
“negative times negative gives positive,
negative times positive gives negative”

Diophant from Alexandria, III AD

“We should not forget that zero and
negative numbers were the last to be ac-
cepted”

Garett Birkhoff [1]

An introduction to the arithmetic of
approximate numbers

Svetoslav Markov, IMI–BAS

Approximate numbers are ordered pairs of (real) numbers and error bounds.
Error bounds, briefly errors are represented by nonnegative numbers. To
compute with approximate numbers one should know how to perform arith-
metic operations over errors and how to compare them. To model computa-
tions with errors one should suitably define and study arithmetic operations
and order relations over the set of nonnegative (real) numbers. In this work
we discuss the algebraic properties of nonnegative numbers starting from fa-
miliar properties of real numbers. Then we discuss the algebraic properties
of approximate numbers, which are considered as (real) numbers with errors.

1 Introduction

Denote R the set of real numbers. We start by recalling the familiar sys-
tem (R, +,≤) involving the arithmetic operation addition “+” and the order
relation preceding (following)“≤”.

Real numbers are usually presented by their sign and modulus, e. g.:
2,−2, π,−π, 3.14,−3.14, etc. More generally, a real number a ∈ R is pre-
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sented either as a = +A or a = −A, where A = |a| ≥ 0 is modulus of
a.

Thus a real number a ∈ R is presented as an ordered pair comprising the
modulus of a denoted A = |a| ∈ R+ and the sign of a denoted α = σ(a) =
{+, a ≥ 0;−, a < 0} ∈ Λ = {+,−}. Here R+ = {a ∈ R | a ≥ 0} is the set of
nonnegative real numbers. We shall write a = (A; α) ∈ R+ ⊗ Λ = {(X; ξ) |
X ∈ R+, ξ ∈ Λ}.

Note that the set of pairs R+⊗Λ admits both elements (0; +) and (0;−),
which correspond to the single element 0 ∈ R. Assuming −0 = +0, that
is (0; +) = (0;−), we can write: R ≡ R+ ⊗ Λ in the sense that there is a
bijection between R and R+ ⊗ Λ.

In the sequel we denote the elements of R by lower-case letters a, b, c, ...,
and the elements of R+ by upper-case letters, A,B,C, ....

Properties of addition. We start from the assumption that addition
and order in a R+ are familiar (as restrictions from R).

Problem 1. Describe the arihmetic operation addition “+” in R+⊗Λ, so
that (R, +) ∼= (R+ ⊗ Λ, +).

Remark. In school this is done verbally, e. g. “Adding Real Numbers
with Opposite Signs. Step 1: Take the difference of the absolute values. Step
2: Attach the sign of the number that has the larger absolute value, etc.”
[21]. We want a symbolic formulation.

Let a = (A; α), b = (B; β) ∈ R. In the case α = β we have

a + b = (A; α) + (B; β) = (C; γ),

where C = A + B, γ = α = β, that is

(A; α) + (B; β) = (A + B; α), α = β.

Here “A + B” is the operation addition in R+.

Inner addition of errors. To examine the case α 6= β we need the
binary operation “inner addition” in R+ (briefly: n-addition, i-addition?):

A +− B =

{
Y |B+Y =A if B ≤ A;
X|A+X=B if B > A.

(1)
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In words, A+−B is the solution of B +Y = A or the solution of A+X = B
depending on which one exists; note that if both solutions exist, they coincide.

Remark. In familiar terms the operation inner addition in (R+, +) is
written as A +− B = |A − B|. However, strictly speaking we have no right
to write |A−B| in R+, as we have not defined operation subtraction A−B.
(In fact we cannot define subtraction in R+ as inverse operation to addition,
see [13], [14].)

Denote γ(a, b) the sign of the argument with larger module. Symbolically,
we define a mapping γ : R2 −→ Λ as follows:

γ(a, b) = γ((A; α), (B; β)) =

{
α if B ≤ A,
β if B > A.

(2)

An equivalent expression for (2) is

γ(a, b) =

{
σ(a) if |b| ≤ |a|,
σ(b) if |b| > |a|.

Note A +− B is the distance between the numbers A, B.

