Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



SOME BOUNDARY PROPERTIES OF A SERIES
IN LAGUERRE’S POLYNOMIALS

FETAR K. RUSEV

In this paper our aim is to show that some classical results about power series as
Hadamard’s gap-theorem, Fatou’s theorem and Jentzsch’s theorem are also valid for series
in Laguerre’s polynomials. The proofs are based on the asymptotic formula for Laguerre’s
polynomials in the region C—[0, +co).

1. Definition and asymptotic properties of Lagueire’s polynomials.
Let « —1,—2,... be an arbitrary complex number. The polynomials
(LUN2)), <, defined by the equalities

(1) L) ) zest (zniee—) (n-0,1,2,...)

n!

are called Laguerre’s polynomials with a parameter « [1, (5.1.5)] It is well

known that Laguerre’s polynomials are special confluent hypergeometric func-
tions [2, p. 268, (36) i. e.

¢ I'(n+a+1)
( Y
(2) L()(z) Fin+ 1) a “fl( -n, a-1;2).

The asymptotic behaviour of @(a, c;z) as a function of a,c, z and es-
pecially the case “a - - and z bounded” is investigated by O. Perron|3).
In particular, for Laguerre’s polynomials one gets the following asymptotic
formula in the region C—[0, +-2) [1, (8.22.3)] (« real)

IR 27_(1)1 2\/;
(3) L@ et (—2) Pt e 14+ 202)),
3 2\:‘ n
where {il)(z)} = are complex functions analytic in the region C [0, + o)

and such that lim Z¢9(z) O uniformly on every compact subset of this
region. K

The asymptotic behaviour of Laguerre’s polynomials on the ray [0, + )
can be described very simply if we are interested only in the growth”
of L'(x) as a function of n. Namely, the following formula holds [1, (7.6.11)]
(a real)
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(4) L(x)=O(n?), a - max (%_ - a)

uniformly on every interval [0, o] (0<<w<<- o).

2. Convergence of series in Laguerre’s polynomials. Using the
asymptotic formulas (3) and (4) it is not difficult to describe the region of
convergence of a series in Laguerre’s polynomials

oo

®) ' a,L().

n=0

In fact, there is a formula of Cauchy — Hadamard’s type for series of the
kind (5) [1, 9.2]. More precisely, let

~——1In|a
(6) o= — lim — =

n—sco 2Vn
and A(Z,): =[z€ C:Re{(—2)' 2} <Al If 1,=-+co, A(4,) is the whole complex

plane. If 1,<<+co, 4(4,) is the interior of the parabola p(4,) defined by the
equality Re{(—2)"?}=1,. Then:

(a) if 4,<< + o, the series (5) is absolutely uniformly convergent (we say

co

that a series zﬂfn(z) of complex functions is absolutely uniformly conver-
n=1

gent on a set McC, if the series _» f,.(z) is uniformly convergent on M)
n- 0

on every compact subset K of the region 4(4,)—[0, +<2) and on every

compact subset of the ray [0, +oo) and is divergent outside p(4,);

(b) if 2,=-+4c<, the series (5) is absolutely uniformly convergent on
every compact subset of the region C—|[0, +---) and on every compact
subset of the ray [0, 4+ o).

Let us note that by applying only the asymptotic formulas (3) and (4)
it is not possible to describe the mode of convergence of a series of the
kind (5) on an arbitrary compact subset of the region A(4,). A solution of
the last problem is given in our paper [4]. In fact, the statement (a) is valid
if K is any compact subset of the region A(,). Therefore, if {a,} = is a se-

n=Q
quence of complex numbers satisfying the condition (6), the function

(7) f(2)= Y anLi ()
n=—=0

is analytic in the region A(4,).

