Constructive Methods in Geometric Modeling

Hermann Render

(Universidad de La Rioja)

Ognyan Kounchev

(Bulgarian Academy of Sciences)

Jesus M. Aldaz

(Universidad de La Rioja)

Bézier curves in Geometric Modeling

One basic tool in geometric modeling are Bézier curves:

Let $b_0, ..., b_n$ be vectors either in \mathbb{R}^2 or \mathbb{R}^3 and $t \in \mathbb{R}$: we interprete b_k as a constant curve, i.e. that for k = 0, ..., n and $t \in [0, 1]$

$$b_k^0(t) := b_k.$$

Then we define curves $b_k^1(t)$ for $t \in [0,1]$ for k = 0,...,n-1 by

$$b_{k}^{1}\left(t\right) =\left(1-t\right) b_{k}^{0}\left(t\right) +tb_{k+1}^{0}\left(t\right)$$

and inductively for k = 0, ..., n - r

$$b_{k}^{r}(t) = (1-t)b_{k}^{r-1}(t) + tb_{k+1}^{r-1}(t)$$

In the last step one has only one index, namely k = 0.

The curve

$$b_0^n(t) = (1-t)b_0^{n-1}(t) + tb_1^{n-1}(t)$$

is called the Bézier curve.

The Bézier curve has the following properties

$$b_0^n(0) = b_0 \text{ and } b_0^n(1) = b_n$$

$$b_0^n(t) \in \text{convex hull of } b_0, ..., b_n.$$

The polygon formed by $b_0, ..., b_n$ is called the *Bézier polygon* or control polygon.

An explicit form for the Bézier curve is:

(1)
$$b_0^n(t) = \sum_{k=0}^n b_k p_{n,k}(t)$$

where

$$p_{n,k}(t) := \binom{n}{k} t^k (1-t)^{n-k}$$

are the Bernstein polynomials. Note that

 $p_{n,k}$ has a zero of order k at t=0

 $p_{n,k}$ has a zero of order n-k at t=1.

One important generalization of Bézier curves are B-spline curves where one replaces the Bernstein polynomial $p_{n,k}$ in (1) by basic splines N_k^n of degree n.

Bernstein bases in extended Chebyshev systems

We want to discuss the concept of a Bernstein basis in a more general setting.

Definition 1. Let $C^n[a,b]$ be the set of all n times continuously differentiable functions $f:[a,b] \to \mathbb{C}$. The function f has a **zero of order** $k \leq n$ at a point $x_0 \in [a,b]$ if

$$0 = f(x_0) = \dots = f^{(k-1)}(x_0)$$
.

Definition 2. A linear subspace U of dimension n+1 of $C^n[a,b]$ is called an **extended Chebyshev system** over [a,b] if each non-zero function $f \in U$ has at most n zeros.

The following spaces are extended Chebyshev system over the interval [a, b]:

- 1. The linear span of $1, ..., x^n$
- 2. The linear span of $e^{\lambda_0 x}$, ..., $e^{\lambda_n x}$ for λ_0 , ..., λ_n real pairwise distinct.
- 3. The linear span of $\cos x$, $\sin x$, $1, ..., x^{n-2}$ for $[a, b] \subset [0, 2\pi)$.

All examples are special cases of so-called exponential polynomials:

Definition 3. Let $\lambda_0, ..., \lambda_n$ be complex numbers and consider the differential operator

$$L_{(\lambda_0,\dots,\lambda_n)} := \left(\frac{d}{dx} - \lambda_0\right) \dots \left(\frac{d}{dx} - \lambda_n\right)$$

Then each function f in the space

$$E_{(\lambda_0,\dots,\lambda_n)} = \left\{ f \in C^n \left[a, b \right] : L_{(\lambda_0,\dots,\lambda_n)} f = 0 \right\}$$

is called an **exponential polynomal.**

Proposition 1. If $\lambda_0, ..., \lambda_n$ are real then $E_{(\lambda_0, ..., \lambda_n)}$ is an extended Chebyshev system for any interval.

