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Bézier curves in Geometric Modeling

One basic tool in geometric modeling are Bézier curves:

Let bg,....b, be vectors either in R? or R? and ¢t € R : we
interprete b, as a constant curve, i.e. that for £ =0, ....,n and
t €[0,1]

b (t) := by

Then we define curves by, () for t € [0,1] for k=0,....,n—1 by
by, (t) = (1 — 1) by (t) + tby 4y (1)
and inductively for £k =0,....,.n —r
b, (1) = (L= 8) b~ (¢) + b3 (1)

In the last step one has only one index, namely £ = 0.

The curve
by () = (1 — ) by ™" (t) + b7~ (¢)

is called the Bézier curve.



The Bézier curve has the following properties
by (0) = by and bj (1) = b,

by (t) € convex hull of by, ..., by,.

The polygon formed by by, ..., b, is called the Bézier polygon
or control polygon.

An explicit form for the Bézier curve is:

n
(1) bg (t) =D brpn ik (1)

k=0
where

ny K n—k

Pn.k (t) = (k)t (1 — t)
are the Bernstein polynomials. Note that
Dn.k has a zero of order k at t =0
Pn,k has a zero of order n — k at ¢t = 1.

One important generalization of Bézier curves are B-spline

curves where one replaces the Bernstein polynomial p, ; in

(1) by basic splines N}’ of degree n.



Bernstein bases in extended Chebyshev systems

We want to discuss the concept of a Bernstein basis in a more

general setting.

Definition 1. Let C" [a,b] be the set of all n times contin-
uously differentiable functions f : [a,b] — C. The function f

has a zero of order k < n at a point z( € [a, b] if

0=f(x0) = ... = F5 (20) .

Definition 2. A linear subspace U of dimension n + 1 of
C™ [a, b] is called an extended Chebyshev system over |a, b

if each non-zero function f € U has at most n zeros.

The following spaces are extended Chebyshev system over the

interval [a, b]:
1. The linear span of 1, ..., 2™

2. The linear span of e*®, ..., e*® for \g, ..., \,, real pairwise

distinct.

3. The linear span of cosz,sinz, 1,...,2" 2 for [a,b] C [0, 27).



All examples are special cases of so-called exponential polyno-

mials:

Definition 3. Let A\, ..., A\,, be complex numbers and consider

the differential operator

d d
L(,\O,...,,\n) = <% — /\0) (% — )\n)

Then each function f in the space

E()\O,...,)\n) — {f e C” [Cl,,b] : L()\o,---,/\n)f - O}

is called an exponential polynomal.

Proposition 1. If Ao, ..., A, are real then E(y, . ) s an ex-

tended Chebyshev system for any interval.

Definition 4. A system p,, » € E(),...x,). k=0, ...,nis called
a Bernstein basis over the interval [a, b] if it is a basis with

the property that each
Pn,k has a zero of order k at t = a,

Dn.k has a zero of order n — k at ¢t = 0.



Proposition 2. Let \g,..., A\, be real. Then there exists a

Bernstein basis p(x,,...x, )k kK =0,...,n+ 1.
Proof. It is convenient to use the following notation:
dk ‘= P(Xg,....;An),n—k>
SO qr has n — k zeros in a and k zeros in b. For k = 0 set

\ \ (2—a)z 1 e(az—a)z p
QO(ZU) _[ 05 ey n]e _2_7'("1, r (Z—)\())(Z—An) 2

Next put

()
q1 ‘= qq a0pqo

for ag = q(()l) (b) /qo (b) which has clearly a zero of order n — 1
in a and a zero of order 1 in b.
For k > 2 we define q; recursively by

1
qr ‘= Q;E;_)l — (Oék—1 - 04k:—2) Q-1 — Brqr—2

with suitable coefficients ap_1 — ar—o and B defined By :=
k—1 k—2
q,i_l ) (b) q,i_2 ) (b) and

k
Qg = ql(f—)l (b)
_ -
QIE:—l ) (b)



Proposition 3. Let \g,..., A\, be real. Then there exists a
unique Bernstein basis p(x,,... x,)k k=0, ...,n+ 1 satisfying

the condition

. Pxo,....2n),k (CU) k
k! lim (Ao ) . — pEAZ,W’An),k (a) =1.

r—a,xr>a (ZB _ CL)
It follows that

Pk () >0 for all x € [0,1].

