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ON THE STRUCTURE OF ALGEBRAIC ASSOCIATIVE DIVISION
ALGEBRAS OVER SOLVABLE AND NILPOTENT FIELDS

IVAN D. CHIPCHAKOV

In this paper the structure of associative algebras — LBD over solvable fields and algeb-
raic over nilpotent fields is considered with special attention to the link between properties
algebraic — commutative and algebraic — finite dimensional, as well as to some existence
questions.

Definition 1. A field P, is said to be Il-solvable (Il-nilpotent, TI-
cyclic etc.) iff the Galois group G of any finite Galois extension of P, is a
solvable (nilpotent, cyclic etc.) TI-group, i. e. either G={1} or |G|=pj1...p",
v,€I1, I1 being any fixed set of prime numbers.

Characterizations of solvable, nilpotent and cyclic fields are announced in
[12, Th. 3]. They will be proved in another paper.

In this paper a complete proof of the results announced in [12] — from
Theorem 6 on to the end of [12] —is presented. Some of the results in [12]
referred to are generalized, unannounced results are presented in this paper
as well.

Algebras in this paper will always mean associative algebras. The defini-
tions supposed to be known may be found in [7].

Definition 2. A central Py-algebra is said to be cyclic iff it is a
crossed product of a maximal subfield with a cyclic group.

Definition 3. A Pyalgebra R is said to be special iff its centre C is
a finite extension of P,, [R:C|: =dimcR=p? p —prime, R is a cyclic C-algebra
and the polynomial x?—1¢C[x] is a product of linear multiples over C.

Definition 4. An algebraic algebra R over a field P, is said to be
an LBD-algebra over P, iff for any finite subset S of R there exists a
number ng such that the degree of the minimal polynomial over P, of any
element of the linear P,-subspace of R generated by S is less than ng.

In [3,p. 249 Th. 3] it is proved that every algebraic algebra over a non-
denumerable field is an LBD-algebra.

Definition 5. A division algebra R is said to be an automorphic
extension of its subalgebra R, iff the following conditions are satisfied: The
centre of R, is a proper extension of the centre of R of finite dimension;
there exists a chain of subfields L,i=0,1,...,k keNSLy, i>j,L, and L,
being respectively the centres of R, and R; for any i=0,...,k—1 there
exists an automorhism a, of the centralizer R; of L; acting as an identity

on all elements of L., but not on all elements of L, however ofiisan inner

automorphism of R, for some prime number p, besides Ryy= k':ol R} for an
element d; of R such that d;'rd,=q;(r) for any element r; of R,.
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Definition 6. An algebraic extension K, of a field K—p being
prime —is said to be a {p}-closure of K iff K, is a { p}-nilpotent field which
is minimal with respect to that property.

We list the main results in this paper.

Theorem 1. Let R be a central division LBD-algebra over a solvable
field P,. Then either R=R, or there exists a finite separable extension L
of P, such that L (Xp, R: =R, is a division LBD-algebra containing a spe-
cial P,-subalgebra.

Theorem 2. Let R be an algebraic noncommutative central division
algebra over a nilpotent field P,. Then either R is of finite dimension over
P, or there exists a locally finite subalgebra R, of R whose centre P, is an
extension of P, and regarded as a Py-algebra R, is isomorphic to a tensor
product over P, of an infinite set of central special P,-subalgebras of R,.

Theorems 1 and 2 improve the results presented in [12, Th. 6 and the
following corollary to it].

The structure of an arbitrary division algebra of finite dimension over its
centre P, P, being nilpotent is considered in the following unannounced pre-
viously result.

Theorem 3. Let R be a central division algebra over a nilpotent field
P,. Then either R=P, or R is an automorphic extension of any of its ma-
ximal subfields which are separable over P,. For any prime number p divid-
ing dimp,R and p3char P, a primitive p-th root of unity exists in P, (in
this theorem R is assumed to be of finite dimension over P, ).

The following result generalizes [12. Th. 7] and proves the existence of
noncommutative division algebras of finite dimension over certain { p}-nilpo-
tent fields.

Theorem 4. Let {Rd), w€l, be a set of two-by-two unisomorphic cen-
tral division algebras over a field P, of dimension p"", p being a fixed prime
number. Then RaXp, Pop are two-by-two unisomorphic central division Pp-

algebras of dimension p*e over the {p}-closure P,, of P,.

