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ABOUT STRICTLY HYPERBOLIC OPERATORS
WITH NON-REGULAR COEFFICIENTS

Michael Reissig

1. Introduction
In this note we are interested in the Cauchy problem

n

(1.1) ug — Y ap(t, 2 uge, =0 in [0,7] x R™,
k=1

’U,(O,SU) = gp(x),ut((),x) = ’(/)(:l?) .

n
Setting a(t,z,£) := Y., ag(t,x)k& we suppose with a positive constant C' the
k,l=1
strict hyperbolicity assumption

(1.2) a(t,z,&) > Cl¢)?

with ARl = Ak, k,l = 1,"' ,n.

As usually we will say that the Cauchy problem (1.1) is well- posed if we
can fix function spaces A1, Ao for the data @, v in such a way that there exists
a uniquely determined solution v € C([0,T]; B1) N C*([0,T]; By) possessing the
finite propagation speed.

The question we will discuss in this paper is how the reqularity of the coeffi-
cients ay is related to the well-posedness of the Cauchy problem (1.1).
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Our starting point is a well-known result (see [18]) which says that if the
coefficients ag; € C([0,T); B¥) N C1([0,T]; B®) and ¢ € H**1, 4 € H*, then there
exists a uniquely determined solution u = u(t,z) belonging to C ([0, T]; H*+1) N
C([0,T]; H*). By B® = B®(R") we will later denote the space of infinitely
differentiable functions having bounded derivatives on R". Its topology is gener-
ated by the family of norms of spaces B¥ = B¥(R"), k > 0, consisting of functions
with bounded derivatives up to order k. By H¥ = H¥(R™), k > 0, we denote
as usually the Sobolev spaces having square integrable Sobolev derivatives up to
order k. In a standard way we introduce H*® = H*®(R") and H* = H*(R") for
negative k.

Standard arguments:

e If the coefficients have more regularity C*([0,7], B<), and the data ¢ and v
are from H*°, then the Cauchy problem is H* well-posed, that is, the uniquely
determined solution is from C2([0,7T], H>).

e Together with the domain of dependence property this result implies C*° well-
posedness, that is, to arbitrary data ¢ and ¢ from C'* there exists a uniquely
determined solution from C?([0,T], C*).

Remark 1. One can weaken in the above statements the C' property with
respect to t to the Lip property.

The weakest property with respect to ¢t to get well-posedness results for (1.1)
is the Li-property. This was shown in [9]. More precisely, it is assumed in [9] for
(1.1) with an elliptic operator in self-adjoint form that the coefficients satisfy the
analyticity condition

1S Ban(t,x)| < Ax(H)A5)!
k=1

for all multi-indices 8 and for any compact set K of an open set 2, where A €
L1(0,T), and the strict hyperbolicity condition

Clel? < alt,z,€) < A)IEP,

with a positive C and /A(t) € L1(0,T). Then to arbitrary analytic data ¢ and
1 on £, there exists a unique solution on a suitable conoid I‘g which is C' in t
and analytic in x.

We know from the results of [7] for the Cauchy problem

(1.3) u = a()uge =0, u(0,2) = p(x),  w(0,2) = (),
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that assumptions like a € L,(0,T),p > 1, or even a € C[0,T], don’t allow to
weaken the analyticity assumption for data ¢, 1) to get well-posedness results. It
is proved under these conditions that there is no well-posedness result in quasi-
analytic or non quasi- analytic spaces.

Thus it is natural to assume that the coefficients are Holder with respect to
t. That such an assumption allows to weaken the regularity of coefficients with
respect to  was shown in [19]. The main result from [19] for the strictly hyper-
bolic case applied to (1.1) tells us that if the coefficients ax;, € C*([0,T], G%), s <
ﬁ, k € (0,1), and the data ¢, ¢ € G*, then there exists a uniquely determined
solution u € C2([0,T],G*). Here G*® is a suitable space of Gevrey functions
defined on R". In the case s = ﬁ, the solution exists locally in . The counter-
examples from [3] show that we have no well-posedness in Gevrey classes G* with
s>

In the following we are interested in the question if the C' or Lip property of
coefficients can be weakened to guarantee well-posedness in Sobolev spaces.

2. Critical conditions for C'*° well-posedness

Let us explain for model (1.3) different strategies how to weaken the conditions
a € CY0,T), a € Lip[0,T), respectively, to guarantee well-posedness of Sobolev
solutions.

A first idea goes back to [3]. Instead of the Lip property the authors sup-
posed the so-called LogLip property, that is, the coefficient a = a(t) satisfies the

property
la(t1) —a(te)] < Clt1 — to||log |[t1 — 2| for all ¢y, ta € [0,T], t1 # to.

Under the assumption a € LogLip|0,T] a well-posedness result in C* could be
proved. But what is the qualitative difference of possible results to the case
a € Lipl0,T]?

e This difference we feel in the energy estimate. In general, one can derive
an energy estimate of the type

(2.1) E(u)| go—so (t) < C(T)E(u)|5s(0) for allt € (0,7,

where F(u)|gs(to) denotes the strictly hyperbolic energy basing on the H*-norm
to the time ¢ = ty. The constant sy describes the so-called loss of derivatives.
The loss of derivatives shows how less regular the solution is in comparison with
the data. It is clear, that such an estimate yields H well-posedness and together
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with the domain of dependence property, immediately, a C*° well-posedness re-
sult.

