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SMOOTH CONVEX BODIES IN Rn WITH

DENSE UNION OF FACETS

STOYU T. BAROV

Abstract. Let B be closed and convex in Rn; B is called a convex
body if B is compact and has a nonempty interior with respect
to Rn. In addition, B is smooth if B has a unique supporting
hyperplane at every boundary point. Let k, n ∈ N with k < n

and let Ln
k denote the Grassmann manifold consisting of all k-

dimensional linear subspaces in Rn. An intersection F of B and
a supporting hyperplane is called a facet if dimF = n − 1. A
point x of B is called exposed by P ⊂ Ln

k if there is a P ∈ P such
that (x + P ) ∩ B = {x}. In this paper, for every n ≥ 2, we have
constructed symmetric smooth convex bodies B(n) in Rn whose
union of all facets is dense in the boundary of B(n) and so that the
set of its facets de�nes a dense set P in Ln

k such that the set of all
points in B(n) exposed by P is empty.

1. Introduction

Let B be convex and closed in Rn and let Lnk denote the Grass-
mann manifold consisting of all k-dimensional linear subspaces of Rn;
see De�nition 2.3. Let P ⊂ Lnk . A point x ∈ B is exposed by P
if there is a P ∈ P such that (x + P ) ∩ B = {x}. In [6], the con-
cept of an exposed point is de�ned, that is, a point exposed by Lnn−1.

In principle, our de�nition generalizes that concept. By X kp (B,P) we
denote the set of all points in B exposed by P. A set C ⊂ Rn is
called a P-imitation of B if C + P = B + P for every P ∈ P. Let
X kt (B,P) =

⋂
{C ⊂ B : C is a closed P-imitation of B}. In general, un-

der some conditions, if P ⊂ intP is not empty, then X kt (B,P) contains
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a manifold of dimension at least n − k − 1 ( see [3, Theorem 1] and [3,
Theorem 16] for more details). LetW(B) denote the set of all elements H
of Lnn−1 such that there exists an x in B so that x+H is a supporting hy-
perplane to B and (x+H)∩B is a facet of B, i.e., dim(x+H)∩B = n−1.
The starting point of this paper is the following exposed point theorem,
as stated in [5, Theorem 10] when the underlying space is Rn.

Theorem 1.1. Let k, n ∈ N with k < n, let B ⊂ Rn be closed and convex,

and let P be a Gδ-subset of Lnk such that P ⊂ intP. Then X kp (B,P) is

dense in X kt (B,P).

In addition, [5, Example 1] shows that Gδ-property for P can not be
omitted. In view of that example, it is natural to ask whether there is a
convex body B in Rn and a dense P in Lnn−1 such that Xn−1

p (B,P) = ∅.
The main purpose of this note is to give a positive answer to that question
by constructing the convex bodies B(n) for every natural n ≥ 2. Besides,
the following theorem is of independent interest because the constructed
sets B(n) have additional interesting properties and the construction itself
is very elegant.

Theorem 1.2. For every n ∈ N with n ≥ 2 there exist smooth convex

bodies B(n) in Rn such that

(1) W(B(n)) is dense in Lnn−1,

(2)
⋃
{F : F is a facet in B} is dense in ∂B,

(3) B(n) = −B(n),
(4) Xn−1

p (B(n),W(B(n))) = ∅.

Clearly,W(B(n)) is not Gδ in Lnn−1. Just to recall and make a contrast

for B compact in Rn, we have that 〈Xn−1
p (B,Lnn−1)〉 = B by the Krein�

Milman theorem. Moreover, as it is shown in [1], for a compact B in Rn,
if P ⊂ Lnn−1 is dense and Gδ, then we still have 〈Xn−1

p (B,P)〉 = B.

Our paper is arranged as follows. In �2 we de�ne the main concepts
and give some basic properties. In �3 we discuss smooth convex sets and
establish some properties of those sets that are of independent interest.
In �4 and �5 we establish and develop our construction of the sets B(n),
n ≥ 2, and, consequently, we prove our main theorem.

