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More on exposed points and extremal points

of convex sets in Rn and Hilbert space

Stoyu T. Barov

Abstract. Let V be a separable real Hilbert space, k ∈ N with k < dimV, and
let B be convex and closed in V. Let P be a collection of linear k-subspaces

of V. A point w ∈ B is called exposed by P if there is a P ∈ P so that
(w + P ) ∩ B = {w}. We show that, under some natural conditions, B can be
reconstituted as the convex hull of the closure of all its exposed by P points
whenever P is dense and Gδ. In addition, we discuss the question when the set
of exposed by some P points forms a Gδ-set.
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manifold
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1. Introduction

Throughout this paper V stands for a separable real Hilbert space. Thus V is

isomorphic to either Rn or l2. Let k ∈ N with k < dimV, B be convex and closed

in V and let Gk(V) consist of all k-dimensional linear subspaces of V with the

natural topology; see Definition 1. Let P ⊂ Gk(V) and w ∈ B. We say that w is

exposed by P if (w + P ) ∩B = {w} for some P ∈ P . This definition generalizes

each of the both concepts—an exposed point and a 0-exposed point—as defined in

[6] and [1] respectively, that is, a point of B ⊂ Rn that is exposed by Gn−1(Rn).

By X k
p (B,P) we denote the set of all exposed by P points in B. Next, if C ⊂ V

then we say that C is a P-imitation of B if B + P = C + P for every P ∈ P .

Further, X k
t (B,P) stands for the set of extremal points of B with respect to P

and is defined as X k
t (B,P) =

⋂{C ⊂ B : C is a closed P-imitation of B}. The

following exposed point theorem is proved in [5, Theorem 10].

Theorem 1. Let k ∈ N with k < dimV, let B ⊂ V be closed and convex, and

let P be a Gδ-subset of Gk(V) such that P ⊂ intP . Then X k
p (B,P) is dense in

X k
t (B,P).
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One of the goals of the current paper is to make use of the exposed point the-

orem and to prove the following theorem of Krein–Milman type; for example, see

[15, Theorem 9.4.6]. It allows us, under some natural conditions, to reconstitute

a closed convex set B in V as the convex hull of the closure of the set of all

exposed by P—a dense Gδ-subset of Gk(V)—points in B. In this connection,

let us mention the theorem of V. L. Klee, see [12, Theorem 2.3], which is about

a reconstruction of a locally compact closed convex set B in a normed linear

space, and B contains no line. Further, it is worth pointing out the theorem of

V. Kanellopoulos, see [11, Theorem 1.1], that is of a similar type and is also an

extension of Asplund’s theorem, see [1], and Straszewicz theorem, see [16]. Recall

that a k-hyperplane is a plane with codimension k and a halfspace of a plane L

in V is any subset of L that consists of a hyperplane of L along with one of its

sides. For the concept of a derived face the reader can refer to Definition 2. We

have the following reconstitution theorem.

Theorem 2. Let k ∈ N with k < dimV, let B ⊂ V be closed and convex that

contains no k-hyperplane and let P be a dense Gδ-subset of Gk(V). If there is

no derived face of B that is a halfspace of a k-hyperplane then

〈X k
p (B,P)〉 =

〈
X k

p (B,P)
〉
= B.

Let us point out that the requirement for P to be Gδ in both Theorem 1

and Theorem 2 cannot be omitted as Example 1 shows. Now, we need to make

a couple of definitions. If H ⊂ Rn is a linear subspace of Rn and k ∈ N with

k ≤ dimH then we define Gk(H) as Gk(H) = {L ∈ Gk(Rn) : L ⊂ H}. A compact

and convex set B in Rn is called a convex body if dimB = n. Next, let us

discuss the following question: given B ⊂ Rn closed and convex and 1 ≤ k < n

when can we find a nonempty subset P in Gk(Rn) so that X k
p (B,P) is a Gδ-set?