3. Overconvergence of series in Laguerre’s polynomials. The first
example of a power series which is analytically noncontinuable outside the
unit disk [z2¢C: z <1] was given by Weierstrass. Hadamard [5] showed

that every power series of the kind ‘lﬂa,,kz"k, g1 (140)n, 6>0, has the
k=0
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property discovered by Weierstrass. A. Ostrowski [6] proved a more
general gap -— theorem namely
Theorem 1 (A. Ostrowski). Let

co

(8) \,wa,,:”

'
n—=0

be a power series and lim "\/ a, +0,+ . [If there exist two increasing

sequences {pr},”, and {q.),”, of positive integers such that qr (1+8)pe

(h=>0) and a,—=0 for p,<<n<qer(k=1,2,3,...), the sequence of partial sums
”l. } ©

9) [5@ — Yan

n— ) k=1

is convergent in the neighbourhood of every point which is regular for
the analytic function defined by the series (8).
Hadamard’s result can be obtained as a corollary of Ostrowski’s theorem.
Indeed, for a series of the kind a,,,z"/\ the corresponding Ostrowski’s se-
k 0
quence (9) coincides with the sequence of its partial sums (pe=rg gpe="nz . 1).
Our aim in this paragraph is to show that for series in Laguerre’s po-
lynomials holds a theorem of Ostrowski type. Instead of series of the kind
(7) we shall consider series of the type

(10) Ao Xanli(—e)

n=0
with arbitrary complex coefficients. It is not difficult to show that if the
sequence {a,},~, satisfies the condition (6) the region of convergence of the

series (10) is the stripe [z€¢C: Re{s} <{4]. It is clear also that if a point
zoep(lo) is regular resp. singular point for the function {7), the points ¢,
and -, where — 2~ z, are regular resp. singular points for the function (10).

S0

Conversly, if a point 7, such that Re{z} =4, is a regular resp. singular

point for F(¢), the point z,= —z2 is a regular resp. singular point for f(2).

The corresponding result for overconvergence we shall formulate for
series in Laguerre’s polynomials.

Theorem 2. Let the sequence {a,},”, satisfy the condition (6) and

Sn—0

there exist two increasing sequences of positive integers {pr},”,, (qa},>,

such that g, (1 +0)pp (kR=1,2,3,...) for some 60 and a,=0 for py<<n
<qr (K—1,2,3,...). Then, the sequence of partial sums

I \ a,L{)(z )}
3

ll U 1

is convergent in a neighbourhood of ewvery point z,¢p(i,), which is re-
gular for the function (7).
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Before giving the proof of theorem 2, we shall prove a very useful
lemma namely
Lemma 1. For every positive i:

k
(a) lyﬁ,rx‘?e:.wi‘ — O(e;\k;l);
n=1
(b) ‘21 n'—l Qe—}_y’;_: O(e_;"‘k )-
n—~k+1

Proof. (a) The function #-12e? is increasing for £ i 2 Therefore, if
v=max {I,[12|}, we obtain
kR v 3
lﬁn—lze;\ﬁ‘: N 120040 + 2’ n—12giVn

—
n=1 n=1 n=y+1

k+1

4

< /\ n—l?eyn+J t— l?e/\,tdt

n_.l r+1
- Vk+1
= N —12p0n _*-QJ etdt
":l Vr+1
v
2”‘1 2pin 4 2 (e/y — ey 1) = O(eWE+ 1),

n=1
(b) The function #-'2e—#V¢ is decreasing for t -k if & is large enough.
Therefore
N pignn ft 12 Mdt—?) eidt—2 ek

n=k+1 \k

Proof of Theorem 2. Let— 2=z, and Re{{,}>0. If z, is a re-

gular point of f(z), 7, is a regular point of F(;). To prove Theorem 2 it
is sufficient to show that the sequence of partial sums

”k
(11) 00, ()= ' anliN(—22) (=0, 1,2,...)

is convergent in a nelghbourhood of the point £,. The idea of the proof is
the same as the idea of Ostrowski, namely to use Hadamard’s three — circles
theorem. First of all, there exists a region @, which contains the stripe
[c€ C:0<Re{s}<4,| and also the point z, and such that F(;) is regular and

S . i .
single-valued in G. Let w,=r,+in, where n,=Im{ s}, -2"'<r0</.U and y,, 7,

v, be circles in G with center w, and radii resp. equal to (1—ud)(Z,—7p),
(1+6)(Ay—ry), (1+8)(2—ry), where 1<u<{J1+6 and 0<<e< 4. Let us note,
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that the condition y,c G (- 1,2,3) can be ensured while for every suf-
ficiently small o holds the inequality r,—(1+d) (4,—7,)>0. From the
equality

lim | In{(1—ud)(1 + oM 4} =y1+4 b—u

-0
it follows that for every sufficiently small 4 holds the inequality
(12) (T—ud)(1 + N1+ o>1.