Corollaries to the main results.

Corollary 1. Let P, be a cyclic field. Then either any algebraic divi-
sion Py-algebra is a field or P, is a real closed field the unisomorphic al-
gebraic division Py-algebras being Py, P, (i):i*= —1 and the quaternion algebra
over P,.

Corollary 2. Let P, be a maximal subfield of an algebraically closed
field without a set S, S consisting of one or two elements, i. e. Py is a ma-
ximal subfield of its algebraically closed extension P with respect to dis-
jointness from the fixed subset S of P. Then either any algebraic division
P,-algebra is a field or P, is a real closed field.

Corollary 3. Let P, be a field satisfying the following finite condi-
tion: for any algebraic extension L of P, and any fixed prime number p,
no infinite tensor product over L of central cyclic division L-algebras each
of dimension p* over L is a division algebra. Then any algebraic division
algebra central over an algebraic extension P, of Py, P, being a Tl-nilpotent
field with respect to any fixed finite set of primes Tl, proves to be of finite
dimension over P,.

Any local field as well as any field of algebraic numbers satisfies the fi-
nite condition just referred to because a tensor product of two central divi-
sion algebras of equal dimension over such a field is not a division algebra.
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Corollary 5. For any fixed prime number p the {p}-closure K, of a
field K, K being the field of rationals or its purely transcendental extension,
has the property that there exists an infinite set of two-by-two unisomor-
phic special cental division Ky,-algebras.

Corollary 6. There exists a {2}-nilpotent field not satisfying the finite
condition.

Corollary 7. If K is a field such that B(K)=={0}, B(K) being the
Brauer group of K, then there exists a special division K-algebra.

Proofs of the main results. Proof of Theorem 1.

Proposition 1. Let L be an extension of a field K of prime dimen-
sion p and let R be a central division K-algebra. Then R, is a division
algebra iff L is not K-isomorphic to any subfield of R.

Proof. Assume R, is not a division algebra. Then R, is a full matrix
ring of order pXp over a division L-algebra [, Ch. VIII, § 10, Ex. 13]. Due to
the one-one lattice correspondence between the lattice of right ideals in R,
and the lattice of right ifleals in R(X), K[x] containing the principal ideal ge-
nerated by the minimal polynomial f over K of a certain fixed primitive ele-
ment of L over K, it follows that a linear polynomial over R is a multiple in
R X K [x] of the polynomial f, hence L is K-isomorphic to a subfield of R.
Proposition 1 is proved.

The following propositien is a part of [6, Ch. VIII § 10, Ex. 13].

Proposition 2. Let R be a division algebra of finite dimension over
its centre K. Let L be a finite extension of K such that [L:K] and [R:K]
are reiatively prime. Then R, is a division algebra.

In the situation of Theorem 1 it is enough to assume that R is noncommu-
tative. Due to [11, Th. 3.2.1] there exists a non-central element § of P, separable
over P, The first step to be taken is to prove the existence of a finite separ-
able extension L, of P, such that R;, contains a subfield which is a cyclic
extension of L, of prime dimension. If the Galois group over P, of the mini-
mal polynomial f of & over P, is simple cyclic there is nothing to prove. If
not, applying the fundamental theorem of Galois theory to the minimal Galois
extension M of P, containing &, it follows —as the Galois group G of M over
P, is solvable — that a subfield M; of M exists which is cyclic over P, of
prime dimension. If R, is not a division algebra then R proves to contain a
cyclic extension of P, of prime dimension, otherwise, regarding & as an element
of Ru, it follows that the Galois group of the minimal polynomial of & over
M, is of smaller order than the order of G and since §¢ M, the proof of the
first step is accomplished via induction and using [9, Ch. VII, Th. 9] and the
fact [3, p. 249] that R, is LBD over M,.

A second step to the proof of Theorem 1 is to prove the existence of a
finite separable extension L of L, (hence of P,), such that either R, contains
a cyclic extension of L of dimension char P, or R, contains a cyclic extension
of L of prime dimension p=charP, and that a primitive p-th root of unity
exists in L.

