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DUAL SUPERNILPOTENT RADICAL CLOSURES OF RIGHT IDEALS

LYUBOMIR I. DAVIDOV

The concept radical closure is introduced for the first time by V. A. Andrunakie-
vicand Yu. M. Riabuchin [3]. The introduction of that concept enables us to find some
properties of right ideals of a fixed algebra, which cannot be proved with the concept radi-
cal. In this paper we shall give a description of one class radical closures which are analo-
gous to dual special radicals, introduced by Andrunakievic [1].

1. Preliminary remarks. Let R is an associative algebra (not necessarily
with an unit) over a commutative ring @ with an unit (1¢®). We shall note
with B(R) the set of the right ideals of R and with A(R)— the class of all
pairs (A, B), where A, BER(R) and ADB. If ADCoB are right ideals of R
then we shall call the pairs (C, B) and (A, B) subpair and factor-pair of the
pair (4, B).

It is clear that with every pair (A, B)¢)(R) it can be connected a R-mo-
dule A/B. We shall call a pair (A, B) respectively: zero, simple, subdirectly
irreducible pair when the R-module A/B is zero, simple, subdirectly irredu-
cible. When the pair (A4, B) is subdirectly irreducible it is clear that the inter-
section H=nQ, of all right ideals Q, (a¢/) of R for which A>Q,D5,
B=-Q, is different from B. In that case we shall call the pair (4, B) (which
is a simple one) a heart of the pair (4, B).

The mapping ¢:A(R) — P(R) will becalled a radical closure if the follow-
ing conditions hold:

o.1. For every pair (4, B)A(R): Bco(4, B)cC A.

0.2. For every pair (A, B)A(R):

Q(Q(A) B)l B)=9(A’ Q(A’ B))‘_'Q(Av B)'
0.3. If ADC> B are right ideals of R, then
o(4, C)2o(A, B)oo(C, B).

If the radical closure o satisfies the condition

0.4. If ADC>oB are right ideals of R, then o(C, B)=0(4, B)NC, then
it will be called a hereditary radical closure.

If o, and g, are radical closures, then we note o,<p, if for every pair
(A, B)QQU(R) is held: o,(A, B)ces(A, B).

Let o be a radical closure. The pair (A, B) will be called a o-semi-simple
one, if o(A, B)=B. The pair (A, B) will be called a g-radical one, if o(4, B)=A.

With every radical closure git can be connected two classes of pairs: the
class R(g) of all g-radical pairs and the class S(g) of all o-semi-simple pairs.
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A class of pairs & (further we shall suppose, that every subclass of the class
A(R) contains all zero pairs) will be called a semi-simple one if there exists
a radical closure g such that §=J(g). It is proved [3] that the class of pairs
& is a semi-simple one if and only if the following conditions hold:

s.1. If (A, B)¢d, then for every right ideal C of R: (ANC, BN C)S.

s.2. If for every non zero subpair (C, B) of the pair (4, B) there exists a
non-zero factor-pair (C, D)¢d, then (A, B)¢S.

Let now “B be a class of pairs. We note with ‘B, the class of all pairs
(AnC, BN C), where (A, B)® and C is a right ideal of R and with G, —
the class of all pairs (A4, B) such that for every non-zero subpair (C, B) of
the pair (A4, B), there exists a non-zero factor-pair (C, D)¢G;. It is not diffi-
cult to prove, that the conditions s.1. and s.2. are held for the class B, and
therefore there exists a radical closure ¢f, such that G,=J(g?). At that if 5 is
a radical closure, for which Gc J(y), then #n=p’. The radical closure g will
be called an upper radical closure, determined by the class <G.

It is proved [4] that if the class “G has a condition s.1, then the
conditions (i) o to be a hereditary radical closure and (ii) ¢/(4, B)=nT.,
where {7, a¢l} is the set of all right ideals of R for which Bc 7,c A and
(A, T,)EB are equivalent to the following condition:

s.3. lf for a non-zero subpair (C, B) of the pair (4, B) there exists a non-zero
factor-pair (C, D)¢<B, then there exists a factor pair (A4, 7) of the pair (4, B),
such that (A, 7)¢B and T does not OC.

If o is a radical closure, then the radical closure ¢* will be called supple-
mentary to o, if (i) for every pair (4, B)QA(R): (4, B)No*(A, B)=B and (ii)
for every radical closure 5, for which #(A4, B)ne(4, B)=5B, is held: n=o*.
The radical closure o will be called a dual one, if there exists the radical
closures ¢* and @**=(0*)* and g=o**.

