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On a Question of M. Paoli and E. Ripoli.

S. BArov - G. Dimov - ST. NEDEV (*)

Sunto. — H.-J. Schmidt in [S] introduce una classe di spazi — che in questo
lavoro chiamiamo HS-spazi — ed afferma[Teorema 11 (3d)] che ogni
HS-spazio di Hausdorff ¢ regolare. M. Paoli e E. Ripoli, in[PR1] hanno
pero osservato che la dimostrazione di tale teorema mon é corretla, senza
perd offrire controesempi all’affermazione. In questo articolo si fornisce
una parziale risposta al problema, presentando una larga classe di spa-
2i, che contiene tutti gli spazi di Hausdorff di carattere numerabile, in
cut il teorema di Schmidt e vero.

1. — Introduction and preliminary results and definitions.

The following definition is motivated by the results of H.-J.
Schmidt in[S].

DEFINITION 1.1. — A topological space X is called a HS-space if,
for every subspace A of X, the mapiy: 24.T_,2%T defined by the
formula i, (B) =clxB, for every Be24 is a continuous map.

Here and below, for every topological space (X, 0), 2% stands for
the set of all non-empty closed subsets of X and cly B—for the closu-
re of the subset B of X in the space X. The set 2% is endowed with the
Tychonoff topology Or, which is known also as upper semi-finite to-
pology [M], generated by the base 8= {(U): U0}, where (U)=
{Fe2*: FcU }: The topological space (2%,07) is denoted briefly by
9X%T The class of all HS-spaces (resp. all T;-spaces, for i=
1,2,3,3.5,4 will be denoted by S (resp., by &, i=1,2,3,3.5,4) and
the class of all normal spaces—by T (*). In[S] H.-J. Schmidt proved
the following theorqm.

(*) The authors were partially supported by the National Foundation for
Scientific Researches at the Bulgarian Ministry of Education and Science un-
der contract No. MM 28/91.

(%) In this paper we assume that T'-spaces (1 = 8,3.5,4) are Hausdorff,
while the regular and normal spaces are not assumed to be, in general,
T;-spaces.
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TaeoreM 1.2.([S, Theorem 11(3d)]). - acsN T C ;.

M. Paoli and E. Ripoli noted in[PR1] that the proof of

rem is incorrect, but the question of the correctness of the state i
remains open. In the present paper we give a partial solution of .
question. More precisely: a) we give an internal (j.e. in o
space only) characterization of HS-spaces (see Theorem 2.10); ¢ I
introduce a large class of spaces, denoted by 5* (see Definitiop cvin
containing all Hausdorff spaces with countable character spac
and 2.22), where 1.2 holds (see Theorem 2.19, where a stron
is proved) and we show that 1.2 is true iff (= if and only if) the D
ment «J CX*» is true (see Theorem 2.20); using Theore if for
demonstrate that the limit of an inverse sequence of HcY
needs not be a HS-space (see Example 2.26); ¢) we show th LF-n
class (S is invariant under closed mappings (see Theorem R)
we prove that 1.2 is true iff the statement «3¢SN =Jy» doe andtl
Theorem 2.14). Moreover, some new classes of spaces, closely r with t
to the problem discussed here, are introduced and briefly ir ce, X
ted. These are the class of F-normal spaces (see Definition
Theorems 2.12, 2.28) and the classes of K-, K'- and K"-sp: No
Definition 2.23, Theorems 2.30, 2.31 and Examples 2.32, 2.3 (which
Let us cite also the following corollary of Proposi o
in[Se]: i B

ProPOSITION 1.3.([Se]). - JCCIR:

il S

NOTATION 1.4. - If 2 is a class of topological spaces, then we

i REN
te by 1% the class defined in the following way: X
X¢g. plagoe T Lew
ahne (A continu
For all notions and notations undefined here see [E]f PROX
Let us finally note, that many of the results of this pa . («)
announced (without proofs) in [BDN]. g  will imp.
24 Wel
Let F'=
2. - The results, | 2€. Since
: open in
NOTATION 2.1. - For any set X, we denote by & (X) # #
nonempty subsets of X N
Let V=]

CONVENTION 2.2, - Let (X, 0) be a topological space
and HcU. Then we will say that (H, U) is a pair
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DEFINITION 2.3. - A pair (H, U) in (X, ©) is said to be F-embedded
in X if there exists a Ve © such that

i) HcV, and
i) (@e2V,dcV) implies (@ e2%).

DEFINITION 2.4. — A topological space X is said to be F-normal if
every pair (H, U) in X is F-embedded in X. The class of all F-normal
spaces will be denoted by Fot.

