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Let k be a fixed natural number. In an earlier paper the authors show that if C is a
closed and nonconvex set in the Hilbert space �2 such that the closures of the projections
onto all k-hyperplanes (planes with codimension k) are convex and proper, then C must
contain a closed copy of �2. Here this theorem is strengthened significantly by making
the much weaker assumption that the set of projection directions is somewhere dense.
To show the sharpness of the main theorem we construct “minimal imitations” of closed
convex sets in �2. In addition, we show that closed convex sets with an empty geometric

interior cannot be imitated by other closed sets.
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1. Introduction

Let C be a nonconvex closed set in the vector space Rn for n ≥ 3. Barov et al. [1]
have shown that if all projections onto k-planes, 1 ≤ k ≤ n−1, of C are convex and
proper in a significant number of directions, then C contains a closed subset that is
(k−1)-manifold without boundary. Subsequently, the authors have shown in [2] that
if C is a closed and nonconvex set in the Hilbert space �2 such that the closures of
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the projections onto all k-hyperplanes (planes with codimension k) are convex and
proper then C must contain a closed copy of �2. Moreover, in [3, 4] the authors show
that the above result in [1] remains valid if we make much weaker assumption that
the collection of projection directions that produce convex projections is somewhere
dense.

Having all this in mind, we naturally ask ourselves whether the results in Hilbert
space, obtained in [2], are valid if we require convexity of the projections only
for a somewhere dense set of directions. So the main purpose of this paper is to
give a positive answer to that question and to generalize the Imitation Theorem
[2, Theorem 2], that is, to find “minimal imitations” of closed and convex sets for
arbitrary sets of projection directions.

In order to formulate our main theorem we need some definitions and notations.
If k ∈ N, then we let Gk denote the infinite-dimensional “Grassmann manifold”
consisting of all k-dimensional linear subspaces of �2, see Definition 1. If A is a
subset of a topological space, then A is the closure of A and intA is the interior of
A. If B,C ⊂ �2 and P ⊂ Gk, then B and C are called P-imitations of each other if
B + P = C + P for each P ∈ P . If B + P = C + P for each P ∈ P , then B and C
are called weak P-imitations of each other. If A ⊂ �2, then

A⊥ = {v ∈ �2 : v · x = v · y for all x, y ∈ A},

where · denotes the inner product. Also we define

codimA = dimA⊥ ∈ {0, 1, . . . ,∞}.

A k-hyperplane in �2 is a closed affine subspace with codim = k.

Theorem 1. Let k ∈ N, let B be a closed convex subset of �2 that contains no
k-hyperplane, and let P be a subset of Gk such that B is not an (intP)-imitation
of �2. If C is a closed weak P-imitation of B with C �= B, then C ∩B contains a
closed set that is homeomorphic to �2.

In order to prove Theorem 1, we introduce the set Ek(B,P) consisting of
P-extremal points of B; see Definition 4. We proved in [4, Theorem 15] that every
closed weak P-imitation of B contains the set Ek(B,P); see Theorem 22. Theorem 1
is then proved by finding the copy of �2 in the set Ek(B,P); see Theorem 25. The
following theorem shows that for a closed set to imitate a convex set B, it needs
to contain very little besides Ek(B,P). A topological space is zero-dimensional if
it has a basis consisting of clopen sets.

Theorem 2. (Imitation Theorem) Let k ∈ N, let B be a closed convex subset of
�2 with codimB �= k, and let P be a subset of Gk. Then there exists a closed
P-imitation C of B such that C ⊂ B and C\Ek(B,P) is zero-dimensional.
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A consequence of the proof of this result is that Ek(B,P) is precisely the inter-
section of all closed P-imitations of B:

Theorem 3. Let k ∈ N, let B be a closed convex set in �2 with codimB �= k, and
let P ⊂ Gk be such that P ⊂ intP. Then

Ek(B,P) =
⋂

{C : C is a closed weak P-imitation of B}

=
⋂

{C : C is a closed P-imitation of B}.
In the process of proving our results we follow the general approach of [3]. There

are, however, a number of significant differences, the most important of which is
connected to the following definition. If A ⊂ �2, then the geometric interior A◦ of A
is the interior of A relative to its closed affine hull. If A is a finite-dimensional convex
set, then A◦ is nonempty (even dense in A) and this fact plays a key role in the
proofs in [3]. In �2 there are many closed and convex sets B with empty geometric
interior (for instance, every infinite-dimensional compactum has this property). The
method of [3] breaks down for sets B with B◦ = ∅ and we are forced to deal with
those sets separately. This is the subject of Sec. 3. We found that these sets cannot
be imitated by other closed sets:

Theorem 4. Let k ∈ N and let B be a closed convex subset of �2 with B◦ = ∅. Let
P be somewhere dense in Gk. If C is a closed weak P-imitation of B, then C = B.

Another obstruction to us closely following the method in [3] is highlighted in
Example 1. In addition, the proofs for Rn in [1, 3] rely on the fact that closed
sets are σ-compact. In particular, in the finite-dimensional analogue of Theorem 2,
that is [3, Theorem 2], the zero-dimensional part of the minimal imitation C is a
countable union of Cantor sets. That method clearly cannot work in �2 and the
proof of Theorem 2 merges ideas from [3] with constructions from [2].

Note that Theorem 1 deals with the retrieval of information about a geomet-
ric object from data about its projections which places the result in the field of
Geometric Tomography; see Gardner [12] for background information. Our line of
investigation has come out of results by Borsuk [6], Cobb [7], and Dijkstra et al. [8]
concerning projections of compacta in R

n.
Our paper is arranged as follows. In Sec. 2 we define the main concepts and

establish some basic properties. In Sec. 3 we deal with closed convex sets with
empty geometric interiors and we establish Theorem 4. Section 4 is devoted to the
proof of Theorem 1. Section 5 is centered around Theorem 2 and its consequences.

2. Definitions and Preliminaries

Throughout this paper V stands for a separable real Hilbert space with an inner
product x·y. Thus V is isomorphic to either an Rn or �2, the Hilbert space of square
summable real sequences. The norm on V is given by ‖u‖ =

√
u · u and the metric
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d is given by d(u, v) = ‖v − u‖. We let 0 denote the zero vector of V and S stands
for the unit sphere in V. Let A be a subset of V. We let [A] denote the linear hull
and 〈A〉 the convex hull of A. We define A⊥ in the following way:

A⊥ = {v ∈ V : v · x = v · y for all x, y ∈ A}.

If L is a closed linear subspace of V, then L⊥ is called the orthocomplement of
L and we have L⊥⊥ = L. Also, we define codimA = dimA⊥ ∈ {0, 1, . . . ,∞}. A
plane in V is a closed affine subspace of V; a k-subspace is a k-dimensional linear
subspace of V. The affine hull aff A of A is defined as the intersection of all planes
that contain A. Observe that A⊥ = (aff A)⊥ and codimA = codim(aff A). The
geometric interior A◦ of A is the interior of A relative to the affine hull of A. The
geometric boundary of A is ∂A = A\A◦. We set diamA = sup{‖x− y‖ : x, y ∈ A}.
A closed and convex set A with intA �= ∅ is called a convex body in V.