As far as the author knows there is no classification of LogLip behaviour of
the coefficient a = a(t) from (1.3) with respect to the related loss of derivatives.
The author expects the following classification:

Let us suppose with a nonnegative v that
(2.2) la(t1) — a(t2)| < Clt1 — tof[log [t1 — ta”

for all tl, t2 S [O,T], t1 75 t2.
Then it holds:
e If y =0, then sog = 0.
e If v € (0,1), then s¢ is an arbitrary small positive constant.
o If v =1, then s( is a positive constant.
e If v > 1, then there doesn’t exist a positive constant sy satisfying (2.1), that
is, we have an infinite loss of derivatives.

The statement for v = 0 can be found in [18]. The counter-example from [8]
implies the statement for v > 1.

Open Problem 1: Prove the above statement for v € (0,1)!

Open Problem 2: The results of [3] and [8] show that v = 1 brings a finite loss
of derivatives. Are these results sharp? Do we have a concrete example which
shows that the solution has a finite loss of derivatives?

We already cited the paper [8]. In this paper the authors studied strictly
hyperbolic Cauchy problems with coefficients in principal part depending LogLip
on spatial and time variable.

e If the principal part is as in (1.1) but with an elliptic operator in divergence
form, then the authors derive energy estimates basing on a suitable low energy
of the data and of the right-hand side.

e If the principal part is as in (1.1) but with coefficients which are C* in z and
LogLip in t, then the energy estimates are basing on arbitrary high energy of the
data and of the right-hand side.

e In all these energy estimates which exist for ¢ € [0,T*], where T* is a suitable
positive constant independent of the regularity of the data and right-hand side,
the loss of derivatives depends on t.

It is clear that these energy estimates are an important tool to prove (locally
in t) well-posedness results.
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A second possibility to weaken the Lip behavior goes back to [5]. Under the
assumptions

(2.3) a € Cl0,T]NCY0,T], |t (t)| < C for ¢ € (0,77,

the authors proved a C*° well-posedness result for (1.3) (even for more general
equations), where they observed the effect of a finite loss of derivatives, too. The
condition for the derivative of a from (2.3) is sharp in the following sense:

If we suppose

(2.4) a € Cl0,T]NCY0,T],|t"d (t)| < C for t € (0,T],

then for

e v € [0,1) we have no loss of derivatives,

e v > 1 we have an infinite loss of derivatives, the authors of [5] proved well-
posedness in Gevrey classes.

Remark 2. Let us compare both strategies (2.2) and (2.4). In (2.2) the
coefficient a¢ = a(t) can have an irregular behavior (in comparison with the Lip
property) on the whole interval [0, T]. In (2.4) the coefficient has only an irregular
behavior in ¢ = 0, in (0,7 the coefficient belongs to C''. But the behavior of
the derivative of @ in ¢ = 0 is more singular than the LogLip behavior in ¢ = 0.
Consequently, each approach to attack one of these both irregularities will have
its own peculiarities.

The following considerations are devoted to the second strategy. In the next
section we will show how more regularity for ¢ = a(t) brings a more refined
classification of possible oscillating behavior. In Section 4 we will study our
starting model problem (1.1). Finally, we will present recent developments in the
theory of strictly hyperbolic equations with non-Lipschitz coefficients in Section
5.

3. A refined classification of oscillating behavior

The considerations of this section are basing on the papers [6] and [11]. Let us
suppose, that the coefficient a = a(t) satisfies

I k
0 € Lof0,T] N C20,T], [a®()] < C (% <10g %) ) E=0,1,2,

where v > 0.
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Definition 1. We say, that the oscillating behavior of a is
e very slow if v =0,
e slow if v € (0,1),
o fast if y =1,
e very fast if condition (3.1) is not satisfied for v = 1.

Then we are going to prove the next statement yielding a connection between
the type of oscillations and the loss of derivatives which appears.

Theorem 1. Let us consider

Ut — a(t)uxx =0, U(O,SE) = ‘;0(117)7 ut(O,x) = 1/)(33),

where a = a(t) satisfies the condition (3.1) and the data @, 1 belong to H**1, H*,
respectively. Then the following energy inequality holds:

(3.1) E(u)| gs—s0 (t) < C(T)E(u)| s (0) for allt € (0,T],

where

e s50=01ify=0,

e sg is an arbitrary small positive constant if v € (0, 1),

® 50 is a positive constant if v =1,

e there doesn’t exist a positive constant sg satisfying (3.1) if v > 1, that is, we
have an infinite loss of derivatives.

Proof. Without loss of generality we can suppose that T' is small enough.
Otherwise, we derive the energy inequality (3.1) for ¢ € (0,71] and use C'[T, T
property of a = a(t) to get the estimate for ¢ € (0,7"]. The proof will be divided
into several steps.