Let M, be a subfield of R;, which is a cyclic extension of L, of prime
dimension ¢. One may assume ¢ ==char Py, ¢>2, and there is no primitive g-th
root of unity in L. If Ry e, (g being a primitive g-th of unity in the algeb-
raic closure of L,) is a division algebra, then the second step is proved. Other-
wise, due to considerations analogous to those taken in the course of proving
the first step, it follows that a subfield Ly of L,(e;) has the property that
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R, DRy, is a division algebra containing a subfield which is cyclic over L,
of prime dimension ¢,<g, which is sufficient for proving the second step.
The proof of both steps makes clear that for an appropriate finite separ-
able extension L of P, R, is a division LBD-algebra satisfying the second step
condition. lL.et L(&,) be a subfield of R,, satisfying the respective condition.
Due to [11, Th. 4.3.1] an element n of R, exists, such that n&, =&y, & F&,, &,

being a root of the minimal polynomial of & over L in L(E,). So L(E, m) isa
special P,-subalgebra of R;. Theorem 1 is proved.

Theorem 1 remains true if R is a central LBD-algebra over an arbitrary
field P, and a non-central element £ of R exists such that the Galois group
of the minimal polynomial of & over P, is solvable.

Proof of Theorem 2 Lemma 1.Let L be a maximal subfield of a
central division K-algebra R and let L be of finite dimension n over K.
Then there exists a maximal subfield L, of R which is a separable exten-
sion of K of dimension n. If K is nilpotent, then R is of finite dimension
over K.

Proof. Assume L is not separable over K. Then p=char K=0, p/n. Let
p=n, i. e. L=K(n), n"? ¢ K. There exists an element 8 of R such that 6n=n6.
The K-linear closure [(S), S:= {n—%0n’ i=0,1,..., p—1} is a ¢-invariant
K-linear subspace of R (¢r:=n='rn, for any r¢R). As ¢?=id but ¢3Fid on
L(S), elements a, b¢l(S) exist such that ¢a=a, b= b+ aa for some a¢K*. So
K(a—tba—',m) proves to be a special K-subalgebra of R and due to [11, Th.
4.4.72] it follows that RiK(a”‘ ba—l,m) since L is a maximal subfield of R.
Case p = n is proved (I(S):=1(S)\{0}).

Case p<n. As L is assumed not to be separable a proper subfield of
L, LaoK, LyFK, exists. Using induction one may assume that a maximal sub-
field L; of the centralizer of L, exists, L; being separable over L, and
[Lg: Ly)=[L:L,). Even if L; is not separable over K, a proper extension M of
K, separable over K and lying in L3 exists. Since L3 is a maximal subfield of
dimension n over K, repeating the same consideration to the centralizer of M
we prove the existence of a subfield L, of R, satisfying the conditions of
Lemma 1.

If K is also nilpotent a subfield of L, exists which is a cyclic extension
of K of prime degree and its centralizer R, may be assumed to be an algebra
of finite dimension over its centre C. As C is cyclic over K it follows that R
is an automorphic extension of the centralizer of C (with respect to any auto-
morphism of R, induced by a non-identical automorphism of C over K). Con-
sequently R is of finite dimension over K. Lemma 1 is proved.

The proof of Theorem 2 is based on the fact that any cyclic extension
of P, of prime dimension p, p being the smallest number realized as a dimen-
sion of a proper extension of P, in R, satisfies the second step condition (see
the proof of Theorem 1). Consequently R contains a special subalgebra S,. Let
k€N and assume S, to be a subalgebra of R whose centre B, is a finite
extension of P, such that S, is isomorphic to a tensor product over B, of &
central special Bj-subalgebras of S,. If the centralizer in R of R, differs from
S, then S, proves to be a subalgebra of a subalgebra S,,, of R whose centre
By, is a finite extension of B,, the centralizer in Sy, of B,+;Xs,S, being
a special B,y,-subalgebra of §,,,. Lemma 1 makes clear that if the centralizer
of B, in R is S, for some natural %, then R if of finite dimension over P,

Otherwise R,: = Jr-1S, satisfies the conditions of Theorem 2. Theorem 2 is
proved.
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Proof of Theorem 3. It is realized via induction to the index »
(n®=[R:P,)). If n=1,then R=P,. If n=p, p— prime, then R is a special cen-
tral P,-algebra. As P, is nilpotent any maximal subfield L of R, L — separable
over Igo is s cyclic extension of P, hence R is an automorphic extenston of L.