Definition 1. Let K(V) stand for the collection of all non-empty compact subsets
of V. Recall that the Hausdorff metric dH on K(V) associated with d is defined as
follows:

dH(A,B) = sup{d(x,A), d(y,B) : x ∈ B and y ∈ A}.

We let Gk(V) stand for the collection of all k-subspaces of V. Consider the ball
B = {v ∈ V : ‖v‖ ≤ 1}. We topologize Gk(V) by defining a metric ρ on Gk(V):

ρ(L1, L2) = dH(L1 ∩ B, L2 ∩ B).

When V is finite-dimensional, Gk(V) is known as a Grassmann manifold. We use
the notation Gk = Gk(�2). We also allow the degenerate cases G0(V) = {{0}} and
Gk(Rk) = {R

k}.

The next two lemmas, proved in [3] for Rn, give us an alternative way to define
the topology on Gk(V). The proofs for �2 are analogous.

Lemma 5. Let k ∈ N with k < dim V, ε > 0, and L ∈ Gk(V). Let v1, . . . , vk be
a basis for L. Then there is a δ > 0 such that for every set F = {v′1, . . . , v′k} ⊂ V

with ‖v′i − vi‖ < δ for every i we have ρ([F ], L) < ε.

Lemma 6. Let k ∈ N with k < dim V, ε > 0, and L ∈ Gk(V). Let v1, . . . , vk be a
basis for L. Then there is a δ > 0 such that for every P ∈ Gk(V), with ρ(L,P ) < δ,

there is a basis {v′1, . . . , v′k} for P such that ‖v′i − vi‖ < ε for every 1 ≤ i ≤ k.

Now, we prove the following useful lemma.

Lemma 7. Let m,n ∈ N ∪ {0} with m + n ≤ dim V. Let N ∈ Gn(V) and
L ∈ Gm(V) such that N ∩L = {0}. Then for every ε > 0 there is a δ > 0 such that
if ρ(N,N ′) < δ and ρ(L,L′) < δ, then ρ(N + L,N ′ + L′) < ε.
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Proof. If m = 0 or n = 0, then we simply take δ = ε. Let m,n ∈ N. Then
there exist independent vectors v1, v2, . . . , vm+n such that L = [{v1, . . . , vm}] and
N = [{vm+1, . . . vm+n}]. By Lemma 5 we can find an ε∗ such that

ρ([F ], L+N) < ε whenever F = {v′1, v′2, . . . , v′m+n} with ‖vj − v′j‖ < ε∗.

Now, we can apply Lemma 6 and find a δ > 0 such that if L′ ∈ Gm with ρ(L,L′) < δ

and N ′ ∈ Gn with ρ(N,N ′) < δ, then there are a basis {v′1, . . . , v′m} for L′ and a
basis {v′m+1, . . . , v

′
m+n} for N ′ such that ‖vj − v′j‖ < ε∗ for 1 ≤ j ≤ m + n. Now,

one can easily observe that δ is as required. That completes the proof.

Definition 2. Let m, i ∈ N with i ≤ m ≤ dim V and let P be a subset of Gm(V).
If L ∈ Gi(V), then we define

PL = {N ∈ Gm−i(L⊥) : N + L ∈ P}.
Remark 1. Let m, i ∈ N with i ≤ m ≤ dim V and let P be an open subset of
Gm(V). Lemma 7 implies that if L ∈ Gi(V), then PL is open in Gm−i(L⊥).

Now let L be a plane in V. A plane H ⊂ L is called a k-hyperplane in L if
dim(H⊥ ∩L) = k. In other words, a k-hyperplane is a plane with codimension k in
the ambient space. A hyperplane H of L is a plane of L of codimension 1. The two
components of L\H are called the sides of the hyperplane H and the union of H
with one of its sides is called a half space of L. We say that H supports a subset A
of L if A is contained in a half space that is associated with H .

Definition 3. Let B be a closed and convex set in V. A nonempty subset F
of B is called a face of B if there is a hyperplane H of aff B that supports B
with the property F = B ∩ H . Note that F is also closed and convex and that
codimF > codimB whenever codimB is finite. If F is a face of B, we write
F ≺ B. We say that a subset F of B is a derived face of B if F = B or there exists
a sequence F = F1 ≺ F2 ≺ · · · ≺ Fm = B for some m ∈ N.

Definition 4. Let P be a collection of closed linear subspaces of V. A hyperplane
H in V is said to be consistent with P if H + P = H for some P ∈ P . Let B be a
convex and closed subset of V. A nonempty subset F of B is called a P-face of B
if F = B ∩H for some hyperplane H of V that supports B and that is consistent
with P . A derived P-face is a derived face of a P-face. If k ∈ N and k < dim V,
then we define the set Ek(B,P) as the closure of⋃

{F : F is a derived P-face of B with codimF > k}.
If P ⊂ Gk(V), then the elements of Ek(B,P) are called the P-extremal points of B.

Definition 5. Let B,C ⊂ V and let P be a set of closed linear subspaces of V. B
and C are called P-imitations of each other if B + P = C + P for each P ∈ P .
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If B + P = C + P for each P ∈ P , then B and C are called weak P-imitations of
each other.

Definition 6. Let L be a plane in V. Then ψL : V → L⊥ denotes the orthogonal
projection along L onto L⊥ defined by the conditions ψL(x)−x ∈ L⊥⊥ and ψL(x) ∈
L⊥ for each x ∈ V. Note that if 0 ∈ L then {ψL(x)} = L⊥ ∩ (x+ L).

Remark 2. Observe that B and C are (weak) P-imitations of each other pre-
cisely if ψP (B) = ψP (C) (ψP (B) = ψP (C)) for each P ∈ P . If B and C are
weak P-imitations of each other, then B and C have precisely the same supporting
hyperplanes that are consistent with P ; see [4, Remark 1].

Definition 7. LetX and Y be topological spaces and let 2Y stand for the collection
of nonempty subsets of Y . A set-valued ϕ : X → 2Y is called USC (upper semi-
continuous) if ϕ−1(U) = {x ∈ X : ϕ(x) ⊂ U} is open in X for every open U in Y .
Equivalently, {x ∈ X : ϕ(x) ∩ U �= ∅} is closed in X for every open U in Y .

Remark 3. Let B be a convex body in V. We define a set-valued function Φ :
V\ intB → 2S as follows:

Φ(x) = {a ∈ S : a · (y − x) ≤ 0 for every y ∈ B}.
In other words, Φ(x) consists of all unit vectors a such that x+Ha is supporting to
B and a points towards the side of x+Ha that does not contain points of B, where
Ha = {x ∈ V : x · a = 0}. Observe that by the Hahn–Banach Theorem, Φ(x) �= ∅
for every x.

We have shown in [3] that in Rn, Φ is USC. This fact is used in the proof of the
key theorem [3, Theorem 17], which is the finite-dimensional version of Theorem 25
here. The following example shows that in �2, Φ does not need to be a USC function
which, as mentioned in the Introduction, influences the proof of Theorem 25.

Example 1. Consider the following convex compactum in �2:

T = {x ∈ �2 : xn ∈ [−2−n, 2−n] for all n ∈ N}.
In the space R × �2 we define a closed and convex set B as follows.

