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ON CLOSED SETS WITH CONVEX PROJECTIONS
UNDER NARROW SETS OF DIRECTIONS

STOYU BAROV AND JAN J. DIJKSTRA

Abstract. Dijkstra, Goodsell, and Wright have shown that if a nonconvex
compactum in Rn has the property that its projection onto all k-dimensional
planes is convex, then the compactum contains a topological copy of the
(k− 1)-sphere. This theorem was extended over the class of unbounded closed
sets by Barov, Cobb, and Dijkstra. We show that the results in these two
papers remain valid under the much weaker assumption that the collection of
projection directions has a nonempty interior.

1. Introduction

Consider the vector space Rn for n ≥ 3. Let us call the image of a set X ⊂ Rn

under an orthogonal projection onto a hyperplane a shadow of X. Borsuk [3] has
shown that there exist Cantor sets in Rn such that all their shadows contain (n−1)-
dimensional convex bodies. In contrast, Cobb [4] showed that every compactum
C in Rn with the property that all its shadows are convex bodies contains an arc.
Dijkstra, Goodsell, and Wright [5] improved on this result by showing that such a C
must contain an (n−2)-sphere, so in this case projections cannot raise dimension by
more than one. Barov, Cobb, and Dijkstra [1] were subsequently able to construct
an extension of the result over the class of unbounded closed sets. Note that in
these papers we are dealing with shadows in all directions. Remarkably, in this
paper we show that the results in [5] and [1] remain valid if we make the much
weaker assumption that the collection of projection directions that produce convex
shadows has a nonempty interior. Thus we see that it suffices to have a ‘narrow
beam’ of directions that produce convex shadows to find (n − 2)-manifolds in the
sets C.

We now formulate one of the incarnations of our main result. If A ⊂ Rn, then
〈A〉 is the convex hull and A is the closure. If L is a linear subspace of Rn, then
L⊥ is the orthocomplement of L and ψL is the orthogonal projection of Rn along
L onto L⊥. The space Ln

k consists of all k-dimensional linear subspaces of Rn with
the natural topology; see Definition 2. A k-plane in Rn is a k-dimensional affine
subspace. Si−1 is the unit sphere in Ri.

Theorem 1. Let 0 < k < n, let C be a closed nonconvex subset of Rn, and let P
be open in Ln

n−k. Let ψP ∗(〈C〉) �= (P ∗)⊥ for some P ∗ ∈ P and let ψP (C) be convex
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for every P ∈ P. If 〈C〉 contains no k-plane, then C contains a closed set that is
homeomorphic to either

(i) Rk−1 or
(ii) Si × Rk−i−1 for some i ∈ {1, 2, . . . , k − 1}.

The method used in [5] and [1] consists of finding a high-dimensional derived
face of 〈C〉 of which it can be proved that its boundary is in C. This method can
also be applied in the situation that P is a proper subset of Ln

n−k (see Theorem 16)
but only if the face is consistent with P, by which we mean that it is contained in
a supporting hyperplane H such that H + P = H for some P ∈ P. If such faces
do not exist, then the method in [5] and [1] breaks down. We solve this problem
by proving that if there are no high-dimensional faces of 〈C〉 that are consistent
with P, then there exists a high-dimensional projection of 〈C〉 such that some open
subset of its boundary can be ‘lifted’ back up to C; see the proof of Theorem 17.
The procedure for finding this open set takes up most of §3 and §4.

Note that Theorem 1 deals with the retrieval of information about a geomet-
ric object from data about its projections which places the result in the field of
Geometric Tomography; see Gardner [7] for background information.

The paper is arranged as follows. In §2 we define the main concepts and establish
some basic properties. §3 contains a collection of lemmas that prepare the ground
for §4, where we prove our main theorems. We finish in §5 with a discussion of
examples that show that our main results are sharp.

2. Definitions and preliminaries

In Rn we shall use the standard dot product: u · v =
∑n

i=1 uivi for u =
(u1, . . . , un) and v = (v1, . . . , vn) elements of Rn. For m ≥ 0 the standard m-sphere
is Sm = {u ∈ Rm+1 : ‖u‖ = 1}. An m-sphere is any space that is homeomorphic
to Sm.

Let V be a finite-dimensional vector space with inner product x · y and zero
vector 0. Let n = dimV . The norm on V is given by ‖u‖ =

√
u · u, and the metric

d is given by d(u, v) = ‖v − u‖. Let A be a subset of V . We have that [A] denotes
the linear hull, aff A the affine hull, 〈A〉 the convex hull, A the closure, and int A
the interior of A in V . A closed and convex set A with int A �= ∅ is called a convex
body in V . Also, ∂A means the relative boundary of A, that is, the boundary with
respect to aff A, and we define A◦ = A \ ∂A. Note that if A is convex in a finite-
dimensional space, then A◦ �= ∅ and A

◦ ⊂ A; thus A is a convex body in aff A. We
also define the linear space

A⊥ = {x ∈ V : x · y = x · z for all y, z ∈ A}.
If A is a linear space, then A⊥⊥ = A, and A⊥ is called the orthocomplement of A.

A k-space in V is a k-dimensional linear subspace of V . A k-plane in V is
a k-dimensional affine subspace of V . Let H be a hyperplane in V , that is, an
(n − 1)-plane. The two components of V \ H are called the sides of H. We say
that H cuts a subset A of V if A contains points on both sides of H. We say that
a hyperplane H in V is supporting to A at x if x ∈ H and H does not cut A. A
subset L of V is called a halfspace of V if it is the union of a hyperplane and one of
its sides. A k-halfplane is a halfspace of a k-plane. For each a ∈ V \ {0} we define
the (n − 1)-space

Ha = {x ∈ V : a · x = 0}.



ON CLOSED SETS WITH CONVEX PROJECTIONS 6527

Definition 1. If L is an affine subspace in Rn, then ψL : Rn → L⊥ denotes the
orthogonal projection along L onto L⊥ defined by the conditions ψL(x)− x ∈ L⊥⊥

and ψL(x) ∈ L⊥ for each x ∈ Rn.

Definition 2. K(V ) stands for all nonempty compact subsets of V . Recall that
the Hausdorff metric dH on K(V ) associated with d is defined as follows:

dH(A, B) = sup{d(x, A), d(y, B) : x ∈ B and y ∈ A}.
We let Lm(V ) stand for the collection of all m-dimensional linear subspaces of V .
Consider the ball B = {v ∈ V : ‖v‖ ≤ 1}. We topologize Lm(V ) by defining a
metric ρ on Lm(V ):

ρ(L1, L2) = dH(L1 ∩ B, L2 ∩ B).

We let Ln
m stand for Lm(Rn). Note that Ln

1 is the projective space of dimension
n−1. The singletons Ln

0 = {{0}} and Ln
n = {Rn} are of course not very interesting,

but it is sometimes useful to have them available.

Lemma 2. Let 0 < m < n, ε > 0, L ∈ Ln
m, and let v1, . . . , vm be a basis for

L. Then there is a δ > 0 such that for every set F = {v′1, . . . , v′m} ⊂ Rn with
‖v′i − vi‖ < δ for every i we have ρ([F ], L) < ε.

Proof. We may assume that ε < 1. Since v1, . . . , vm are linearly independent we
have that

A =
{

(a1, . . . , am) ∈ Rm :
∥∥∥∥

m∑
i=1

aivi

∥∥∥∥ ≤ 2
}

is compact. Note that there exists a δ > 0 such that if ‖v′i−vi‖ < δ for every i, then
‖

∑m
i=1 ai(v′i − vi)‖ < ε/2 for each (a1, . . . , am) ∈ A. Let F = {v′1, . . . , v′m} ⊂ Rn

be such that ‖v′i − vi‖ < δ for every i and let a =
∑m

i=1 aivi be an element of
L ∩ B. Since ‖a‖ ≤ 1 we have (a1, . . . , am) ∈ A. Put a′ =

∑m
i=1 aiv

′
i and note that

‖a′‖ ≤ ‖a‖+‖a′−a‖ < 1+ ε/2. Let b = a′/ max{1, ‖a′‖} and note that b ∈ [F ]∩B

and

‖b − a‖ ≤ ‖b − a′‖ + ‖a′ − a‖ = ‖a′‖
(
1 − (max{1, ‖a′‖})−1

)
+ ‖a′ − a‖

< (1 + ε/2)(1 − (1 + ε/2)−1) + ε/2 = ε.