Let 4 be so chosen that ;,cG (j=1,2,3) and (12) holds. Further, if we
define

(13) =24y ) 2{r, (1 —ud)i,—ry),
(14) t=2{ro+ (140)(4,—7o)} — 2(io —n),
where

u—1

0<n<(dg—"r9) ~5 0,

holds the inequality o>7.
From the condition (6) it follows that

o1
. In n* a, .
— lim ‘ = Ay
- 2yn

That is why, there exists a positive constant A such that
1
(15) laal<An ® Yo 2iwa

for n=1,2,3,...
We define further for £ 1,2, 3,... and j=1,2,3

vu(0): ':F(C)—Opk(:),

Mk,/': = Ipax l['k(C) .
.Grj

Using Hadamard’s three — circles theorem we obtain the inequality

1+4 1+48 1+e
In

> lnl -ud 1+e Inl —ud
(16) Mp.» Mg M3 .

From the asymptotic formula (3) it follows that

N 3T

“ 1
a ) | 2 e,
max | L — ) —O(n enr ),

where a=2{r, +(1-—ud)(iy—r,)}. Then, using (15) we get that
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Mgy — 0(;—‘ n! 2e“"";_),

n=q,
where o is defined by (13) and Lemma 1 gives
(17) Myi=O0(e=N%)=0 (e £00Py).

On the circle y; we have

1
1

max |L(—) =0 (" tenr),
- 3

where b=2{r, + (1 +0)(i,—7r,)} and using (15) we obtain that
Pr
Mk‘s’ M+ a, +L‘Sﬂ_l 28“;'9
n=1
where M=max F(7) , L is a constant which does not depend on % and

N30

is defined by (14). Then, Lemma 1 gives
(18) Miz3=0(en?r V)= O(e"‘("k).
Further, using (16), (17) and (18) we get that

1+4

M s : 140 1+¢
Meo = Kle, 8) exp{—\:o\/l +# 1n 1:; —rtIn 1':+ﬁ]p"l 2}.
where K{(e, 9) depends only on & and 4.
For every sufficiently small ¢>0 holds the inequality

14+

140
—tln 1—ud

(19) n\"l~;81n1—+r >0.

Indeed, according to the choice of 4, for every sufficiently small ¢£>0 holds
the inequality

()00 < (1) (1010

14+ 1+a\\/m
1—ud (l-}»s,

While 0<<r< o and | =1, we obtain the inequality

l+& \teo 148 \Wite
(l—m\) <(7l+7¢')

which is equivalent to (19). Then, from (16) it follows that lim M, .=0 and

k—oco

thus Theorem 2 is proved.



70 P. K. RUSEV

As a corollary we can formulate a theorem Hadamard’s type for series
in Laguerre’s polynomials.

Theorem 3. Let {n,},~, be a sequence of positive integers such that
ng.v (1 +8)n, for some 6>0 and k=0,1,2,... Then, if the sequence
{an,},=, satisfies the condition

In Aa.nk

Jy— — lim >0
’ R—c0 2\/llk ’
the series
\7 a
= a,,klfz‘:(z)
k=0

defines a function which is analytically noncontinuable outside the re-
gion A(2y).

4. Fatou’s theorem for series in Laguerre’s polynomials. Let
Sﬂ
prar

r of convergence. It is well known that if the coefficients {a,},~ satisfy
some additional conditions, there is a relation between the regular points of
the function y(2) and the behaviour of the power series under consideration
on the circumference C, of convergence. More precisely, the following theo-

rem is valid [7, p. 389;8, p. 15, 73]

y(z) = a,z” be a power series with finite and different from zero radius

oo

Theorem 4 (P. Fatou). /f lim r"a,=0, the series _‘\?a,,z" is uni-
n—oo n=0

formly convergent on ewvery arc yc C, all points of which are regular for
the function y(z).

