D is diagonalizable and Q is 2-nilpotent. Since
D has the same trace as A, in the list of eigenvalues of D there must be at least a repetition,
so there exists a ∈ K such that dim Sa ≥ 2, where Sa denotes the eigenspace associated to
such multiple eigenvalue. On the other hand, if Q2 = 0 then the rank of Q is at most 1,
so the kernel of Q has dimension at least two. Therefore, KerQ ∩ Sa �= 0 and there exists
a non-zero vector v ∈ KerQ ∩ Sa. This vector is an eigenvector of A associated to a (Av =
(D + Q)v = av) soA itself admits an eigenvalue, which is not possible because its minimal
polynomial is irreducible.
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2. A general decomposition

Since every matrix over a field K is similar to a direct sum of companion matrices, we are
going to focus on such matrices.

Lemma 2.1: Let K be a field, let n ≥ 3 and let A ∈ Mn(K) be the companion matrix of a
polynomial p(x) = xn + cn−1xn−1 + · · · + c1x + c0. Then

• If cn−1 = 0 and |K| ≥ n then A admits a decomposition into D+Q where D is diagonal-
izable with no multiple eigenvalues and Q2 = 0 with rank(Q) ≤ 1.

• If cn−1 �= 0 and |K| ≥ n + 1 then A admits a decomposition into D+Q, where D is
diagonalizable with no multiple eigenvalues and Q2 = 0 with rank(Q) ≤ 1.

Proof: Let A = C(p(x)) where

C(p(x)) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −c0
1 0 0 0 −c1

0 1 0 0
...

0 0
. . . 0

...
0 0 0 1 −cn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

for p(x) = xn + cn−1xn−1 + · · · + c1x + c0.
Take n different elements a1, . . . , an in the field such

∑n
i=1 ai = −cn−1 (notice that the

cardinality ofK was chosen to assure the existence of these pairwise different elements) and
consider the polynomial q(x) = (x − a1)(x − a2) · · · (x − an) = xn + bn−1xn−1 + · · · +
b1x + b0. Then

C(p(x)) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −b0
1 0 0 0 −b1

0 1 0 0
...

0 0
. . . 0

...
0 0 0 1 −bn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
C(q(x))

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −c0 + b0
0 0 0 0 −c1 + b1

0 0 0 0
...

0 0
. . . 0

...
0 0 0 0 −cn−1 + bn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Q

(1)

where C(q(x)) is diagonalizable because it corresponds to a polynomial with n different
roots, while Q2 = 0 because −cn−1 + bn−1 = 0.

Notice that the n different elements a1, . . . , an in K can be taken

• as soon as |K| ≥ n if cn−1 = 0 (recall that the sum of all the different elements of a finite
field of at least 3 elements is zero).

• as soon as |K| ≥ n + 1 if cn−1 �= 0: first choose n different elements in K whose sum
is different from zero. Let 0 �= γ be the sum of those n different elements of K. Then
multiply each of those different elements by −cn−1

γ
to get n different elements whose

sum is −cn−1.

�
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Remark 2.2: In the proof of Lemma 2.1, formula labelled by (1) gives an explicit decompo-
sition (C(p(x)) = C(q(x)) + Q where C(q(x)) is diagonalizable and Q2 = 0) for the com-
panion matrix A of any polynomial of the form p(x) = xn + cn−1xn−1 + · · · + c1x + c0.
Here we present another decomposition. The requirements for the size of the field are the
same: when cn−1 = 0 we need that |K| ≥ n and when cn−1 �= 0 we need that |K| ≥ n + 1.

Given any polynomial p(x) = xn + cn−1xn−1 + · · · + c1x + c0 ∈ K[x] and its compan-
ion matrix A, take n different elements a1, . . . , an ∈ K such that a1 + · · · + an = −cn−1
(those elements exist because we are assuming that |K| ≥ n if cn−1 = 0 or that |K| ≥ n + 1
if cn−1 �= 0). Let us consider the following matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

a1 0 0 0 0
1 a2 0 0 0
0 1 a3 0 0

0 0
. . . . . .

...
0 0 0 1 an

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
D̂

+

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 x1
0 0 0 0 x2

0 0 0 0
...

0 0 0 0 xn−1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Q̂

.