According to [3] and [4] for every radical closure ¢ there exists a supp-
lementary radical closure o* which is hereditary and dual one. If ¢ is a here-
ditary radical closure at that, then the radical closure ¢* is equal to the upper
radical closure of, determined by the class of all subdirectly irreducible pairs
with a g-radical heart. And what is more, the radical closure ¢* is equal to
the upper radical closure, determined by the class of all subdirectly irredu-
cible pairs (R, P) with a g-radical heart. In that case o*(4, B)=A iff for every
right ideal D of R is held o(A-+D, B+D)=B+D.

A pair (A, B)A((R) will be called a nilpotent one if there exists an inte-
ger n-2, such that A”c B and will be called almost nilpotent, if there exists
a right ideal C of R such that C"cB and B-+C=A. The radical closure o
will be called a supernilpotent one, if it is hereditary and if every nilpotent
pair is a g-radical one. It is clear that the radical closure ¢ is supernilpotent
one if and only if it is hereditary and every almost nilpotent pair is a o-ra-
dical one.

A pair (4, B)(R) will be called a weak regular one if for every right
ideal T of R for which Tc A, is held: Tc T2+ B. It is not difficult to be
proved that the following five conditions are equivalent:

(a) (A, B) is a weak regular pair.

(b) For every element x¢A there exists an element x'¢(x) such that
x—xx'¢B.

(c) For every element x¢A is held: x¢x(x)+B.

(d) For every element x¢A is held: x¢|x)?+B.
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(e) For every element x¢A is held: |x)c| x)2+B.
Remark. We note here with (x) the two-sided ideal of R, generated by
x, and with | x) — the right ideal of R, generaied by x, i.e.

(x)={ax+xr +ryx—4-s,x8, | akD, 1, ry, S, SotR)},
[ X)={ax+xr atd, reR).

A pair (A, B) will be called a hereditary idempotent one if for every right
ideal C of R the pair (A+C, B+C) is a weak regular pair.

The radical closure o will be called an underidempotent one if it is a
hereditary one and if every p-radical pair is a hereditary idempotent one.
The following theorem is proved in [4].

If o is a supernilpotent radical closure, then supplementary to it radical
closure o* is a dual underidempotent one. The radical closure o** is a dual
supernilpotent one and if » is a dual supernilpotent radical closure for
which o=, then p**=1.

2. Special radical closures. Let 9 be a (right) R-module. If S is a
subset of 9, we note with ann S the annihilator of S, i.e.

ann S={xtR | Sx=(0)}.

It is clear that ann S is a right ideal of R. If S is a submodule of ) at that,
then annS is a two-sided ideal of R. In case ann9=(0) we call the module
M a faithful one.

The module Mt will be called a prime one if MR==(0) and if for any
non-zero submodule N of M is held: annHN=ann 9. It is easy to see that
every submodule of a prime module is prime too.

A pair (A, B) will be called a prime one if there exists a right ideal P
of R, such that R/P is a prime module, ann(R/P)c P and PN A=B.

Lemma 1. If (A, B) is a prime pair, then for every right ideal C of
R for which ANC+BnNC, the pair (AnC, BN C) is prime too.

Proof. Let (A4, B) is a prime pair. Then there exists a right ideal P of
R such that R/Pis a prime module, ann(R/P)c P and Pn A= B. From here
we have PNANC=BnNC and therefore (ANC, BNC) is a prime pair too.

Lemma 2. The pair (A, BYX)(R) is a prime one iff A/B is a prime mo-
dule and ann(A/B)n Ac B.

Proof. Let (4, B) is a prime pair. Then there exists a right ideal P of
R such that R/P is a prime module, ann(R/P)c P and PN A=B. But

A/B=A/PN A=A+ P/Pc RIP

and therefore A/B is a prime module.
On the other hand,

ann (A/B)=ann (A+ P/P)=ann(R/P).

Thus, ann(A/B)n AcPnA=B.