DEFINITION 2.5. — A topological space X is said to be LF-normal
if for every pair (H, U) in X and for every subspace Y of X such that
HcY, the pair (H,UNY) in Y is F-embedded in Y. The class of all
LF-normal spaces is denoted by £LF.

REMARK 2.6. — Obviously, Jtc £LF9tc F. The inclusions JTc LFH
and I, =N J;cLFN N J; are strong, since for any infinite set X
with the cofinite topology we have that X e (LF9T N J;)\ J; and, hen-
ce, Xe(LFNN IJ )\ T; and Xe LFH\X.

Now, we are going to show that the classes €S and LFI coincide
. (which, in particular, will imply 1.3).

CONVENTION 2.7. — Let X be a topological space and @ € £(X). The

statement «for every subspace A of X such that @ €24, the mapping
is: 24T 52%T s continuous at the point @ of 24» will be shortened as

. «i is continuous at ®».

REMARK 2.8. — XeJ(S$ iff 7 is continuous at any @ e E(X).

‘ LEMMA 2.9. — Let (X, 0) be a topological space. Then X € S iff i is
continuous at any Fe2X

PRrOOF. — (=) This is trivial.

(«<) Let ® e E(X). We will show that ¢ is continuous at @, which
will imply by 2.8, that X e 3CS. Let A be a subspace of X such that @€
924 We have to show that the mapi,: 247 —2%7 is continuous at ®.
Let F=cly®, Ue© and FcU. We put C=AUF. Then FcC and Fe
9C. Since the mapic: 20T —2%" is continuous at F, there exists an

open in C set V; such that FcV, and
E (1) ic(V1) c(U). \
Let V=V, NA. Then V is open in A, #cV and ia((V)) c(U). Indeed,
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let Be24 B¢V and B, =cl¢B. Then B, cB UFcVuy,

=Viand hep. Q
ce, by (1), clyB=clyB;cU. = : (f-!
THEOREM 2.10. — 3(S= LFN. 8 Then
PROOF. - A) Let (X,0)eS. We will show that Xe LT, Let B lgl(l))ldg
(H, U) be a pair in X and Y be a subspace of X such that g cY.We @ . !
have to show that the pair (H,UNY) in Y is F-embeddeg A 1
Put A=UNY. Then He24 and i,(H) =He(U). Since the YW
mapiy: 247 —2%7 is continuous, there exists an open set Vin4 W T,
such that HcV and 4, (V) c(U). Obviously, V is open also in ¥ Let " B2
@e2"Y =24 and V. Then de (V) and hence clx@cU. We obtain & that B
that @=cl, d=YNUNecly, d=YN ClxP=cly®, ie. e
B) Let (X, 0) € £591. We will show that H'e 5¢5. By 2.9, it is e s
gh to prove that i is continuous at each Fe2% i i
Suppose there exists a Fye2X such that i is not continuous at . Pro
Then there exists a subspace B of X such that FocB and th
mapig: 257 592X 7 {5 not continuous at the point F, of 25, Hence, t The
re exists a Uy O such that: q) FocU, and b) for every open in B se further
V, containing Fy, there exists a Dy e28 such that DycV and D
(clx D)\ U, # 0. Let us put C'=B N U,. Then the map ic: 2072 caHedEf;
I8 not continuous at the point Fy of 2° (since every set, open in C, Hcv
open in B too). Let Vel (XN, ). A% FycY. Since Xe £ oy
it follows that the Pair (Fo,YNU,) in Y is F-embedded in THEO!
But Yn U0=(CU(X\U0))OUO=CH Uy=BnN U0=Candhence',, - ‘ a) S
g et In ¥ and the pair (F,,0) in ¥ is. Fembeddu :
So, there exists an oren in Y set V, such that: (i) FocVy, and @ Mt
(¢CVO,¢E2C)=(<DE2Y). Then: W, = V.0 €is open in Y and in C. 3
Hence V, is open in B ang FocVi. So, there exists a &, <28 such that | d) o
D,cV, and IR
Rk
@) (clx @)\ Uy 4. B | roor
=ClY¢1=¢1cCICEU - Hence M=(ch<151)n(X\UO-)c(ch¢1) . Let Xe
B 0, Le. Mc(X\ Uy) N U, =@, while (2) shows therfz exists
quotient sp:
THEOREM 211 _ . Subset F of .