B = 〈({0} × T ) ∪ ({1} × B)〉.
Notice that intB �= ∅ because int B �= ∅. By [2, Example 1] we have that there
is no supporting hyperplane at 0 to T in �2. Therefore, H = {0} × �2 is the only
supporting hyperplane at 0 to B in R × �2. Clearly, we have Φ(0,0) = {a}, where
a = (−1,0). Now, for n ∈ N consider the vectors:

xn = (0, (0, . . . , 0, 2−n, 0, . . .)) ∈ B

and

an = (−√
2/2, (0, . . . , 0,

√
2/2, 0, . . .)),
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where the nonzero entry in the second factors is in the nth position. It is easily ver-
ified that an ∈ Φ(xn). We clearly have that limn→∞ xn = (0,0) but limn→∞ an �= a

thus Φ is not USC for this B.

A continuous map f : X → Y is called proper if the pre-image of every
compactum in Y is compact. Recall that in metric spaces a continuous map is
proper if and only if it is closed and every fibre is compact, see Engelking [10,
Theorem 3.7.18]. In particular, if B ⊂ V and a linear space L ⊂ V are such that
the restriction ψL�B : B → V is proper, then ψL(B) and B +L = ψ−1

L (ψL(B)) are
closed in V.

The following four lemmas about proper maps are [3, Lemma 6], [4, Lemma 6],
[4, Lemma 9], and [4, Lemma 10], respectively.

Lemma 8. If f : X → Y and g : Y → Z are continuous, then g ◦ f : X → Z is
proper if and only if both f and g�f(X) : f(X) → Z are proper.

Lemma 9. Let P be a finite-dimensional linear subspace of V and let B be a closed
and convex set in V. Then ψP �B is proper if and only if (z+P )∩B is bounded for
some z ∈ B.

Lemma 10. Let k ∈ N with k < dim V and let C be closed in V. If P ∈ Gk(V)
and w ∈ V are such that ψP �〈C〉 is proper and (w + P ) ∩ C = ∅, then there is a
neighbourhood U of P such that (w + P ′) ∩ C = ∅ for each P ′ ∈ U .

Lemma 11. If k ∈ N with k < dim V and B is a closed convex set in V, then
{P ∈ Gk(V) : ψP �B is proper} is open in Gk(V).

Remark 4. The following fact can be found in [13, Sec. 2.5] and [5, p. 93]. If B
is a closed convex set in �2, then there is a unique linear space LB ⊂ �2 such that
csB = B ∩ (LB)⊥ is line-free and B = LB + csB. Note that csB = ψLB (B) and
B = B + LB.

The following result is from [1, Lemma 4] and [2, Lemma 6].

Lemma 12. If B is closed and convex in V, then for every derived face F of B we
have F = F + LB.

Remark 5. We will need information about the topology of boundaries of convex
bodies B in �2. According to [5, Proposition III.6.1], the boundary of a convex body
is either empty or homeomorphic to �2 or Sn × �2 for some n-sphere Sn. Thus ∂B
is either empty or it contains closed copies of �2.

3. Sets with Empty Geometric Interiors

This section is devoted to the proof of Theorem 4. Several of the steps towards
that goal are of independent interest. We mention the Exposed Point Theorem
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(Theorem 14) and Theorem 19 which states that all the points in a closed convex
set with empty geometric interior are P-extremal whenever P is somewhere dense
in Gk.

Definition 8. A real-valued function f defined on a topological space X is lower
semi-continuous (LSC ) if f−1((r,∞)) is open for every r ∈ R. f is called upper
semi-continuous (USC ) if −f is LSC. A real-valued function g defined on a convex
set B is called convex if g(tx + (1 − t)y) ≤ tg(x) + (1 − t)g(y) for t ∈ [0, 1] and
x, y ∈ B. The function g is called concave if −g is convex.

Lemma 13. Let B be a closed and convex set in �2 such that B◦ = ∅. If P is a
finite-dimensional subspace of �2, then ψP (B)◦ = ∅.

Proof. We prove the lemma in three steps.

Claim 1. The lemma is valid under the additional assumptions that ψP �B is proper
and that P is one-dimensional.

Proof of Claim 1. We have that P = Ru for some unit vector u. Set BP = ψP (B)
and V = P +aff BP . Let the functions f, g : BP → R be defined by f(x) = min{a ∈
R : x + au ∈ B} and g(x) = max{a ∈ R : x + au ∈ B}. Since ψP �B is proper, we
have that every fibre of ψP �B is compact thus f and g are well defined. Note that
f ≤ g, that f is convex, and that g is concave.

We show that f is LSC. Let x ∈ BP and r < f(x). Define the closed subset C
of B by C = {y ∈ B : u · y ≤ r}. Since ψP �B is proper, it is a closed mapping and
hence ψP (C) is closed. Note that U = BP \ψP (C) is an open neighbourhood of x
in BP such that f(z) > r for each z ∈ U . We have shown that f is LSC and by
symmetry that g is USC.

Striving for a contradiction, we assume that (BP )◦ �= ∅. We have two subcases
to consider.

Case I. f = g. Then f is continuous and both convex and concave on BP . It is
then easily verified that f extends to a continuous affine map f : aff BP → R. Then
H = {x+ f(x)u : x ∈ aff BP } is a hyperplane in V that contains B. Note that the
open subset {y ∈ H : ψP (y) ∈ (BP )◦} of H is contained in B thus B◦ �= ∅ and
Case I is complete.

Case II. f �= g. Then there is a point z ∈ BP such that f(z) < g(z). Convexity of
B implies that there are points in (BP )◦ with this property. By [9, Lemma 2.1] the
functions f and g are continuous on (BP )◦. Note that {x+ tu : x ∈ (BP )◦, f(x) <
t < g(x)} is an open nonempty subset of V that is contained in B. We may conclude
that B◦ �= ∅. ♦

Claim 2. The lemma is valid under the additional assumption that ψP �B is proper.
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Proof of Claim 2. Let k > 1 and let {e1, e2, . . . , ek} be an orthogonal basis for
P . Set �i = Rei for 1 ≤ i ≤ k. Recursively, we define the convex sets

B0 = B and Bi = ψ�i(Bi−1) for 1 ≤ i ≤ k.

Thus we have that ψP = ψ�k
◦ · · ·ψ�2 ◦ ψ�1 and by Lemma 8 we have that every

ψ�i�Bi−1 is proper and hence every Bi is closed. If B◦ = ∅, then by applying Claim 1
k times we obtain (Bk)◦ = ∅ and the claim is proved. ♦

We are now ready to prove Lemma 13 in full generality. Assume that B◦ = ∅
and that 0 ∈ B. Set BP = ψP (B) and V = P +aff BP . Define for n ∈ N the convex
closed set Cn = {x ∈ B : ‖x‖ ≤ n}. Note that B ⊂ aff Cn and hence aff Cn = aff B.
Thus we have that (Cn)◦ = ∅ for every n ∈ N. Since Cn is bounded, we have that
ψP �Cn is proper by Lemma 9 and hence ψP (Cn) is closed. With Claim 2 we may
conclude that ψP (Cn)◦ = ∅. Thus ψP (Cn) is a nowhere dense subset of aff BP .
Consequently, BP =

⋃∞
n=1 ψP (Cn) is a meagre set in aff BP and hence (BP )◦ = ∅

by the Baire Category Theorem.

