Viable Control of the Air Quality in Case of Accidental Pollution

Vladimir M. VELIOV
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria and Institute of Mathematical Methods in Economics Vienna University of Technology, Vienna, Austria, (Partly based on a joint research with K. Georgiev and S. Margenov)

Velingrad, 21 - 25 October, 2006

Plan of the talk:

1. An air pollution control problem.
2. Extensions: age/size structured control systems; heterogeneous control systems.
3. Optimality conditions.
4. A numerical solution approach.
5. Comments.

$x(t, s)$ - concentration of pollutant
$f(t, s)$ - emission intensity

The dynamics of the concentration

$$
\begin{gathered}
x_{t}+\langle v(t, s), \nabla x\rangle=f(t, s)-g(t, s, x), \\
x(0, s)=\hat{x}_{0}(s), \quad s \in \Omega \\
x(t, s)=\hat{x}(t, s), \quad s \in \Gamma_{-}(t) \subset \partial \Omega
\end{gathered}
$$

where

$$
\Gamma_{-}(t)=\left\{s \in \partial \Omega: v(t, s) \in \mathcal{T}_{\Omega}(s)\right\}
$$

$\mathcal{T}_{\Omega}(s)$ - the tangent cone to Ω at $s \quad(=\Omega-s)$
$f(t, s)$ - emission
$g(t, s, x)$ - deposition

Viability constraints

"Hard" constraint: $\quad x(t, s) \leq c(s)$
"Soft" constraint: the violation of $x(t, s) \leq c(s)$ is penalized: Instantaneous Damage:

$$
\int_{\Omega} D(s, x(t, s)) \mathrm{d} s .
$$

Example:

$$
D(s, x)=\left\{\begin{array}{ccc}
0 & \text { if } & x \leq c(s) \\
\alpha(s) \varphi(x) & \text { if } & x>c(s)
\end{array}\right.
$$

where
$\alpha(s)$ - depends on the density of the population at s $\varphi(x) \geq 0$ - an increasing function.

Means of control

$$
x_{t}+\langle v(t, s), \nabla x\rangle=f(t, s)-g(t, s, x),
$$

Assume

$$
f(t, s)=f_{0}(t, s)+f_{1}(t, s)
$$

f_{0} - the uncontrollable emission
f_{1} - the controllable emission, $u(t, s) \in[0,1]$ - the control variable:

$$
f(t, s)=f_{0}(t, s)+(1-u(t, s)) f_{1}(t, s)
$$

Control cost:

$$
\int_{0}^{T} \int_{\Omega} C(s, u(t, s)) \mathrm{d} s \mathrm{~d} t
$$

Aims of control:

(i) Keep the "hard" constraints satisfied by minimal costs

$$
\min _{u} \int_{0}^{T} \int_{\Omega} C(s, u(t, s) \mathrm{d} s \mathrm{~d} t
$$

or
(ii) Minimize the damage by minimal costs:

$$
\min _{u} \int_{0}^{T} \int_{\Omega}[\alpha C(s, u(t, s))+\beta D(s, x(t, s)] \mathrm{d} s \mathrm{~d} t \quad \alpha \geq 0, \beta>0
$$

The overall model:

$$
\begin{gathered}
\operatorname{minimize} \int_{0}^{T} \int_{\Omega} L(t, s, x(t, s), u(t, s)) \mathrm{d} s \mathrm{~d} t \\
x_{t}+\langle v(t, s), \nabla x\rangle=f_{0}(t, s)+(1-u) f_{1}(t, s)-g(t, s, x) \\
x(0, s)=\hat{x}_{0}(s), \quad x \in \Omega \\
x(t, s)=\hat{x}(t, s), \quad s \in \Gamma_{-}(t) \\
u(t, s) \in[0,1]
\end{gathered}
$$

Here either $L=C$ and there is a state constraint $x(t, s) \leq c(s)$, or $L=\alpha C+\beta D$.

Assumptions: All functions involved in the model are nonnegative, continuous, and continuously differentiable with respect to x and $u ; L$ is uniformly strongly convex in u.

Point sources
Diffusion

A more general control model

$x(t, s), y(t)$ - state variables, $\quad(t, s) \in[0, T] \times \Omega$
$u(t, s), v(t)$ - control variables

$$
\begin{aligned}
\frac{\partial}{\partial t} x+\frac{\partial}{\partial s}[p(t, s, y(t), v(t)) x]= & F(t, s, x(t, s), y(t), u(t, s), v(t)) \\
y(t)= & \int_{\Omega} q(t, s, x(t, s), u(t, s)) \mathrm{d} s \\
x(t, s)= & \varphi(t, s, y(t), v(t)) \text { for } s \in \Gamma_{-}(t) \\
& u(t, s) \in U, v(t) \in V
\end{aligned}
$$

Optimal control problem: $\min J(u, v)$.

Difficulties:

nonlinear diff. operator: $p(\ldots, y, \ldots)$;
diff. operator depending on the control: $p(\ldots, v)$;
nonlocal dynamics: $F(\ldots, y, \ldots)$;
endogenous and non-local side conditions: $\varphi(\ldots, y, v)$.

Special cases:

- age structured systems ($s \in \mathbf{R}, p=1$): many papers,
... Brokate (1985), G. Tragler + G. Feichtinger + V.V. (2003) ...
- multiple age-structures $\left(x_{t}+x_{s_{1}}+x_{s_{2}}=\ldots\right)$: G. Feichtinger + Ts. Tsachev + V.V. (2004)
- single-size-structured (p is diagonal with the same $p(t, s, y, v$) at the diagonal): O. Tarniceriu + V.V. (??)
- "the air pollution model"

Open questions: terminal constraints, infinite horizon problems, state/mixed constraints, ...

