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Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations
among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes
and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses
statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The
multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique
from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study.
Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used
for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism.
Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with
independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene
interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular
mechanisms of alcoholism.
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1. Introduction

The regulation of transcription occurring in an intriguingly
complex biological system involves multiple interacting
regulatory processes in gene regulatory networks (GRNs).
Modeling transcriptional regulation requires algorithms
that retain information about regulatory interactions. The
generalized logical network (GLN) is a generative model
that can be reconstructed from temporal trajectories, for
example, from data collected in time-series studies of gene
expression. Because these data capture information on
temporal antecedence, the approach can be used to develop
stronger hypotheses about casual relations among transcrip-

tional events than one would be able to derive from mere
correlation analyses. We designed a GLN reconstruction
algorithm that differs from previous approaches because
it makes use of hypothesis testing on the multinomial
distribution to establish directed connections among genes.
Our statistical approach allows explicit control of false
positives by specifying a desirable alpha level, while other
criteria used in network reconstruction, such as the Bayesian
information criterion (BIC) used in dynamic Bayesian
networks (DBNs) reconstruction and the coefficient of
determination (COD) used in Boolean networks (BNs)
reconstruction, do not explicitly enforce false-positive rate
control.
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GLNs also allow more aspects of systems to be studied
than other network models by enabling (1) adaptive descrip-
tion for interactions among variables, (2) nonlinear inter-
action patterns, and (3) finite steady states, attractor basins,
and state transition diagrams. The software CellNetAnalyzer
[1] allows a user to draft a GLN from existing knowledge.
Our method allows such networks to be reconstructed and
derived solely from data-driven approaches. GLNs have
the further advantage that they do not require parametric
assumptions, unlike stochastic logical networks [2] which
discretize differential equations based on strong assump-
tions. Additionally, our implementation of GLN modeling
focuses on network reconstruction from temporal gene
expression data, which can be used complementarily with
network property analysis algorithms such as the network
walking algorithm [3], and literature mining tools such as
those reviewed in [4].

GLN is a dynamical system model to characterize
interactions among discrete variables over discrete time. It
is a directed graph, with nodes representing the discrete
variables and each having a generalized truth table (gtt). The
gtt for a node X maps all possible combinations of parent
node values to values of X . Related modeling paradigms with
different emphases have also been applied to biological data
and are compared and contrasted with the GLN below.

(i) Temporal probabilistic networks. The dynamic
Bayesian network (DBN) is an extension of Bayesian net-
works, which incorporates time transitions between Bayesian
networks. A DBN describes temporal statistical dependencies
among genes. DBNs have been successful in extracting
probabilistic dependencies among genes in GRNs [5–7].
Certain DBNs can even be converted to probabilistic Boolean
networks [8]. However, DBN is an indirect tool to under-
stand system dynamics since it does not explicitly describe
temporal relations among entities in a functional form, while
a GLN provides immediate functional relationships among
variables.

(ii) Continuous dynamical system models. Differential
equations in both deterministic [9, 10] and stochastic [11]
formulations have been used to model interactions in GRNs
in continuous time. The E-Cell Project [12, 13] uses differen-
tial equations to target knowledge-based reproduction, not
data-driven reconstruction, of intracellular biochemical and
molecular interactions within a single cell. The stochastic
master equations relate state probabilities by differential
equations, impractical for biological systems involving many
variables because of the computational burden. Recent
research has been focusing on improving the scalability of
such models [14].

(iii) Discrete dynamical system models. The Boolean
network (BN) [1, 15–18] and its Markovian [19] or
probabilistic [20] extensions, where each variable takes the
value of either 0 or 1, are 1st-order special cases of the
GLN. The dichotomous nature of a BN seriously limits
its capacity to discriminate quantitative differences among
continuous random variables. As most biological networks
are rarely binary, much information is lost. This can be
crucial when such differences are more interesting than
the mere information of presence (1) or absence (0). In

addition, the coefficient of determination criterion used in
BN reconstruction does not address the issue of model
complexity and goodness of fit.

To summarize, these temporal probabilistic networks
do not explicitly describe system dynamics. Continuous
dynamical system models, computationally and data inten-
sive and thus often not data driven, are also inconvenient
for visualizing state transitions. BNs cannot capture subtle
and nonlinear interactions. Details of these and various other
major network reconstruction and modeling algorithms can
be found in recent reviews [21, 22].

Temporal dependency may reflect causal interactions
among processes in a dynamical system, but not always.
System modeling may be further complicated by incom-
plete observations—a situation that is typical for biological
experiments. For example, protein concentrations, post-
translational protein modification states, and small molec-
ular messengers are missing in a GRN developed entirely
from transcriptome data. However, a consistent temporal
dependency must arise from a causal interaction, even with
incomplete observations. Therefore, statistically significant
temporal dependencies among genes and environmental
stimuli may still constitute a basis to establish causalities.