Example 2. Lemma 13 shows in particular that even when we look in just one
direction a closed convex set B with B◦ = ∅ cannot imitate a set with nonempty
geometric interior. However, the following example shows that such a B can weakly
imitate even the whole space; cf. Theorem 4.

Let B = {(xi)i ∈ �2 : xi ≥ 0}, u = (1, 1
2 , . . . ,

1
n , . . .} and P = Ru ∈ G1. It is

clear that B is closed and convex with B◦ = ∅. We show that ψP (B) = P⊥. Let
ε > 0 and w ∈ P⊥. We can find a v = (vi)i ∈ �2 such that ‖v − w‖ < ε and vi = 0
if i ≥ N for some N ∈ N. Observe that there is an α > 0 such that v + αu ∈ B

thus v′ = ψP (v) ∈ ψP (B). Note that ‖v − v′‖ = d(v, P⊥) ≤ ‖v − w‖ < ε. So we
have ‖v′ − w‖ < 2ε and B is a weak {P}-imitation of �2.

Now we prove the Exposed Point Theorem for which we need the following
definition. Let B ⊂ V, w ∈ B, and P be a collection of linear subspaces of V. Then
we say that w is exposed by P if B ∩ (w + P ) = {w} for some P ∈ P .

Theorem 14. (Exposed Point Theorem) Let k ∈ N, B be a closed and convex set
in �2 with B◦ = ∅, and let P be a nonempty open set in Gk. Then every w ∈ B is
exposed by P.

Proof. We choose our coordinate system for �2 in such a way that w = 0. Define

A = {L : L is a linear subspace of some P ∈ P such that L ∩B = {0}}.
Note that {0} ∈ A and hence we may define

m = max{dimL : L ∈ A}.
It suffices to show that m = k so let us assume that m < k. Choose linear subspaces
P1 ∈ P and L ⊂ P1 such that dimL = m and L ∩ B = {0}. Define BL = ψL(B)
and P2 = ψL(P1). Since L ∩ B = {0}, we have by Lemma 9 that ψL�B is proper
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thus BL is closed. In addition, by Lemma 13, we get that (BL)◦ = ∅. Next, choose
a 1-subspace � in P2 and set

T = {u ∈ S ∩ L⊥ : Ru+ L+ ψ�(P2) ∈ P}.
Clearly, T �= ∅ and by Remark 1 we get that T is open in S ∩ L⊥.

Claim. There is a u∗ ∈ T such that Ru∗ ∩BL = {0}.
Proof of Claim. Striving for a contradiction, assume that for every u ∈ T we
have that diam(Ru ∩BL) > 0. Define for each n ∈ N the set

Sn =
{
u ∈ T :

1
n
u ∈ BL

}
.

Since BL is closed, we clearly have that each Sn is closed in T . Moreover, it is easily
verified that

⋃∞
n=1(Sn ∪−Sn) = T . Thus, by the Baire Category Theorem there is

an m ∈ N such that Sm has a nonempty interior O in S ∩ L⊥ (if −Sm has interior
points then so does Sm). Note that

C =
{
x ∈ L⊥ : 0 < ‖x‖ < 1

m
,
x

‖x‖ ∈ O

}

is an open nonempty subset of L⊥. Since BL is convex and 0 ∈ BL we have that
C ⊂ BL. Thus we have (BL)◦ �= ∅ in contradiction with an earlier result. ♦

We define L′ = L + Ru∗ and P ′ = L′ + ψ�(P2). Now we have that L′ is an
(m+ 1)-subspace of P ′ ∈ P such that

L′ ∩B = {0}.
That violates the maximality of m – hence L = P1 and that completes the proof.

Example 3. Theorem 14 is no longer valid if P is merely somewhere dense instead
of open, even for compact B. Let B be the convex compactum

∏∞
i=1[−2−i, 2−i] in

�2 and let

P = {Ru : u ∈ S, ∃ i ∈ N, 0 = ui+1 = ui+2 = · · ·}.
Note that P is dense in G1 and that it is easily seen that 0 ∈ B is not exposed
by P .

Let us recall two useful lemmas that we need in the sequel. The first lemma is
[2, Lemma 3] and the second one is [2, Lemma 4].

Lemma 15. Let B be a convex set in �2 with B◦ = ∅. If A is a subset of B with
finite codimension in �2, then A◦ = ∅.
Lemma 16. Let B be a convex closed set in �2 with B◦ = ∅. Then the set

⋃{F :
F is a face of B} is dense in B.
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Lemma 17. Let k ∈ N, let B be a closed and convex subset of �2, let P ⊂ Gk, and
let F be a derived P-face of B. If B◦ = ∅ or F ◦ = ∅, then F ⊂ Ek(B,P).

Proof. Assume that B◦ = ∅ or F ◦ = ∅ and that F �⊂ Ek(B,P). Consider the
collection

F = {F ′ : F ′ is a derived face of F such that F ′ �⊂ Ek(B,P)}.

Since F is a derived face of itself, we have F ∈ F . By the definition of Ek(B,P) we
have that if F ′ ∈ F then codimF ′ ≤ k. So we can select an F ′ in F with a maximal
codimension. By Lemma 15 we have (F ′)◦ = ∅. According to Lemma 16, there is a
face G of F such that G �⊂ Ek(B,P) and hence G ∈ F . Since codimG > codimF ′,
we get a contradiction with the choice of F ′. The proof is complete.

Lemma 18. Let k ∈ N and let B be a closed and convex subset of �2 with B◦ = ∅.
Let P ⊂ Gk be such that ψP �B is proper for every P ∈ P. Then Ek(B,P) is a
P-imitation of B.

Proof. Since Ek(B,P) ⊂ B it suffices to prove that ψP (B) ⊂ ψP (Ek(B,P)) for
every P ∈ P . Let P ∈ P and w ∈ BP = ψP (B). Observe that ψP (Ek(B,P)) is
closed because Ek(B,P) is a closed subset of B and ψP �B is proper. By Lemma 13,
we have that (BP )◦ = ∅. Let ε > 0 and apply Lemma 16 to find a w0 ∈ BP

with ‖w − w0‖ < ε and a supporting hyperplane H at w0 to BP in P⊥. Then
F = (H + P ) ∩ B is a P-face of B such that d(w,ψP (F )) ≤ d(w,w0) < ε. By
Lemma 17, we have that F ⊂ Ek(B,P) and therefore d(w,ψP (Ek(B,P))) < ε.
Thus w ∈ ψP (Ek(B,P)) because ψP (Ek(B,P)) is closed and ε is arbitrary. We
have shown that ψP (B) ⊂ ψP (Ek(B,P)).

Now we are in a position to prove the following key theorem.

Theorem 19. Let k ∈ N and B be a closed and convex subset of �2 with B◦ = ∅.
If P is a somewhere dense subset of Gk, then B = Ek(B,P).