We claim that the elements x1, . . . , xn−1 can be chosen in K so that the characteristic poly-
nomial of B coincides with p(x). Indeed, if q(x) = xn + dn−1xn−1 + · · · + d0 denotes the
characteristic polynomial of B, dn−1 = cn−1 because the traces of A and B coincide. More-
over, by the Faddeev–LeVerrier algorithm [8, 6.7], dn−2 depends on the a1, . . . , an and
on xn−1, and xn−1 can be taken such that dn−2 = cn−2. Again, by the Faddeev–LeVerrier
algorithm, dn−3 depends on the a1, . . . , an and on xn−1 and xn−2, and xn−2 can be taken
such that dn−3 = cn−3.We can repeat this process until we get the precise x1, . . . , xn−1 ∈ K
that make q(x) = p(x).

Finally, A and B are two non-derogatory matrices with the same characteristic polyno-
mial, so there exists an invertible P such that

A = P−1D̂P + P−1Q̂P = D + Q.

Remark 2.3: The decompositions of companion matrices obtained in Lemma 2.1 and in
Remark 2.2 have the following properties:

• Each matrix D is diagonalizable with no multiple eigenvalues.
• Q2 = 0 and rank(Q) ≤ 1.
• If K is a field with q elements, then Dq = D.

In the following result we get a converse validity for the decomposition of Lemma 2.1.

Lemma 2.4: (i) If every companion matrix in Mn(F2) can be decomposed as D+Q,
where D is diagonalizable, Q2 = 0 and rank(Q) ≤ 1, then n = 2.

(ii) Let K be a fieldwith at least 3 elements. Let n ≥ 3. If every companionmatrix inMn(K)

can be decomposed as D+Q, where D is diagonalizable, Q2 = 0 and rank(Q) ≤ 1,
then |K| ≥ n + 1.

(iii) Let K be a field with at least 3 elements. Let n ≥ 3. If every zero trace companion
matrix in Mn(K) can be decomposed as D+Q where D is diagonalizable, Q2 = 0
and rank(Q) ≤ 1, then |K| ≥ n.
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Proof: (i) Let K = F2 and suppose that n ≥ 3. Let A be the (nilpotent) companion
matrix of the polynomial p(x) = xn ∈ F2[x], and let us show that it cannot be writ-
ten as D+Q. Otherwise, since the trace of D must be zero and A is not nilpotent of
order two, the eigenvalue 1 occurs in D with multiplicity at least two (it must occur
an even number of times due to the condition on the trace). Then the eigenspace
S1 has dimension ≥ 2 and S1 ∩ KerQ �= 0, leading to a non-zero eigenvector v of A
associated to the eigenvalue 1, a contradiction.

(ii) LetK be a field with at least three elements, n ≥ 3, and suppose that |K| = q ≤ n. Let
A be the companion matrix of a non-zero trace polynomial of degree n in K[x] with
no roots inK, and suppose thatA is expressed asD+Q. The trace ofD coincides with
the trace ofA and it is non-zero. In order to get a non-zero trace diagonalizablematrix
D of size n × n one needs to repeat at least one eigenvalue a ∈ K (recall thatK consists
on q different elements and that their sum is zero), leading to an eigenspace Sa of
dimension at least 2 that hits the kernel of Q (notice that dimKerQ ≥ n − 1 because
rank(Q) ≤ 1). This will lead to a non-zero vector v in such intersection that verifies
A(v) = D(v) + Q(v) = av, i.e. v is an eigenvector of A associated to the eigenvalue a,
which is a contradiction.

(iii) To get a counterexample when |K| < n, suppose that |K| = q < n and defineA as the
companion matrix of a zero trace polynomial of degree n in K[x] with no roots in K.
Suppose thatA can be decomposed asD+QwhereD is diagonalizable andQ satisfies
Q2 = 0 and rank(Q) ≤ 1. Since q<n, at least one eigenvalue of D has multiplicity
≥ 2, andwe can repeat the above argument to get an eigenvector ofA, a contradiction.

�

Remark 2.5: It is worthwhile noticing that Breaz’s counterexample [7, Example 6] is a
particular case of the above argument.

Theorem 2.6: Given any field K, all matrices in M2(K) admit a decomposition into D+Q,
where D is a diagonalizable matrix and Q is a matrix such that Q2 = 0.

Let n ≥ 3 and let K be a field with |K| ≥ n + 1. Then every matrix A ∈ Mn(K) admits a
decomposition into D+Q, where D is a diagonalizable matrix and Q is a matrix such that
Q2 = 0. In particular, square matrices over infinite fields always admit such decomposition.

