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Abstract. This paper is devoted to develop a robust numerical algorithm to solve inverse problems of determining the right bound-
ary conditions according to measurements inside a truncated domain for regime-switching models of European options. Difference
schemes on Tavella-Randall grids are derived. We propose and discuss results of computational experiments for a several European
options.

INTRODUCTION

Financial practitioners are untimely aware of the short comings of the now ubiquitous Black-Scholes framework
[1,14]. Many extensions to the Black-Scholes model have been introduced to provide more realistic description for
asset price dynamics. In particular, the Black-Scholes (BS) model has been extended to account for empirical be-
haviour of implied volatility smile. Among the most popular extensions are regime-switching processes. They have
been applied to problems in electricity markets long term insurance guarantees, forestry valuation, and gas storage,
see e.g. [12]. This gives rise to weakly coupled systems of degenerate parabolic equations on real semi-axes.

In case we use implicit numerical scheme we must truncate the domain to [0,Smax] and then impose boundary
conditions at S = Smax. To avoid generating large errors in the solution due to the approximation of the boundary
conditions, the truncated domain must be large enough, which results in a large cost. There are a number of papers for
the scalar case devoted to this problem, see e. g. [2,3,4,5,11].

Calibrating local regime-switching models is a challenging problem. For accurate solving the inverse problem
of determining local volatility function the semiinfinite domain firstly is truncated posing correct right boundary
condition [6].

The remainder of the paper proceeds as follows. Section 2 introduces the direct and inverse problems of the
regime-switching model. The discretization of the European option problem is presented in Section 3. Also, fast algo-
rithm for solution of the difference system of equations is proposed and analyzed. Section 4 provides the algorithms
for solution of the discrete inverse problem. Numerical tests appear in Section 5 followed by a concluding section.

Direct and inverse problems

Let Vk(S, t) be the value of an European option in regime k with striking price K with expiry date T . The European
call option price Vk(S, t) in each regime k satisfies the following backward problem

∂Vk

∂ t
+

1
2

σ
2
k S2 ∂ 2Vk

∂S2 + rkS
∂Vk

∂S
+

M

∑
k,l=1;k,l

qkl(Vl−Vk) = 0, (1)
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Vk(S,T ) = max(S−K,0), k = 1, . . . ,M. (2)

For computational purposes the system (1) will be posed on the localized domain

(S,τ) ∈ (0,Smax)× [0,T ]. (3)

No boundary condition is required at S = 0 because setting S = 0 in (1) we obtain for k = 1, . . . ,M

∂Vk(0, t)
∂ t

= qkkVk(0, t)−∑
k,l

qklVl(0, t). (4)

One very simple way to handle the asymptotic behaviour at infinity is to specify a Dirichlet condition that
corresponds to the terminal function V0(T ) at S = Smax, e. g. see for a regime–switching system [13,14]. For a call
option this specification follows from the argument if S� K, it is unlikely that the option would expire worthless, so
that holding this option is roughly equivalent to owning the underlying asset, reduced with the strike price K.

A better boundary condition for a call option is

Vk(Smax, t) = Smax−Ke−rt , k = 1, . . . ,M. (5)

In the case of a digital call option pricing, if S≥ K and nothing otherwise, a reasonable boundary condition is

Vk(Smax, t) = Ke−rt , k = 1, . . . ,M. (6)

The problem (1)-(4) and (5) (or (6)) with unknown function {Vk}M
k=1 is called direct problem.

All these methods require some knowledge about the behaviour of the solution for large S: either a known value
for the solution or an assumption for linearity. Here, for a fixed in advance Smax with given observations at the points
S = S?1, S = S?2, 0 < S?k < Smax

Vk(S?k , t) = ϕk(t), 0 < t < T, k = 1,2 (7)

we wish to obtain approximately Vk(Smax, t), 0 < t < T, k = 1,2. Thus, finding the optimal right boundary conditions
we solve the whole inverse problem.

Note that posing such a formulation we face two variations of the problem: we have either S?1 = S?2 or S?1 , S?2. In
this paper both cases will be considered.

