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MAXIMAL SUBFIELDS AND ALGEBRAIC PROPERTIES
OF FIELDS

IVAN D. CHIPCHAKOV

In this paper U-fields are characterized in temrs of maximal subfields of their algebraic
closures in case of a saturated class U of finite groups. A simple link between the maximal
perfect subfield of a field and its purely inseparable closure is proved to exist. The g-maxi-
mal problem is considered in detail.

Preliminary remarks. In this paper U will always mean a class of finite
groups. A field K is said to be an U-field in its normal extension L iff for
any subfield of L which is a Galois extension M of K the Galois group
G(MIK) is an element of U. A field is said to be an U-field iff it is an
U-field in its algebraic closure.

Definition 1. A class U (of finite groups) is said to be regular iff
U is closed with respect to taking subgroups, quotient groups and finite
direct products. A regular class U is called saturated iff for any finite
group G suck that G/®(G)eU, ®(G) being the Frattini subgroup of G, it
follows that Ge U.

Regular (saturated) classes of finite groups are closed with respect to
intersections. A union of a chain of regular (saturated) classes is regular (sa-
turated). Examples of saturated classes are numerous: the class of all finite
groups satisfying (B), (B) being any of the following properties: solvable;
supersolvable; nilpotent; II-groups, i. e. any prime multiple of the order of
any group belonging to the class of Il-groups is an element of a fixed set of
primes IT; if < is a fixed linear order of the set of all prime numbers, we
shall sign by (<) the class of all finite groups such that G¢(<) iff |G|=p}
co . Pl i<Pa<--- <Py k=0, I=1,..., s, p €Tl and such that there exists
a Hall normal {p,,...,p,}-subgroup of G for all r=1,...,s; if T is a class
of finite simple groups containing all groups of prime order, then a finite
group G satisfies the condition (B, 7) iff any simple group isomorphic to a
quotient group of some subgroup of G belongs to 7. The class of all finite
groups satisfying a fixed set of group laws is regular. References on some of
the examples listed above may be found in [3].

In this paper a characterization of U-fields is presented in case of a
saturated class U. Examples based on different ideas are presented thus giving
a positive answer to a question in [2] — see example (iii).

The relations among some field K, its maximal perfect subfield and the
minimal perfect subfield of the algebraic closure K of K containing K is pre-
sented characterizing as a partial case the fields whose finite extensions are
always simple thus linking the results in [5] on such fields.
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The g¢-maximal problem — whether a proper subfield K of a field L is
g-maximal‘in L, i. e the set of subfields of L containing K is linearly ordered
with respect to set theory inclusion, iff for some § ¢ L, K is a maximal sub-
field of L disjoint from & — is considered in detail. Some general situation
provides a positive solution however, although its conditions are proved to be
essential they are not necessary to have a positive solution.

Definition 2. A field K, ch K=p>O0, is said to be imperfect of deg-
ree o. (imp K=a) iff o is the highest cardinality of a subset T of K, ::

={s¢K: s?€¢ K} such that for any natural number k and any two-by-two
different elements ay, ...,0a, of T, [K(ay, ..., 0,): K]=p*

In this paper complete proofs of the results announced in [1] are present-
ed — up to [1, Th. 5], the rest of the results in [1] having been proved in [2].

Fields of positive characteristics. In [5, Th. 3] it is proved that any finite
extension of a field K is simple iff no extension of K contains two distinct
purely inseparable extensions of K of the same degree and besides if K==£A(x),
x — transcendental over k the property referred to is equivalent to 2 being
perfect. The following result in this paper links the results in [5] referred to.

Theorem 1. Let K be a field, Ko,— its maximal perfect subfield.
Then imp K<=deg, K, deg, K being the transcendency degree of K over K,.

Corollary 1. Let K be a field. The following conditions are equi-
valent :

(i) Ewvery finite extension of K is simple;

(i) imp K<=1;

(ili) K is a g-maximal subfield of some perfect field.

The equivalence of (i) and (iii) is announced in [1, Th. 3 (v)].

On U-fields. The following two results prove the existence of cyclic fields
and U-fields, U — saturated — due to Zorn’s lemma as well as to the fact
[9, Th. 2] that profinite groups can be interpreted as Galois groups of appro-
priate field extensions.