We reconstruct GLNs from trajectories of discrete ran-
dom variables, the abundance of mRNAs, in order to
uncover temporal dependencies among genes and environ-
mental stimuli. Temporal dependencies among key genes
in response to alcohol in mice are assessed through GLN
modeling. The effects of alcohol on functions of gene
products and the corresponding effect on gene expression are
an active research area, particularly in the inflammatory and
neural plasticity processes that result in lasting brain changes
in response to alcohol. We believe that the GLN approach will
provide highly relevant clues to discover biologically impor-
tant gene interactions involved in the molecular mechanisms
of brain changes in alcoholism. The resulting network model
demonstrates the tremendous potential for GLN modeling
to provide insight into the diverse molecular mechanisms
underlying clinical phenomena such as alcoholism.

The paper is organized into eight sections. The GLN
is defined in Section 2. A procedure is given in Section 3
to determine the statistical power of reconstructing a GLN
given an experimental design. An algorithm for reconstruc-
tion of GLNs based on multinomial testing is described in
Section 4. Comparisons of reconstruction accuracy between
GLN and DBN modeling are made in Section 5. A microar-
ray experiment for the influence of alcohol on mouse
brain gene expression is recounted in Section 6. The GLN
modeling result of the GRN in the mouse brain in response
to alcohol is discussed in Section 7. Finally, conclusions and
future work are given in Section 8.

2. The Generalized Logical Network

As a discrete-time and discrete-value dynamical system
model, a GLN of N nodes is a directed graph with a gtt
attached to each node. Each abstract node can represent
information about a molecule, a cell, a species, or a stimulus.
The gtt allows a discrete variable to take more than two
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Table 1

π1 π2 X[t]

0 0 2

0 1 0

0 2 2

1 0 0

1 1 1

1 2 0

possible values and to reflect subtle but crucial changes, and
encodes precisely the biological mechanisms that the nodes
use to interact with each other.

Let node X have Q quantization levels ranging from 0 to
Q−1, controlled byK parents π1,π2, . . . ,πK ofQ1,Q2, . . . ,QK

quantization levels, respectively. The gtt H of node X is a
function that maps all possible combinations of parent node
values to values of X . Thus, X[t], the value of X at discrete
time t, can be computed by

X[t] = H
(
π1,π2, . . . ,πK

)
. (1)

With K parents, the size of H is Q1 × Q2 × · · · × QK ,
exponential in K and posing a memory problem. The
generalized logical decision diagram is a space efficient data
structure to store a gtt by removing fictitious variables and
redundancies, extending the binary decision diagram [23].

The following is an example showing the gtt H of X of 3
levels with two parents of 2 and 3 levels, respectively.

Table 1 represents a complex behavior for X as controlled
by π1 and π2. The influence of π2 on X is almost opposite
depending on the value of π1. If π1 = 0, the influence is
nonlinear and convex; otherwise, the influence is nonlinear
and concave. The size of H is 2× 3 = 6.

Such a defined gtt facilitates rich nonlinear interaction
patterns. For a comparison, all possible types of pairwise
interactions in a truth table of a BN are illustrated in
Figure 1; two nonlinear pairwise interactions in a gtt of a
GLN are shown in Figure 2, impossible with a BN. It is
also worthwhile to point out that a linear correlation-based
approach will only be able to detect the linear interactions
shown in Figure 1(a), missing all other nonlinear ones shown
in Figures 1 and 2.

Let X[t] be the state vector at discrete time t

X[t] = (X1[t],X2[t], . . . ,XN [t]
)�

, (2)

representing the values of all nodes at discrete time t.
Let H collect the gtts H1,H2, . . . ,HN for all nodes. Let
K1,K2, . . . ,KN be the number of parents for each node. The
network complexity κ of a GLN is the maximum number of
incoming edges a node can have, that is,

κ = max
{
K1,K2, . . . ,KN

}
. (3)

A GLN is Jth order if the value of some node at discrete
time t involves the parent values from discrete time t − 1
through t−J at most. A synchronous GLN updates the values
of all nodes simultaneously through

X[t] = H(X[t − 1], . . . , X[t − J]). (4)
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(a) Linear interaction: one variable increases or decreases
linearly as the other increases
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(c) Independent: two variables can have all possible
combinations of values

1
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(d) Nondeterministic: the value of one variable can
associate with multiple values of the other variable

Figure 1: All possible types of pairwise interaction patterns in
a Boolean network. The rows can be considered the values of
one discrete variable and the columns values of another discrete
variable. An asterisk (∗) represents a co-occurrence of the values
in the corresponding row and column. The asterisks together
can be considered the interaction behavior of the two discrete
variables. Blank cells represent absent values corresponding to the
hypothetical interaction pattern.

Synchronous Jth order GLNs allow modeling of vari-
able time delays abundant in biological systems. Let
X[0], X[1], . . . , X[J − 1] be the initial J states of a GLN. A
trajectory of length T is defined as X[0], X[1], . . . , X[T − 1].
Our discussion is restricted to synchronous and first-order
GLNs.

