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DIRECT AND CONVERSE THEOREMS FOR SPLINE
APPROXIMATION WITH FREE KNOTS

VASIL A. POPOV

A new modulus is introduced by means of which it is possible to obtain direct and
converse theorems for spline approximation by spline funct'ons with free knots, in the
uniform metric.

In this paper we give the complete proofs of the propositions announced
in [10. We shall consider the spline approximations of furctions in the
uniform metric. Let us denote by S(k, n) the class of all spline functions
in the interval [0, 1] of degree £ with n-11 knots, i. e, s¢S(k, n) if
S€CH1(0, 1] (C'[a, b] denotes as usually the set of all functions which have
r continuous derivatives in the interval [a, #]) and there exist n--1 points
X, 0-0,..., n, 0=x,< X,< ---<Xx, -1, such that in each interval [x; i, x;],
i 1,...,n, s is an algebraic polynomial of degree at most k. In the
case k=0 S(0, n) coincides with the class of all step functions with n—1
jumps. We then suppose that s is continuous either on the right, or on the
left. The spline functions were introduced in the theory of approximation
by I. J. Schoenberg [1]. There exists an extensive bibliography for spline
approximation (2, 11].

We shall consider also spline functions with a defect. These spline
functions of degree & and n ! 1 knots are piecewise polynomial func-
tions s without the restriction s ¢ C* '[0, 1]. The classof all spline functions
with a defect of degree £ and with n+1 knots will be denoted by b\'(k, n),
i. e. s(ﬁ'(k,n) if there exist n {1 points x;, i -0,...,n 0 x,<x <
..<"x, 1, such that in each interval [x;., x;, i=1,...,n, s is an alge-
braic polynomial of degree k. In the case & 0 we have $(0, n)=S(0, n).

We shall consider the best uniform approximation E*(f) of the func-

tion f in the interval [0, 1] by means of spline functions of S(k, n):
Ex(f)= inf sup f(x)—s(x)

SES(k.n) x€[0,1]

and the best uniform approximation E'ﬁ(f) of the function f by means of
spline functions of S(k, n):
E(f) inf  sup  f(x)—s(x) -
SES(k.n) YE[, )

It is easy to see [3] that the following lemma is valid:
lLemma 1. Let f¢ C|0,1). Then there exists a constant c(k)depend-
ing only on k such that
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(1) Ex(f)—EX(f)=c(R)EX /),

where m=(n—1) k-+-n.

Obviously for every n, Eg(f) E;,)(f),

Many authors consider the problem to find the classes of functions
which can be characterized by their best uniform approximation by means
of spline functions, i. e, the theorems of Bernstein-Jackson’s type (see for
example [3—8]). But in all these cases either the direct theorems do not
coincide with the converses or the theorems are obtained with some re-
strictions (for example on the knots of the spline functions).

It is well known now that the spline approximations with free knots
cannot be characterized by the usual moduli of continuity. In this paper
we introduce new moduli by means of which it is possible to characterize
the corresponding classes by the best uniform approximation E*(f).

1. Denote by V the class of all functions with bounded variation in
the interval |0, 1] with a variation --1 which are continuous either on the
right, or on the left.

For every function f defined on the interval [0, 1] we define the mo-
dulus »x( f, ) as follows:

vl f, 0)=inf sup | A% f(x) »

o€V |ag(x+Rh)—a(x) =4
where as usual I%f(x) denotes the kth difference of the function f with a
step ~ at the point x:

&
- k
A f)= (= 0pm( ) fx + mh)
m=0

and the supis over all x and &, for which ¢ (x+kh)-—¢(x) 3, x, x +kh ¢ [0,1].

Let us mention some of the properties of the moduli »( f, d):

1.1 »,( f, 8) is a monotone increasing function of o, i. e, r&(f, 8,)  ».(f, d5)
if o, By

1.2. If fis a continuous function then the inf in the definition of »,( f, ) can
be taken only on the continuous functions belonging to V.