Theorem 2. Let U be a saturated class of finite groups, L — a pro-
per normal extension of a field K. Then K is an U-field in L iff there exists
a subset S of L suck that K is a maximal subfield of L without S (i. e
with respect to disjointness from S)and for any, o -separable over K,G(Ka | K)
is an element of U, G(Ko|K) being the Galois group of the minimal Galois
extension K, of K in L containing o (see [1, Th. 3 (i)]).

Corollary 2. Let L be a proper normal extension of a field K.

(i) K is supersolvable (nilpotent) in L iff there exists a subset S of L
such that K is a maximal subfield of L without S and [K(a): K] is a prime
number (K(a) is a normal extension of K in the nilpotent case) for any 0.€¢S
(see [1, Th. 3 (ii))]-

(ii) K is cyclic in L iff for some subset S of L, K is a maximal sub-
field of L without S and for any two different elements a,B of S separable
over K, [K(a): K]==[K(B): K] [see (1, Th. 3 (iii))].

(iii) For every n¢ N there exists at most a single extension of K in L
of dimension n, L being either perfect or separable over K, iff for some
subset S of L, K is a maximal subfield of L without S and for any a¢ S,
BeS: a¥B, [K(a): KI=[K(B): K] (see [1, Th. 3 (iv))).

We shall remark that quasi-finite fields defined by Serre are characterized
in [8, Ch. XIII, § 2, Ex. 1] in a way analogous to (ii) and (iii) — the specific
properties of quasi-finite fields having been taken into consideration as well
In case of an algebraically closed field (AC field) L one can get most of the
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results on maximal subfields of an AC field disjoint from one or two elements
proved in (6) and (4), directly applying Corollary 2.

Corollary 3. Let L be an AC field, ch L=0.

(i) For any saturated class of finite solvable groups U, there exists a
subfied L, of L such that L is algebraic over L, and for any finite exten-
sion K of L, (in L), the elements of U are exactly the finite groups realiz-
ed as Galois groups of certain finite Galois extensions of K [1, Th. 4].

(ii) Any {p}-field L, in L, p—prime, is an algebraic extension of a field

L, satisé’;lllng the conditions in (i) regarding the class of all finite p-groups
1, Th. 5].
[ Clearly by “digging holes“ one can prove the existence of U-fields of
any characteristics for any saturated class U. However, this is by no means
the only way to be used. The following example is based on the theory of
complete fields with respect to a discrete valuation. It gives a positive answer
to a question in [2] — whether there exists a nilpotent field and a central
associative division algebra over this field of finite dimension which is not a
power of a prime number.

Example. (i) Let K be a complete field with respect to a discrete va-

~

luation such that the residue field K: ==p/m is solvable, p being the valuation
ring of K, i. e.p: ={a¢K: |a|<l1}, while m: ={a¢p: |a|<1} is its single
maximal ideal, | | is the valuation of K referred to -— see [15, Ch. XII]. If K'is
perfect, then K is solvable.

(i) Let K be an abelian perfect field containing all primitive n-th roots
of unity for all n (if chK=¢>0 we assume (n, g)=1). Then the field K((x,,
e s X)), MmEN, of formal power series of m algebraically independent variab-
les xy, ..+, Xy over K is abelian if chK=0. If chK=¢>0 then a field K,
which is a maximal algebraic extension of K((x,)) with respect to the property
that any subextension of K((x,)) of finite dimension contained in K, is of
dimension over K((x,)) which is a power of ¢, is a perfect abelian field.

(iii) If K is as in (ii) and besides for any prime p==ch K there exists an
extension of K of dimension p, then there exists a central division algebra of
dimension p? over K((x,)) in case chK=0 (over K, in case ch K30).

Quasi-maximal problem. F. Quigley has proved in [6] that the g-maximal
problem has a positive solution if L is an AC field. As for [6, Th. 1%/! it may
be extended in a natural way in terms of the g-maximal problem. Moreover,
this extension proves to be in a sense the maximal possible due to the follow-
ing result.

Theorem 3. (i) Let L be a proper normal extension of K. If L Is
perfect or if L is a Galois extension of K, then the q-maximal problem is
solved positively.

I 4

(ii) The field L=GF(pXx, ¥, z, \Xx+y2z°), p — prime, x,y, z — algebrai-
cally independent over GF(p) is a normal extension of K=GF(pXx, y, %),
K is a maximal subfield of L without 2P but is not g-maximal.