3. Statistical Power for GLN Reconstruction

Given the number of time points on a trajectory and the
sample size per time point, one is statistically limited in
detecting true interactions in a GLN beyond a certain
network complexity by the statistical power. The gtts, dis-
tributions of each variable, sample size (number of replicas
and time points), Type I error, and effect size together
determine the statistical power. Power is independent of the
computational approach used to reconstruct a GLN from
observed trajectories. With estimation of statistical power,
one can answer the question of whether the amount of data
in the trajectory can statistically support any GLN for certain
complexity at all.



4 EURASIP Journal on Bioinformatics and Systems Biology

1

0

0 1

∗
∗

∗
2

(a) Parabolic interaction: the vertical variable is a discrete
parabolic function of the horizontal variable
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(b) Sigmoidal interaction: the vertical variable is a discrete
sigmoidal function of the horizontal variable

Figure 2: Two examples of many nonlinear interaction patterns
which can be modeled in a generalized logical network, but which
are impossible to represent in a Boolean network. Asterisks repre-
sent observed values in the interaction pattern. Blank cells represent
absent values corresponding to the hypothetical interaction pattern.
The limitation of the Boolean network is due to its incapability
of representing the intermediate values, that is, 1 of the vertical
variable and 1, 2, and 3 of the horizontal variable in (b).

Without loss of generality, we assume that the outcome of
each entry in a gtt is a binomial variable. The same procedure
below can be applied to a multinomial distribution. The
success rate of a binomial variable is directly related to
the strength of an interaction between the corresponding
entry index (a specific parent combination) in the gtt and
the binomial variable. When the success rate is 0.5, the
specific entry has no better indication of the outcome of
the binomial variable than mere chance; when the success
rate is 0 or 1, this entry can always predict the outcome
of the binomial variable correctly with probability 1. Thus,
success rate 0.5 suggests no interaction between the entry
index in the gtt and the binomial variable; success rate 0 or
1 suggests the strongest unambiguous interaction possible.
We consider a true interaction existent when the success rate
is not 0.5. Thus, a hypothesis testing against success rate
0.5 can be used to test against no interaction between an
entry index in the gtt and the binomial variable. To study
the power of such a test for an interaction (success rate
/= 0.5), we design the alternative hypothesis to be a binomial

distribution with success rate pa = 0.8, versus success rate
pn = 0.5 under the null hypothesis. The choice of 0.8 instead
of 1 allows the relation to carry uncertainty, typically due to
unexplained biological variation and technical noise inherent
to experimental procedures used to develop biological data
sets. The effect size is 0.8 − 0.5 = 0.3. In order to calculate
the power, an effect size must be specified [24], as different
values of pa /= 0.5 have different power. The test is two sided
because pa = 0.2 with an effect size of −0.3 is considered the
same strength of interaction as pa = 0.8. When the effect size
changes, the qualitative change in power can be predicted.
For example, if pa = 0.7, the power will be lower than that of
pa = 0.8; if pa = 0.9, the power will be higher than that
of pa = 0.8. The Type I error rate α = 0.05 is adjusted

to α′ considering multiple testing effect. Let n− and n+ be
the decision boundary. If n < n− or n > n+, reject the null
hypothesis, or equivalently the rejection region is (0,n−) and
(n+,Nt), where Nt is the total number of trials. The decision
boundaries n− and n+ are determined such that

n−∑

n=0

B
(
Nt,n, pn

)
+

Nt∑

n=n+

B
(
Nt ,n, pn

) = α′,

B
(
Nt ,n−, pn

) = B
(
Nt,n+, pn

)
,

(5)

where the binomial distribution is defined as

B
(
Nt ,n, p

) =
(
Nt

n

)

pn(1− p)Nt−n. (6)

The statistical power is

n−∑

n=0

B
(
Nt ,n, pa

)
+

Nt∑

n=n+

B
(
Nt,n, pa

)
. (7)

Figure 3 plots the maximal power as a function of the
network complexity of a GLN given the length of a trajectory
and the number of replicas at each time point. The curve
demonstrates that the more complex the network is, the
lower the statistical power is, under the same experimental
conditions. A (maximal) 68% power is possible if we use 5
time points for each condition with 7 replicas at each time
point with a network of 20 genes, a complexity of 6, at
a Type I error rate of 0.05. For a typical statistical power
cutoff of 60%, our microarray experiment in Section 6 was
justified. The Type I error α adjustment may be conservative
as dependency may exist among time points. Although the
binomial distribution can be replaced with a multinomial
one in the gtt to calculate the statistical power, this study
establishes the minimal requirements.

4. GLN Reconstruction through
Multinomial Tests

A GLN can be reconstructed from observed trajectories
of a system under perturbed conditions. There are two
important issues in GLN reconstruction. The first one
is how to search efficiently for the best among feasible
GLN candidates. This issue depends on how one handles
the combinatorial computational cost, generally NP-hard,
incurred by reconstructing a GLN. The second issue is how to
determine the false-positive rate that the best candidate arises
out of randomness caused by noise and sampling errors in a
network where no nodes interact, recently gaining attention
such as in BN fitting [25]. Various criteria for goodness of
fit have been used in reconstruction of a GLN from observed
trajectories. Mutual information among variables has been
employed in interaction graphs [26]; likelihood and BIC are
used to determine network structure for Bayesian networks
[27] and DBNs; the coefficient of determination has been
used for BNs [20]. These measures, however, do not control
the false-positive rate directly.
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Figure 3: Statistical power for detecting a generalized logical
network as a function of its network complexity, given number of
time points (5), number of replicas per time point (7), network size
(20), and hypotheses pa = 0.8 (alternative) versus pn = 0.5 (null).