Thus d(a, [F ] ∩ B) < ε.
Now let a′ =

∑m
i=1 aiv

′
i be an element of [F ] ∩ B. Put a =

∑m
i=1 aivi ∈ L. We

prove that ‖a‖ ≤ 2. We may assume that ‖a‖ �= 0, and we consider a/‖a‖. Since
(a1, . . . , am)/‖a‖ is obviously an element of A we have that ‖a′ − a‖/‖a‖ < ε/2 <
1/2. Thus ‖a‖ − ‖a′‖ ≤ ‖a′ − a‖ ≤ ‖a‖/2, which means that ‖a‖ ≤ 2‖a′‖ ≤ 2.
Consequently, we have that (a1, . . . , am) ∈ A and hence ‖a′ − a‖ < ε/2. The fact
that (a1, . . . , am) ∈ A also means that F consists of m independent vectors, so
[F ] ∈ Ln

m. Defining b = a/ max{1, ‖a‖} the same argument as above gives that
d(a′, L ∩ B) ≤ ‖b − a′‖ < ε. Thus we have ρ([F ], L) < ε. �

The next lemma shows that the converse of Lemma 2 also holds. Thus Lemmas 2
and 3 give us an alternative way to define the topology on Ln

m.

Lemma 3. Let 0 < m < n, ε > 0, L ∈ Ln
m, and let v1, . . . , vm be a basis for L.

Then there is a δ > 0 such that for every P ∈ Ln
m, with ρ(L, P ) < δ, there is a

basis {v′1, . . . , v′m} for P such that ‖v′i − vi‖ < ε for every 1 ≤ i ≤ m.
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Proof. Let s = max{‖vi‖ : i = 1, . . . , m}. Since determinants are continuous
we can choose a δ ∈ (0, ε/s) such that every set {w1, w2, . . . , wm} ⊂ Rn, with
‖ vi

‖vi‖ − wi‖ < δ for every 1 ≤ i ≤ m, consists of m linearly independent vectors.
Let P be such that ρ(L, P ) < δ and select for each i ∈ {1, . . . , m} a vector v∗i ∈ P
with

∥∥ vi

‖vi‖ − v∗i
∥∥ < δ. Put v′i = ‖vi‖v∗i . Note that the v∗i ’s are independent and

thus they and the v′i’s both form bases for P . Let us show that the v′i’s are as
required. Indeed,

‖vi − v′i‖ = ‖vi − ‖vi‖v∗i ‖ = ‖vi‖ ·
∥∥∥∥ vi

‖vi‖
− v∗i

∥∥∥∥ < ‖vi‖δ < ε.

This completes the proof. �

Definition 3. Let 0 ≤ i ≤ m < n and let P be a subset of Ln
m. If L ∈ Ln

i , then
we define

PL = {N ∈ Lm−i(L⊥) : N + L ∈ P}.

Corollary 4. Let 0 ≤ i ≤ m < n and let P be an open subset of Ln
m. If L ∈ Ln

i ,
then PL is open in Lm−i(L⊥).

Proof. If i = 0, then PL = P, and if i = m, then PL = ∅ or PL = Lm−i(L⊥),
so there is nothing to prove. Let 0 < i < m and consider an N ∈ PL. Then
there exist independent vectors v1, v2, . . . , vm such that L = [{v1, . . . , vi}] and N =
[{vi+1, . . . , vm}] and hence N + L = ψ−1

L (N) = [{v1, v2, . . . , vm}]. By Lemma 2 we
can find an ε such that

[F ] ∈ P whenever F = {v′1, v′2, . . . , v′m} with ‖vj − v′j‖ < ε.

Now, we can apply Lemma 3 and find a δ such that if P ∈ Lm−i(L⊥) with ρ(P, N) <
δ, then there is a basis {v′i+1, . . . , v

′
m} for P such that ‖vj−v′j‖ < ε for i+1 ≤ j ≤ m.

Consequently, the open neighbourhood

{P ∈ Lm−i(L⊥) : ρ(P, N) < δ}
of N in Lm−i(L⊥) is a subset of PL. That completes the proof. �

Definition 4. Let B be a closed and convex set in V . A subset F of B is called a
face of B if there is a hyperplane H of aff B that does not cut B with the property
F = B ∩ H. Note that F is also closed and convex and that dimF < dimB. If F
is a face of B we write F ≺ B. We say that a subset F of B is a derived face of B
if F = B or there exists a sequence F = F1 ≺ F2 ≺ · · · ≺ Fm = B for some m ∈ N.

Remark 1. Let F ≺ B and put m = dimF , Hm = aff F , k = dimB, and Hk =
aff B. There is a hyperplane Hk−1 of Hk that does not cut B and with the property
F = B ∩ Hk−1. If Hk−1 �= aff F , then m < k − 1, and we can fill in the missing
dimensions and construct a sequence Hm ⊂ Hm+1 ⊂ · · · ⊂ Hk of affine spaces such
that dim Hi = i for i ∈ {m, . . . , k}. Note that Hi−1 is a hyperplane in Hi that does
not cut B ∩ Hi for i ∈ {m + 1, . . . , k}.

Remark 2. We list a few facts concerning closed convex sets and hyperplanes; see
[8, §2.2]. Let B be a closed and convex set in Rn. If the interior of B is nonempty,
then a hyperplane H cuts B if and only if H meets the interior of B. Every point
in ∂B is contained in a hyperplane H of aff B that does not cut B. In other words,
∂B equals the union of the faces of B.



ON CLOSED SETS WITH CONVEX PROJECTIONS 6529

Definition 5. Let P be a collection of linear subspaces of a vector space V . We
say that an affine subspace H of V is consistent with P if there is a P ∈ P such
that z + P ⊂ H for z ∈ H.

Definition 6. Let B be a convex and closed subset of V , and let P be a collection
of linear subspaces of V . A subset F of B is called a P-face of B if F = B ∩H for
some hyperplane H of Rn that does not cut B and that is consistent with P. A
derived P-face is a derived face of a P-face. If 0 < k < dim V , then we define the
set Ek(B,P) as the closure of⋃

{F : F is a derived P-face of B with dimF < k}.

Definition 7. Let A1 and A2 be subsets of V and let P be a collection of linear
subspaces of V . A1 is called a P-imitation of A2 if ψP (A1) = ψP (A2) for each
P ∈ P. A1 is called a weak P-imitation of A2 if ψP (A1) = ψP (A2) for each P ∈ P.
If B is a closed convex subset of V and P is a nonempty subset of Lm(V ), then a
point x ∈ B is called P-extremal if x ∈ Edim V −m(B,P). We show in §5 that the
P-extremal points of B are precisely the points that the closed P-imitations of B
have in common.

Definition 8. A subset A of Sn−1 is called convex if w ∈ A whenever w = αu+βv ∈
Sn−1 with α, β ≥ 0 and u, v ∈ A.

Definition 9. Let X and Y be topological spaces and let 2Y stand for the collection
of nonempty subsets of Y . A set-valued ϕ : X → 2Y is called USC (upper semi-
continuous) if ϕ−1(U) = {x ∈ X : ϕ(x) ⊂ U} is open in X for every open U in
Y .

Definition 10. Let B be a convex and closed subset of Rn, and we define a set-
valued function Φ : Rn \ int B → 2Sn−1

as follows:

Φ(x) = {a ∈ Sn−1 : a · (y − x) ≤ 0 for every y ∈ B}.

In other words, Φ(x) consists of all unit vectors a such that x + Ha is supporting
to B and a points towards a side of x + Ha that does not contain points of B.

