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THE MAXIMAL SUBGROUPS OF THE TITS SIMPLE GROUP
KEROPE B. TCHAKERIAN

The main result of this paper determines the subgroup structure of the finite simple
group of Tits 2Fy(2)’.

1. Introduction. Let F denote the Ree group 2F,(2) and G be the commu-
tator subgroup of F. It was shown by J. Tits [12] that G is a simple group
of order 17 971 200=211,3%,52,13 and index 2 in F. The aim of this paper
is to determine the subgroup structure of G. The main result is as follows'.

Theorem 1. The Tits simple group has exactly eight conjugacy clas-
ses of maximal subgroups with representatives : :

1) Q, of order 2'1.5 (2-local, “parabolic” subgroup);
2) Q, of order 2'1.3 (2-local, “parabolic” subgroup);
3) Ea5.(Z,\Aq) (5-1ocal);

4),5) Aut(Ag)=Ss.Z, (two classes fused in F);
6),7) Aut(PSLy(3))=PSLy3).Z, (two classes fused in F);

8) PSLy(25).

This result was announced in [11].

In the above, Q, and Q, are the intersections with G of the representa-
tives of the two conjugacy classes of maximal parabolic subgroups of F. Next,
X.Y (X\Y) denotes a split (non-split) extension of X by Y. Other group-
theoretic notation used in the paper is standard. Thus Z, E, and D, are
respectively the cyclic, elementary Abelian, and dihedral group of order n; A,
and S, are the alternating and symmetric group of degree n. If X is a subset
of G, N(X) and C(X) always stand for the normalizer and the centralizer of
X in G. If x, y¢€F then x’=y—1xy and [x, y]=x"'y"'xy. We use the symbol <
to emphasize proper subgroup inclusion. Finally, character means irreducible
complex character. Some additional notation specific for this paper will be
introduced in Section 2.

The general theory of the Lie type groups is developed in [2]. Those of
type (2F,) are described in Ree’s original paper [8]. Useful information on indi-
vidual groups which appear as subgroups of G can be found in [2, 7]. Through-
out thé paper essential use is made of the character table of G built up
in [5]. Repeated application is made of the so-called Brauer trick [6, p. 70] in
order to construct various simple subgroups of G. Techniques of Finkelstein
and Rudvalis [3] are used in determining the conjugacy classes of simple sub-
groups of G. ‘ ;

Although some subgroups of the Tits group (as local subgroups and the
presence of PSL,(25)) seem to be known, in general proofs are not available

1The author has just been informed (February 10, 1983) by Professor W. Feit that this
result had been independently proved by R. A. Wilson.
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86 K. B. Tchakerian

in the literature. So we give complete proofs of all the assertions. Verifications
which are straightforward or computational are omitted.

The standard technology of determining the maximal subgroups of a finite
simple group depends upon the remark that any maximal subgroup is the nor-
malizer either of an elementary Abelian subgroup or of a direct product of
isomorphic non-Abelian simple subgroups. The two kinds of normalizers are
treated in Sections 3 and 4. In Section 5, the resulting list of subgroups readi-
ly implies Theorem 1.

2. Preliminaries. In this section we collect a number of facts which we
shall need in the proof of Theorem 1. The following lemma is deduced from
[3, 5, 8,9, 10, 12] and will be freely used in the next sections.

Lemma 2.1.(i) F=(U, W) where U, W are subgroups to be described
below. G is a normal simple subgroup of index 2 in F.

(ii) U is a Sylow 2-subgroup of F. Every element u of U is uniquely
written in the form

12
u=ll'll a, (), t €GF(2),
where a,(t;)) are those from (8, p.407). Further, u¢ G if and only if an even
number of t,, &, ts, tg are O.
(iii) Set o,=a;(1)(o;(0)=1), 1=<i<12. All the non-trivial relations of
the a;s are as follows?.

0?=ay al=05 02=0y, a?=a,;, a’=1 for i+1,456;

(@), 03] =0, 0507004, [az a5]=0ag,

(@1 0] =a5a0;090,00,0,, [as, 0g] = agag,,
[a;, ag]=az, [ag, a7]=ag00

[oy, ag]= 090,045 [as ayy]=04a,

[y, ag] = 01001, 0y2, [ay, a5]=aq,

[y, @] =ay,, (@0 07]= 04004049,
[ag, ag] = a5aga;050, (a4 ajo]=a;

[ag, 0,]= 070,104, (a5, ag] =010,

[ag, ag] =01604;044, [ag a;]=ay,,

[ag, ag]=ay;, [ag, ag]=ais,

[a7, ag]=a4q.
(iv) W= (w,, wy3> =D and W=<G. Here w}=w}=(ww,)*=1 and w,=u(1,
—1, ), wa=w(1, 1, 1) in the notatiorn of |8, p. 403].
(v) The action of W on the ajs is given in Table 1. The elements
a_[a;(1) in [8, p. 409]) are as follows : a_,=a,W 0, 0_g=0;"' W0y, A_3= AgW,05.