Here, we should mention the example of V. L. Klee, see [12, Example (6.10)],

that is, a convex body B in R3 such that X 2
p (B,G2(R3)) is not Gδ. More refined

example is constructed by H.H. Corson in [7]—a convex body B ⊂ R3 such that

X 2
p (B,G2(R3)) is of the first category and hence does not contain a dense Gδ-

subset of X 2
t (B,G2(R3)). Further, S. Barov and J. J. Dijakstra in [5, Example 2]

show that there is a convex body B in R3 for which the set of points exposed by

G1(R3) \ G1(H), for some linear two-dimensional plane H in R3, is not a Gδ-set.

Moreover, [5, Example 3] is an expansion of Corson’s example, namely, there is

a convex body B in Rn such that X k
p (B,Gk(Rn)) does not contain a dense Gδ-

subset of the complete space X k
t (B,Gk(Rn)) whenever 2 ≤ k < n. In view of all

those examples the following Straszewicz-type theorem is on the “positive” side

of the discussion and is a slight improvement over [5, Theorem 3].
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Theorem 3. Let n ∈ N with n ≥ 2 and let B be closed and convex in Rn. Let

P ⊂ G1(Rn) such that G1(H) \ P is countable for every H ∈ G2(Rn). Then

X 1
p (B,P) is a dense Gδ-set in X 1

t (B,P).

Our paper is arranged as follows. In the introduction section we present and

discuss our main results. In Section 2 we introduce the main concepts and give

some basic properties and in Section 3 we prove our main theorems.

2. Definitions and preliminaries

The inner product in V is denoted by x · y and 0 always stands for the zero

vector. The norm on V is given by ‖u‖ =
√
u · u and the metric d is given by

d(u, v) = ‖v − u‖. Let A be a subset of V. We have that aff A denotes the affine

hull of A, Ā the closure, and intA the interior of A in V. Next, 〈A〉 stands for

the convex hull of A, ∂A means the relative boundary of A, that is, the boundary

with respect to the affine hull of A and we define A◦ = A \ ∂A. Note that if A

is convex and nonempty in a finite-dimensional space then A◦ 6= ∅ and Ā◦ ⊂ A.

We also define the linear space

A⊥ = {v ∈ V : v · x = v · y for all x, y ∈ A}.

In addition, if A is a closed linear subspace of V, then (A⊥)⊥ = A and A⊥ is

called the orthocomplement of A. Also, we define codimA = dimA⊥ ∈ {0, 1,
2, . . . ,∞}. Notice that codimA = codimaff A. A plane in V is a closed affine

subspace of V; a k-plane in V is a k-dimensional affine subspace of V. Now, let L
be a plane in V. A plane H ⊂ L is called a k-hyperplane in L if dim(H⊥∩L) = k.

In other words, a k-hyperplane is a plane with codimension k in the ambient space.

A hyperplane H of L is a plane of L of codimension 1. The two components of

L\H are called the sides of the hyperplane H and the union of H with one of its

sides is called a halfspace of L. A halfspace of a line is called a halfline or a ray.

We say that H supports a subset A of L at x if x ∈ H ∩ A and A is contained

in a halfspace that is associated with H .

Definition 1. Let B = {v ∈ V : ‖v‖ ≤ 1} be the unit ball in V and let Gm(V)
stand for the collection of all m-dimensional linear subspaces of V. As in [5], we

topologize Gm(V) by defining a metric ̺ on Gm(V):

̺(L1, L2) = dH(L1 ∩ B, L2 ∩ B),

where dH is the Hausdorff distance, associated with d, between two nonempty

compact subsets of B; see also [14, 1.11, page 95]. With the generated topology

Gm(V) is complete; when V is finite-dimensional then Gm(V) is even compact and

is called Grassmann manifold.
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Definition 2. Let B be a closed and convex set in V. A nonempty subset F

of B is called a face of B if there is a hyperplane H of aff B that supports B

with the property F = B ∩ H . Note that F is also closed and convex and

that codimF > codimB. If F is a face of B we write F ≺ B. We say that

a subset F of B is a derived face of B if F = B or there exists a sequence

F = F1 ≺ F2 ≺ · · · ≺ Fm = B for some m. Furthermore, if B ⊂ Rn and F ≺ B

then we say that F is a facet of B if dimF = dimB − 1. Observe that, in this

case, F has a nonempty interior in ∂B. Besides, these interiors are disjoint for

different facets of B. Therefore, by separability, a closed convex set in Rn can

have only countably many facets.

