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Plan of the talk:

1. An air pollution control problem.

2. Extensions: age/size structured control systems; heterogeneous

control systems.

3. Optimality conditions.

4. A numerical solution approach.

5. Comments.
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x(t, s) – concentration of pollutant
f (t, s) – emission intensity
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The dynamics of the concentration

xt + 〈v(t, s),∇x〉 = f (t, s)− g(t, s, x),

x(0, s) = x̂0(s), s ∈ Ω

x(t, s) = x̂(t, s), s ∈ Γ−(t) ⊂ ∂Ω,

where

Γ−(t) = {s ∈ ∂Ω : v(t, s) ∈ TΩ(s)},

TΩ(s) – the tangent cone to Ω at s (= Ω− s)

f (t, s) – emission
g(t, s, x) – deposition
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Viability constraints

“Hard” constraint: x(t, s) ≤ c(s)

“Soft” constraint: the violation of x(t, s) ≤ c(s) is penalized:

Instantaneous Damage:

∫

Ω
D(s, x(t, s)) ds.

Example:

D(s, x) =





0 if x ≤ c(s)

α(s)ϕ(x) if x > c(s),

where
α(s) – depends on the density of the population at s
ϕ(x) ≥ 0 – an increasing function.
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Means of control

xt + 〈v(t, s),∇x〉 = f (t, s)− g(t, s, x),

Assume

f (t, s) = f0(t, s) + f1(t, s),

f0 – the uncontrollable emission

f1 – the controllable emission, u(t, s) ∈ [0, 1] – the control variable:

f (t, s) = f0(t, s) + (1− u(t, s))f1(t, s),

Control cost:
∫ T

0

∫

Ω
C(s, u(t, s)) dsdt.
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Aims of control:

(i) Keep the “hard” constraints satisfied by minimal costs

min
u

∫ T

0

∫

Ω
C(s, u(t, s) dsdt

or

(ii) Minimize the damage by minimal costs:

min
u

∫ T

0

∫

Ω
[αC(s, u(t, s)) + βD(s, x(t, s)] dsdt α ≥ 0, β > 0.

The choice of T?
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The overall model:

minimize
∫ T

0

∫

Ω
L(t, s, x(t, s), u(t, s)) dsdt

xt + 〈v(t, s),∇x〉 = f0(t, s) + (1− u)f1(t, s)− g(t, s, x),

x(0, s) = x̂0(s), x ∈ Ω

x(t, s) = x̂(t, s), s ∈ Γ−(t),

u(t, s) ∈ [0, 1].

Here either L = C and there is a state constraint x(t, s) ≤ c(s),

or L = αC + βD.

—————————————————–

Assumptions: All functions involved in the model are nonnega-

tive, continuous, and continuously differentiable with respect to x

and u; L is uniformly strongly convex in u.

—————————————————–

Point sources

Diffusion
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A more general control model

x(t, s), y(t) – state variables, (t, s) ∈ [0, T ]× Ω

u(t, s), v(t) – control variables

∂

∂t
x +

∂

∂s
[p(t, s, y(t), v(t))x] = F (t, s, x(t, s), y(t), u(t, s), v(t)),

y(t) =
∫

Ω
q(t, s, x(t, s), u(t, s)) ds

x(t, s) = ϕ(t, s, y(t), v(t)) for s ∈ Γ−(t)

u(t, s) ∈ U, v(t) ∈ V.

Optimal control problem: min J(u, v).

Difficulties:
nonlinear diff. operator: p(..., y, ...) ;
diff. operator depending on the control: p(..., v);
nonlocal dynamics: F (..., y, ...);
endogenous and non-local side conditions: ϕ(..., y, v).
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Special cases:

– age structured systems (s ∈ R, p = 1): many papers,

... Brokate (1985), G. Tragler + G. Feichtinger + V.V. (2003) ...

