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ON A THEOREM OF H. HOPF
GENCHO S. SKORDEV

Single-valued and multi-valued mappings of finite dimensional sphere into Euclidean
space are considered. The dimension of sets of points which are identified with respect to
such mappings is estimated.

Given a mapping f: S" ' - R and 0<H<a, the question discussed
in this paper is how large can be the set of points

Bdf) {(x, y)e S" XS xy=cosh, fix)- f(y)}

The following theorem follows from [7]:

Theorem H. For | n—1 the set BLf) is not empty.

We consider more generally the multi-valued mapping F: S*! » R
and our purpose is to prove that

dim{(x, )€ S" 'S xy cosH, F(x)NKHy) D) -2n-1)—-3

for | n- 2.

If the mapping F is a single-valued one then the following inequality
holds: dim By(f) 2n - [—-3 for [~ n—2.

1. Preliminaries

Definition 1. The space X is called a free Z,space if a free in-
volution T: X - X acts on X, i. e, there is a continuous single-valued
mapping T: X — X such that: a) Tx : x for every x¢ X, and b) T’x x
for every x¢ \.

If R" is the n-dimensional Euclidean space and 5" ' {x-(x,, ...,
X R* Xx;=1] is the unit sphere in R* then we shall consider S"~' asa
free Z,-space with the involution 7:8"'-. 8" ! given by 7(x,, ..., x,)
=(—x, ..., —X,) for every (x,,..., Xp) €S L

Let .\ be a free Z,-space. By X" we shall denote the orbit space of the
involution 7: X .\, i. e, the space X is the identification space of the
space .\" with respect to the identification x~y if and only if 7x - y. The
natural projection +: X' .\ is the mapping =(x)={x, Tx} for x¢ X.

Theorem 1 (|1], Ch. 3, § 4) There is an exact sequence

() 0 H(X) T HNX) T HYN )T HA(Y)

- o of iy -~
XY HAX)  HAR)Y T HOWY)

for every free Z,space.
The sequence (1) is called Smith’s exact sequence of the free Z,-space .\.
Here and later all cohomology will be Alexandrotf—Cech cohomology
with Z,-coetficients |2, Ch. 8}.
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318 G. S. SKORDE\V

In the sequence (1) the homomorphisms =a‘: HY(.X') - H'X) are induced
by the projection n:.X' - X; the homomorphisms o' : /(.X) H'(X)are the
so-called transier homomorphisms [1, Ch. 3, § 2|.

Definition 2. The single-valued continuous mapping [: X, - .NX, of
a free Zy-space X, in a free Zyspice X, is called an equivariant map-
ping if fT Tf.

Every single-valued equjvasiant _mapping f: .\'L ,\_\’,) induces a single-
valued continuous mapping f:.X|, - X, such that =2,f fa,, where n,:.X; - X,
is the natural projection of the space .\, onto its orbit space X,i=1,2.

The following lemma gives us the naturality of Smith’s exact sequence.

lLemma 1. [3, Appendix B, § 15, for the homology|. Let X, be free
Z,-spaces with orbit spaces X, and projections a,, i—1,2. If f: X\ — Xyis
an equivariant continuous single-valued mapping and f: X, - X,is induc-
ed by the mapping f. then the following diagram is commutative :

ar o~ oNXy) ~ '2I . s <.
s HA X)) - HO WXy — HONXy - HO N

" R TEIE R  1)

¢ -1
X)) " (R ) e HE(X) T HEO YR,

In (2) the horizontal exact sequences are Smith’s -sequences of the free
Zg-spaces X, i 1,2. The homomorphisms f* |f'}, f* |f'} are induced by
the mappings f and f respectively.

The naturality of Smith’s exact sequence is a very useful property.
Another tool needed is Yang’s homomorphism [9].

Suppose that X is a free Z,-space and F a closed subset in X such
that FU T(F) .X. The closed set 15 Fn T(F) is a free Z,space, by B we
shall denote the orbit space of B. The identity inclusion %£: B ».X" is an
equivariant mapping which induces the mapping k£: 8 . .X.

lLemma 2 (|9)). There are homomorphisms (Yang's homomorphisms)
i': H(B) - H (X) for every i. such that

(3) HX)  rk.
Definition 3. Smith's homomorphism s, (.X): H(X) 1"/ (X)of the
free Z,space X is the homomorphism
s, (X)) o (X)) . 0N
Corollary 1. By the assumptions of Lemma [, it follows.
if $,,(X)10, then s,, (B)%0.