Proof. Since we trivially have Ek(B,P) ⊂ B, let w ∈ B be arbitrary. According
to Theorem 14 there is a P ∈ intP such that (w+P )∩B = {w}. Note that ψP �B
is proper by Lemma 9. Let ε > 0 and define C = {x ∈ B : ‖x−w‖ ≥ ε/2}. We may
apply Lemma 10 to w, C and ψP �〈C〉 to find a neighbourhood U of P in int P̄ such
that (w+P ′)∩C = ∅ for each P ′ ∈ U . Select a P ′ ∈ U ∩P . Since diam(B\C) ≤ ε,
we have diam((w + P ′) ∩ B) ≤ ε and hence ψP ′�B is proper by Lemma 9. By
Lemma 18 we have that ψP ′(B) = ψP ′(Ek(B, {P ′})) ⊂ ψP ′(Ek(B,P)). Thus there
is a w0 ∈ (w + P ′) ∩ Ek(B,P) ⊂ (w + P ′) ∩ B. Hence ‖w − w0‖ ≤ ε. Now, since
Ek(B,P) is closed and ε > 0 is arbitrary, we get that w ∈ Ek(B,P) and the proof
is finished.
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Lemma 20. Let k ∈ N and let B be a closed and convex set in �2 with B◦ = ∅. If
P is a nonempty open subset of Gk and w /∈ B, then there exists a P ∈ P such that
ψP �B is proper and (w + P ) ∩B = ∅.

Proof. By Theorem 14 and Lemmas 9 and 11 we may assume without loss of
generality that ψL�B is proper for every L ∈ P . Set B′ = 〈{w} ∪B〉. First, let us
assume that B′ is a P-imitation of B. By Lemma 13 we have that (ψL(B′))◦ =
(ψL(B))◦ = ∅ for every L ∈ P . Since projections are open we have (B′)◦ = ∅.
Now we can apply the Exposed Point Theorem to B′ to find an L ∈ P such that
(w+L)∩B′ = {w} – a contradiction with B ⊂ B′\{w}. Thus there are a P ∈ P and
an x ∈ B′ such that (x + P ) ∩ B = ∅. Since ψP �B is proper, the set BP = ψP (B)
is closed. Since ψP (x) /∈ BP , there exists a (unique) hyperplane H ′ in P⊥ through
ψP (x) such that d(H ′, BP ) = d(ψP (x), BP ) > 0; see [14, p. 347]. Thus, there is
a parallel supporting hyperplane H to BP in P⊥ that strictly separates BP from
ψP (x). Since x ∈ 〈{w} ∪B〉, w and B must be on different sides ofH+P . Therefore,
(w + P ) ∩B = ∅ and the lemma is proved.

We end this section with the proof of Theorem 4 for which we need the following
results from [4, Lemma 11] and [4, Theorem 15].

Lemma 21. Let k ∈ N with k < dim V, let P be an open subset of Gk(V), and let
B be a closed and convex set in V that contains no k-hyperplane. If P ∈ P and
w ∈ V are such that (w+P )∩B = ∅, then there is a nonempty open subset U of P
such that ψL�B is proper and (w + L) ∩B = ∅ for every L ∈ U .

Theorem 22. Let k ∈ N with k < dim V, let B be a convex and closed set in V,

and let P be a subset of Gk(V) such that P ⊂ intP. If C is a closed set that is a
weak P-imitation of B, then Ek(B,P) ⊂ C.

Proof of Theorem 4. Let k ∈ N and B be a closed convex subset of �2 with
B◦ = ∅. Let P be somewhere dense in Gk and let C be a closed weak P-imitation
of B. We need to prove that C = B. If we put P∗ = P ∩ intP, then we have that
P∗ ⊂ intP∗. Theorem 22 now states that Ek(B,P∗) ⊂ C. According to Theorem 19
we have Ek(B,P∗) = B and hence B ⊂ C.

Now let w ∈ C\B. By Lemma 20 we find a P ∈ intP such that (w+P )∩B = ∅.
By Lemma 15 we have that B contains no k-hyperplane. Now, Lemma 21 states
that there is a nonempty open subset U of intP such that ψP ′�B is proper and (w+
P ′)∩B = ∅ for every P ′ ∈ U . Select an L ∈ U ∩P . Then ψL(w) /∈ ψL(B) = ψL(B),
contradicting the assumption that C is a weak P-imitation of B. The theorem is
proved.

4. The Proof of Theorem 1

In this section we establish Theorem 1 and some related theorems. We begin with
two lemmas.
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Lemma 23. Let B be a closed convex set in V, let k ∈ N with k < dim V, and let
P be an open subset of Gk(V). If P ∈ P and w is an interior point of B ∩ (w + P )
in w + P, then there is a neighbourhood U of w in V such that every supporting
hyperplane H to B that meets U is consistent with P.

Proof. We may assume that w = 0. Let δ > 0 be such that {x ∈ P : ‖x‖ ≤ δ} ⊂ B.
Select a basis u1, . . . , uk for P consisting of unit vectors. According to Lemma 5,
there is an ε > 0 such that whenever we have for each i ∈ {1, . . . , k} a vector u′i
with ‖u′i − ui‖ < ε, then [{u′1, . . . , u′k}] ∈ P . We define U = {x ∈ V : ‖x‖ < δε}.
Let H be a supporting hyperplane at x ∈ U to B and consider an i ∈ {1, . . . , k}. If
ui ∈ H−x, we put u′i = ui. If ui /∈ H−x, the line Rui will intersect the hyperplane
H at some point riui. Since H does not cut B it does not cut the line segment
[−δ, δ]ui and hence |ri| ≥ δ. So riui − x is an element of the linear space H − x

and hence u′i = ui − 1
ri
x ∈ H − x. We have ‖ui − u′i‖ = ‖x‖/|ri| < ε. We now have

P ′ = [{u′1, . . . , u′k}] ⊂ H − x and P ′ ∈ P .

The following lemma is [4, Lemma 12].

Lemma 24. Let k ∈ N with k < dim V, let B and C be convex closed subsets of V,

and let P be a subset of Gk(V) such that P ⊂ intP and C is a weak P-imitation of
B. Then Ek(C,P) = Ek(B,P). If, in addition, B does not contain a k-hyperplane
and B is not an (intP)-imitation of V, then also C does not contain a k-hyperplane
and B and C have identical (derived) P-faces.

The following theorem is a key step in the proof of Theorem 1.

Theorem 25. Let k ∈ N and let B be a convex and closed subset of �2 such that
codimB ≤ k and B◦ �= ∅. Let P be an open subset of Gk. Then the following
statements are equivalent:

(1) B contains no k-hyperplane and B is not a P-imitation of �2.
(2) B contains no k-hyperplane and B is not a P-imitation of aff B.
(3) There is a closed subset of Ek(B,P) that is homeomorphic to �2.
(4) Ek(B,P) �= ∅.

Proof. The implication (3) ⇒ (4) requires no proof.
We show that (4) ⇒ (1). If B is a P-imitation of �2, then Ek(B,P) =

Ek(�2,P) = ∅ by Lemma 24. Suppose now that B contains a k-hyperplane. Accord-
ing to Lemma 12, this means that every derived face F of B contains a k-hyperplane
and hence codimF ≤ k. Since every derived P-face is a derived face, we again have
Ek(B,P) = ∅ which proves the point.

We turn to proving the implication (1) ⇒ (2). Assume that (1) is valid and
that B is a P-imitation of aff B. Apply Lemma 24 to obtain that aff B contains no
k-hyperplane. Then codim(affB) = codimB > k in violation of a premise of the
theorem.