2. Definitions and Preliminaries

Throughout this paper, the underlying space is the Euclidean space
Rn, n ∈ N. In Rn, we use the standard inner product x · y =

∑n
i=1 uivi

for u = (u1, . . . , un) and v = (v1, . . . , vn) elements in Rn. The zero vector
is denoted by 0 and Sn−1 = {u ∈ Rn : ‖u‖ = 1} stands for the standard
unit sphere. The norm on Rn is given by ‖u‖ =

√
u · u and the metric
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d is given by d(u, v) = ‖v − u‖. Let A be a subset of Rn. We have that
aff A denotes the a�ne hull, 〈A〉 the convex hull, A the closure, and intA
the interior of A in Rn. Also, ∂A means the relative boundary of A, that
is, the boundary with respect to aff A, and we de�ne A◦ = A \ ∂A. Note
that if A is convex and nonempty, then A◦ 6= ∅ and (A)◦ ⊂ A. Further,
if A is compact and convex with intA 6= ∅, then we call A a convex body.

De�nition 2.1. Let B be a closed and convex set in Rn. A nonempty
subset F of B is called a face of B if there is a hyperplane H of aff B that
supports B and F = H ∩ B. If dimF = n − 1, then the face F is called
a facet.

De�nition 2.2 ([8]). A closed convex subset of Rn is called smooth if
there is a unique supporting hyperplane at each point of its boundary.

De�nition 2.3. Consider the closed unit ball B = {u ∈ Rn : ‖u‖ ≤ 1}.
Let K(B) stand for the hyperspace of all nonempty compact subsets of B.
Recall that the Hausdor� metric dH on K(B) associated with d is de�ned
as

dH(A,B) = sup{d(x,A), d(y,B) : x ∈ B and y ∈ A}.
According to [10, Theorem 1.11.3], K(B) is compact. We let Lnm stand for
the collection of all m-dimensional linear subspaces of Rn. We topologize
Lnm by de�ning a metric ρ on Lnm:

ρ(L1, L2) = dH(L1 ∩ B, L2 ∩ B).

One can easily see that Lnm corresponds to a closed subset of K(B) and,
therefore, it is compact too. Also, Lnm is known as a Grassmann manifold.

De�nition 2.4. Let B be a convex body in Rn. We de�ne the set
W(B) ⊂ Lnn−1 as

W(B) = {H ∈ Lnn−1 : ∃ a facet F of B such that aff F ‖ H}.

De�nition 2.5. Let X and Y be topological spaces and let 2Y stand for
the collection of all nonempty subsets of Y . A set-valued ϕ : X → 2Y is
called upper semi-continuous (USC ) if ϕ−1(U) = {x ∈ X : ϕ(x) ⊂ U} is
open in X for every open U in Y .

De�nition 2.6. A subset A of Sn−1 is called convex if w ∈ A whenever
w = αu+ βv ∈ Sn−1 with α, β ≥ 0 and u, v ∈ A.

De�nition 2.7. Let B be a convex and closed subset of Rn, and we

de�ne a set-valued function Φ : Rn \ intB → 2S
n−1

as

Φ(x) = {a ∈ Sn−1 : a · (y − x) ≤ 0 for every y ∈ B}.
In other words, Φ(x) consists of all unit vectors a such that x + Ha is
supporting to B and a points towards a side of x + Ha that does not
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contain points of B, where Ha = {x ∈ Rn : a · x = 0}. Observe that by
the Hahn�Banach theorem Φ(x) 6= ∅ for every x.

We need the following lemma, which is actually [2, Lemma 5].

Lemma 2.8. Let B be a closed and convex subset in Rn. Then each Φ(x)
is nonempty, closed, and convex in Sn−1, and Φ is a USC set-valued map.

If B is a convex body, then no Φ(x) contains antipodal vectors.

Remark 2.9. Let us point out that in the Hilbert space `2 the function
Φ(x) may not be a USC set-valued map, as [4, Example 1] shows.

De�nition 2.10. Let B be a closed and convex subset of Rn with
dimB ≥ 1. In addition, let B be smooth in aff B. Then we can de-
�ne a map ΦB : ∂B → Sn−1 as follows: If x ∈ ∂B, then ΦB(x) ∈
Sn−1 ∩ (aff B − x) such that ΦB(x) · (y − x) ≤ 0 for every y ∈ B.

Remark 2.11. Observe that, according to De�nition 2.7 and Lemma 2.8,
ΦB must be continuous.

Remark 2.12. We list a few facts concerning closed convex sets and
hyperplanes; see [9, �2.2]. Let B be a closed and convex set in Rn. If the
interior of B is nonempty, then a hyperplane H cuts B if and only if H
meets the interior of B. Every point in ∂B is contained in a hyperplane
H of aff B that does not cut B. In other words, ∂B equals the union of
the faces of B.