(iii) Let K be a finite extension of the field of rationals Q. Then there
exist sets M,, My both of continuum cardinality whose elements are two-
by-two K-unisomorphic algebraic extensions of K such that for any F,eM,
X (Fy € My) there exists no proper g-maximal subfield of F, containing K (K is
a g-maximal subfield of F,).

Corollary 4. Let K be an ordered field as in Theorem 3 (iii). Then
M, M, exist as in Theorem 3, (iii) whose elements have the property to be
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?rdered' fields. F, is normal over no of its proper subfields contain-
ng K.

The case K=Q provides examples of “many” unisomorphic algebraic ex-
tensions F of Q containing no ¢-maximal subfield but F.

Corollary 5. Let L be a Galois extension of a field K and let M
be an extension of K in L whick is an U-field in L. Then M contains a
subfield M, which is minimal with respect to being an U-field in L contain-
ing K (hence any g-maximal subfield of L containing K contains a sub-
field My whichk is minimal with respect to being a g-maximal subfield of L
containing K).

Proofs and remarks. Proof of Theorem 1. If K is perfect imp K
=degk, K=0. Let ch K=p>0, K=K, Due to the maximum condition on K,
any element of K\ K, is transcendental over K,. A finite set of elements

t,...,t, of the algebraic closure K of K is algebraically independent over

K, iff tf’l, RN t:’k are algebraically independent over K, for any fixed non-
L pi

zero integers /,, ..., [, As Kot - o s V&, ... ) is perfect, there exists a trans-

p__ p_
cendency basis B of K over K, such that for any a¢B, Ve € K. So [K(Ya,,

P
..., Vo) : K]=p* for any k two-by-two different elements of B, k¢ N. Theo-
rem 1 is proved.

Proof of Corollary 1. Let every finite extension of K be simple-
As [K(S): K] equals either 1 or p for any s¢ Kp~! it follows that imp K=1.
Let impK=1. If impK=0 then K is perfect, so Corollary 1 (iii) is evident.

p_
Let imp K=1, i. e. for some element o of K the p-th root of a Ja € K. Let
P i
L=KWa,...,\Jo,...). We shall prove that L is perfect and K is a g-maximal
R

P

subfield of L. Let L,: =K(Ja). For any polynomial fy(x)€L[x], (fux(x))”
=Tyx?), fux)€Ly[x]. As L, is the only purely inseparable extension of K
in K of dimension p=ch K, it follows that f, is irreducible over L, iff 7, is
irreducible over K, hence L, is the only purely inseparable extension of L,
in K of dimension p. By induction L, is proved to be the only inseparable
extension of L, ,(Lo: =K) in K of dimension p for any natural &, hence L
is perfect. Our considerations prove also that any simple purely inseparable
extension of K in K of dimension p* equals L,, so K, L,, k¢N, L are all (two-
bgl-;lwo different) subfields of L containing K, i. e K is a g-maximal subfield
of L.

The implication (iii) — (i) is trivial if K is perfect. Otherwise as K is a
g-maximal subfield of a perfect field 1, 1is purely inseparable over K with
an analogous lattice of subfields containing K to the respective lattice of
subfields of L over K. Soif £¢K, s¢ NU{0} is the least number such that &”°

p.l
is separable over K, p=chK, then K(&)=K(&"”, Ja). Combining this fact with
the well-known result that finite separable extensions of K are simple we prove
Corollary 1 (u is assumed to belong to K\ K?).

11 Haucka, 1. 8
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Proof of Theorem 2. Assume the opposite, i. e. S exists as in Theo-
rem 2 but K is not an U-field in L (the other implication of Theorem 2 is
evident). Let R be a Galois extension of K in L such that G(R|K)¢€U,
GR,|K)eU for any proper subfield R, of R which is a Galois extension
of K. Due to the maximum condition on S, G=G(R|K) is not simple. If the
intersection of all proper normal subgroups of G is trivial there exist proper
normal subgroups F,, H, of G such that H, () Hy={1}. Due to the fundament-
al theorem of Galois theory G/H; are Galois groups of certain Galois exten-
sions of K in R, so G/H;eU, i=1, 2 due to the condition on R, hence
G=G/H N Hy€ U, being a subgroup of the direct product G/H, X G/H,. Thus it
follows that the intersection of all proper normal subgroups of G is a proper
normal subgroup M. Due to the condition on & and FTGT (i. e the funda-
mental theorem of Galois theory) M is a subgroup of all maximal subgroups
of G, hence Mc®(G). As G/P(G)=(G/IM))(PM)/M), |G||M|<|G|, due to
FTGT and the fact that U is saturated G€ U — a contradiction proving
Theorem 2.