1.3. »,(f, 0)=ww( f, 8), where

w,( f,0) - sup l:f(x)
x, x +khe€lo, 1]
is the kth modulus of continuity of the function f. This property follows
immediately from the fact that the function ¢{(x) — x belongs to V. Pro-
perties 1.1 and 1.2 are evident.
1.4. The inf in the definition of »,(f, 8) can be taken only on the mo-
notone increasing functions belonging to V.
Proof. Let ¢ V. For the function y(x) Vige¢V, where Vig denote

the variation of the function ¢ in the interval [0, x] we have:

sup th f(X) sup fh f(x) sup M f(x) .

g(xyRh) —o(x) 8 yXthkh, 4 v X+ Rh)—ypix) 3
\

From this inequality follows the proposition.
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1.5. If k>r then »,(f, d)=2% ", J).
Proof. Let o ¢ V be monotone increasing function in the interval [O, 1].
We have:

k—r
-y . R—
sup 1£ £(x) sup R (—1)‘-“( MR
@(x +kh)—w(x)-— 8 q(x+kh)—a(x)— 8  ;—9
kR—r
b
= N(*) sup g fet i)
1—-0 p(x+Rh)—a(x) &
RkR—r
A N ’k——r) .
- su A7 f(x-+-1h
e AR ot —sima )
k—r
. k—r _
SR sup o gfle) =207 sup g f(x)
1—0 a(x +rh)—e(x) o p(x+rh)—e(x) &

Using property 1.4 from here we obtain

v,(f,0) inf sup A% f(x)
v €V  o(x tkh)—@(x)| &

2% inf sup Apflx) — 25, (f, 0)

eV  ag(x+rh)-o(x) 35 )
1.6. If there exists the derivative f(” and &£>r then
va( f, 8)=(28/ k) v A f0, 26).

Proof. Let #£>0 be arbitrary & be given and ¢ ¢V be monotone
increasing in [0, 1], such that

sup AT fO(X) | << vr (7, 20) +e.

(x ' (R—=r)h) p(x) 25

Since the function (y(x) + x)/2¢ V and

h h
v [ f MO (X by b, dt,
O 0

we have
h

h
vi( f, 9)==sup* A f(x) sup® j - ’ E=r fO (x4t + ... bt dEy. .. dt,

h h
sup"f. .. [sup‘“ﬁljj O (x4t - b ) dE, .. dL,

(2:)'(“ (S 28) +e),

where the sup* is over (¢(x+kh)—qg(x)+khr)/2 6, and sup™ over
x4t + -t (R—=rh) (X +t,+ - - 1 1,) .20
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Since £>0 is arbitrary, the property 1.6 follows.

Lemma 2. /f the function f has bounded wariation in the interval
[0, 1], VIf Vy then ri(f, 0)=(Vy)o.

Prooi. Let us set ¢(x)—= V3 f/V)fecV. We have

vi(f, 8)— inf sup flx+ h)—f(x)
€V | @(xt+h)—e(x) =5
sup D) sup et ) =) =V,

SX+h -l
Vet aves s

Lemma 3. Let the function f have kth derivative f* with bounded
variation, Vi f® < Vk. Then

Ve (s O)=2871 (k1) KV m)oF 1.
Proof. From the property 1.6 and Lemma 2 follows

[ 28 \k
Ve 1(‘fv 0)= ('k_;_s"]) yl(f(k)r 26)

20 \k —
.“:(k+1) (V,#)20 =2 1(R+1) KV j )0* 71

Let us notice that there exist functions f with unbounded variation
such that »,(f, )= O(d). For example the function f defined in the interval
[0, 1] by

ll n for x¢(2n+1)n(n+1),1/n),
0

f(x) for x¢(1/(n+1), (2n-+1)/n(n+1)]
' 0 for x-=0

(n— positive integer number).

But if f is continuous, then from »,( f, o) O(d) follows that f has bound-
ed variation (see [12]).