To prove (2) ⇒ (3) we assume property (2).
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Claim A. Without loss of generality we may assume that every P-face of B is
contained in Ek(B,P).

Proof of Claim A. Consider the collection D consisting of all derived P-faces of B
that are not contained in Ek(B,P). Note that every element of D has codimension at
most k. Now, assume that D �= ∅ and select an F ∈ D with maximal codimension.
All the faces of F have a greater codimension than F and hence they are not
members of D which means that they are contained in Ek(B,P). If F ◦ = ∅ then
by Lemma 16 the union of its faces is dense in F and consequently, F ⊂ Ek(B,P)
because Ek(B,P) is closed. Thus we get a contradiction with F ∈ D and we may
conclude that F ◦ �= ∅. Then by the Hahn–Banach Theorem every point of ∂F is
contained in some face of F and hence ∂F ⊂ Ek(B,P). Since codimF ≤ k, we can
select a k-hyperplane M of V in aff F that meets F ◦. Then the closed convex set
G = F ∩M has codimension k and G◦ �= ∅. Note that M , being a k-hyperplane,
is a copy of �2. So G can be viewed as a convex body in �2. Now if ∂G = ∅ then
G = M and B contains a k-hyperplane in contradiction to the premise (2). Thus
∂G �= ∅ and statement (3) is proved because ∂G ⊂ ∂F ⊂ Ek(B,P) and ∂G contains
a closed copy of �2 by Remark 5. We may now assume that D = ∅ which means
that whenever H is a supporting hyperplane to B that is consistent with P , then
H ∩B ⊂ Ek(B,P). ♦

Let P ′ ∈ P be such that ψP ′(B) �= ψP ′(aff B). Then there is a w ∈ aff B such
that (w+P ′)∩B = ∅. By Lemma 21 we can find a P ∈ P such that (w+P )∩B =
∅ and ψP �B is proper. Note that ψP (w) ∈ aff(ψP (B))\ψP (B). Define A as the
collection of all linear subspaces L of P such that there are an open subset O of B,
an ε > 0, and a y ∈ ∂ψL(B) with the following two properties:

(i) (y + L) ∩B ⊂ O and
(ii) for every supporting hyperplane H to B that meets O there exists a V ∈

Gk−dim L such that H = H + V and V +L′ ∈ P for every L′ with ρ(L,L′) < ε.

Next, let us show that P ∈ A. Since P is open, there is an ε > 0 such that
if L′ ∈ Gk with ρ(P,L′) < ε, then L′ ∈ P . Set O = B and V = {0} for any H .
Since aff(ψP (B)) �= ψP (B) we may choose a y ∈ ∂ψP (B). It is now clear that the
properties (i) and (ii) are satisfied and thus P ∈ A.

We may define

l = min{dimL : L ∈ A}.
Choose an L ∈ A such that dimL = l, and let O, ε, y be as in the definition of A
corresponding to L. We put BL = ψL(B) and note that (BL)◦ �= ∅ because B◦ �= ∅.
Since ψL�B is proper by Lemma 8 and hence closed and since (y + L) ∩ B ⊂ O

the set U = BL\ψP (B\O) is an open neighbourhood of y in BL such that
(U + L) ∩B ⊂ O.

Claim B. B ∩ (w + L) is a singleton for every w ∈ U ∩ ∂BL.
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Proof of Claim B. Let w ∈ U ∩ ∂BL be arbitrary and let C = (w+L)∩B ⊂ O.
Since ψL�B is proper, we have that BL is closed and hence C �= ∅. Striving for a
contradiction, assume that the convex set C is not a singleton thus m = dimC ≥ 1.
Since C is finite dimensional and convex we have C◦ �= ∅ and we may assume that
0 ∈ C◦ thus w = ψL(0) = 0. Set E = aff C ⊂ L and L∗ = ψE(L) = L ∩ E⊥.
Observe that dimE = m and dimL∗ = l−m < l. We will show that L∗ ∈ A which
gives the desired contradiction with the minimality of l. Put BL∗ = ψL∗(B) and
note that C ⊂ E ∩B ⊂ L ∩B = C so C = E ∩B.

By Lemma 7, we find an ε∗ > 0 such that if ρ(E, Ê) < ε∗ for Ê ∈ Gm and
ρ(L∗, L̂) < ε∗ for L̂ ∈ Gl−m, then ρ(L∗ + E, Ê + L̂) = ρ(L, Ê + L̂) < ε. By
Lemma 23 we can find an open neighbourhood O∗ of 0 in O with the following
property:

(∗) If H is a supporting hyperplane to B that meets O∗, then there is an Ê ∈ Gm

such that ρ(E, Ê) < ε∗ and H = H + Ê.

We have now found O∗ and ε∗ for L∗ and we put y∗ = 0. Note that y∗ ∈ BL∗ and
ψE(y∗) = w ∈ ∂BL thus y∗ ∈ ∂BL∗ . We also have

(y∗ + L∗) ∩B = L∗ ∩B = E⊥ ∩ L ∩B = E⊥ ∩ E ∩B = {0} ⊂ O∗

thus condition (i) is satisfied for L∗. For condition (ii), let H be a supporting
hyperplane to B that meets O∗. Since L ∈ A and O∗ ⊂ O, there exists a V ∈ Gk−l

such that H = H + V and for every L′ with ρ(L,L′) < ε we have V + L′ ∈ P . By
property (∗), we find an Ê ∈ Gm such that ρ(E, Ê) < ε∗ and H = H + Ê. Thus
we have H = H + V + Ê. Moreover, if L′ ∈ Gl−m with ρ(L∗, L′) < ε∗ then, by the
choice of ε∗, we have that ρ(L, Ê + L′) < ε. Consequently,

V + Ê + L′ ∈ P .
Hence V + Ê satisfies condition (ii) for L∗ and we may conclude that L∗ ∈ A. Since
dimL∗ < l, we have a contradiction with the minimality of l. The claim is proved.

♦
Now, let W = U∩∂BL and W ′ = (V +L)∩B = (ψL�B)−1(W ). By Claim B and

the fact that ψL�B is proper we have that ψL�W ′ : W ′ → W is a proper bijection
and thus a homeomorphism. We prove that W ′ ⊂ Ek(B,P). Let w′ ∈ W ′ and put
w = ψL(w′) ∈W . Since (BL)◦ �= ∅ we can find a supporting hyperplane H at w to
BL. Then H + L is a supporting hyperplane at w′ to B. By property (ii) we have
that there exists V ∈ Gk−l such that H+L = H+L+V and V +L ∈ P . Therefore,
H + L is consistent with P . Hence w′ ∈ (H + L) ∩ B ⊂ Ek(B,P) by Claim A.
We have shown that W ′ ⊂ Ek(B,P). Furthermore, since codimBL ≤ codimB +
dimL ≤ k + l and (BL)◦ �= ∅ we have that U , being a nonempty open subset
of ∂BL, contains a copy M of �2 that is closed in �2 by Remark 5. Thus also
M ′ = (ψL�B)−1(M) is a copy of �2 that is closed in �2. Since M ′ ⊂W ′ ⊂ Ek(B,P),
the proof is complete.
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The following result was proved for Rn in [3, Lemma 13]. The proof for �2 is
virtually identical.