Proof of Corollary 2. Corollary 2 (i) is a direct result of Theo-
rem 2 and the Huppert (Burnside — Wielandt) theorem characterizing the fi-
nite supersolvable (nilpotent) groups mainly by properties of their maximal
subgroups [14, Ch, 6, § 17, Th. 17.1.4; Ch. 7. § 20, Th. 20.3.1] as well as of
FTGT. As for Corollary 2 (iii) it is a direct result of Corollary 2 (ii) as well
as of the proof of Corollary 1.

Proof of Corollary 2 (ii). If K is cyclic in L, then S:={a: K(a) is a mini-
mal extension of K in L, if a¢S, B¢S, K(a)=(B) iff a=B, any extension of K
il? L equals K(g) for some g¢S} satisfies the necessary conditions due to

TGT.

Let S satisfy the necessary conditions. So S is either finite or infinite
denumerable. Let f, be the minimal polynomial of a over K for any a¢S, S
be the set of all elements of S separable over K. If S=(, then (ii) is prov-
ed. If S=@, a<p iff degfo<degfs. Clearly < induces a linear order in
S, so a;,...,a, are the first n elements of S regarding <. BesidesL S may be
considered to have the property that for any proper subset S, of S, K is not
maximal in L without $; US\S. If a, is the minimal element of § then K(a,)
is normal over K. By induction one may assume that K(a;) is normal over K,
i=1,...,n If S={a,,..., a,} (i) is proved. Let S={a;,...,q,} and let a,
be the minimal element of S\ ({a,,...,a,}. If K (a,+;) is not normal over K,
then K(B)=4-K(a,+,) for some root B of fu,, ,. As K(B) is a separable extension

of K in L clearly SN K(B)=+=(), hence K(a,)=K(B) for some i¢{l,...,n}). As
K(a;) is normal over K, ;¢ K(a,+,), i. e K is a maximal subfield in L without
S\{¢a,+1} — a contradiction proving the assertion that K(a) is normal over K
for any a¢S. Due to Corollary 2 (i) K is nilpotent in L, so any finite Galois
extension M of K in L is a composite of Galois extensions of K in L of
dimensions which are powers of prime numbers, i. e a composite of cyclic
fields as any finite group with a single maximal subgroup is cyclic [6, p. 563]
(in fact we make use of the Burnside — Wielandt theorem referred to that
a finite group is nilpotent iff it is isomorphic to a direct product of its
Sylow p-subgroups for all prime multiples p of its order; due to the condi-
tion on S if P¢Syl,G, G:=G(M|K) then P is cyclic for any prime multiple p
of |G|, since P is a quotient group of G, therefore a Galois group of some
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finite Galois extension of K in M — we apply FTGT again). For that reason G
is cyclic, hence any separable finite extension of K in L is cyclic due to FTGT
and the fact that it is a subfield of some finite Galois extension of K in L.
Corollary 2 is proved.

Proof of Corollary 3. Corollary 3 (ii) is a direct result of Corol-
lary 2 (i) and the Sylow theorem on profinite groups [7, Ch. I, § 5, Pr. 5.2].

Proof of Corollary 3 (i). As U is a class of finite solvable groups any
element of U is a Galois group of some Galois extension over the field of
rationals Q due to the Shaffarevich theorem [16] that any finite solvable group
may be realized as a Galois group of some finite Galois extension of Q. Let
L be the minimal subfield of L containing all finite Galois extensions of Q
with a Galois group belonging to U. As U is saturated Q is an U-field in L
(Theorem 2). Due to Zorn’s lemma there exists a maximal subfield L, of L
without: S=L\ Q. As L, is a maximal subfield of L without a set of algebraic
elements over L, L is algebraic over L,. Due to Theorem 2 L, is an U-field
such that any element of U may be realized as a Galois group of an appro-
priate Galois extension of L,. Let K be a finite extension of L, in L. As U
is closed with respect to taking subgroups and quotient groups K is an U-
field being algebraic over L, due to FTGT. If Ge¢U is not a Galois group of
any finite extension (Galois) of K, then MNK==L, for any finite Galois ex-
tension M of L, such that McL, GM|Ly)=G. As U is regular G = G; X - K
XGpeU for any n¢N, G;¢U, i=1,...,n Assuming n big enough G=G, G
=G, X---XG, and applying FTGT to a finite Galois extension M of L, such
:hat g(/W]LO) = G it follows that [K: Lo)=co— a contradiction proving Corol-
ary 3. :