Lemma 5. Let B be a closed and convex subset in Rn. Then each Φ(x) is
nonempty, closed, and convex in Sn−1, and Φ is a USC set-valued map. If B
is a convex body, then no Φ(x) contains antipodal vectors.

Proof. It is clear that Φ(x) �= ∅ because of the Hahn-Banach theorem. By the
continuity of the dot product Φ(x) is closed. Convexity is equally trivial.

We now prove that Φ is USC. Let U be open in Sn−1 and let x ∈ Rn \ int B be
such that there is a sequence x1, x2, . . . in Rn \ (intB ∪Φ−1(U)) that converges to
x. Select for each i ∈ N a ui ∈ Φ(xi) \ U . Since Sn−1 is compact we may assume
that u1, u2, . . . converges to some u ∈ Sn−1 \ U . Let y ∈ B and note that

u · (y − x) = lim
i→∞

ui · (y − xi) ≤ 0.

Thus we have that u ∈ Φ(x)\U and hence x /∈ Φ−1(U). Thus Rn \(intB∪Φ−1(U))
is closed, and we may conclude that Φ is USC.

Finally, observe that if a ∈ Φ(x) and −a ∈ Φ(x), then B ⊂ x + Ha, and hence
B is not a convex body. �
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We finish this section with one more definition and a lemma.
A continuous map f : X → Y is called proper if the pre-image of every com-

pactum in Y is compact. If A ⊂ X, then the restriction of f to A is denoted f�A.
Recall that in metric spaces a continuous map is proper if and only if it is closed
and every fibre is compact; see Engelking [6, Theorem 3.7.18]. We will use the
following observation concerning composition and proper maps.

Lemma 6. If f : X → Y and g : Y → Z are continuous, then the following
statements are equivalent:

(1) g ◦ f : X → Z is proper and
(2) both f and g�f(X) : f(X) → Z are proper.

Proof. The implication (2) ⇒ (1) is trivial. Assume that g ◦ f is proper. If C is
a compactum in Y , then (g ◦ f)−1(g(C)) is a compact subset of X that contains
f−1(C); thus f is proper. If C is a compactum in Z, then f((g ◦ f)−1(C)) is a
compact subset of Y that equals g−1(C) ∩ f(X); thus g�f(X) is proper. �

3. The lemmas

In this section we give a number of results about projection properties of closed
convex sets.

Lemma 7. Let 0 < m < n, let B be a closed convex set in Rn, and let P be an
open subset of Ln

m. Let x ∈ Rn \ int B and suppose that all supporting hyperplanes
to B at x are consistent with P. Then there is a neighbourhood V of x in Rn \ int B
such that for every point y ∈ V any supporting hyperplane to B at y is consistent
with P.

Proof. Consider

U = {u ∈ Sn−1 : u is perpendicular to some element of P}.
First we show that U is open in Sn−1. Let u be in U and let L ∈ P be such that
L ⊂ Hu. Choose a basis b1, . . . , bm for L consisting of elements of Sn−1. Since
P is open we have by Lemma 2 that there exists a δ > 0 such that whenever
F = {b′1, . . . , b′m} ⊂ Rn has the property ‖b′i − bi‖ < δ for every i, then [F ] ∈ P.
Let v be an element of Sn−1 such that ‖v − u‖ < δ. We let T be the orthogonal
transformation of Rn that is generated by a rotation in the plane [{u, v}] that
carries u to v and the identity on [{u, v}]⊥. Then we have that ‖bi − Tbi‖ < δ for
each i ≤ m, and hence [{Tb1, . . . , T bm}] is an element of P that is perpendicular
to v. Thus v ∈ U , and U is open in Sn−1.

Since by assumption Φ(x) ⊂ U we have by Lemma 5 that there is a neighbour-
hood V of x in Rn \ int B such that Φ(y) ⊂ U for each y ∈ V . �
Lemma 8. Let 0 < m < n, let B be a closed and convex set in Rn, and let P
be an open subset of Ln

m. Suppose that x ∈ Rn is such that there are two distinct
supporting hyperplanes at x to B, one of which is consistent with P. Then there
are a supporting hyperplane H to B at x, a P ∈ P, and a line 	 ⊂ P such that
x + P ⊂ H and ψ��B : B → Rn is proper (and hence ψ�(B) is closed).

Proof. Choose a coordinate system for Rn such that x = 0. By assumption there
are distinct supporting hyperplanes H1, H2 to B at 0, and there are v1, v2 ∈ Φ(0)
such that v1 �= ±v2, v1 ⊥ H1, and v2 ⊥ H2. Moreover, we may assume that
there is a P1 ∈ P with P1 ⊂ H1. Since H1 �= H2 we have that L = H1 ∩ H2 is
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(n − 2)-dimensional. Since dim(P1 ∩ L) = dim(P1 ∩ H2) ≥ m − 1 we can select
a subspace P ′ of P1 ∩ L with dimP ′ = m − 1. Select a basis {e1, . . . , em} for P1

such that {e1, . . . , em−1} is a basis for P ′. With Lemma 2 we can find an ε > 0
such that [{e1, . . . , em−1, u}] ∈ P for each u with ‖em − u‖ < ε. We can select a
vector e′m ∈ H1 \ L such that ‖e′m − em‖ < ε. Then obviously e′m · v2 �= 0, and we
may assume that e′m · v2 > 0 because we may replace em and e′m by their opposite
vectors. Note that e′m · v1 = 0. Using Lemma 2 in the same way as above, we can
select an approximation e to e′m such that P = [{e1, . . . , em−1, e}] ∈ P, e · v2 > 0,
and e · v1 < 0. Let 	 be the line Re in P .

Let

a =
v2

e · v2
− v1

e · v1

and note that a �= 0 because v1 �= ±v2 and that a · e = 0. Note that Ha = L+ 	, so
it contains P . If y ∈ B, then y · v1 ≤ 0 and y · v2 ≤ 0, so also y · a ≤ 0, and hence
a/‖a‖ ∈ Φ(0), and Ha is a supporting hyperplane.

Let y ∈ B and let z = ψ�(y) so y = z +αe for some α ∈ R. Let j = 1, 2 and note
that vj · y ≤ 0 because vj ∈ Φ(0). Then αe · vj ≤ −z · vj ≤ ‖z‖. Since e · v1 < 0
and e · v2 > 0 we have

‖z‖
e · v1

≤ α ≤ ‖z‖
e · v2

.

Thus we see that the preimage under ψ��B of every bounded set is bounded, which
means that the map is proper because B is closed. �

Lemma 9. Let 0 < m < n, let C and B be convex closed subsets of Rn, and let
P be an open subset of Ln

m. If C is a weak P-imitation of B, then C and B have
precisely the same (derived) P-faces, and hence Ek(C,P) = Ek(B,P) for each k.

Proof. It suffices to prove the result for P-faces. Let H be a supporting hyperplane
to C in Rn that contains a P ∈ P. Note that ψP (H) is then a supporting hyperplane
to ψP (C) (and hence also to ψP (C)) in P⊥. Since ψP (C) = ψP (B) we have that
H is a supporting hyperplane to B.

Now consider a hyperplane H1 that supports both B and C and that is consistent
with P such that H1 ∩ B �= H1 ∩ C. By symmetry we may assume that there is
an x ∈ H1 ∩ C \ B. Choose a coordinate system such that x = 0. Let H2 be the
(unique) hyperplane through 0 with ε = d(H2, B) = d(0, B) > 0; see [9, p. 347].
Let P1 ∈ P be such that P1 ⊂ H1. Since ψP1(0) ∈ ψP1(C) ⊂ ψP1(B) we have that
d(P1, B) = 0, and hence d(H1, B) = 0. Thus we have that H1 �= H2, and we can
find a supporting hyperplane Ha at 0 and a P ∈ P with P ⊂ Ha, precisely as in the
proof of Lemma 8. Let y ∈ B and note that y · v1 ≤ 0 and y · v2 = −d(y, H2) ≤ −ε.
Thus we have that y · a ≤ −ε/e · v2, and hence −y · (a/‖a‖) = d(y, Ha) ≥ ε

e·v2‖a‖ .
Since P ⊂ Ha we now have that d(ψP (B), ψP (Ha)) = d(B, Ha) ≥ ε

e·v2‖a‖ . Thus

ψP (0) ∈ ψP (C)\ψP (B), which contradicts the premise that C is a weak P-imitation
of B. The proof is complete. �

Lemma 10. Let 0 < m < n, let B be a convex body in Rn, and let P be an open
set in Ln

m. If there is a P ∈ P such that ψP (B) �= P⊥, then there is a P ′ ∈ P such
that ψP ′(B) is closed and ψP ′(B) �= (P ′)⊥.