Definition 3. Let P be a collection of linear subspaces of a vector space V. We

say that an affine subspace H of V is consistent with P if there is a P ∈ P such

that z + P ⊂ H for some z ∈ H . Let B be a convex and closed subset of V.
A nonempty subset F of B is called a P-face of B if F = B ∩ H for some

hyperplane H of V that supports B and that is consistent with P . A derived

P-face is a derived face of a P-face. If k ∈ N and k < dimV then we define the

set Ek(B,P) as the closure of

⋃
{F : F is a derived P-face of B with codimF > k}.

We finish this section with one more definition. A continuous map f : X → Y

is called proper if the pre-image of every compactum in Y is compact. Recall

that in metric spaces a continuous map is proper if and only if it is closed and

every fibre is compact; see [8, Theorem 3.7.18].

3. Proofs of the main results

We are going to establish our main theorems. As the following theorem shows

if B◦ = ∅ or codimB ≥ k then we have a stronger result than Theorem 2.

Theorem 4. Let k ∈ N with k < dimV, let B ⊂ V be closed and convex, and

let P be somewhere dense in Gk(V).

(a) If B◦ = ∅ and P is Gδ, or

(b) if codimB ≥ k

then B = X k
p (B,P).

Proof: The theorem follows directly from [5, Theorem 12] and [5, Remark 2]. �

Let Dk(B) be the union of all derived faces of B that are halfspaces of k-

hyperplanes. Theorem 2 follows immediately from the following more general

result having in mind that Dk(B) = ∅ by assumption of Theorem 2, and that

〈 X k
p (B,P) 〉 ⊂ 〈X k

p (B,P)〉 holds generally.
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Theorem 5. Let k ∈ N with k < dimV, let B ⊂ V be closed and convex that

contains no k-hyperplane and let P be a dense Gδ-subset of Gk(V). Then

〈
X k

p (B,P) ∪ Dk(B)
〉
=

〈
X k

p (B,P) ∪ Dk(B)
〉
= B.

Proof: If codimB ≥ k then the theorem follows from Theorem 4. So, without

loss of generality, we can assume that codimB < k. Next, we will show the

following key claim.

Claim 1. We have B = 〈Ek(B,Gk(V)) ∪ Dk(B)〉.

Proof: Indeed, striving for a contradiction assume that B 6⊂ 〈Ek(B,Gk(V)) ∪
Dk(B)〉. Consider the collection

F = {F : F is a derived face of B such that

F 6⊂ 〈Ek(B,Gk(V)) ∪Dk(B)〉}.

Since B is a derived face of itself we have that B ∈ F . By the definition of

Ek(B,Gk(V)), we have that if F ∈ F then codimF ≤ k. Thus we can choose an

F ∈ F with a maximal codimension. By [4, Lemma 17], we get that F ◦ 6= ∅. Set
L = aff F and observe that codimL ≤ k. Next, since B contains no k-hyperplane

we have that F 6= L. Therefore, we can pick a point x ∈ ∂F . By Hahn–Banach

theorem, we consider a supporting hyperplane H1 at x to F in L. Suppose that

H1 ⊂ F . Then we must have that codimH1 = k + 1 and codimL = k. By the

structure of closed convex sets, see [10, §2.5], we have that if y ∈ L then either

(y−x+H1) ⊂ F or (y−x+H1)∩ F = ∅. Next, let l̂ ⊂ L be a line through x with

l̂ ⊥ H1. Observe that, S = l̂ ∩ F is either a nondegenerate line segment or a ray

such that in both cases x is an end point. Clearly, F =
⋃{z − x +H1 : z ∈ S}.

Further, if S is a ray then we get that F is a halfspace of the k-hyperplane L.

