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VARIETIES OF METABELIAN LIE ALGEBRAS
OVER FINITE FIELDS

VESSELIN S. DRENSKY

Metabelian varieties of Lie algebras over a finite field are studied in this paper. It is prov-
ed that any such variety is a union of two subvarieties. One of them is nilpotent and the
other is generated by algebras which are abelian-by-abelian split extensions. Any proper sub-
variety of the metabelian variety is embedded in the variety generated by a wreath product
of two finite dimensional abelian algebras. The proofs are based on the technique of varieties
of representations of Lie algebras. Some other resulls concerning bivarieties of Lie algebras
are obtained in the paper, too.

Metabelian varieties are the simplest objects in the theory of Lie algebras
with polynomial identities. In the case of an infinite base field their complete
description is given by Bahturin [2]. Over a finite field the picture is rather
complicated and partial results are known only (e. g. [4, 10]). For a background
of the theory of varieties of Lie algebras cf. [6]. The purpose of this paper is
to study varieties of metabelian Lie algebras over a finite field. The main re-
sults are that any such variety can be almost determined by its algebras which
are abelian-by-abelian split extensions and it is contained in a variety generat-
ed by the (abelian) wreath product of two finite dimensional abelian algebras.
Having a split extension, there exists a natural action of an abelian algebra
over the commutant. Therefore, the technique of varieties of representations can
be applied [3]. More precisely, we follow the exposition of Bryce [7] and some
ideals of his paper have induced the present work.

1. Bialgebras and bivarieties. The definitions and notations in the paper
are in the spirit of [7]. We fix a finite field K with ¢ elements and consider
split extensions G=MAB, where G is a Lie algebra, M is an abelian ideal and
B subalgebra of G.

Definition 1.1. A bialgebra is a triple (G, M, B), where G is a Lie
algebra and G=MM\B.

In a natural way we can determine subobjects, homomorphisms and car-
tesian products of bialgebras.

Definition 1.2. A subbialgebra of (G, M, B) is a bialgebra (G,, M,, B)),
where G, is a Lie subalgebra of G and M,=M(\ G,, B,=B(G,. A homomor-
phism ¢: (G, M, G) —(Gq, My, By) is a Lie algebra homomorphism ¢: G — G,
such that ¢ (M) M,, ¢ (BY=B,. A cartesian product of a collection of bial-
gebras (Gj, My, B)), j€J, is the bialgebra (G, M, B), where M=T1 M;, B=11 By
and G=MMAB with canonical action of B on M.

In order to introduce bivarieties we need identical relations for bialgebras.
Let L (X) be the free Lie algebra with free generators X = {x, x5, ...}, let
U(L (X)) be the universal enveloping algebra of L (X) (i. e. the free associative
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algebra on X) and let M(Y) be the free right U (L (X))-module freely generat-
ed on Y={y,, ¥5 ...} We define a trivial multiplication on M(Y) and con-
sider the free bialgebra (M(Y)A L (X), M(Y), L(X)). For a bialgebra (G, M, B)
there exist two types of identities. One of them forces conditions on the subal-
gebra and the other on the action of B on M.

Defintion 1.3. Let f(Vi,-eos Yas X1s-ees Xn) =28 VSt (K1se.0yXp)
€ M(Y) (where f,e U(L(X))) and g(xy,...,x,)€L(X). We say that f =0 and
g=0 are identities for the bialgebra (G, M, B) if for any m,,...,m,e¢M,
bl)--'bnGB f(m], ...,m,,;bl,...,b,,)=g(bl,...,b,,)=0.

Definition 1.4. A class W of bialgebras is a bivariety if WM is the
class of all bialgebras satisfying a given system of identities.

In a standard way we are able to prove the Birkhoff theorem that the
class 9 is a bivariety if and only if 9N is closed with respect to subalgebras,
homomorphic images and cartesian products. Hence, it is clear that a bivariety
bivar {(G;, M;, B))|j€¢ J} generated by a class of bialgebras {(G, M;, By)|jeJ}
means.