1.step: Tools

We divide the phase space {(¢,&) € [0,T] x R} into two zones by using the
function t = t¢ which solves

(3:2) te(€) = N(In(£)).

The constant N will be determined later. Then the pseudo-differential zone
Zpa(N), hyperbolic zone Zy,, (N ), respectively, is defined by

(3.3) Zpa(N) ={(t,€) € [0,T] xR : t <t¢},

(3.4) Zugp(N) = {(1:€) € [0.T] xR s ¢ > 1}
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Moreover, we need a symbol class in Zj,,(N).
Definition 2. To given real numbers my, mo, r < 2; we denote by

S, {mi1,ms)} = {d = d(t,€) € Loo([0,T] X R) :
IDEDRA(L,)] < Cral€)™ 1 (31og 7)™, k < 1, () € Zuyy (W) 1.

2.step: Considerations in Zyq(N)

We apply partial Fourier transformation with respect to z and get with v = 4

~

vy + a(t)§2v =0 9 v(07§) = @(é)v vt(07§) = ,(/)(é)

Setting V' = (év, Dyw)” this equation can be transformed to the system of first
order

(3.5) D,V = ( a((z)g g ) V= A(t,6)V .

We are interested in the fundamental solution to the Cauchy problem, this is
the matrix-valued solution V = V(t,r,£) of this system with initial condition
V(r,r,&) = I (identity matrix). Using the matrizant we can write VV in an explicit
way by

tp—1

00 t t1
V(t,r, &) =T+ i [ A(t1,6) | A(t,€)... | Altg, €)dty,...dt.
i [0 4. [ At

T

The norm ||A(t,£)|| can be estimated by C(¢). Consequently,

te
[ 14Gs.€)lds < Crele)
0
We deduce for ¢ € [0, t¢] the estimate
t
(0.1 < exp ([ 1405, ©)lds) < exp(CN 1n(e))")
0

Lemma 1. The solution to (3.5) satisfies in Zpq(N) for large & the energy
estimate

(3.6) [V (#,6)] < exp(CN(In{&))")[V(0,8)].
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3.step: Considerations in Zp,,(N)
Substituting V = (y/a(t)¢ v, Dyw)T brings the system of first order
Dia
(3.7) DtV—<\/2g§ \/055) V=o0.

To derive an energy estimate we carry out the first two steps of a diagonalization
procedure. Here we use the C?(0,T] property of a = a(t).

e Diagonalization of the principal part
Let us define the matrices

11 -1 o 11
M_§<1 1)’ M ‘(—1 1)'

Then the system (3.7) can be transformed to a first order system for a new
function Vj := M V in the following way:

3 0 Va¢ “ly 220 “ly =
D.Vy M(ﬁf 0 )M Vo M(d’ 0 M Vy=0,

0 1/ 0 DB
DtV0—<01 7'2)‘/0_§<M QOa)VOZ

n(t€) = —VaE+ 5 B, m(t€) = ValB)e + 352

We deduce v/a¢ € S2{1,0} and 2% € $;{0,1}. In Zp,,(N) we have Sy11{1,0} C
Sk{1,0} and S;{0,1} C Sk{1,0}. Consequently, substituting Vy := MV in (3.7)
we obtain the following system of first order:

where

(3.8) DiVo —DVo — RoVp =0,
where
(7m0 o 10 Lu
D_< 0 7_2)651{170}7R0~_§<22% 2011 681{0,1}
e Diagonalization of the remainder Ry modulo Sp{—1,2}
Let us set
S o
N .= _l DO 712—a72 — l DO Vag
S 4\ 5
0 0

T2—T1 —+va&
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Then the matrix Ny := I + N is invertible in Zj,,(N) for sufficiently large N.
We observe that on the one hand DNy — N1D = Ry and on the other hand

(D¢ =D — Ro)N1 = Ny (D; — D — Ry),
where
Ry := —N; ' (DN — RN ).

Taking account of Definition 2 we have N() € §;{—1,1}, N; € §,{0,0} and
Ry € So{—1,2}. Setting V; := N;'V; in (3.8) gives the following first order
system:

D\Vi —=DVi — Ry Vi = 0.

e Representation of solution
Now let us devote to the Cauchy problem

(39) DtV1 — val - Rlvvl = 07 Vl(t£7§) = Vvl,O(é-) .

The datum V; o arises from the solution V' =V (¢,£) in Zy4(N) on t = t¢ and the
above transformations, that is,

(3.10) Vio(€) = Ny H(te, )MV (t¢,€).