Back to the air pollution problem:

$\operatorname{minimize} \int_{0}^{T} \int_{\Omega}[\alpha C(s, u(t, s))+\beta D(s, x(t, s))] \mathrm{d} s \mathrm{~d} t \quad u(t, s) \in[0,1]$

$$
\begin{aligned}
& x_{t}+\langle v(t, s), \nabla x\rangle=f_{0}(t, s)+(1-u) f_{1}(t, s)-g(t, s, x) \\
& x(0, s)=\hat{x}_{0}(s), \quad s \in \Omega, \quad x(t, s)=\hat{x}(t, s), \quad s \in \Gamma_{-}(t)
\end{aligned}
$$

Adjoint equation:

Denote

$$
\Gamma_{+}(t)=\partial \Omega \backslash \Gamma_{-}(t)
$$

For a fixed reference pair (u, x) define the adjoint equation

$$
\begin{gathered}
\lambda_{t}+\operatorname{div}(\lambda v)=\lambda(t, s) g_{x}(t, s, x(t, s))+\beta D_{x}(s, x(t, s)) \\
\lambda(T, s)=0 \quad \text { for } \quad s \in \Omega, \quad \lambda(t, s)=0 \quad \text { for } \quad t \in[0, T], \quad s \in \Gamma_{+}(t)
\end{gathered}
$$

Necessary optimality conditions (maximum principle)

Theorem 1 (i) If the admissible pair (u, x) is optimal, then

$$
L_{u}(t, s, x(t, s), u(t, s))+\lambda(t, s) f_{1}(t, s) \in-N_{[0,1]}(u(t, s))
$$

where $N_{U}(u)$ is the external normal cone to the convex set U at $u \in U$, that is

$$
-N_{[0,1]}(u)=\left\{\begin{aligned}
{[0, \infty) } & \text { if } u=-1 \\
0 & \text { if } u \in(0,1) \\
(-\infty, 0] & \text { if } u=1
\end{aligned}\right.
$$

(ii) If, in addition to the assumptions already made, $D(s, x)$ is increasing and convex in x and $g(t, s, x)$ is convex in x, then the above condition is sufficient for local (in L_{1}) optimality of (u, x).

Numerical solution

$$
\{u(t, s) \in U\}=\mathcal{U} \ni u \longrightarrow I(u)=\int_{0}^{T} \int_{\Omega}(\alpha C+\beta D) \mathrm{d} s \mathrm{~d} t
$$

Gradient projection in the control space. The gradient (in L_{2}) at a reference pair (u, x) is

$$
\frac{\mathrm{d} I}{\mathrm{~d} u(\cdot)}=\alpha C_{u}(s, u(t, s))+\lambda(t, s) f_{1}(t, s)
$$

Continuous problem $(x, u) \longrightarrow$ Discrete problem $\left(x_{h}, u_{h}\right)$

Approximation of $\frac{\mathrm{d} I}{\mathrm{~d} u(\cdot)}$

$\operatorname{Next}(x, u) \quad \longrightarrow \quad \operatorname{Next}\left(x_{h}, u_{h}\right)$
(i) Runge-Kutta (at least third order local accuracy) discretization along the characteristics
(ii) Projected or conditional gradient direction
(iii) Line search (Armijo)

Error estimate: assume the conditions for sufficiency of the maximum principle, v of bounded variation, and "appropriate" coefficients of the RK scheme. Then

$$
\max _{i, j}\left|u\left(t_{i}, x_{j}\right)-u_{i j}^{N}\right| \leq C \bigvee_{0}^{T} v h^{2}+E^{N},
$$

where E^{N} is independent of h.
Scheme of proof: W. Hager+A. Dontchev + V.V. - SIAM J. Numer. Anal. (2000).

On the use of optimal control in environmental problems

- Nominative: policy design

Find an optimal control $u^{*} \longrightarrow$ implement u^{*}
— finding most "sensitive points" / best directions of improvement

- the theory of the environmental management: economic/environmental trade-offs, environmental taxes, short versus long run policies, the role of uncertainty, etc. ...
— scenario analysis: test against "worst" cases
- training
-
- base for evaluation of decisions and risk-related cost of operation

Risk-related cost of operation

$e(t)$ - abnormal emission, $t \in[0, \tau]$
$v(t, s)$ - wind velocity, $t \in[0, T], x \in \Omega$
$I^{*}(e, v)$ - the optimal value
\mathcal{E} - probability space of abnormal emissions
\mathcal{V} - probability space of wind velocities

$$
\mathbf{R}=\int_{\mathcal{E}} \int_{\mathcal{V}} \alpha(e) \beta(v) J(e, v) \mathrm{d} v \mathrm{~d} e
$$

Approximation:

$$
\left(e_{1}(\cdot), \alpha_{1}\right), \ldots,\left(e_{m}(\cdot), \alpha_{m}\right) \quad\left(v_{1}(\cdot), \beta_{1}\right), \ldots,\left(v_{n}(\cdot), \beta_{n}\right) .
$$

$$
\mathbf{R} \approx \sum_{i, j} \alpha_{i} \beta_{j} J\left(e_{i}, v_{j}\right)
$$