3. Enlarging and Shrinking of Smooth Convex Sets

In this section we establish some properties of smooth convex bodies
that are of independent interest. However, some of the results are used
in the sequel.

Lemma 3.1. Let n ∈ N and let B be a smooth convex body in Rn. If the
union of all facets of B is dense in ∂B, then W(B) is dense in Lnn−1.

Proof. If n = 1, then the lemma is trivial. Thus, we may assume that
n ≥ 2. Let P ∈ Lnn−1 and let a be the unit vector orthogonal to P .
Pick an x ∈ ∂B such that ΦB(x) = a. Since the union of facets of B
is dense, we can �nd a convergent to x sequence (xi)i with xi ∈ Pi for
every i ∈ N, where each Pi is a facet of B. Since ΦB is continuous, we
obtain that limi→∞ΦB(xi) = a. Further, since ΦB(xi) is perpendicular
to Hi = aff Pi − xi for every i ∈ N, we get that limi→∞Hi = (Ra)⊥ = P
with every Hi ∈ W(B). Hence, W(B) is dense in Lnn−1. �

Lemma 3.2. Let n ∈ N, let B ⊂ Rn be a smooth convex body, and let

x /∈ B. If y ∈ B such that d(x,B) = d(x, y), then x−y
‖x−y‖ = ΦB(y).
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Proof. If n = 1, then the lemma follows immediately. Let us assume that
n ≥ 2. Let H be a hyperplane at y such that H is orthogonal to x − y.
We need to show that H is a supporting hyperplane to B. Suppose not.
Then H cuts B and we can take z ∈ B such that z /∈ H and z and x are
from the same side with respect to H, i.e., (x−y)(z−y) > 0. Let ẑ be the
orthogonal projection of x onto the ray r = y+ [0,+∞)(z− y). Now, ẑ is
not in the line segment 〈{y, z}〉 because, otherwise, we would have ẑ ∈ B
with ‖x − ẑ‖ < ‖x − y‖�a contradiction. Hence, z is between ẑ and y.
Observe that, in this case, ‖x− z‖ < ‖x− y‖ with z ∈ B, a contradiction
with the choice of y. We are done. �

Lemma 3.3. Let n ∈ N, let ε > 0, and let B ⊂ Rn. If B is a smooth

convex body with dense union of facets, then so is {x ∈ Rn : d(x,B) ≤ ε}.

Proof. Observe that if n = 1 the lemma is trivial. So we may assume
that n ≥ 2. Set Bε = {x ∈ Rn : d(x,B) ≤ ε}. It is trivial to see that Bε
is a convex body in Rn as well. First, we are going to show that Bε is
smooth. Let x ∈ ∂Bε. Take x′ ∈ B such that d(x,B) = d(x, x′).

Claim 1. If H is a supporting hyperplane at x′ to B then x− x′ +H
is the only supporting hyperplane at x to Bε.

Proof of Claim 1. By Lemma 3.2, we have that H is orthogonal to
x − x′. Let Ĥ be an arbitrary supporting hyperplane at x to Bε such
that Ĥ 6= x − x′ + H. Then d(x′, Ĥ) < d(x, x′) = ε. Thus, we can �nd

a y ∈ Bε such that Ĥ cuts the line segment 〈{x′, y}〉 and ‖x′ − y‖ = ε.

Consequently, Ĥ cuts Bε�a contradiction. Since Bε is a convex body,
by the Hahn�Banach theorem, there is a supporting hyperplane L at x
to Bε. So we get that L must be parallel to H, and we are done.

Next, let F ⊂ ∂B be a facet of B. So dimF = n− 1 and F = H ∩B,
where H is a supporting hyperplane to B. Clearly, if x1, x2 ∈ F , then
ΦB(x1) = ΦB(x2). Set

AF = {x+ εΦB(x) : x ∈ F}.

Claim 2. AF is a facet of Bε.

Proof of Claim 2. First of all, observe that dimAF = n − 1 because
AF is a translate of F . Let x ∈ aff AF . Find x∗ ∈ aff F = H such that
x − x∗ is orthogonal to H. Observe that d(x, x∗) = ε and d(x, z) > ε if
z ∈ (H ∪ B) \ {x∗}. Thus, x ∈ AF if and only if x∗ ∈ F ; i.e., AF =
aff AF ∩ Bε and aff AF is a supporting hyperplane to Bε. In addition,
since dimAF = n− 1, we have that AF is a facet. The proof of Claim 2
is done.