Conversely, if we have a solution Vi = Vi(t,§) in Zp,,(N), then V = V(¢,§)
which is defined by

(3.11) V(t,€) = M7 Ny (5, Vi (t,€)

solves (3.7) with given V(t¢, &) on t = t¢.
The matrix-valued function
t
exp (zf ( —Va(s)é+ %D;(as()s) ds) 0
Es(t,r,&) = r ”

0 exp (zrft Va(s)é+ 1 ;&()S)>ds>

solves the Cauchy problem

(D¢ = D)E(t,1,§) =0, E(r,r,§) =1 .
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The matrix-valued function H = H (¢,7,£) is defined by
H(tv T, é-) = EQ(Ta tv é‘)Rl (ta §)E2(ta T, 6) ) tv r Z t£ )

satisfies in Z,,(N) the estimate

2
(3.12) IH ol < C© (b b))
By the aid of H we define the matrix-valued function Q = Q(t,r, &) by
00 t t1 tr—1
Q€)= Yoit [ B odn [ Htnrdtae. [ Hibwr Ot
k=1 r r T

The reason for introducing the function () is that

(3'13) Vi = Vl(tvé‘) = E?(tatfvf)(I + Q(tatfvf))vl,o(f)
represents a solution to (3.9).

e Basic estimate in Zpyy(N)
Using (3.12) and the estimate

[ 1G5t €)lds < O nte)?
te

we get from the representation for () immediately

1R te, I < eXp(/ 1H (s, t¢,€)llds) < exp(Cn (In(€))7).

te

Now we are in position to conclude a basic estimate for V taking account of
(3.10), (3.11) and (3.13).

Lemma 2. The solution to (3.7) satisfies in Zpy,(N) for large § the energy
estimate

(3.14) [V (£,8)] < Cexp(Cn (Inf§))")[V (te, ).

4.step: Conclusion
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From Lemmas 1 and 2 we conclude

Lemma 3. The solution v = v(t,&) to

vy + a(t)£2v =0, 'U(O?é‘) = @(6)7 vt(()?é) = z&(&)

satisfies the a-priori estimate

£ p(§) )\

( ¢v )| = Cexpienmen|( P (€)

Ut
for all (t,€) € 10,T] xR.

This estimate proves the statements for v € [0,1]. The statement for v > 1
follows from Theorem 2 which we formulate after this proof if we choose w(t) =

In? @ with ¢ > 2. O

Theorem 2 (see [6]) Let w : (0,1/2] — (0,00) be a continuous, decreasing
function satisfying limw(s) = oo for s — 40 and w(s/2) < cw(s) for all s €
(0,1/2]. Then there exists a function a € C®(R\{0})NC°(R) with the following
properties:

e 1/2<a(t) <3/2 for allt € R;
e there exists a suitable positive to and to every p a positive constant C, such that

a®) (1) < pr(t)(%ln %)p forall 0 <t < to;
e there exist two functions ¢ and 1) from C°(R) such that the Cauchy problem

u — a(t)uge =0, w(0,z) = @(z), u(0,z) = ¢(x)

has no solution in C°([0,7); D' (R)) for all r > 0.

Remark 3. If we would stop the diagonalization procedure after diago-
nalization of principal part, then we have to assume in Theorem 1 only a €
C[0,T] N C*(0,T) and |ta'(t)| < C in correspondence to [5].

Remark 4. The counter-examples from [6] possess the regularity a € C*°(R\
{0}). Thus it was valuable to have a counter-example from [11] with regularity
a € C?(R\ {0}. This counterexample was obtained by the application of Floquet
theorem influenced the research of [12] (see Section 4.2 and the following open
problems).
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Open Problem 3: In the moment it seems to be not clear what kind of oscilla-
tions do we have if a € C[0,T]NC'(0,T] and |ta'(t)| < C as in [5]. The problem
is to prove that under the assumptions

a € C0,T] N CY0,T], |d'(1)] < C%(ln })W v 0,

we have very fast oscillations, this means, we cannot expect C'°° well-posedness.
To study this problem we have to use in a right way the low regularity C'(0, 7.

Remark 5. Let us consider the Cauchy problem
Uy + b(t)umt - a(t)ua:m = 07 ’U,(O,ZE) = Qo(x)ﬂ ut(07 LL‘) = Zb(ZE)

Does the existence of a mixed derivative of second order change the classification
of oscillations from Definition 1?7 In a very recent paper [13] the authors gave a
positive answer. The method how to get this answer is connected with the proof
of necessity of Levi conditions for lower order terms. Its answer is important
for quasi-linear equations of second (or even higher order) with non-Lipschitz
behavior. From the results of [1] we know that a,b € LogLip[0,T] implies C'*
well-posedness of the above Cauchy problem, that is, in this case the mixed
derivatives have no deteriorating influence.

4. Solvability in Sobolev spaces for the general case

4.1. Construction of parametrix

In this section we come back to our general Cauchy problem (1.1) taking account
of the classification of oscillations was supposed in Definition 1 and (3.1). We
assume

(4.1) ag € C([0, T, B (R")) N C*((0,TT, B*(R")).

The non-Lipschitz behavior of coefficients is characterized by

) IDEDSau(t0)] < Coa (+ (10 1))

for all &k, and (¢,z) € (0,7] x R", where T is sufficiently small and v > 0. The
transformation U = ((D,)u, Dyu)T transfers our starting Cauchy problem (1.1)
to a Cauchy problem for D,U — AU = F, where A = A(t,z,D,) is a matrix-
valued pseudo-differential operator. The goal of this section is the construction
of parametrix to D; — A.
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Definition 3. An operator E = E(t,s), 0 < s < t < Ty, is said to be a
parametriz to the operator Dy — A if DiE — AE € Loo([0,Tp]2, ¥ ~°°(R")). Here
W~ denotes the classical pseudo-differential operators with symbols from S—°

(see [17]).