Contrary let A/B 1s a prime module and ann(4/B)n Ac B. We note with
S the set of all right ideals 7 of R for which B+ann(A/B)c 7 and Tn A= B.
It is clear that B+ ann(A4/B)E, because if x¢(B+ann(A4/B))N A then x=b, -+ b,,
b\€B, byann (A/B) and therefore by,=x—b,AN(ann(A/B)c B, i. e. x¢B. From
here we receive that the set S is not empty and by Zorn’s lemma there exists
a maximal element P in &.
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We have first that if xcann(R/P), then Rxc P and AxcPNnA=B58, ie.
x¢ann (A/B)c P. Therefore, ann (R/P)c P.

On the other hand, it is clear that R? does not cP. (If R?c P, then
ARc Pn A= B, which is not true.)

Let now C/P is a non-zero submodule of R/P. Then ann(C/P)>ann (R/P).
But C==P. Therefore, CNA=B, i.e. CNA/B is a non-zero submodule of
A/B and

CnNA/B=CnA/PNA=CnA+P/P.

From here we have
ann(CNA+P/P)y=ann(Cn A/B)=ann (A/B)c P

because A/B is a prime module and CnA/B is its non-zero submodule. At
that ann(CnN A+ P/P) is a two-sided ideal of R and thus

Rann (Cn A+P/P)ycann(Cn A+P/P)cP.
Therefore,
ann(R/P)o>ann(Cn A+P/P)>an(C/P)>ann (R/P)

and ann(R/P)=ann(C/P), i.e. R/P is a prime module.

The lemma is proved.

Corollary 1. If (A, B) is a subdirectly irreducible and prime pair,
then there exists a subdirectly irreducible and prime pair (R, P) such that
PNA=B. At that if (H, B) is the heart of (A, B), then (H-+P, P) is the
heart of (R, P).

Proof. If (4, B) is a prime pair, then there exists a right ideal P of R,
such that (R, P) is a prime pair and PN A=B. We can choose P — maximal
to the condition PN A=B. Thus, if Q is a right ideal of R and Q>2A,
Q=+P, then QN ADB, QN A=+=B and Q> H+ P. On the other hand,

H+P/P~H|Pn H=H|B

and, therefore, (R, P) is a subdirectly irreducible pair with a heart (/4 P, P).

The class X of pairs will be called a special one, if the following condi-
tions hold :

a.l. If (A, B)x>, then (A, B) is a prime pair.

0.2. If (A, B)¢Z, then for every right ideal C of R:(ANnC, Bn C)2.

6.3. If (C, B) is a non-zero subpair of the pair (4, B) and (C, B)¢Z, then
there exists a non-zero factor-pair (A, 7) of (A, B) such that 7 does not ©C
and (A, T)e2.

It is clear that every special class 3 determines an upper radical closure
¢°. The radical closure ¢ will be called a special one, if there exists a special
class of pairs >, such that p=p°. By condition 0.3 we have, that every special
radical closure o° is a hereditary one and for every pair (4, B): ¢°(4, B)
=N T, (atl) where {T, a¢/} is the set of all right ideals of R, such that
Bc T,c A and (A, T,)¢2.

It is obvious that if o is a special radical closure determined by the class
S and (A, B) is a subdirectly irreducible pair, then ¢(4, B)= B iff (A4, B)¢2.

Lemma 3. If {o.|atl} is a family of special radical closures, then there
exists a special radical closure o= Ag., Such that o<¢. for every a and if
n is a radical closure for which n<o,, then n=o.
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Proof. Let the radical closure g, is determined by the class 2,. Then
it is not difficult to be seen, that >--uZX,(z¢/) is a special class. To note
with o the special radical closure, determined by 2. Then for every at/ we
have X,c 2 and, therefore, o=o,. On the other hand, if »is a radical closure,
for which n<p,, then Z,cS(0.) for every ac/. Therefore, XcF(») and n=e.

The lemma is proved.

Proposition 1. Every special radical closure ¢ is a supernilpo-
tent one.

Proof. It is clear that ¢ is a hereditary radical closure. Let (A, B) be a
nilpotent pair. Suppose that o(4, B)==A. It follows from 0.2. and o.3. that there
exists a non-zero factor pair (A, 7) of the pair (4, B), such that (4, T)e2.
(We note here with 3 the special class, which determines p.) Then by o.l.
we have that (4, 7) is a prime pair. On the other hand (A4, B) is a nilpotent
pair and, therefore (4, 7) is nilpotent too. Let n>=2 is such an integer for
which A7c T and A»—! does not < 7. Thus, A"=A.A"'c T and therefore
Ar—lcann(A/T)NAc T, which is a contradiction.