6532 STOYU BAROV AND JAN J. DIJKSTRA

Proof. Define

A = {L : L is a linear subspace of some P ′ ∈ P such that

ψL(B) is closed and ψP ′(B) �= (P ′)⊥}.

Note that ψ{0}(B) = B is closed and {0} ⊂ P ; thus {0} ∈ A. We may define

l = max{dim L : L ∈ A}.

It suffices to show that l = m, so let us assume that l < m. Choose linear subspaces
P1 ∈ P and L ⊂ P1 such that dimL = l, ψL(B) is closed, and ψP1(B) �= (P1)⊥.
Define

BL = ψL(B) and PL = {N ∈ Lm−l(L⊥) : N + L ∈ P}.
Clearly, N = ψL(P1) ∈ PL. By Corollary 4, PL is open in Lm−l(L⊥). We have

that ψN (BL) = ψP1(B) is not closed because l < m. Select an x ∈ ψN (BL) \
ψN (BL). By the Hahn-Banach Theorem there exists a supporting hyperplane H
in (P1)⊥ at x to ψN (BL). Put H1 = H + N and note that H1 is a hyperplane in
L⊥ that supports BL at x. Observe that x /∈ BL and BL is closed and convex, so
we can find a hyperplane H2 through x such that d(H2, BL) = d(x, BL) > 0; see
[9, p. 347]. Now, note that H1 �= H2 since d(H1, BL) = 0. Consequently, there are
at least two supporting hyperplanes at x to BL in L⊥. Next, in L⊥ we can apply
Lemma 8 to BL, PL, and x to get an N ′ ∈ PL and a line 	 ⊂ N ′ such that ψ�(BL)
is closed. Moreover, there is a hyperplane V in L⊥ that contains N ′ and does not
cut BL. Set

L′ = L + 	 and P ′
1 = L + N ′.

Since N ′ ⊂ V we find that ψN ′(BL) is contained in a half-space of (P ′
1)⊥, and hence

ψP ′
1
(B) = ψN ′(BL) �= (P ′

1)
⊥. We have that ψL′(B) = ψ�(BL) is closed. We now

have that L′ ∈ A and dimL′ = l + 1, which contradicts the maximality of l. The
proof is complete. �

Lemma 11. Let 0 < m < n, let B be closed and convex in Rn such that dimB ≥
n−m, and let P be an open subset of Ln

m. If B is not a P-imitation of aff B, then
there are a P ∈ P and a linear subspace L of P such that

(a) ψL�B is a proper map and ψL(aff B) = L⊥,
(b) ψP (B) �= P⊥ and ψP (B) is closed, and
(c) if dimL < m and if H is a supporting hyperplane at some w ∈ ∂(ψL(B))

to ψL(B) in L⊥ such that H + L is consistent with P, then H is the only
supporting hyperplane at w to ψL(B) in L⊥.

Proof. Let M = aff B and choose a coordinate system such that 0 ∈ M . Let
k = n − dimB and note that 0 ≤ k ≤ m. Define

A = {L : L is a linear subspace of some P ∈ P such that

(a) and (b) hold and such that L contains

a k-subspace E with E ∩ M = {0}}.

Since B is not a P-imitation of aff B there is a P ∗ ∈ P such that ψP ∗(B) �=
ψP ∗(aff B).

Claim 1. We may assume that P ∗ contains a k-subspace E with E ∩ M = {0}.
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Proof. We consider two cases.
Case I: dim(M ∩P ∗) ≤ m− k. Then there is room to find a k-subspace E in P ∗

with E ∩ M = {0}.
Case II: dim(M ∩ P ∗) > m − k. Let P1 be an (m − k)-subspace of M ∩ P ∗ and

put E1 = ψP1(P
∗) so P ∗ = P1 + E1. Note that

ψP1(B) � ψP1(M) � M.

Since dimE1 + dim M = k + dim B = n we can use Lemma 2 to rotate E1 slightly
to find a k-subspace E of Rn such that

P1 + E ∈ P and E ∩ M = {0}.
Note that ψE�M is a one-to-one map. Put P ∗

1 = P1 + E and observe that

ψP ∗
1
(B) = ψE(ψP1(B)) �= ψE(ψP1(M)) = ψP ∗

1
(M).

Thus in this case we may use P ∗
1 to replace P ∗. �

Claim 2. E ∈ A.

Proof. If k = m, then E = P ∗ and ψP ∗�M : M → (P ∗)⊥ is an isomorphism. This
means that ψP ∗(B) is closed in Rn. Now assume that k < m. Let P ′ = ψE(P ∗),
B′ = ψE(B), and

PE = {F ∈ Lm−k(N⊥) : F + E ∈ P}.
Since E∩M = {0} the map ψE�M is an isomorphism between M and ψE(M) = E⊥.
Note that B′ is a convex body in E⊥ and that P ′ ∈ PE with ψP ′(B′) = ψP ∗(B) �=
ψP ∗(M) = (P ∗)⊥. Since PE is open by Corollary 4 we may assume according to
Lemma 10 that ψP ′(B′) = ψP ∗(B) is closed. Noting that ψE�M is proper because
it is an isomorphism we find that E ∈ A. �

We may now define
l = max{dim L : L ∈ A}.

Select linear spaces P ∈ P, L ⊂ P , and F ⊂ L such that dim L = l, dimF = k,
F ∩ M = {0}, and conditions (a) and (b) are satisfied. Put BL = ψL(B). We
show that L satisfies condition (c). Striving for a contradiction, let us assume that
(c) does not hold. Then l < m, and there is a point w ∈ ∂BL such that there are
two distinct supporting hyperplanes H1 and H2 at w to BL in L⊥ with H1 + L
consistent with P. Since F and M are complementary spaces in Rn, we have that
ψF (B) is a convex body in F⊥ and hence BL is a convex body in L⊥. Define

PL = {N ∈ Lm−l(L⊥) : N + L ∈ P}
and note that ψL(P ) ∈ PL and that PL is open in Lm−l(L⊥) by Corollary 4. We
may now apply Lemma 8 to w, BL, and PL in L⊥ to get an N ∈ PL and a line
	 ⊂ N such that ψ��BL is proper. Moreover, there is a supporting hyperplane V
at w to BL in L⊥ such that N ⊂ V . Put P1 = L + N ∈ P and L′ = L + 	 ⊂ P1.

Claim 3. L′ ∈ A.

Proof. Since N ⊂ V we find that ψN (BL) is contained in a half-space of (P1)⊥, and
hence ψP1(B) = ψN (BL) �= (P1)⊥. Since ψL′�B = (ψ��BL) ◦ (ψL�B) it is a proper
map and BL′ = ψL′(B) is closed.

If l = m − 1, then 	 = N and L′ = P1. Consequently, L′ ∈ A.
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Now let l ≤ m − 2. Set

PL′ = {T ∈ Lm−l−1((L′)⊥) : T + L′ ∈ P}.
Let N1 = ψ�(N) and note that N1 ∈ PL′ because P1 = N1 + L′. Since ψN1(BL′) =
ψP1(B) �= (P1)⊥ we may apply Lemma 10 to BL′ and PL′ in (L′)⊥ to obtain
an N ′

1 ∈ PL′ such that ψN ′
1
(BL′) = ψN ′

1+L′(B) is a closed and proper subset of
(N ′

1 + L′)⊥. Note that N ′
1 + L′ ∈ P and hence L′ ∈ A. �

Since dimL′ = l+1, Claim 3 violates the maximality of l. The proof is complete.
�

Remark 3. If we replace the premise of Lemma 11 that B is not a P-imitation of
aff B by the condition P �= ∅, then by the same proof there still are a P ∈ P and a
linear subspace L of P that satisfy (a) and (c).