Table 2: The transition table of node X .

row
π1[t − 1] . . . πK [t − 1] X[t]

Q1 = 2 . . . QK = 3 #0 . . . #Q − 1

0 0 . . . 0 n0,1 . . . n0,Q−1

1 0 . . . 1 n1,1 . . . n1,Q−1

...
...

R− 1 1 . . . 2 nR−1,1 . . . nR−1,Q−1

By performing multinomial tests on the transition tables
at each node, we are able to resolve simultaneously both
issues above in one framework. The network topology
inference reduces to selecting the parents for each node
through multiple applications of the same multinomial test.
The false-positive control is achieved by setting an α-level,
which can be adjusted for multiple comparisons, for the tests
at each node, instead of always keeping a parent selection
with the best value of criterion as in all other approaches
mentioned above. Our criterion is the statistical significance
of each test. Thus, we move forward from existing network
topology inference approaches by assessing the probability
of false-positive interactions arising by chance in GLN
reconstruction.

Table 2 shows the transition table of a single node X ,
which can also be considered a contingency table. The
number of rows in the table is R = Q1Q2 · · ·QK . nr,c is the
number of observations in which the parents take the values
in the rth row at t− 1, and X takes the value of c at t. Let n· ,c

be the sum of column c. Let nr,· be the sum of row r. Let n be
the total number of observations. The following hypothesis
test is designed for each row.

Null Hypothesis. nr,0 : nr,1 : · · · : nr,Q−1 = n· ,0 : n· ,1 : · · · :
n· ,Q−1.

Alternative Hypothesis. nr,0 : nr,1 : · · · : nr,Q−1 /=n· ,0 : n· ,1 :
· · · : n· ,Q−1.

This hypothesis test determines if X is associated with
parent values in row r, in essence a multinomial test with the
probability parameters,

n· ,0

n
,
n· ,1

n
, . . . ,

n· ,Q−1

n
. (8)

A multinomial test for row r inspects the chi-square statistic

χ2(r) =
Q−1∑

c=0

(
nr,c − nr,c

)2

nr,c
, (9)

where

nr,c = nr,·n· ,c

n
(10)

is the expected count. Asymptotically, χ2(r) has a chi-square
distribution with Q − 1 degrees of freedom. χ2(r) can be
computed for each row r in the table. By properties of
the chi-square distribution, a summation of independent
chi-squares is still a chi-square whose degrees of freedom
are the summation of each individual’s degrees of freedom.
However, when we sum up all χ2(r) over r, we loose Q − 1
degrees of freedom because each column has a fixed total.
Thus, the transition table statistic

χ2 = χ2(0) + χ2(1) + · · · + χ2(R− 1) (11)

is a chi-square distributed with

ν = (R− 1)(Q − 1) (12)

degrees of freedom. We attach subscript i to χ2 and ν and let
χ2
i with degrees of freedom νi be the statistic for the transition

table of the ith node. We define the test statistic for a GLN
with N nodes as

χ2
GLN =

N∑

i=1

χ2
i . (13)

Under the null hypothesis of no interaction, χ2
1, χ2

2, . . . , χ2
N

are all independent. Thus, χ2
GLN has a chi-square distribution

with νGLN degrees of freedom by summing up νi degrees of
freedom for each transition table, that is,

νGLN =
N∑

i=1

νi. (14)

A P-value can be computed for χ2
GLN to indicate the statistical

significance of a GLN model. The P-value provides a means
to tradeoff between goodness of fit and complexity. There-
fore, GLN reconstruction is to find a GLN with the minimum
P-value. Since the χ2

i statistics for the transition tables at
each node are independent of each other, minimization of
the overall P-value reduces to minimizing the P-values for
individual transition tables at each node.
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For each node do
For m ← 1 to κ do

For each possible selection of m parents do
Accumulate a transition table from given trajectories
Compute P-value by performing multinomial test on the transition table
if P-value is smaller than the current minimum P-value for the current node then

minimum P-value← P-value
Record the current transition table
Replace previous parents with the current selection of m parents

end if
end for

end for
Perform P-value adjustment for multiple comparisons involved in parent selection
if the adjusted P-value is less than the given α-level then

Convert the transition table with the minimum P-value to a gtt by maximum likelihood
estimation of multinomial parameters

else
Declare that the current node has no parents

end if
end for
Compute the overall P-value for the reconstructed GLN
Return the reconstructed GLN, the associated P-values for each node, and the overall P-value

Algorithm 1: Reconstruct-GLN (A collection of observed trajectories, α-level, κ).