Let f: ~
XS Then Zepes J: X~Z be a closed map, f(X)=2

P.ROOF. - By 2.10, it ig
a pair in Z 5

nd let ¥ pe
Prove that the pair (¢

a closed ma
Ye J; (since
- the pair (¢(,

shows that )

énough to show that Z e £59t. Let (@,
a subspace of Z such that &ocY. Weh
UNY)in ¥ is F-embedded in Y-
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Since XedS and hence, by 210, Xe LFN, the pair
@, f 2 UNY)=(f10,f UNF1Y) is Fembedded in £,
Then there exists an open in f~'Y set V such that: @) f'dcV, and
(i) BcV and Be2/'WnD imply that Be2/ ™'Y, Obviously, the same
holds for the set V'=VNf~U. The map ¢ =f,: f Y=Y is closed
since f is closed (see [E, 2.1.4]). Hence, there exists an open in Y set
W such that &cW and @ H(W)cV' (see[E, 1.4.12]). Then f~'@¢
L [T W) = 1(W) cV'cf{(UNY) and, consequently, @cWclUNY.
Let now B'cW and B'€2U"Y. Then B= @ '(B')=f"YB")cV' and
Be2/'WNY Henee Beo/ 'Y Since @ is a quotient map, this shows
that B'e2”. Therefore, Zescs. =

THEOREM 2.12. — Let f: X—>Z be a closed map, f(X)=27 and
XeFN. Then Ze Fo

PROOF. — Put Y=2 in the proof of 2.11. m

Thq next definition will be used in the proof of Theorem 2.14 and
further in the text.

DEFINITION 2.18. — A pair (H, U) in a topological space (X, 0) is
called nonseparable pair if (clx VI)\U# ¢ for every VeO such that

THEOREM 2.14. — The Jollowing assertions are equivalent:
@) SN T3¢ T3
b) HSN Ty CTys;
£y AS Gcay:
d) 281 T =.3,.

PROOF. — Obviously, d)=c)=>b)=>a) and c)=>d) (see 1.3 or 2.10
and 2.6). Hence in order to prove the theorem, we have to show that
a)=>c).

Let Xe9cSN g;. Then, by a), Xe 3. Suppose X ¢ J;. This means
there exists a nonseparable pair (F,U) in X. Let Y=X /F, ie. the
quotient space Y is obtained by identifying the points of the closed

. subset F of X, and let : X—X /F =Y be the natural map. Then ¢ is
a closed map and, hence, by 2.11, Ye ics. Obviously, we have that
YeJ; (since Xe ;). Now, the condition a) implies that Ye J;. But
the pair (p(F), p(U)) is, obviously, a nonseparable pair in ¥, which
shows that Y¢ J5—a contradiction. Hence Xeg, =
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REMARK 2.15. — The

inclusion 9cs N 7
te space X with the

: 1CJ; doesn’t hold: 5p
cofinite topology testifies to this (g

bace and (g, U)
embedded in X if o,
set By of V syeh tha,t

IS
DEFINITION 2.17. - A Space X is said to be a K *-space if eithe nor
X e or there exist a nonseparable pair (H, /) in X and a subspace anc
of X such that H CY and the pair (4 ,2UNY)in Yis N-embedded in ¥ xS
The class of all K *-spaces is denoted by x*. SR But
~SOPOSITION 2.18. - A pair (H, U} in (X,0) is N-smbedded il e
Uf (H,U) is not F-embedded m X o oL
R to s
PROOF. - (=) Let (H, U) be N-embedded in X and suppose that ]
(#, U) is also F-embedded in X. Then there exists a Ve O such that N T
HcV and (®e2V, &cV)=(be2%). Since (H, U) is N-embedded in . e
X, there exists a subset B of VN U such that @ # (cly B\ (VN U)c =
X\ U. Then W heF
B ded |
(lyB)N(VNU)=(clxyByNUN (X\(VN U))= »
(e BYNVNU)NUcX\U)NU=0. B 2N
Hence, ®=clyBcVNUCV and ®e2’. This implies that ®e2% r
Thus (clxB)\(VNU)=&\(VNU)=0, which is a contradiction.
Hence, (H, U) is not F-embedded in X. .
: : that
(o Let 010 b . .
(U Is N-embedded in e L x
xists a @ e2” such that #cV and P2~ T b)
i —dNV=2 and (clx®)\P#0. A
cly®@=(cly®)NV=2 LN
o Iy @) NV) = (cly 1);
(clx @)\ V = (clxy DY\ (clx ! 9F-spc
Ire exis
and d)NU)= B gF-sps
B\ D = (cly D)\l @ = (cly I\ (elx )
(clx D)\V = (clx i RE
(ClX ¢)\ c , (and h
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THEOREM 2.19. - a) 3SNX* =9 and hence SN TN R* = TJy;
b) HS=NU (11 X*) and, equivalently, X* =L U (119CS);
¢) If @ is a class of spaces such that 9CSN PCIG then “PCK*.