The proposition is proved.

Proposition 2. If o is a suppernilpotent radical closure, then there
exists a special radical closure o,, such that ¢<g, and for every special ra-
dical closure n for which o=n, is held: o,=n too.

Proof. Let 9 is the class of all prime pairs (R, P), which are g-semi-
simple, i.e. M ={(R, P)| (R, P) is a prime pair and (R, P)cS(¢)} and let 9M°
is the class of all pairs (A, PN A), where ACR(R) and (R, P)eINL.

First we shall prove, that 9° is a special class of pairs. It is clear that
the conditions o.1. and ¢.2. are true for the class 9% Let (C, B)¢I° is a non-
zero subpair of the pair (A4, B). There exists a pair (R, P)¢91L such that Pn C=B.
Then (4, PN A)N° and PN A does not OC since P does not OC. Therefore,
the class 91° has the condition 6.3, and it is a special class of pairs.

We denote with ¢™ the special radical closure determined by 9IL°. Since
I cS(g), then IM°cS{p), i.e. e=¢™ and, therefore, the class £ of all special
radical closures, which are =g is not empty. By lemma 3 it follows that the
radical closure g,== 9., (0.£8) is special too. By that it is clear that the con-
ditions of proposition are true for g,.

In the end we shall prove that g,=o™ We have g,<¢™. Suppose that
0,-=0o™ Then there exists a pair (A, B), such that o,(A, B)=2B but ¢™(4, B)=A.
If X is the special class, determined by ¢, then

B=n{TeR(R) BcTcA and (A, T)Z})

From here we have that there exists a pair (4, 7)¢2 for which ¢™(A, T)=A.
On the other hand (A, 7) is a subpair of the pair (R, 7) and, therefore,there
exists a right ideal PSR(R), such that (R, P2, P> T and P does not O 7.
But it follows from g=p, that c (o) and then (R, P)¢I and (4, Pn A)ILe,
A>SPNADT, A-=PnA. This contradicts with ¢™(A, T)=A. Therefore, ¢" =pg,.

The proposition is proved.

3. Classes of subdirectly irreducible pairs.

Lemma 4. Let (A, B) is a subdirectly irreducible pair with a heart
(H, B). Then (A, B) is a prime pair iff (H, B) is a weak regular pair.

Proof. Let (4, B) be a prime pair. Then by lemma 1. (H, B)=(An H, BN H)
is prime too. Let x¢H. If x¢B, then x¢x(x)+ B. Let xB. Suppose that x(x)c B.
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Then H(x)-( x)+B)(x)c B and (x)cann(H/B). It follows from here that
x¢ann (H/B)n Hc B, which is a contradiction. Therefore, x(x) does not cB;
x(x)+B~=H and x¢x(x)+ B, i.e. (A, B) is a weak regular pair.

Contrary, let (F, B) be a weak regular pair. Then /72 does not c B and
(H/B)R--(0). The condition for anihilator is held, since H/B is a simple mo-
dule. Therefore, /4/B is a prime module.

~ Let now xtann(/H/B)nH. If we suppose that x¢B, then |x)+ B=H and
H.| x)c B. We receive | x)>C B which is a contradiction with a weak regularity
of (H, B). So we have, that (/, B) is a prime pair. It follows from here that
there exists a right ideal P of R, such that (R, P) is a prime pair and PN H= 8.
Thus (A, Pn A) is also a prime pair. By that if PnA=-B, then PN ADH and
PN H=H, which is not true. Therefore, (4, B)=(A4, PN A).

The lemma is proved.

We note now with B(R) the class of all subdirectly irreducible pairs (R, P).

Lemma 5. Every pair (R, P) of B(R) has either a weak regular heart
or an almost nilpotent heart.

Proofi. Let (H, P) is a heart of the pair (R, P). If (H, P) is not a weak
regular pair, there exists a right ideal 7" of R, such that 7 does not c T2+ P
and 7c H. But since (H, P) is a simple pair and 72c H, then either T2+ P=H
or T2c P. Therefore, 72c P and P+ T=H, i.e. the pair (H, P) is an almost
nilpotent pair.

Corollary 2. Every pair (R, P) of B(R) has either a hereditary idem-
potent heart, or an almost nilpotent heart.