Lemma 12. Let 0 < m < n, let B be closed and convex in Rn such that dimB ≥
n−m, and let P be an open subset of Ln

m. If B is not a P-imitation of aff B, then
there is a linear subspace L of Rn such that ψL�B is a proper map, ψL(aff B) = L⊥,
and there is a w ∈ ∂ψL(B) such that every supporting hyperplane H at w to ψL(B)
in L⊥ is consistent with PL.

Proof. Choose a P ∈ P and an L ⊂ P that satisfy the properties (a), (b), and
(c) of Lemma 11. Since ψL(aff B) = L⊥ and L ⊂ P we have that aff(ψP (B)) =
ψP (aff B) = P⊥. Thus with property (b) we can find an x ∈ B such that ψP (x) ∈
∂ψP (B). Note that w = ψL(x) is an element of ∂ψL(B). If dimL = m, then
L = P , and every hyperplane H in L⊥ is trivially consistent with PL = {{0}}.
Now let dim L < m. Select a supporting hyperplane H1 to ψP (B) at ψP (x) in P⊥.
Put P ′ = ψL(P ) and H ′

1 = H1 + P ′. Note that H ′
1 is a supporting hyperplane to

ψL(B) at w such that H ′
1 + L = H1 + P ∈ P, and hence H ′

1 ∈ PL. By property
(c) we now have that every supporting hyperplane to ψL(B) at w in L⊥ is equal to
H ′

1, and hence an element of PL. �
Lemma 13. Let 0 < m < n, let B be a closed subset of Rn such that dim(aff B) <
n − m, and let P be a nonempty open subset of Ln

m. Then B has only one closed
weak P-imitation.

Proof. Let C be a closed weak P-imitation of B. Let x ∈ C be arbitrary and put
L = aff(B ∪ {x}). Since dimL ≤ n − m we can find with Lemma 2 a P ∈ P such
that P ∩ (L− y) = {0} for each y ∈ L. Then ψP �L : L → ψP (L) is an isomorphism
and ψP (x) ∈ ψP (C) ⊂ ψP (B) = ψP (B); thus x ∈ B. So C ⊂ B. Let P be one of
the elements of P such that ψP � aff B is an isomorphism. Since ψP (C) = ψP (B)
we have that C = B. �
Lemma 14 (Lifting Lemma). Let B be a convex closed subset of Rn, let L be a
linear subspace of Rn, and let A ⊂ ψL(B). If (w + L) ∩ B is a singleton for every
point w ∈ A, then there is a continuous function f : A → B such that ψL ◦ f is the
identity map on A; that is, A can be lifted to a homeomorphic subset f(A) of B.

Proof. Let f : A → B be the function that is defined by

{f(w)} = (w + L) ∩ B.

We need to show that f is continuous. Let w ∈ A be such that there are an ε > 0
and a sequence w1, w2, . . . in A with limi→∞ wi = w and ‖f(wi) − f(w)‖ ≥ ε for
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every i ∈ N. Since Sn−1 is compact we can find a subsequence wi1 , wi2 , . . . such
that

lim
j→∞

f(wij
) − f(w)

‖f(wij
) − f(w)‖ = u

for some u ∈ Sn−1. Put tj = ε/‖f(wij
) − f(w)‖ and note that tj ∈ [0, 1] for

j ∈ N. By convexity we have f(w) + tj(f(wij
) − f(w)) ∈ B for j ∈ N. Note that

limj→∞(f(w) + tj(f(wij
) − f(w))) = f(w) + εu ∈ B because B is closed. Also we

have

ψL(f(w) + εu) = lim
j→∞

ψL(f(w) + tj(f(wij
) − f(w)))

= lim
j→∞

(w + tj(wij
− w)) = w.

Thus f(w) and f(w) + εu are distinct elements of (w + L) ∩ B in contradiction to
the premise. �

4. The main theorems

In this section we prove our main results. We start with stating a controlled
version of the Tipping Lemma in [1].

Lemma 15 (Tipping Lemma). Let B be a closed convex set in Rm for m ≥ 2, let
C be a closed subset of B, and let H be a hyperplane of Rm that does not cut B.
Suppose that V is a halfspace of H such that B ∩ ∂V �= ∅, V ∩ C = ∅, and V ∩ B
is bounded. If ε > 0, then there exists a halfspace V ′ of Rm such that ∂V ⊂ ∂V ′,
V ⊂ V ′, V ′ ∩ C = ∅, V ′ ∩ B is bounded, and ρ(∂V ′, H) < ε.

The proof of this lemma is the same as the proof of [1, Lemma 2]. The only thing
we need to note is that we obtain ∂V ′ in the proof of [1, Lemma 2] by rotating H
about ∂V and that the angle of rotation can be made arbitrarily small.

Lemma 15 is needed in the following theorem which generalizes [1, Theorem 3].

Theorem 16. Let 0 < k < n, let B be a convex and closed set in Rn, and let
P be open in Ln

n−k. If C is a closed set that is a weak P-imitation of B, then
Ek(B,P) ⊂ C.

Proof. Let C be a closed set in Rn such that for every P ∈ P,

ψP (C) = ψP (B).

Consider the closed convex set 〈C〉 and note that C, B, and 〈C〉 are all weak
P-imitations of each other because

ψP (C) ⊂ ψP (〈C〉) ⊂ 〈ψP (C)〉 ⊂ 〈ψP (B)〉 = ψP (B) = ψP (C)

for each P ∈ P. According to Lemma 9 we have Ek(B,P) = Ek(〈C〉,P). By
replacing B by 〈C〉 we assume that C ⊂ B.

In order to prove that Ek(B,P) ⊂ C it suffices to show that every derived P-face
of B with dimension less than k is contained in C because C is closed. Assume
that F is such a derived face of B. Striving for a contradiction we suppose that
F \ C �= ∅. Choose a rectangular coordinate system for Rn such that 0 ∈ F \ C.
Since F is a derived P-face of B we can find a sequence of affine spaces

aff F ⊂ Hk−1 ⊂ Hk ⊂ · · · ⊂ Hn−1 ⊂ Hn = Rn
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such that Hn−1 is consistent with P, dimHi = i for each i, and Hi is a hyperplane
in Hi+1 that does not cut B ∩ Hi+1 for i ∈ {k − 1, . . . , n − 1}.

Let P ∗ ∈ P be such that P ∗ ⊂ Hn−1. We have

dim(Hi+k−1 ∩ P ∗) ≥ dimHi+k−1 + dimP ∗ − dim Hn−1 = i

for every i ∈ {1, . . . , n − k}. Let e∗1, e
∗
2, . . . , e

∗
n−k be a basis for P ∗ such that

e∗i ∈ Hi+k−1. With Lemma 2 we find an ε > 0 such that [{e1, . . . , en−k}] ∈ P
whenever ‖ei − e∗i ‖ < ε for 1 ≤ i ≤ n − k. Select for every i ∈ {1, . . . , n − k} an
ei ∈ Hi+k−1 \ Hi+k−2 such that ‖ei − e∗i ‖ < ε. Define P = [{e1, . . . , en−k}] and
note that P ∈ P and P ⊂ Hn−1. We let en−k+1 be a vector in Hn \ Hn−1.

We construct by induction a sequence V1 ⊂ V2 ⊂ · · · ⊂ Vn−k+1 such that for
1 ≤ i ≤ n − k + 1:

(1) Vi is a halfspace of [{e1, . . . , ei}],
(2) 0 ∈ ∂Vi,
(3) Vi ∩ C = ∅, and
(4) Vi ∩ B is bounded.