Recall that a Lie algebra G is metabelian if (G2)?=0. By analogy, a bial-
gebra (G, M, B) is metabelian if B is an abelian subalgebra of G. In the sequel
we shall consider metabelian (bi) algebras and (bi) varieties and abelian-by-abelian
split extensions only. The classes of all metabelian algebras and bialgebras are
denoted by A? and 9 o A, respectively. We reserve the letter A for an arbitrary
abelian Lie algebra and the notations A (X) and A, for the algebra with linear
basis X and of dimension n, respectively. ‘

The free metabelian bialgebra (F (Y, X), M, (Y), A(X)) is obtained in the
following way: M,(Y) is a free right K[X]-module with free generators Y,
K [X] being the ordinary polynomial algebra. Hence, F(Y, X)=A(Y)wr A(X),
the abelian wreath product of two abelian Lie algebras [5]. Of course, consider
metabelian bivarieties we shall take the identities from the free metabelian
bialgebra. - '

Let (G, M, A)eAoN and A=0. Because of commutativity of A, there are no
non-trivial identical relations on A. Therefore, all identities of (G, M, A) are of the
form f( Y1, s Vai X ee-» X)=Z5_ Vi fi (X1, . .., X,), where f;€ K[X]. Clearly,
if f=0 is an identity for (G, M, A), then y, f;(xy,...,x,)=0, i=1,...,4
are identities as well and we can examine relations of the type yf(xy, ..., X,)
=0 only. Hence, without loss of generality we ‘assume Y={y}. The following
proposition is an easy exercise on the subject.

Proposition 1.5. Consider all subbivarieties of NN different from
the trivial (G, M, O). The mapping

M-I M ={fecK[X]}|yf=0 is an fdentity for M}

is a bijective correspondence between such bivarieties and ideals I=1(IN) of
K[X] with the following property: for any f(x,,...,x,)€[ and arbitrary
ay €K, j=1,...,n i=1,2,..., f(Zay x; ..., 20, x;) €] again. :

Remark 1.6. Let GL be the general linear group acting on the linear
space with a basis X. This action is expanded on K [X] canonically. Ideals of
K[X] which we study in Proposition 1.5 are GL-invariant and we call them
GL-ideals. .

Proposition 1.7. The bivariety Yo is spechtian, i.e. any subbivariety
of NN has a finite basis for its identities.

Proof. By Proposition 2 [8] K[X] has a maximum condition on ®-ideals.
Here a ®-ideal means that the ideal is invariant under special type of linear
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transformations. But GL-ideals are invariant under all transformations, hence
K [X] has a maximum condition on GL-ideals, too. In the virtue of the bijec-
tion between GL-ideals and subbivarieties of 9[o9[, the latests satisfy a mini-
mum condition. The bivariety 909 itself is defined by the trivial identity
[x3, x3]=0 and is finitely based. Therefore 9o9[ is spechtian.

Definition 18. A biaigebra (G, M, B) is called residually finite if
for any element g=m-+b¢G (where me¢ M, b€ B) there exists a homomor-
phism 0; of (G, M, B) on a finite dimensional bialgebra (Gg M, Bg) such that
6 (8)=+0.

£ Proposition 1.9. Any finitely generated bialgebra from o is resi-
dually finite.

Proof. By analogy with the ordinary algebra case, any bialgebra is a
subdirect product of monolithic (or subdirectly irreducible) bialgebras. There-
fore it suffices to prove that any finitely generated monolithic bialgebra
(G, M, A) from oY is residually finite. Clearly, in this case A is a finite di-
mensional vector space, A=A (x;,...,x,) and M is a finitely generated mo-
nolithic K [x,,..., x,]-module. By [1] the module M is a subdirect product of
finite dimensional modules M;, ¢/, or equivalently, M is residually finite
K [xy ..., x,]-module. For any g=m+a¢G, me¢M, a¢ A, we are able to con-
struct a homomorphism 6, of (G, M, A) on a finite dimensional bialgebra
(G,. M,, A) such that 8,(g)==0.

Finally, we make the following conventions: If 8 is a subvariety of 92,
the corresponding verbal (or 7-) ideal of the free metabelian algebra F (22)
will be denoted by T (B). For any set of elements {f;' j¢J}cF(22), the ver-
bal idecal which they generate is {f;|j¢J}7. Similarly, we attach a GL-ideal
I(M) of K[X] to any subbivariety M of Ao and generate a GL-ideal {g;|j
¢ J} for any collection of polynomials {g;|j¢/}= K [X].