Once an optimal set of transition tables at each node are
identified, gtts can be derived by maximum likelihood esti-
mation of probabilities for the multinomial distribution on
each row. Each row is assigned a truth value that corresponds
to the maximum probability parameter in its multinomial
distribution. Although not implemented in this paper, a
probabilistic GLN can be reconstructed, not by setting a gtt,
but by keeping the probability parameters in the multinomial
distribution for each row. The GLN reconstruction algorithm
is presented as Algorithm 1 Reconstruct-GLN. It searches an
optimal gtt that minimizes the P-value with up to κ parents
for each node. The time complexity of the algorithm is

O

(

N
κ∑

i=1

Qi
max

(
N
i

))

, (15)

where Qmax is the maximum quantization level of all nodes.

5. Accuracy of GLN versus DBN Reconstruction

As GLN modeling is proposed as a potential alternative to
DBN modeling, it is important to assess the performance
of GLN relative to DBN modeling in terms of their abilities
to recover the topology of the underlying networks. We
use Hamming distance, false positives, and false negatives
to evaluate the difference between a reconstructed network
and the original ground-truth network. The Hamming
distance is defined by the total number of different directed
edges between two networks of the same set of nodes.
A false positive is an incidence of a directed edge in the
reconstructed network but not in the original ground-truth
network; a false negative is an incidence of a directed edge in

the original network but not in the reconstructed network.
The definitions imply that the Hamming distance is the
sum of false positives and false negatives. We have chosen
to use a simulated data set over a real biological data set,
such as the yeast cell cycle gene expression data set, to do
the performance evaluation. This is because many factors in
a biological data set may contribute to the reconstruction
performance in addition to the algorithm difference. For
example, the ground truth GRN in yeast may not contain
all active interactions; it may also include additional inter-
actions that are inactive in the particular experiments. This
makes the comparison of algorithm performance less certain.
In a simulated example, one has control of all potential
variations.

Under the Markovian and some other noise assumptions,
DBN reconstruction can be reduced to the maximum
likelihood estimation of the conditional distributions of
each node. In the discrete variable case, the conditional
distributions are multinomial. In DBN reconstruction, the
BIC defined by

−2 log likelihood + R(Q − 1) log n (16)

is often evaluated to balance maximum likelihood estimation
with the number of parameters in each conditional distribu-
tion. In contrast, the χ2 statistic is used in GLN modeling,
as opposed to the likelihood in DBN modeling; the tradeoff
with model complexity in GLN modeling is incorporated
into the degrees of freedom of the χ2 distribution, as opposed
to the R(Q − 1) log n term in the BIC in DBN modeling.
Additionally, GLN modeling allows the user to control false-
positive rate by specifying the size α for type I error, while
DBN modeling does not facilitate such an option.
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Figure 4: Performance comparison between generalized logical
network and dynamic Bayesian network modeling, including the
boxplots of Hamming distance, false positives, and false negatives
as functions of increasing noise level (flip probability p f ).

We first randomly generated 20 first-order Boolean
networks, each consisting of 10 nodes with a maximum of
two parents per node. We simulated the dynamics of each
Boolean network by calculating trajectories starting from a
random initial state with 25 steps (26 time points in total).
Then, we randomly flip each value with probability p f in the
trajectory with the following noise model:

X[t] =
⎧
⎨

⎩

1− X[t], with probability p f ,

X[t], with probability 1− p f .
(17)

For each trajectory, we applied increasing levels of noise
with p f= 2−6, 2−5, . . . , 2−1. When p f = 0.5, the noise is
the strongest in terms of network topology reconstruction.
When p f = 1, it is the same as p f = 0 as far as the topology
is concerned.

The performances of GLN (α level at 0.05 with P-values
adjusted) and DBN are shown in Figure 4. The Hamming
distance, false positives, and false negatives are plotted as
functions of increasing noise levels (flip probability p f ). The
lower the Hamming distance, the similar the reconstructed
network to the original one. GLN modeling definitely has
consistently smaller Hamming distances and less variance
under various levels of noise than DBN modeling. This
Hamming distance advantage of GLN over DBN attributes
mainly to the fewer false positives of the GLN reconstruc-
tions. Although the average false negatives of GLN are
slightly higher than DBN, the difference is not strongly
statistically significant. Overall, the GLN reconstruction
performs consistently better than the DBN reconstruction.
This example to some extent establishes that GLN modeling
is promising for further study and development.

GLN modeling is built on statistical hypothesis testing,
while DBN modeling on information theory. We are curious
at a more theoretical level why the GLN reconstruction has
shown a consistently superior performance over the DBN
reconstruction in the simulation study. We plan to address
this remaining issue in our future work.