Indeed, from l.emmas | and 2 we obtain s (X))~ V='s,, (B,

We shall use this corollary later to prove the main theorem.

Example. 5,0 (5" ")+Otor O i~ n- 1.

Remarks. The projection n: X - .X is a two-sheet covering space.
lovery such covering space (in the case of paracompact .X) is given by a
pull back diagram
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A’LSN
(4) A, e

X RPY
where N is sufficiently large when X is compact or N = oc, otherwise (&, ¢)
is the mapping of the covering space: (X, X) on the standard covering space
(S¥, RPY) (RP~ is the real projective space of dimension N).

Let a¢ H'(RPY) be the non-trivial cohomology class. It is well known
that H*(RPY)  Zya]a¥'= 0 (in the case of N< ) or H¥(RPY)=Zya] in
the case of N ~. Here Zya| is the polynomial ring over Z, with one ge-
nerator a. The cohomology class ¢*(a) is called the characteristic class of
the covering space (X, X). For 0 i<, s, {X)¢"(a')=¢"(a’). Smith’s homo-
morphism s; (X)) is not zero if and only if ¢%(a@): 0. The maximum of the
integers j such that ¢*(a’) = O is called Smith’s index of the free Z, space X.

Actually, two sheet covering spaces over the space .\ are classified by
the set [X, RP=| of all homotopy classes of mappings of the space X in
the infinite real projective space RP= (if X' is a paracompact space). Hav-
ing in mind that infinite dimension real projective space RP~ is the space
of Eilenberg-MacLane K(Z,, 1) and the theorem that /'(X)=[X, RFP=| ([11]),
it is obvious that the characteristic class ¢*(a) of the covering space (X, /\7)
characterise the covering space (X, X) up to an equivalence of covering
spaces.

2. An involution of Stiefel’s manifold of two frames in R"

Definition 4. Stiefel's manifold V of two frames in R*<R" is the
space V. {(x,y) = (Xy ..oy Xny Viso ooy Vak R*XR Ex3=2y'=1, 2Zx;y,=0}.

The space V is a compact 27—3 dimensional manifold without bo-
undary.

Lemma 3 (|5). H(V)=2Z, for i=0,n 2, n—1, 2n—3, and H/(V) 0
for j+0,n—2,n—1, 2n—3.

We shall consider the following fixed point free involution 7: V. V:
T(Xy o ooy Xy Vipee s Ya) = (X ooy Xy — Yy ee ey — Vo) fOr (Xyy ooy Xay Vise o2s Va)
By V we shall denote the orbit space of the involution 7: V- V. The ma-
nifold V is the manifold of all non-oriented line elements on the sphere
S*'. Its cohomology is well known too [6].

Lemma 4. /n the exact sequence (1) of the free Zyspace V the
homomorphism 0~V is an epimorphism and the homomorphisms 0/(V)
are isomorphisms for n=.j. 2n 4.

It follows from (1) and Lemma 3 that o¢(V) are isomorphisms for
n—i--2n—>5 and 0" (V) is an epimorphism.

Let us consider the right-hand side of the exact sequence (1)

o

i A '2n -3 -
H» YV) M YV) H™YV) 0.

The group /1 X V) is isomorphic to the group Z, (Lemma 3), and [rom

(5) we obtain that /7% NV) Z, hence the homomorphisms o™ * and
" (V) are isomorphisms.

B5) 0 .
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For given real 0<6< 7 we shall consider the set A; {(x,y) (x,...,
Xny Vivewos V) ERV AR Ix1=23y2=1, Jx,y;=cosbB,i 1,...,n. i H =22,
then A;) =V.

The space A, is a free Z,-space with respect to the involution 7: 4, - Ay
given by T(xy, ..., X Vo= s Va) (Voo Y Xise oy Xa) for every (x,

ey Xy Vi ey Va) € A,.
Lemma 5. There is an equivariant homeomorphism h: A, -V

A(Xpy e oo Xy Vs oo s V) (X F30), oy (X W),
u(yl _'vl)v LR ] .“(y’l_xn))y

where i (2[1 +cosB]) '? and u (21 —cosh])' >

Corollary 2. Smith's exact sequence of the free Z,-space A, is iso-
morphic to Smith’s exact sequence of the free Zy-space V.