All Lie products will be left normed: [x,, xa]=x, (ad x;), [Xy, Xq, - . ., X,]
=x,(ad x,) ...(ad x,) and, by definition, if g(x,,..., x,)€ K[X], then [y,
g(xy, ..., x,)]=yg(ad xy, ..., ad x,). Recall that the algebra F(92) has the fol-
lowing basis as a linear space [x;, X, ..., X; ], {>i= ... =i, and any ele-
ment of 2 (9A?) has the form X7, [x,, g (xy ..., x,)]. Of course, when we
examine generators {f;|j€J/} of a T-ideal we may assume that f; is a sum of
Lic monomials in x, ..., x, and every monomial really depends on xi,...,x,
In this case f;=X7, [xi xy, & (X3, ..., X,)]

2. Metabelian varieties and bivarieties. Let A (9(?) (resp. A (2<9[)) be
the lattice of all subvarieties of 9[2 (resp. all subbivarieties of 9[9[). Any split
extension G=M’A¢€ 92 can be regarded as a bialgebra (G, M, A) and we de-
fine two mappings o: A (A2 — A (W) and T: A (AoA) — A(2):If V=2,
M N, then Bo={(G, M, A) |G=MAA¢ B, A being abelian} and M t=var{G
=MMLA | (G, M, A)eM}, the variety generated by G, when (G, M, A) runs on M.

The following properties of o and t are analogous to (1.7.2), (1.7.3) and
(1.7.6) of [7].

Proposition 2.1. (i) %0 =90, (AoA) T=A>.

(ii) If V=2 and MW, then BVor=B, MtoOM.

(iii) oto=o0, t0T=1, (OT2=0T, (10)?=10.

(iv) For B,, By=A2, My, M= AN the equalities hold (B, N Vy)o =B, o N B, o,
MUM) =P TUM T

Proof. Property (i) is obvious because 9% and 9[9[ are generated by the
wreath product A (y) wrA(X) and by the relatively free bialgebra (M, (y)A
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A(X), M, (y) A (X)) resp. where X={x;, X,, ...} and A(y) wr A(X)=M,(¥)
AL A(X). The other proofs repeat verbatim the corresponding proofs from [7].

We extend the action of the maps o and t to the sets of 7-ideals of
F(A?) and GL-ideals of K [X] by the rule T(B) o=/(Bo), /(M) 1=T (Mr)
for V<A, M A

Proposition 22 Let T={f=X!,[x,xn,h; (x1,..., X)]|f€J} and
I={g(xy ..., x,)| geJ}. Then
(i) T0'={x1 hi (xl, e ey x"), 2:’=2 x" ki (X], ey x,,) IfE-,}l.

() Fe={f=22 5 [x0 X1, Qi (X1s - s XD | X1 & (X1 - oo X)EL, 22, X, 8 (%y, - ..
Xa) €1} '

Proof. (i) Let 8 be the variety determined by the identities of T and
let G=MMA be a split extension. Then G¢® if and only if f(cy,...,c,)=0
for arbitrary ¢;=m;+a;, m;¢M, a,€ A, i=1,...,n. But f(cy,...,c,)=22_,[[m,
a]—[my, ;) h; @y, - .., @a)|=27 5 [my e,k (ay,. .., a,)]—[my, E2_,a, k; (ay, ...,
a,)]. Therefore (G, M, A)¢ Bo iff the element of the free metabelian bialgebra
(Wi s Yni Xy X)=Z0_ 0 Vi X by (Xps e o X)) = EL X0 By (X1 s Xp)
vanishes upon substitution of arbitrary elements from (G, M, A). In other words
the bivariety Bo is determined by the identities g(yy ..., V.5 X1, +-., X,)=0.
We finish the proof with the trivial observation that these identities are
equivalent to a collection of identities yx, &, (x;,...,x,)=0,i=2,...,n
VI o xihi(Xee., X,)=0.