Proof. Let (H, P) is a heart of (R, P)¢B(R). If (H, P) is not almost nil-
potent pair, then (/, P) is a weak regular one. But it is clear, that for every
right ideal C of R is held: either H4-C=P+C, or (H+C, P+C)=(H, P).
Therefore (H, P) is a hereditary idempotent pair.

Corollary 3. If (R P)B(R), then either (R, P) is a prime pair, or
(R, P) has an almost nilpotent heart.

Lemma 6. Let M is a subclass of the class B(R). Then the class IN°
of all pairs (A, PN A), where (R, P)I has the condition s. 3.

Proof. Let (C,D)9m° is a non-zero factor pair of the pair (C, B), which
is a subpair of the pair (A, B). Then D=PnC, where (R, P)IN. It follows
from here that (4, Pn A)9n°. By that PNA does not >C since PN C=+C,
i.e. P does not oC.

The lemma is proved.

Corollary 4. The upper radical closure o”, determined by the class
9T is a hereditary one and for every pair (A, B)}A(R) is held:

e"(A, By=An(N{PER(R) | (R, P)9 and P> BY).

We recieve from here that the pair (R, P) is in 91U iff the heart of (R, P)
is a o™-semi-simple one. .

Lemma 7. Let 9 is a subclass of the class B(R), such that every pair
of M has a hereditary idempotent heart. Then the class IM° of all pairs
(A, PN A), where (R, P)IIL is a special class of pairs.

Proof. It follows by corollary 3., that all pairs of 91U and, therefore, all
pairs of 9° are prime pairs. Similarly if (4, PN AXIM® and CeP(R), then
(ANC, PNANC)IMO. At the end it follows by lemma 6 that the condition
0.3. is held for 9IL°.
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So we have, that the class 91° has the conditions .1, 0.2, 63, i.e. IO
is a special class of pairs. .

The lemma is proved.

Corollary 5. The upper radical closure o™, determined by the class
I is a special one.

Proof. It follows by the results in [3] and [4] that o™ is equal
to the upper radical closure, determined by the class 91° Therefore, o™ is a
special radical closure.

Corollary 6. If o is an underidempotent radical closure, then a supp-
lementary to it radical closure ¢* is a special one.

Proof. The radical closure p* is equal to the upper radical closure, de-
termined by the class B(p) of all subdirectly irreducible pairs (R, P) with a -
radical heart. It follows from the underidempotentity of o that all pairs of
‘Iio’(g) have a hereditary idempotent heart. Therefore, ¢* is a special radical
closure.

Coroilary 7. Every dual supernilpotent radical closure is a special
radical closure.

Proof. If ¢ is a dual supernilpotent radical closure, then ¢* is an un-
deridempotent radical closure and, therefore, o=¢** is a dual special radical
closure.

Theorem (Duality theorem). Let 91U be a subclass of B(R), such that
all pairs of 9. have a hereditary idempotent heart and let 9L is the class
of all the rest of the pairs of B(R). Then the upper radical closure ", de-
termined by the class 9 is a dual special radical closure; the upper radi-

cal closure o", determined by the class I is a dual underidempotent radical

closure; o™ and " supplement each other, i.e. (o™)*=o™ and (¢™)*=0o™. This
way we can receive every dual supernilpotent and every dual underidem-
potent radical closure.

Proof. It follows from lemmas 6 and 7, that ¢” is a special radical clo-
sure and 9L is equal to the class of all subdirectly irreducible pairs (R, P)

with a ¢™-radical heart. Therefore, (0™)*=¢" and ¢” is a dual underidempotent
radical closure. Again from lemma 6 we have that 9L is equal to the class of
all subdirectly irreducible pairs with a g¢™-radical heart, i.e.(0”)*==¢™ and o™ is
a dual special radical closure.

Let now o is a dual supernilpotent radical closure. Then ¢* is an undei-
idempotent radical closure and, therefore, o=** is equal to the upper radical
closure, determined by the class B(o*) of all subdirectly irreducible pairs
(R, P) with a g*-radical heart. But it is clear that all pairs of B(¢*) have here-
ditary idempotent hearts.

At the end let » be a dual underidempotent radical closure and let
9 be the class of all subdirectly irreducible pairs (R, P) with p-semi-simple
hearts. It is clear that the class 9 of all the rest of pairs of B(R) determines
the radical closure x* which is a special one. Therefore, n=»** is equal to the
upper radical closure, determined by 9.

The theorem is proved.
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