2 These relations are given, for instance, in [10, p. 81—82] (where, in the expression of
[az. ag] the last term o;; must be deleted) and are checked by the present author using [8].
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Table 1
Q; oy az o3 Qa4 a5 Qg a7 ag Qg Q9 Qg Qg2
w.
a; o a_g az ag ag ay ag Qg a O ag ag
o Qay Og a3 0 Qg as Qg Qa3 Qaz Q0 Qg2 Q31 I

(vi) The order of any element of F—G is a multiple of 4.

(vil) The conjugacy classes and centralizers of the elements of G are
given in Table 2 below. Because of (vi), this provides sufficient knowledge
of centralizers in F. In Table 2, (n,) (or simply (n)) is the k-th class (the
unique class) of elements of order n, and (n,), respectively (n) denotes a pair
of classes each consisting of the inverses, respectively the fifth powers of
elements in the other class.

Table 2
Class Representative Centralizer 1 Square
(1) 211 33 52,13
(21) Oy 211 .5
(22) [+ 3T)) 29.3
(4) azag 27 (21)
(42) Q50408 26 (22)
(43) a0 26.3 (22)
(81) Q040 25 4
(82) aydg 24 543
S3) Gz030s 2 (42)
(16y) 10305 2 (8y)
(163) 050, 24 8,
3) aw® x )
(5) W, 2.52
(6) 22.3
(12) 2.5
(12) 22.3
(13) 13

(viii) Let y€(n,) and A(l;, m;, ¥) be the set of all pairs (o, B) with a€(ly),
B€(m)), and aB=vy. The cardinality of this set, denoted (I, mj, ny) (as itis
a class function), is computed in a routine way from the character table
of G. If (a,B)eA(l, my,Y) for some y€(n,) we say that the group (o, B) is
of type (I, my, n,). Thus any subgroup of G of type (2;, 3, 3) is isomorphic
to A, and any subgroup of type (2, 3,5) is isomorphic to As. Further, in
the obvious action of C(y) on A(l, my;, y) by conjugation, the stabilizer of an
(o, B) is C((a, PY). If C(y) has r orbits on A(l, m; ) then G has at most r
conjugacy classes of subgroups of type (l;, my, ny).

3. Local subgroups of G. In this section we deal with the p-local sub-
groups of G (p=2,3,5 and 13). A part of this analysis will be made use of
in Section 4.

The group F has two conjugacy classes of (proper) maximal parabolic
subgroups, with representatives P,=(U, w;) and P,=(U, w,) of respective
orders 212.5 and 2!2.3.P, is the centralizer of an involution (a;9€G) and P,
is the normalizer of a four-group ({ay;, @;5)=<G). By a result of Borel and
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Tits [1] every 2-local subgroup of F is contained in a maximal parabolic
subgroup. It follows that any 2-local subgroup of G lies in a conjugate (in F)
of either Q; =P, N G or Q3= P, N G.Since | P;: Q;|=2, in particular Q,<]P;(i=1,2),
it is immediate that Qf and Qf are conjugacy classes of subgroups in G. Thus
we have:

Lemma 3.1. G has two conjugacy classes of maximal 2-local sub-
groups, with representatives Q, of order 2V'.5 and Q, of order 2'1.3.

A Sylow 3-subgroup 7 of G is the non-Abelian group of order 27 and
exponent 3. All the elements of 7% are conjugate in G. Set Z(7T)=(0)(=Z;).
Then |C(w)|=4.27 and hence | M(w))|=8.27. C(w) has cyclic Sylow 2-sub-
groups (as G has elements of order 12) and it follows (by a well-known theo-
rem of Burnside) that 7<] C(w). So N({(w))<MN(T) and then clearly N((®))
=MN(T)=T.D, where |D|=8. Let D C(®)=(#). Then uw has order 12 and
is inverted in G by some involution (as #(2,y, 24, 12)==0) which, therefore, in-
Z)erti) both # and ®. So there is an involution in M((®)) inverting # and hence

=D,.