PROOF. - @) Obviously, JTcIcs N x*, Hence, we have to show that
JCSTIR* €.
Let XedCS N A*. Suppose that X¢ 97, Since Xe X*, there exist a
nonseparable pair (H, U) in X and a subspace Y of X such that HcY
and the pair (H,UNY) in Y is N-embedded in Y. Since Xe9¢S and

HE=LFN (see 2.10), the pair (H,UNY) in Y is F-embedded in Y.
But this contradicts 2.18. So, Xe 9t

b) In a) we have shown, in fact, that (%*\ 57) N 3¢S= . This,
obviously, implies that 9€ScOU (1%*). Let us prove now that

JU (M X*) cIcS. Since IcICS (see 2.6 and 2.10 or 1.3), we have only
to show that —1%* cacs.

Let Xe1* and suppose that X¢9¢S, i.e. that X ¢ LFN (by 2.10).
Then there exist a pair (H, U/) in X and a subspace Y of X such that Hc
Y and the pair (H,UNY) in Y is not F-embedded in Y. The pair (H, )
in X is a nonseparable pair (otherwise the pair (H,UNY) in Y should
be F-embedded in Y) and, by 2.18, the pair (H,UNY) in Y is N-embed-
ded in Y. Hence, Xe %X*—a contradiction.

¢) Let & be a class of spaces such that 9¢s N & I. Then, by b),
3’0(ﬁ3¢*)=3’ﬂ(3€8\%)g.7(\31=ﬂ, lLe. PCA*. =

THEOREM 2.20. — The Jollowing assertions are equivalent:
a) HSN JpCTy;

b) Fcx*

PROOF. - a)=b). By 2.14, the assertion a) implies that
H8N T =7,;. Hence, by 2.19¢), we obtain that 7, cx*.

b)=>a) If FcHK* then, by 2.19a), HSN T =3CSN Fy N K* =
=J,CT;. N

DEFINITION 2.21. ([DIT], [O]). — A topological space X is called a

9F-space if for every subset A of X and for every x e (clyA)\ A, the-

re exists a subset B of A such that {x} = (cly B)\ B. The class of all
| gF-spaces will be denoted by gF

REMARK 2.22. ([DIT],[0]

, ). = Every Frechet-Urysohn T,-space
(and hence every T,

-Space with countable character) is a gF'-space.
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DEFINITIONS 2.23. — A topological space (X,0) is ¢

THEOR
i) K-space if for every UeO and for every x e (cl, B) 9
e exists a subset B of U such that {x} = (clx B)\B; i
iiy K'-space if every nonseparable pair (H,U) in X
bedded in X; A pm(f,;Rg(f)F:f
iiiy K"-space if either Xe It or there exists a pair Sl
which is N-embedded in X. & e in(’zlw
The class of all K-spaces (resp., K'-spaces; K”-spaé ’__ - prove an z
noted by X (resp., X';XK"). s one of the
REMARK 2.24. - GFCRC K CR" CHR*. DEFINIT
SFCACK I € o shaped spa
REMARK 2.25. - The theorem from [PR2, n. 1] asserts  inclusion lo
Hausdorff countably compact space with countable cha THEORE]
Xeds. We will show that this assertion is not true. (T - mapped by
tche proof of Theorem 1 from n.1 of [PR2] is incorrect shaped spac
In MR # 882:54020.) Indeed, J. Vaughan constructed in an infinite
sdorff countably compact space X, with countable charac ’ comorphic
not normal. By Remarks 2.22 and 2.24 we get that X » ausdorff K
Were a HS-space, then, by Theorem 2.19a), X, should ~ PRoOF. -
SPace—a contradiction. Thus, X, is not a HS-space. that the set .
R e X. Then O’
A EMARK 2.26. — Theorem 2.19q) together with 7,let Wb
I1.TS Shew th.at any space X e J; \ 9; with countable - Since the ¢
; .'2822;03 (xl' ; X contains a subspace A for which A1 POiI}t ?/EE
l;ﬁ.e 2 .—>2 ~ 18 not continuous). Since the square red by inclusi
st ofls'rsil‘i}lfms%"‘?’ we obtain that L% =X¢ JCS, s pﬁlf;y“'
i In n. 3 of[PR1]. et 1 then (g,
LXAMPLE 2.27. _ A limi : o of Z, the local
which is not 5 HS—spacenmt of an inverse seq g
Pro ; B<A}. Then,
OF. — I k.

