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Abstract. Instance segmentation is one of the key technology in many
domains, such as medical image analysis, traffic and critical infrastruc-
tures monitoring, understanding of natural scenes. Recent methods for
instance segmentation rely on bounding box regression, however the
bounding boxes are not a natural representation for many domains.

We address the limitations of the bounding boxes with a new approach
called BoundaryNet, in which we train a fully convolutional neural net-
work to draw the boundaries around each object of each class. The bound-
aries allow for an easy bounding box and mask inference while still pro-
viding detailed information about the shape of the object.BoundaryNet

avoids the restrictions of YOLO such as the number of bounding boxes,
while it is more computationally efficient than the R-CNN methods.

The conducted experiments with the proposed neural network architec-
ture BoundaryNet on the Common Object in Context (COCO) dataset
show promising results in improving the instance segmentation process.
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1 Introduction

The Instance Segmentation is widely used in various fields such as medical
image analysis, traffic monitoring, and remote sensing. The field of medicine
has always been a primary source of image analysis tasks. Instance segmenta-
tion is extremely useful in histopathology for the detection of nuclei that can be
used to diagnose dangerous diseases [9,18] or segmentation of organs or tumors
in the organs from CT scans and MRI [1]. The combination between Semantic
Segmentation and Instance Segmentation is often used in the recognition of com-
plex street scenarios by self-driving cars [13] or by traffic management systems
[24], as well as in the monitoring of critical infrastructures such as stations and
airports [20]. The challenging tasks in the sphere of satellite and aerial imagery
have also benefited the instance segmentation field. Such tasks include auto-
mated artificial object detection and building extraction from satellite images
[21], evaluating building damage after a large-scale natural disaster from post-
event aerial images [23], extracting geographical features (such as water bodies)
from satellite maps using bounding boxes [3]. Of course, these areas do not
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exhaust the field of application of instance segmentation - recently its use in
more diverse tasks is increasing. A brief reference in Scopus on the keyword
“instance segmentation” shows an exponential increase in the number of articles
from 2016 so far.

In 2014 Girshick et al. proposed R-CNN for instance segmentation [5]. This
approach uses a class agnostic region proposal method, based on a generic object-
ness score, to propose around 2000 regions for each image. Then from each
region, a 4096-dimensional feature vector is extracted by a convolutional neural
network, which was trained on the Image-Net challenge. Finally, each of these
feature vectors is classified by a SVM.

This approach is later improved by Fast R-CNN for speed and accuracy by
sharing the computations for feature extraction between the proposed regions.
In the improved solution, feature maps are extracted by a convolutional neural
network, then for each region proposal a feature vector is extracted, through a
custom max-pool layer. For each of these feature vectors, a class and bounding
box are predicted, using fully connected layers [4]. Further improvements in the
same direction are made by Faster R-CNN by using a region proposal network
and sharing the computations between this network and the feature extraction
[17].

Based on these methods is proposed Mask R-CNN [8] which adds a third
path to the Fast R-CNN to predict also the semantic mask for each bounding
box. Gkioxari et al. [6] replace the mask branch in Mask R-CNN with a branch
that predicts a 3D triangular mesh.

A different approach is used by Redmon et al. [14], which is called You Only
Look Once (YOLO). YOLO splits the image in S × S grid and for each cell
from the grid it predicts B bounding boxes and C class probabilities. For each
bounding box is predicted also a confidence. The input image is processed by
24 convolutional layers, followed by 2 fully connected layers. The shape of the
output tensor is S × S × (B ∗ 5 + C). This method predicts one category and its
bounding box for each cell. YOLO is simpler and works much faster than the
R-CNN pipeline, however, the performance is lower at 57.9% mAP. An improved
version of YOLO is YOLO9000 which utilizes batch normalization, finer grid,
relative to the cell centers bounding box regression, and is capable of detecting
over 9000 object categories [15]. Further improvements were made in the third
version [16].

Frequently bounding boxes are not a good approximation for the object
boundaries in many domains. For instance, to overcome this problem Schmidt et
al. [19] use star-convex polygons for the detection of cells in microscope images,
while Loncomilla et al. [12] propose replacing bounding boxes with ellipses for
detecting rocks. Other methods such as Mask R-CNN could overcome this prob-
lem by also predicting masks, however, this might become a problem for over-
lapping objects of the same category, due to crowding.