Proof: The case M2(K) was studied in Section 1.
Suppose that n ≥ 3 and that |K| ≥ n + 1. Let A be any matrix in Mn(K). The matrix

A is similar to a direct sum of the companion matrices of the invariant factors of A. Each
of these companion matrices is associated to a polynomial of degree m ≤ n, so it can be
decomposed into D+Q becausem + 1 ≤ n + 1 ≤ |K|. �

Since diagonalizable matrices over a finite field of q elements are q-potent, we immedi-
ately obtain the following claim.

Corollary 2.7: Let Fq be the finite field of q elements, q>2. Then every matrix in Mn(Fq)

with n ≤ q − 1 admits a decomposition into D+Q, where D is a q-potent matrix and Q is a
nilpotent matrix such that Q2 = 0.
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Remark 2.8: Another decomposition based on Jordan blocks can be considered. Let K be
a field of characteristic q and let J be a Jordan block in Mn(K), n ≥ 3, associated to a ∈ K

J =

⎛
⎜⎜⎜⎜⎜⎝

a 0 0 0 0
1 a 0 0 0
0 1 a 0 0

0 0
. . . . . . 0

0 0 0 1 a

⎞
⎟⎟⎟⎟⎟⎠ .

Depending on whether the characteristic of K divides or not the order n of J, the
decomposition into diagonalizable and nilpotent differs:

(i) Suppose that char(K) = q does not divide n. If K contains the n (different) roots of
the polynomial xn − 1 ∈ K[x], then J decomposes as

J = (J + e1n)︸ ︷︷ ︸
D

+ (−e1n)︸ ︷︷ ︸
Q

where e1n denotes the nilpotent matrix with 1 in the (1n)-entry and zero in the rest of
entries, and the matrixD is diagonalizable since its minimal polynomial p(x) = (x −
a)n − 1 has n different roots in K because p′(x) = n(x − a)n−1 �= 0 (recall q � n).

(ii) Suppose that char(K) = q divides n. If K contains the n−1 (different) roots of the
polynomial xn−1 − 1 ∈ K[X], then J decomposes as

J = (J + e2n)︸ ︷︷ ︸
D

+ (−e2n)︸ ︷︷ ︸
Q

where e2n denotes the nilpotent matrix with 1 in the (2n)-entry and zero in the rest
of entries, and the matrix D is diagonalizable since its minimal polynomial p(x) =
(x − a)n − (x − a) has n roots different roots in K because p′(x) = −1 �= 0 (recall
q|n).

Remark 2.9: The latter decompositions of Jordan blocks can be applied to showing that
every nilpotent matrix over a field can be written asD+Q, whereD is a potent matrix (i.e.
Dq = D for a certain q ∈ N) andQ is a nilpotent matrix withQ2 = 0. Indeed, every nilpo-
tent matrix A over a field admits a decomposition into Jordan blocks J1, . . . , Js associated
to the eigenvalue zero (notice that this can be related to [9, § 2] where the authors gave
minimal conditions for a nilpotent element in a ring to admit a decomposition into Jordan
blocks). Write any of these Jordan blocks Ji ∈ Mni(K) as Di + Qi with Di = Ji + e2ni and
Qi = −e2ni (see Remark 2.8(ii)). It directly follows that Dni

i = Di and Q2
i = 0. Then A can

be written as the sum of a potent matrix and a nilpotent matrix of zero square.
This result can be related to [10, Corollary 8] of Breaz andMegiesan, where they decom-

posed any nilpotent matrix into an idempotent matrix and a nilpotent matrix. Notice that
our decomposition fixes the order of nilpotency into two and allows the potency to grow
bigger, while Breaz an Megiesan decomposition fixes the potency into two (idempotency).

The next construction sheds some more light on the established above theorem and
remarks.
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Example 2.10: WhenK is a finite field with |K| = q then the decomposition of a nilpotent
block of maximal size q × q

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0

0 1 0 0
...

0 0
. . . 0

...
0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

= C(p(x)) ∈ Mq(K)

for p(x) = xq given in Remark 2.8(ii) coincides with the decomposition of J and labeled
with (∗) in the proof of Lemma 2.1. Indeed, J + e2n is diagonalizable because its minimal
polynomial is xq − x and its roots coincide with the q different elements of the field K.
Notice also that J + e2n = C(q(x)) for q(x) = xq − x, so:

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 1

0 1 0 0
...