wed WitlI: itsLet N, Q and P be the subspaces of the re ;; (X’l O)e—d) (Z,
and al] jrpqt: natural topology) consisting of all na :clgs v

e ational numbers respectively and let X =F Y geteron

(see[E, 51 32] 1 ¢ Let Oe0”
e is’ 92]). Then, as shown by E. Micha€ 2= (y,4) for so
NN ang y I;Ot normal (see [, 5.1.32]). Since P 8 that ze ¢l 0,. ]
the infinjpe CS a countable character, the standard ghbourhood V ¢

Quence (geq [Eartesia‘n Product X x N~ as the liml
224) show th, 2.5.3]) and our Theorem 2.19a) ( Log¢
2t the space ¥ is the desired exam]
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THEOREM 2.28. — a) FUN K" =N,

B) RO
¢) If @ is a class of spaces such that FRNPCR, then PCK".

PROOF. — The proof of this theorem can be obtained from the
proof of Theorem 2.19 putting there Y=X. =

Now, we are going to present examples testifying that the first
three inclusions in 2.24 are strong; as a first step in this direction we
prove an auxiliary theorem (which generalizes the construction of
one of the examples), using the following definition.

DEFINITION 2.29 ([A]). — A topological space X is called a funnel-
shaped space if for every point  of X there exists a well ordered by

inclusion local base B(x) at .

THEOREM 2.30. — Let (X,0) be a topological space which can be
mapped by a continuous one-to-one map f onto a Hausdorff funnel-
shaped space (Y,0') such that x(y,Y) =t for every yeY, where v s
an infinite regular cardinal number. Then the space X can be ho-
meomorphically embedded as a closed nowhere dense subset of a

Hausdorff K-space Z.

PrOOF. — Obviously, there is no loss of generality in assuming
that the set Y coincides with the set X and that f(x) =« for every"
x e X. Then ©' cO. Denoting by A the initial ordinal number of cardina-
lity 7, let W be the set of all ordinal numbers less than or equal to A.
Since the space (Y,©’) is funnel-shaped and the character of Y at
any point y €Y is equal to 7, we can fix, for every yeY, a well-orde-
red by inclusion local base B(y)={V,,: a<Ai} for Y at y.

Let Z be the Cartesian product of the sets Y and W. We will defi-
ne a topology ©” on the set Z in the following way: a) if (¥, @) € Z and
a # A then (y, a) is an isolated point of Z; b) for every point z = (¥, 4)
of Z, the local base ®'(z) for Z at z is the family {(V, , X (a,4)) U

(Ux{A}): a<A, yeUeO and UcV,,}, where (a,1)={feW: a<
B <A}. Then, obviously, (Z,0") is a Hausdorff space and the map
i1 (X,0)—(Z,0"), x— (x,1), is a homeomorphic embedding and #(X)
i.s a closed nowhere dense subset of (Z,©"). We will show that (Z, o)
18 a K-space.

Let Oe©” and ze(cl;0)\O. Then, obviously, zeY X {1}, ie.
2= (y,4) for some yeY. Let us put O; =0\ (Y X {1}). We will show
that zecl,;0,. Indeed, supposing that z ¢ clz O,, we will obtain a nei-
ghbourhood V of z in Z such that VNO; =0 and VNON(Y x{i})=0.
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,_VNO0. Then V'e0", V'cO, V'=0 and
Let v ‘{ 3} =i(X) and this is 2 contradiction since R .
e rem 2
So, zeclz 01

Now, for every @ <A, weput V, =V, , X (a,4] anc
b =iy :&a)EOI in the following way:

1) if a =1, then we choose some point from V;