– multiple age-structures (xt + xs1 + xs2 = ...): G. Feichtinger +

Ts. Tsachev + V.V. (2004)

– single-size-structured (p is diagonal with the same p(t, s, y, v) at

the diagonal): O. Tarniceriu + V.V. (??)

– “the air pollution model”

Open questions: terminal constraints, infinite horizon problems,

state/mixed constraints, ...
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Back to the air pollution problem:

minimize
∫ T

0

∫

Ω
[αC(s, u(t, s))+βD(s, x(t, s))] dsdt u(t, s) ∈ [0, 1]

xt + 〈v(t, s),∇x〉 = f0(t, s) + (1− u)f1(t, s)− g(t, s, x),

x(0, s) = x̂0(s), s ∈ Ω, x(t, s) = x̂(t, s), s ∈ Γ−(t),

Adjoint equation:

Denote

Γ+(t) = ∂Ω \ Γ−(t).

For a fixed reference pair (u, x) define the adjoint equation

λt + div(λv) = λ(t, s)gx(t, s, x(t, s)) + βDx(s, x(t, s)),

λ(T, s) = 0 for s ∈ Ω, λ(t, s) = 0 for t ∈ [0, T ], s ∈ Γ+(t).
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Necessary optimality conditions (maximum principle)

Theorem 1 (i) If the admissible pair (u, x) is optimal, then

Lu(t, s, x(t, s), u(t, s)) + λ(t, s)f1(t, s) ∈ −N[0,1](u(t, s)),

where NU(u) is the external normal cone to the convex set U

at u ∈ U , that is

−N[0,1](u) =





[0,∞) if u = −1,

0 if u ∈ (0, 1),

(−∞, 0] if u = 1.

(ii) If, in addition to the assumptions already made, D(s, x) is

increasing and convex in x and g(t, s, x) is convex in x, then

the above condition is sufficient for local (in L1) optimality of

(u, x).
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Numerical solution

{u(t, s) ∈ U} = U 3 u −→ I(u) =
∫ T

0

∫

Ω
(αC + βD) dsdt

Gradient projection in the control space. The gradient (in L2) at

a reference pair (u, x) is

dI

du(·) = αCu(s, u(t, s)) + λ(t, s)f1(t, s).

Continuous problem (x, u) −→ Discrete problem (xh, uh)

↓ ↓
Approximation of dI

du(·) Calculation of dIh

du(·)

↓ ↓
Next (x, u) −→ Next (xh, uh)

(i) Runge-Kutta (at least third order local accuracy) discretization

along the characteristics

(ii) Projected or conditional gradient direction

(iii) Line search (Armijo)
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Error estimate: assume the conditions for sufficiency of the

maximum principle, v of bounded variation, and “appropriate”

coefficients of the RK scheme. Then

max
i,j
|u(ti, xj)− uN

ij | ≤ C
T
V
0
v h2 + EN ,

where EN is independent of h.

Scheme of proof: W. Hager+A. Dontchev + V.V. – SIAM J.
Numer. Anal. (2000).
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On the use of optimal control in environmental prob-

lems

— Nominative: policy design

Find an optimal control u∗ −→ implement u∗

— finding most “sensitive points” / best directions of improvement

— the theory of the environmental management: economic/environmental

trade-offs, environmental taxes, short versus long run policies, the

role of uncertainty, etc. ...

— scenario analysis: test against ”worst” cases

— training

— ... ...

— base for evaluation of decisions and risk-related cost of operation
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Risk-related cost of operation

e(t) – abnormal emission, t ∈ [0, τ ]

v(t, s) – wind velocity, t ∈ [0, T ], x ∈ Ω

I∗(e, v) – the optimal value

E – probability space of abnormal emissions

V – probability space of wind velocities

R =
∫

E
∫

V α(e)β(v)J(e, v) dv de

Approximation:

(e1(·), α1), ..., (em(·), αm) (v1(·), β1), ..., (vn(·), βn).

R ≈ ∑

i,j
αiβjJ(ei, vj)
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