Finally, we show that the union of facets of Bε is dense in ∂Bε. Indeed,
let x ∈ ∂Bε be arbitrary. Let x̂ ∈ B be such that ‖x − x̂‖ = d(x,B) =
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ε. By Lemma 3.2, we have that x−x̂
‖x−x̂‖ = ΦB(x). Take a convergent

sequence {x̂i}∞i=1 to x̂ such that each x̂i is in some facet of B. Set xi =
x̂i+ εΦB(x̂i). By Claim 2, xi belongs to some facet of Bε for every i ∈ N.
It su�ces to show that limi→∞ xi = x. By Remark 2.11, we have that
limi→∞ εΦB(x̂i) = ε limi→∞ ΦB(x̂i) = ε x−x̂

‖x−x̂‖ = x− x̂. Thus,

lim
i→∞

xi = lim
i→∞

(x̂i + εΦB(x̂i))

= lim
i→∞

x̂i + lim
i→∞

εΦB(x̂i) = x̂+ x− x̂ = x.

This completes the proof of the lemma. �

Theorem 3.4. Let n ∈ N and let T : Rn → Rn be a linear and onto

mapping. If B is a smooth convex body in Rn with dense union of facets,

then so is T (B).

Proof. Let T (B) = BT . It is well known that T , being a linear map from
Rn onto Rn, must be continuous and one-to-one. Likewise, T−1 is linear
and continuous, and, therefore, both T and T−1 are linear homeomor-
phisms. By [10, Corollary 3.6.7], we have that T (∂B) = ∂BT . Moreover,
observe that T (intB) = intT (B). In addition, T−1(∂BT ) = ∂B and
T−1(intBT ) = intB. Further, because T is linear and onto, we have that
the image of a plane is a plane with the same dimension.

Claim 1. BT is a smooth convex body.

Proof of Claim 1. It is trivial to see that BT is a convex body. Let y ∈
∂BT and suppose that there are two distinctive supporting hyperplanes
H1 and H2 at y to BT . Then T−1(H1) and T−1(H2) are supporting
hyperplanes at x = T−1(y) ∈ ∂B to B. Thus, since B is a smooth
convex body, we get that T−1(H1) = T−1(H2), a contradiction, with T
being bijective and having H1 6= H2. So there is only one supporting
hyperplane at y to BT . Hence, BT is a smooth convex body. The proof
is complete.

Now, we will show that the union of all facets of BT is dense in ∂BT .
Let F be a facet of B; i.e., dimF = n− 1 and F = H ∩ ∂B, where H is
a supporting hyperplane to B. Let FT = T (F ).

Claim 2. FT is a facet of BT .

Proof of Claim 2. Observe that HT = T (H) is a supporting hyperplane
to BT . We have that FT ⊂ HT ∩∂BT . On the other hand, if y ∈ HT ∩BT ,
then there is an x ∈ F such that T (x) = y. Hence, y ∈ FT and, therefore,
FT = HT ∩ ∂BT . Since F is a facet, we can take a U open in H with
U ⊂ ∂B. Since T �H is a homeomorphism, we have that dimT (U) = n−1.
In addition, T (U) ⊂ ∂BT . Thus, T (U) ⊂ HT ∩∂BT = FT . Consequently,
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dimFT = n − 1 and, therefore, FT is a facet. The proof of the claim is
complete.

Now, consider F = {F : F is a facet of B}. Since T is onto and
⋃
F

is dense in ∂B, we get that T (
⋃
F) =

⋃
F∈F T (F ) is also dense in ∂BT .

Further, by Claim 2, each T (F ), F ∈ F , is a facet of BT . Consequently,
the union of all facets of BT is dense in ∂BT . Thus, BT is as required.
That completes the proof of the theorem. �

Let B be a smooth convex body in Rn with dense union of facets
and let T : Rn → Rn be any �nite composition of translations and linear
bijections. Then, in view of Theorem 3.4, T (B) must also be a smooth
convex body in Rn with dense union of facets. In particular, if w ∈ Rn,
r > 0 and T : Rn → Rn is de�ned as T (x) = w + (x− w)r, a radial map
with a pole w, then T (B) must be a smooth convex body in Rn with
dense (in ∂T (B)) union of facets. Thus, we prove the following lemma.

Lemma 3.5. Let n ∈ N, let B be a smooth convex body in Rn with dense

union of facets, and let w ∈ Rn. Then for every positive real number r,
the set B(w, r) = {w + (x − w)r : x ∈ B} is a smooth convex body with

dense union of facets.