We next turn to the elementary Abelian subgroups of order 9. There are
exactly four such subgroups in 7. Any two of them intersect in Z(7) and
(being normal in 7) are conjugate in G if and only if they are conjugate in
MT). If E is any E, subgroup in T then E*==E as otherwise (u) (which cent-
ralizes Z(T)) must act regularly on E/Z(T)=Z,; an impossibility. Thus G has
at most two classes of E, subgroups.

Now direct computations yield the following. Let t=(a3w,)™"%"10"2*1®2 and
o=1"8, Then E=(1, o)==FE,. Further, #=a;a,,,; €(83) U(83), v=0a,€(2,), and " =¢3
Hence Q=(¢ v) is a quasidihedral group of order 16. We note for later use
that all the six elements of order 4 in Q are from (4,). Now t*=10, o!=1"lc
and 1?=1, 6’=0c"1. Thus Q<ME) and hence |ME)|=2*.3% On the other
hand, as C(E)=E, N(E)/E is a subgroup of Aut (E)=GLg(3). So|ME)|=<3%
24.3=2¢.33 It follows that N(E)/E=GLy3) whence (by a well-known theo-
rem of Gaschiitz) M(E)=E,.GL,(3), the holomorph of E;. As Cg(E)=E, this
implies N«E)=ME). Hence if f¢ F—G then E and E” are not conjugate in G.
Together with the above paragraph, this implies that G has exactly two classes
of E, subgroups, with representatives £, £/ and hence with isomorphic norma-
lizers. We have proved:

Lemma 3.2. G has three conjugacy classes of 3-local subgroups: one
class of Sylow 3-normalizers isomorphic to T.Dg; and two classes (fused
in F) of subgroups isomorphic to Egy.GLy(3).

Further, let 2 be a Sylow 5-subgroup of G. P is elementary Abelian of
order 25. All the elements of P* are conjugate in G and hence in  M(P). Note
if p€ P* then |Cr(p)|=100(as¢ F—G centralizes ay,w, €(5)) so P<]Cg(p). Now
Ng(P) acts transitively (by conjugation) on P*. A point stabilizer in this action
has order 100 (from the above), hence | No(P) |=100.24=25 .3.5% But C,(P%:P
so Ng(P)/P is a 5’-subgroup in Aut (P)==GLy(5), of order 25.3.5. Thus
X=Ngr(P)/P is a 5-complement in GL,5). Then X contains (2)=Z(GLy(5))(=2Z,)
and X/(z) is a subgroup of order 24 in PGL,5)=S;s This forces X/(2)=S,.
Now Y =N(P)/P is a subgroup of index 2 in X hence Y =(z), as z is a square
in GLy«(5). It follows that Y/Kz)=~A,. Thus N(P)/P=Z\ A, (the extension
beir%Anc)m-split as GLg(5) has no A, subgroups) and, consequently, N (P)=xEg.
(ZNA).

If pe P* then PN ((p)) by the above paragraph, hence M{p))<MP). In
fact, it is easily checked that (a;ay a,5)=Z;XZ, normalizes (a,w,)=Zy so
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that the normalizer of a subgroup of order 5 in G is isomorphic to Eyy . (Z,X Z,).

The following has been proved:

Lemma 3.3. G kas one conjugacy class of maximal 5-local subgroups :
Sylow S5-normalizers isomorphic to Ey.(Z,\Ay).

Finally, from Table 2 we obviously have:

Lemma 3.4. G has one conjugacy class of 13-local subgroups: Frobe-
nius groups of order 6.13.

4. Normalizers of simple subgroups of G. In this section we determine
all conjugacy classes of (characteristically) simple subgroups of G and their
normalizers.

Lemma 4.1. Let H be a proper non-Abelian characteristically simple
subgroup of G. Then He==Ag, Ag, PSLy(3), or PSLy(25).

Proof. H is the direct product of isomorphic non-Abelian simple groups.
From the centralizers of the elements of G it follows that A is simple. Since
every non-principal character degree of G is at least 26, clearly | /|<108. Now
[4] implies F1==Ag, Ag, PSL3(3), PSLy(25), or PSU,(4%). The group PSU;(4?) is
ruled out by the fact that it has elements of order 15 while G has none.
It will be shown below that G in fact contains subgroups isomorphic to each
of the remaining four groups.

Lemma 42. G kas two conjugacy classes (fused in F) of subgroups
isomorphic to As. The normalizer of any A subgroup is isomorphic to S
and is not a maximal subgroup of G.