Remark. We assumed the order relation “≤” in R+ to be familiar as
restriction of “≤” in R. Note addition induces the order relation “≤” in R+.
Namely, for A,B ∈ R+ by definition A ≤ B ⇐⇒ ∃X : A+X = B. Therefore
we have the right to use “≤” as we have done in (1) and (2).

It is easy to see now that in the case α 6= β the sum (C; γ) = (A; α) +
(B; β) is given by C = A +− B, γ = γ(a, b). Summarizing, we have

a + b = (A; α) + (B; β) =

{
(A + B; α), if α = β;
(A +− B; γ(a, b)), if α 6= β,

which can be compactly written as

(A; α) + (B; β) = (A +αβ B; γ), γ = γ(a, b). (3)

In (3) we assume that for α, β ∈ Λ a binary boolean operation “·” is
defined by α · β = αβ = {+, α = β; −; α 6= β} .

Remark. It is rather interesting that we perform the operations (1) and
(2), resp. (3), in our minds every time when we add two (real) numbers (and
we do a bit more work when they have different signs). This procedure we
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have learned at school and it seems simple, but looks somewhat complicated
when described strictly in detail.

Problem 2. Describe order relation preceding (following)“≤” in R+ ⊗ Λ,
so that (R, +) ∼= (R+ ⊗ Λ, +). (Left for exercise.)

Algebraic properties of (R, +). Let us first recall the algebraic prop-
erties of (R, +). The system (R, +) is an additive group, that is

i) “+” is a closed (total) operation,
ii) “+” is associative: (a + b) + c = a + (b + c) [9],
iii) there is an identity (neutral, null) element 0, such that a + 0 = a for

all a;
iv) there exists an additive inverse (opposite) element −a, such that a +

(−a) = 0 for all a [13], [14].

Property iv) induces an operation subtraction a− b = a + (−b) in R.

Thus we can fully write (R, +) = (R, +, 0,−,≤) in order to mark that
system (R, +) possesses also null, opposite (subtraction) and order.

We recall that:
— property i) defines a magma (groupoid) [17],
— properties i)–ii) define a semigroup [8],
— properties i)–iii) define a monoid [16],
— properties i)–iv) define a group [10].

Note that a group always obeys the following property:
— v) “cancellation law”: a + x = b + x =⇒ a = b [7].

An algebraic system may satisfy also property:
— vi) commutative law a + b = b + a [20]; then it is called commutative

(abelian) system.

Clearly, (R, +) satisfies all enlisted properties i)– vi) and thus is a com-
mutative (abelian) group.

Note also that the commutative group (R, +) satisfies the property:
— vii) divisibility, which in the additive case means that equation a+x =

b has an unique solution for all a, b ∈ R.

Algebraic properties of (R+, +). Consider now the algebraic proper-
ties of the system of errors (R+, +,≤). Properties i)–iii) and vi) are satisfied
so (R+, +) is a commutative monoid, but property iv) fails; indeed, equation
A + X = 0 has no solution when A ≥ 0. However, instead of property iv),
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the (weaker) cancellation property v) A+X = B +X =⇒ A = B holds true
[6]. As we noted every group is cancellative, but a cancellative monoid may
not be a group, as is the case with (R+, +).

As mentioned, property iv) fails that is there is no additive inverse (op-
posite) in the cancellative monoid (R+, +). Divisibility property vii) does
not hold as well, as A + X = B does not possess a solution in general; in al-
gebraic language this means that (R+, +) is not a quasigroup [11]. However,
there is an operation inner addition “+−” defined by (1) which allows solving
equations of the form A + X = B in certain cases. MNamely, using inner
addition “+−” we can solve equation A + X = B when A ≤ B or equation
B + X = A when A ≥ B. Thus inner addition “+−” plays a role in (R+, +)
that is analogous to the role of subtraction in the group (R, +). We may call
this property “almost (week) divisibility (subtractability)”.

Q. ”Week” instead of “almost” ?

Up to now we have seen that system (R+, +) possesses null, inner addi-
tion and order, so we can fully write (R+, +) = (R+, +, 0, +− ≤). Clearly,
the enumerated algebraic properties in (R+, +) induce certain manipulation
rules, such as the rule based on formula (1), saying that the solution X of
equation A + X = B when A ≤ B is X = A +− B. We may call the system
of algebraic properties and arithmetic rules in (R+, +) “error arithmetic”.
Thus error arithmetic is a set of rules needed to compute with errors (error
bounds of approximate numbers).