Lemma 26. Let k ∈ N with k < dim V, let B be a closed subset of V such that
codimB > k, and let P be a nonempty open subset of Gk(V). Then the only closed
weak P-imitation of B is B itself.

The following theorem is from [4, Theorem 13].

Theorem 27. Let k ∈ N with k < dim V, let B be a closed convex subset of V that
contains no k-hyperplane, and let P be a subset of Gk(V) such that B is not an
(intP)-imitation of V. If C is a closed weak P-imitation of B, then there is an open
subset U of intP such that C is a U-imitation of B and B is not a U-imitation
of V.

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Note that the premises of Theorem 1 are identical to those
in Theorem 27. Consequently, for the purpose of proving Theorem 1 we may assume
that P is an open subset of Gk such that C is a P-imitation of B and B is not a
P-imitation of �2. Note that P �= ∅ because B is not a P-imitation of �2. Since C is
a weak P-imitation of B with C �= B, by Lemma 26 we have that codimB ≤ k and
by Theorem 4 we obtain that B◦ �= ∅. Now, we can apply Theorem 25 to B and P
to get that there is a non-empty closed subset A of Ek(B,P) that is homeomorphic
to �2. It follows from Theorem 22 that A ⊂ Ek(B,P) ⊂ C ∩B.

The following theorem about sets with convex projections follows easily from
Theorem 1.

Theorem 28. Let k ∈ N and let C be a closed nonconvex subset of �2, and let P
be a subset of Gk. Let ψP∗(〈C〉) �= (P ∗)⊥ for some P ∗ ∈ intP and let ψP (C) be
convex for every P ∈ P. If 〈C〉 contains no k-hyperplane, then C contains a closed
copy of �2.

Proof. Let B = 〈C〉. Since C is nonconvex, we have that C �= B. We have that C
is a weak P-imitation of B because

ψP (C) ⊂ ψP (B) = ψP (〈C〉) ⊂ 〈ψP (C)〉 ⊂ 〈ψP (C)〉 = ψP (C)

for each P ∈ P . Furthermore, we have that B is not an (intP)-imitation of �2

because ψP∗(B) �= (P ∗)⊥ = ψP∗(�2). Moreover, B contains no k-hyperplane. Apply
now Theorem 1.

5. Imitations

Theorem 22 states that every weak P-imitation of a convex set B contains the
set of extremal points Ek(B,P). In this section we show that B has “minimal
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imitations”, that is, sets that contain little else besides Ek(B,P). This result was
proved for closed sets B in Rn in [3, Theorem 22].

Lemma 29. Let k ∈ N, B be a closed convex subset of �2 with B◦ �= ∅, and
P be a subset of Gk. Then there exists a closed subset Kk(B,P) of B such that
Kk(B,P) ∩ ∂B ⊂ Ek(B,P) and ψP (Kk(B,P)) = ψP (B) for every P ∈ P that
satisfies P ∩ LB = {0}.

Proof. Despite being very similar to the proof of [3, Lemma 21], we include the
entire construction because in certain places the fact that we are in �2 requires
a bit of extra care in reasoning (this remark applies also to other results in this
section). Choose a coordinate system for �2 such that 0 ∈ B◦. We define S to be
the closure of

{tx : 0 ≤ t ≤ 1 and x ∈ Ek(B,P)}
and we observe that S is a subset of B. Since 0 ∈ B◦, we have S ∩ ∂B ⊂ Ek(B,P).
We now define the following subset of B◦:

T = {ξ(x) : x ∈ B},
where ξ(x) = ‖x‖

‖x‖+1x for x ∈ �2. As in the proof of [3, Lemma 21], one can easily
show that T is closed. Set K = Kk(B,P) = S ∪ T and we note that K ⊂ B.
Moreover, we have that K ∩ ∂B ⊂ Ek(B,P) and that K is a closed set such that
tx ∈ K whenever x ∈ K and t ∈ [0, 1].

Let P ∈ P such that P ∩ LB = {0} and let x ∈ B be arbitrary. It suffices to
show that ψP (x) ∈ ψP (K). We define an s ∈ [1,∞] by

s = sup{t : t ≥ 1 and tψP (x) ∈ ψP (B)}
and we consider the following two cases:

Case I. s = ∞ or sψP (x) /∈ ψP (B). Then s > 1 and we may select sequences
s1, s2, . . . in (1, s) and y1, y2, . . . in B such that limi→∞ si = s and yi ∈ B with
ψP (yi) = siψP (x) for each i ∈ N. If the sequence y1, y2, . . . has a limit point y,
then y ∈ B and ψP (y) = sψP (x) if s < ∞ or ψP (x) = 0 if s = ∞. The first
option is a violation of the premise of this case and when ψP (x) = 0 = ψP (0)
we are done because 0 ∈ K. Thus we may assume that y1, y2, . . . has no limit
point. Since the sequence lies in the finite-dimensional space P + Rx, we have that
limi→∞ ‖yi‖ = ∞ and hence that limi→∞ si‖yi‖/(‖yi‖ + 1) = s. Choose an i ∈ N

with r = si‖yi‖/(‖yi‖ + 1) > 1. Note that ξ(yi) ∈ T ⊂ K and hence 1
r ξ(yi) ∈ K.

We have ψP (1
r ξ(yi)) = ψP ( 1

si
yi) = ψP (x) and Case I is complete.

Case II. s < ∞ and sψP (x) ∈ ψP (B). In this case y = sψP (x) ∈ ∂ψP (B). Since
B◦ �= ∅, we also have ψP (B)◦ �= ∅ so we can find a hyperplane H in P⊥ that is
supporting to ψP (B) at y. Then F = (H + P ) ∩ B is a P-face of B that meets
y + P . Define the collection

D = {F ′ : F ′ is a derived face of F such that F ′ ∩ (y + P ) �= ∅}.
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Since F ∈ D, we have that D �= ∅. If there is an F ′ ∈ D with F ′ ⊂ Ek(B,P),
then choose a point a ∈ F ′ ∩ (y + P ) and note that 1

sa ∈ S ⊂ K and ψP (1
sa) =

ψP (x). That is the desired conclusion so we may assume that no element of D is
contained in Ek(B,P). By the definition of Ek(B,P) this means that codimF ′ ≤ k

for each F ′ ∈ D and hence there is an F1 ∈ D with maximal codimension in
�2. Lemma 17 guarantees that F ◦

1 �= ∅. Note that the codimension of F1 in the
hyperplane H+P is at most k−1. Since dimP = k, there exists a line � through 0
such that y′ + � ⊂ (y+P )∩ aff F1 for some y′ ∈ (y+P )∩F1. Since P ∩LB = {0},
we have that �∩LB = {0} and hence �′ = ψLB (y′+ �) is also a line. We have that �′

is not contained in csB = ψLB (B) because csB is line-free. Thus, y′ + � is neither
contained in B nor in its subset F1. Since y′ + � is a subset of aff F1 that meets F1

the line contains a point z of ∂F1. Since F ◦
1 �= ∅, the point z is contained in some

face G of F1. Note that z ∈ y+ P , thus G ∈ D. Since codimG > codimF1 we have
a violation of the choice of F1.

Let us recall the following proposition (see [2, Theorem 19]).