Proofs of the example. (i) In terms of this item as the residue
field K of K is perfect any finite extension L of K contains a maximal non-
ramified extension 7 of K, such that every non-ramified extension of K in L
is a subfield of T, besides [T: K]=[L: K] (see [10, Ch. IV, § 1, Ex. 12]). So
if L is a finite Galois extension of K, T is a Galois extension of K. Let R
be the valuation ring of 7 with respect to the valuation of L induced by the
valuation of K (as for some general facts on valuation theory see [15, Ch. XII})
Let 9 be the maximal ideal of R. For every ¢£G:~=G(T|K), o(R)=R-
o(M)c=M. Assume ¢(a+M): =0(@)+M, a€R. Clearly ¢ is a well defined,
K-automorphism of L, i.eg¢G: =G(Z/K). The mapping ¢ — ¢ is an isomor.
phism of G on G, hence G is solvable. On the other hand, [L: 7] equals the
ramification index of the extension L| T, hence G(L|T) is solvable [13, Ch. 1,
Th. 4]. As the class of solvable groups is well-known to be closed with res-
pect to group extensions, (i. e if H<]G, H and G/H are solvable, so is G)
G(L | K) is solvable. Example (i) is correct.

(ii) Any finite extension of K((x;)), ch K=0, is a subfield of Ky((#)), u°=x,,e
being the ramification index of the extension over K((X;)), Ky being a finite
extension of K (if chK=¢>0 the same result holds for any finite extension
of K((x,)) of dimension prime-to-¢g) — see [10, Ch. IV, § 1, Th. 6]. As a primi-
tive e-th root of unity exists in K (if chK=0 or (¢, chK)=1) K((»)) is a
cyclic extension of K((x,)), while Ky((x;)) =K, K((x,)), hence G(Ky((x,)) | K((x,)))
is abelian as G(K, | K) is abelian. As K((x,))=K(()) N Ko((x,). GK:((@))| K(x,)))

= G(Ky((x1) | K((x))) X GK(®)) | K((x4))) (see [11, Ch. V, p 217, Ex. 3)).
So if chK =0, K((x;)) is abelian. If chK =¢ >0 any finite extension of
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K((x,)) of dimension prime-to-g is an abelian Galois extension. As K is
perfect K((x,)) is solvable. Clearly K, is a composite of the minimal perfect
subfield K; of the algebraic closure M of M: = K((x,)) containing M and M,,
M, being the invariant subfield of the maximal separable extension M, of M
regarding the action of a Hall g-subgroup of G(M,| M), g being the set of
all prime numbers but ¢ (see Remark 1), i. e K;=K3.M,. So K, is an abelian
perfect field. As for the case ch K=0, K((xy,- .., Xp)), m€N, is trivially proved
to be abelian by induction. Example (ii) is correct.

(iii) Due to [2, Lemma 2] it suffices to prove that if M=K((x,)), p is
prime, p==ch K, R,=M(E, n). &n=eng, & =a, a¢K\K? n’=x,, K°: ={s¢K,
sP=s for some s1€K}, € is a fixed primitive p-th root of unity (clearly K==K”
due to the conditions on K and Galois theory on cyclic extensions [15, Ch. VIII,
§ 6]), then R, is a division algebra. As R, is a central simple artinian M-al-
gebra if R, is not a division algebra, then it is M-isomorphic to a full matrix
algebra M, of order p due to Wedderburn — Artin’s theorem. Skolem — Noe-
ther’s theorem [12, Th. IV. 4.1] and the well-known fact that any extension
of M of dimension p is M-isomorphic to subfield of M, prove that M(E,, n,)
=M,, &2=nf=a, §n,=¢n,§,. The norm condition [12, Ch. V, Ex. 24] indicates

p—1
that R,=~M, (over M) iff NM(E{) o, &)a=x, for some (ap ...,a, ,)eMP
-1 , B fd .
(iff N,,,(‘__z‘0 B; &Ha=x4"+! for some n=0, B,-=/£OB,-, xf, i=0, ..., p—1, Bup=0

p—1
for some 2¢{0, ..., p—1} — hence Ni( ‘E=OB,.O§(§)=0 — contradiction to the facy

that a¢ K\ K?). So R, is a central division M-algebra [R,: M]=p?. The ques-
tion in (2) referred to is solved positively.