(ii) Denote M the bivariety defined by the identities yg(x,, ..., x,)=0
The polynomial f=X? ,[x, x;, g (X1,.-.,X,)] is an identity for Mr iff
f(x ...y x,)=0 for arbitrary G=MAA, where (G, M, A)¢ M. Let c,=m,+a,¢G
me¢M,a;€A, i=1,.. ,n.Then f(cy, ..., ¢, )=20,[m,ay, g (ay, ..., a,)]—[m,
Ir ,a; 8 a,...,a,)]=0. This is true forall ¢,¢G, (G, M, A)eM iff yx, g (x,

eos X,)=0, i=2,...,nand y27_, x; g (X, ..., x,)=0 are identities for M, i. e
X & (x,, ceey X,.)E I(m), i= 1, R (D) 2?____2 X; &; (xl. ceey xn)e I(m). The final
remark is that /(M)={g(x;, ..., x)}.

Corollary 2.3. Let B=W? be a variety generated by the split exten-
sions of B. Then Vor=9.

Proof. Without loss of generality we may assume that Q¢ is generated
by one split extension G=MAA. Let ¥ be determined by the identities f(x;,

o X)=Z"_,[x, x g (X, ..., x,)]=0, f€J. By Proposition 2.2, /(Bo) is ge-
nerated by x; g, (xy ..., X)) {=2,..., 0, %, x; & (X ..., X,). Assume % (x,,
cr X)) =22, [xp X B (%4, ... X,)]=0 be an identity for Bot. Using the rela-
tion oto =0 (Proposition 2.1 (iii)) we obtain that x, &, (x,...., x,), {=2,...,n,
Zr X ki (xy,....x,) are in [ (Boro)=/(Vo). For arbitrary c;=m.+a, € G, m,
€M, acA, i=1,..., n h(cy....¢)=2,[m, a, b (ay,..., a)]— [m;
I _,a; hi(ay,...,a,)] Having in mind that x, &, (x,, ..., x,), Zf_, X; &; (X1« -X,)
€/(Bo) we establish that G¢ Bor and therefore var G=B=Por. By Pro-
position 2.1 (ii) the opposite inclusion PoBot is valid. Hence B=Bor. -

Example 2.4. There exists a Y= NY? such that VorPB.

Proof. Let the base field has characteristic p and p divide n, n>2. De-
note P the subvariety of 9* defined by the identity f(xy,...,x,)=27, [x;
Xpouoy Xpp+ oo Xa]=0("means that the corresponding variable is missing). Easy
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calculations show that f (xy, ..., x,)=f(xs,..., X; ) for arbitrary permutation
ijp...,ip of 1,...,n and the identity [x,,..., x,4,]=0 is a consequence of
f(xy,...,x,)=0 but [x,,..., x,]=0 is not. Hence N,_;=B and N,_, =+ V. On
the other hand, by Proposition 2.2 /(Bo) is generated by x,...x,_, and
Bot1=9NR,_,. Therefore Vot+P.

Theorem 2.5. Let M=W-N. Then there exists only a finite number of
varieties B N2 such that Bo=NMN.

Proof. Let /(M) be the GL-ideal of K [X] related to M and /(M)={g,,
.. .» ). Denote {B;|j¢J} the set of all B; such that B;o=M and V;=T(RB)).
We shall find two varieties 9, and 9N, such that MW, > BV; > M, for all
j€J and shall prove that there is a finite number varieties between 9, and‘
M, only. Let 9, be defined by all identities of the form [x,4y, Xupa f (X4,
..., X,)] when f(xy,...,x,) runs over I(M), Wo=T (M,). Clearly, the T-ideal
W, is generated by [X,+;5 Xpt19 & (Xp..., X)) i=1,...,k Let V=V, for a
given j¢J, Vo=1(9M). We shall prove that Vo W,. By Proposition 2.2, there
exist &y, ..., h €V, by=Z}_, [xs X1, pi, (X1, - . .4 X,)] and

G€{xypi, Cers v ooy X Z2 o X piy (K1s e oo s Xp)}
i f

We substitute y;, = [2,, 2]+ X4,- ;=X i=Fi, in k&, and obtain

kl(yl’ ceey yn)_hl(xla ce e x").:{ [21’i2’XIpil (xl, e x'l)]' to>1, A
—Z7 (21 29, X piy (Xys - oo, Xp)]s bp=1.