0 0
. . . 0

...
0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
C(q(x))

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 −1

0 0 0 0
...

0 0
. . . 0

...
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Q

.

Notice that C(q(x))q = C(q(x)) and this decomposition is indeed a decomposition of J
into an q-potent matrix and a square-zero matrix.

For nilpotent blocks of smaller size m × m (4 ≤ m < q) the decomposition of
Remark 2.8 may not work (as it might be the case where none of the polynomials xm − 1
and xm−1 − 1 have their roots in K) while the decomposition of Lemma 2.1 can be used
because there existm different elements in K whose sum is zero.

3. A decomposition into semi-simple and nilpotent of order two

In the previous sectionwe have shown that everymatrix inMn(K) admits a decomposition
into a diagonalizablematrixD and a nilpotentmatrixQ of order less than or equal to two as
soon as K is an infinite field. If the field is finite, we have shown that such decompositions
exist for matrices of size n × n over fields of at least n+ 1 elements.

In the following proposition we will show that this last hypothesis is not necessary
if we only require that D is semi-simple (diagonalizable in some field extension of K).
This decomposition can be related to the Jordan–Chevalley decomposition over perfect
fields (in particular, over finite fields), that decomposes all square matrices into their
semi-simple and their nilpotent parts with the extra hypothesis of commutation between
the semi-simple and the nilpotent parts, see for example [11, 4.2 Proposition] or [12,
Theorem 16].

Proposition 3.1: Let K be a field and n ∈ N. Then every matrix inMn(K) admits a decom-
position into a semi-simple matrix (diagonalizable in some extension field of K) and a
nilpotent matrix of zero square.
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Proof: If the field is infinite, then every matrix decomposes into a diagonalizable matrix
and a nilpotent matrix of order two by Theorem 2.6.

Suppose from now on that the field K is finite. It suffices to show that every companion
matrix C(p(x)) ∈ Mn(K) admits such a decomposition (here we can suppose that n ≥ 3
because matrices ofM2(K) can always be expressed as diagonalizable+ nilpotent of order
2). The key point here is the fact that for every finite field K there exist irreducible poly-
nomials of any degree n ≥ 3 with any trace in the field K (see the Hansen and Mullen
conjecture [13, Conjecture B] and its solutions byWan [14] and Ham andMullen [15]). To
decompose any C(p(x)) ∈ Mn(K) pick an irreducible polynomial q(x) ∈ K[x] of degree n
with the same trace as p(x) and repeat the decomposition (∗) of Lemma 2.1. Notice that
C(q(x)) is semi-simple because it has n different roots in its decomposition field, which is
an extension of K (every finite field is perfect, so irreducible polynomials have no multiple
roots in their decomposition fields). �

Since every semi-simple matrix over a finite field is r-potent for certain 1 < r ∈ N, we
get the following non-trivial property of matrices over finite fields.

Corollary 3.2: Let K be a finite field and n ∈ N. Then every matrix in Mn(K) admits a
decomposition into an r-potent matrix, for certain 1 < r ∈ N, and a square-zero matrix.

The next example sheds some more light on the motivating for us Breaz’s example
alluded to above.

Example 3.3: Let us look at Breaz’s example mentioned in Section 1 ([7, Example 6]): Let
K = F3 and consider the companion matrix of the irreducible polynomial p(x) = x3 +
2x2 + 2x + 2 ∈ K[x]

A =
⎛
⎝0 0 1
1 0 1
0 1 1

⎞
⎠ .

Since the polynomial p(x) splits in F33 with three different roots, the matrix A is diagonal-
izable in this field. Therefore the matrix A is written as the sum of a 27-potent matrix and
a square-zero matrix, which is precisely the zero matrix in this particular case.

4. A decomposition for 4 × 4matrices over F3

Although M4(F3) do not fit the hypothesis of Theorem 2.6 because the cardinality of the
field is less than the order of these matrices, in this section we are going to prove that all
matrices inM4(F3) admit a decomposition into a diagonalizable and a square-zeromatrix.
Let us first look into some examples.
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Example 4.1: Let A be the companion matrix of the polynomial p(x) = x4 + x + 2. This
polynomial is irreducible in F3[x]. Consider the following matrix B

B =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2

⎞
⎟⎟⎠

︸ ︷︷ ︸
D

+

⎛
⎜⎜⎝
1 2 0 1
1 0 2 1
1 0 2 1
0 1 2 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q

.