Solution of the direct problem

The results in this paper hold for arbitrary spatial grid, but we shall particularly consider grids that are obtained by
Tavella–Randall like grid [7,10]. Let ψ : [a,b]→ [L,S] be any given continuous function that is strictly increasing and
satisfies ψ(a) = L, ψ(b) = S. Let integer I ≥ 3 and

ξ = a+ i4ξ (0≤ i≤ I +1) with 4ξ = (b−a)/(I +1).

Then a grid L = S0 < S1 · · · < SI < SI+1 = Smax is defined by the transformation S = ψ(ξi) (0 ≤ i ≤ I + 1) if the
function ψ is sufficiently smooth, then also the grid is smooth in the sense that there exist real constants C0,C1,C2 > 0
(independent of i and m ) such that the mesh width is hi = Si−Si−1 satisfy

C04ξ ≤ hi ≤C14ξ and |hi+1−hi| ≤C2(4ξ )2. (8)

We next formulate the FDS that we consider for the semidiscretization of (1). Let f : [L,Smax]→ R by any given
function and 1≤ i≤ I. Write Hi = hi +hi+1. For approximating of the first derivative f ′(Si) we deal with two central
FDS:

f ′(Si)≈
hi+1

hiHi
f (Si−1)+

hi−hi−1

hihi+1
f (Si)+

hi

hiHi
f (Si+1), (9)

f ′(Si)≈
f (Si+1)− f (Si−1)

Hi
. (10)
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For approximating the second derivative f ′′(Si) we consider the central FDS

f ′′(Si)≈
2

hiHi
f (Si−1)−

2
hihi+1

f (Si)+
2

hi+1Hi
f (Si+1) (11)

We will make the simplifying assumptions that σk = const > 0 , and that rk,qk are constants, with rk > 0 for
k = 1,2. These assumptions, together with the notation v j

k,i �Vk(Si,τ
j) are used for simplifying the exhibition which

follows.
By applying (9), (10) and (11) to Eq. (1), we have the implicit scheme

v j+1
k,0 − v j

k,0

4τ
=−(rk +qk)v

j+1
k,0 +qkv j+1

3−k,0,

v j+1
k,i − v j

k,i

4τ
= σ

2
k S2

i

(
v j+1

k,i−1

hiHi
−

v j+1
k,i

hihi+1
+

v j+1
k,i+1

hi+1Hi

)
(12)

+rkSi


v j+1

k,i+1−v j+1
k,i−1

Hi
, for (10),

− hi+1
hiHi

v j+1
k,i−1 +

hi+1−hi
hihi+1

v j+1
k,i + hi

hi+1Hi
v j+1

k,i+1 for (9)


−(rk +qk)v

j+1
k,i +qkv j+1

3−k,i, (1≤ i < I),

v j+1
k,I+1 =

(
SI+1−Ke−r( j+1)4τ

)+
, (0≤ j < J). (13)

Then we define v j
k =

[
v j

k,1, . . . ,v
j
k,I−1

]T

and two (I +1)× (I +1) matrices Mk, k = 1,2 given by

Mk =


Ck,0 Bk,0
Ak,1 Ck,1 Bk,1

. . .
. . .

. . .

Ak,I−1 Ck,I−1 Bk,I−1
Ak,I Ck,I

 .

If v j =
[
v j

1,v
j
2

]T
, then the implicit scheme system could be rewritten in matrix form given below

Mv j+1 = v j, where M =

[
M1 −4τq1I

−4τq2I M2

]
,

Ck,0 = 1+4τ(rk +qk), Bk,0 = 0, Ak,i =−
4τσ2

k S2
i

hiHi
+
4τrkSi

Hi
,

Ck,i = 1+
4τσ2

k S2
i

hihi+1
+4τ(rk +qk),

Bk,i =−
4τσ2

k S2
i

hi+1Hi
− 4τrkSi

Hi
, (1≤ i < I), Ak,I = 0, Ck,I = 1.

Solution of the inverse problem

We now present an algorithm for solving the inverse problem (1)-(4) and (5) (or (6)), adopt the method developed in
[8].
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Algorithm
We assume that the points of observation S? as the grid mode with number i? : S? = Si? , so that

v j+1
k,i? = ϕk(τ

j+1), (1≤ j < J).