Corollary 3. In the exact sequence (1) of the free Zy-space A, the
homomorphisms 0/(A,) are isomorphisms for n—i 2n—4 and 0"~'(Ag) Iis
an epimorphism.

3. Single-valued continuous mappings of S*~' in R, [ n—-2. For
a given single-valued continuous mapping f:S"~' - R’ we set

Bo( f) {x, y)eAs fx) fiy)

Lemma 6. If [~ n 2, then the set B, f) is not empty.

This lemma follows from [7]. Here we shall give another proof. Sup-
pose that the set B,(f) 0, i e, for every (x,y)¢ A, it Tollows f(x) : f( y).
let o:V »S8" ' be given by

g, v)  (fleu, o) —fiyu, ©)) f(x(u, v)—fiyu, v)
where
xu, v) @uu,—Aiv)), ..., o(ud, —iv,)),
Mu, v)=(ui,+2v,), . .., o(ull, - iT,))

for w (U, ... )y V=(Vy ..., Ua), @ (2sinh) ' and 4and u are given in 2

Let S"2={x (X, ..., X) 65" " x, =Ofandy: 5" * » Vbe the mapping
Xy ooy Xnt) (1,0,...,0,x,, ..., X, 1) fOr (Xy, ..., Xn ) €872

The mapping oy : 8" * S8 ! has the following properties :

a) @y is a single-valued continuous mapping,

b) ow( Xyy.eey —Xn 1) —gyw(Xy, ..., X 1) for every point (x,,...,
Xn |)‘Sv1~‘l'

c)l—-1<n—=2

It follows from [8| that such mapping does not exist, i. e, we have
contradiction, hence By )+ 0.

Theorem 2. Let [:8" ' >R be a single-valued continuous map-
ping. If 0<h<x and l=-n—2, then dim By(f) -2n -3

tlere dim is the covering dimension ([2, Ch. 3|).

The set By(f) is a free Z,space with respect to the involution

7. Bi(f) - Baf) given by T(x,y) (y,x) tor (x, y)¢ Bal /). By Bu(f)wede-
note the orbit space of B,(f).
Lemma 7. H» B, f)) 0.

(5)
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This lemma immediately implies Theorem 2. Indeed, suppose that
H**1=3(By( f)) =0, then dim By f)>2n—1—3 (|2, ch. 8]). The projection
BA f) — By f) is alocal homeomorphism and the spaces By( f) and By(f) are
compact spaces, hence dim By( f)=2n—1—3.

let us prove Lemma 7. The mapping f: S" ' R is given by f (f,,
..., f1), where f,: S"!' — R' are real-valued functions, i 1,...,[L

Let us consider the sets C, A, D, C, D; {(x,v)¢ A, f{x)=Ffy)
for every 1 --s——i} ard C, {(x,y)e¢D; 1 f(x)—fd v)} for 1=i-=l. The sets
), and C; have the following properties:

a) C,cD, ,, D,cC;;

b) D; and C, are compact spaces;

c) D, are iree Z,-spaces;

d) &N T(C) D::

e) C, U T(C‘l) [)l—l N

f) D[ o B”( /)- R

Now we are in a position to prove that s, ;2. 3 a0);)5+0. We shall
prove this by induction with respect to the integer i. For i=0 we have
Sn 120 (D) ~0 (Lemma 4, Corollary 2). Suppose that for 0--i<_/ we have
Sn 1a2e-3-A0;) 0. 1t follows from Corollary 1 that

Sn 1,20 3—:1[):) _".'n ‘—E(DI«I)SH—IJ'I 4 i(D,.|)E""'.

Therefore s, ;2.1 AD;.1)%0 and the lemma is proved.

4. The single-valued mappings of S$’* in R?* — another proof oi the
theorem H. The points of s-dimensional real projective space RP* are

(s + 1)-tuples [uy:uy: - - - :us.q) such that Ju? -1 [uy:--cug ] o0 o540
if and only if u,=e¢v,, where ¢ +1 for 1-<i- s+ 1. If s,<<s, there is an
inclusion j: RP* - RP* given by jlay:-- g |- [ayuy: it 20 --20)
for [u,: - :as|e RP.