6. Temporal Gene Expression in
Mice Exposed to Alcohol

Thirty-five adult DBA/2J (D2) mice were housed on a 12:12
light:dark cycle and given food and water ad libitum. The
mice were habituated for three days to i.p. injections of
saline and on the forth day were injected with 20% alcohol
in saline in a total dose of 4 g/kg. D2 mice are exquisitely
sensitive to alcohol dependence, and at this dose show
physical signs consistent with dependence from about 4–
10 hours after injection. Brains were removed, and anterior
cortex tissue was dissected at 2, 7, 12, and 24 hours following
the alcohol injection with 7 biological replicates at each time
point. All animals were housed and treated according to the
National Institutes of Health guidelines for the use and care
of laboratory animals [28] and an approved Institutional
Animal Care and Use Committee protocol.

cDNA fragments, that had undergone PCR from clones,
were printed on poly-L-lysine-coated (Sigma, Mo, USA)
microscope slides (Erie Scientific, Portsmouth, NH, USA)
using a custom-built robotic arrayer as described in [29].
The clones were from several cDNA libraries, including
ESTs cloned in the laboratory of S.E.B., Research Genet-
ics/Invitrogen clone sets Brain Molecular Anatomy Project
and Sequence Verified, and the National Institute on Aging
(3) clone sets 7.4 K and 15 K. cDNA microarrays were
hybridized using the 3DNA array 900 microarray labeling
kit according to the manufacturer’s protocol (Genisphere,
Hatfield, Pa, USA). Total RNA samples were reverse tran-
scribed, labeled with Cyanine-3 (Cy-3), and hybridized
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Antxr1-H3075F12
Rorb-H4070A02
Pigv-H4038C05
1700029I01Rik-H3069A03
Apc-H3009E10
Ckap1-H3139A10
Gm740-H3090B06
Gla-H3088E05
Tspyl3-H4078D07
Thbs4-473150
Idh3g-AI849325
Fosb-AI846927
Smarce1-AI853963
Sv2c-AI849111
Nsd1-AI843899
BC055107-AI836637
EST-AI854741
Camk2b-A1842756
Hypothetical protein MGC40675-A1854879

24 hrs12 hrs7 hrsDBA-control

4 g/kg EtOH,
2 hrs

>19688 1:1 >19688

Scale
(fold repression or induction)

Figure 5: Expression of the 19 selected genes. Microarray results are shown in pseudo color raster display. Each column represents an array
of a single mouse and the rows show expression for a given gene. Transcripts for which expression is increased are plotted in green and for
which expression is decreased are plotted in red. From left to right are control and 2, 7, 12, and 24 hour time points following a single 4 g/kg
i.p. injection of alcohol (7 replicates per time point).

against a common reference RNA labeled with Cy-5. The
common reference is whole-brain RNA extracted from 100
male B6 mice. All arrays contained the same reference RNA
in the Cy-5 channel and were normalized by using within-
print tips Lowess nonlinear normalization [30]. Normalized
array data were stored in the longhorn array database
(LAD) [31] and then standardized by using the red channel
(common reference RNA) as the baseline standard with
software developed in the laboratory of S.E.B. (These PERL
programs are available upon request.) Data were loaded into
an in-house database used for sorting by various statistics.

7. GLN Modeling of Transcription Regulation
in the Mouse Brain

We demonstrate a GRN reconstructed using GLN modeling
from a microarray study of temporal gene expression
microarrays in mouse brains following acute exposure to
alcohol to uncover transcription interactions of involved
genes. The microarray data were normalized, quantized,
formed to trajectories, and used to reconstruct a GLN.
We illustrate the significant interactions we identified, their
agreement with the literature, as well as the dynamic
behavior of the GRN in response to alcohol.

Through post hoc t-tests, partial least squares, and one-
way ANOVA (fixed effect only and α = 0.05 without
multiple testing correction) across time course analyses,
a total of 392 differentially expressed genes were selected
because they exhibit both temporal and alcohol related
expression variation. Missing gene expression values were
imputed using the R software package PAMR [32]. Those
genes not selected for inclusion do not have strong evidence

from this experiment to be on any path from the alcohol
node.

Among the 392 selected genes, we performed maximum
likelihood joint quantization [33, 34] to obtain a list of 19
genes for GLN modeling. The multidimensional quantiza-
tion algorithm aims at finding a grid to preserve interactions
during the discretization. A variable is quantized only to finer
levels if doing so captures its interaction with other variables.
The quantization levels for each dimension were automat-
ically chosen between 1 and 4. Thus variables receiving no
more than one quantization level lack interactions with any
other variables and are filtered out. There are three major
steps in the quantization. The first step is to initialize with
a finest possible grid—a line is added between every pair of
consecutive points in each dimension. The second step is to
remove a grid line one by one as long as the performance
(joint likelihood penalized by the total number of grid lines)
improves. The third step is to finalize the grid when the
performance starts to suffer as a result of removing grid
lines further. It is critical for the quantization to preserve
the interactions among the original continuous random
variables; otherwise the ensuing GLN modeling would not
be informative if interactions are destroyed or invented by
a less intelligent quantization method. After quantization
was applied, 19 genes ended up with exactly 2 quantization
levels, while the remaining 373 genes were all quantized to
a single level and thus filtered out for further modeling.
The expression patterns of these 19 genes are shown in
Figure 5.