If n is not prime, then any maximal subfield L of R separable over P,
contains a subfield P, which is a cyclic extension of P, The centralizer R, of
P; may be assumed by induction — as P, is nilpotent —to be an automorphic
extension of L. Moreover, the respective subfields of R; all contain P,, there-
fore they as well as their centralizers and their automorphisms satisfying the
conditions of Definition 5, prove to satisfy the conditions of this definition
related to R as well. Besides, any non-identical P,-automorphism of P, induces
an automorphism of R, satisfying Definition 5 in R. So R is proved to be an
automorphic extension of L.

The second statement of Theorem 3 follows directly from Theorem 2 and
[11, Th. 4.46]—a theorem a la Sylow. Theorem 3 is proved.

Proof of Theorem 4. The definition of a {p}-closure K, of a field K
makes clear that K, is separable over K. Applying the fundamental theorem
of infinite Galois theory and Sylow’s theorem on profinite groups to K and
the field of all separable elements over K in the algebraic closure K of K
[10, Ch. I, §1, 1.4, Props. 3, 4] we prove the following proposition.

Proposition 3. The{p}-closure of a field Kexists, it is unique up-to a
K-isomorphism and any { p}-field containing K is K-isomorphic to an exten-
sion of the {p}-closure of K.

The set of fields S: ={U:P, & US Po; Ra, is a division algebra for any
a€/; Ra, is not isomophic, too, Rsy, if a$p} is inductive with respect to set
theory inclusion hence a maximal element M on S exists due to Zorn’s lemma.
Assume a proper extension L of M exists of dimension prime-to-p. Then, R,

is a division algebra for any a¢/. As LES, Ra, =Rp, for a couple of different
indices a, B€ /. The tensor product over M of R., and R,’,M—the M-algebra
antiisomorphic to Rj, —is a central simple M-algebra [11. Th, 4.1.1) isomorphic

to a full matrix ring over a central division M-algebra V, [V :M]=p?, £>0,
as R,, is not isomorphic. too, RBM—-due to Wedderburn — Artin’s theorem and
[11, Th. 4.1.3] — consequently Ra, X Rt;L=L"=(VL)S=(R“M®MRt;M)L' This
contradiction proves the assertion that no proper extension of M of dimension
prime-to-p cxists. Let L, be any fixed finite Galois extension of M. Applying
the fundamental theorem of Galois theory to some Sylow {p}-subgroup of the
Galois group of L, over M, we prove that M is a {p}-field (i. e. a { p}-nilpo-
tent field). Due to Proposition 3 Theorem 4 is proved.

Remark. In this paper the full ring of n)Xn matrices over a division
algebra A is signed by A, or by (A4),

Proofs of corollaries to the main results.

Corollary 2 is a partial case of Corollary 1 due to [4, 5]. Corollary 3 is
a direct result of Theorem 2. As for local fields, two facts — that a central
division algebra R over a local field K contains a maximal subfield which is
e cyclic extension of K (1,C) and also that if [R:K]=n? any extension of
K of dimension n is isomorphic to a maximal subfield of R [8,Ch,IV, §1, p.215]—
prove that they satisfy the finite comdition. So do fields of algebraic numbers
as any central division algebra R over a field of algebraic (or p-adic) numbers

12 Ilnucka, 1. 8
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satisfies the condition [R:K ]=s? s being the order of [R]¢ B(K) — see [11, Ch.
4, p. 118].

Proof of corollary 6. Let K=Ko(Xp, e e e Xppe e ey Vs e e s Yo - o) Ko
being a field, char K,#2. There exists a locally finite central division K-algebra
D=X),D, (over K), D, being a central division K-algebra of dimension 4 for
any natural n#[6, Ch. VIII, § 12, Ex. 14]. For any K-subalgebra E of D either
[E:K]=0c0 or [E:K]=2* k =0. Consequently Dx, is a central division K,-al-
gebra, Dg,=(X),D,x, (over Ky — the {2})-closure of K). Corollary 6 is proved.

Proof of Corollary 7. It is a result of the following fact.

Proposition 4. Let L be an extension of a field K and let R be a
central L-algebra of finite dimension. For any fixed basis xy, ..., X X; X;
=Zh—1Cip Xp 1=i=n, 1<j=n, ¢;,¢L. Let L, be the minimal subfield of L
containing K and all the structural constants c;,. Then there exists a central
Li-algebra S of dimension n such that R=SX),,L=3S,.