We will prove that F is a matrix Fourier integral operator. The considerations
of this section are basing on [15], where the case vy = 1 was studied, and on [20].
We will sketch this construction of parametrix and show how the different loss of
derivatives appears. It is more or less standard to get from the parametrix the
existence of C'! solutions in ¢ of (1.1) with values in Sobolev spaces.

1.step: Tools

With the function ¢ = t¢ from (3.2) we define for ({) > M the pseudo-
differential zone Zyq(N), hyperbolic zone Zp,,(N), respectively, by

(4.3) Zpa(N) = {(t,,€) € [0,T] x R*™: t < t¢},
(4.4) Zhyp(N) = {(t,2,6) € [0,T] x R* : ¢ >t} .

Moreover, we divide Z,,(N) into the so-called oscillations subzone Zys.(N) and
the regular subzone Z,.q(N). These subzones are defined by

(4.5) Zose(N) = ) €10,T) x R*™ : te <t <1},
(4.6) Zreg(N) = {( ) [0,T] x R*™ : & <t}

where t = fg solves
(4.7) te(€) = 2N (In(€))™.

In each of these zones we define its own class of symbols.

Definition 4. By Tox we denote the class of all amplitudes
a = a(t,r,&) € Le([0,T],C®(R?)) satisfying for (t,z,&) € Z,q(2N) and all
a, B the estimates

(4.8) esssup 0008 a(t, ,8)| < Cpa(€)' 1o,
(t,2)€[0,te] XR™

By 57'5(R™) we will denote the classical symbol spaces (see [17]).
To describe the behavior in oscillations subzone Z,;.(N) we need the next class
of symbols.
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Definition 5. By Sy{m1,ma}, mo > 0, we denote the class of all amplitudes
a=a(t,r,&) € C((0,T] x R?") satisfying

(4.9) OF oo alt,2,€)| < Crgal&)™ ! (H(n jy7)™
for all k, o, B and (t,2,€) € Zpyp(N).

Finally, we use symbols describing the behavior of solution in the regular part
Zyeg(N) of Zpyp(N).

Definition 6. By S¥,{m1,ma}, ma > 0, we denote the class of all amplitudes
a=a(t,z,&) € C°((0,T] x R*") satisfying

(4.10) F000g alt, z, )| < Crpale)™ 1 (Hn )™
for all ko, B and (t,2,€) € Zyeg(N).

To all these symbol classes one can define corresponding pseudo-differential
operators. To get a calculus for these symbol classes it is useful to know that
under assumptions to the behavior of the symbols in Z,;(NN) we have relations
to classical parameter dependent symbol classes.

Lemma 4. Assume that the symbol a € Sy{m1,ma} is constant in Z,q(N).

Then

(4.11) a € Loo([0,T], Sy (Omtma)(gny)
0fa € Loo([0,T], STH™*H(R™))

for all k > 1.

The statements (4.11) allow to apply the standard rules of classical symbolic
calculus. One can show
e a hierarchy of symbol classes Sy{m x,ma} for m; ; — —o0;
e a hierarchy of symbol classes Sy{mi — k,ms + k} for k > 0;
e asymptotic representations of symbols vanishing in Z,;(N) by using these hi-
erarchies;
e a composition formula of pseudo-differential operators which symbols are con-
stant in Zp4(N);
e the existence of parametrix to elliptic matrix pseudo- differential operators
belonging to Sy{0,0} and which are constant in Z,4(N).
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2.step: Diagonalization procedure

We have to carry out perfect diagonalization. The main problem is to under-
stand what does the perfect diagonalization procedure mean. Here we follow the
next strategy:

e The first step we carry out in all zones.
e The second step we carry out only in Zj,,(N).
e The perfect diagonalization we carry out in Z,.4(N).

Perfect diagonalization means diagonalization modulo
Ton N (San {00} + Son{—1,2}) N { N Siy{=rr + 1}}.
r>0

Lemma 5. The determination of parametriz to the matriz pseudo-differential
operator Dy — A can be reduced after transformations by elliptic matriz pseudo-
differential operators (corresponds to perfect diagonalization) to the determina-
tion of parametriz to the matriz pseudo-differential operator Dy — D + Fy 4+ P,
where the matriz pseudo-differential operators D, Fy, Py, possess the following
properties:

e D: 0o(D) € ToyNSy{l1,0},

O'(D) = w1 + %Dt% O ;
0 P2+ 1L D2

e Fy: diagonal, o(Fy) € (S3{0,0} + Sy{—1,2}), o(F2) =0 in Zp4(N) U
Zosc(N);

o Po:  0(Py) € Ton N (San{0,0} + Son{—1,21) N { 0 Syi-pp+ 1}}.
b=

Here we use

et 7€) = di6) x( wisshyys ) + 7t ) (1 - x (7l ) ),

where doy = —dy is a positive constant and

n

Tk(t7x7£) = (_1)k a’(t7x7£) ) a(tvmvg) = Z ak,l(t7x)§k£l-

k=1

The function x = x(s) is from C§°(R), x(s) =1 for|s| <1, x(s) =0 for|s| > 2
and 0 < x(s) < 1.
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3.step: Construction of parametriz
We need four steps for the construction of parametrix.