These selected genes were entered into the GLN model
as candidate GLN components that connect to the alcohol
treatment node through gene expression on a directed path.
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Figure 6: An inferred generalized logical network (P-value= 3.6×10−5). The oval nodes represent genes and the inverse triangle, the binary
value of alcohol treatment or control for each subject.

Table 3: The P-values and number of parents for each node in the
generalized logical network.

Node Symbol No. of parents P-value

1 Alcohol — —

2 Idh3g 2 0

3 Rorb 4 2.9e-15

4 AI854741 4 0

5 Nsd1 5 0

6 Gla 4 0

7 Camk2b 3 4.4e-12

8 Sv2c 4 0

9 Fosb 4 0

10 Gm740 2 3.1e-14

11 MGC40675 1 5.0e-15

12 BC055107 4 2.1e-10

13 Tspyl3 4 0

14 1700029I01Rik 4 0

15 Smarce1 4 3.5e-15

16 Antxr1 1 3.9e-11

17 Pigv 4 0

18 Thbs4 3 0

19 Ckap1 1 5.7e-07

20 Apc 4 1.4e-13

The alcohol node is assigned based on the experimental
condition: 1 for alcohol-injected samples and 0 for control
samples. The quantization was implemented in Java and
compiled to native code on SuSE Linux using the GCJ
compiler. It took about 5 hours to finish the quantization on
a 2.8 GHz Pentium dual-core processor computer with 4 GB
RAM running SuSE Linux.

From the preprocessed and quantized temporal gene
expression data, we reconstructed a GLN as shown in
Figure 6. The size of the statistical test in the reconstruction
was 0.05. The maximum number of parents per node is 6.
The overall P-value of the reconstructed GLN is 3.6 × 10−5,
and the P-values for gtts at each node are given in Table 3.
The GLN reconstruction software was written in C/C++.
It was tested on trajectories from known GLNs, recovered
the trajectories correctly, and returned GLNs identical to or
simpler than the true ones. The program took about 4.5
hours to complete GLN modeling of the 20 node data (19
genes plus an alcohol node) on a 2.8 GHz Pentium dual-core
processor computer with 4 GB RAM running SuSE Linux.
The entire modeling process is summarized by the flow chart
in Figure 7.

As a GLN model has precisely defined transition logics
associated with each node, one can predict the dynamics of
the underlying system and assess the accuracy of the model.
Figure 8 demonstrates how the reconstructed GLN model of
the interactions may have captured the consistent behaviors
shown in the time courses in response to alcohol. Both genes
shown (Antxr1 and MGC40675) respond to the injection of
alcohol sharply after 2 hours of injection. However, they both
return to normal levels after 24 hours of exposure. Although
the predicted trajectories cannot capture all subtle changes
in the original time courses, the prediction agrees with the
overall trend in the observation. This suggests that the model
fitting preserved the dynamics in both genes.

In this GLN (Figure 6), Idh3g, Smarce1, 1700029I01Rik,
Gm740, MGC40675, Fosb, Ckap1, and Camk2b are the most
influential gene nodes. It should be noted that not all of the
genes that were identified as network members are part of the
conventional transcriptional regulatory system. The genomic
approach employed in these studies enables detection of
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Normalize microarray data by
Lowess regression

Select genes by differential
gene expression analysis

Impute missing values

Quantize gene expression levels
(and further filter out genes)

Reconstruct generalized logical
network

Figure 7: Five major steps in the entire modeling process from raw
gene expression time course data to a generalized logical network
model of a gene regulatory network.

broader modifiers of transcription, including those genes
which are involved in neuronal processes which in turn
result in altered transcriptional activity. In fact, major neural
pathways are represented. The interactions with alcohol for
Smarce1 [35], Fosb [36], and Camk2b [37] are biologically
verified. In addition, nine out of the 19 nodes in our GLN
(Figure 9) have been identified as interacting with alcohol
from biology literature by PathwayArchitect (Stratagene,
La Jolla, Calif, USA). From another literature database
tool Ingenuity Pathway Analysis (INGENUITY SYSTEMS,
Redwood City, Calif, USA), we have found nine genes,
Antxr1, Thbs4, Rorb, Smarce1, Nsd1, Bc055107, Camk2B,
Gla, and Fosb, on the major canonical hepatic cholestasis,
PPAR signaling, and xenobiotic metabolism signaling (e.g.,
Camk2b) pathways. The PPAR pathway is involved in the
alcoholic metabolism. This indicates that our approach was
indeed successful in capturing significant causal interactions
through temporal dependencies. More importantly, however,
new hypotheses for several genes that had never before been
implicated in alcoholism were generated. Without a model
which has the ability to detect statistically significant inter-
actions, these would not otherwise have gained attention.
Some of these putative network members and relations may
be false positives. The molecular mechanisms of alcoholism
are complex. Alcohol is a dirty drug, meaning that it acts
on a diverse range of neurological processes. Its mechanisms
of action are still poorly understood at the gene expression
level, as this is a relatively new and active area of investigation
in the alcohol research field. Most of the genes we report
have not been associated with alcohol responses to date. The
ability to contribute novel data-driven hypotheses to this
research area will facilitate the planning of future studies,
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Figure 8: Agreement of model predicted time courses with observa-
tions. Trajectories (solid lines) are predicted from the reconstructed
generalized logical network model under the alcohol condition,
shown with the observed time course (circle: saline injected, or
control; triangle: alcohol injected). The quantization to convert the
original continuous fold changes to discrete ones is also displayed as
the dashed lines. Both genes showed consistent dynamics between
the model prediction and the observation in response to alcohol and
are central nodes in the reconstructed gene regulatory network.