“morph
not a
Ze (X

X 3 il y>
note it by bi; 4
9) let f<A and assume that b, has already b » Let
a < in such a way that b, € Viq) N Oy, where g normal
every i ¢ ' " KTa ol hiat X
some increasing function and b, # b, for a’ # a". We sh that Xg
point bs. Let us prove first that the set s = {b,: a<p se that
7. Indeed, since 7 is a regular cardinal number, there hBo U {=]
WN\{A} such that yz;>§&, for every a<pg. Then,",,‘f" I(;le;’)’f
(y',A)eYx {1}, we have that O, =V, . X (y,4] pex
rhood of 2" in Z and O, N Fg=@. Hence, Fy is a cl‘osl C)
and FcO,. Since b, = (Yas&a) € Vi), We have tha ‘aa7g
consequently, y s > p(a) for every a <. Putting @(B): the first
sing a point by from the set V4 N Oy, we complete th gy, Z be
of the points {b,: a<4}. 5 4 be the s
If we put now B={b,: a <A} then, obviously, z X = (W X
0,cO. We shall show that B U {2z} =cl;B. Indeed, owing to
Then there exists a y e W\, {2} such that V, , N Vgt 0 O; the
struction of the points b,, we have that b, eV, N O, for the
Le't y'=sup{Z&,: asy}. Then y'<4, y'Zy and V, v": (1)-;
neighbourhood of (y”,4) in Z which has no comm OT}
Hence, ClzB=BU{z}, - : 7 N} Tt
A nonsep:
TH_EOREM 2.31. - All of the inclusions GFcHC pag)ed!
even i the class of Hausdorff spaces. 1I s
s T aDle pair
IP:ROOF. = A). Construetion of a space Ze (X\ Let U
2 subii)i():éo’l/z] U{pUfL ¢ 1/n: neN} with ' ts;t:’;;
relation ¢ O R (see 2.27 for N and R) and let E b ) =1 such |
On X, defined by letting ¢ &  iff either @ = .

&t X=X, /E ang g ¥ Ly uf eithe subset of
S not heregjt ' q: X, —>?( be the natural quotient map UUH) =
24.17 anq o 411:?]rﬂy _duotient (= pseudoopen) r So, the p:
These faetg ‘t.o )' Smce. x(Xy) =R, we have, by 2 . Let U-
Let ¥ be th’e sgte ther with [DIT, Theorem 3.48], "-embedde
of R. Then g [0,1/2] endowed with the topo Juv,ic € B(p

map f: Xy T
any te (g , defined by the formu
/2], ang Rq(1)) =0, is obviously a cont
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Since Ye J; and x(y,Y) =R, for every ye¥, we obtain, using Theo-

-rem 230, that there exist a Hausdorff K-space Z and a homeo-

morphic embedding ¢: X— Z. Then ¢(X) is a subspace of Z which is

not a gF-space. This implies, by[DIT,3.46e)], that Z¢GF So,
Ze(X\8F N 9.

B) Construction of a space Xe (%X'\ X) N 7.

Let X =BN—the Stone-Cech compactification of N. Then X is a
normal space and hence, by Definition 2.23ii), Xe %'. We shall prove
that X¢ X. Indeed, let U=NcpAN and ze (cly U)\U=X\U. Suppo-
se that X e X. Then there exists a subset B of N = U such that ¢ly B =
B U {«}. Since, obviously, B is an infinite set, we have that clyB is
homeomorphic with X=pN. Hence |cixB|>R, and [{z}|=
|(clxB)\B| >Ry—a contradiction. So, Xe (%X'\ %) N .

C) Construction of a space Xe (X"\X') N .

Let W be the space of all ordinal numbers less than or equal to
the first uncountable ordinal number w; with the usual order topolo-
2Y, Z be the subset of W consisting of all isolated points in W and N
be the space of all natural numbers with the discrete topology. Let
X=(WXN)U {p}, where p¢ W X N. Endow the set X with the fol-
owing topology O: all sets which are open in the space W x N belong
0 O; the local base B(p) for X at the point p consists of all subsets of
€ of the form Uy ;= {p} UU{A x {j}: j=1}, where ieN and A4 is a
ubset of Z such that |Z\A| <N,. The space (X,0) is, obviously, a
Hausdorff space, but (X,0)¢d;. Indeed, let H= {(w,0))eWXN:
N}. Then H=clyH and hence O =X\ He®. The pair (p, 0) is
a nonseparable pair in X since for every U,y ;e B(p) we have that
{ l,j)eHﬂ ClX UA,i for every ]?Z, ie. (ClX UA’i)\0¢ﬂ. SO, X¢5§.

In order to prove that X¢ %/, it suffices to show that the nonsepa-
able pair (p, O) is not N-embedded in X.

