EULER'S LINE AND EULER'S CURVE DEPENDENT BY A POINT

Veselin Nenkov BULGARIA E-mail: vnenkov@mail.bg

Keywords: Euler's line with respect to a point, Euler's curve with respect to a point, THE GEOMETER'S SKETCHPAD

Abstract

Let k(O) be a central curve of second degree circumscribed around a triangle ABC and let O be the center of k(O). Further let A_0 , B_0 , C_0 be the midpoints of BC, CA, AB respectively.

Proposition 1. The lines $h_a(O)$, $h_b(O)$, $h_c(O)$ through A, B, C, and parallel to OA_0 , OB_0 , OC_0 , respectively, concur at a point H(O).

Following the ideas related to the Euler's line, we can consider the point H(O) as an analogue to the orthocenter of the $\triangle ABC$. Let the lines $h_a(O)$, $h_b(O)$, $h_c(O)$ meet BC, CA, AB at A_1 , B_1 , C_1 and also meet k(O) at A_2 , B_2 , C_2 , respectively. Denote by A', B', C' the symmetric points of H(O) with respect to A_0 , B_0 , C_0 . It holds

Proposition 2. The points A_2 , B_2 , C_2 are symmetric to H(O) with respect to A_1 , B_1 , C_1 .

Proposition 3. The points A', B', C' are symmetric to H(O) with respect to A_0 , B_0 , C_0 .

So for the centroid G of the $\triangle ABC$ it holds

1

Proposition 4. Points O, H(O) and G are collinear and $\frac{H(O)G}{GO} =$

 $\overline{2}$. The line l(O) through O, H(O) and G plays an analogue to the Euler's line of $\triangle ABC$. The curve $\Omega(H(O))$ of second grade defined by the points A_0 , B_0 , C_0 , A_1 , B_1 , C_1 is an analogue to the Euler's circle and as it should be contains the midpoints A_3 , B_3 , C_3 of the segments H(O)A, H(O)B, H(O)C, respectively.

The above results give reason to name the line l(O) and curve $\Omega(H(O))$ Euler's line and Euler's curve for the $\triangle ABC$ with respect to the point O. The heuristic part of the results has been done by the software "THE GEOMETER'S SKETCHPAD". A series of properties of l(O) and $\Omega(H(O))$ has been established and proved.