The proof of Proposition 4 is clear as the minimal subring of R contain-
ing x,...,x, and L, may be regarded as the respective L,-algebra S (if R
is special we fix {x;,..., x,} as in Definition 7).

If B(K)={0}, then a central K-algebra R exists of dimension p%*, k>0,
for some prime p. Then Rk is a division algebra containing a special subal-
gebra R;. Due to Proposition 4 R;=Sic«x), S; being a special K-algebra as its
centre is algebraic over K. Corollary 7 is proved.

Proof of Corollary 1. First we shall notice that an ordered field is
cyclic iff it is a real closed field — combining the fact that any algebraic ex-
tension of a cyclic field is normal with [9, Ch. 11, Ths. 1, 3). Any algebraic
division algebra R over a real closed field P, is of finite dimension over P,
since the degree over P, of the minimal polynomial of ony element of R is
bounded by two, hence R is a Pl-algebra of finite dimension over its centre
due to Kaplansky [11, Th. 6.3.1]. Moreover, the theorem of Frobenius describing
all division algebras of finite dimension over the field of real numbers is na-
turally extended to cover division algebras of finite dimension over a real clos-
ed field. Thus Corollary 1 is proved in case of P, being an ordered field.

Clearly Corollary 1 is reduced to the fact that no special central division
algebra over an unorderable cyclic field exists. Assuming the opposite, we con-
sider the case of a central spécial division algebra R of dimension p2?, p=char P,
=0 over a cyclic field P,. Due to Zorn there exists an algebraic extension M
of P, such that R, is a division algebra unlike R,, L being any proper alge-
braic extension of M. So any extension of M of dimension p is isomorphic
to a maximal subfield of R, — Proposition 1. Due to [9, Ch. VIII, Th. 11]
Ry=M(E, ), En=n(E+1), &—E+a=0, n’=b,a, bc M, while M,=M(a,B),
af=PB(a+1), B=c, 0?—a+d=0, ¢, d ¢ M. Using the maximum con(ﬁtion on M
as well as the fact that there exists a single separable extension of M in M
of dimension p over M, by applying [2, Th. 2] and (11, Th. 4.3.1] we prove
that d and ¢ may be fixed among elements of M\ MP(MP:={ge¢M,3he M: k" =g})
and reduce our problem to the case b=c, a=kd for some k¢GF( p)*. Due to
cross product theory [11, Ths. 4.4.3, 44.5] [Ryl=L[M,], L¢ N, kl=1 (mod p),
hence [Ry]=[M,]=0swm which is a contradiction proving the assertion that no
central special division P,-algebra of dimension p? p==charP, over a cyclic
field P, exists.

Proposition 5. Let K be a field containing a primitive p-th root of
unity e, p—prime. Let L=K (E)=K () be a proper extension of K such that
E=a,n"=0b,a,0¢K. Then b=a’a* for some a¢K, ke{l,...,p—1}
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Proof. As K==L it is well known that the polynomial x?—a¢K[x] is
—1

irreducible over K, hence n——:pz a8 a0,6K,i=0,...,p—1. Being a root of
i—1

p—1
the polynomial x”—b, the element n,= X a,e’& is equal to &*n for some
=0

ke{l,...,p—1} Proposition 5 is proved.

Proposition 4 proves that any central special algebra of dimension p?%,
p==char P, over a cyclic field p, is isomorphic to R=P,(E, n) nE=¢&n, E#=n"=a,
€ being a primitive p-th root of unity. A Py,-basis of R is the set {&n/, 0=<i
=p—1,0=<j=p—1}. If p is odd then e“a, u=0,...,p—1, En®! are two-by-two
different roots of the polynomial x?—a” in Py(&§n?—1!) which proves that R is
not a division algebra in this case. If p=2FcharP, we may assume that
a=—1 as there exists a single extension of P, of dimension 2 in the algebraic
closure P, of P, unless P, contains an element { such that 2=—1. If i¢P,,
i*=—1 then (E+in)*’=0, i. e. R is not a division algebra. If R=P,(&,n),
En=—ngk, £2=n2= —1, then either R is not a division algebra (as there exists
a non-trivial Pj zero (x,, Yo, 2,) of the polynomial x2+4 y?+ 22, hence (x,&+yon
+24,n)?=0) or any sum of squares in P, is a square in P, However, the
second alternative means that P, may be ordered. Corollary 1 is proved.