2. Now we shall prove the basic theorem.

Theorem 1. Let f¢ ClO, 1]. Then there exists a constant N(k) depend-
ing only on k such that for all natural numbers k>0, n>>0 the follow-
ing inequalities are wvalid:

(2) el f, 1/n)=2%1En( /),

(3) EX(f)- N(kpx (£, (k-1 n).
For every function [ we have

(4) »(f, 1/n)—2E.(f).

Prooi. In view of Lemma 1 in order to prove (2), (3) it is sufficient
to prove

(5) Ve f, 1/n)< 28 1EN(f),
(6) EX(f)= MKy, \(f, 1/n),
where M(k) is a constant depending only on &.
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Let us first prove (5). Let «¢>0 be arbitrary, & 1 ard s€S(k, n) is
such that
(7) sup f(x) —s(x) | =EXf) e

v€[0, 1]

Let the knots of s be x,, i=x,, |,...,n 0=x,<-'-<x, 1. In each
interval [x, ;, x;] s is an algebraic polynomial of degree k. We deiine the
function ¢ ¢ V in the following way: ¢ is a monotone step function with
jumps 1 (n—1) at the points x; i=1,...,n—1.

let us estimate v, (f,0) for o<"1/(n—1). We have:

(8) ve i) sup o f(x)
@(x H(F D () D
But in order to have g¢(x  (kR+1)h)—¢(x) - 0<1 (n—1)by the con-
struction of ¢ it is necessary that the points x, x-(k-+14 belong to one
and the same interval [x; ;, x;. Since s is in this interval an algebraic po-
lynomial of degree &,

(9) i 's(x) 0.
Therefore we obtain from (7)—(9) for o<1 (n—1)
;-Hl(f, d) - sup e 'f\x)

@(x (Rt h)y—a(x) 4
(10) - sup C1E N fx)— s(x))+ 15 T s(x)) <28 (ER(f) + ).
@(x (R 1) @(x) P
Since >0 is arbitrary, (10) proves (5).
et us prove now (6). Let ¢ -0 be arbitrary, £ -1 and ¢ ¢ V' such that
sup ) v (fr 1 ) te.
p(x (R+Dh)y—a(x) 1n

In view of property 1.4 we may suppose that ¢ is monotone increas-

ing, ¢(0) 0.
Let us consider the sets A, :

Ay x:xel0, 1), (—1)/n @x)=inj, i—-1,...,n
The set A, may be empty, in every other case A, is an interval (not
necessary closed). Moreover, CJA, [0, 1].
It x, x+(k+ 1)he A, thenl :;,vl(x+(k F1)A)—aq(x)- -1 n and therefore

(11) () v (fs i) +e

Using the continuity of the function f, (11) holds for the closed in-
terval A,.

Using one theorem of H. Whitney [9], from (11) follows that there
exists a constant M(k) depending only on k and an algebraic polynomial
s(x) of degree k, interpolating the function f at the ends of the interval
A,, such that
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(12) max  f(x)—s(x) =M(k) (e (2 1/n)-+¢).

XEA,
Let us define s¢ S(k, n) as follows:
s(x) -sdx) for x¢A.
From (12) we obtain
(13) max  f(x)—s(x) - ME) (v, (f, 1/n)+e).

x€[o, 1]
Since >0 is arbitrary, from (13) follows (6).
Let us eventually obtain (4). The proof of the inequality

v (fi1m) 2B

is the same as the proof of (2).
To prove

1
En(f)= o m(f 1/n)
using the above consiructioni of the intervals A;, we set
si(x) (sup f(x)+ inf f(x))/2 for x¢A.
,reAi .teAl.

Obviously the function s¢ S(0, n) defined by s(x)- si(x) for x¢ A; sa-
tisfies

Sup (f0)—s(x) gl L)

Bl. Sendov called my attention to the fact that from Theorem 1 and
Lemma 2 follows easily one result of G. Freud and the author [13]:
EX(f)  c(R)V]f*® n* 1, where the constant c¢(k) depends only on k.
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