Note that e1 ∈ Hk \ Hk−1 and that Hk−1 does not cut B ∩ Hk. For the base step
we let V1 ⊂ Re1 be the ray that emanates from 0 into the side of Hk−1 that is
disjoint from B. Note that B ∩ V1 = {0} = ∂V1 and that the induction hypotheses
are satisfied.

Now let 1 ≤ i ≤ n−k and assume that Vi has been found. Let M =[{e1, . . . , ei+1}]
⊂ Hk+i. Put H = [{e1, . . . , ei}], C ′ = C ∩ M , and B′ = B ∩ M . Since H =
Hk+i−1 ∩ M we have that H does not cut B′ in M . Apply Lemma 15 to H, C ′,
B′, and Vi with M as ambient space. We obtain a halfspace Vi+1 of M such that
∂Vi ⊂ ∂Vi+1, Vi ⊂ Vi+1, Vi+1 ∩ C ′ = Vi+1 ∩ C = ∅, and Vi+1 ∩ B′ = Vi+1 ∩ B is
bounded. The induction hypotheses for i+1 are satisfied. We now look at the step
i = n − k more closely. In that case H = P , so we may assume that ∂Vn−k+1 is
close enough to P so that ∂Vn−k+1 ∈ P as well.

Let N = ∂Vn−k+1. Since N ∩C = ∅ and N ∩B is bounded we can now show by
precisely the same method as in the proof of [1, Theorem 3] that ψN (0) /∈ ψN (C).
Since 0 ∈ B we have that C is not a weak P-imitation of B, and the proof is
complete. �

Remark 4. The boundary of a convex body in Rk is homeomorphic to either
(1) ∅, or
(2) Rk−1 , or
(3) Si−1 × Rk−i for some i ∈ {1, 2, . . . , k};

cf. [1, Remark 1].

With the following theorem we put it all together.

Theorem 17. Let 0 < k < n, let B be a convex and closed subset of Rn with
dim B ≥ k, and let P be an open subset of Ln

n−k. Then the following statements
are equivalent:

(1) B contains no k-plane, and B is not a P-imitation of Rn.
(2) B contains no k-plane, and B is not a P-imitation of aff B.
(3) There is a nonempty closed subset A of Ek(B,P) that is homeomorphic to

the boundary of a convex body in Rk.
(4) Ek(B,P) �= ∅.
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Proof. The implication (3) ⇒ (4) requires no proof.
We show that (4) ⇒ (1). If B is a P-imitation of Rn, then Ek(B,P) =

Ek(Rn,P) = ∅ by Lemma 9. Suppose now that B contains a k-plane. Accord-
ing to [1, Lemma 4] this means that every nonempty derived face of B contains a
k-plane. Since every derived P-face is a derived face we again have Ek(B,P) = ∅,
which proves the point.

We turn to proving the implication (1) ⇒ (2). Assume that (1) is valid and
that B is a P-imitation of aff B. Since B is not a P-imitation of Rn we can find a
hyperplane H in Rn that does not cut B and that contains x + P for some P ∈ P
and x ∈ H. Since ψP (aff B) = ψP (B) we have ψH(aff B) = ψH(B) �= H⊥. Thus
ψH(aff B) is an affine space that is a proper subset of the line H⊥, and hence
ψH(aff B) ⊂ {a} for some a ∈ H⊥. So aff B is contained in the hyperplane ψ−1

H (a)
which contains a + P . We have that aff B is a P-face of itself, and hence aff B is
a P-face of B by Lemma 9. Thus B = aff B. Since dim B ≥ k we have that aff B
contains a k-plane which violates property (1).

To prove (2) ⇒ (3) we assume property (2).

Claim 4. Without loss of generality we may assume that every P-face of B is
contained in Ek(B,P).

Proof. Consider the collection D consisting of all derived P-faces of B whose dimen-
sion is at least k. Suppose that D �= ∅ and select an F ∈ D with minimal dimension.
By the definition of D all the faces of F have dimension less than k, and hence they
are contained in Ek(B,P). Since every point of ∂F is contained in some face of F
we get ∂F ⊂ Ek(B,P). Select a k-plane M in aff F such that the closed convex set
G = F ∩ M is k-dimensional. If ∂G = ∅, then G = M and B contains a k-plane.
Thus ∂G �= ∅ and property (3) is proved because ∂G ⊂ ∂F ⊂ Ek(B,P). We may
now assume that D = ∅, which means that whenever H is a supporting hyperplane
to B consistent with P, then dim(H ∩ B) < k and H ∩ B ⊂ Ek(B,P). �

Define

A = {L : L is a linear subspace of Rn such that ψL�B is proper,

ψL(aff B) = L⊥, and there is a w ∈ ∂ψL(B) such that

every supporting hyperplane H at w to ψL(B) in L⊥

is consistent with PL}.
According to Lemma 12 we have A �= ∅, so we may define

l = min{dim L : L ∈ A}.
Choose an L ∈ A such that dimL = l. We put BL = ψL(B) and note that BL is a
convex body in L⊥ because aff BL = ψL(aff B) = L⊥. We define

U = {w ∈ ∂BL : every supporting hyperplane H at w to BL

in L⊥ is consistent with PL}
and note that U is a nonempty set that is open in ∂BL by Lemma 7.

Claim 5. B ∩ (w + L) is a singleton for every w ∈ U .

Proof. Let w ∈ U ⊂ ∂BL be arbitrary. Since ψL�B is proper we have that BL is
closed and hence B ∩ (w + L) �= ∅.
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Assume now that B ∩ (w + L) contains two distinct points x and y. Then l ≥ 1
and y−x ∈ L, and we let 	 be the line in L through 0 and y−x. We put L′ = ψ�(L),
and we will show that L′ ∈ A. We have by Lemma 6 that ψL′�B is proper because
ψL�B is proper and ψL = ψ� ◦ ψL′ . Note that ψL(aff B) = L⊥ is equivalent to
L+aff B = Rn, and hence Rn = L′ + 	+aff B = L+aff B and ψL′(aff B) = (L′)⊥.
Define z = (x + y)/2 ∈ B ∩ (w + L) and note that w′ = ψL′(z) ∈ ∂ψL′(B). Let
H ′ be a supporting hyperplane at w′ to ψL′(B) in (L′)⊥ and let u ∈ (L′)⊥ be
a vector such that H ′ = {v ∈ (L′)⊥ : (v − w′) · u = 0} and (v − w′) · u ≤ 0
for all v ∈ ψL′(B). So we have that (ψL′(y) − w′) · u = 1

2ψL′(y − x) · u ≤ 0 and
(ψL′(x)−w′)·u = 1

2ψL′(x−y)·u ≤ 0. Consequently, ψL′(y−x)·u = (y−x)·u = 0 and
hence w′ + 	 ⊂ H ′. Put H = ψ�(H ′) and note that it is a supporting hyperplane to
BL at w in L⊥. Thus by the definition of A we have that H contains some P ∈ PL.
Thus P + 	 ⊂ H + 	 = H ′ and P + 	 + L′ = P + L ∈ P. We have shown that H ′

is consistent with PL′ and consequently L′ ∈ A. Since dim L′ = l − 1 this result
violates the minimality of l. �

If we combine Claim 5 with Lemma 14 we find a continuous function f : U → B
such that ψL ◦ f is the identity. We show that f(U), which is homeomorphic to U ,
is contained in Ek(B,P). Let w ∈ U ⊂ ∂BL and select a supporting hyperplane
H to BL at w in L⊥. Then H + L is a supporting hyperplane to B at f(w) in
Rn. Since L ∈ A we have that H + L is consistent with P, so by Claim 4 we have
f(w) ∈ B ∩ (H + L) ⊂ Ek(B,P).

By the definition of A we have that PL �= ∅, so there is a P ∈ P that contains
L and l ≤ n − k. Since BL is a convex body in L⊥ we have dim BL = dim L⊥ =
n − l ≥ k. If dimBL = k, then L = P and hence U = ∂BL. So Ek(B,P) contains
with f(U) = B ∩ ψ−1

L (∂BL) a closed copy of the boundary of the k-dimensional
convex set BL. If dimBL > k, then ∂BL is a topological manifold with dimension
at least k; see Remark 4. Since U is a nonempty open subset of ∂BL it contains a
topological copy of Sk−1. Thus also f(U) and Ek(B,P) contain a (k − 1)-sphere.
The proof is complete. �

The following theorem is our main result from which Theorem 1 easily follows.