Hence F ⊂ Dk(B), a contradiction. If S is a line segment then there is a w ∈ L

such that S = 〈{x,w}〉. In this case ∂F = H1 ∪ (w − x + H1). Consequently,

∂F ⊂ Ek(B,Gk(V)) since codimH1 = codim(w − x + H1) = k + 1. Hence F =

〈∂F 〉 ⊂ 〈Ek(B,Gk(V))〉, a contradiction again. Therefore, H1 6⊂ F and we can

pick an y ∈ H1\F . Further, since F is closed and convex, we can find the (unique)

F -supporting hyperplane H2 through y in L so that d(H2, F ) = d(y, F ) > 0; see

[13, page 347]. Notice that H1 6= H2 and y ∈ H1 ∩ H2. Furthermore, by [3,

Lemma 8], there is a line l ∈ G1 with y+ l ⊂ L and ψl↾F → V is proper, where

ψl : V → l⊥ denotes the orthogonal projection along l onto l⊥. Now, let z ∈ F .

If z ∈ ∂F then, by Hahn–Banach theorem, there is a face F ′ of F that contains z.

Clearly, F ′ is a derived face of B with codimF ′ > codimF . By the choice of F

we get that F ′ ⊂ 〈Ek(B,Gk(V)) ∪ Dk(B)〉. Hence z ∈ 〈Ek(B,Gk(V)) ∪ Dk(B)〉.
That argument also implies that ∂F ⊂ 〈Ek(B,Gk(V)) ∪ Dk(B)〉. Now, suppose
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that z ∈ F ◦. Since ψl↾F → V is proper, we get that K = (z + l) ∩ F is a line

segment. So K ⊂ 〈Ek(B,Gk(V)) ∪ Dk(B)〉 since the end points of K are in ∂F .

Hence F ⊂ 〈Ek(B,Gk(V)) ∪Dk(B)〉. We arrive at a contradiction. Consequently,

we obtain that B ⊂ 〈Ek(B,Gk(V)) ∪Dk(B)〉. Thus the claim holds. �

Further, since codimB < k, by [5, Theorem 4] and [5, Lemma 9], we have

that Ek(B,P) = Ek(B,Gk(V)) = X k
t (B,P) = X k

t (B,Gk(V)). Now, we can ap-

ply the exposed point theorem, see [5, Theorem 10], to get that X k
p (B,P) =

X k
t (B,P). Consequently, B = 〈Ek(B,Gk(V)) ∪ Dk(B)〉 = 〈 X k

p (B,P) ∪ Dk(B)〉.
Since

〈
X k

p (B,P) ∪ Dk(B)
〉
⊂

〈
X k

p (B,P) ∪ Dk(B)
〉
, the theorem follows. �

Example 1. A convex body in Rn is smooth if there is a unique supporting

hyperplane at each point of its boundary; see [9]. In [2, Section 5], for every n ≥ 2

smooth symmetric convex bodies B(n) in Rn and dense sets P(n) in Gn−1(Rn)

are constructed such that the union of all facets of B(n) is dense in the boundary

of B(n) and Xn−1
p (B(n),P(n)) = ∅ for n ≥ 2. This example is closely related

to Theorem 2 and Theorem 5 and shows that the Gδ-condition in both theorems

cannot be omitted.

We have the following corollary that is closely related to the finite-dimensional

version of Krein–Milman theorem in [15, Theorem 9.4.6], along with [16] as well

as to [12, Theorem 2.3].

Corollary 6. Let n ∈ N with n ≥ 2, let B & Rn be closed and convex, and let

P be a dense Gδ-subset of Gn−1(Rn). If every face of B is compact then

B =
〈
Xn−1

p (B,P)
〉
.

Example 2. Let C = {(x, y) : x ∈ R and y = x2} and B = 〈C〉. Then B is

a closed and convex set in R2. Notice that at every point x of the boundary there is

a unique supporting line to B that, in fact, exposes x. Thus X 1
p (B,G1(R2)) = C.

Although B itself contains a ray, Corollary 6 is applicable since every face of B

is compact.

Further, we are going to prove Theorem 3. Before that we need a lemma.

Lemma 7. Let n ∈ N with n ≥ 2 and let B be closed and convex in Rn.