Proof of Corollary 5. Let R be a central division algebra of dimen-
sion n2, n¢N, over a field K and let L be a purely transcendental extension
of K. Then R, is a central division L-algebra of dimension »2[6, Ch. VIII, §7,
Ex. 24). Thus Corollary 5 is reduced to the fact that for any fixed natural
number & and prime number p, there exist £ two-by-two unisomorphic special
central division Q(eg)-algebras of dimension p? (the field of rational numbers is
signed by Q, a primitive p-th root of unity — by e).

Definition 7. A basis B of a central special K-algebra of dimension
P? is said to be standard iff B={En/,0=i<p—1,0<j<p—1:&n=en, e+1=¢"
if charK=Ep or En=n(§+1) if char K=p}.

The  existence of a standard basis is a direct result of Galois theory on
cyclic extensions [9, Ch. VIII, §6] and Noether-Skolem’s theorem.

Lemma 2. Let L, F be extensions of finite relatively prime dimensions
m, n, over a field K. Let also L be separable over K and let for some ele-
ment ¢ of K there exists no root of the norm equation Ni(2)=c in L. Then
Ng(B)+c for any element B of L. F.

Proof. It is sufficient to assume F to be simple over K. So let L= K(E,),
F=K(91), L‘FZ F(&l) for some §1€L,9LEF,§1,...,gm(el,...,e,,) being
all the roots in the algebraic closure K of K of the minimal polynomial
of &,(0,) ov:er K. Assume Ng(B)=c for some B¢L.F. Then for k=1,...,m

nt m—

m n(m—1)
= 0,) &) = = 0))...fi (0,)E] i
ea=M(Z fi6)&) = % (!x+--~+'.='f"( - -f1,(0,)) & is an element of

K (&,) as any transposition (hence any substitution) of {6,,...,0,} causes a
substitution of { f; (6,).. .f,-”(e,,):Ogijgm—l, J=l...,n i+ - +i,=S) s=
0,1,...,n(m—1) and as fo ... f—; are assumed to be polynomials of one
variable x over K. On the other hand, for any fixed polynomials %, &,,...,7,

m n—1
¢ K [x] for the same reasons §,= 1H1 ( ‘_Lﬁh,(&,) 0/) is an element of K(6,). More-
over, it follows directly that N, (§1)=gl v oo 8m Ng(8,)=3,. " 5,,1 (the norm of
m—\ n—
8, is in F over K,!=1,...,n). As B belongs to L, F.l3=l;‘.‘0 /iof,jéio{.f,,el(,
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{ —1 —1

i=0,...,m—1,j=0,1,...,n—1, i e. B:':'Eof,(el)§{="z hy(E))0/ for some
ﬂ

polynomials fo, ..., fn_1» #o»- .., k,—y belonging to K[x], therefore we have

Nk(8)=81--. En=Ng(8)=8,...8,=c"

As m,n are relatively prime it follows that Ny (8)=c for some 6¢L — the
norm function is multiplicative. This contradiction proves Lemma 2.

Proposition 6. For any two different prime numbers p, p, and any:
natural k=4, there exist prime numbers p,, . .., p, satisfying the conditions:
pi=1(modp?),i=2,...,k; pl==1(mod py), l=2,...,k—1,j=1,...,l—1;p,=a,
X (mod p;,), a; being a natural number sach that p, ... p,_,a,(mod p,) generat-
es GF(py)* s=2,...,k—1.

Proof. As p, p, are fixed we fix one by one p,, ...,p,; as follows: if
D1 - -+ » Py— are fixed, then pl is fixed such that pl=1 (mod p;), p,==1 (mod p?),
Jj=1...,l—1; p,—prime; as the fixed primes p,, ..., p,_, are two-by-two
different a, can be fixed in a way that p,...p, ;a,(modp,) generates the
cyclic group GF(p,)* for s=2,...,k—1. At last a prime number p, is fixed
such that p,=1(mod p2?.p)), p,=a,(mod p,), s=2,...,k—1. Each step in that
series can be taken due to Dirichlet’s theorem about the prime numbers in an
arithmetic progression and the Chinese theorem about residua. Proposition 6
is proved.

The following proposition is a direct result of Euler — Fermat’s theorem.