4. Constructions in R2

In this section, we prove Theorem 1.2 for n = 2 by constructing B(2)
as required. First, we de�ne a continuous and decreasing function f(x) :
[0, 1] → [1, 0], inductively, as follows. Set H1 = (1/3, 2/3) and C1 =
[0, 1] \H1 = [0, 1/3] ∪ [2/3, 1] and de�ne f(x) = 1/2 for x ∈ H1. Suppose

that we have constructed Hk and Ck and have de�ned f(x) on
⋃k
m=1Hm.

Assume that Ck is a union of 2k disjoint closed subintervals of [0, 1], each
of length 3−k, i.e.,

Ck =

2k⋃
m=1

[am, bm]

with bm − am = 3−k, 1 ≤ m ≤ 2k, and a1 < b1 < · · · < a2k < b2k . For
each [am, bm], we consider its �middle third� (am1

, bm1
). De�ne

f�(am1
, bm1

) = 1 +
1− 2m

2k+1
, 1 ≤ m ≤ 2k,

Hk+1 =
⋃
{(am1 , bm1) : 1 ≤ m ≤ 2k},

Ck+1 = [0, 1] \
k+1⋃
m=1

Hm =

2k⋃
m=1

[am, am1 ] ∪
2k⋃
m=1

[bm1 , bm].
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Clearly, Ck+1 is a union of 2k+1 disjoint closed subintervals of [0, 1],
each of length 3−k−1. In addition, Ck+1 ⊂ Ck. It is well known that C =⋂∞
m=1 Cm is the Cantor middle-third set. We have de�ned f�[0, 1]\C, and

observe that it is uniformly continuous. That allows us to continuously
extend f�[0, 1] \C over [0, 1] (see, for example, [7, Theorem 4.3.17]) since
the image set [0, 1] is complete. By the construction, one can easily see
that f on [0, 1] must be decreasing. Moreover, since the Lebesque measure

of C is zero, we can estimate that
∫ 1

0
f(x)dx = 1/2. Set F̂ (x) =

∫ x
0
f(t)dt

for x ∈ [0, 1]. Observe that F̂ (x) is di�erentiable and concave down since

F̂ ′(x) = f(x) is decreasing. Moreover, there is a dense set of intervals on
which f is constant and, therefore, the nondegenerate linear segments on
the graph of F̂ (x) form a dense subset. Next, we will de�ne a function
F ∗ : [−3/2, 3/2]→ [0, 3/2] as follows:

(1) F ∗(x) = 1 + F̂ (x + 1) for x ∈ [−1, 0]; i.e., the graph of F ∗ on

[−1, 0] is the graph of F̂ translated with the vector a = (−1, 1);
(2) the graph of F ∗ on the interval [−3/2,−1]) is symmetric to the

graph of F ∗ on the interval [−1, 0]) with respect to the line
R(−1, 1);

(3) �nally, we make F ∗(x) an even function by setting F ∗(x) =
F ∗(−x) for −3/2 ≤ x ≤ 3/2.

Notice that at the points x = −1 and x = 0, the function F ∗ is dif-
ferentiable; i.e., (F ∗)′(−1) = 1 and (F ∗)′(0) = 0. Furthermore, observe
that

(1) the union of all nondegenerate line segments on the graph of F ∗

is dense in the graph of F ∗;
(2) limx→−3/2+(F ∗)′(x) = +∞ and limx→3/2−(F ∗)′(x) = −∞;
(3) F ∗ is concave down.

Now, for sake of convenience, we de�ne a function Θ : [−1, 1] → [0, 1]
by shrinking F ∗(x) slightly as follows. The graph G(Θ) is de�ned in the
following way:

G(Θ) = {(2x/3, 2F (x)/3) : x ∈ [−3/2, 3/2]}.

Remark 4.1. De�ne the map T : Rn → Rn as T (x) = 2x/3 for any
x ∈ Rn. Thus, the graph of the function F ∗(x) goes to the graph of
the function Θ(x). By Lemma 3.5, we have that Θ(x) preserves all
the above mentioned properties of F ∗(x). In particular, we have that
limx→−1+ Θ′(x) = +∞ and limx→1− Θ′(x) = −∞.