Here we propose a different approach to instance segmentation, called
BoundaryNet, in which we train a fully convolutional neural network to draw
the boundaries around each object of each class. This method is inspired by Yu
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et al. [22] who use a neural network to draw boundaries around each category in
semantic segmentation, to improve the performance of their model. Instead of
drawing a boundary around each class, we draw boundaries around each instance
of a class.

Drawing the boundaries does not impose hard restrictions on the number
of bounding boxes, such as YOLO, does not have a complex pipeline such as
the R-CNN architectures, and has great flexibility with respect to the object
shape. The boundaries allow for easy bounding box and mask inference while
still providing detailed information about the shape of the object.

This paper is organized in 5 sections. Section 2 describes the problem repre-
sentation, the network architecture, and the error function. Section 3 provides
details about dataset size, image resolution, data augmentation, training algo-
rithm parameters, network size, etc. Section 4 shows the results from the exper-
iments and Sect. 5 contains discussion, conclusion, and directions for further
research.

2 BOUNDARYNET

The problem of instance segmentation is addressed by BoundaryNet by pre-
dicting the semantic masks for each class as well as the boundaries of each object.
The outputs of the network are two tensors, one for the semantic segmentation
and one for the boundaries. The semantic tensor has the shape H ×W ×(C +1),
where H and W are the height and the width of the image, and C is the number
of categories. One more channel is used for the background category, which is
considered everything else. The boundary tensor predicts whether each pixel is
a part of a boundary or not. It has the shape H ×W × 2. In general, it could be
replaced with H × W and sigmoid activation, since it is a binary classification.

2.1 Labelling

For the semantic segmentation the class of each pixel is determined by the cate-
gory of the object it belongs to. This is a multi-category classification at a pixel
level. Therefore, the semantic label is a matrix, Ls ∈ Lh×w, where L is the set
of the category labels, w is the width and h is the height of the input image.
During training each such matrix is converted into one-hot notation, making
it a 3D tensor. If there are less than 256 categories, the semantic label can be
represented as a gray-scale image.

For the boundary output, the class of each pixel is “background”, unless it
is on the inside of an edge of an object, in which case it is assigned the label
“boundary”. The boundary label a matrix, Lb ∈ {0, 1}h×w, where w is the width
and h is the height of the input image. The label can be represented as an image
containing the edges between the instances of interest and the background, Fig. 1.
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Fig. 1. The boundary label is a matrix, where each cell is either 0 or 1 depending on
whether the pixel is a part of a boundary of an object of interest.

2.2 Segments Extraction

Once the boundaries and the semantic information is extracted from the network,
each object of each class needs to be determined. The method consists of several
steps:

1. The boundaries are used to extract several segments of connected background.
Each segment is numbered with a different integer, creating a segment mask s.

2. For each category the semantic mask is extracted, ck, by setting the pixels
classified as this category to 1 and the rest to 0.

3. Each semantic mask is multiplied by the segments mask, element-wise

sk = s � ck (1)

where sk is the segments, belonging to category k.
4. Finally for each category, k, the segments have to be grouped into objects.

This step is outside the scope of this paper and remains for further develop-
ment.

2.3 Network Architecture

The architecture of BoundaryNet is based on the architecture of UNet [18],
(Fig. 2). It has one encoder and two independent decoders. Each skip connection
from the encoders is connected to the corresponding level of both decoders. At
each level the network has two convolutions with 3 × 3 kernel. Each convolution
uses batch normalization and has ReLU activation. At each level of the encoder
a 2 × 2 MaxPool operation is used. In the decoders UpSize operation with
linear resampling is used. After the last convolution of each decoder, a 1 × 1
convolution is used with softmax activation as a classifier for each pixel.

The error for the network is a weighted sum of cross-entropy error for the
semantic decoder and focal loss [10] for the boundary decoder



264 T. Boyadzhiev and K. Ivanova

Fig. 2. Framework of BoundaryNet.

E = αFocal + (1 − α)CE α ∈ [0, 1] (2)

where

Focal =
2∑

k=1

(1 − pbk)γbk log (pbk) (3)

and bk is the one-hot notation for the boundary labeling, pbk is the probability
of category k in the boundary decoder, and γ is a parameter. Since for the
boundary a binary classification is used, k ∈ 1, 2. This part can be substituted
by a sigmoid and binary focal loss.

The filters in each level, f(l), of the network are determined by

f(l) = �f2
l
d � (4)

where f is the number of frames in level 0, which is before the first MaxPool

layer, l is the level number, and d is a divider. For example, if the network has
5 MaxPool layers, it will have 6 levels, numbered from 0 to 5.