Proposition 30. For every ε > 0 there is a zero-dimensional closed set Zε in �2

such that S ∩ Zε �= ∅ whenever S is a convex subset of �2 with diamS ≥ ε.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let k ∈ N, B be a closed convex subset of �2 with
codimB �= k, and P be a subset of Gk. We construct a closed P-imitation C

of B such that C ⊂ B and C\Ek(B,P) is zero-dimensional. If P = ∅, then there is
nothing to prove. Let P ∈ P . If codimB > k then codim(P+aff B) ≥ 1 so P+aff B
is contained in some hyperplane of �2. This means that B is a P-face of itself and
that Ek(B,P) = B so we may choose C = B.

Now, let us assume that B◦ = ∅. Set C = (Z1 ∩B) ∪ Ek(B,P) and let us prove
that

ψP (B) = ψP (C).

Indeed, if ψP �B is proper then, by Lemma 18, we have that ψP (B) =
ψP (Ek(B, {P})) = ψP (Ek(B,P)). If ψP �B is not proper then, by Lemma 11, all
nonempty fibres are unbounded and must meet Z1. Therefore we have

ψP (B) = ψP (Z1 ∩B).

Now, we can assume that P �= ∅, B◦ �= ∅, and codimB < k. As in [2, Theorem 2]
C will have the form Ek(B,P) ∪ Z1 ∪ Z2, where Z1 and Z2 are zero-dimensional
sets. Consider the open subset D = B\Ek(B,P) of B and its closed subset K =
Kk(B,P)\Ek(B,P), see Lemma 29. Precisely as in the proof of [2, Theorem 2] we
can construct a zero-dimensional subset Z1 of D such that Ek(B,P) ∪ Z1 is closed
in �2 and every line in aff B that meets K also meets Z1. The set Z2 is simply
B ∩ Z1, thus for every line � in LB and point x ∈ B we have (x + �) ∩ Z2 �= ∅.
Z1 ∪ Z2 is zero-dimensional by [11, Theorem 1.3.1].
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Let P ∈ P and x ∈ B be arbitrary. It now suffices to show that ψP (x) ∈ ψP (C).
Assume first that P ∩LB �= {0} and hence that P ∩LB contains a line � through 0.
Since x+ � intersects Z2 we have ψP (x) ∈ ψP (Z2) ⊂ ψP (C). Now let P ∩LB = {0}
and note that we may apply Lemma 29 to find that ψP (B) = ψP (Kk(B,P)) thus
(x + P ) ∩ Kk(B,P) �= ∅. If (x + P ) ∩ Ek(B,P) �= ∅, then we are done. So we may
assume that (x+P )∩K �= ∅. Since codimB < k, we have dim((x+P )∩aff B) ≥ 1
and we can find a line � in (x + P ) ∩ aff B that meets K. Thus � must also meet
Z1 and, therefore, we have ψP (x) ∈ ψP (Z1) ⊂ ψP (C). The proof is complete.

Proof of Theorem 3. By Theorem 22 we have that

Ek(B,P) ⊂
⋂

{C : C is a closed weak P-imitation of B}
⊂

⋂
{C : C is a closed P-imitation of B}.

On the other hand, Theorem 2 guarantees that there exist closed P-imitations C
of B with C = Ek(B,P) ∪Z1 ∪Z2, where Z1 and Z2 are zero-dimensional sets. As
noted in [2], given any point x ∈ �2 it can be arranged that Z1 ∪ Z2 avoids that
point. This observation proves the theorem.

Remark 6. We now explain why the case codimB = k is excluded in Theorems 2
and 3. LetB be convex and closed in �2 such that codimB = k. Let P be a nonempty
subset of Gk such that P ⊂ intP . In view of Theorem 19 we need to assume that
B◦ �= ∅. It is easily seen that now Ek(B,P) = ∂B. Select a coordinate system
such that 0 ∈ B◦. Let C be a closed weak P-imitation of B such that C ⊂ aff B.
Since P is somewhere dense in Gk and codim(aff B) = k we can find a P ∈ P
such that P ∩ aff B = {0}. Then ψP � aff B : aff B → P⊥ is a homeomorphism and
hence ψP (C) = ψP (B) implies C = B. We have that C\Ek(B,P) = B◦ contains
a topological copy of �2 and hence Theorem 2 is false whenever codimB = k and
B◦ �= ∅.

Consider now Theorems 3 and 2′, that is, Theorem 2 without the requirement
that C ⊂ B. Then we have two cases.

Case I. There is an x /∈ aff B such that ψP (x) ∈ ψP (B) for every P ∈ P . In this
case the conclusions of Theorems 2′ and 3 are valid for B. Put B′ = 〈B ∪ {x}〉 and
note that B′ is a closed and convex weak P-imitation of B with codimB′ = k − 1.
By Lemma 24, we have Ek(B,P) = Ek(B′,P). We can apply both Theorems 2 and
3 to B′ and reach the desired conclusion for B.

Case II. Otherwise. In this case the conclusions of Theorems 2′ and 3 are always
false. Let C be a closed weak P-imitation of B and assume that there is an x ∈
C\ aff B. Then there is a P1 ∈ P such that ψP1(

1
2x) /∈ ψP1(B). Since 0 ∈ B◦, it is

easily verified that ψP1(x) /∈ ψP1(B) and hence C is not a weak P-imitation of B.
Thus we may conclude that C ⊂ aff B and by the argument above we have C = B.
In this case, just as in the case codimB > k, the set B has only itself as closed
weak P-imitation and Theorem 1 is essentially void. Moreover, C\Ek(B,P) = B◦

and the conclusions of Theorems 2′ and 3 are invalid.
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We show that the two assumptions in Theorem 1 that B contains no
k-hyperplane and that B is not an (intP)-imitation of �2 are necessary conditions.

Proposition 31. Let k ∈ N, let B be a closed convex set in �2, and let P be a
nonempty subset of Gk such that P ⊂ intP.

(a) If B is a P-imitation of �2, then B has a closed P-imitation that is zero-
dimensional.

(b) If B contains a k-hyperplane, then either B has a closed P-imitation that is
zero-dimensional or B is a k-hyperplane that admits no closed weak P-imitation
other than itself.

Proof. (a) Assume that B is a P-imitation of �2. Then by Theorem 4 we get that
B◦ �= ∅ and by Lemma 24 we have Ek(B,P) = Ek(�2,P) = ∅. Let P ∈ P and note
that codimB ≤ codimψP (B) = codimP⊥ = dimP = k. If codimB < k, then B

has a zero-dimensional and closed P-imitation by Theorem 2. If codimB = k, then
since B is a P-imitation of �2 and B◦ �= ∅ we are in Case I of Remark 6 and B also
has a zero-dimensional and closed P-imitation.

(b) Assume that B contains a k-hyperplane. Then, by Lemma 15, B◦ �= ∅.
Next, by Lemma 12, we get that every derived face of B has codim ≤ k and
hence Ek(B,P) = ∅. If codimB < k, then B has a zero-dimensional and closed
P-imitation by Theorem 2. So we may assume that B is a k-hyperplane. If B′ =⋂{B + P : P ∈ P} is not equal to B, then we are in Case I of Remark 6 and B

admits a zero-dimensional and closed P-imitation. If B′ = B then we are in Case
II and we may conclude that B has only itself as a closed weak P-imitation.
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