Definition 4. A system $p_{n,k} \in E_{(\lambda_0,...,\lambda_n)}, k = 0,...,n$ is called a **Bernstein basis** over the interval [a,b] if it is a basis with the property that each

 $p_{n,k}$ has a zero of order k at t=a,

 $p_{n,k}$ has a zero of order n-k at t=b.

Proposition 2. Let $\lambda_0, ..., \lambda_n$ be real. Then there exists a Bernstein basis $p_{(\lambda_0,...,\lambda_n),k}$, k = 0,...,n+1.

Proof. It is convenient to use the following notation:

$$q_k := p_{(\lambda_0, \dots, \lambda_n), n-k},$$

so q_k has n-k zeros in a and k zeros in b. For k=0 set

$$q_0(x) := [\lambda_0, ..., \lambda_n] e^{(x-a)z} = \frac{1}{2\pi i} \int_{\Gamma_x} \frac{e^{(x-a)z}}{(z-\lambda_0) ... (z-\lambda_n)} dz.$$

Next put

$$q_1 := q_0^{(1)} - \alpha_0 q_0$$

for $\alpha_0 = q_0^{(1)}(b)/q_0(b)$ which has clearly a zero of order n-1 in a and a zero of order 1 in b.

For $k \geq 2$ we define q_k recursively by

$$q_k := q_{k-1}^{(1)} - (\alpha_{k-1} - \alpha_{k-2}) \cdot q_{k-1} - \beta_k q_{k-2}$$

with suitable coefficients $\alpha_{k-1} - \alpha_{k-2}$ and β_k defined $\beta_k := q_{k-1}^{(k-1)}(b)/q_{k-2}^{(k-2)}(b)$ and

$$\alpha_{k-1} = \frac{q_{k-1}^{(k)}(b)}{q_{k-1}^{(k-1)}(b)}.$$

Proposition 3. Let $\lambda_0, ..., \lambda_n$ be real. Then there exists a unique Bernstein basis $p_{(\lambda_0,...,\lambda_n),k}$, k = 0,...,n+1 satisfying the condition

$$k! \lim_{x \to a, x > a} \frac{p_{(\lambda_0, \dots, \lambda_n), k}(x)}{(x - a)^k} = p_{(\lambda_0, \dots, \lambda_n), k}^{(k)}(a) = 1.$$

It follows that

$$p_{n,k}(x) > 0 \text{ for all } x \in [0,1].$$

Theorem 4. (Carnicer, Mainar, Pena 2004, Mazure 2005) Assume that $1 \in E_{(\lambda_0,...,\lambda_n)}$. Then the Bernstein basis is "normalized", i.e. there exist **positive numbers** d_k

$$1 = \sum_{k=0}^{n} d_k p_{(\lambda_0, \dots, \lambda_n), k}(x).$$

Properties of the Bernstein operator

The Bernstein operator over the unit interval [0,1] is defined by

$$B_n f(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

The operator B_n has the following properties:

- 1. $B_n f$ is a polynomial of degree $\leq n$,
- 2. $B_n 1 = 1$ and $B_n x = x$,
- 3. B_n is a positive operator,
- 4. $B_n f$ converges uniformly to f for each $f \in C[0,1]$,
- 5. For the computation of $B_n f$ one needs only the data $f\left(\frac{k}{n}\right)$ for k = 0, ..., n.

Question: Let $\lambda_0, ..., \lambda_n$ be real. Can one define a "Bernstein operator" $\tilde{B}_n : C[0,1] \to C[0,1]$ such that

- 1. $\tilde{B}_n f$ is an exponential polynomial for $(\lambda_0, ..., \lambda_n)$,
- 2. $\tilde{B}_n e^{\lambda_0 x} = e^{\lambda_0 x}$ and $\tilde{B}_n e^{\lambda_1 x} = e^{\lambda_1 x}$,
- 3. \tilde{B}_n is a positive operator,
- 4. $\tilde{B}_n f$ converges uniformly to f for each $f \in C[0,1]$,
- 5. For the computation of $\tilde{B}_n f$ one needs only the data $f(t_k)$ for k = 0, ..., n, for some $t_0, ..., t_n \in [0, 1]$.