Therefore all generators of W, lie in V, WycV, and MyoBV=B,.

Now, let W, =Mr, W;=T(M,)=7(PWM) . By Proposition 2.1 (ii) M, =B,
i. e. we found 9, and M, such that P>V >OM,. The T-ideal W, is generat-
ed by a finite number of elements f; (xy ..., X,)=Z;[x; X1, iy (X1s ¢ - +» Xp)]
Using the metabelian law [[x;, xo], [x3, X,]]=0 we obtain that

[fl (vl’ LN} "U,,), x]=z] ['v/’ X, U1 9y (‘01, ey 'Un)]"'['vl’ X, z/ 'quu('vp
ey U)o TREF(R).

Hence all consequences of f; are linear combinations of f; (4, 4y, ..., %,+¥,),
where #,¢F2?(92) and y, are polynomials of first degree. Any such consequen-
ce can be written in the form w=% [u, A]+Za,f; (V1. ..» V). Here u¢ F2(A?),
relI(M) and deg y;=1, a;€ K. Therefore w==%a, f; (¥ ..., ¥,) (mod W,). We
have a finite number of polynomials f,,...,f, and substitute elements y, of
first degree instead of the indeterminates x;. ’Let max (deg f)=d. Then the
polynomial identity f;(y; -..,¥,)=0 is equivalent to a finite set of identities
fiy (x1,+..,x,)=0, r=d, such that all indeterminates x,, ..., x, enter any mo-
nomial of f;. The base field is finite and the number of all such polynomials
fij (X15..., x,) is bounded with the number of all polynomials from F(?) in d
variables and of degree =<d. Hence, modulo W, any V, W;o>V>W,, can be
determined by a subset of the set {f,;(xy, ..., x,)}. So, we have a finite num-
ber. of possibilities for V. This completes the proof of the theorem.

Proposition 26. Let G be a finite metabelian algebra. There exists
a split extension G* and a nilpotent algebra N such that var G=varG*
U var M.

Proof. By Corollary 83 [9] there exists a nilpotent subalgebra N of G,
such that G=G2+NMN. Let ¢y,...,c, be a linear basis of G modulo G® and d,,
...,d, be a basis for G2 (‘Zlearly, we may assume cy,...,C,€N. Then [d, d)]
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=0, [c:» ¢y), ld:y ;1€ G? and [d;, ¢j, d,]=0. We define a new algebra G* with a
basis ¢j,...,c}, d,...,d; and multiplication [c}, ¢j]=[d}, d}]=0 and [d], c]]
=X, Yuyr d;, if [d;, ¢;}]=Z4Vij dp. We shall prove that var G=var G*|J var V.
Let {f=Z[xs x1, fi(x15-..5 X))} = F(A2) be a system of polynomial
identities defining var G. For arbitrary e, = a; + b;, a;, = Z oy c;, b; = ZB; dj,
fley....e)=X[[b, ai]+[a, byl fi(ay, - . ., @)l +Eas ay, fi(ay, .. ., a,)]=0.

But Z[a;, ay, f; (@, ..., a)]=f(ay, ..., a,)=0. Hence
Z [[bs ar]+[an b1], fi (ay, - - -5 an)] =0,
0=2([b}, ajl+[a} b} £; @ - . . @D =F (@} 40, - .., @B,

where a}=ZXa,; ¢}, b;=Zp,;d}. Consequently, G*¢varG. Together with trivial
Ne¢varG we have var GovarG* |Jvar V. Assume var G==var G¥* |y var V. There
exists a polynomial g(xy ..., x,)€ F(?) such that g=01is a polynomial identity
for G* and N and g(ey, ..., e,) == 0 for suitable e,, ..., e,¢G. Again, let ¢,=aq,
+b, a;€N, b;€G? g(x1.--, Xg)=Z[x; X10 & (%15« . ., X,)]- Then O4g(ey, ...,
e,,)=2 ”ai‘ bl]+[bi' (11], &i (alr M) an)]+g(a.l’ e an)- But g(al’ tt oty an):()’
because a,,..., a,¢ N. Hence Z|a, b,]+][b; a,]. g (a,...,a,)]==0 and as a
consequence, g(a;+b;,...,a,+b,)+0. This contradicts to the assumption
g(xy, ..., x,)=0 for G*. Hence var G=var G* |y var V.