One can check that Q2 = 0 and that the minimal polynomial of B is again p(x), so there
exists an invertible P such that

A = P−1BP = P−1DP + P−1QP.

Furthermore, A does not admit a decomposition D′ + Q′ where D′ is diagonalizable with
set of eigenvalues S1 = {1, 1, 2, 2} and (Q′)2 = 0: if that were true, (D′)2 = I and from (A −
D′)2 = 0 we derive that A2D′ = D′A2. We can compute the centralizer of A2 but none of
its elements satisfy (D′)2 = 0.

Example 4.2: If we build a 4 × 4 matrix A with one indecomposable block, it does not
mean that A is indecomposable itself. Suppose that

A =

⎛
⎜⎜⎝

2 0 0 0
0 0 0 1
0 1 0 1
0 0 1 1

⎞
⎟⎟⎠

where we know that the block
( 0 0 1
1 0 1
0 1 1

)
cannot be decomposed. The minimal polynomial

of A coincides with its characteristic polynomial and it is p(x) = x4 + x2 + x + 2 = (x −
2)(x3 + 2x2 + 2x + 2). Define

B =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2

⎞
⎟⎟⎠

︸ ︷︷ ︸
D

+

⎛
⎜⎜⎝
0 1 1 2
2 1 1 0
1 0 0 2
0 1 1 2

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q

.

One can check that Q2 = 0 and that the minimal polynomial of B coincides with its
characteristic polynomial and is again p(x). Therefore, there exists an invertible P such
that

A = P−1BP = P−1DP + P−1QP.
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Example 4.3: If the minimal polynomial of A is of the form p(x) = x4 + ax2 + b, then A
admits a decomposition into D+Q, where D has set of eigenvalues S1 = {1, 1, 2, 2}:

A ∼

⎛
⎜⎜⎝
0 0 0 2b
1 0 0 0
0 1 0 2a
0 0 1 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
D

+

⎛
⎜⎜⎝
0 −1 0 2b
0 0 0 0
0 1 0 2a − 1
0 0 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q

Proposition 4.4: Every matrix in M4(F3) admits a decomposition into D+Q, where D is
a diagonalizable matrix (in particular, a 3-potent matrix) and Q is a matrix with Q2 = 0.

Proof: Let us consider the decomposition of pA(x) into invariant factors pA(x) =
f1(x)f2(x) · · · with

· · · f3(x)|f2(x)|f1(x)
where f1(x) is the minimal polynomial of A. Then A similar to a direct sum of the
companion matrices of f1(x), f2(x), etc.

If for every i the degree of fi(x) is less than or equal to 2, the decomposition is straight-
forward (see Section 1). If the degree of f1(x) is 3 and the degree of f2(x) is one, then
f2(x) = (x − a)|f1(x), so f1(x) = (x − a)kq(x) where k = 1, 2 or 3 and (x − a) and q(x)
are co-primes. Hence C(f1(x)) ∼ C((x − a)k) ⊕ C(q(x)). If k = 1 or 2, A is similar to a
direct sum of companion matrices of size ≤ 2, hence it is decomposable. If k = 3 then
f1(x) = (x − a)3 and it correspond to a zero trace matrix that admits decomposition using
three different eigenvalues.

Suppose fromnowon that f1(x) = pA(x), i.e.A is the companionmatrix of a polynomial
of degree 4.

• First reduction: we can suppose that the trace of A is zero because A decomposes if and
only if A − tr(A)I decomposes. From now on p(x) = x4 + 2cx2 + 2bx + 2a and

A =

⎛
⎜⎜⎝
0 0 0 a
1 0 0 b
0 1 0 c
0 0 1 0

⎞
⎟⎟⎠

• Second reduction: we can suppose that |A| �= 0; otherwise a = 0 in which case, by the
decomposition of Lemma 2.1 applied to the 3 × 3 block of A,

A =

⎛
⎜⎜⎝

0 0 0 0
1 0 0 b
0 1 0 c
0 0 1 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0
0 C(q(x))
0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 0 0
1 0 0 ξ1
0 0 0 ξ2
0 0 0 0

⎞
⎟⎟⎠

where C(q(x)) is the companion matrix of x(x − 1)(x − 2).
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• Third reduction: we can suppose that b �= 0. Otherwise, decompose as in Example 4.3.
• Fourth reduction: the companion matrix A of p(x) = x4 + 2cx2 + 2bx + 2a admits a

decomposition if and only if 2A admits a decomposition. The minimal polynomial of
2A is q(x) = x4 + 2cx2 + bx + 2a, so we can suppose that b = 1.