Let us consider the mapping ¢ : RP* —+ Vi | given by o (lu,: - ttox 1))

(e (1), aju)), where

a(u) ( 2umaaldy, oo, =200 U2k, 1 - 2[1._"3* 5

ay(u) ( 2uu0y, ..o, —=2ugalize 0y | 2035, — 2liglioe 1)

for every u |u,: - :tawmi)

The image of RP?*-? by the mapping ¢ coincides with the point
(0,0,...,0,1;0,...,0,1,0). Let Py » be the factor space of RFP* in which
RP*-? is collapsed into a point. The mapping ¢ induces a mapping ¢ of
the space Pz : into the space Vioroor. It is straightforward to see that
¢ is a homeomorphism of the space Py ox » into Vig .

The standard cell structure of RP?* induces a cell structure of P, »

U e ( is the i-dimensional cell) |13]. Let i: S '+ Py 2 be
the characteristic mapping of the cell ** ', The mapping ¢i: S** ' , Vo
has the following properties:

a) ¢ 15 a homeomorphism;

b) the image of the mapping i coincides with the set

S0, 0,1y, ., T 0) € Vara)
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Suppose that for some single-valued continuous mapping f:S** — R*
and 0<H<x the set By f) {(u, v)e Ay flu)=f(v)] is empty. The mapping
y: Vag g — S?*-! given by

w(u, v)  (flxu, v)—f(u, ©) flx(a, v)—f(yw, )| ',
where x(u, v) and y(u, v) are given in (6), has an odd degree on the sphere
Sf’ ', Indeed, the mapping v, =y $2k—1 is an odd mapping. Therefore the
1
degree of the mapping v is not zero, i, e., the homomorphism (w10 i)ax1 is
not zero. Now we need the following commutative diagram

Py > — ~ -
2k, 20 —2 ==

(7) A
i '\"\
Sw—1
It follows from diagram (7) that the homomorphism
(v@)ae 12 How ((Paran—z, Z) — Ha (S*-), Z)

is not zero. But the group /au (S, Z)=Z is isomorphic to the group
of all integers Z and Fax_1(FPor 262, Z) is isomorphic to Z,, hence (y@)—y + 0
is impossible. Therefore B,(f) is not empty for every f.

5. The single-valued mappings f: 5°* . R** — a second proof of the
theorem H. Let X be a free Z -space. The index SI (X)) (Smith’s index of
the Z,-space .X) is defined as follows SI(.\)- max{i so.x)#0] (see also
remark in 1).

On the space V3, we shall consider a free involution 7: Ve, —» Voo
given by T(u,v) (u, v) for every (u,v)€ Var,y.

lLemma 8 ([10, Ch. 2, § 5]) SI(Var 1) =2k.

As soon as Vi, and A, are equivariant homotopic, then the follow-
ing corollary is true.

Corollary 4. SI(A ") 2k, if 0<h< .

For a single-valued continuous mapping f: S** - R** we consider the
mapping @: Ay "' —» R given by ¢(u, v) - f(u) for (u, v)¢ AL ' It follows
from [4] that the set B,(f) (4 v) ¢ A" ou, ©v) o(v, u)) is not
empty.

6. Multi-valued acyclic mappings F~: 5" R, 0 | n—-2,

Definition 5. The multi-valued mapping y: X- VY is said to be an
acyclic mapping if: a) y is upper semicontinuous, b) the set y(x) is an
acyclic compact set for every x¢ X.

Let us remind that the compact set K is called acyclic if K is con-
nected and ///K) O for { 1.

Definition 6. For the multi-valued acyclic mapping y: X .Y by
dimy we shall denote max (dim y(x), x¢ X).
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Theorem 3. Let F:S8"' - R be an acyclic multi-valued mapping

and | n—=2. If BuF) {(u,v)¢ A, Fu)n Fo)=®}), then dimz ByF)=2n
l —dim F—3. Here 0<8<x.

Corollary 5. In the assumptions of Theorem 3 it follows that

dim,. B{F) 2(n—1I)—3.

It is obvious that dim F /. Then the following assertion is true.
Corollary 6. In the assumptions of Theorem 3

dim By(F) 2(n—1)--3.

To prove Theorem 3, let us consider the mapping @: A, R R
given by &(u, v) Fu) - F(v) for every (u, v)¢ Aj. The mapping @ is an
acyclic one.