Construction of the Bernstein operator

Ansatz: We want to define the Bernstein operator B_n via a formula of the type

$$B_{(\lambda_0,\dots,\lambda_n)}f(x) = \sum_{k=0}^{n} \alpha_k f(t_k) p_{n,k}$$

where $\alpha_0, ..., \alpha_n \geq 0$ and $t_0, ..., t_n \in [a, b]$ are to be defined independent of f.

Theorem 5. Let $\lambda_0 \neq \lambda_1$ and $\lambda_0, ..., \lambda_n \in \mathbb{R}$. Then there exist unique positive coefficients $\alpha_0, ..., \alpha_n$ and unique points $a = t_0 \leq ... \leq t_n = b$, such that the operator

$$B_{(\lambda_0,\dots,\lambda_n)}f(x) = \sum_{k=0}^n \alpha_k f(t_k) p_{(\lambda_0,\dots,\lambda_n),k}(x)$$

satisfies

$$B_{(\lambda_0,...,\lambda_n)}\left(e^{\lambda_0x}\right) = e^{\lambda_0x} \text{ and } B_{(\lambda_0,...,\lambda_n)}\left(e^{\lambda_1x}\right) = e^{\lambda_1x}.$$

Idea of proof. Let $\beta_0,, \beta_n$ and $\gamma_0, ..., \gamma_n$ be the unique coefficients such that

$$e^{\lambda_0(x-a)} = \sum_{k=0}^n \beta_k p_{(\lambda_0,\dots,\lambda_n),k}(x),$$

$$e^{\lambda_1(x-a)} = \sum_{k=0}^{n} \gamma_k p_{(\lambda_0, \dots, \lambda_n), k}(x).$$

Suppose that there exists an operator as described in the theorem. Then $B_{(\lambda_0,...,\lambda_n)}\left(e^{\lambda_0 x}\right) = e^{\lambda_0 x}$ implies

$$\sum_{k=0}^{n} e^{\lambda_0(t_k-a)} \alpha_k p_{(\lambda_0,\dots,\lambda_n),k}(x) = \sum_{k=0}^{n} \beta_k p_{(\lambda_0,\dots,\lambda_n),k}(x).$$

Since $p_{(\lambda_0,...,\lambda_n),k}$ is a base we infer that

$$e^{\lambda_0(t_k-a)}\alpha_k = \beta_k.$$

Similarly, $B_{(\lambda_0,...,\lambda_n)}\left(e^{\lambda_1 x}\right) = e^{\lambda_1 x}$ implies

$$e^{\lambda_1(t_k-a)}\alpha_k = \gamma_k.$$

Then t_k satisfies the equation

$$e^{(\lambda_0 - \lambda_1)t_k} = \frac{\beta_k}{\gamma_k} e^{(\lambda_0 - \lambda_1)a}.$$

and α_k

$$\alpha_k = e^{-\lambda_0(t_k - a)} \beta_k.$$

In particular, the coefficients α_k and the nodes t_k are uniquely determined by these equations. The points t_k are defined by the equation

$$e^{(\lambda_0 - \lambda_1)(t_k - t_{k-1})} = \lim_{x \to b} \frac{p_{(\lambda_0, \lambda_2, \dots, \lambda_n), k-1}(x)}{p_{(\lambda_1, \dots, \lambda_n), k-1}(x)},$$

Convergence of the Bernstein operator

Question: Under which conditions at $\lambda_0, ..., \lambda_n$ does the Bernstein operator

$$B_{(\lambda_0,\ldots,\lambda_n)}$$

converge to the identity operator?

Fact: We need conditions!

Consider the case of the Müntz polynomials

$$1, x^{\lambda_1}, x^{\lambda_2}, ..., x^{\lambda_n}$$

defined on [a, b] where

$$\lambda_0 = 0 < \lambda_1 < \lambda_2 < \dots$$

is a strictly increasing sequence of non-negative numbers such that $\lambda_n \to \infty$.