Theorem 2.7. Let B be a metabelian variety. Then there exists a nilpo-
tent variety N such that B=LVotr U N.

Proof. By Theorem 2.5 only a finite number of varieties lie between B
and Bor. Let

B=B,oB; > e DOR,=Vor

be a chain of maximal length. There exist finitely generated algebras G, ..., G,
such that G;€¢ B, \B;. Therefore B, _,=B; U varG,. The algebras G, are resi-
dually finite [1). Having in mind the maximality of the chain we may assume
without loss of generality that G; are finite. Then Proposition 2.6 gives that
for suitable split extensions G and nilpotent algebras N,

B=LPort Y var(Gy, .., G)Uvar (N, ..., N

By Corollary 2.3 (varG))ot=varG; and G;€¢Bot. Consequently we obtain
B=Vot U var (N, ..., N,). Obviously Rt=var (M, ..., N,) is nilpotent variety
and B=VotU N.

The following theorem is analogous to Theorem 2.5.

Theorem 2.8. Let B=N2. There exists only a finite number subbivarie-
ties My, - .- » My of WoN, such that M; 1=.

Proof. As in Theorem 2.5 we shall find bivarieties 9’ and 9N'’ such that
there is a finite number of bivarieties between 9’ and M’’ and for any I
with Mt=9B, it holds M =M=M'’". Let V=T (V) and Vo=S be the corres-
ponding GL-ideal of K [X]. Fix MW A, Mr==B. Clearly Mc=Pro=Bo and
I(M)>1(Vo)=S. Denote S'={f(Xy--.»Xa)| Xp41 f(X1r-+., X,)€SY and W’
the bivariety determined by the identities from S’. If & (x,, ..., x,) €/ (M), then
Kppr B (X0 - oo, Xp) €L(M) toO, [ Y1, Yor B (X1 oo s X)) €V, Xpay B (Xys ..., X,)€ES
and £(xy, ..., X,) €S, Hence /(M)=S’ and M’ <M. Now we take M’ =Po
and have M= M’’. !
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Let f,,..., f. be generators of S’ as a GL-ideal and d be the maximal
degree of these polynomials. Clearly, modulo S, the GL-ideal / () is generat-
ed by some polynomials of degree <d. But any identity of degree <d is
equivalent to a collection of identities in 4 variables x,, ..., x,. Therefore, / (M)
is defined modulo S by a subset of the finite set of all ordinary polynomials
in d variables of degree <d. Hence there is a finite number of possibilities
for /(M) only.

The proof of the following corollary is similar to the proof of Theorem
2.7 and makes use of Proposition 1.9.

Corollary 29. For any bivariety <A there exists a finite bial-
gebra (G, M, A) such that Mro=M U bivar (G, M, A).

3. Varieties generated by wreath products. The aim of this section is to
describe the identities of the bialgebra related to the wreath product A, wrA,
and to show that any metabelian variety is contained in var (4, wr 4,) for a
suitable integer k&.

Let the base field has ¢ elements. We shall use the equalities a?"=a and

(ax + By) =ax?+By?, a, B¢ K. For any positive integer £ we fix the poly-
nomial

. k
Qs (Xgy - Xp)=Z (5igN ©) XT o« « - XT (4 1) Xy

where the summation is on all permutations ¢ of 0, 1,..., k. As a function,
¢, is linear in any variable and skew symmetric, i. e. @4 (Xg, - 5. @X;+BYir .. -
Xe)=0Qg (Xop+ - +s Xiso oy Xp)+PBOs (Xgpoevs Yiroror Xp) & BEK, i=0,1,..., k&,
and ¢, (xg, ..., Xx,)=0 when i==j and x;=x;.