We shall see that similar results can be obtained for series in Laguerre’s
polynomials. The idea of the proof is the same as the idea of the proof
of the classical Fatou’s theorem. Of course, one needs some modifications.
First of all, instead of series in Laguerre’s polynomials we consider series
of the kind (10). We shall formulate only the corresponding result for se-
ries in Laguerre’s polynomials.

Theorem 5. Let {a,},”, be a sequence of complex numbers satis-
fying the following conditions :

(a) 0< — lim ™9 _j < ooy
n-—-oco 2\,"1
(2] .l
(b) lim n® * 27 q,=0.

n-—oo

Then, the series

7 f(2)= 2 aLiaz)
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is uniformly convergent on every arc yC p(4,) every point of which is re-
gular for the function f(2).

Proof. Let [a,, as], Im{a,}<<Im{a,}, be a segment of the straight line
[r¢ C:Re{z}=14,] and every point of this segment be a regular point for
the function

oo

(10) F&)— X aal (2.
n=0

Let & be a positive number and define ¢, =a,—id, {o=as+i0. With R
we denote the rectangle with vertisses at the points ¢ —d, &+96, &+,
ro—o. If o is sufficiently small, there exists a region G, containing either
the stripe [c¢ C: Re{s}| <4, or the closed set RuU int R and such that the
function F(r) is regular and single-valued in G.

For z¢G and £=1,2,3,... we define

k
F(2)=F(g)— N anliX(— ),

n=0

p() = e FCTINEINE — 2 (E— ) FR(D)

and
a 1
(20) ar=Fk> ek g,
While lim a, -0, for every >0 there exists »,=w,(¢) such that jap <<e
k—oo
for 2>,

To prove that the sequence

k o
[Suoen)
n=~_0 k=1
is uniformly convergent on the segment [a,, a,], it is sufficient to show that
the sequence {w4(¢)},~, tends uniformly to zero on the rectangle R. Indeed,
if lim wg() — O uniformly on R, from the maximum modulus principle if fol-
k—00
lows that lim wg(7) =0 uniformly on [a,, a,|. But e 2G—iNkED) =1 if £ ¢ [a,, ay),
k—o0
the function (&—¢,)~Y¢r—&e)~! is continuous on [a,, a,] and we obtain that
lim Fi(r)=0 uniformly on [a,, as].
k—o0

Now we must investigate the behaviour of the sequence {m(()},~, on
the rectangle R. )

(a) z€[z1—9, Lo—0]: in this case the series on the right side of (10) is
convergent and F(;) is its sum. Having in view the asymptotic formula (3)
for Laguerre’s polynomials, the equality (20) and Lemma 1 (b), we get that
uniformly on Z¢€[z—9, Zo—94] and k>»,

oo
p R —— Y
“,.(:)=0(‘,.m\k. 1 N

;a"‘n l?e -28yn )
n==~k+1
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— O(ae'h)ykw‘:l 2 n—120—20/n )
n=k+1
= O(eeWr 1 —Vk) — (),

(b) C€[z1—96, zy) i. e r=E4in,, where ho—0=E<Zy and n =Im{z}. In
this case we obtain that uniformly on ¢ and &>y,

wop(£) = O(Eeﬂ(zo—f)v’b i(dg—8) >
=R+

n! 292(;o—s)wz‘)
n

1
= 0(532(10 CENEL(R .f)fe—Q(’o—f)’dt)
vk

= O(eeWE-1—Vr)) — O(e).
(€) C€(lp & +0] ie. p=E+in, A,<& Ao+6. Then

U’k(f) | e A ik 71(5_/10) t_:2 ] { F(t)“ao

Yo

k
+ eIl = | + Y anL‘:K—c’)J}-
n=1 n=vo+1

Therefore

k
on(2) = Oe 2 VAT (5 4y) 4 0("’”2““2"Nm‘5—‘o’ > ﬂ“’2"’2‘5';°)v;) '

n=yy+1

The function g(¢)=r¢-12e2 =Nt g increasing in the interval
Ao +2(vo+1)"12=5<i,+4d and we obtain that