Now we can de�ne the required smooth convex body B(2). The bound-
ary of B(2) consists of all points of the form (x,Θ(x)) and (x,−Θ(x)) for
x ∈ [−1, 1]. Notice that at both points (−1, 0) and (1, 0) there is a unique



SMOOTH CONVEX BODIES 79

supporting line, namely the vertical line. Clearly, B(2) is compact, con-
vex, and smooth with a dense set of linear segments on its boundary. By
Lemma 3.1, we get that W(B(2)) is dense in L2

1. Furthermore, by the
construction, B(2) is symmetric with respect to the origin and both axes
and, at each boundary point, there is only one supporting line to B(2).
Finally, let us show that the last condition of Theorem 1.2 holds. Let
H ∈ W(B(2)). Then there is an x ∈ ∂B(2) such that F = (x+H)∩B(2)
is a facet. Let φ : R2 → R2 be de�ned by φ(x) = −x. Now, we have
that φ(B(2)) = B(2). In addition, clearly, φ is linear and injective and,
by Claim 2 in the proof of Theorem 3.4, we get that −F is also a facet.
Since F 6= −F , we obtain that there is no exposed point by {H}. Hence,
X 1

p (B(2),W(B(2))) = ∅. That completes the construction of B(2) in R2.

5. Constructions in Rn

We use an induction to construct B(n) ⊂ Rn, n ≥ 3, satisfying Theo-
rem 1.2. To do this, we are going to make signi�cant use of the function
Θ : [0, 1]→ [0, 1], de�ned in the previous section. Suppose that B(n− 1),
n ≥ 3, has been already constructed. We need to construct B(n) in Rn.
Set e = (0, 0, . . . , 1) ∈ Rn. For t ∈ R set

Ht = {x = (x1, . . . , xn) ∈ Rn : xn = t}.

Identifying H0 with Rn−1, we let B(n − 1) be a subset of H0 such that
B(n− 1) = −B(n− 1). For t ∈ [−1, 1], de�ne

At = {x ∈ H0 : d(x,B(n− 1)) ≤ Θ(t)},

B(n) =
⋃

t∈[−1,1]

(At + te).

From the de�nition, we immediately have that

Ht ∩B(n) = (At + te) for t ∈ [−1, 1] and

Ht ∩B(n) = ∅ if t 6∈ [−1, 1].

Claim 5.1. B(n) is a symmetric convex body in Rn.

Proof. Let {xi}∞i=1 be a sequence in B(n) that converges to x. Let (xi)n =
ti for every i ∈ N. So limi→∞ ti = xn = t. Clearly, xi ∈ Ati + tie, i ∈ N
and t ∈ [−1, 1]; therefore, xi = x̂i + tie with x̂i ∈ Ati . Consequently,
d(x̂i, B(n − 1)) ≤ Θ(ti) for every i ∈ N. Also, limi→∞Θ(ti) = Θ(t)
because Θ is continuous. Further,

d(x− te, B(n− 1)) = d( lim
i→∞

xi − e lim
i→∞

ti, B(n− 1))

= lim
i→∞

d(xi − tie,B(n− 1)) ≤ lim
i→∞

Θ(ti) = Θ(t).
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Hence, x − te ∈ At and, therefore, x ∈ At + te ⊂ B(n) for t ∈ [−1, 1].
Thus, B(n) is closed.

Let us show that B(n) is symmetric, i.e., B(n) = −B(n). Take t ∈
[−1, 1] and x ∈ At + te. So x = x̂ + te for some x̂ ∈ At. Observe that
At = A−t and, also, At is symmetric since B(n− 1) is symmetric. Then
−x = −x̂− te = (−x̂) + (−t)e ∈ A−t− te. Since A−t− te ⊂ B(n), we are
done.

Now, let w ∈ At1 + t1e and v ∈ At2 + t2e for some t1, t2 ∈ [−1, 1].
Let p = mw + (1 − m)v for some m ∈ [−1, 1]. It su�ces to show that
p ∈ At + te, where t = mt1 + (1 −m)t2. Indeed, w = w∗ + a(w) + t1e
and v = v∗ + a(v) + t2e with w∗, v∗ ∈ B(n − 1), ‖a(w)‖ ≤ Θ(t1), and
‖a(v)‖ ≤ Θ(t2). Thus,

p = (mw∗ + (1−m)v∗) +ma(w) + (1−m)a(v) + te.

Since Θ(x) is concave down, we get

‖ma(w) + (1−m)a(v)‖ ≤ m‖a(w)‖+ (1−m)‖a(v)‖

≤ mΘ(t1) + (1−m)Θ(t2) ≤ Θ(mt1 + (1−m)t2) = Θ(t).