To find an approximate solution v j+1
k,i of problem (12)-(13) at the new time level, we use the decomposition

Vk(Si,τ
j+1) := v j+1

k,i = z j+1
k,i + v j+1

1,I .u j+1
k,i + v j+1

2,I .w j+1
k,i , (1≤ i≤ I), (k = 1,2). (14)

Step 1

Solve for the grid function z j+1
k,i the systems

z j+1
k,0 − v j

k,0

4τ
=−(rk +qk)z

j+1
k,0 +qkz j+1

3−k,0,

z j+1
k,i − v j

k,i

4τ
= σ

2
k S2

i

(
z j+1

k,i−1

hiHi
−

z j+1
k,i

hihi+1
+

z j+1
k,i+1

hi+1Hi

)

+rkSi


z j+1
k,i+1−z j+1

k,i−1
Hi

, for (10),

− hi+1
hiHi

z j+1
k,i−1 +

hi+1−hi
hihi+1

z j+1
k,i + hi

hi+1Hi
z j+1

k,i+1 for (9)


−(rk +qk)z

j+1
k,i +qkz j+1

3−k,i, (1≤ i < I), z j+1
k,I = 0.

Step 2.1

Solve for the auxiliary unknowns u j+1
k,i the systems

u j+1
k,0

4τ
=−(rk +qk)u

j+1
k,0 +qku j+1

3−k,0,

u j+1
k,i

4τ
= σ

2
k S2

i

(
u j+1

k,i−1

hiHi
−

u j+1
k,i

hihi+1
+

u j+1
k,i+1

hi+1Hi

)

+rkSi


u j+1

k,i+1−u j+1
k,i−1

Hi
, for (10),

− hi+1
hiHi

u j+1
k,i−1 +

hi+1−hi
hihi+1

u j+1
k,i + hi

hi+1Hi
u j+1

k,i+1 for (9)


−(rk +qk)u

j+1
k,i +qku j+1

3−k,i, (1≤ i < I), u j+1
k,I =

{
1 for k = 1
0 for k = 2 .

Step 2.2

Solve for the auxiliary unknowns w j+1
k,i the systems

w j+1
k,0

4τ
=−(rk +qk)w

j+1
k,0 +qkw j+1

3−k,0,

w j+1
k,i

4τ
= σ

2
k S2

i

(
w j+1

k,i−1

hiHi
−

w j+1
k,i

hihi+1
+

w j+1
k,i+1

hi+1Hi

)
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+rkSi


w j+1

k,i+1−w j+1
k,i−1

Hi
, for (10),

− hi+1
hiHi

w j+1
k,i−1 +

hi+1−hi
hihi+1

w j+1
k,i + hi

hi+1Hi
w j+1

k,i+1 for (9)


−(rk +qk)w

j+1
k,i +qkw j+1

3−k,i, (1≤ i < I), w j+1
k,I =

{
0 for k = 1
1 for k = 2 .

Step 3

To compute v j+1
k,I , we substitute v j+1

k,i? = z j+1
k,i? + v j+1

1,I .u j+1
k,i? + v j+1

2,I .w j+1
k,i? into (14) to obtain

(
v j+1

1,I , v j+1
2,I

)
=

[(
ϕ1(τ

j+1), ϕ2(τ
j+1)

)
−
(

z j+1
1,i? , z j+1

2,i?

)] u j+1
1,i? u j+1

2,i?

w j+1
1,i? w j+1

2,i?


−1

.

COMPUTATIONAL RESULTS

In the following, we present results in order to illustrate the accuracy and efficiency of the proposed computational
algorithm of the solution of the boundary condition problem for regime-switching models of European options.

Direct Problem
First we solve the direct problem defined as the system of weakly coupled PDEs (1), the left boundary conditions (4),
the initial conditions (2) and right boundary conditions which values match the discounted payoffs on each temporal
layer.

In our paper we take Smax = 50, K = 9, r = (10%, 5%), σ = (80%,30%), q = (6, 9) and T = 1 year to option
expiration. Despite the unconditional stability of the fully implicit difference scheme we make use of, for better results
we take relatively small temporal step as4τ = 1/1280.

FIGURE 1: Absolute error in the direct problem solution to
a cash-or-nothing call option using different grids
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In Fig. 1 we compare the absolute error in the numerical solution derived by an uniform grid with spatial step
h = 0.03125 and a non-uniform grid defined by the transformation of type (7), (8)

ψ(ξ ) = K +α sinh(ξ ), ξ ∈ [a,b] ,

where a = sinh−1
(
−K
α

)
, b = sinh−1

(
Smax−K

α

)
and α = 0.5 is a prescribed uniformity parameter (Fig. 2) [9, 5].