* B+1

N7 12,25 WA —1/2p25—7 oW |
p n e *o)V < t e 4oV dt
n=yy+1 vo+1
VA+1
2 f e'l(s——:o)ldt:(5_.,10)~1{e2(:‘—zo)»/k~1 —e""»’—’o)vv"*‘}<($——10)—‘e2‘5'*o)v"“-
vy, +1
That is why
13
« - - / L -y - ~u
e 2 IR EI(E—70) VT po12g2e—iNa < |
n=yy+1

if Ao+ 200+ 1) 1250 +0. If Ag<ESAg+2(ve+1)"12 the function ¢(f) is
decreasing and we obtain
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k
E " 12pAs—iNn = (vg-+ 1)~ 122 —iaNro+1

n=vyp+1
k
+ Z n12e2E =N < (g4 1) 1202 -~ iarot 1
n=vy+2
I3

- f t112e2E—1NE df — (yy -+ 1)~ "2e2E—toNre 1

vo+1
vk
-9 f 210 df — (yo+ 1)1/ @2E—2Nret 1
Vro+1
+ (E—2)! {e2E—ieNE _ g2s—iaNre+1}
<(vo+ 1) 122 —1Nrot1 L (£~ j )1 @22k,
Therefore, in the case under consideration,
wr(7) = O(e—2G 2Nk 1(E 7 3) 1 O(e).
It is not difficult to show that the sequence
N

tends uniformly to zero on the interval i,—z=1,+4. Indeed, if 0<<e<<4 is
arbitrary and 1,=-&< i,+¢, holds the inequality

e—?(sAza)»le(g_jo)g—_iF
for every £=1,2,3,... On the interval 1,+e=—s=1,+6 we have

e—2E—iNE=I(g 7 )< §o—2eVR+1
and if 2>60%2/4¢*—1, we obtain that
e 2E—INRHI(EJ ) de—eZ8/(1+6/e) = ed/(e+ 8) 1 <e.
(d) z€[z1+0, Lo+ i e. =i, +d+in, where Im{a,}—o—n=Im{ay}+4.
In this case, having Lemma 1 (a) in view, we obtain

|wa(l) | =€ EHT | r—p il p— g { F(¢)—a,

o k
+ 2 e L= + X |a, Lﬁ."’(—:’)}
n—=0

n=vyy+1

&
. —25VR+1 —28/ R +1 —1/2p200n
: O(e VL 4 ge—20VR+1 3T p—12g2 )

n=v,+1
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___()(efz,s\k.’l%_w ~2.)\,E-x.e2lsyk.1) O((’—Q"";*‘+s),

In a similar way we get that wg(7)= O(¢) uniformly on the segments
[Zo—0, o] and (&o, 2o+ 0] But mg(Z) =ww(z5) 0 for every k=1,2,3, ..., there-
fore we(7)= O(e) uniformly on the rectangle R and thus Theorem 5 is proved.

5. Jentzch’s theorem for series in Laguerre’s polynomials. Let

)

- - n*
/_\'a,,z" be a power series and lim\/ a,| +0, . If Z, is the set of roots

n==0 n—oo

»

of the polynomial lja,,z" and Z= |J Z,, every point of the circumference
n=9 r=l
of convergence of the given series is a point of accumulation of the set Z.
This statement is known as a theorem of R. Jentzsch [8, p.92;9, p. 13).
In this paragraph our purpose is to establish a similar result for series in
Laguerre’s polynomials.
Lemma 2. Let {a,},” be an arbitrary sequence of complex numbers

and define for v—1,2,3,...