We shall next extend the error arithmetic rules by focusing attention on
the operation inner addition.

Algebraic properties of (R+, +−). Consider the algebraic properties
of the system (R+, +−) in some detail. We have:

— i) inner addition “+−” is a closed (total) operation. Hence (R+, +−)
is a magma [17];

— associativity property ii) (A+−B)+−C = A+− (B+−C) fails, indeed,
e. g. (7+−5)+−3 6= 7+− (5+−3), as (7+−5)+−3 = 1 and 7+− (5+−3) = 5;

— property iii) existence of an identity (neutral, null) element, such that
A +− 0 = A for all A ∈ R+, holds true; hence (R+, +−) is an unital magma
[17], [18];

— property iv) for existence of an inverse (opposite) element holds true
as well. Indeed, the inverse of A is the element A itself, since A +− A = 0
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for all A. (This is why we may call the operation “+−” inner subtraction as
well.)

— property v) “cancellation law”: A +− X = B +− X =⇒ A = B fails,
e. g. take A = 1, B = 5, X = 3. Then 1 +− 3 = 5 +− 3, but 1 6= 3;

— property vi) commutative law A +− B = B +− A holds true.

System (R+, +−) satisfies properties i), iii) and vi) so it is commutative
unital magma.

As we mentioned associativity fails in (R+, +−). In principle associativity
means that every three elements can be “summed” up in any order and pro-
duce the same result. However, we may notice that associativity holds true
under the requirement that the element present in both brackets is the largest
one. We call this property “almost associativity” (“weak associativity”?).

Almost associativity rule. Let A,B,C ∈ R+ be such that B ≥ A,B ≥
C. Then (A +− B) +− C = A +− (B +− C).

Almost-associativity is a practically important, as it says that summing
up three elements does not depend on the order of summation unless we start
summation always from the largest element.

We mentioned that cancellation law A +− X = B +− X =⇒ A = B
fails in (R+, +−). However, cancellation is “almost” valid, which means the
following. If we consider relation A +−X = B +− X as equation for X, then
it has a unique solution. Namely X is the midpoint between A and B, in
usual terms the arithmetic mean X = (A + B)/2. So, we have A +− X =
B +− X =⇒ A = B unless X is the arithmetic mean of A and B. We
formulate this as a separate property.

Almost (week) cancellation. Let A,B ∈ R+. Equation A +− X =
B +− X is satisfied for X = (A + B)/2. If X 6= (A + B)/2, then A +− X =
B +− X =⇒ A = B.

Summarizing we obtain:

Proposition 1. The set of errors with inner addition (subtraction), that
is (R+, +−), is an almost-associative and almost-cancellative commutative
unital magma.

As mentioned, divisibility [11] does not hold in the cancellative monoid
(R+, +), it does not hold in (R+, +−) either. This means that we cannot solve
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directly equations A + X = B and A +− X = B. However, an analogous
property is present, to be called “almost-divisibility”, which we consider next.

The system (R+, +, 0, +−,≤). The following proposition shows that
both additions “+” and “+−”are closely related. In fact the operation ad-
dition “+” induces inner addition “+−” in the monoid (R+, +), in a way
analogous to the way addition “+” induces negation/subtraction “−” in the
group (R, +).

Proposition 2. i) For A,B ∈ R+, such that A ≤ B, the unique solution
of A + X = B is X = B +− A. ii) Equation A +− X = B has a solution
X = A + B for A,B ∈ R+. If A,B ∈ R+ are such that A ≥ B > 0, then
equation A +− X = B has one more solution X = A +− B.

We thus see that: i) solution of A+X = B is generally not possible unless
we do not assume inner addition available, and ii) solution of A +− X = B
is generally not possible unless we do not assume usual addition available.
However, in the light of Proposition 2 solution of both A + X = B and
A +− X = B becomes possible, which is a kind of “weak divisibility”.