The remaining cases are b = 1, a �= 0 and any c = 0, 1, 2.

A =

⎛
⎜⎜⎝
0 0 0 a
1 0 0 2
0 1 0 c
0 0 1 0

⎞
⎟⎟⎠ , i.e.

A1 =

⎛
⎜⎜⎜⎝
0 0 0 1
1 0 0 2
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎝
0 0 0 1
1 0 0 2
0 1 0 2
0 0 1 0

⎞
⎟⎟⎟⎠

A3 =

⎛
⎜⎜⎜⎝
0 0 0 2
1 0 0 2
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟⎠ , A4 =

⎛
⎜⎜⎜⎝
0 0 0 2
1 0 0 2
0 1 0 2
0 0 1 0

⎞
⎟⎟⎟⎠

A5 =

⎛
⎜⎜⎜⎝
0 0 0 1
1 0 0 2
0 1 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ , A6 =

⎛
⎜⎜⎜⎝
0 0 0 2
1 0 0 2
0 1 0 1
0 0 1 0

⎞
⎟⎟⎟⎠

• Matrix A1 is similar to that of Example 4.1.
• MatrixA2 is similar to that of Example 4.2. It is also similar to 2D+Q forD andQ given

in Example 4.1.
• Matrix A3: A3 is similar to the following matrix

B =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
D

+

⎛
⎜⎜⎝
0 2 2 1
2 1 1 1
1 0 0 1
0 1 1 2

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q

.

Notice thatQ2 = 0 and that the minimal polynomial of B is again p(x) = x4 + x + 1 so
there exists an invertible P such that

A = P−1BP = P−1DP + P−1QP.
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• Decomposition of A4: A4 is similar to the following matrix

B =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2

⎞
⎟⎟⎠

︸ ︷︷ ︸
D

+

⎛
⎜⎜⎝
0 2 2 1
2 1 1 1
1 0 0 1
0 1 1 2

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q

.

Notice that Q2 = 0 and that the (irreducible) characteristic polynomial of B is again
p(x) = x4 + x2 + x + 1 so there exists an invertible P such that

A = P−1BP = P−1DP + P−1QP.

• Decomposition of A5: A5 is similar to the following matrix

B =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2

⎞
⎟⎟⎠

︸ ︷︷ ︸
D

+

⎛
⎜⎜⎝
2 2 2 1
0 2 0 2
1 0 1 1
0 1 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q

.

Notice that Q2 = 0 and that the minimal polynomial of B is again p(x) = x4 + 2x2 +
x + 2 so there exists an invertible P such that

A = P−1BP = P−1DP + P−1QP.

• Decomposition of A6: A6 is similar to the following matrix

B =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2

⎞
⎟⎟⎠

︸ ︷︷ ︸
D

+

⎛
⎜⎜⎝
2 2 1 0
1 2 0 1
0 1 1 1
2 0 2 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q

.

Notice that Q2 = 0 and that the minimal polynomial of B is again p(x) = x4 + 2x2 +
x + 1 so there exists an invertible P such that

A = P−1BP = P−1DP + P−1QP.

�

We close our work with the following two still remaining problems of some interest and
importance.

Problem4.1: Decide whether or not the decomposition into a diagonalizablematrix and a
square-zero matrix is still true for all n × nmatrices with n ≥ 4 over fields of at least three
elements (excluding the 3 × 3 matrices over F3).
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In contrast to finite fields, concerning the special case of some finite rings, especiallyZ4,
in regards to recent results from [16] one can state the following query:

Problem 4.2: Does it follow that, for any n ≥ 1, each element of Mn(Z4) is a sum of a
square-zero nilpotent and a potent?

Notice that a similar representation of such a matrix ring already exists in terms of a
nilpotent of order less than or equal to 8 and an idempotent (see, e.g. [3]). Even more
generally, it was established in [6, Lemma 1] and [6, Theorem 4] that, for every m ∈ N,
the matrices in Mm(Zpn) are presentable as the sum of a nilpotent matrix and a p-potent
matrix, whenever p is a prime.
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