Proof. G has no A; subgroups of type (2,,3,5) as #(2,, 3, 5)=0. Let
v€(5) and A(Y)=A(2, 3, v). Then |A(y)|=100.C(y) (of order 50) acts on A(y)
by conjugation and the stabilizer of an (a, ) in this action is C((a, B))=1 by
Table 2, as (a, B)=~A;. Thus A(y) splits into two orbits under C(y) and hence
there are at most two classes of Ay subgroups in G. On the other hand, if
Ay=A=G and f¢ F—G then A and A’/ are not conjugate in G. For, otherwise
A=A’¢ with some g¢G and then x=fg¢ F—G normalizes A. Since C(A)=1,
S=(A, x)=S;. Let i be an involution in S—A(S;—A4;). As SNG=A,i¢ F—G
which is impossible by Lemma 2.1. This contradiction proves that A and A/
are not conjugate in G. Thus G has exactly two classes of A; subgroups and
these classes fuse in F.

The second statement of the lemma will follow from the proof of the
next lemma.

Lemma 4.3. G has subgroups isomorphic to Ag.

Proof. We first claim that every A, subgroup of G of type (2, 3, 3) is
centralized by an involution. Indeed, the elements aga,,0,, € (2;) and y=azw, €(3)
generate an A, subgroup (because their product has order 3) which is centra-
lized by a,,€(2;). Next, set A(Y)=A(2,, 3, ¥); then |A(y)|=108. For any (a, B)
€A(Y) | C(a, BY)| is prime to 3 as (o. By=~A, while the centralizer of an element
of order 3 has cyclic Sylow 2-subgroups. Thus | C((a, B))J=1,2, or 4 (from
C(a)| and | C(B)|). Suppose C({a, B))=1 for some (a, B)€ A(y). Then this (a, B)
s in an orbit of length 108 under the action of C(y) on A(y). This means
there is a single orbit (A(y) itself) and hence G has a single class of A, sub-
groups of type (2, 3, 3), with trivial centralizers. This is impossible, as shown
above, and thus proves that any A, of type (25, 3,3) in G is centralized by
an involution.

Now let A be an arbitrary Az subgroup of G (recall its involutions are
from (2;)) and A;=K=<A. We have seen that there is an involution j¢ C(K).
Hence K<AN A/, and A’FA as otherwise (A4, j)=S; (recall C(4)=1) whereas
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an A, subgroup in S5 has trivial centralizer. It follows that K=An A% Now G
has a character y, of degree 27. Computations by the character table yield
(| A1) =] A% 1,)=2 and (x|K, 1x)=3. As ANA/=K and (1|4, 1,)
+(a| A% 1,)>( | K, 1), the Brauer trick implies that B=(A, A’)is a proper
subgroup of G. The results of Section 3 show that all local subgroups of G
are solvable (which is, in fact, well-known). As B is non-solvable, a minimal
non-trivial normal subgroup N of B is simple. Then N=A; A; PSL;(3), or
PSL,(25) by Lemma 4.1, and C(N)=1. If, say, NNA=1 then A is contained
in M(N)/N<Out(N). This is, however, impossible as Out (/) is solvable. So N
contains A, A/ as they are simple groups. Thus B=/N is simple, and obviously
B cannot be A or PSLy3). As j interchanges A and A/, j normalizes B. But
Jj¢ B because in each of the groups Ag and PSL,(25) any A, subgroup has
trivial centralizer. It is shown in Lemma 4.6 that any PSL,(25) subgroup of
G is selfnormalizing. It follows that B cannot be PSLy(25). This forces B=A,,
thus proving the lemma.

Moreover, the group Ag has two classes of elements of order 3 and two
classes of A subgroups which are distinguished by their elements of order 3.
Hence two non-conjugate Ag’s of Ag cannot intersect in an A,. Thus there is
an element b¢ B such that A/=A% Now bj¢ N(A) but bj¢ A as otherwise j¢ B,
contradicting the above paragraph. Thus we have proved: any Ay subgroup A
of G lies in an Ag subgroup B, N(A)>A and hence N(A)=S;, and also that
N(A) is properly contained in M(B) so it is not maximal in G. This completes
also the proof of Lemma 4.2.

Lemma 4.4. An Ay subgroup of G is contained in exactly one Ag
subgroup.