The main algebraic properties of systems (R, +), (R+, +), (R+, +−) are
summarized in Table 1.

Table 1

Axiom/System (R, +) (R+, +) (R+, +−)
Closure Yes Yes Yes
Associativity Yes Yes A
Indentity Yes Yes Yes
Inverse Yes No Yes
Cancellation Yes Yes A
Commutativity Yes Yes Yes
Divisibility Yes A A

Table 1. Summary of the algebraic properties of the group (R, +), the
monoid (R, +) and the loop (R, +−). The letter “A” stands for “almost”.

2 The extended additive error system

From Table 1 we see that (outer) and inner addition complement each other.
For example, addition “+” has no inverse in R+, whereas inner addition “+−”
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is invertible. Similar complement is observed with respect to associativity,
cancellation and divisibility.

Other examples of complementary rules are the “mixed” (“hybrid”?)
associative-like properties of the system (R+, +, 0, +−,≤).

Define the mapping φ : IR2 → {+,−} by

φ(A,B) =

{
+, if A ≥ B;
−, otherwise.

Proposition 3. Let A,B, C ∈ R+. Then

(A + B) +− C = A +φ(B,C) (B +− C). (4)

Example. Check rule (4) for (A,B,C) = (1, 1, 1), (1, 3, 2), (1, 2, 3), (4, 6, 3).

For some applications the two operations for addition +, +− can be con-
sidered as one operation in two modes (directions). We shall use below the
notation “+θ”, wherein θ ∈ {+,−}, and refer to “+θ” as “directed addition”.
For θ = + the operation “+θ” is the standard (positively directed) addition,
“+”, whereas for θ = −, “+θ” is the nonstandard (negatively directed) ad-
dition, “+−”. The directed addition “+θ” can be expressed:

A +θ B = min(A,B)θ max(A,B).

Associative-like rules for algebraic transformations.
Conditional associativity of directed addition. Directed addition is condi-

tionally associative in the following sense:

Proposition 4. For each triple A,B, C ∈ R+ and each pair θ1, θ2 ∈ {+,−},
there exist a pair θ3, θ4 ∈ {+,−}, such that

(A +θ1 B) +θ2 C = A +θ3 (B +θ4 C). (5)

Proof. Formula (5) generalizes (4). It can be directly checked that for
A,B, C ∈ R+ we have

(A + B) +− C = A +φ(B,C) (B +− C);

(A +− B) + C =

{
A +−φ(B,C) (B +− C), A ≥ B,
A +− (B + C), A < B;

(A +− B) +− C =

{
A +−φ(B,C) (B +− C), A < B,
A +− (B + C), A ≥ B.
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From the above formulae we see that θ3, θ4 are simple functions of the
errors A,B,C ∈ R+ and θ1, θ2 ∈ {+,−} and can be effectively computed.
This proves (5). ¤

Example. For A,B ∈ R+, (A + B) +− A = B. Indeed, using (4) we
obtain: (A + B) +− A = (B + A) +− A = (B + A) +− A = (B + A) +− A =
B +φ(A,A) (A +− A) = B +φ(A,A) +0 = B.

Remark. The conditionally associative rules are useful as they give spe-
cific conditions under which “replacement of brackets” can be performed;
thereby these conditions are easily programmable. Outer addition is com-
mutative and associative but has no inverse, whereas inner addition is com-
mutative, not associative and has inverse. Considering outer and inner ad-
dition together, as a“directed” operation in two different modes; we can say
that this directed operation is conditionally associative. Thus both modes
complement each other.

In the calculus for interval functions [3] important role play associative-
like rules involving four elements.

Associative-like rules involving four elements. For A,B,C,D ∈ R+

define ϕ : IR4 → {+,−} as

ϕ(A,B, C, D) = φ(A,B)φ(C,D).

Proposition 5 [3]. For A,B, C, D ∈ R+ denote

γ = ϕ(A,C, B, D) = φ(A, C)φ(B, D),

δ = ϕ(A,B, C,D) = φ(A,B)φ(C, D),

then we have

(A + B) +− (C + D) = (A +− C) +γ (B +− D);

(A +− B) + (C +− D) =

{
(A +− C) +−γ (B +− D), if δ < 0;
(A + C) +− (B + D), if δ ≥ 0;

(A +− B) +− (C +− D) =

{
(A +− C) +−γ (B +− D), if δ ≥ 0;
(A + C) +− (B + D), if δ < 0.