o Transformation by an elliptic pseudo-differential operator
Let K be the diagonal elliptic pseudo-differential operator with symbol
P2
@

P2
0 ©

o(K) =

This symbol is constant in Z,;(N), o(K) € Sy{0,0}. Then the following
operator-valued identity holds modulo regularizing operator:

(4.12) (D, — D + F»)K = K(D, — Dy + Fj),

where

o(Dy) = < ‘f)l £2 ) , o(F3) =0 in Zyg(N),

o(Fs) € Ton N (Sn{0,0} + Sy{-1,2}).

Remark 6. This transformation corresponds to the special structure of
our starting operator and explains that we have no contribution to the loss of
derivatives from D. This we already observed in Section 3 during the proof of
Theorem 1. In the representation of V; from (3.13) there appears Ey = E(t, t¢, §).
Although in Es there appears the term %% which belongs to 51{0,1} (see
Definition 2), this term has no contribution to the loss of derivatives.

o Parametriz to Dy — D1
Lemma 6. The parametriz Ey(t,s) = diag(E; (t,5), E5 (t,s)) to Dy — Dy is a
diagonal Fourier integral operator with

EF (t, s)w(z) = / T ESTO T (¢, 5, 1, £)ib(€)dE
o
(ﬁ:F(S,S,:I},f) =T 5 ’ 6;':(8,8,3,'75) =1.

The phase functions ¢T satisfy

i ¢:F(t737$7§) = $'§+dk<§>(t_s)7 k=1 f07‘ ¢_7 k =2 fOT ¢+ Zf
OSS,tStg;

. |8§‘8§(¢¢(t,s,m,§) —z-§)| < C’a,g(é)l_'a' max(s,t) if max(s,t) > te.
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The amplitude functions eJ satisfy
* e;(tasvxvf) =14 0<s,8< les

e ef € C([0,Ty)%, 57 o(R™)).

To prove this result we follow the next steps:
e Study of the Hamiltonian flow generated by v1 = 1 (¢, x, &) and o = a(t, z, ).
e Construction of phase functions ¢F solving the eikonal equations.
e Construction of amplitudes e by solving the transport equations and by using
the asymptotic representation theorem.

e Parametriz to Dy — Dy + F3
Lemma 7. The parametriz Ey = E4(t,s) to the operator D, — Dy + F3 can
be written as Ey(t,s) = Es(t,s)Q4(t,s), where Ey = FEy(t,s) is the diagonal
Fourier integral operator from Lemma 6 and Q4 = Q4(t, s) is a diagonal pseudo-
differential operator with symbol belonging to W, ([0,To]?, S9 o(R™)).

To prove this result we follow the next steps:
e Application of Egorov’s theorem, that is, conjugation of F3 by Fourier integral
operators, here we use the diagonal structure.
e For t € [0,Tp] with a sufficiently small T we understand to which zone the
Hamiltonian flow belongs to.

e Parametriz to Dy — D + Fy
Lemma 8. The parametriz Es = FE5(t,s) to the operator Dy — D + Fy can be
written as Es(t,s) = K(t)Ea(t, s)Qu(t, s)K*(s), where K and its parametriz K*
having symbols from Lo ([0, To], S?’O([R”))HCOO((O,TO]Q, S?’O([R")) are the elliptic
pseudo-differential operators from the above transformation.

e Parametriz to Dy — D + Fy + Py
Lemma 9. The parametrizc Ey = Ey(t,s) to the operator Dy — D + Fy + Py
can be written as F1(t,s) = E3(t,$)Q1(t,s), where Q1 = Q1(t,s) is a matrizc
pseudo-differential operator with symbol from
Loo([0, To]%, S12°. L(R™) NWL ([0, To]?, STL = (R™)) for every smalle > 0. Here
the constant Ky describes the loss of derivatives coming from the pseudo-differen-
tial zone Zpy(2N) and the oscillations subzone Z,s.(2N).

To prove this result we follow the next steps:
e Egorov’s theorem is not applicable because Py, has no diagonal structure.
e We have to use the properties of P, after perfect diagonalization.
e The next result is a base to get a relation between the type of oscillations and
the loss of derivatives.
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Lemma 10. The Fourier integral operator Pu(t)ES (t,s) is a pseudo-diffe-
rential operator with the representation

Poo(§)E (1, s)(z) = / (1, 5,2, € (€)dE
J

where the symbol satisfies the estimates
Capep (10 1)7)7H (g) pHeld=0-2Nalin 7, 0 (2N),
[ared 2 — e|p|—(1—¢)|af j
OLOEFT (1, 5,2,6)| <4 Cage (1+ (2 1)7)* () (-0l in Z (2N),
Cape(€) HIPIm0=9lel in Z,4(2N),

for every p >0, small e > 0 and all s € [0,1].
4.step: Conclusion

Using Lemma 9 and the backward transformation (from the steps of perfect
diagonalization) we obtain the parametrix for D; — A. The backward transforma-
tion does not bring an additional loss of derivatives. Therefore we can conclude
the next result.