The graph I'(®) {(u, v, x,y)¢ A <R <R x¢ Fua), y¢ Fv)) of the map-
ping @ is a compact set and the projection p: I'(®) — AY p(u, ¢, x, y)- (u,v),
(u, v, x, )¢ 1'()) has the following properties: (a) p is a closed mapping;
(b) pNu, v)= F(u) < F(v) for every (u, v)¢ AL It follows from Vietoris-Begles
theorem ([12]) that the homomorphism p*: H*(A;) — H*(/'(¥)) is an iso-
morphism.

There is an involution 7:/(®)—I1(®): Nu, v, x,y) (v, u,y, x) for
(4, v, x, y) ¢ 1 (). The mapping p: I (®) — Aj is obvnously an equivariant
one. Therefore, the mapping p induces a mapping p: I(d)) » A} of the orbit
space of /1®) in the orbit space of A, The mapping p has the following
properties: a) p is a closed mapping ; b) the set p*'(.o) is homeomorphic to
the set F(u,) - F(v,) for &,¢ A and (ug, T) € &

Again _from Vletons-Beglee theorem ([12]) we obtain that the homo-
morphism p* S HY(AD) « H*(I'(®)) is an isomorphism.

Lemma 8 The homomorphisms (I1(®)) are isomorphisms for
n i 2n—-5 and the homomorphism 0" '(I'(®)) is an epimorphism.

The equivariant mapping p: /' (®)— Aj induces the following commu-
tative diagram

_ oMAY)
s H(AG) - HY(AL) -~ HY(AL)  ~H V(Af) —

(8) P P, P, p

~ - oy ) ~
CHT(py - H(y) - @) e )

I'he horizontal exact sequences are Smith's sequences of /(¥) and AL
The vertical homomorphisms are isomorphisms.

From Corollary 3 and (6) we obtain Lemma 8.

Let us consider the single-valued continuous mapping f: I'(P) - R
given by flu, ©, x,y) x for every (u, v, X, V)¢ 1\®P). The set

B(f)=|(u, v, x, y)¢ 1\®) flu, v, x,y) flv,u,y X))

is a closed invariant set in the space /\¥). Therefore the set B(/) is a com-
pact free Z,space.
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Denoting by B(f) the orbit space of B(f) we have

Lemma 9. If | .n—2, then H*3-YB(f)) 0

It can be proved as Lemma 7.

lLemma 10. /f | ~n—2, then dimz, B(f)=2n-1- 3.

The natural projection ¢: B(f) - B(f) is a local homeomorphism. Since
B(f) i1s a compact space, then dim,, B(f) dim, B(f). From lL.emma 9 we
have /1 YB(f)) 0, hence dim,B(f) 2n [--3.

Lemma 11. The mapping r: B(f) - BuF) given by r- p B(f) has
the following properties: a) r is closed; b) dimz r '(x) dimFx) dimF;
¢) r(B(f)) = By(F). A

It follows from Lemma 11 that wecan apply to the mapping r the Hure-
wicz theorem for decreasing dimension mappings (|13, Ch. 4, § 7]). It fol-
lows from this theorem that

dim,, By(F) dim,, B(f)- max {dimz r "(5),§¢ By(F), 2n—1 3—dimF.

7. Multi-valued mappln‘Fs F:5* - R,
Theorcm 4. Let ¥ R*™ be a multi-valued acyclic mapping.
If 0<h—a, then the set BAF) |(u,v)¢ A} " FuynFv) ) is not empty.
Let us consider the multi-valued acyclic mapping &: A ' R R
given by ®(u, v)=Fu) - F(v) for (u, v)¢ .4,'. .
The compact set /'(®)={(u, v, x, v)¢ AJ' ' < R* . R™* (x, y) ¢ Fu)<Fv))
is a free Z,-space with respect to the mvolutlon T: 1) - 1'(P), T vxy)
(v, u, y, x). (a, v, x, )¢ (D).
Using the method of 6 we can prove the following
Lemma 12, SI(/(#)) SI(AM).
Corollary 7. SI(/(®)) 2k.
It follows from [9| that the set C=|(u, v, x, Vel ou, o, x, y)
w4, y, X)) is not empty (where ¢: /(P) > R* is the mapping given
by o(u, v, x,y) x for (u, v, x,y)¢ (D))
let - »ByF) be the mapping given by g¢(u, v, x,y) (u,v) for
(a, v, x, y)( C. The set C is not empty, hence the set B,(F) is not empty.
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