Let P ⊂ G1(Rn) such that G1(L) ∩ P is a dense Gδ-subset of G1(L) for every

L ∈ G2(Rn). Then X 1
p (B,P) is dense in X 1

t (B,P).

Proof: Let ε > 0. First of all, observe that P must be dense in G1(Rn). If

n = 2 then we are done by [5, Theorem 10]. So assume that n ≥ 3 and, in

view of Theorem 4, we may assume that dimB = n. By [5, Theorem 4] and [5,
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Lemma 9], we have that E1(B,G1(Rn)) = X 1
t (B,P). Let F = H ∩ B be a face

of B, where H is a supporting hyperplane to B.

Case 1. Let dimF < n − 1. Then there is a hyperplane Ĥ in H such that

F ⊂ Ĥ . Let x ∈ F . Let L be a 2-plane in H with x ∈ L and L \ Ĥ 6= ∅. Thus

dimL∩ Ĥ = 1. By [5, Remark 2] we can find an l ∈ P such that (x+l)∩ Ĥ = {x}
and x+ l ⊂ L. This implies that (x + l) ∩B = {x}, i.e. x ∈ X 1

p (B,P).

Case 2. Let dimF = n − 1. In this case F is a facet of B. Take an x ∈ ∂F .

Let y ∈ F ◦ and z ∈ B◦. Consider the 2-plane L = aff{x, y, z}. Put BL = L ∩ B
and P̂ = G1(L− x) ∩P . Now, we have that P̂ is a dense Gδ-subset of G1(L− x).

Further, observe that F̂ = H ∩ BL is a facet of BL and x ∈ ∂F̂ . Hence x ∈
E1(BL,G1(L − x)). Besides, by [5, Theorem 4] and [5, Lemma 9], we get that

x ∈ X 1
t (BL, P̂). Thus we can apply [5, Theorem 10] for BL in L to find an l ∈ P̂

and x̂ ∈ BL so that ‖x − x̂‖ < ε and (x̂ + l) ∩ BL = {x̂}. Now, clearly, we have

(x̂+ l) ∩B = {x̂}. Consequently, ∂F ⊂ X 1
p (B,P).

From both cases we obtain that X 1
p (B,P) = E1(B,G1(Rn)) and, therefore,

X 1
p (B,P) = X 1

t (B,P). That completes the proof. �

Now, let us prove Theorem 3.

Proof of Theorem 3: If dimB < n then, by [5, Remark 2], X 1
p (B,P) = B

and the theorem is proved. Besides, if n = 2 then, by [5, Theorem 3], we are done

as well. So we may assume that dimB = n with n ≥ 3. By Lemma 7 we have

that X 1
p (B,P) = X 1

t (B,P). Now, we are going to show that X 1
p (B,P) is a Gδ-set.

Let Fm ≺ Fm−1 · · · ≺ F1 = B be a sequence of derived faces. We call a sequence

Fm ≺ Fm−1 · · · ≺ F1 = B of derived faces regular if dimFk − dimFk+1 = 1 for

every 1 ≤ k < m. Also, we call a derived face F of B regular if for F exists

a regular sequence. As it is noticed in Definition 2 the set B has countably

many facets. Consequently, we can easily get that B has countably many regular

derived faces and one of them is B itself. Next, let x ∈ B. Inductively, we

construct a sequence x ∈ Fm ≺ Fm−1 ≺ · · · ≺ F1 = B of derived faces such that

the following two conditions hold:

(i) either x ∈ F ◦
m or codimFm > m− 1 (or both) holds, and

(ii) if m > 2 then Fm−1 ≺ · · · ≺ F1 = B is a regular sequence.

Set F1 = B and assume that we have constructed a regular sequence x ∈ Fk ≺
Fk−1 ≺ · · · ≺ F1 = B for some 1 ≤ k. Clearly, codimFk = k − 1. If x ∈ F ◦

k

we are done. Otherwise, we will have that x ∈ ∂Fk. So we are in a position to

add one more element to the sequence under construction. We apply the Hahn–

Banach theorem to find a supporting hyperplane L̂ at x to Fk in L = aff Fk. Set

Fk+1 = L̂ ∩ Fk. Observe that, if codimFk+1 > k we are done. Otherwise, we

would have that codimFk+1 = k and, therefore, x ∈ Fk+1 ≺ Fk · · · ≺ F1 = B
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would be a regular sequence. Obviously, after finitely many steps, we will have

both conditions (i) and (ii) satisfied and we will get our sequence constructed.