Theorem 4. (Carnicer, Mainar, Pena 2004, Mazure 2005)
Assume that 1 € E(y,, . x,).- Then the Bernstein basis is "nor-

malized”, i.e. there exist positive numbers d;,

1 - dep(AOaaAn)’k (ZU) )
k=0



Properties of the Bernstein operator

The Bernstein operator over the unit interval [0, 1] is defined
by

Buf @)=Y () () a—a
— n k
The operator B,, has the following properties:

1. B, f is a polynomial of degree < n,

2. B,1=1and B,x =z,

3. B, 1s a positive operator,

4. B, f converges uniformly to f for each f € C'[0,1],

5. For the computation of B, f one needs only the data
f (%) for k=0,...,n.

Question: Let \g, ..., \,, be real. Can one define a ” Bernstein
operator” B,, : C'[0,1] — C'[0, 1] such that

1. B, f is an exponential polynomial for (g, ..., An) ,

2. Bnerx — e and Bne’\lx = eM7T

3. B, is a positive operator,

4. B, f converges uniformly to f for each f € C 0,1],

5. For the computation of B, f one needs only the data
f (tx) for k =0, ...,n, for some tg, ..., t, € [0,1].



Construction of the Bernstein operator

Ansatz: We want to define the Bernstein operator B,, via a

formula of the type
Bixo,ooam)f (@ Zakf tk) Pnk

where «g,...,a,, > 0 and tg,...,t, € [a,b] are to be defined

independent of f.

Theorem 5. Let A\g #= A1 and Ao, ..., \, € R. Then there exist
unique positive coefficients ay, ..., ., and unique points a =
to < ...<t, =0b, such that the operator

B, f (@ Zakf tk) P(ro,hn),k (T)
k=0

satisfies

Bin...an) (€2°7) = €% and By, i, (€M) =M.



Idea of proof. Let (y,.....,3, and ~g,...,7, be the unique

coefficients such that

erole—a) — Zﬂkp(Ao,...,An),k: (),

k=0

et (Ema) = Z VeP(Xo, o An) b (T)
k=0

Suppose that there exists an operator as described in the the-

orem. Then By, . i) (e’\ox) = 2% implies

ZeAO(tk a)ozkp(,\O, Ak (T Zﬁkp(/\o, o)k ()

k=0 k=0

Since p(x,,....a,).k 15 @ base we infer that

oYy = gy

Similarly, B, ..x.) (e’\”") = eM?® implies

M=) — ~p

Then t;, satisfies the equation
c(o—Antk _ @e()\o—)\l)a.
Yk
and oy
= e~ Moltr—a) g,
In particular, the coefficients a; and the nodes t; are uniquely
determined by these equations. The points t;, are defined by
the equation

€(>\0_>\1)(tk_tk—1) — lim p(AO7A27"'7An)7k_1 (ZC)
r=b DAy, dn), k-1 (2)

Y



Convergence of the Bernstein operator

Question: Under which conditions at Ag, ..., A,, does the Bern-

stein operator

Bxg,...an)
converge to the identity operator?
Fact: We need conditions!

Consider the case of the Miintz polynomials

defined on [a, b] where
M =0< A\ <A <.

is a strictly increasing sequence of non-negative numbers such
that \,, — oo.

The system can be transformed via = = €! to

Ant

1, eMt er2t e

R

which are exponential polynomials on the interval [In a, In b|.

If Bx,,...a,)(f) converges to f it follows that the space of all

Mintz polynomials is dense. This implies the condition

=1
> 3=

n=1



Definition 5. Let a (n,k),k = 0,....,n, be non-zero numbers
for each n € N. We say that a (n, k) converges uniformly to a
number c if for each each ¢ > 0 there exists a natural number ng
such that |a (n, k) — ¢| < eforallm > ng and forall k = 0, ..., n.

Theorem 6. Assume that Ao, A1, A2 are real distinct numbers.
Define the following sequences a (n,k),n € N, and b(n, k) ,n €
N, by

T
a (n, k) — lim PXo, X2, An) k ( )
=0 D(X1, A2, An),k (x)

Y

T
b(m, ) = lim P00tk (2)
b D(A1, )2, A0 ),k (z)

Assume that a (n, k) and b(n, k) converge uniformly to 1 and

that
1—a(n,k)
1—0b(n,k)

converge uniformly to
A1 — Ao
Ao — Ao

Then the Bernstein operator B(>‘07~~~7>\n) converges to the iden-

tity operator.



Multivariate Bernstein operators

Definition 6. Let U be an open subset in R?. A function
f : U — C is polyharmonic of order p if

APf(z)=0 for all x € U

where A := 6?—22 + ...+ 5—2 is the Laplace operator.
Zy e

Open problem:
Let B := {z € R?:|z| <1} be the unit ball. Construct an

operator
By : C(B) = C (B)

such that

1. By f is a polyharmonic function of order < N,
Bnxh = h for all harmonic functions h € C (B),
By 1s a positive operator,

By f converges uniformly to f for each f € C (B)

A

For the computation of By f one needs only the data

/()

forall € S ' ={x e R%: |z| =1} and for all j =0,..., N.



Ansatz: Let Y3 ;(0), I = 1,...,a; be a basis of the spherical

harmonics of degree k.

Consider the Laplace-Fourier series of a function f € C (B)
=33 () 0.
k=0 =1

If f is a polynomial then for any fr; (r) there exists a polyno-
mial pg; (¢) with

fra (r) = rFppy (r?)

and
degpk,l S inf {p : Ap+1f = 0} .

In other words: fi; (r) is a linear combination of

k , k+2 ,r,k—l—Zp.
Via the transformation r = eV this is equal to the system of
exponential polynomials

ekv, ek—l—Qv) ) 6(k—|—2p)fu.