3 Methods

The network was trained on the COCO dataset for people only [11]. The images
were scaled to a resolution of 256×256. Objects which are composed of less than
256 pixels in total were removed, using image in-painting. In total 38027 images
were extracted. The boundary labels were created by using an edge detection
algorithm for each of the segments of objects of interest separately and then
interpolated on top of each other. Then a dilation of 1 pixel in each direction
was used to make them thicker and avoid small discontinuities.
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The network was initialized using the Xavier method [7], where the weights
were drawn from normal distribution and it was trained with the ADAM algo-
rithm with learning rate 10−3, β1 = 0.9, β2 = 0.999, and ε = 10−5 for 100 itera-
tions. The training algorithm used batch size of 64 images. During the training
no L-regularization or dropout was used.

The training and testing set was split randomly, using 80% of the data for
training and the rest for testing. The training set was augmented using ran-
dom zoom, horizontal flip, vertical flip, and rotation. The parameters for these
operations are summarized in Table 1.

Table 1. Probability of augmentation and the parameters.

Operation Probability Parameters

Zoom 0.2 ∼ U (1, 1.5)

Rotation 0.2 ∼ U
(−π

2
, π
2

)

Horizontal flip 0.2

Vertical flip 0.2

The parameter of the weighted sum of the error function is α = 0.1. The
parameter for the focal loss is γ = 2. The filters in the topmost layer are f = 24
and the divider is d = 1.25. The network has 5 MaxPool layers, meaning that
in the lowest level it uses a feature map of 8 × 8 with 384 channels.

For the initialization and training algorithm were used the implementations
provided by Wolfram Mathematica 13.0.

4 Results

Figure 3 shows the training and testing intersection over union (IOU) for the
network trained for 100 iterations. The result shows that there is no over-fitting
for the first 100 iterations. The semantic IOU reached 67.7% on the testing
dataset and 71.6% on the training dataset. The boundary IOU reached 46.5%
on the testing dataset and 46.4% on the training dataset. The network could
reach better results if it is trained longer time since it has not fully converged.

Using IOU to measure the quality of the boundaries is not very appropriate,
since it is too sensitive. For example, if the boundary generated by the network
is half the thickness, the IOU would be 0.5, however, if it is unbroken and in the
correct place, it can still be used to identify the object correctly.

Figure 4a shows examples from the validation set, where the network man-
aged to find semantic mask and object boundaries with quality sufficient to
distinguish between objects. Figure 4b shows examples from the validation set,
where the network has made mistakes with the boundaries and the semantic
segmentation.
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Fig. 3. Training and testing intersection over union (IOU) for the boundaries and the
semantic segmentation.

Most of the mistakes for the boundaries are false negative, which will cause
incorrect segment merging. For instance, in the first example of the mistakes
(the left hand side of Fig. 4b), in the top right corner the contour of the palm
of the person is broken, which can cause his hand to be identified as part of the
person behind him.

In the second image (the center of Fig 4b), the boundary line of the child’s
elbow is broken. This will cause the child and the body of the man behind to be
identified as the same instance, while the head of the man will become a separate
instance.

The haze in the third image (the right hand side of Fig. 4b), causes the
boundary between the woman and the child to be broken and they will be
merged into the same instance later. In this case the algorithm will identify two
people instead of three.

5 Conclusion

In this paper we proposed a new approach for instance segmentation, based
on drawing boundaries around each object of interest. We used a deep fully
convolutional neural network, named BoundaryNet. The network, which is
based on the UNet architecture, has one encoder and two parallel decoders.
One of the decoders produces semantic masks and the other produces boundaries
around each object of interest.

We demonstrated successful boundary identification for people, however, it
is possible to have improvements in the quality of the boundaries. Further devel-
opments can include exploring different network architectures, such as channel
attention blocks [22] or atrous pooling [2]. Other work in the same area is han-
dling cases when the same object is covered by another object and therefore
splitting it into two segments.

The results which we demonstrated here are inferior to other approaches
such as YOLO and R-CNN, however, using transfer learning and exploring
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(a)
boundaries.

(b)
objects.

Fig. 4. Examples for drawing boundaries.
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other architectures could improve the quality of the results. Boundaries with
improved quality can provide an alternative approach to instance segmentation
with greater flexibility concerning the object shape. Such approach can be useful
to domains, dealing with objects which are hard to be described by bounding
boxes.
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