Theorem 18. Let 0 < k < n, let B be a closed convex subset of Rn that contains
no k-plane, and let P be an open subset of Ln

n−k such that B is not a P-imitation
of Rn. If C is a closed weak P-imitation of B with C �= B, then C ∩B contains a
closed set that is homeomorphic to either

(i) Rk−1 or
(ii) Si × Rk−i−1 for some i ∈ {1, 2, . . . , k − 1}.

Proof. Note that P �= ∅ because B is not a P-imitation of Rn. Since B is convex
dim B = dim(aff B), and we have by Lemma 13 that dim B ≥ k. We may now
apply Theorem 17 to B and P to obtain that there is a nonempty closed subset
A of Ek(B,P) that is homeomorphic to the boundary of a convex body in Rk. By
Remark 4 we have that A is homeomorphic to (i) or (ii), where the case S0×Rk−1 is
covered by option (i). It follows from Theorem 16 that A ⊂ Ek(B,P) ⊂ C ∩B. �

In particular, we have the following theorem which concerns projections onto
hyperplanes. If u ∈ Rn\{0}, then we let ψu stand for the projection ψRu : Rn → Hu.
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Theorem 19. Let B be a closed convex subset of Rn that contains no hyperplane
and let P be an open subset of Sn−1 such that ψu(B) �= Hu for some u ∈ P. If C
is a closed weak P-imitation of B with C �= B, then C ∩ B contains a closed set
that is homeomorphic to either

(i) Rn−2 or
(ii) Si × Rn−i−2 for some i ∈ {1, 2, . . . , n − 2}.

Proof. We substitute k = n − 1 in Theorem 18, and we note that we can replace
the projective space Ln

1 by Sn−1. �

We obtain Theorem 1 as a corollary to Theorem 18.

Proof of Theorem 1. Let B = 〈C〉. Since C is nonconvex we have that C �= B. We
have that C is a weak P-imitation of B because

ψP (C) ⊂ ψP (B) = ψP (〈C〉) ⊂ 〈ψP (C)〉 ⊂ 〈ψP (C)〉 = ψP (C)

for each P ∈ P. If ψP ∗(〈C〉) �= (P ∗)⊥, then ψP ∗(B) �= (P ∗)⊥ because finite-
dimensional affine spaces do not contain convex and dense proper subsets. Thus B
is not a P-imitation of Rn. Suppose that M is a k-plane in B. Select an x ∈ B◦

and a y ∈ M and note that x− y + M is a k-plane in B◦. By finite-dimensionality
we have B◦ ⊂ 〈C〉 which contradicts a premise of the theorem. Thus we have that
B contains no k-plane. Now apply Theorem 18. �

Remark 5. In a forthcoming paper [2] we show that in Theorems 1, 18, and 19 the
premise that P is open can be relaxed to the condition that P ⊂ intP.

The following corollary to Theorem 18 improves upon the main result in [5].

Theorem 20. Let 0 < k < n, let B be a compact convex subset of Rn, and let P
be an nonempty open subset of Ln

n−k. If C is a closed weak P-imitation of B with
C �= B, then C ∩ B contains a (k − 1)-sphere.

Proof. Clearly, the compactum B contains no k-plane. Also every projection of B
is compact, so B cannot be a P-imitation of Rn. Apply Theorem 18 and note that
Sk−1 is the only compact space included in the options (i) and (ii). �

5. Imitations

Theorem 16 states that every weak P-imitation of a convex set B contains the
set of extremal points Ek(B,P). In this section we show that B has ‘minimal
imitations’, that is, sets that contain little else besides Ek(B,P). The next two
results generalize Lemma 3 and Theorem 6 of [1]. Since the proof of [1, Lemma
3] does not generalize in a straightforward manner we have included a detailed
argument for Lemma 21.

Remark 6. The following fact can be found in [8, §2.5]. If B is a closed convex set
in Rn, then there is a unique linear space LB ⊂ Rn such that csB = B ∩ (LB)⊥ is
line-free and B = LB + cs B. Note that csB = ψLB

(B).

Lemma 21. Let 0 < k < n, let B be a closed convex subset of Rn, and let P
be a subset of Ln

n−k. Then there exists a closed subset Kk(B,P) of B such that
Kk(B,P) ∩ ∂B ⊂ Ek(B,P) and ψP (Kk(B,P)) = ψP (B) for every P ∈ P that
satisfies P ∩ LB = {0}.
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Proof. Choose a coordinate system for Rn such that 0 ∈ B◦. We define the set S
to be the closure of

{tx : 0 ≤ t ≤ 1 and x ∈ Ek(B,P)},
and we observe that S is a subset of B. Since 0 ∈ B◦ and Ek(B,P) is closed we
have S ∩ ∂B ⊂ Ek(B,P). We now define the following subset of B◦:

T = {ξ(x) : x ∈ B},

where ξ(x) = ‖x‖
‖x‖+1x for x ∈ Rn. Let x1, x2, . . . be a sequence in B such that

limn→∞ ξ(xn) = y ∈ Rn. If limi→∞ ‖xi‖ = ∞, then limi→∞ ‖ξ(xi)‖ = ∞ �= ‖y‖.
Thus x1, x2, . . . has a limit point x ∈ B. Note that ξ(x) = y, so we may conclude
that T is closed. We define K = Kk(B,P) = S ∪ T , and we note that K ⊂ B, that
K ∩ ∂B ⊂ Ek(B,P), and that K is a closed set such that tx ∈ K whenever x ∈ K
and t ∈ [0, 1].

Let P ∈ P such that P ∩ LB = {0} and let x ∈ B be arbitrary. It suffices to
show that ψP (x) ∈ ψP (K). We define an s ∈ [1,∞] by

s = sup{t : t ≥ 1 and tψP (x) ∈ ψP (B)},

and we consider the following two cases:
Case I: s = ∞ or sψP (x) /∈ ψP (B). Then s > 1, and we may select sequences

s1, s2, . . . in (1, s) and y1, y2, . . . in B such that limi→∞ si = s and yi ∈ B with
ψP (yi) = siψP (x) for each i ∈ N. If the sequence y1, y2, . . . has a limit point y,
then y ∈ B and ψP (y) = sψP (x) if s < ∞ or ψP (x) = 0 if s = ∞. The first
option is a violation of the premise of this case, and when ψP (x) = 0 = ψP (0) we
are done because 0 ∈ K. Thus we may assume that limi→∞ ‖yi‖ = ∞, and hence
limi→∞ si‖yi‖/(‖yi‖+1) = s. Choose an i ∈ N with r = si‖yi‖/(‖yi‖+1) > 1. Note
that ξ(yi) ∈ T ⊂ K, and hence 1

r ξ(yi) ∈ K. We have ψP ( 1
r ξ(yi)) = ψP ( 1

si
yi) =

ψP (x), and Case I is proved.
Case II: s < ∞ and sψP (x) ∈ ψP (B). In this case y = sψP (x) ∈ ∂ψP (B),

so we can find a hyperplane H in P⊥ that is supporting to ψP (B) at y. Then
F = (H + P ) ∩ B is a P-face of B that meets y + P . Define the collection

D = {F ′ : F ′ is a derived face of F such that F ′ ∩ (y + P ) �= ∅}.

Since F ∈ D we can select an element F ′ of D with minimal dimension.
Suppose that dim F ′ ≥ k and note that

dim((y + P ) ∩ aff F ′) ≥ dimP + dimF ′ − dim(H + P )

≥ (n − k) + k − (n − 1) = 1.