Furthermore, since B(n− 1) is convex, we have that mw∗ + (1−m)v∗ ∈
B(n − 1). Therefore, we conclude that (mw∗ + (1 − m)v∗) + ma(w) +
(1−m)a(v) ∈ At. Hence, p ∈ At+ te ⊂ B(n). Thus, B(n) is convex. The
fact that dimB(n) = n is obvious. The claim is proved. �

Let w ∈ ∂B(n) \ ((A1 + e)◦ ∪ (A−1 − e)◦); i.e., w ∈ ∂B(n) \ ((B(n− 1)
+ e)◦ ∪ (B(n− 1)− e)◦) since A1 = A−1 = B(n− 1) (Θ(1) = Θ(−1) = 0).
Then there is a t(w) ∈ [−1, 1] such that w ∈ ∂(At(w) + t(w)e). Find
w0 ∈ ∂(B(n− 1) + t(w)e) such that ‖w − w0‖ = d(w,B(n− 1) + t(w)e).
Notice that, in fact, ‖w−w0‖ = Θ(t(w)). Next, there is a ŵ ∈ ∂B(n− 1)
such that w0 = ŵ + t(w)e. Since B(n− 1) is a smooth convex body with
dimB(n − 1) ≥ 2, we can set a = ΦB(n−1)(ŵ). Observe, by Lemma 3.2,

we have that if w 6= w0, then
w−w0

‖w−w0‖ = a = w−w0

Θ(t(w)) . Consequently,

Θ(t(w))a = w − w0 since w = w0 if and only if Θ(t(w)) = 0. Now, we
de�ne

Mw = {ŵ + te+ Θ(t)a : t ∈ [−1, 1]}.
For t = t(w), we get ŵ+ t(w)e+ Θ(t(w))a = ŵ+w−w0 + t(w)e = w.

Thus, w ∈ Mw. By the de�nition, Mw is the graph of the function
Θ(x) in the 2-dimensional orthogonal coordinate system with origin ŵ
and perpendicular axes ŵ + Re and ŵ + Ra (a ⊥ e).

Claim 5.2. If v ∈ ∂(At(w) + t(w)e), then the coordinates of v on Mv and

w on Mw with respect to their coordinate systems are the same.
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Proof. Observe that the �rst coordinate of v onMv is the same as the �rst
coordinate of w on Mw, namely t(w). Then, being on the graph of the
same function, their second coordinates are the same, namely Θ(t(w)).

�

Claim 5.3. aff Mw ∩ intB(n) 6= ∅.

Proof. Observe that ŵ ∈ aff Mw ∩ intB(n). �

From the construction of Mw, we have the following interesting claim.

Claim 5.4. If v ∈Mw, then Mv = Mw.

Claim 5.5. If v ∈ Mw, then there is only one supporting hyperplane at

v to B(n).

Proof. We �nd t ∈ [−1, 1] such that v ∈ At + te. Let H be a supporting
hyperplane at v to At + te in aff(At + te). We have two cases.

Case 1: t ∈ {−1, 1}; i.e., v is an end point of Mw. Let v = ŵ + e.
Clearly, v ∈ A1 + e. Observe that aff(A1 + e) is a supporting hyperplane
at v to B(n). Suppose L 6= aff(A1 + e) is also a supporting hyperplane at
v to B(n). First, let us see that H ⊂ L. Indeed, since dim(A1 +e) = n−1
and L 6= aff(A1+e), we have that L∩aff(A1+e) is a supporting hyperplane
at v to A1 +e in aff(A1 +e). Since A1 +e is a smooth body in aff(A1 +e),
H is the only one with this property. Thus, H = L ∩ aff(A1 + e). Now,
consider ` = v+Ra. By de�nition, ` ⊂ aff(A1+e), ` ⊥ H, and ` ⊂ aff Mw.
Moreover, by Remark 4.1, we have that limx→1− Θ′(x) = −∞. Thus, we
get that ` is a one-sided tangent line to Mw in aff Mw. That implies that
L ∩ aff Mw must contain `. Consequently, (H ∪ `) ⊂ L and, therefore,
aff(A1 + e) = aff(H ∪ `) ⊂ L. Hence, L = aff(A1 + e)�a contradiction.
The case when v = ŵ − e can be proved analogously.