For the purpose of the experiment, a cash-or-nothing call option with payoff

g(S) =

 K, S > K

0, S≤ K

was taken into consideration. In contrast to [3], the uniform and non-uniform grids for the forward problem produce
similar results.

FIGURE 2: Graph of the coordinate transformation with K = 9 and α = 0.5

Inverse Problem
After solving the direct problem, we define the observation at the point S = S?k , 0 < S?k < Smax for k = 1,2 and
formulate the boundary inverse problem as follows: the system of PDEs (2), the conditions (2) and (4) and the quasi–
real condition e. g. (5), (6) and so on.

As we are inverting the square matrix

 u j+1
1,i? u j+1

2,i?

w j+1
1,i? w j+1

2,i?

, we are interested in its determinant

D(i?,C) :=

∣∣∣∣∣∣∣
u j+1

1,i? u j+1
2,i?

w j+1
1,i? w j+1

2,i?

∣∣∣∣∣∣∣= u1,i?w2,i? −u2,i?w1,i? .

In Table 1 we present the values of the auxiliary function D at the points i? at different values of the discrete

Courant number C :=
4τ

2h2 for the Black–Scholes parabolic equations (1).

It is obvious that the values D(i?,C) are the same for all types of Europeans options, regardless of their payoff
functions g(S).
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TABLE 1: Values of Wi? for various i? and C

HH
HHHi∗

C 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4

2 4,9e-324 9,233e-248 2,154e-189 4,862e-146 1,187e-113 1,2909e-89 -3,377e-73 0 5,2972e-49

201 2,509e-135 -7,884e-102 2,2383e-77 5,0403e-61 2,6466e-48 1,1233e-39 7,2074e-32 1,5489e-25 1,8187e-21

401 8,2166e-97 -1,3719e-74 8,0942e-58 1,6133e-46 2,0275e-37 6,1044e-28 1,7174e-21 2,879e-17 1,4255e-14

601 1,4672e-74 -1,9093e-58 2,1692e-46 1,1893e-36 9,1043e-27 5,5562e-20 2,0325e-15 1,9814e-12 1,5981e-10

801 1,1398e-58 -4,0779e-47 3,7376e-36 4,0806e-26 3,9512e-19 2,4676e-14 4,1418e-11 5,3641e-09 1,1937e-07

1001 2,7342e-46 1,8407e-34 9,436e-25 6,0794e-18 3,3198e-13 5,9282e-10 9,1135e-08 2,466e-06 2,0213e-05

1201 8,1508e-30 2,2396e-21 1,9685e-15 2,8981e-11 2,3004e-08 2,2502e-06 4,9059e-05 0,000369 0,001339

1401 3,1411e-14 2,5988e-10 1,4927e-07 1,2843e-05 0,000285 0,00239 0,00999 0,02551 0,046376

As a special feature of the inverse problems is the fact that the bigger the Courant number, the more stable the
inverse problem computations become. What is more, the same phenomenon is observed when the point of mea-
surement i? is increased. In Table 1, in the cases below the jagged line the algorithm gives satisfactory results with
acceptable error, while in the cases above the line the algorithm diverges. Of course, the bigger Courant number, the
bigger the error in the implied right boundary condition.

FIGURE 3: The values of the exact solution and the implied solution at the right boundary, for S? = 43.75, C = 0.8.

The numerical experiments approve these conclusions. In Fig. 3 and Fig. 4 we see that the exact solution and the
solution to the inverse problem for the European call option practically coincide for C = 0.8, and they gradually go
farther when C increases. On the other hand, we have gained convergence for smaller values of the measurement S?.

CONCLUSION

The problem of finding the right boundary condition for regime-switching models of European options is considered.
We implement the decomposition technique proposed for the heat equation in [8]. Numerical experiments confirm the
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FIGURE 4: The values of the exact solution and the implied solution at the right boundary, for S? = 43.75, C = 6.4.

efficiency of the algorithm.
An open question remains finding sufficient conditions for the stability of the algorithm. Further investigations

concern two-asset Black–Scholes equations, time-dependent volatility models, etc.
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