Theorem 3. Let us consider

n

Ut — Z akl(t7$)uwkwl =0, U(OwI) = (P('I)a ut(Oax) = ¢($)a
k=1

where the coefficients satisfy the conditions (4.1) and (4.2). The data o, 1 belong
to H5t1, H*, respectively. Then the following energy inequality holds:

(4.13) E(u)|gs—so (t) < C(T)E(u)|gs(0) for all t € (0,T],

where

e s50=01ify=0,

e sg is an arbitrary small positive constant if v € (0, 1),

® 50 is a positive constant if v =1,

e there doesn’t exist a positive constant sg satisfying (3.1) if v > 1, that is, we
have an infinite loss of derivatives.

It seems to be remarkable that we can prove the same relation between type
of oscillations and loss of derivatives as in Theorem 1.
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4.2. How to weaken C? regularity to keep the classification of oscilla-
tions

In the paper [12] the authors were interested in the question if there is something

between (2.4) and (3.1) and the corresponding relation between the type of os-

cillations and the loss of derivatives. They supposed smoothness with respect

to x. For simplicity of representation the authors studied the backward Cauchy

problem

(414) (& —@(t,2)A)u=0, u(T,z)=¢(z), w(T,z) = 1(z),

where ® = ®(t,z) € Loo((0,7); B*(R")) and &g < ®(¢,z) with a positive con-
stant ®g. To understand the main results of [12] we have to introduce the next
definitions.

Definition 7. (Definition of admissible space of coefficients) Let T be a
positive small constant, and let v € [0,1] and B € [1,2] be real numbers. We
define the weighted spaces of Holder differentiable functions AP = Ag((O,T]) as
follows:

AS((0,77) Z{f = f(t,z) € Loo((0,T); B*(R™)) :

10 ()l 3 )
sup ||f(¢ ny+ sup ——————
Sup I ()l % () SO T (Ine)

0 - . n
. O 1 nra—1(it, 17385 (m7 )

o] (1 (Int=1)7)?

< oo for allkZO},

where ||F||yp8-1(7) with a real number B € [1,2] and a closed interval I is defined

by
|F'(s1) —F(Sz)l}
ls1 — 8oL |7

IFllpgsmry = sup {

s1,89€l
s17#82

The coefficient space A} was used in [5], A? was used in [6].

Definition 8. Let o and v be non-negative real numbers. Then we define the
exponent-logarithmic scale . 5 by the set of all functions f € L>(R™) satisfying

A 2 :
1711, = ({/ exp (o (n(©)) f()] de | <o,
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where f denotes the Fourier image of f. In particular, we denote Hy = {Jyv Hr,o-
The main result of [12] is the following:

Theorem 4. Let y € [0,1] and € (1,2]. If ® € Ag((O,T]), then (4.14) is
well-posed in H, on [0,T], that is, there exist positive constants Cy g, o and o’
with o < o' such that

(4.15) 1(Tut) u @l , < Crs (Vo )l -

Remark 7. The statement of Theorem 4 yields the existence of energy
solutions. Due to the finite loss of derivatives a sufficiently large o’ implies that
these solutions are classical ones with respect to x if v = 1. The solutions are
C*([0,T]) with respect to t. The second derivative with respect to ¢ belongs to
Loo([0,T)) because of the properties of ®. The same relation between type of
oscillations generated by v > 0 and the loss of derivatives holds as in Theorems
1 and 3 independently of 8 € (1, 2].

There are no problems to use the statements of Theorem 4 to prove the next
result.

Theorem 5. Let us consider the Cauchy problem (4.14), where the coefficient
O belongs to Ag((O,T]) with v € [0,1] and B € (1,2]. The data ¢, 1) belong to
H5tY HS, respectively. Then the following energy inequality holds:
(4.16) E(u)| gs—s0 (t) < C(T)E(u)|gs(0) for all t € [0,T],

where

®s0=014v=0,

e sq is an arbitrary small positive constant if v € (0, 1),
® sy is a positive constant if v = 1.

Sketch of the proof of Theorem 4
1.step: Tools

The zones Z,4(N) and Zj,,(N) are defined in a similar way as in Section 4.1.
Suitable classes of symbols are introduced in the next definition.

Definition 9. For real numbers my,mz, mg > 0, we define S;3t and T™ as
follows:

st = {alt,2,€) € L((0,7); O (RZY))
10500alt,,€)] < Crg (€™ (17 (™))™ in Zpyp(N) }
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and

< Crgfe)™ 11 in Zya(N) }

2.step: Regularization

Our goal is to carry out the first two steps of the perfect diagonalization
procedure. But ® doesn’t belong to C? with respect to ¢. For this reason we
define a regularization ®, of ®.