Let U=Uy, ;€ B(p). Then pe UcO. We will show that, for every
subset B of U, either (cly B)\ U=0 or (clyB)\ U is not a subset of
X\ O =H. Indeed, let BcU and (cly B)\ U # 0. Then there exists a
J =i such that |[BN (WX {j}|=N,. Let C be an infinite countable
subset of BN (WX {j}). Then there exists an a@e (clyx O\
UUH)=(cly C)\.(UUH). Hence (cly B)\ U is not a subset of X\ 0.
S0, the pair (p,0) is not N-embedded in X and hence XgX'.
Let U=U, ;e ®(p). We will show that the pair (p, U) is not
“-embedded in X. Indeed, it is enough to prove that for every U'=
Ya',i € 8(p) with U’ cU, there exists a @, €U’ such that @,
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2U\.2%. But, obviously, if, for every U '€ B(p) such that

put @y =U", then we will get that &, e2U\ 2% Hence

(p, U) is not F-embedded in X, which implies that Xe g
get, by Theorem 2.28b), that Xe X" So, Xe (%"\, xX)N g,

The Hausdorff space Xe R'\X' which was constry

cted in
proof of Theorem 2.31 seems to be a natural and simple exg;

with such properties, but it has cardinality X;. Now, we wil] ¢
a countable Tp-space Ye X"\ X'

ExampPLE 232. - A countable, sequential, Hausdorff
which is a K"-space and is not a X "-space.

PROOF. — Denote by AF(x) the Arhangel’skii-Franklin spa
with basic point z (see [AF]). Since we use it, we shall deseri
construction for the convenience of the reader.

The set AF(x) is of the form AF(x)= B {AF(z):ieNU
where the set AF;(z) is called the i™ level of the set AF(z), for e
teN. The levels AF,(x) will be constructed by induction. Pu
AFo(x) = {z}. Assuming that all levels AF;(z), for i=0,1,2,...,
have already been defined, we will construct the set AF,, ().
every point yeAF,(x), we associate an infinite countable set &
(called a sequence corresponding to y) in such a way that M.
U{AF(z): i=0,1,...,k} = and M, N M, =6 for y,ze AF; (), y =2
Then we put AF,, (z) = U{M,: yeAF,(2)}. &

For every point ze AF(x) we denote by @, the Frechet filter
the sequence M, corresponding to z.

The topology ©, on the set AF(x) is defined as follows. Let ¥ :
AF(x). Then there exists a unique %, e N U {0} such that yeAF, (x).
The local base 3, for AF(x) at the point y consists of all subsets U of
AF(x) which satisfy the following two conditions:

1) {y}=Un U{Alf’j(x):jsi,};

2) UNAF; 1 (x) =U{A,: ze UN AF,(x)}, for every k=i, ::lh:
(Where, for every ze U N AF,(x), A, is some element of @,). ar?:
res

g-g..HUQQL-Jr-—-b\A r

It is easy to check that in such a way we define a topology O, on
the set AF(x) and that the space (AF(x),®,) is a countable, Hau-
sdorff, sequential, zero-dimensional space. 8 |

Let now {x;: ieN} be a sequence such that x; #=x; for 1=}, =
i,jeN. We put ¥'=@{AF(x): ieN}, Y=Y'U {c}, where c¢¥’,

’] B . R a;
and T;;=U{AF,(x;): s=k}, for every i,keN. Obviously, the sets B
T;  are open subsets of (AF(x;),0;,), for every i,keN. Let’s intro-
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duce a topology O on the set Y. The local base B, for (Y,0) at the
point ¢ consists of all subsets U; ;, ¢, je N, of ¥ which have the form:
U;j={ct U U{Ty,;: m=1}. Further, for every point yeY' there
exists a unique i€ N such that ye AF(x;). Then the local base for
(Y,0) at the point ¥ coincides with the local base B, for (AF(x;),0, )
at y. It is easy to see that in such a way we define a topology © on Y
and that the space (Y, 0) is a countable, Hausdorff, sequential space.
We are going to show that Ye X"\ %'

Let us first prove that Ye %",

Put H = {x;: ieN}. Then the pair (H,Y") in ¥ is not F-embed-
ded in Y. Indeed, let V=U{U;: ieN}, where U, e B, for every
1eN. Putting &=V, we obtain that ®e2", &cV and D¢2*. Since
the open sets like V form a local base for (Y,0) at the set H, we get
that the pair (H,Y’) is not F-embedded in Y. Hence, Y ¢ F9t. This
implies, by 2.28b), that Ye %X".