Proposition 7. Let p, py,.. ., pw B be fixed in accordance with Pro-
position 5. Let N, p be natural numbers such that for some i, j:i¢{l,...,k—2},
Je{i+l, ..., k—1}p,...p;iPi1. . PN —pP=0(mod p,,,). Then L==0(mod p;,.,)
and uEO(modp[+]).

Lemma 3. Let L=Q&,). & =p,...Pp ks P1...,p, and p be fixed in
accordance with Proposition 5. Then No(o)py...p;==p, ...p; for any elemen
a of L and any i, j such that 1<i<j—1<k—2, i, jEN.

p—1 p—1
Proof. The polynomial f(xg, ..., xp—1)= II ( Zo e/ &l x;) over the ring
=0 i=

of integer rational numbers Z is homogeneous of degree p. Moreover, f(xo,-..,
x,_1)=2ﬁ,';‘o Zw(xgy=pm I MaXay Na€ Z, 1j: =Py ...Pj j=1,..., k(o means (a...
@py)s Xa—Xg0 - .« Xogt Aa—Ag0 . .. A5, A, € Z, =0, ..., p—1, w(xa) =5 1ua,,
we shall sign by S the set of monomials x, present in the ordinary represen-
tation of f as a sum of monomials x,).

In terms of Lemma 3 let g, (xp ..., Xp)=7is(Xos -+ - Xp—1)—?;x5. Lemma 3
is equivalent to the fact that g, has only the trivial zero belonging to Z7+1.,
As g;; is homogeneous it is enough to prove that if g,(A)=0 for some
A=o ..., Ap)€ 2%, then A,=0(mod p,+,), =0, ...,p. As i<j Ay==0(mod p; 1),
so 7% Aa=0(mod p?, ) for any xq€S with the even{ual exception of A? and A
but as g;;(A)=0 due to proposition 6 A;==4,=0(mod p,4,). Assume A,==0(mod p,,,),
u=0,1,...,m. If m=p—1 there is nothing to prove. Let m<p—1. For any
Xa€S,s: =20 oa, If s=m+2 then Ae=0 (mod py#?). If O<s<m+1, then

WXa)Z(p—S5)(m+1)>p (m+1—5), i. e. ryohg= (mod p7f?). If xa€S\{A2,,}

§=0, then w(xa)=pma, ma>m+1, hence r}/®A,==0(mod p7+?). As g,;(1)=0, then
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rEtiAr =a(mod pmt?), i. €. Apyyy=0(mod p.y,), hence A,==0(modp;,,), 2=0,
...,p. Lemma 3 is proved.

Let R,;=Q(g) (&, &;) be central special Q(g)-algebras of dimension p2,
J=L. L k—=1{§E, 0=s=p—1,0=sr=p—1, & = r, & = r;} being its
standard Q(g)-basis. Due to Lemmas 2, 3 Ngg(a)r; = r; i < j, for any «
belonging to Q(g, £,), therefore Ry, ..., Ry,—y are two-by-two unisomorphic
[7, Ch. V, Ex. 24]. At least £—2 of them are division algebras due to Wedder-
burn-Artin’s theorem. Corollary 5 is proved.

As any field extension L of a field K is isomorphic to a maximal subfield
of Kjiz.x) the norm condition in [7] referred to is always applicable to prove
whether a special algebra is a division algebra. For example as a finite exten-
sion of a C,-fields is C,, too [10, Ch.IlI, § 3, Prop. 8(a)], the norm condition and
Corollary 7 prove that any division of finite dimension over a C;-field is a
field from a somewhat different point of view in comparison with the proof
of this result in [10, Ch. II, §3]. In fact the proof of Corollary 7 indicates that
there exists no special division algebra over a field K iff dim(K)<1 in terms
of [10, Ch. II, §3].

Due to the proof of Theorem 3 we can define that a central simple arti-
nian algebra R ouver a nilpotent field P, is an automorphic extension of its
proper subalgebra R, iff R, is the centralizer in R of a finite separable exten-
sion of P, (extending Definition 5 in the case of a nilpotent centre P,).

If RR;a;d,p;=charl,, 0<i<k—1,k and L, are as in Definition 5 and
a primitive p-th root of unity exists in L, then 1., a2~/ (r)==l,(l,;: =d2i€ R)
for any element r; of R, due to [6, Ch. VIII, §12, Ex. 8]. '

Question. Does there exist a nilpotent field P, and a central division
algebra of finite dimension over P, which is not a power of a prime number?
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