»

(21) s.2)— X a,L(2).
n=—_0
Then, if
— In a
] n I~
nl-ll]o 2\/!1 *0=>

the sequence | s,(2) V?>v» |," is uniformly bounded on every compact sub-
set of the region C —[0, -+ o).
Proof. If oo <n<ly then

a,— O(e20e—nnn),

Let KcC—[0, + ) be compact and i=~i,—» be chosen in such a man-
ner that KC I(4) —[0, + ). From the asymptotic formula (3) it follows that
uniformly on K

@ 1
2

n—=1

' 3 l). we get that 5,(2) —=O@(7 2el—urmr)

and therefore s,(2) " =0O(1).
Lemma 3. Let {a,},” be a sequence of complex numbers such that

[f p=max (O

(22) 0 — lim '™ L <
2yn

n—oo

Then, the point z,¢ (i) if and only if
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+— In s (z0)
(23) lim ————=0,
»y— + oo 2\"
where s,(2) is defined by (21).
Proof. (a) Let z,¢ .1(4,) and >0 is arbitrary. From the condition (22)
and the asymptotic formula (3) it follows that

» a 1
n=1
v a1
O(fn2 : e) - O(r ey,
n=1
1

where p =max (O, T3

). Therefore

- In s, (2)
lim — X" <e¢
y—r+ 00 2\»

(b) Let the condition (23) hold and ¢ be an arbitrary positive number.
There exists an increasing sequence {»},~, of positive integers such that

| a’k -e—20o+ e ;k )

From the equality

@)

(
a,, L, N

(z()) = s’k(zﬂ)—s"k- l(zo)
it follows that

Lf':)(zo) : ( Srk(zo) +S"k_l(zo) ) a'"’ ’

and therefore
LiX2o) | == O(e™Vg+2 Gateny),

Without loss of generality we may assume that 2, € C—[0, + =2). Then, using
the asymptotic formula (3) we obtain that

o In L (z)
Re{(—z,)"2 = lim — % < 12
R— 4 oo QJi'k

Theorem 6. Let {a,},>, be a sequence of complex numbers satis-

fying the condition (22). If Z is the set of all roots of the partial sums
(21), every point of the parabola p(i,) is a point of accumulation of Z.

Proof. Let us suppose that the statement of the theorem is not true.
In such a case, there exist a point z,¢ p(i,), a circle K(z,;r) with center at
this point and a positive integer N such that s,z) does not vanish in
K(z,;r) for every »>N. We may assume that r is small enough so that
K(zo;r)N[0, +c0)=). The series (7) is uniformly convergent on every
compact subset of the region G: = 1(i)NK(z,;7) and from a theorem of
Hurwitz it follows that f(z) +0 in G. Let A be an arbitrary compact subset
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of G and m=min f(z), M=max |f(z). For every sufficiently large »
zZEA zgeA

holds the inequality m/2 |s,(2)|- 2M. While O<m—-M< 4, we get that
lim s,(2) Y% =1 uniformly on A.

Let (€0, K(¢50)c G and K(w;e)30 (where w = f(£)) be so chosen
that for every » v, >N, s,{K(;;0)}c K{(w;e). Then, for every » », one can
define a single-valued and continuous branch a,(z2) of arg s,(2) in the circle
K(z;0) satisiying also the inequality 'a,(2) = 2a for every z¢ K(Z;0). If we
define for z2¢ K(Z;90) and » ~»,

(1 .
y,(2)=exp (2\/; {In s,(2) +tay(z)})

we get a sequence {y,(2) = of single-valued and holomorphic branches of

=Y

the functions {s,(z)}”"’“i (v -»,) in the circle K(:;0) such that lim y,(2)=1

for every z¢ K(Z;0).

Let ¢,(2) (» =»,) be a single-valued and holomorphic branch of the func-
tion {s,(2)}'»» in the circle K(z,;r). For every » -», there exists a cons-
tant «, such that «, =1 and aup,(2)=vy,(2) if 2¢K(Z;0). From Lemma 2
it follows that the sequence {a,fr,(z)}y“‘jv" is uniformly bounded on every
compact subset of K(z,;r). Moreover, lim a,p,(2)—lim vy,(2)=1 for every

2¢ K(z;9). From Vittali’s theorem it follows that lim «,q,(2)=1 for every

2 € K(z,;r). Therefore

lim |a,p,(2) =lim y,(2) —lim s,(z) "> =1

y—>00 »—00 y—00

for every z¢ K(z,;7). From Lemma 3 it follows that K(z,;r) c1(4,) which
is impossible.
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