Proof of Theorem 3. (i) is a partial case of Corollary 2. (ii) Any
proper extension of K in L contains a subextension L, of dimension p=ch K

p——--—-
over K. So L,=K(B), B= . 2_0 Cp 2724\ x + yzP)Y. As BPEK it is a rational

function of x, y, 2#°; ¢7, are rational functions of x?, y?, 27, As x, y, z are
algebraically independent over GF(p) the condition BP¢ K is equivalent to a

system of equations. It is easily solved to prove that B=p2_‘. Cook 2** = Cop
k=0 ’

P
hence 27¢ L, (see [15, Ch. VI, §9, Cor. 1). Evidently K(2)+K(Jx + yz#), L
is normal over K, being purely inseparable over K. Theorem 3 (ii) is proved.

The proof of Theorem 3 is realized by several steps.
Proposition 1. Let p,<---<p,, kRe¢N, be prime numbers. Then i
n

n€N, [Q(Wpr - -VPx): Q]=n* (this result is proved by A. Besicovitch in 1940),

Proposition 2. Let f(x)¢Z[x), Z be the ring of integer rational
numbers and let f be irreducible over the field of rationals Q. Then the set
of prime numbers q such that for some k=Rg€ Z, f(k)==0(mod g), f(k)==0(mod 7?)
is infinite.

Proof. As f is irreducible over Q, for some u, v¢ Z[x], hu+;xi-'v=lgz,
It is known that f(k;)=0(mod ¢) for an infinite set of primes ¢ and certain
kq€Z. For any prime ¢ big enough (g, /)=1. For any such ¢ if f(k;)==0(mod ¢)
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then f(k,+ ¢)==0(mod g), however it is impossible to have f(kg)=/f(ks+¢)=0
(mod ¢2). Proposition 2 is proved.

Lemma 1. Let K be as in Theorem 3 (iii), P be an extension of K
[P: K|=2% ke NU{0). Then there exist elements p,, py of P such that:

(i) P=K(p)=K(p)=K(pp) Mp)EQ, i=1,2, 3, N being the stan-
dard norm in P over Q, ps: piPa-

(ii) All the roots py, i=1,...,2% in Q of~ the minimal polyrlomial of
Ps=psi» S=1, 2, over K satisfy the condition (p: =K(piy, - - Prae))P? N {Pu»
Pais PriDajs PriPriDap PriPsiPan i=1,. .., 2% j=1,...,28}= (if F is a field
Fr: ={s¢F, s{=s for some s,€F}).

Proof. As [P: Q]<P is a simple extension of Q. Due to Proposition 1
and 2, it is easy to find elements r,, , (integer over Z) satisfying (i). As [P: Q] is
finite there exists a natural number M=M(P) such that if me¢ N, M<q;<---
<qm 91 ---»qm — prime, then g, ...q; € P? for se{l,....m} <. <l
(Proposition 1). Hence if ¢,, g, are big enough prime numbers such that ¢,==¢g,,
then p,=g,7;, pa=qary will satisfy the conditions (i), (ii) of Lemma 1. Lemma 1
is proved.

Lemma 2. Let K, P, p,, ps satisfy the conditions of Lemma 1. Let
R.=K(9,), 0,=0,, 0,, 0,€Q, 03=p,, s=1, 2. Let R=P(9,, V,). Then the subfields
of RKcontaining K are exactly R,, Ry Rs, R and the subfields of P contain-
ing K.