Claim 2. If dimFm−1 ≥ 3 and dimFm−1 − dimFm ≥ 2 then every y ∈ Fm is

an exposed by P point of B.

Proof: Consider a coordinate system such that y = 0. Let H be a supporting

hyperplane at 0 to Fm−1 in aff Fm−1 such that Fm = H ∩ Fm−1. Then the

codimension of Fm in H is at least 1. Therefore, we have room enough to find

P ∈ P ∩ G1(H) such that P ∩ Fm = {0}. Hence P ∩ B = {0}. The claim is

proved. �

The next claim is, in fact, [5, Claim 3] when G1(Rn) is replaced by P . With

this substitution its proof is virtually the same as the proof of [5, Claim 3] and,

therefore, we omit it.

Claim 3. Let F be a derived face of B. If there is a y ∈ X 1
p (B,P) ∩ F ◦ then

F ⊂ X 1
p (B,P).

Further, we go to the following important claim.

Claim 4. The set

T = {x ∈ B \ X 1
p (B,P) : dimFm−1 = 2 and Fm = {x}}

is countable.

Proof: Let x ∈ T and let us consider the respective sequence x ∈ Fm ≺
Fm−1 ≺ Fm−2 · · · ≺ F1 = B of derived faces for x. Since dimB = n ≥ 3 we

have that m ≥ 3. Then Fm−1 ≺ Fm−2 · · · ≺ F1 = B is a regular sequence

of derived faces. Thus Fm−1 is a regular derived face with dimFm−1 = 2.

In addition, since Fm = {x} we get that x ∈ ∂Fm−1 and x is exposed by

P̂ = G1(aff Fm−1 − x) \ P . Further, since P̂ is countable, we have that the set

{y ∈ Fm−1 : y is exposed by P̂} is also countable. Now, having in mind that the

set of all regular derived faces of B is countable, we get that T must be countable

as well. That completes the proof. �

Let x ∈ B \ X 1
p (B,P). Suppose that the sequence x ∈ Fm ≺ Fm−1 · · · ≺

F1 = B is not regular. Then we have dimFm−1 − dimFm ≥ 2. Next, we have

that m > 2. Indeed, if m = 2 then dimB − dimF2 > 1 and, by Claim 2, we

would have had x ∈ X 1
p (B,P). Further, if dimFm−1 ≥ 3 then, by Claim 2, we

would again get that x ∈ X 1
p (B,P). Consequently, we have that dimFm−1 = 2,

Fm = {x} and x ∈ ∂Fm−1. So we are under the hypotheses of Claim 4. Hence,

in this case, x ∈ T with T countable. Now, let us assume that the sequence

x ∈ Fm ≺ Fm−1 · · · ≺ F1 = B is regular. Then, notice that, codimFm = m− 1.
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Therefore, we get that x ∈ F ◦
m. Now, we apply the same argument as in the proof

of [5, Theorem 3]. Namely, consider the countable set

L = {F ◦ : F is a regular derived face of B with F ◦ ∩ X 1
p (B,P) = ∅}.

Since x ∈ F ◦

m \X 1
p (B,P), by Claim 3, we have that F ◦

m ∈ L. Next, every F ◦ ∈ L
is an open subset of a closed set in Rn, hence σ-compact. Since L is countable,⋃L is also σ-compact with

⋃L ⊂ B \ X 1
p (B,P). Consequently, we get that(⋃L

)
∪ T = B \ X 1

p (B,P) with
(⋃L

)
∪ T being a σ-compact subset of B.

Hence X 1
p (B,P) is Gδ-subset in B and, of course, in X 1

t (B,P) as well. That

completes the proof of the theorem. �
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