The system can be transformed via $x = e^t$ to

$$1, e^{\lambda_1 t}, e^{\lambda_2 t}, \dots e^{\lambda_n t}$$

which are exponential polynomials on the interval $[\ln a, \ln b]$.

If $B_{(\lambda_0,...,\lambda_n)}(f)$ converges to f it follows that the space of all Müntz polynomials is dense. This implies the condition

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty.$$

Definition 5. Let a(n,k), k = 0,...,n, be non-zero numbers for each $n \in \mathbb{N}$. We say that a(n,k) converges uniformly to a number c if for each each $\varepsilon > 0$ there exists a natural number n_0 such that $|a(n,k)-c| < \varepsilon$ for all $n \ge n_0$ and for all k = 0,...,n.

Theorem 6. Assume that $\lambda_0, \lambda_1, \lambda_2$ are real distinct numbers. Define the following sequences $a(n, k), n \in \mathbb{N}$, and $b(n, k), n \in \mathbb{N}$, by

$$a(n,k) = \lim_{x \to b} \frac{p_{(\lambda_0, \lambda_2, \dots, \lambda_n), k}(x)}{p_{(\lambda_1, \lambda_2, \dots, \lambda_n), k}(x)},$$

$$b(n,k) = \lim_{x \to b} \frac{p_{(\lambda_0, \lambda_1, \lambda_3, \dots, \lambda_n), k}(x)}{p_{(\lambda_1, \lambda_2, \dots, \lambda_n), k}(x)}.$$

Assume that a(n,k) and b(n,k) converge uniformly to 1 and that

$$\frac{1 - a\left(n, k\right)}{1 - b\left(n, k\right)}$$

converge uniformly to

$$\frac{\lambda_1 - \lambda_0}{\lambda_2 - \lambda_0}.$$

Then the Bernstein operator $B_{(\lambda_0,...,\lambda_n)}$ converges to the identity operator.

Multivariate Bernstein operators

Definition 6. Let U be an open subset in \mathbb{R}^d . A function $f: U \to \mathbb{C}$ is polyharmonic of order p if

$$\Delta^{p} f(x) = 0 \text{ for all } x \in U$$

where $\Delta := \frac{\partial^2}{\partial x_1^2} + ... + \frac{\partial^2}{\partial x_d^2}$ is the Laplace operator.

Open problem:

Let $B:=\left\{x\in\mathbb{R}^d:|x|\leq1\right\}$ be the unit ball. Construct an operator

$$B_N:C(B)\to C(B)$$

such that

- 1. $B_N f$ is a polyharmonic function of order $\leq N$,
- 2. $B_N h = h$ for all harmonic functions $h \in C(B)$,
- 3. B_N is a positive operator,
- 4. $B_N f$ converges uniformly to f for each $f \in C(B)$
- 5. For the computation of $B_N f$ one needs only the data

$$f\left(\frac{j}{N}\theta\right)$$

for all $\theta \in \mathbb{S}^{d-1} = \left\{ x \in \mathbb{R}^d : |x| = 1 \right\}$ and for all j = 0, ..., N.

Ansatz: Let $Y_{k,l}(\theta)$, $l = 1,...,a_k$ be a basis of the spherical harmonics of degree k.

Consider the Laplace-Fourier series of a function $f \in C(B)$

$$f(r\theta) = \sum_{k=0}^{\infty} \sum_{l=1}^{a_k} f_{k,l}(r) Y_{k,l}(\theta).$$

If f is a polynomial then for any $f_{k,l}(r)$ there exists a polynomial $p_{k,l}(t)$ with

$$f_{k,l}\left(r\right) = r^k p_{k,l}\left(r^2\right)$$

and

$$\deg p_{k,l} \le \inf \left\{ p : \Delta^{p+1} f = 0 \right\}.$$

In other words: $f_{k,l}(r)$ is a linear combination of

$$r^k, r^{k+2}, ..., r^{k+2p}.$$

Via the transformation $r = e^v$ this is equal to the system of **exponential polynomials**

$$e^{kv}, e^{k+2v},, e^{(k+2p)v}.$$