Lemma 3.1. Tke polynomial ¢, has the property

91 (X X)) =x; I (xo—0Xy), a€K,
Ox(Xor« + s X)=0p—1 (X1, - -5 Xp) T (Xo— 0y Xy — ... — @, X),

where the multiplication runs over all k-triples (a,, .. ., a,) of elements of K.
Therefore, up to a multiplicative constant, ¢, is the only polynomial of
minimal degree, being divisible by all non-zero sums @, X,+ ... + 0, Xp @€ K.
Proof. All non-proportional linear combinations are (¢*+'—1)/(¢--1) and
this number equals the degree of ¢,.Clearly, if X, =04 Xig1+ ... + @, X, (OF X
=0), then @, (Xgs+--»Xp ..., Xy)=0 and the polynomials x;,—a; 4 Xi43— ...
—a, x; divide ¢, Hence

¢. (xo, LRI xh)'——‘ a(Pk_l (xl’ ¢ .oy x‘) n (xo""al xl_ oo —'.a. xk)-

Comparing the coefficients of x2* and by induction on %2 we obtain that a=1.

Proposition 3.2. Let f(xg ..., X)6K [X]and () NK[xy ..., %]=0.
Then fe(9r (X -« - » Xp)-

Proof. The condition (f¥ N K [xy,...,x,]=0 means that any substitution
of Xy...,x, with linear combinations of x,, ..., x, turns f into 0. On the
other hand, @, is a multilinear and skew symmetric function and

(@Y ={Z0a (Xips - -+ X0) @ (K- o0 X7, ) [0 - -+ <l @ €K[XT}.

We shall use an induction on & z:nd n (k=n). Let n=~k. '{hen f (X0 .l. - g;;
..., x¢y=0 for arbitrary substitutions x;=Z;0;x; ie (x;—Za;x)|f.
Lemma 3.1 @, (X0, - - -»Xs) |f (%0 - -+ » X,) and ﬁ(o,)l
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Now, let n>k. Rewrite f in the form f=X xj £, (x1, ..., X,), $=0. Sub-
stituting x;, ..., x, with linear combinations of the variables y,, ..., ¥y, we
obtain 0. By induction on &, f (xy, ..., X,) € (Pe—1)’ and

fi=Z@p—1(Xiyse v xik)’ & (X1 -+ s Xp)
for suitable g;¢ K [x;,..., x,]. Hence
f=Z0@p—1 (Xips o oo Xi,) By (Xos -+ - 5 Xp)s O<i< .0 o <y

Consider the polynomials %; as polynomials in x, and divide them by IT(x,
—Oy X — ... 0, X)), 06 K. Therefore

=20 (Xis. o0 x;k) (M (xp—ay Xs— ... —0, Xi,) b; (X0 + « oy X,)
€ (Xop +++ 5 Xp)h
where deg,, ¢;<g*,
f=Z0p (X0 Xi)s -« s x.-k) b; (X0 cr X))+ 8 (%00« + o5 Xp)s
g(Xgr .oy Xp)=2Zx5d,(X1,...,X,), r<g*

By assumption (f)!NK[xy,...,x]=0. Obviously the same holds for g

In order to complete the proof we have to establish that g¢(¢,)/. Let d, (x,
«+» X,)¢(9,) for some r. By inductive arguments on », there exists a sub-

stitutign x,-=}_:_f=1 Bis ¥, such that d, (xy,...,, x,)=¢€,(¥1, ..., Y2)F0. Hence
8(Xos Xps e v vy Xp)=h (X, Y1s e+ s Vi)=2X0€,(Y1r - .., V) &+ 0. Because of deg,, g
<g*, there is a linear combination xo—a, y;— ... —a, y, which does not di-
vide & (xo, V15« -+ V) So, for xo=0; y1+ ... + 0 Vi &(x0» Xp5 .+ ., x,) == 0 and
g(xo ..., X)6EK[Yy, ...,y This contradicts to the assumption (f)' N K|[x,,
. +s, X]=0. Therefore d, (x;,..., X,)€(¢,) and g€ (¢,), too.

Let G,=A, wr A, be the wreath product of the abelian algebras A;=A(2)
and A,=A(¢,...,%) Then Gy=M,(2)AA,.