Let 	 be a line through 0 such that y′+	 ⊂ (y+P ) ∩ aff F ′ for some y′ ∈ (y+P )∩F ′.
Since P ∩LB = {0} we have that 	∩LB = {0}, and hence 	′ = ψLB

(y′ + 	) is also
a line. Since csB is line-free we have that 	′ is not contained in csB = ψLB

(B).
Thus y′ + 	 is neither contained in B nor in its subset F ′. Since y′ + 	 is a subset
of aff F ′ that meets F ′, the line contains a point z of ∂F ′. Thus z is contained in
some face G of F ′ and z ∈ y + P . We have G ∈ D and dim G < dimF ′ in violation
of the choice of F ′. So we may conclude that dimF ′ < k, and hence F ′ ⊂ Ek(B,P).
Choose a point a ∈ F ′ ∩ (y + P ) and note that 1

sa ∈ S ⊂ K and ψP ( 1
sa) = ψP (x).

The proof is complete. �
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Theorem 22 (Imitation Theorem). Let 0 < k < n, let B be a closed convex subset
of Rn with dimB �= k, and let P be a subset of Ln

n−k. Then there exists a closed
P-imitation C of B such that C ⊂ B and dim(C \ Ek(B,P)) ≤ 0.

Proof. If P = ∅, then there is nothing to prove. Let P ∈ P. If dimB < k, then
dim(P + aff B) ≤ n − 1, so P + aff B is contained in some hyperplane of Rn. This
means that B is a P-face of itself and that Ek(B,P) = B, so we may choose C = B.

Assume now that P �= ∅ and dimB > k. As in [1, Theorem 6] C will have
the form Ek(B,P) ∪ Z1 ∪ Z2, where Z1 and Z2 are countable unions of Cantor
sets. Consider the locally compact space D = B \ Ek(B,P) and its closed subset
K = Kk(B,P) \ Ek(B,P); see Lemma 21. Precisely as in the proof of [1, Theorem
6] we can construct a zero-dimensional subset Z1 of D such that Ek(B,P) ∪ Z1

is closed in Rn and every line in aff B that meets K also meets Z1. The set Z2

is also constructed in the manner of [1], and it has the properties: Z2 is a zero-
dimensional closed subset of B such that for every line 	 in LB and point x ∈ B we
have (x + 	) ∩ Z2 �= ∅.

Let P ∈ P and x ∈ B be arbitrary. It now suffices to show that ψP (x) ∈ ψP (C).
Assume first that P ∩LB �= {0} and hence that P ∩LB contains a line 	 through 0.
Since x+ 	 intersects Z2 we have ψP (x) ∈ ψP (Z2) ⊂ ψP (C). Now let P ∩LB = {0}
and note that we may apply Lemma 21 to find that ψP (B) = ψP (Kk(B,P)); thus
(x + P ) ∩ Kk(B,P) �= ∅. If (x + P ) ∩ Ek(B,P) �= ∅, then we are done. So we may
assume that (x + P ) ∩ K �= ∅. Since dim B > k we have dim((x + P ) ∩ aff B) ≥ 1,
and we can find a line 	 in (x + P ) ∩ aff B that meets K. Thus 	 must also meet
Z1 in a point z, and we have ψP (x) = ψP (z) ∈ ψP (Z1) ⊂ ψP (C). �

We now show that the P-extremal points of B are precisely the points that are
included in every closed P-imitation of B and hence that Theorem 16 is sharp.

Theorem 23. Let 0 < k < n, let B be a closed convex set in Rn with dimB �= k,
and let P be a nonempty open subset of Ln

n−k. Then

Ek(B,P) =
⋂

{C : C is a closed weak P-imitation of B}

=
⋂

{C : C is a closed P-imitation of B}.

Proof. Theorem 16 shows that

Ek(B,P) ⊂
⋂

{C : C is a closed weak P-imitation of B}

⊂
⋂

{C : C is a closed P-imitation of B}.

Theorem 22 guarantees that there exist closed P-imitations C of B with C =
Ek(B,P)∪Z1∪Z2, where Z1 and Z2 are constructed as countable unions of Cantor
sets. There is a lot of freedom in choosing the Cantor sets, specifically it is easily
seen that given any point x ∈ Rn it can be arranged that Z1∪Z2 avoids that point.
This observation proves the theorem. �

Remark 7. We now explain why the case dim B = k is excluded in Theorems 22
and 23. Let B be convex and closed in Rn with dimB = k and let P be a nonempty
open subset of Ln

n−k. It is easily seen that now Ek(B,P) = ∂B. Select a coordinate
system such that 0 ∈ B◦. Let C be a closed weak P-imitation of B such that
C ⊂ aff B. Since P is open and nonempty and aff B = k, we can find a P ∈ P such
that P ∩ aff B = {0}. Then ψP � aff B : aff B → P⊥ is an isomorphism, and hence
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ψP (C) = ψP (B) implies C = B. We have dim(C \ Ek(B,P)) = dimB◦ = k, and
thus Theorem 22 is false whenever dim B = k.

Consider now Theorem 23 and Theorem 22′, that is, Theorem 22 without the
requirement that C ⊂ B. Then we have two cases.

Case I: there is an x /∈ aff B such that ψP (x) ∈ ψP (B) for every P ∈ P. In this
case the conclusions of Theorems 22′ and 23 are valid for B. Put B′ = 〈B ∪ {x}〉
and note that B′ is a closed and convex weak P-imitation of B with dim B′ = k+1.
By Lemma 9 we have Ek(B,P) = Ek(B′,P). We can apply both Theorems 22 and
23 to B′ and reach the desired conclusion for B.

Case II: otherwise. In this case the conclusions of Theorems 22′ and 23 are
always false. Let C be a closed weak P-imitation of B and assume that there is an
x ∈ C \aff B. Then there is a P1 ∈ P such that ψP1(

1
2x) /∈ ψP1(B). Since 0 ∈ B◦ it

is easily verified that ψP1(x) /∈ ψP1(B), and hence C is not a weak P-imitation of B.
Thus we may conclude that C ⊂ aff B, and by the argument above we have C = B.
In this case, just as in the case dim B < k, the set B has only itself as a closed weak
P-imitation and Theorem 18 is essentially void. Moreover, C \ Ek(B,P) = B◦ and
the conclusions of Theorems 22′ and 23 are invalid.

We show that the two assumptions in Theorem 18 that B contains no k-plane
and that B is not a P-imitation of Rn are necessary conditions (except in the case
k = 1 when the theorem is void).

Proposition 24. Let 0 < k < n, let B be a closed convex set in Rn, and let P be
a nonempty open subset of Ln

n−k.
(a) If B is a P-imitation of Rn, then B has a closed P-imitation that is zero-

dimensional.
(b) If B contains a k-plane, then either B has a closed P-imitation that is

zero-dimensional or B is a k-plane that admits no closed weak P-imitation
other than itself.

Proof. Assume first that B is a P-imitation of Rn. Let P ∈ P and note that
dim B ≥ dim ψP (B) = dim P⊥ = k. Then by Theorem 17 we have Ek(B,P) = ∅. If
dim B > k, then B has a zero-dimensional and closed P-imitation by Theorem 22.
If dimB = k, then since B is a P-imitation of Rn we are in Case I of Remark 7
and B also has a zero-dimensional and closed P-imitation.

Assume that B contains a k-plane. Then by Theorem 17 we have Ek(B,P) = ∅.
If dimB > k, then B has a zero-dimensional and closed P-imitation by Theorem 22.
So we may assume that B is a k-plane. If B′ =

⋂
{B + P : P ∈ P} is not equal to

B, then we are in Case I of Remark 7 and B admits a zero-dimensional and closed
P-imitation. So assume that B′ = B and let C be a closed weak P-imitation of B.
Then clearly, C ⊂ B′. Since B is a k-plane and P is open, there is a P ∈ P with
B +P = Rn. Then ψP �B : B → P⊥ is an isomorphism. Since ψP (B) = ψP (C) and
C ⊂ B, we have that C = B. �

Remark 8. Example 4 in [1] shows that in Theorem 1 we may not replace the
condition ψP ∗(〈C〉) �= (P ∗)⊥ by the weaker statement ψP ∗(C) �= (P ∗)⊥.
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