Proof. Let a,¢R\P, i. e a,=a+b6, acP, be P\{0}, s=1, 2, 3. Any
K-monomorphism of R in Q extends some K-monomorphism of Pin P.lf K(a,)
is a proper subfield of R, then for some different indices 4, j€{l,..., 2%}
a;+b8,=a;+b8,(82,=p,), a, b, being the images of a, b under the action
of that K-monomorphism of P in P that transforms p, into p,, r=1,...,2%
As (x—a,—b,0,, x——a,+b,0,,)el~3[x] for all r=1,..,, 2% it follows that
(Lemma 1, (ii)) @,—b8,,=a;—b,8,;, hence b0,=068,, i. e R, F K(b6,). How-
ever 0,¢ P, M(p;b?)¢€ Q* (the norm in P over Q), so having [P: K]=2* it fol-
lows that P=K(b%p,), R,=K(b0,). This contradiction proves the assertion that
the subfields of R, s=1, 2, 3, are exactly R; and ;he subfields of P (here

subfields mean subfields containing K). Let a=a,+ £ a,0,€R, a,€P, a,tP,
s=1
s=1, 2, 3.

To prove Lemma 2 it suffices to prove that if a€¢ R\(R;U Ry U R3) then
K(a)=R. As {1, 8,, 0,, 6;=0,0,} is a P-basis of R (Proposition 3) e € RyU R,
UR; iff a@;+£0 for some different indices, i, je{1, 2, 3}. Assume K(a)SR.

—_ 3
The? for some j=i, j, i€{l,..., 2%} (as a€R;URyURs) 0=ay+ Z‘la,i 0,; = aoj
+ T 4,y 8y =388y for some (3, 8,) belonging to {0y, 05,), (—015 0a7)
(01 —03)), (—8y5, —6,5)}, @, =1, 2, 3,0 being the images of a, under the action
of the corresponding K-monomorphism of P in Pc=Q, r=1,..., 2% 02 = p.4
3 o
Let fxx)=Nﬁx)(x_a0r_ Elasr 0,,) € P[x] (the norm in ﬁ(x’ 0, 0y,) over,
§=

P(x)), r=1,...,2% As f, has no root in P (Proposition 3) for any r it follows
that f; and f; have at least two different common roots.
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The proof of Lemma 2 is reduced to case by case discussion. Due to
~ 2 ~
Lemma 1 (ii) it suffices to assume 6=a,—( T a,90,,)+a30;, 0 and 0 to be the
=1

common roots of f;, f; and to consider the fgllowing cases:

L. 0=a,—a,;8,/+ ags8yj—as3;83;;

2. 0=ay+ay8,,—a9,89—0a3;83;;

3. O0=ay—a,,8,;—a3;89;+ a3;83.

Case 1. As 6+6:2(a0,-+a3,.03,~)=2(a0,+q3,+a2,-82,~) using Lemma 1 and,
the fact that (x—ao—as93) (x—ao; + as93) € P[x], (X —@0;—a49;85))(x— a0+ agy
.8,) € P[x], we have ay—a;0s—ay—ay8,, hence a,—az=0. As i+j a,=0,

too, so a¢ P.
Case 2 is considered in the same way as case 1 to prove a¢ P.

Case 3. As 9+€=2§£10,+a3,-93,)=2(ao,+a3,83,), iFj, we have proved that
a3;=0. Considering (0—80)? it follows that ala,=0,_i. e 0ER UR,.

The contradiction proves in all cases that if a ¢ R, U R, U Rs then K(@)=R.
Lemma 2 is proved.

Propositions 1, 2, 3 and Lemmas 1, 2 make clear that if P, K are as in
Lemma 1, then there exist at least two K-unisomorphic extensions of P satisfy-
ing the conditions imposed on R in Lemma 2. So let F,=K, F, be an ex-
tension of F,_, in Q for every n¢ N and let F,,, be as R, s=1, 2, 3, regard-
ing F, as R, F,_, as P in Lemma 2. Then F: U2 ,F, K, F,, F,, s=1, 2,3,
n¢ N, are all subfields of F containing K. If G: = U, G, is constructed like F,
and for some me¢N F, and G, are not K-isomorphic then F and G are not
K-isomorphic as F,(G,) is the only extension of K in F(G) of dimension 4™,
As Q is infinite denumerable and there exists a mapping of the set all series
{a}o, a,€{0, 1}, i€ N, in the set of all subfields of Q containing K such that
the images of any two different series are K-unisomorphic fields, the existence
of M, as in Theoremn 3 (iii) is proved. As for M, it suffices to consider

Fo=K, F, being over F,_, like R, over P in Lemma 2 for every n¢N, to
‘notice that the only subfields of F: = U neo F",, containing K are K, F‘, 7-‘,,,
n¢ N, and to apply the method of proving the existence of M,. Theorem 3
(iii) is proved.