for example, in prioritizing which of over 45,000 proposed
new knock-out mice [38] to rederive and test for phenotypic
effects related to alcohol response. Ultimately, confirmatory
validation experiments and convergent evidence from other
high throughput molecular analyses are essential. These
results demonstrated that our algorithm can generate and
prioritize new hypotheses for understanding complex traits
such as alcoholism.
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Figure 9: Genes responsive to alcohol (the EtOH node) uncovered by PathwayArchitect from literature. The purple nodes were identified in
Figure 6.
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Figure 10: The state transition diagram and attractor cycles of the inferred gene regulatory network. A square node stands for a transient
state; a round one, an attractor. Inside each node, a sequence of numbers indicates the state of all genes that node represents. A directed edge
from a source to a destination node suggests that the state represented by the source node evolves into the state by the destination node. The
red color encodes the states under the influence of alcohol; the blue color saline (control).

Through simulation of the reconstructed GLN, a state
transition diagram corresponding to the GLN is shown in
Figure 10. Beyond the detected associations with alcohol
in the GLN, a possible dynamic mechanism is portrayed
in this diagram. The figure reveals that expressed genes
eventually merge into the same attractor cycle or steady state
after injection of alcohol (marked by red) and saline (the
control, marked by blue). This can be interpreted to reflect
a restoration of normal expression levels following acute
exposure. This additional information cannot be readily
discerned from the GRN in Figure 6, but is apparent from
the transition diagram in Figure 10. It thus suggests that
injection of alcohol in the D2 mouse strain does not result
in lasting change in the expression profile for these genes and
rather has produced a transient effect on the behavior of the

GRN. Biologically, one would expect most of the changes to
return to “normal” as the last time point is at 24 hours and all
alcohol is gone—the withdrawal symptoms have returned to
the baseline. In another study of a chronic alcohol exposure
with a longer, three day, “drunk time” after multiple alcohol
injections, we observed similar expression patterns in the
mouse brain tissue.

8. Conclusions and Future Work

Derived from a statistical property regarding the summation
of independent chi-squares, our GLN reconstruction algo-
rithm identifies significant dynamic associations among a
subset of genes to a target gene by performing the multi-
nomial test. Thus, we have offered a unique framework to
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reconstruct GLNs to characterize temporal interactions from
time-course gene expression data. Results from our appli-
cation of this technique to the study of alcohol’s influence
on gene expression in mouse brains reveal both consistently
observed associations and novel hypotheses that remain an
open problem for current biological investigation. Based on
these results, there appears to be significant potential to
inspect the temporal patterns in gene expression through
GLN reconstruction. In this paper, we have demonstrated the
value of GLN modeling for extracting the underlying causal
interactions among genes involved in response to alcohol.
Some of the inferences made on temporal dependencies
corroborate present knowledge on gene regulation in mouse.
The other inferences will be subject to more extensive in vivo
biological verification.

Preselection of a subset of interesting genes to render a
model computable is a challenge for GRN modeling from
microarray data. Approaches which filter genes or gene-
gene relations have been applied. While this leads to the
improved signal in the data, it also introduces a problem
of false-negative results, neglecting extensive information on
highly relevant genes which exhibit subtle variation in the
same temporal patterns as other connected genes. Rather
than filtering based on statistical effects, one could develop
GLN models from known pathways and evaluate how they
respond and interact with pharmacological perturbations.
This strategy can be implemented by reconstructing GLNs
from GRNs established by literature mining such as Inge-
nuity Pathways Knowledge Base (size Ingenuity Systems,
Redwood City, Calif, USA) and PathAssist (size JusticeTrax
Inc., Mesa, Ariz, USA). This will possibly allow the modeling
to begin at a more realistic starting point, and will reserve
statistical power for the strong plausible relations that are
previously reported.

A more diverse set of nodes can also be incorporated
into the GLN modeling. The biological relevance of a recon-
structed GLN can be substantially improved if simultaneous
measurements of the proteome, the metabolome, and the
transcriptome are available, without major modifications
to the current algorithms. Once data are properly scaled,
the method is highly generalizable and has significant
potential for inferring temporal relations among widely
diverse biological processes. The illustration of the validity
of our results from a small time-course gene expression
study indicates substantial potential for denser sampling, and
for the incorporation of additional data representing other
aspects of the neurobiological response to alcohol, including
neurohormonal, physiological, and behavioral measures.
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