Example. The above relations may be specified in particular cases, e. g.
when we know ranges for the arguments. Take for example A ∈ [3, 4], B ∈
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[1, 2], C ∈ [4, 5], D ∈ [6, 7]. Since γ = −, δ = +, Proposition 6 obtains the
form:

(A + B) +− (C + D) = (A +− C) +− (B +− D),

(A +− B) + (C +− D) = (A + C) +− (B + D),

(A +− B) +− (C +− D) = (A +− C) + (B +− D).

Note in the last relation in Proposition 5

(A +− B) +− (C +− D) = (A +− C) +−γ (B +− D) if δ ≥ 0,

the condition δ ≥ 0 is not as resrictive as it looks like, due to commutativity
of “+−”, allowing us to write (if necessary) (B +− A) instead of (A +− B)
and/or (D +− C) instead of (C +− D).

In the sequel we use the brief notation for the ordered additive group
(R, +) = (R, +, 0,−,≤) and for the extended monoid (R+, +) = (R+, +, 0, +−,≤ ).

Order isotonicity. Addition in (R, +) = (R, +, 0,−,≤) is isotone w. r.
t. orfer relation “≤”.

Outer addition. We have for X,X1, C ∈ R+ X ≤ X1 =⇒ X + C ≤
X1 + C. As a concequence we have

X ≤ X1 , Y ≤ Y1 =⇒ X ? Y ≤ X1 + Y1.

Inverse isotonicity of addition. If A, B, C ∈ R+, then

C + A ≤ C + B =⇒ A ≤ B,

in particular C + A = C + B =⇒ A = B (cancellation law).

Conditional inclusion isotonicity w.r.t. inner addition. Let X,X1, Y, Y1 ∈
R+. Assuming X ≥ X1, Y ≤ Y1, we obtain

if X ≤ Y, then X +− Y ≤ X1 +− Y1,

if X1 ≥ Y1, then X +− Y ≥ X1 +− Y1

3 The linear and quasiliear spaces

All said above can be generalized for n-vectors (n-tuples): (Rn, +) = (Rn, +, 0,−,≤
) and (R+n

, +) = (R+n
, +, 0, +−,≤) noticing that then the order relation is

no more total but partial.
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We introduce multiplication by scalars from the field R = (R, +, ·,≤).
The vector space (Rn, +,R, ·) = (Rn, +, 0,−,R, ·,≤ ) models the space of
midpoints main values of approximate numbers, whereas the space (R+n

, +,R, ∗) =
(R+n

, +, 0, +−,R, ∗,≤ ) models the system of errors (radii) of approximate
numbers.

The above can be extended to the vector space (Rn, +,R, ·,≤), where
now Rn is the space of real vectors a = (a1, a2, ..., an) and R is the real field
of scalars.

Generalization of previous definitions like a = (A; α), A = (A1, A2, ..., An) ∈
(R+)

n
, α ∈ Λn, etc are obvious.

Multiplication by scalars is presented by

c · a = c · (A; α) = (|c| · A; σ(c)α).

The above shows that multiplication by scalars induces a “quasivector” mul-
tiplication by scalars “∗” in the “error space” ((R+)

n
, +, +−,R, ∗,≤) given

by

c ∗ A = |c| · A, c ∈ R, A ∈ (R+)
n
.

We can further extend the system (R+, +, +−) introducing multiplication
by scalars, arriving at the space (R+, +, +−,R, ∗). More generally, in the
n-dimensional case (R+n

, +, +−,R, ∗) multiplication by scalars is defined by:

γ ∗ A = |γ|A, γ ∈ R, A ∈ R+n
.