Proof of Corollary 4. It suffices to notice that if K is an ordered
field, for any ne¢N, ﬁ,,: F‘,,__, can be constructed such that for some
0,¢F,: K, = F, there exists a root 6,0, of the minimal polynomial of 6,
over F’,,ﬂ belonging to F,, 6, 7),,<0 regarding some order of F, extending
the fixed order of F,_,, F, being as in the proof of Theorem 3. All this is
possible moreover F, is not unique over a fixed field F,_, up to a K-isomor-
phism — see the proof of Theorem 3 (iii). Corollary 4 is proved.

Proof of Corollary 5. If MoK is an U-field in L, L — a Galois
extension of K, then the set of subfields of M containing K satisfies the Zorn
lemma conditions with respect to <(A<B iff AoB), as any irreducible poly-
nomial over S: :ﬂ ;S‘,,, S8, B, g€/, B<g, Sa« — Subfield of L for all a¢/,

is irreducible over Sy for some agl. If M is subfield of L containing K then
M is g-maximal in L iff it is cyclic in L, Corollary 5 is proved due to Zorn’s
emma,
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Remark. Clearly impL<imp K(imp L=imp K) if L is an algebraic (a fi-
nite) extension of a field K. Also if K<L, L — algebraic over K, K being an
U-field then L is an U-field when U is closed with respect to taking subgroups
and quotient groups. Another way of constructing U-fields is based on the
fact that if P is an extension of a field K, P is an U-field, then the maximal
algebraic extension of K in P is an U-field. Thus example (ii) makes clear
that for any cardinal a=1 there exists an abelian field K, degr K=a, F — the
simple subfield of K, such that K is not cyclic (if =0 this is impossible due
to a result of Geyer [7, Ch. V, § 9, Th. 9.1]).

Remark. It has become clear that while a proper g-maximal subfield of
a field L is maximal in L without a single element, the reverse is not gene-
rally true. A g-maximal problem can be formulated for other algebraic systems-
as well. We shall notice that in terms of modules over a commutative integral
domain R, any ideal of R being principal, any maximal submodule of an
R-module M without one element is g-maximal in M, while the reverse is true
iff M, is g-maximal in M such that M/M, is an Artinian R-module, i. e the
reverse is not generally true. .

Proposition 3. Let K be a field, p#=ch K, p — prime, R¢N, py, . .. Py
be such that if (iy,.-.,ip p)=1 then p}.. . Pik¢ K /KP. Let &; belong to some
extension of K, &5=p; j=1,..., k. Then [K(&; ..., 8): K]=p*.

Proof. It is clearly reduced to the case when a primitive p-th root o
unity exists in K as [K(&1... &#): K]=p if (i, ..., 4 p)=1 due to [15, Ch
VIII, § 9, Th. 16], so if k=1 Proposition 3 is true. As [2, Prop. 5] proves that
Eay Pos - .. Ex p, satisfy the conditions of Proposition 3 over K(§,) the proof
of Proposition 3 is accomplished by induction.

Remark 1. Let U be a regular class of finite groups. If a topological
group is isomorphic to a projective limit of elements of U, then it is said to
be a pro-U-group. If L is a QGalois extension of K, K is an U-field in L iff
G(L|K) is a pro-U-group due to the Krull Galois theory. Besides for any pu-

rely inseparable extension K, of K in L, the composite L.K, is a Galois ex-
tension of K, so that G(L|K) and G(L.K,|K,) are isomorphic profinite groups.
The main facts on profinite groups may be found in [7], the definition of a
Hall-TI-subgroup is analogous to the definition of a Sylow p-subgroup. More-
over using the Hall theory on finite solvable groups [14, Ch. 7, § 20, Th.
20.1.1] one can easily reformulate the Hall theorem to cover the class of
prosolvable groups (and characterize this class in the class of all profinite
groups). The proof of the Hall theorem in the case of prosolvable groups can
be realized just repeating with appropriate changes the proof of the Sylow
theorem on profinite groups. Remark 1 has been used to prove that example
(ii) is correct.
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