Next, let us show that Ye¢ %'

Put O =Y\ H. Then the pair (¢, ) in Y is nonseparable one since
any pair of neighbourhoods of ¢ and H has nonvoid intersection.
Further, the pair (¢, 0) in Y is not N-embedded in Y. Indeed, put
V=U, ;e®,. Then ce VcO. We will show that there is no subset By
of V'such that @ # (cly By)\ VcH. For proving this, consider a subset
B of V such that (cly B)\ V # 0. We have that (cly B)\VcY\V=HU
U{AF, (x;): i« N}. Suppose that (cly B)\ VcH and let @; € (cly B)\ V.
Then, for every yeAF(x;), there exists a U,e®, such
that UyNB=g¢. Let W= {x;} UU{U,: yeAF;(x;)}. Then W is a nei-
ghbourhood of #; in ¥ and, hence, W N B = 0. But WN B¢ {x;} and
i ¢ B since g, ¢ V. Hence, W N B =¢. This is a contradiction, showing
that (cly B)\ V¢ H. So, the nonseparable pair (¢,0) in ¥ is not N-em-
bedded in v, This implies that Ye¢Xx'. ®

EXavpLE 233 _ A Hausdorff non-normal space (Z,O)EWHSECh
that, for each pair (H, U) in Z, every local base By for & Rt a;
Jon-clopen in [ elements (in contrast with the Hausdorff spaces

24 Y constructed in the part C) of the proof of 231 and in 232,
I'eSpeCtiVely).

PROOF. - Let o be the natural Euclidean topolog'y Or{ tlfe real,:;
ne R ang o be the cocountable topology on R. Let Z Cf’mc;fl es leat
(Zas 2 set.and. o ha e suprema of O’ and ©". We will show

10) s the desired example.



140 S. BAROV - G. DIMOV - ST. NEDEV

. 1 BDN]
It is easy to see that: 1) a set O is open in (Z,0) iff 0= U\A, [

where Ue©' and |A| <N, and 2) if 0=U\A, where Ue©' and [DIT]
|A| <Ry, then clizo0=clgoyU (see[SS, Example 63]). Using

these two facts and the local connectedness of (R, ©’), one easily rea- i
lizes that (Z,0) has the desired local base property described above. [[M]

Since (Z,0) is obviously a Hausdorff space and (Z,0) ¢ 35 (see[SS]),
we have only to prove that ZeX”. We will show that the pair
(\/5, P), where P is the set of irrationals (see 2.27 for the notations),
15 not F-embedded in (Z,0), which, by 2.18, will imply that (\/2, P) is
N-embedded in (Z, 0), i.e. that Ze X", For doing this, it is enough to
prove that for every neN and for every countable set AcZ such

that QN V, cAcV,, where V=02 =i /n, V2 +1 /m), there exists
a subset @ of V,, \ A which is closed in (P,©|P), but which is not elo-

[0]

]

C

(
[PR1] N
te
[PR2] M
s

3

sed In (Z,0). So, let neN and V,NQcA. If ANP is not dense in g 51 H
(Va, ©" |V,), then we can find a closed interval [»,,7,], where T1,Te€ | [Se] l\tz
Q, such that PN [71,72]1cV, \ A4, and put @ =[7r;,7,] N P. This & will y Py
do the job (see 2) above). ‘ pp

Let now A N P be dense in (V,,, o’ |V.). Then |ANP| =Ry, so we [SS] L.
canlet: ANP={g,;: jeN }. To obtain the subset @ of V,,\ 4 under Ve
question, we exploit a construction similar to that of the Cantor set. & 3
First of all, let lo, 7€ Q be such that V2= 1/2n < lj& \/§< o< § Tz
V2+1 /2n. Then we start with a; and find li, € Q such that b < 4
h<a, <7 <r, and Lh—-1ly<1/3n, To=71<1/38n. We put F,=
o, 1Ur, ] Let g, —min {ieN: a;¢ (4, 7)}, 4; =min {seN: |
GxiEflo,ll)} and 4, , =min {{eN: a;€(71,75)}. Then ,ize {i 1 ) :
Obviously, there exist lo,1,7, 1,022,755 €Q such that ly<ly, < aiz’l < 4 U
% :ll, "1 <ly< Cipy T2 <tg! and L, — i 1/8%n, ’ll = e
1/8%n, by —r < 1/8%m, ry— 722<1/3’n. We put F,= [h, 5, ]U S ————

i[l?ﬁl’éls]_uigrl,@,zl Ulrsz,79]. Further, we define F;, for every jeN,
s (ljm ar way. Put ¢’ — N{F;: jeN } Then @' is homeomorphic
void closagtor Set and, hence, | | =2%, Thus ®=&'NP is a non-

o subset of (P, o |P) and &V, \ 4. It is well known that

€very point, of : ; : .
ence, ly e o, the Cantor set 1S a complete accumulation point of it.

.o ,.o) ®. Thus & is hot closed in (Z, @) So, we proved that |
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