Theorem 33. Let [,=1 (bivar (Gy, M, (2), A)). Then [y=(¢, (X0, ..., xp)Y,
i. e. any identity for the bialgebra (Gy, M,(2), A,) is a consequence of

Y0 (x0 - . - » Xp)=YZ (sign o) xG((‘,'; yees x:',(k_,) Xary=0.
Proof. For any yf(x;....,x,) and for all substitutions
7‘1’—‘2;;-1 5utﬁ;=z’;f(;h s ’_‘n)=?—'g(tp - s ty) for

suitable g€ K [#, ..., %) and yf=0 if and only if g(x,-. .., x,)=0. Therefore
(fYNK|[ky.-.,x)=0 and by Proposition 3.2 fe¢ (o), i.e. [,=(@,). On the
other hand, the polynomials x,=Z;= By?;, i=0,..., &, are linearly dependent
and 2 Qg (Xp -+ . » Xp)=0, i. €. @,€/[4 So, I,=(9,).
: Corollary 3. 4. The wariety W,=var (A, wr A,) is determined by a
system of polynomial identities of the form X% ,[x; Xy, fi(Xy .. X,)]=0
such that x, f; (X1, ..o X2) EPg X0 fi (X1 -« X) €(@p).

Proof. The algebra A, wrA, is a split extension and by Corollary 2.3
W,ot=W. The proof follows immediately from Theorem 3.3 and Proposi-
tion 2.2.
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Remark 3.5. Vaughan-Lee [10] has shown that the algebra A, wr A, has
a basis for its polynomial identities

[x2, X3, X{]+[x3, 215 X§]+[x1, Xq, X§]=0,
[Xa2 X3 Xpo 6§70 x4 ]+ [, Xy Xa, X971 X0 [, X, X X{7 X371 =0

Theorem 3.6. Let B be a variety, BN and B=+=N2. Then there exists
a positive integer k such that B W,=var (A, wr A,).

Proof. Let the base field be of characteristic p, B2, V=+=N2 and let
I=1(Bo) be the GL-ideal of K[X] related to Po. Clearly, /=-0. Recall that a
polynomial f is said to be a p-polynomial if any monomial of f is of degree
p* in any variable.

Step 1. There exists a non-zero p-polynomial in /.

Proof. Let 04f(x)=f(xp X1 - - » X €1y f (Xo)=ZX5 f, (X1, . . » X,). We

begin a process of linearization in x,, i. e. consider g(y,, ¥o)=f(M1+¥2)—f(0)
——f(y2)=2,2;;i ( ; )y{ Y5 fr (x15+ .., x,). Obviously g=0 if ( ;)4: 0 for
some s, and in this case deg,, g<deg.f Therefore the linearization process
. . r i
gives the zero polynomial and stops only when (S)zo, s=1,..., r—1,i e

when r=p*.

Step 2. The polynomial ¢,(x, ..., x;) belongs to / for a suitable in-
teger k. '

Proof. Let ®, (xq ..., x;)=Z (signo) ngo). o XB 1y Xory i€ @, is an
analog of ¢, for the prime field Z,. Consider an arbitrary p-polynomial from /

Fe, 3 )= fo(3ee s )+ e + X2 L1 (Vs oo s D) o (W e s 2).
Because of the skew symmetry of ®, we obtain that

X (sign ©) f(Xs©), Vs« ++» 2) xﬁf,‘)‘ v XDty Koy =P (Xor o o X)) fr (V00 2)4

Following this way, we establish that

(D,,(Xo,...,xk)(b,(yo. ...,y,)...d)m(zo,..., m)EI-

By Lemma 3.1 the polynomials ®; are products of different linear factors and
divide @, (Xgr.+ s Xps Yor - =3 Vp+v 120 -+ +,2y), Where n+l=(>k+1)+(+1)
+ ...+ (m+1). Hence o¢,¢ /.

Step 3 (proof of the theorem). By Theorem 2.7 B=Botr |y N for a nilpo-
tent variety 9. There exists an integer n such that ¢, (x,, ..., x,)€/(Bo). The
varieties Yot and W, are generated by split extensions and /(W,o)=(9,).
Hence /(Bo)>o/ (W, 0) and Por=W,o01=2W,. On the other hand, N satisfies
the identity [x;,...,x,]=0 and, consequently, all identities of higher degree.
By Corollary 3.4, the identities of I, are of degree =(¢**'—1)(¢g—1)~'—1.
Therefore, for £ large enough we have both =W, and Bor=W,, i.e. B W,
This completes the proof of the theorem.
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