Proof. We have just seen that any A; subgroup lies in some Ag sub-
group. Assume now that A=Az is contained in two distinct subgroups
B,C=A;, so A=B(N C. We apply the Brauer trick this time to derive a con-
tradiction.

Any Ag subgroup in G contains 45 involutions, which invert elements of
order 3 and hence are in (2,) as #(2y, 2;,3)=0, 80 elements of order 3, 90
elements of order 4, which are all either in (4,) or in (4;) as elements in (4,)
have their squares in (2,), and 144 elements of order 5. G has a character x4
of degree 78 which takes the same value on both (4,) and (43). Now one
computes (xg|B, 15)=(xs|C, 1c)=1 and (x| A, 1,)=1. It follows that D=(B, C)
is a proper subgroup of G. Furthermore, the same argument as in the proof of
Lemma 4.3 implies that a minimal normal subgroup N=1 of D is simple and
that NV contains both B and C, whence N=D. Thus D is a proper simple
subgroup of G. However, none of the groups listed in Lemma 4.1 contains Aq
properly. This contradiction proves the lemma.

Lemma 4.5. G kas two conjugacy classes (fused in F) of subgroups
isomorphic to Ag. If Bis a member of either class, then N(B)=Aut (Ag)=Sg.Z,.

Proof. Let B be any Ag subgroup of G and A;~A<B. By Lemma 4.2
N(A)=S;, so choose an involution j¢ N(A)—A. As A=BNB,B'=B by
Lemma 4.4. Thus j¢ N(B) but j¢ B as Ng(A)=A. Hence B is a subgroup of
index 2 in R=(B, ) and R<Aut(4g) =Aut (S;). Now, there are exactly three
subgroups in Aut(Ag) containing the Ag with index 2: S, PGLy(9), and M,
(a point stabilizer in the Mathieu group M,,). But PGL,(9) has no Sz sub-
groups as it has two classes of elements of order 5 while S; has only one class.
M,, has no S; subgroups, too, because there are involutions in S;—A; whereas
all the involutions of M,, are already in As. We therefore have R=Ss.
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Thus, any B=A; is contained in exactly one R=S,. If f¢ F—G, R and R/
are not conjugate in G, again because there are involutions in Aut(Sg)—S; but
not in F—G. This says that G has at least two classes of Ag subgroups. On
the other hand, G has two classes of Ay subgroups and each Aj lies in exactly
one A, from which it follows immediately that G has at most two classes of
Ag subgroups. Eventually, G has exactly two classes of Ag subgroups, with
representatives B and B’/ where f¢ F—G.

Moreover, these two classes are distinguished by their A; subgroups,
as A and A/ are representatives of the two classes of Ag’s in G. This
means that any two A; subgroups of B are conjugate in G. Hence the same
is true of their normalizers, that is, any two S; subgroups of R are conjugate
in G. Now the group R=S; has two classes of Sy’s, with representatives,
say, R; and R,. By the above there is an element g¢ G—R with R,=R$§Hence

R,=RNRE and consequently R€=R, as clearly an S; subgroup of G lies in
a unique Sg. Thus ge M(B)—R which implies M(B)=Aut (Ag)=S;. Z,. All parts
of the lemma are proved.

Lemma 46. G has one conjugacy class of subgroups isomorphic to
PSLy(25). Any such subgroup is self-normalizing.

Proof. Take a subgroup S=S; in G. We first claim that the involutions
of S are from (2,) and the elements of order 4 in S are from (4;). For, we
know that S is contained in a subgroup R=Ss;. Each involution in R either
centralizes or inverts an element of order 3, hence it is in (2,). So R has no
elements from (4,). Then, by restricting the character y, of G of degree 27 to
R, one sees that RN (4y) and RN (4;) are the two classes of elements of order
4 in R. One of these classes lies in the A; subgroup B of R while the other
class appears in the S; subgroups of R. The elements of order 4 in B=~A4
normalize E, subgroups hence they are in (4,), from the discussion preceding
Lemma 3.2 and the remark that the classes (4,) and (4;) do not fuse in F.
It follows that RN (4;)=B and then precisely RN (4;s) appears in the Sz sub-
groups of R. This proves the claim.

Now let pe SN(5). Then K=Ng({p)) is a Frobenius group of order 20.
As N({(p)) has a normal Sylow 5-subgroup, K lies in a subgroup V=FE,;.Z, of
MN(¢p)). Thus K=8N V. The non-identity elements in a Z, subgroup of V are
from (45) and (2,) hence they cannot centralize non-identity elements of the
Eys subgroup. This determines the class structure of V, and that of S also
follows from the above paragraph. Now computations yield (x4]S, 15)=2,
(% |V, 1y)=3, and (x| K, 1x)=4. The Brauer trick implies that L=(S, V) is a
proper subgroup of G.