Case 2: t ∈ (−1, 1). Let L be a supporting hyperplane at v to B(n).
Then L 6= aff(At + te) since intB(n) ∩ aff(At + te) 6= ∅. As in Case 1,
we can show that H ⊂ L. Further, by Claim 5.3, aff Mw 6⊂ L. Clearly,
dim aff Mw = 2 and dimL = n − 1 and, therefore, dim(L ∩ aff Mw) = 1.
Let ` = aff Mw ∩L. Then ` is a tangent line to Mw in aff Mw. Moreover,
since ` is not perpendicular to Re, we have that ` 6⊂ At + te. Hence,
` ∩H = {v} with aff(` ∪H) ⊂ L. Next, dim(` ∪H) = n− 2 + 1 = n− 1.
Hence, aff(` ∪ H) = L and L is uniquely determined by ` and H. The
claim is proved. �

Lemma 5.6. B(n) is a smooth convex body.

Proof. Let v ∈ ∂B(n). Observe that aff(A1 + e) and aff(A−1 − e) are
supporting hyperplanes to B(n). Thus, both (A1 + e) and (A−1 − e) are
facets of B(n). So if v ∈ (A1 + e)◦ or v ∈ (A−1 − e)◦, then there are
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unique supporting hyperplanes at v to B(n). Thus, we may assume that
v ∈ ∂B(n) \ ((A1 + e)◦ ∪ (A−1 − e)◦). Let us consider Mv. Then v ∈Mv.
Now, by Claim 5.5, we get that there is only one supporting hyperplane
at v to B(n). Consequently, the lemma holds. �

Lemma 5.7. The union of all facets of B(n) is dense in ∂B(n).

Proof. It is easy to notice that both A1 +e and A−1−e are facets of B(n).
So let v ∈ ∂B(n)\((A1+e)∪(A−1−e)) and let ε > 0. ConsideringMv, we
have that v ∈Mv. Since nondegenerate linear segments on Mv are dense,
we �nd a v1 ∈Mv such that ‖v−v1‖ < ε/2 and v1 is an interior point of a
linear segment of Mv. By Claim 5.4, we have Mv = Mv1 . Further, there
is a t ∈ (−1, 1) such that v1 ∈ At + te = Bt. By Lemma 3.3, the union
of all facets of Bt in aff Bt is dense in ∂Bt. Thus, we can �nd a v2 ∈ Bt
such that ‖v1 − v2‖ < ε/2 and v2 is an interior point of some facet F of
Bt in aff Bt. By Claim 5.2, since Mv = Mv1 , v2 is also an interior point
of a linear segment L of Mv2 . Obviously, aff L is the tangent line at v2 to
Mv2 in the 2-dimensional plane aff Mv2 . Since aff L is not perpendicular
to Re, we have that aff L ∩ aff Bt = {v2}. Thus, aff L ∩ aff F = {v2}
because F ⊂ Bt. By Lemma 5.6, we can consider the unique supporting
hyperplane H at v2 to B(n). Next, since v2 ∈ L◦ and v2 ∈ F ◦, we obtain
that

v2 ∈ L ∪ F ⊂ 〈L ∪ F 〉 ⊂ aff(L ∪ F ) ⊂ H.

Moreover, dim〈L ∪ F 〉 = 1 + n− 2 = n− 1 with v2 ∈ 〈L ∪ F 〉◦. Now, we
get that F̂ = H ∩B(n) is a facet of B(n) with v2 ∈ F̂ ◦ because 〈L∪F 〉 ⊂
B(n) ∩H. In addition, ‖v − v2‖ ≤ ‖v − v1‖+ ‖v1 − v2‖ < ε/2 + ε/2 = ε.
We are done. �

Now, we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. By Claim 5.1, B(n) is a symmetric convex body
in Rn. Next, B(n) is smooth by Lemma 5.6 and the union of its facets
is dense in ∂B(n) by Lemma 5.7. Applying Lemma 3.1, we get that
W(B(n)) is dense in Lnn−1. Further, we show that the last condition of
Theorem 1.2 holds. Let H ∈ W(B(n)). We �nd an x ∈ ∂B(n) such that
F = (x+H)∩B(n) is a facet. Let φ : Rn → Rn be de�ned by φ(x) = −x.
Clearly, φ is linear and injective and satis�es φ(B(n)) = B(n). Now,
by Claim 2 of the proof of Lemma 3.3, we get that −F is also a facet.
Moreover, F 6= −F and, therefore, there is not an exposed point by {H}.
Hence, Xn−1

p (B(n),W(B(n))) = ∅. Thus, for every n ∈ N, n ≥ 2, we have
constructed the required smooth convex body B(n). That completes the
proof. �
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