EULER'S LINE AND EULER'S CURVE DEPENDENT BY A POINT

Veselin Nenkov
BULGARIA
E-mail: vnenkov@mail.bg

Keywords: Euler's line with respect to a point, Euler's curve with respect to a point, THE GEOMETER'S SKETCHPAD

Abstract

Let $k(O)$ be a central curve of second degree circumscribed around a triangle $A B C$ and let O be the center of $k(O)$. Further let A_{0}, B_{0}, C_{0} be the midpoints of $B C, C A, A B$ respectively.

Proposition 1. The lines $h_{a}(O), h_{b}(O), h_{c}(O)$ through A, B, C, and parallel to $O A_{0}, O B_{0}, O C_{0}$, respectively, concur at a point $H(O)$.

Following the ideas related to the Euler's line, we can consider the point $H(O)$ as an analogue to the orthocenter of the $\triangle A B C$. Let the lines $h_{a}(O), h_{b}(O), h_{c}(O)$ meet $B C, C A, A B$ at A_{1}, B_{1}, C_{1} and also meet $k(O)$ at A_{2}, B_{2}, C_{2}, respectively. Denote by $A^{\prime}, B^{\prime}, C^{\prime}$ the symmetric points of $H(O)$ with respect to A_{0}, B_{0}, C_{0}. It holds

Proposition 2. The points A_{2}, B_{2}, C_{2} are symmetric to $H(O)$ with respect to A_{1}, B_{1}, C_{1}.

Proposition 3. The points $A^{\prime}, B^{\prime}, C^{\prime}$ are symmetric to $H(O)$ with respect to A_{0}, B_{0}, C_{0}.

So for the centroid G of the $\triangle A B C$ it holds Proposition 4. Points $O, H(O)$ and G are collinear and $\frac{H(O) G}{G O}=$ $\frac{1}{2}$.

The line $l(O)$ through $O, H(O)$ and G plays an analogue to the Euler's line of $\triangle A B C$. The curve $\Omega(H(O))$ of second grade defined by the points $A_{0}, B_{0}, C_{0}, A_{1}, B_{1}, C_{1}$ is an analogue to the Euler's circle and as it should be contains the midpoints A_{3}, B_{3}, C_{3} of the segments $H(O) A, H(O) B, H(O) C$, respectively.

The above results give reason to name the line $l(O)$ and curve $\Omega(H(O))$ Euler's line and Euler's curve for the $\triangle A B C$ with respect to the point O. The heuristic part of the results has been done by the software "THE GEOMETER'S SKETCHPAD". A series of properties of $l(O)$ and $\Omega(H(O))$ has been established and proved.