A minimal normal subgroup N==1 of L is simple (as L is non-solvable),
and L=<Aut(N). Thus |Aut(N)| is a multiple of 52 whence necessarily
N=PSLq(25) (by Lemma 4.1). Moreover, L=AN. Indeed, | Aut(N):N|=4 and
L>N would imply that a Sylow 13-normalizer in L has order 4.13 or 8.13,
contradicting Lemma 3.4. (Note the same argument proves that any PSL,(25)
subgroup of G coincides with its normalizer.) Thus L=xPSLy(25).

Further, let y¢(13)N L. Then |A(2,, 3, ¥)|=104. Now, (2,)NL and (3)NL
are conjugacy classes in L and |A((2,)nL, (3)NL,y)|=26. Every pair of
a€(2)NL, BeB)NL with af=y generates the whole L (from the subgroup
structure of PSLy(25)). An easy count shows that y belongs to |N((y)):
N,(v)) |=3 distinct conjugates of L. All the above put together imply that
each conjugacy class of PSL,(25)’s contributes 3.26=78 elements to A(2, 3, v).
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As |A(2, 3,7)|<2.78, there is a single class of PSL,(25) subgroups in G. This
completes the proof of the lemma.

Lemma 4.7. G has two conjugacy classes (fused in F) of subgroups
isomorphic to PSL3(3). If M is a representative of either class, N(M)
=~Aut (PSL3(3))=~PSL;3(3). Z,.

Proof. We first apply the Brauer trick with the rational-valued charac-
ter g of G of degree 351 =33%.13 to construct a subgroup of G isomorphic to
Aut (PSLy(3)). Note yx, (of course) vanishes on all elements of order divisible
by 3. Thus, in determining the class structure of the subgroups considered
below, we can limit ourselves on 2-elements only.

Now let £ be an E, subgroup of G. We have seen that M(E)=FE,.GLy(3).
From the structure of this group and the information in Section 3, one veri-
fies that N(E) contains 45 involutions which centralize elements of order 3
and hence lie in (2,), 54 elements from (4,), and 108 elements from (8,) U (83).
This produces (x| ME), Inr)=3. Next, let T<ME) be a Sylow 3-subgroup
of G and V=Nng (T). Then V is a split extension of 7 by £, and V con-
tains 27 involutions from (2,). This yields (xq| V, 1,)=7. Lastly, from the known
structure of M(T) one checks that M(7) has 45 involutions from (2,) (as they
normalize Z(T)), and 18 elements from (43) (as they centralize Z(7)). This
implies (%o | M(T), 1,n)=5. )

Now, as ME)N M(T)=V and 3+5>7, N=(N(E), N(T)) is a proper subgroup
of G. Since no local subgroup of G contains both ME) and M(T), a minimal
normal subgroup M==1 of N is simple. Since N=Aut(M), |Aut(M)|is divis-
ible by 3% and then M=PSLy3) (by Lemma 4.1). Moreover, N>M as a
Sylow 3-normalizer has order 8.27 in N and only 4.27 in PSLy(3). This forces
N=NM)=Aut (PSLy3))=PSLy(3). Z,.

Finally, let y€(13). As shown in Lemma 4.6, |A(2,, 3,v)|=104 and 78
elements of this set arise from PSLy(25) subgroups of G. However, each
PSL4(3) subgroup containing y contributes 13 to |A(2, 3,7)|. As 104—78
<3.13, y belongs to at most two PSLy(3)’s. Hence there are at most two clas-
ses of PSLy3) subgroups in G. But if PSLy3)=M<=G and f¢F—G then M
and M’ are not conjugate in G, again because there are involutions in Aut(M)
—M but not in F—G. This proves that G has exactly two classes of PSLy(3)’s,
which fuse in F and so they have isomorphic normalizers in G. The lemma is

roved.

P 5. Proof of Theorem 1. Now all conjugacy classes of the candidates for
maximal subgroups of G are determined in Sections 3 and 4. As any 3-local
or 13-local subgroup of G is contained in a subgroup isomorphic to Aut (PSLy3)),
these reduce to the eight classes listed in Theorem 1. Obviously no member
of any of these classes is contained in any other. Thus all these subgroups
are maximal in G. This completes the proof of Theorem 1.
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