The first space (Rn, +,R, ·) is the well-known n-dimensional vector space.
The second space (R+n

, +,R, ∗) satisfies the axioms for (R+n
, +) = (R+n

, +, 0, +−,≤
) together with the axioms involving multiplication by scalars “∗”. As we
know (R+n

, +,R, ∗) is a quasilinear space in the sense of the following defi-
nition:

Definition. An algebraic system (Q, +,R, ∗) is a quasilinear space (of
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monoid structure, over R), if for all A, B, C ∈ Q, α, β, γ ∈ R:

(A + B) + C = A + (B + C), (6)

∃ 0 ∈ Q : A + 0 = A, (7)

A + B = B + A, (8)

A + C = B + C =⇒ A = B, (9)

α ∗ (β ∗ C) = (αβ) ∗ C, (10)

1 ∗ A = A, (11)

γ ∗ (A + B) = γ ∗ A + γ ∗B, (12)

(α + β) ∗ C = α ∗ C + β ∗ C, if αβ ≥ 0. (13)

As a consequence the following quasididtributive law takes place:
Proposition 8 (Quasidistributive law). For A ∈ IR, p, q ∈ R and “∗”

multiplication by scalars

(p + q) ∗ A = p ∗ A +σ(p)σ(q) q ∗ A, (14)

Important note. For a, b ∈ (Rn, +,R, ·):
a ≤ b does not imply γ · a ≤ γ · b, γ ∈ R.

However, for A,B ∈ (R+n
, +,R, ∗):

A ≤ B implies γ ∗ A ≤ γ ∗B, γ ∈ R.

The order relation ≤ in the space of errors is called inclusion and is also
denoted ⊆. Why?

Approximate numbers. Consider now intervals in MR-form a = (a′, b′′),
a′ ∈ R (midpoint), a′′ ∈ R+ (radius, error bound), i. e. a = (a′, b′′) ∈ R⊗R+.

As we know the binary arithmetic operations in (R, +,≤) are addition
“a + b” and subtraction “a − b”, whereas in (R+, +, +−,≤) are addition
“A + B” and inner addition “A +− B”.

The space R = (R, +,≤) can be identified with the space of midpoints and
the space R+ = (R+, +, +−,≤) with the space of radii (errors) or with the
space of symmetric intervals. Intervals are pairs of the form (a′; a′′) ∈ IR =
R⊗ (R+). Thus we can write down the induced binary arithmetic operations
for intervals (approximate numbers) by combining the binary arithmetic op-
erations in the space of midpoints R and those in the space of radii R+,
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obtaining thus the following four combinations:

(a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′), (15)

(a′; a′′) +− (b′; b′′) = (a′ + b′; a′′|+− b′′), (16)

(a′; a′′) ¬ (b′; b′′) = (a′ − b′; a′′ + b′′), (17)

(a′; a′′)−− (b′; b′′) = (a′ − b′; a′′ +− b′′). (18)

Operations (15)–(18) are the well-known interval arithmetic operations in
mid-rad form:

(a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′),

(a′; a′′) +− (b′; b′′) = (a′ + b′; |a′′ − b′′|),
(a′; a′′) ¬ (b′; b′′) = (a′ − b′; a′′ + b′′),

(a′; a′′)−− (b′; b′′) = (a′ − b′; |a′′ − b′′|).
Operations (15)–(17) are the standard interval operations, whereas (16)–(18)
are the inner interval operations.

Correspondingly, in the interval space IRn = Rn ⊗ (R+)
n

we have

c ∗ (a′; a′′) = (ca′; |c|a′′).
The IEEE P1788 Standard on interval arithmetic. Late 2008, at

SCAN 2008 in El Paso, TX, an effort to standardize interval computations
was started by a working group of the IEEE Microprocessor Standards Com-
mittee, titled the Interval Arithmetic Working Group of the IEEE P1788
Standard. Paper [2] describes the goals of this effort, the history of the
working group, and how it relates to the IEEE 754 Standard. It gives a brief
overview of the policies and procedures for constructing the standard, and
its expected structure. It also presents some of the questions the group may
have to solve in the future.

Conclusions. The approach used in the present work shows that:
i) the mid-rad presentation of intervals — in the aspect of approximate

numbers — is a natural form;
ii) the inner operation for addition is naturally induced;
iii) the abstract theory of approximate numbers presents a practically

oriented material with definite instructive/didactive quality that can be used
for student projects.

iv) the materals can be focused on historical aspects of mathematics as
well.
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