Definition 10. Let x = x(s) € B®(R) be an even non-negative function
having its support on (—1,1). Let this function satisfy [ x(s)ds = 1. Moreover,
let the function p = p(r) € C*(]0,00)) satisfy 0 < p(r) < 1, p(r) = 1 for
r > 2 and p(r) =0 for r < 1. We define the pseudo-differential operator ®, =
®,(t,xz,Dy) with the symbol

O (t,,8) = p (HE)(N(In(€)) ™) ot 2, &) + (1 — p (H(E)(N (In(€))7) ™)) @o,
where

bolt,,€) = (€) / B (s,2)x ((t — $){€)) ds.

The properties of this regularization due to the symbol classes Sy} and T™*
are described in the next lemma.

Lemma 11. The regularization ®, = ®,(t,z,£) has the following properties:
(Z) q)p(t7$7€) > (1)07'
(“) @p(t,m,é) € SO;
(iii) D, (t, 5, €) € S9N T~
(iv) 20, (t,,€) € S, NT=;
(v) B(t,x) — @, (t,z,€) € S5 N T°.
3.step: Diagonalization procedure

Carrying out the first two steps of perfect diagonalization and a suitable
transformation by an elliptic pseudo-differential operator which takes into con-
sideration the special structure of our starting problem (see (4.12)) we arrive
at

(4.17) (D, — A—B—R)U =0,
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where B € Sgﬂﬂ, R € S and

a=vam (1§ )

4.step: Application of sharp Garding’s inequality for matriz-valued operators

Let us define 0y = 0y(t,€), 01 = 01(t,£) and 0 = 0(t, &) as follows:

00t €) := p(HE) (N (In(€))") "))+ (t71 (lnt1)7)”
+ (L= p(8E (N (In€) ") ")),

01(t,€) == p(t(€)(N(In(E)") ™" (™) + (1 — p(HE)(N(In(€))?) ™)) (In 1)
and

9(t7 f) = 9(t7 & K) = K(l + 90(t7 f) + Hl(ta 6))
with a positive real constant K. We define V = V(¢,z) by

T
— [0(s,Dz)ds
Vit,z):=e { U(t,z).

Such a type of transformation was used in [2]. The operator e~ I 0(s,D2)ds .
scribes the loss of derivatives which appears for our starting problem (4.14) in a
natural way. The main point is to determine the symbol § = 6(t, &) describing in
consequence our relation between classification of oscillations and related loss of
derivatives.

The operator equation (4.17) is transformed to

(4.18) (0, —Py—P)V =0,

where
Py=iA+K(1+60y(t,D,))I+iB+iR

and
T T
— [6(s,Dz)ds J0(s,Dz)ds
P1K91(t,Dx)I+i[e ¢ ,A+B+R] et .

The choice of 6y and 6; is organized with a sufficiently large K in such a way
that sharp Garding’s inequality is applicable to the matrix-valued operators P
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and P;. Multiplying V' on both sides of (4.18) and integrating over R", we have
(O, V,V) = (RV,V)+ (P,V,V). Tt follows that

%an2 =2R(RV,V) + 2R (P V, V).
The application of sharp Garding’s inequality yields
MRV, V) 2 =CollVI?, 2R (AV,V) > =G|V
Finally we deduce
IV(O)? < e“T=NV (D) < TV (T)|.

This inequality yields together with

T
'/9(s,§)ds < C(In(¢))”
0

the statements of Theorem 4. O

5. Concluding remarks

Let us mention further results which are obtained for model problems with non-
Lipschitz behavior and more problems could be of interest.

Remark 8. (Lower regularity with respect to x) The results and the approach
from [12] motivate to study the question how to weaken the regularity with
respect to z (compare with [8]). From this paper we understand to which class the
remainder should belong after diagonalization. Thus pseudo-differential operators
with symbols of finite smoothness or maybe paradifferential operators should be
used.

Remark 9. (Mizing of different non-reqular effects) The survey article [4]
gives results if we mix different non- regular effects as Holder regularity of a =
a(t) on [0,7T], order of degeneracy at ¢ = 0, and L, integrability of a weighted
derivative on [0,7]. Among all these results we mention only that one which
guarantees C'° well- posedness of (1.3) if a = a(t) satisfies t90;a € L,(0,T) for
g+ 1/p=1.

Remark 10. (Quasi-linear models) Quasi-linear models with behavior of

suitable derivatives as O(1) was studied in [16]. Here the log-effect from (3.1)
could not be observed.
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Remark 11. (Applications to Kirchhoff type equations)
A nice application of non-Lipschitz theory with behavior a'(t) = O((T —t)~ 1) for
t — T — 0 to Kirchhoff equations was described in [14]. The assumed regularity
of data could be weakened in [10] by proving that these very slow oscillations (in
the language of Definition 1) produce no loss of derivatives (see Theorem 1).

Remark 12. (p-Evolution equations) The paper [1] is devoted to the Cauchy
problem for p- evolution equations with LogLip coefficients. Due to an informa-
tion of Prof. Cicognani there exist joint discussions with Prof. Colombini about
p-evolution equations with coefficients behaving like ta’(t) < C on (0,7]. An
interesting question is to find p-evolution models with log-effect from (3.1).
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